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1. Introduction
Residential electricity load optimization had become 
one of the key issues in solving energy crisis problems 
in the past few years. In several nations worldwide, 
residential buildings constituted a large percentage of 
energy consumption. In the European Union for instance, 
the residential sector accounted for 26.1% of the total 
energy consumption in 2018; and this catered for space, 
water heating, and electric end users such as lighting 
or appliances. It was observed that in residential areas, 
variations of social, economic and technical characteristics 
among consumer groups influenced electricity 
consumption. This was based on the timing, location, 
peak and distribution of electric power. Considering the 
social-economic aspects and technical equipment used 
in Uganda, residential electricity load had a significant 
influence considering the type of dwelling and location. 
Indirect influences on electricity load were also attributed 
to the number of occupants (Graveia, 2015), the number 
of bedrooms (Chesser et al., 2019), the dwelling area 
(Larsen & Nesbakken, 2004), the floor area (Bafer & 
Rylatt, 2008), incomes (Yohanis et al., 2008) and the 
household ownership of physical appliances.

Electricity consumption in residential areas was also 
affected by several social-economic factors worldwide. 
In some households, it was noted how much electricity 
appliances consumed so as to enable households to 
acquire knowledge about the expenditure patterns 
associated with such appliances. It was therefore 

prudent to devise appropriate methods for understanding 
electricity consumption based on household appliances. 
The degree of how such appliances were used in 
residential areas was of paramount importance.

In practical situations, the usage of an appliance as well 
as the related operational cost calculations considered 
estimates of the daily hours run by appliances; that 
determined the wattage of the product, daily consumption, 
annual energy consumption and the annual cost to run 
the appliance. The estimated run time of appliances on 
a daily basis was made through a rough estimate by 
keeping a log. Through a rough estimate, the household 
predicted the usage rates of an appliance on a daily basis 
and such a household determined the usage hourly rate. 
As the number of power appliances consumed varied 
considerably depending on the setting, realistic estimates 
of current in residential areas were obtained considering 
the current and voltage used by the household appliance. 
Determining the daily consumption, annual consumption 
and annual cost to run the appliance were critical 
factors that influenced electricity loading decisions and 
consumption patterns of households in residential areas.

1.1. Residential electricity load background

The goal of meeting people’s energy needs became a 
crucial research topic of global concern in recent years. 
In modern society today, however, the use of electric 
and electronic devices had increased tremendously; and 
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this contributed to energy consumption for smartphones, 
televisions, appliances and various related devices. It had 
been widely believed that load demand for electricity did 
not vary significantly among households regardless of 
socialeconomic circumstances; considering inhabitants 
of a family or an apartment building. However, residential 
electricity loading lacked predictability guidelines for 
modelling purposes since a solid understanding of the 
residential load profile and its prevailing state was needed. 
Despite this challenge, however; residential electricity 
load profiles had a big role in capacity planning; by 
improving the efficiency in system operations, electricity 
grids, generation investment energy market, electricity 
tariffs, price structures, incentives, customer satisfaction 
and other economic considerations.

1.2. Research objectives
i)	 To develop and optimize the residential electricity 

load model under stochastic demand
ii)	 To optimize electricity consumption costs under 

stochastic demand
iii)	 To test the residential electricity load model

1.3. Research questions
i)	 What is the optimal residential electricity loading 

decision under stochastic demand?
ii)	 What are the electricity consumption costs under 

stochastic demand?

1.4. Methodology
1.4.1. The survey instrument

Questionnaires were developed and pre-tested for the 
field survey; then administered to the residential areas and 
a sample of households within the residential areas. The 
first questionnaire established the demand transitions, 
electricity demand and electricity units available under 
the decision of loading additional units versus not loading 
additional units of electricity

1.4.2. Research Participant

Field participants were trained to administer the 
questionnaire in this study and collected relevant data 
from households of a given residence.

1.4.3. Study Population/sample

The study was conducted on an accessible population; 
that comprised two residential areas and one hundred 
(100) households

1.4.4. Data Analysis

To reduce the data collected to usable dimensions, the 
raw data collected was edited, processed and analysed; 
so that the data generated was organised and interpreted. 
An electronic database was created from the database 
generated. Data was analysed from frequencies 
generated and presented to show the relationship 

between state transitions, the number of households, 
demand, available electricity units and the respective 
electricity loading decisions.

1.5. Residential load management under 
stochastic demand

The theoretical foundation of the study (Mcloughlin & 
Duffy, 2012); emphasized the great challenge encountered 
while considering uncertainty in residential load demands. 
Considerations to load uncertainty of each residential 
customer were modelled by utilizing the simplex method 
with fuzzy numbers. Using the price vector as the input 
of the optimization problem, the input for electricity 
consumers was used to optimize this fuzzified demand. 
The effectiveness of the proposed stochastic load 
management scheme was validated by solving a two-
demand problem. Each demand expected a minimum 
level of power contribution which was defined by a fuzzy 
constraint. In our approach, the residential electricity 
load under stochastic demand considered the nature of 
demand using a two-state Markov chain. The states of 
residential electricity demand represented possible states 
of demand. The optimal electricity loading decision and 
associated consumption costs were determined using the 
Markov decision process methodology over a designated 
finite period planning horizon.

The paper was organized as follows: After reviewing the 
literature in §2, the model was formulated in §3; where 
consideration was given to the process of estimating 
model parameters. The model was solved in §4, and 
a case study was presented in §5. The study showed 
the practical application of the proposed model; where 
analysis/discussion of the results and limitations of the 
study were presented. Lastly, conclusions followed in §6; 
with prospects for future research.

2. Related literature
In a recent study, an electrical system framework that 
measured the accessibility of electrical power (Khorsandl 
& Cao, 2016) was considered. The author examined 
stochastic residential load management using fuzzy-
based optimization approaches. A novel stochastic 
optimization framework to model the day-ahead load 
profile of a residential energy hub (Askeland et al., 2020) 
was suggested using an incentive-based DR program. 
That was done through a distributed approach; where 
the load profile became smoother by considering the 
related aggregator’s desirable load profile limits. Related 
previous work on residential load considered three 
steps where an independent system operation ISO day-
ahead RTP to a residential load aggregator (RLA) was 
considered (Nezhad et al., 2020).The RLA predicted 
individual household loads (step 1), and aggregated the 
loads that minimized the costs (step 2). In the second 
layer, the RLA announced incentives to homes, and 
more energy management systems (EMS) controlled the 
loads and maximized the reward in real time (step 3). A 
very recent study of the load combination of power sales 
companies was based on various power values (Wang et 
al., 2019) where demand response data was extracted by 
load characteristics index and power consumption index. 
The method proposed reduced the power purchase cost 
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and increased the revenue of the power company. A 
systematic literature review however pointed to a diversity 
of modelling techniques and associated algorithms on 
short-term load forecasting (Liu et al., 2022). The authors 
concluded that it was desirable to have a unified data set, 
together with a set of benchmarks and well-defined metrics 
for a clear comparison of all the modelling techniques 
and the corresponding algorithms. A related approach 
that used a stochastic bottom-up model for generating 
electrical loads for residential buildings (Rodrigues et al., 
2023) in Canada was presented. The model investigated 
the impact of different household characteristics, 
appliance stock and energy behaviour on the timing 
and magnitude of non-HVAC energy loads at multiple 
houses and yielded significant results. The stochastic 
perturbation method and the transformed random 
variable method (Mohamed et al., 2023); where energy-
demand analysis was performed for the representative 
single house in Poland produced important results. The 
expanded polystyrene thermal conductivity and external 
temperature were considered uncertain. The expected 
value and central moments of the energy consumption 
were determined using the stochastic perturbation method 
while the transformed random variable method obtained 
the explicit form of the energy consumption probability 
density function. However, the highly resolved electricity 
consumption data of Austria, German and UK households 
(Anvari et al., 2022) and the proposed applicable 
data-driven load model made critical awareness to 
model developers. The average demand profiles were 
disentangled from the demand fluctuations based on time 
series data. A stochastic model was then introduced to 
capture the intermittent demand fluctuations. A related 
study assigned pre-generated electricity and heat demand 
curves to georeferenced residential buildings in Germany 
(Büttner et al., 2022). That provided a large variety in 
residential load profiles which spatially corresponded 
to official social–demographical data. Results were 
validated on different aggregation values. The forecasting 
performance of models based on functional data analysis 
(Shah et al., 2022) gave important insights. The demand 
time series was first treated for the extreme values. The 
filtered series was then divided into deterministic and 
stochastic components. The additive modelling technique 
was used to model the deterministic component; whereas 
the functional autoregressive was used to forecast the 
stochastic component.

The literature cited showed important insights by current 
scholars that were crucial in studying the residential 
electricity load problem. However, the optimality of 
electricity loading decisions with associated consumption 
costs was not fully considered under demand uncertainty. 
The Markov decision process model provided a powerful 
framework for optimizing electricity loading decisions and 
electricity consumption costs under demand uncertainty 
considering several households in residential areas.

The major contributions of this paper to residential 
electricity load under stochastic demand highlighted the 
following:

i)	 The state-transition matrices that characterized 
the demand and consumption cost were computed 
under the prevailing electricity loading decisions

ii)	 The computation procedure calculated the expected 
consumption costs and accumulated consumption 
costs for the electricity loading decisions

iii)	 The Markov decision process formulation allowed 
the decision maker to load or not load extra units of 
electricity under different states of demand

3. Model formulation
A discrete-time finite horizon MDP model was developed 
with decision epochs tϵT= {1,2,…….E}. At each decision 
epoch t, the decision maker (ie, electricity regulator) 
observed the electricity demand states by conducting 
some observatory tests concerning the electricity demand 
levels when the available electricity exceeded demand, 
loading additional units was stopped and the decision 
process was terminated. Otherwise, the decision maker 
decided (based on residential electricity demand) on 
the optimal loading decision that had to be taken. The 
decision continued till the loading exercise ended for each 
action the decision maker took. There emerged therefore 
an immediate reward representing the total electricity 
consumption costs based on the decision taken.

Our goal was to solve the trade-off problem between 
loading additional electricity units with the associated 
consumption costs versus not loading additional electricity 
units. A formal definition of the core components of our 
MDP model followed.

3.1. States

The demand state i was composed of two-state 
variables: Favourable state (state F) and unfavourable 
state (state U). The favourable state was defined by the 
presence of customer NS,with demand DS observed by the 
decision maker at each decision epoch t within residential 
area r; where Sϵ{0,1}, r ϵ{1,2}, t=1,2,…………T.

3.2. Actions

We denoted the action space by A= {a0, a1, … … ak}where 
ai = 0 represented not loading and ai = 1 represented 
loading additional units. We assumed that if ai = 0 was 
chosen, additional electricity units were not loaded when 
customers in residential areas were fully supplied; while 
additional units needed to be loaded whenever electricity 
demand exceeded available electricity.

3.3. Transition probabilities

When the decision maker chose action st ϵ S at decision 
epoch t when demand was in state st, the demand state 
moved to st+1 at t+1 with probability Pt (St /St+1, at). We 
assumed that

Pt (St+1 /St, at) =Pt
ƛ(ct, at) × =Pt

α(αt+1 Pt
α (αt+1, αt)� (1) 

where

Pt
ƛ(ct, at) and Pt

α (αt+1 / αt,at )
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were the transition probabilities for the favourable demand 
state and the unfavourable demand state respectively. 
This assumption was consistent with our proposition that 
favourable demand and unfavourable demand did not 
depend on each other; but depended on the decision 
maker’s action only. More specifically, we assumed that

Pt
ƛ (ct+1/ct,a1) > Pt

ƛ (ct+1 /ct, a2) >…….>Pt
ƛ(ct+1/ct, ak)� (2)

where ct+1 represented a favourable state.

Pt
ƛ(ƛt+1/ƛt,a1) < Pt

ƛ (ƛt+1/ƛt, at) <……<Pt
ƛ(ƛt+1 /ƛt, ak)� (3)

where ƛt+1 represented unfavourable state than ƛt

3.4. Reward Functions

Our model included a reward function ƛt(st, at) that 
reflected the utility/disutility of the decision maker as 
realized demand state st with action at which was taken at 
decision epoch t. This was defined as

αt(st/at) =∑N
i=1

 αt,i (ci, at) + αt (αt, at)� (4)

where αt,i (ci, at) represented the immediate reward 
forfavorable demand state ci and αt(αt, ai) was the 
immediate reward for unfavorable demand state αt

Hence the corresponding reward functions were assumed 
to follow the following inequality for all t.

αt (ci, at) < αt(ci
′, at), αt (α,at) < αt (α′, at)� (5)

3.5. Value function

The goal of our MDP model was to find the optimal 
strategy for loading electricity units. A rule was therefore 
sought for taking action at each state that would minimize 
the expected total consumption costs of electricity 
over the planning period. This could be achieved by 
solving Bellmann’s recursive equations for all st ϵ S and 
t=1,2,………T.

Vt(st) = minat 𝜖A{αt (st, at) +  
+∑st+1𝜖S Pt(st+1/st,at) νt+1(st+1)/st, at)νt+1(st+1)}� (6)

where νt(st) represented the minimum expected total 
reward at the decision epoch t when demand was in state 
st with the boundary condition

Vα+1(s) = αT+1(s)

3.6. Formulating the Finite-period Dynamic 
Programming Problem

Since demand was considered as favourable state 
(state F) or unfavourable state (state U), the problem 
considered an optimal electricity loading decision; and 
this was modelled as a dynamic programming problem 
over a finite period planning horizon. We denoted gn(i, r) 
as the expected total consumption costs accumulated by 
residential area r during the periods n,n+1,…...,N given 

that the state of the system at the beginning of period n 
was iє{ F, U }.The recursive equation relating gn and gn+1 
became

gN(i, r) = mins[ei
S (r) + QS

iF
 (r) gn+1(F,r) + 

+QiU
S (r) gn+1(U,r)]� (7)

The following condition was sufficient

gN+1(F,r) = gN+1(U,r) = 0� (8)

The consumption costs CS
ij (r) + gn+1 (j) resulting from 

reaching state jϵ{F,U}at the start of period n+1 from state 
i ϵ{F,U} at the start of period n occurred with probability 
QS

ij(r).

Clearly,

eS(r) = [QS(r) ] [CS(r)]T Sε [0, 1] r = [1,2]� (9)

The corrresponding dynamic programming recursive 
equations were thus obtained

gN(i,r) = minS[ei
S(r) + QS

iF
 (r) gn+1(F,r) + QS

iU
 (r) gn+1(U,r)]� (10)

gN(i,r) = minS [ei
S(r)]� (11)

Electricity demand in excess of supply yielded the 
consumption cost matrix

CS(r) = (ct + cs) [DS(r) - AS(r) ]� ( 12)

Otherwise

CS(r) = co[AS(r) - DS(r)]� (13)

when supply exceeded demand

Clearly,

CS
ij (r)=

(cl +cs+co)[DS
ij(r) - A

S
ij(r)] if D

S
ij
 (r) > AS

ij
 (r)  (14)

c𝑜[AS
ij

 (r) -DS
ij

 (r) ] if DS
ij (r)≤ AS

ij (r)

for: i,j є{F,U} , r = {1,2} , Sϵ{1,0)

The justification for expressions (13) and (14) was that 
DS

ij(r) – AS
ij(r) units had to be loaded to meet excess 

demand. Otherwise loading was cancelled when demand 
was less than or equal to supply. The following conditions 
were therefore sufficient to execute the model.

1.	 S=1 when cl > 0 otherwise S=0 when cl = 0
2.	 cs > 0 when shortages were allowed otherwise cs=0 

when shortages were not allowed.

4. Optimization
The electricity loading decision /consumption costs were 
optimized for periods 1 and 2 in residential area r.
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4.1. Optimization - period 1

Considering favourable (state F) demand, the optimal 
loading decision was determined as

S=
S = 1 if e1

F
 (r) < e0

F (r)  (15)
0 if e1

F(r) ≥ e𝐹0(r)

with expected consumption costs

g1(F,r) = e1
F

 (r) if S = 1  (16)
e0

F (r) if S = 0

When demand was unfavourable (i.e. in state U), the 
optimal loading decision was determined as

S=
1 if eU

1 (r) < eU
0(r) (17)

0 if eU
1 (r) ≥ eU

0(r)

with expected consumption costs

g1(U,r) = eU
1 (r) if S = 1 (18)

eU
0(r) if S = 0

4.2. Optimization - period 2

Using (equations (10),(11) and recalling that ai
S(r) denoted 

the already accumulated consumption costs at the end of 
period 1 as a result of decisions made during that period,

ai
S(r) = ei

S(r)+QS
iF

 (r) min[e1
F

 (r), e0
F (r)]+ 

+QS
iU

 (r) min[eU
1 (r),eU

0(r)]� ( 19)

ai
S(r) = ei

S(r)+QS
iF

 (r) g2(F,r) + QS
iU

 (r)g2(U,r)� ( 20)

Therefore, for favourable demand (ie. in state F), the 
optimal loading decision during period 2 was determined 
as

S=
1 if aF

1 (r) < aF
0 (r) (21)

0 if aF
1 (r) ≥ aF

0 (r)

while the associated accumulated consumption costs 
were

g2(F,r) = aF
1 (r) if S = 1 (22)

aF
0 (r) if S = 0

Similarly, when demand was unfavorable(ie.in state 
U), the optimal loading decision during period 2 was 
determined as

S=
1 if aU

1 (r) < aU
0 (r) (23)

0 if aU
1 (r) ≥ aU

0 (r)

In this case, the associated accumulated consumption 
costs were

g2(U,r) = aU
1 (r) if S = 1 (24)

aU
0 (r) if S = 0

5. A case study of Uganda Electricity Dis-
tribution Company (UEDC)

The use of the model developed was presented using a 
case study of Uganda Electricity Distribution Company in 
Uganda; that experienced random electricity demand in 
residential areas. The Electricity Distribution Company 
(UEDC) sought elimination of excess electricity supply 
under unfavourable demand (state U) or avoiding 
shortages when demand was favourable (state F) and 
hence, UEDC sought an optimal electricity loading 
decision and consumption costs considering a planning 
horizon of two week

5.1. Data Collection

A number of households, demand and electricity units 
available (in kwh) were observed and recorded from two 
residential areas. The states of demand under electricity 
loading decisions were considered over ten weeks for 
favourable demand (state F) and unfavourable demand 
(state U). The data was captured in Tables 1 – 3.

 Table 1: Households Versus State-Transitions for Electricity 
Loading Decisions.

Residential 
area (r)

States of 
demand

Load 
additional units 

(S=1)

Do not load 
units 
(S=0)

F U F U

1
F 91 71 82 30

U 63 13 55 25

2
F 45 59 64 40

U 59 13 45 11

Table 2: Demand (in kwh) Versus State-Transitions 
in Residential Areas for Electricity Loading Decisions	

Load additional units.

Residential 
area (r)

States of 
demand

Load 
additional units 

(S=1)

Do not load 
units 
(S=0)

F U F U

1
F 78 38 62 39

U 60 65 39 40

2
F 100 30 36 39

U 30 70 69 60

Table 3: Available Electricity (in kwh) Versus State-Transitions 
in Residential Areas for Electricity Loading Decisions.

Residential 
area (r)

States of 
demand

Load 
additional units 

(S=1)

Do not load 
units 
(S=0)

F U F U

1
F 95 80 34 45

U 54 75 47 55

2
F 47 40 81 79

U 36 56 38 72
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For either loading decision taken, unit loading 
cost (cl)=1.20 USD per kwh, unit operational 
cost(co)=0.80 USD per week and unit shortage cost 
(cs)=0.32 USD per week.

5.2. Computation of Model Parameters

We illustrated how the demand transition matrices 
and consumption cost matrices were determined from 
empirical data. For example, considering matrix Q1(1) for 
residential area 1 and electricity loading decision 1 and 
referring to (1),

Q1
FF

 (1) =
N1

FF
 (1)

=
91

=0.5617
N1

FF
 (1)+ N1

FU
 (1) 91+71

Q1
FF

 (1) =
N1

FF
 (1)

=
71

=0.4383
N1

FF
 (1)+ N1

FU
 (1) 91+71

Q1
UF

 (1) =
N1

UF
 (1)

=
53

=0.8289
N1

UF
 (1)+ N1

UU
 (1) 63+13

Q1
UU

 (1) =
N1

UU
 (1)

=
13

=0.1711
N1

UF
 (1)+ N1

UU
 (1) 63+13

Hence,Q1 (1)=f
Q1

FF Q1
FU
p =f

0.5617 0.4383
p

Q1
UF Q1

UU 0.8289 0.1711

We Note that ∑i𝜖F,U Q1
iF (1)+Q1

iU (1)=1 and QiF(1) ≤ 0 for 
all i ϵ{F,U}

Considering matrix C1 (1) for residential area 1 given 
electricity loading decision 1; from equations (12),(13) 
and (14).

c1
FF (1) = (95 – 78) (0.80) = 18.6

c1
FU (1) = (80 - 38) (0.80) = 33.6

c1
UF (1) = (60 - 54) (12+0.80+ 0.32) = 13.9

c1
UU (1) = (75 - 65) (0.80) = 8.0

Hence,C1 (1)=f
c1

FF c1
FU
p =f

18 33.6
p

c1
UF c1

UU 13.9 8.0

Using a similar approach, the remaining matrices were 
calculated

Using (19) and (20) the expected consumption costs (in 
USD) and accumulated consumption costs(in USD) for 
the two residential areas were computed under favourable 
demand (state F) and unfavourable demand (state U); 
whose results were presented in Table 4

5.3. Analysis of Results

Week 1

Residential area 1

Considering residential area 1, when demand was 
favourable and noting that 22.37 < 48.80, S=1 was chosen 
as an optimal electricity loading decision for week 1 with 
associated expected consumption costs of 22.37 USD for 
the case of favourable demand. Since 4.78<12.89, S=0 
was chosen as an optimal electricity loading decision for 
week 1 with associated expected consumption costs of 
4.78 USD for the case of unfavourable demand.

Residential area 2

Considering residential area 2, since 33.84<57.71, then 
S=0 was chosen as an optimal electricity loading decision 
for week 1 with associated expected consumption 
costs of 33.84 USD for the case of favourable demand. 
Since 9.80<52.73, S=1 was chosen as an optimal 
electricity loading decision for week 1 with associated 
expected consumption costs of 9.80 USD for the case of 
unfavourable demand.

Week 2

Residential area 1

Considering residential area 1, since 37.03<66.46, S=1 
was chosen as an optimal electricity loading decision for 
week 2 with associated accumulated consumption costs 
of 37.03 USD for the case of favourable demand. Since 
21.65<32.25, S=0 was chosen as an optimal electricity 
loading decision for week 2 with associated accumulated 
consumption costs of 21.65 USD for the case of 
unfavourable demand.

Residential area 2

Considering residential area 2, since 57.45<78.05, S=0 
was chosen as an optimal electricity loading decision for 
week 2 with associated accumulated consumption costs 
of 57.45 USD for the case of favourable demand. Since 

 Table 4: Expected and Accumulated Consumption Costs (in USD) for Residential Areas.

Residential Area (r) State of demand (i)

Expected consumption costs eS(r) Accumulated consumption Costs aS(r)

Load additional 
units (S=1)

Do not load units 
(S=0)

Load additional units 
(S=1)

Do not load units 
(S=0)

1
F

U
22.37 12.80

48.80

4.78
37.03 32.25 66.46 21.65

2
F

U

57.71

9.80

33.84

52.73

78.05

35.30

57.45

79.75
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35.30<79.75, S=1 was chosen as an optimal electricity 
loading decision for week 2 with associated accumulated 
consumption costs of 35.30 USD for the case of 
unfavourable demand.

5.4. Model Validation

In this section, we considered out of sample data 
in two residential areas in order to demonstrate the 
predictive ability of the proposed model. A sample of 100 
customers was considered in each residential area and 
considerations on demand and available electricity units 
were captured in t Table 5 and Table 6 below:

For either loading decision taken, unit loading 
cost (cl) = 1.20 USD per kwh, unit operational cost 
(co) = 0.80 USD per week and unit shortage cost 
(cs) = 0.32 USD per week.

5.5. Computation of Model Parameters
5.5.1. Demand Transition Matrices

Residential area 1 Residential area 2

Q1 (1)=f
0.700 0.300

p Q1 (2)=f
0.900 0.100

p
0.400 0.600 0.350 0.650

Q0 (1)=f
0.800 0.200

p Q0 (2)=f
0.550 0.450

p
0.250 0.750 0.150 0.850

5.5.2. Consumption Cost Matrices

C1 (1)=f
6.4 1.28

p C1 (2)=f
9.28 3.2

p
23.2 3.2 3.2 23.2

C0 (1)=f
6.94 3.2

p C0 (2)=f
1.60 12.8

p
3.2 3.2 69.6 6.4

5.5.3. Expected consumption costs

Residential area 1

e1
F (1) = (0.700)(6.4) + (0.300)(1.28) = 8.32

e0
F (1) = (0.800)(6.94) + (0.200)(3.2) = 6.172

e1
U (1) = (0.400)(23.2) + (0.600)(3.2) = 11.200

e0
U (1) = (0.250)(3.2) + (0750)(3.2) = 3.20

Residential area 2

e1
F (2) = (0.900)(9.28) + (0.100)(3.2) = 8.672

e0
F (2) = (0.55)(1.6) + (0.45)(8.32) = 6.640

e1
U (2) = (035)(3.2) + (0.65)(23.2) = 16.200

e0
U (2) = (0.15)(69,6) + (0.850\)(6.4) = 15.880

 Table 5: Households Versus State-Transitions for Electricity Loading Decisions.

Residential area (r) States of Demand (F/U)

Load Electricity units (S=1) Do not load Electricity units (S=0)

F U F U

1
F 70 30 80 20

U 40 60 25 75

2
F 90 10 55 45

U 35 65 15 85

 Table 6: Demand (in kwh) Versus State-Transitions for Electricity Loading Decisions in Residential Areas.

Residential area (r) States of Demand (F/U)

Load Electricity units (S=1) Do not load Electricity units (S=0)

F U F U

1
F 80 60 10 30

U 30 60 30 40

2
F 30 20 70 60

U 20 40 20 60

 Table 7: Available Electricity (in kwh) Versus State-Transitions for Electricity Loading Decisions in Residential Areas.

Residential area (r) States of Demand (F/U)

Load Electricity units (S=1) Do not load Electricity units (S=0)

F U F U

1
F 70 60 20 20

U 45 70 40 50

2
F 40 10 60 70

U 40 30 30 50
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5.5.4. Accumulated consumption costs

Residential area 1

a1
F (1) = 13.60 + (0.700)(6.172) + (0.300)(3.200) = 13.600

a0
F (1) = 6.172 + (0.800)(6.172) + (0.200)(0.540) = 11.750

a1
U (1) = 11.200+ (0.400)(6.172) + (0.600)(3.20) = 15.589

a0
U 

 (1) = 3.200+ (0.250)(6.172) + (0750)(3.2) = 7.143

Residential area 2

a1
F (2) = 8.672 + (0.900)8.672) + (0.100)15.880) = 18.065

a0
F (2) = 6.64 + (0.55)(8.672) + (0.45)(15.880) = 18.556

a1
U (2) = 16.20+ (0.35)(8.672) + (0.65)(15.880) = 29.557

a0
U (2) = 15.880+(0.150)(8.672) + (0850)(15.880) = 30.679

5.6. Analysis of results

Week 1

Residential area 1

Considering residential area 1, when demand was 
favourable and noting that 6.17 < 8.32, S=0 was chosen 
as an optimal electricity loading decision for week 1 with 
associated expected consumption costs of 6.17 USD for 
the case of favourable demand. Since 3.20<11.20, S=0 
was chosen as an optimal electricity loading decision for 
week 1 with associated expected consumption costs of 
3.20 USD for the case of unfavourable demand.

Residential area 2

When demand was favourable (state F) and noting that 
8.672<9.200, S=1 was chosen as an optimal electricity 
loading decision with associated expected consumption 
costs of 8.672 USD When demand was unfavourable 
(state U), S=0 was chosen as an optimal electricity 
loading decision with associated expected consumption 
costs of 8.67 USD for the case of unfavourable demand 
(state U).

Week 2

Residential area 1

When demand was favourable(state F) and noting that 
11.750<13.60, S=0 was the optimal electricity loading 
decision with associated accumulated consumption costs 

of 11.750 USD. Similarly, since 7.143<15.589, S=0 was 
the optimal electricity loading decision with accumulated 
consumption costs of 7.143 USD for the case of 
unfavourable demand. (state U).

Residential area 2

When demand was favourable (state F) and noting that 
18.065<21.116, S=1 was the optimal electricity loading 
decision with associated accumulated consumption costs 
of 18.065 USD for the case of favourable demand (state 
F). Since 29.557<30.679, then S=1 was the optimal 
electricity loading decision with associated accumulated 
consumption costs of 29.5557 USD for the case of 
unfavourable demand (state U)

5.7. Discussion of Results

Considering the case study of Uganda Electricity 
Distribution Company (UEDC) presented, optimality 
of electricity loading decisions and consumption costs 
over a finite period planning horizon yielded important 
results for discussion. Results indicated optimal state-
dependent electricity loading decisions and consumption 
costs were-dependent and consistent at every stage 
of the decision problem. This was attributed to the 
stationary demand transition probabilities considered at 
the decision epochs.

When demand was initially favourable (state F), 
additional electricity units were needed for weeks 1 and 
2 of residential area 1. However, when demand was 
initially unfavourable (state U), additional electricity units 
were not required for weeks 1 and 2 of residential area 
2.

6. Conclusions
A Markov decision process model that optimized 
electricity loading decisions and consumption costs 
with stochastic demand was presented in this paper. 
Using dynamic programming, an optimal electricity 
loading decision was determined for residential areas 
over a multi-period planning horizon. Therefore, as an 
optimization strategy for electricity loading decisions and 
consumption costs in residential areas, computational 
efforts of using the Markov decision process model 
showed promising results.

Table 8: Expected and accumulated consumption costs (in USD) for residential areas.

Residential Area (r) State of demand (i)

Expected consumption costs eS(r) Accumulated consumption Costs aS(r)

Load additional 
units (S=1)

Do not load units 
(S=0)

Load additional units 
(S=1)

Do not load units 
(S=0)

1
F 8.320 6.170 13.360 11.750

U 11.200 3.20 15.589 7.143

2
F 8.672 9.200 18.065 18.556

U 16.200 15.880 29.557 30.679
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6.1. Model Implications on the electricity 
industry

The proposed model has interesting implications in 
practical terms as a decision making tool for sustaining 
electricity regulation strategies in industry. Considering 
the case study results, demand uncertainty affected 
electricity regulatory policies; which was a driving force 
for comparative analysis of electricity consumption. 
Although Markov decision processes for optimizing 
electricity loading options was fundamental for practical 
purposes, stationarity of demand transition probabilities 
raised a number of salient issues to consider: for example 
changing demand patterns for electricity consumption 
among users, unpredictable power outages during the 
demand cycle, price fluctuations of electricity supply 
etc, left a lot to be examined; especially in the Ugandan 

context. It was also noted that the study was done using a 
smaller number of residential areas; considering the two 
areas captured in the case study and the model validation 
section. Future studies must aim at increasing the 
number of residential areas in order to establish a realistic 
representative sample. This can also improve the model’s 
predictive ability as a decision making tool. In effect, the 
electricity regulatory authorities for energy distribution 
can be in position to gain a competitive advantage over 
energy providers for domestic consumption.
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