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Abstract

To protect human health and natural ecosystems, wastewater treatment plants (WWTPs) 
have been traditionally designed to remove pollutants from wastewater. With remarkable 
success, WWTPs continuously adapt to increasingly stringent discharge limits. Nowadays, 
municipal wastewater treatment facilities are facing a double transition and new challenges: 
On the one hand, the transition towards a sustainable and circular water economy, in which 
resource recovery from wastewater (water, energy, and nutrient recovery) plays a 
fundamental role for its effective implementation. On the other hand, the digital transition, 
which aims at making the operation of these facilities smart, will undoubtedly have a 
synergistic effect together with the paradigm shift towards the effective implementation of a 
circular water economy.  

To make our current facilities smart, there is a growing interest in finding the way to convert 
the collected process data into intelligent actions for improving their operation. This is not an 
easy task for many reasons:  

• the harsh environment in which the instrumentation must work (corrosive, sludgy,
biofilm formation with biological activity…),

• almost complete absence of metadata that would make it easy the interpretation of the
process data that it is being collected and that would enable its future use,

• the almost complete absence of automated data quality assurance, required to avoid
“garbage in – garbage out”

• the ever-increasing number of available process sensors (data overload), that must be
properly processed and made easily available for further use to make them useful

• large amounts of data are collected and stored in databases but not wisely used, thus,
resulting in data graveyards,

• the excessive cost of nutrient and organic matter sensors/analysers which moreover are
labour maintenance intensive, fact that restrict their availability to the range of large
facilities, thus, they are not usually available for small size facilities (which are the vast
majority),

• the intelligent sensors and data-driven models must be maintainable by the plant
workers (not by Data scientists),

• the lack of process expertise in the development of the artificial intelligent tools,

• plant operators are often accustomed to their operational routines and, therefore,
cultural change is needed in the organization for successful digital transition and
adopting new intelligent tools.

The progress in computing capabilities together with the large amount of collected process 
data in WWTPs have created the perfect storm for the machine learning boom we are 
observing, but all the aforementioned issues can make the incredible digital transition 
opportunity that exists today completely lost. In an attempt to avoid this disaster, this paper 
tries to shed light on the path towards increasing the value of the large amount of data that 
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nowadays are being collected in WWTPs and WWRFs. Thus, digital transition could be safely 
embraced and the enormous potential of data analytics fully exploited, enabling it to play an 
essential role in the future automation and operation of our municipal facilities.  

Keywords
Control, data analytics, digitalization, metadata, wastewater treatment plant, water resource recovery 
facility.   

1 INTRODUCTION

The presence of organic compounds, nutrients, solids, pathogens, and other pollutants in 
wastewater made it to be traditionally considered an undesired waste. Due to the impact of these 
pollutants on the environment, wastewater must undergo energy-intensive treatment to remove 
them, prior to its discharge into natural aquatic environments. To protect human health and 
natural ecosystems, Wastewater Treatment Plants (WWTPs) have been designed to remove the 
pollutants contained in wastewater (Metcalf & Eddy, 2013).  

With remarkable success WWTPs have fulfilled the tasks and, over the years, they relentlessly 
evolved to adapt to the increasingly stringent discharge limits. In the last decade, the transition 
towards a sustainable and circular water economy (CE) has stimulated a paradigm shift that is 
transforming the perception of sewage- and wastewater from an undesirable waste into a product 
that is rich in valuable resources to be recovered (Guest et al., 2009), such as reusable water itself,
nutrients and energy. From this perspective, a CE process aims at improving productivity of 
resources by keeping products, materials and infrastructure in use for longer than in the 
traditional linear ‘take-make-consume-waste’ economic model. CE has been promoted by 
policymakers (e.g., European Commission 2020) and adopted by many industries (Mhatre et al.,
2021). To reflect the increased focus on resource recovery in wastewater treatment (MacDonald 
& Crawford 2017) many WWTPs have been rebranded as Water Resource Recovery Facilities 
(WRRFs) as long as they incorporate some type of resource recovery process. However, the 
introduction of new process units for recovery and additional operational goals resulting from the 
shift from WWTPs to WRRFs renders the operation of the facilities more challenging. 

The structural changes and new goals emphasize the need of efficient process monitoring and 
control tools, as well as multi-objective process optimization strategies (Arnell et al., 2017; Solon
et al., 2019). At the same time, these technologies are key enablers of a second transition that
municipal WWTPs are facing today: the digital transition. This transition aims at making WWTPs 
and WRRFs smart and their operations intelligent and efficient. According to Ingildsen and Olsson 
(2016) a smart water utility operates according to an optimal decision-making management, 
deployed at all process levels. Primary enablers of smart operations are online water quality and 
quantity sensors and process actuators and control levers. The use of these devices and their 
inclusion in computational solutions for designing operational strategies that account for the full 
water cycle, from water intake to water effluent, must be systematic and pervasive. The ultimate 
goal is a system-level management of the operations that is autonomously able of ensuring 
adequate water quality and quantity, with a minimum consumption of energy and materials, and 
minimum environmental impact. 

Yet, today, most of wastewater treatment facilities operate using only basic sensor arrangements 
and the coupling between sensors and actuators is limited to simplified control schemes, if not ad 
hoc rules. Already at this level, the potential benefits offered by instrumentation, control, and 
automation (ICA) technologies remains largely under-utilized. Ingildsen and Olsson (2016) 
estimate that the use and exploitation of ICA technologies could, however, improve the capacity 
of a biological nutrient removal WWTP by 10–30% in the short term, and by 20–50% in the mid- 
and long-term (10–20 years from now). Moreover, the opportunities resulting from the 
availability of modern sensor technologies and more instrumented facilities are still to be 
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discovered and used to support plant operation and management. Efficient statistical and data-
driven models can be used to explore and model the wealth of information available in process 
data. This could lead to the discovery of new phenomena and would enable the development of 
process models and control strategies. 

Although recommended and beneficial, it is essential to understand that having many installed 
sensors is not sufficient for a WWTPs and WRRFs to be considered smart facilities. To benefit from 
process data, raw measurements must be firstly processed and then made easily available for 
further use at different levels of granularity by process operators, engineers, and plant managers. 
The data collected from sensors must be (a) digested into process insight, the resulting knowledge 
is then (b) used to develop predictive models that can help characterise the state of the plant and 
its units, before it is eventually (c) embedded in automatic control structures where it is 
transformed into optimal control actions aiming at driving plant operations: The technology 
involved along this workflow can be understood as a combination of statistics, optimisation, and 
control theory or, as the general public oftentimes denotes it, machine learning and artificial 
intelligence. 

Designing, developing, and then effectively using these technologies for operating wastewater 
treatment facilities is not a straightforward task. To start with, it is well-known that the quality 
and reliability of sensors’ signals is affected by the harsh environment in which the instruments 
operate (corrosive and sludgy environment, as well as biofilm formation with biological activity 
are commonplace). In addition, the biochemical processes and the hydraulics occurring in 
wastewater treatment plants are complicated, highly nonlinear, and only partially understood 
from a mechanistic point of view. The portrait is completed when adding the challenges of 
controlling monolithic facilities perpetually operated in transient conditions. With such complex 
systems, when large amounts of data are collected, but simply stored in databases and not 
modelled to achieve specific process monitoring and control tasks, the risk of forming data 
graveyards is not negligible. This is a risk that must be confronted, mitigating actions must be 
taken to minimise it, and a clear roadmap to harness the full potential made available by modern 
data-based technologies laid down. 

Our starting point is the recognition that, regretfully, in most wastewater treatment facilities, data 
quality and data analysis procedures are still rudimental, if existent at all.  

To reverse this situation, several limitations need to be overcome and counteractions taken: 

• the almost complete absence of automated data quality assurance, required to avoid
“garbage in – garbage out”

• the almost complete absence of metadata collection that would make it easy the
interpretation of the process data that it is being collected and that would enable its future
use,

• the excessive cost of nutrient and organic matter sensors/analysers which moreover are
labour maintenance intensive, fact that restrict their availability to the range of large
facilities,

• the inclusion of process expertise in the development of the artificial intelligent tools and
make them understandable by WWTPs’ personnel to favour their short-term adoption.

Importantly, it is believed that a successful transition in the direction of digitalization and the 
adoption of new computational tools must be achieved through a cultural change in the 
organization and the management of the facilities and the resources available for their operation. 
This has been recognized by the many water utilities that have accepted the challenge and 
developed explicit roadmaps to be implemented step by step. In this regard, the human factor 
plays a central role in catalysing the digital transition. Because the primary users of smart 
applications are frontline staff responsible for daily operational decisions, it is important to 
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involve them in developing these tools and to ensure that new information is presented in a user-
friendly format and is actionable for their needs (Torfs et al., 2022).

Adequate training of end-users is also a necessity to enable the successful adoption of new tools. 
Eerikäinen et al. (2020) found that employees of WWTPs are expecting next generation of digital
tools for process data analysis. They emphasize that those tools should combine competences of 
both automation providers and wastewater process experts with a thorough understanding of 
treatment phenomena. The challenge for this is that the number of experts who have adequate 
skills and experience in both data techniques and treatment processes is limited. Therefore, it is 
expected that universities also enable and encourage learning this kind of mix of technologies in 
their curricula. That would promote new business opportunities in the form of, for instance, 
machine learning applications tailored for WWTPs, as well as services that facilitate the 
introduction of new tools with in-house data methodology understanding of new generation of 
workforce members. In fact, it also is of primary importance that universities provide students 
with sufficient mathematical education as that is the backbone required for learning advanced 
data analysis methods.   

Even though the majority of smart water products that have been traditionally available on the 
market are targeted for water and wastewater network operations, some companies have started 
offering data quality management solutions and advanced modelling services which are 
specifically tailored for WWTPs (Corominas et al., 2018). In addition, a large number of the
computational tools that could be used to support the operations of WWTPs have been designed 
and developed in the academia. While many of these tools have mainly kept their research-
oriented nature (Haimi et al., 2013; Corominas et al., 2018; Newhart et al., 2019), it is important
to note that successful smart water companies have often strong connections with university and 
routinely adopt ideas from novel academic research to add functionalities to their products.  

Academia also plays a highly important role in showcasing the benefits of advanced data mining, 
modelling, and control systems to WWTP decision-makers and other stakeholders. To reach the 
multiple operational goals set when operating a modern facility, it is crucial that end-users are 
offered the opportunity to clearly appreciate the potential of advanced monitoring and control 
systems from an economic and safety of people, the environment as well as the equipment: As a 
driver of the cultural change towards efficient utilization of measured data for improved 
operation, that would actuate inclusion, for instance, of advanced monitoring and control systems 
in public procurements of water utilities when upgrading plants. In addition, procurements of 
smart systems for WWTPs are challenging to master, for example, because individual application 
solutions should be integrated into existing and future software platform solutions (Müller-
Czygan 2020). Nevertheless, procuring advanced systems would also act as a driver for an 
increased competence of automation companies and consultants providing services for water 
utilities.   

To avoid that the extraordinary digital transition opportunity that exists today be completely lost 
due to the aforementioned issues, this paper tries to shed light on the path towards increasing the 
value of the large amount of data that are being collected in current WWTPs and WRRFs making 
it possible to leverage the machine learning boom. It serves also as a roadmap to ease the 
intelligent automation of these facilities, thus paving the way to their digitization. Thus, digital 
transition could be safely embraced and the enormous potential of data analytics fully exploited, 
enabling it to play an essential role in the future automation and operation of our municipal 
facilities. 

2 MAKING WASTEWATER TREATMENT FACILITIES INTELLIGENT

2.1 The digital transition in WWTPs
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The digital transition aims at making the operation of wastewater facilities intelligent, being on-
line monitoring, real-time process control and automation essential parts of the digitalization of 
wastewater facilities. Thus, on-line measurement data from the process are the foundation of a 
smart facility. To be profitable and allow process control and decision-making, the frequency of 
measurement of a variable (i.e., the temporal resolution of the sensor) should make it possible to 
capture its dynamics, i.e., the phenomena of interest is captured by the sensor (e.g., from lower to 
higher frequency needed: suspended solids in the reactor, influent flow rate, dissolved oxygen 
concentration in the aerobic reactor). 

A wide range of physical and chemical parameters relevant to operation of WWTPs can be 
measured continuously or semi-continuously with commonly used sensors and analysers 
(Ingildsen & Olsson 2016). Development of novel instruments is still taking place, for instance, for 
measurement of organic carbon, metals, and emerging contaminants in wastewaters, for more 
affordable and improved nutrient sensors (Zhang et al., 2020), and for enabling continuous
monitoring of some parameters relevant to optimization of anaerobic digestion processes (e.g., 
measuring individual volatile fatty acid species) (Jimenez et al., 2015).

Figure 1 shows a scheme of the water line and the sludge line including the typical sensors that 
could usually be deployed within a standard wastewater facility. Please note that mainly process 
variables (also known as secondary variables) are recorded which are easy-to-measure with 
relatively cheap sensors. Less frequently available (in small and medium-size WWTPs) quality 
variables (also known as primary variables) - like nutrients and organic matter which are 
measured with expensive sensors/analyzers.  

Figure 1. Typical sensors found in the water and sludge lines of a conventional wastewater treatment facility.

Although there is a wide variety of sensors available, practical challenges still exist: operators of 
treatment facilities find, for instance, quality of measured data and laborious maintenance needs 
of instrumentation as barriers for efficient use (Eerikäinen et al., 2020). Particularly, there are
simpler sensors (e.g. dissolved oxygen, pH, flow, level) that have been proven to be robust, 
sufficiently accurate and need minimum maintenance, but challenges concern more advanced 
sensors (e.g. ammonium, nitrate, nitrite and phosphate) that have been found to be less reliable, 
preventing a wider application of the advanced control algorithms that are dependent on these 
sensors (Yuan et al., 2019). Even there are a number of undesired sensor states: excessive drift,
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shift, fixed value, complete failure, wrong gain and isolated fault (a single incorrect value) 
(Therrien et al., 2020).

Recent instrumentation surveys in Swedish and Danish WWTPs (Åmand et al., 2017; Nilsson &
Andersson 2018, respectively) indicate that less than 70 % of investigated facilities in both 
countries had written instructions for quality control of at least part of the instruments. However, 
because large amounts of measured data are generated in modern WWTPs, in addition to 
conventional sensor maintenance efforts, incorporation of techniques for fast detection and 
diagnosis of faults are needed to guarantee sufficient data quality (Corominas et al., 2018).
Another challenge that is also emphasized by increasing amounts of measured data in WWTPs, is 
that stored sensor data is often not augmented with adequate meta-data i.e. descriptive 
information, which hinders the use of historical data to address future problems (IWA 2021a).   

In our experience, efforts for keeping instrumentation operational varies quite much between 
facilities even if their size and personnel numbers would be similar. Also other reasons than 
laborious maintenance and incomplete technology have a crucial impact on this: if operators do 
not understand the value of certain measurements for process operation, they easily loose interest 
in those sensors (Olsson & Ingildsen 2018). Therefore, implementation of each sensor should be 
justifiable, and their purpose and received benefits need to be thoroughly explained to employees 
who operate the process. This is of key importance for successful instrumentation and control 
design projects. Moreover, adequately maintained sensors are vital for smart wastewater 
treatment facilities.  

2.2 Stages to transform raw data into actionable insight

2.2.1 From raw data to quality checked data fitted for purpose

As can be seen in Figure 2, the first tough challenge for ICA in a wastewater facility is the harsh 
environment in which the instrumentation has to work (corrosive, sludgy, biofilm formation with 
biological activity…), which directly impacts the quality and reliability of a sensors’ signal. 
Surprisingly, despite this is evident and known, data quality and data analysis are essentially non-
existent in most wastewater facilities around the world. Therefore, nowadays with numerous 
sensors installed in many wastewater facilities, a huge amount of data is being collected that is 
neither analysed nor utilized, resulting in data graveyards (Corominas et al., 2018). To make the
situation even worse, the almost complete absence of metadata (that would enable the correct 
interpretation of the collected data) prevents its future use.  

(a) (b) (c) 
Figure 2. Pictures of a suspended solids probe installed in the buffer tank of a WWTP: (a) new probe (b)

freshly removed from the buffer tank (c) after cleaning with water jet. This illustrates the harsh environment
in which the instrumentation has to work (corrosive, sludgy, biofilm formation with biological activity…).
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Since the on-line measurements are the basis of a smart facility, appropriate data quality check is 
vital to make it possible the exploitation of the ICA. It is evident and of paramount importance for 
process operation that every on-line measurement should have to be quality checked prior to be 
used in a control loop.  

The raw collected data must be properly processed and made easily available for further use to 
make them truly useful. However, there is no general standard on how the on-line quality check 
should be done (Ingildsen & Olsson 2016). Figure 3, shows different pre-processing steps that can 
be applied to the collected data (raw data) to check its quality and improve its information 
content. Depending on each particular case, some steps or others can be applied. For example, for 
automatic control purposes human intervention should be not required, while for process 
modelling purposes it will be a quite important component: starting from the initial visualization 
of the data by the wastewater treatment expert to gain an overview and feeling of the plotted data 
to the application of mass balances to detect inconsistencies in the collected data.  

A relatively easy to implement automated data quality assurance workflow would include the 
following stages: raw data -> sanity checks -> outlier detection -> pre-processing (missing
data imputation, scaling and filtering) -> Data fit for purpose. As can be seen in Figure 3, the
end of the pre-processing steps results in “data fit for purpose”, which is quality-checked data that 
has been reshaped into a better form for further analysis by the methods shown in Figure 4. 

The pre-processed on-line measurement can be used in a control loop (i.e., used as input of the 
control algorithm), either directly (e.g., the oxygen concentration that is used to regulate the 
amount of air supplied by the blowers to the aerobic reactor) or indirectly via the on-line 
estimation of another variable using for example a data-driven model (e.g. a soft-sensor based on 
an artificial neural network or on a support vector machine or on a partial least squares model….) 
or simply multiplied by another variable. There are several signals of interest in the wastewater 
treatment context that are obtained by a simple combination of multiple signals (e.g., the organic 
mass flow (Q x COD), the solids mass flow (SS x Q),…). 

Figure 3. Pre-processing steps that can be applied on raw data to check its quality and improve its
information content. Selecting appropriate steps, a data pipeline can be developed for each case.

2.2.2 From good quality data to data-driven models

From the perspective of data processing, the challenge is to effectively use the data that can be 
acquired for a modern wastewater treatment plant for developing models useful for achieving 
reuse, resource and energy recovery, and minimal carbon and greenhouse gas footprint. Within 
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PURPOSE

RAW 
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Plot the data: time series, 
histograms, scatterplots...
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systematic errors. Overlapping mass balances 
(different boundaries with one common measuring point), 
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Transformation
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machine learning and artificial intelligence, the task is approached mainly as supervised and 
unsupervised learning. 

In a typical supervised learning scenario, the output, called response or dependent variable, is a 
quantitative (such as “difficult-to-measure-variables”) or categorical (such as effluent quality or 
process indicator) that we wish to predict. The output type leads to a naming convention for the 
prediction tasks: regression (to predict quantitative outputs) and classification (to predict 
qualitative outputs). In both situations, a set of measurements data from the sensors and the 
laboratory/experimental analysis is available. These are the features, also called predictors, 
inputs variables or independent variables. We have a training set of data, in which we observe the 
outcome and feature measurements for a set of samples. Using these data a prediction model is 
built which will enable to predict the outcome for new unseen test samples. Unsupervised 
learning, often performed as part of the exploratory data analysis, refers to a situation in which 
for every feature, we observe a vector of measurements but no associated response. The goal is to 
directly infer some interesting properties of the process from the available features without the 
help of an associated response variable providing correct answers or degree-of-error for each 
observation (Hastie et al., 2017).

Figure 4 schematically summarises the methodologies applied to the pre-processed data within 
the wastewater treatment applications. Most studies focused on regression problems to predict 
and monitor the output variables based on a given number of historical observations, as 
summarized by Haimi et al. (2013) and lately by Ching et al. (2021). Recent machine learning
algorithms for WWTP classification problems include random forest, tree-based algorithms, 
support vector machine and the comparison of different methods in various applications (as for 
instance in Guo et al., 2015, Nourani et al., 2018, Wang et al., 2021 and 2022). Unsupervised
methods have been utilized for determining changes in process variables and for anomaly 
detection (Corominas et al., 2018). A recent example of clustering application is Xu et al. (2021)
for optimizing the processes configuration of full-scale WWTP predesign through an integrated 
strategy consisting of t-distributed stochastic neighbour embedding (t-SNE) and deep neural 
networks (DNNs). 

Figure 4. Data-driven techniques that can be applied to the quality-checked data that is fit for purpose.
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2.2.3 From good quality data to WWTP process control

The development and implementation of data-driven models and automatic process controllers 
will make the collected data truly useful. Real-time process control and automation can 
significantly contribute to the optimization of different processes (chemical dosing, pumping, 
aeration, energy consumption) and can take care of the repetitive low-level tasks necessary to 
keep the facility running. It should be highlighted that sound control actions require good quality 
data. The increasingly complex control strategies (required to efficiently operate the increasingly 
complex WWTPs) will fail more often the lower the quality of the measured process data. There 
are control loops based on variables that are directly measured from the process (e.g., dissolved 
oxygen concentration) or on the output of a data-driven model (e.g., soft-sensor, or a data-driven 
predictive model). 

From the perspective of automatic control, the challenge is a system-level technology to optimally 
operate WWTPs in a management of wastewater that includes reuse, resource and energy 
recovery, and minimal carbon and greenhouse gas footprint. Ideally, facilities and recipients of 
recovered resources must be operated as interacting entities, to satisfy operational objectives that 
aim at matching demand and resources, while always ensuring safety of people and equipment, 
environmental permits, and sustainability boundaries. 

Nowadays, there is no standardised control solution for WWTPs that aim at being operated as 
WRRFs. General solutions for control algorithms are useless because they are case-specific, and 
the algorithms require tunning on a regular basis. To tune them, skilled personnel are needed. It 
is still rare to encounter WWTPs in which downstream operations are accounted for to define the 
planning over the recovery of energy and materials: When the operational goal is dictated only by 
disposal permits that are unaware of the fate of recoverable resources, plant management cannot 
be expected run WWTPs as bio-refineries within the water chain. Yet, there exists practical 
evidence that wastewater treatment facilities often times have the technological capability and 
flexibility to be operated towards these objectives. 

In a less heuristic approach, the goals of resource recovery, subject to neutral- or positive-energy 
constraints and minimal air emission footprint, must be formulated as explicit control objectives 
to be achieved by manipulating material and energy fluxes across WWTPs, in response to 
downstream needs and upstream conditions. By coordinating the right synergy between 
treatment plants on the one hand, and the receivers of recovered resources on the other, flexibility 
between treatment, reuse, and resource recovery can be largely achieved by making the best use 
of existing facilities, with little-to-none capital investments for upgrading or retrofitting. In this 
framework, plant-wide planning must be designed around controllers that must be capable to (a) 
deal with complex and uncertain unit- and plant-wide dynamics; (b) satisfy the constraints given 
by current and forthcoming permits; (c) manage the production of reuse water and recovered 
resources; (d) enforce energetic neutrality, if not positivity; and (e) minimise the environmental 
impact of the plant. Moreover, controllers must be capable to determine an optimal equilibrium 
when conflicting objectives are at stake. 

The importance of optimising the operations of a WWTP using automatic control is largely 
recognised, both from an environmental and an economical viewpoint (Ingildsen & Olsson 2016). 
Efforts made to reduce energy use by replacing specific devices (Daw et al., 2012) focused on the
control of aerobic processes (Mulas et al., 2015, Stentoff, 2020], but also on structural changes in
process configuration (Sarpong and Gude, 2020). Recently, Neto et al. (2022) have shown that 
conventional activated sludge processes can be optimised with respect to non-conventional 
objectives, like quality and quantity of released water. While these results are rooted on the 
availability of dynamic models (Henze 2020) that enable the definition of advanced control 
strategies, progress remains to be made to integrate the mechanistic models in the determination 
of the technological margins for controlling WWTPs as WRRFs, and on how to safely complement 
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them with empirical counterparts. There exist critical knowledge gaps and open questions also 
regarding the feasibility of full energy and nutrient recovery, and on the thresholds as of when 
these practices are safe. It is also unclear what are the conditions for environmental neutrality. 
These questions are at the core of the research. 

A key pathway towards a smart management of wastewater treatment systems and the 
foundation for a sustainable water management is built upon the development of information and 
decision-support systems. In a model-based approach, state-space process models derived from 
first-principles, either mechanistic or statistical, are learn using process measurements, then 
analysed and finally embedded in receding-horizon controllers for optimal decision-making and 
planning. The integration of explicit operational policies for supervising smart operations, on a 
high-level, and the deployment of regulatory actions with low-level controllers can be developed 
according to a general control architecture consisting, in its basic formulation, of a dynamic 
process model, a state estimator, and a predictive controller. 

In Figure 5, the integration of an optimal controller is illustrated on a conventional activated 
sludge process consisting of a certain number of actuators (in this case, 13), operated using low-
level PI controllers whose set-points are dynamically determined using a predictive controller. 
The controller, in turn, determines the set-points as the decision variables that optimize a user-
defined operational objective over a fixed time-horizon, subject to the dynamics of the plant (a 
process model) and to a number of technological and operational constraints. As the controller 
requires knowledge of the current state of the process, this information is reconstructed for 
sensor measurements (here, 14) by a state estimator, again based on a dynamical model of the 
process. In the example, the process model used to represent the plant is the BSM1. 

Figure 5. A schematic of a model-based predictive controller for a conventional activated sludge process. The
actions of the actuators (in blue) are defined using PI controllers whose setpoints are determined using a
predictive controller. Sensor measurements (in red) are used by a state estimator to determine the current
state of the process. Both the controller and the state estimated are based on a mechanistic process model.

In Figure 6, the architecture is instantiated to use a model-predictive controller (MPC) and a 
moving-horizon estimator (MHE). The process model is explicitly described by a state-space 
formulation, with a set of dynamic models (the 145 differential equations in the BSM1) and 
measurement models (14 algebraic equations defining the measurements as function of the 
process state, again based on the BSM1). From a process perspective the actuators allow for the 
control of aeration and the addition of external carbon sources to the biological reactors, and the 
control of sludge recycles and removal in the secondary settler. 

675



Aguado García et al. (2022) 

2022, Universitat Politècnica de València 
2nd WDSA/CCWI Joint  Conference 

Figure 6. General structure of a model-based predictive control (MPC) and moving-horizon state estimator
(MHE). Both the MPC and the MHC solve a nonlinear optimization problem, subject to the process dynamics,

encoded by the process model, and a number of technological and operational constraints after

When compared to simpler error-feedback control strategies that require an ad-hoc pairing 
between controlled and manipulated variables, a model-based control architecture defines the 
control actions over the entire set of actuators comprehensively, at the plant-level, according to a 
state-feedback principle. It is also important to note that additional modules can be integrated 
into this general structure. Typically, it is expected to include a fault-analysis module that certifies 
the normality of the operations and health status of the equipment: This module is necessary to 
authorize the deployment of the supervisory actions to the regulatory layer. Moreover, it is often 
beneficial to add a module that support planning by predicting the future evolution of the 
disturbances. More advanced modules with data analysis capabilities can be included to support 
monitoring, from high-level KPIs to instrumentation, at different time scales and process levels. 

To simulate real-world situations in a more realistic way allowing to test control actions and the 
staff to experience what different situations would be like in real life (without the associated costs 
and dangers), there is a current trend to develop digital twins (DT). DTs are virtual 
representations that serve (near) real-time counterparts of physical objects (twins). The core of 
DTs of wastewater treatment processes are process models that often are mechanistic models (for 
instance, ASM and ADM models), but hybrid models have also been found promising approaches 
(Torfs et al., 2022). According to these authors, three key features that separate DTs of wastewater
treatment processes from off-line models are that (a) a physical counterpart for model must exist, 
(b) there is an automated data connection to the physical twin, and (c) there needs to be means to
continuously update the process model according to evolution of the physical process over time.
Because an essential property of a DT is use of near live data, appropriate automated data
management is crucial for successful implementations. DTs have been used, for instance, for
evaluating current process status and for performing automated scenario analysis in the
Singapore PUB Changi WRRF (Johnson et al., 2021), for process monitoring and operational advice
with focus on improving resource recovery and reducing energy footprint in Egå WRRF
(Denmark) (Polesel et al., 2021) and for predictive control of influent flow in Kolding WRRF
(Denmark) (Stentoft et al., 2020). Other potential applications of DTs in treatment plants include
operator training, failure analysis, and asset management and predictive maintenance (Torfs et
al., 2022).
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3 CONCLUSIONS

Collected data in WWTPs and WRRFs can be utilized for many useful purposes: process 
monitoring, real-time process control and automation, increase process knowledge, process 
optimization, data-driven modelling, data mining, better understanding of process state, fault 
prediction, decision-making. Currently a lot of data is collected in WWTPs and WRRFs, but most 
of them is not used and the almost complete absence of metadata prevents its future use not 
having the necessary knowledge of its context to allow their interpretation. In this paper it has 
been shown how to increase the value of the large amount of data that nowadays are being 
collected in WWTPs and WWRFs. The main take-home messages are the following:  

• Nowadays, many facilities around the world are not exploiting the value of the available
data, being data rich yet information poor a frequent situation that results in data
graveyards.

• It has been shown that it is possible to take advantage of the data that nowadays it has
been collected with the already deployed instrumentation in each facility, by assuring its
quality (an automatic quality workflow has been proposed) and storing its context and
related information (metadata) to enable its interpretation and future use.

• The deployment of real-time automatic process control algorithms and data-driven
models can avoid some repetitive low-level tasks to process operators while keeping the
WWTP running in a cost-effective way, thus making the collected data truly valuable and
useful.

• The human factor is vital for a successful digital transition: the staff should be involved in
the development of the artificial intelligent tools (e.g., taking advantage of their process
expertise and know-how), as well as be trained on these tools (so the staff can understand
the new smart-tools and some of them even update or tuning them).

• More information from the process can be obtained deploying new sensors and quality
probes, which will allow the development of more complex control strategies, as well as a
more detailed and in-depth knowledge of the monitored processes, which is always
valuable for an informed decision-making.
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