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Abstract 

Water distribution systems are affected by several uncertainties in multiple stages. This 
uncertainty makes solving the optimal design and management of WDS a multifaceted 
problem. Past research has focused only on solving design and management problems of 
system hydraulics. There have been very few studies that involve considering uncertainties 
that affect the water quality aspect of WDS. One of the major assumptions in solving the 
design and management problems of WDS is considering uniform and instantaneous mixing 
at the cross junctions. However, in reality, this is not true. This assumption is made due to 
the lack of computational power to accurately estimate the level of mixing at every junction 
in a water distribution network. This study focuses on considering this level of mixing as 
uncertain/unknown and provides the optimal treatment levels required at the reservoirs to 
ensure the system is immune to the level of mixing occurring at the junctions to satisfy the 
water quality requirements at the customer level. Info-gap decision theory-based 
optimization approach combined with the cuckoo search metaheuristic is proposed in this 
study to handle the uncertainty. The proposed methodology is applied to a 4x4 grid 
hypothetical network example. The study's objective is to provide the best designs that can 
handle the maximum variation of the level of mixing at junctions within the given budget by 
the designer. The maximum variation of the level of mixing is reported for different budget 
levels. The designs are compared with the deterministic case using Monte-Carlo simulations. 

Keywords 
Water Quality Uncertainty, Incomplete Mixing, Epanet-BAM, Info-Gap Decision Theory,  Treatment Level 
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1 INTRODUCTION 

A system consisting of reservoirs (sources), tanks, pipes, pumps, and valves that work together 
to provide high quality (clean, odourless, and clear) water at sufficient pressure head for the 
customers downstream is called a water distribution system (WDS). With growing urban 
migration, the demanding stress on these systems increases, and hence more centralized 
systems are being developed. With limited potable water sources available, these systems' 
optimal resilient design and management are inevitable. Optimal design and management of 
WDS have always been focused on satisfying hydraulic requirements like demand and pressure 
constraints in the past. The passing of the safe drinking water act (SDWA) in 1990 motivated 
research to include water quality constraints in the optimal design and management of WDS. 
Today the importance of maintaining the water quality is equivalent to satisfying the hydraulic 
constraints (Pasha and Lansey 2010). Even with including water quality constraints, the 
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performance of the WDS is not as expected. Not accounting for the uncertainty involved in the 
optimal design and management problem of WDS and the assumptions made for simplifying the 
problem are the major reasons for the low performance of the systems when applied practically. 

(Lansey et al. 1989)were pioneers that proposed an optimal WDS design methodology that 
considered uncertainty in hydraulic parameters. The uncertain parameters like future demand 
are assumed to follow a probability distribution function (PDF) with a mean and standard 
deviation and formulated the hydraulic constraints as chance constraints. They used a non-
linear programming method with a generalized reduced gradient-II (GRG-II) technique for 
optimization. They applied this method to a small network and proposed multiple designs with 
corresponding reliability values. (Babayan et al. 2004; Kapelan et al. 2005), proposed 
methodologies to solve optimal single and multi-objective WDS design problems under 
uncertainty. They used Latin hypercube sampling (LHS) for sampling and PDF generation 
instead of assuming. They used genetic algorithms as optimization algorithms. (Babayan et al. 
2005) proposed a methodology that eliminates sampling techniques by adding a margin of 
safety factor in the required minimum pressure heads. Then the stochastic problem became a 
simple deterministic problem with additional constraints and was solved using a standard 
genetic algorithm (GA). (Kang et al. 2009)proposed a methodology to find the optimal design of 
WDS under uncertainty by using approximation techniques like first-order second moment 
(FOSM) and combined that with LHS to simplify the computational time for the stochastic 
problem.  

Due to the high computation time of these probabilistic approaches, the research shifted 
towards using a non-probabilistic approach to handle uncertainty in WDS parameters. Info gap 
decision theory (IGDT) and robust optimization (RO) are a few of the popular non-probabilistic 
uncertainty handling techniques. (Chung et al. 2009)implemented robust optimization (RO) 
approach to solve the design of municipal WDS, considering demand is uncertain. (Perelman et 
al. 2013) used robust counterpart (RC) to solve the least-cost design problem of WDS with 
demand uncertainty. (Ghelichi et al. 2018; Naderi and Pishvaee 2017) also used investigated RO 
formulations to handle uncertainties in the water resources and stated their advantages over the 
probabilistic approach. (Korteling et al. 2013) stated the benefits of using info-gap decision 
theory in water resources planning under severe uncertainty. They showed the effectiveness of 
the info-gap decision theory in supporting adaptive management of water systems under severe 
uncertainty in supply or demand. (Roach et al. 2015) compared the use of RO and IGDT for 
water resource management under deep uncertainty. They applied both methods to a case study 
approximating the Susexx north water resource zone in England. They concluded that the IGDT 
produced more expensive designs than RO as it has a more rigorous robustness analysis.  

The research works in the past related to WDS design are highly concentrated on hydraulic 
uncertainty. Very few studies have considered uncertainty related to water quality parameters. 
(Pasha and Lansey 2005, 2010) examined the effect of a few water quality uncertain parameters 
like bulk and wall reaction coefficients and pipe diameters in the distribution system's water 
quality analysis. In addition to these water quality parameters, the uncertainty in solute mixing 
at cross junctions can also affect the consumer nodes' water quality requirements.  

Fowler and Jones (1991)were the first to investigate the practicality of complete and 
instantaneous mixing assumptions at junctions in WDSs. They stated that among many other 
concerns regarding the accuracy of the water quality (WQ) models, the assumption of 
instantaneous, complete mixing at junctions was regarded as a significant cause of erroneous 
outcomes in water quality modelling of WDSs. (Romero-Gomez et al. 2009) investigated the 
impact of incomplete mixing on sensor network designs. They found the perfect mixing 
assumption inefficient, which led to wrong sensor placements that led to some locations in the 

1197

https://doi.org/10.4995/WDSA-CCWI2022.2022.14024


Boindala, Jaykrishnan and Ostfeld (2022) 

2022, Universitat Politècnica de València 
2nd WDSA/CCWI Joint Conference 

system not being covered. (Ho and Khalsa 2008)developed a Bulk Advective Mixing model 
(BAM) for addressing the non-uniform mixing behaviour at cross junctions. They incorporated a 
mixing parameter "𝑠𝑠 ∈ [0,1]" which governs the extent of mixing from incomplete mixing being 
the lower bound and complete mixing being the upper bound. (Song et al. 2009)also developed a 
non-uniform mixing model named (AZRED) to model incomplete mixing phenomena for specific 
junction types like T and Y junctions. (Paez et al. 2017)compared the water quality at the 
consumer nodes assuming complete mixing (EPANET) and non-uniform mixing BAM model for 
WDS of two cities and two large grid networks. They concluded that the mixing uncertainty is 
more predominant in a grid-type network containing many cross junctions than in the 
conventional city WDSs in the study. 

The present design of WDS does not consider various uncertainties in water quality affecting 
parameters, especially the mixing uncertainty at junctions. This assumption may lead to 
unsatisfactory designs that may not satisfy the practical water quality constraints. Realizing the 
exact mixing phenomenon is quite complex and requires complex CFD simulation. The 
complexity only increases with the size of the WDS and the number of cross junctions. The 
current study incorporates the mixing uncertainty in designing the water distribution system. 
Present work emphasizes quantifying the significance of non-uniform mixing uncertainty in 
WDS design and using non-probabilistic uncertainty handling techniques like info-gap decision 
theory to solve the complex, uncertain design problem.  

2 METHODOLOGY 

2.1 Info Gap Decision Theory 

Info Gap Decision Theory is a non-probabilistic decision-making technique that helps in 
prioritizing alternatives and making decisions under deep uncertainty. The IGDT analysis is 
governed by three components, system model, desired model performance, and uncertainty 
model. The system model defines the problem, and the understanding of the system. The 
performance requirements are the answer to the question: What do we need to achieve in order 
for the outcome of the decision to be acceptable? i.e. our goal and the conditions it should satisfy 
to say we reached our goal. Uncertain model is to realize the uncertainty involved in either our 
understanding (system model) or our uncertainty in our performance criteria.  

For illustration: 

Consider the problem 𝒫𝒫. Assume that some information about ξ is known. For example, assume 
that ξ lies in the polyhedral set U, where U = {ξ ∈ ℝn  ∶  Aξ ≤ b}  where A is a matrix and b is a 
vector. The problem is now defined as: 

min
x

f(x, ξ) (1) 

s. t. g(x, ξ) ≤ 0,∀ξ ∈ U. (2) 

The ideal case of an uncertain problem is that the constraint should be satisfied for all possible 
realizations of ξ. This uncertain version of the problem is not tractable since there are infinite 
constraints (Eq. 2).  

Let the system model be problem P. This problem is solved by assuming both 𝑥𝑥, 𝜉𝜉 are variables 
that can take any value, and the problem P is solved to obtain the minimum objective value #𝑜𝑜𝑜𝑜𝑜𝑜, 
optimal decision variable #𝑥𝑥 and optimal parameter #𝜉𝜉. Using these as a base, we build our 
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decision model. The uncertain model is created by taking the #𝜉𝜉 as a base. The performance 
criteria satisfy the constraints, and the maximum value the objective function can be allowed or 
acceptable. The result from the info-gap model is the uncertainty set, i.e. the maximum variation 
the system model can handle such that the objective function is within the performance criteria. 
As the maximum value of the objective function is increased, the uncertain sets will also 
increase, and the sets will be nested in each other (Ben-Haim 2006). 

2.2 BAM Model 

BAM model that was developed by (Ho et al. 2008) is used as the WQ model in the present study. 
Ho et al. (2008) assumed that when two fluid streams with different flows and concentrations 
enter a  cross junction, the distribution of solute concentrations in the fluid is between complete 
and incomplete mixing/bulk mixing. The extent of deviation from the complete mixing is 
controlled by a mixing parameter "s" generally obtained through experimentation. In this 
present study, this mixing parameter is treated as uncertain as we cannot always find it through 
experimentation on real networks. We then aim to obtain optimal designs within the designer's 
budget that are immune to set of maximum variations of mixing. Equations associated with BAM 

model are described below 

Legend: Q1, Q2, Q3, Q4 − Flows; C1, C2, C3, C4 − Concentrations where Q1 > Q2 

The bulk mixing equations for the case are shown in Fig 1 where Q1 > Q2 can be written easily 
with mass balance, 

C4 = C1 (3) 

C3 =
Q2C2 + (Q1 − Q4)C1

Q3
 (4) 

Whereas complete mixing equations are, 

Figure 1 Pictorial representation of bulk mixing (Ho et al, 2008), the shaded region is the non-
uniform mixing region 
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C3 = C4 =
Q1C1 + Q2C2

Q3 + Q4
=

Q1C1 + Q2C2
Q1 + Q2

 (5) 

The final BAM model equation is between 

𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑠𝑠 ∗ (𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) (6) 

3 TREATMENT COST OPTIMIZATION PROBLEM 

Assume that every source for the WDS is associated with a treatment plant, the extent of 
treatment required at the source level is governed by the water quality requirements at the 
customer nodes and level of mixing at the junctions. The objective of the problem is to obtain 
optimal treatment levels that satisfy the water quality constraints at the customer nodes and 
minimize the overall treatment cost at the sources. We assume steady state conditions and the 
contaminant is non-reactive.  

The problem structure can be written as follows equation (7-8): 

min TC(IRC, RCAT) (7) 

s. t. Cj LL ≤ Cout
j �RCAT, Q, s(ξ)�BAM ≤ CUL

j ,∀j ∈ J, ξ ∈ U (8) 

Here, TC -unit treatment cost, IRC – initial reservoir concentration before treatment, RCAT- 
reservoir concentration after the treatment, CLL

j , CUL
j  – lower limit and upper limit of desired

outlet concentration at junction j, Cout
j - outlet concertation at node j, Q- flows in pipes. Its states 

that the outlet concentration is dependent on the pipe flow, mixing parameter (which is 
uncertain) and reservoir concentration after treatment. 

The explicit formulation of 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
𝐽𝐽  for every node considering mixing parameter "s" as uncertain

gets complex with increase in number of cross junctions, in order to eliminate the complexity, a 
data driven linear surrogate model is developed. The surrogate model is of the form shown in 
equation 7 where Cout

j  is the outlet concentration and aj is a vector and Ej is a matrix are
obtained from regression modelling. 

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
𝑗𝑗 �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑄𝑄, 𝑠𝑠(𝜉𝜉)�𝐵𝐵𝐵𝐵𝐵𝐵 =  𝒂𝒂𝒋𝒋𝑻𝑻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝑬𝑬𝑗𝑗𝑠𝑠 (9) 

Any convex model can be used instead of linear model if the accuracy is not significant 

Using this surrogate model, the constraint (9)  in treatment cost optimization problem can be re-
written as 

s. t. Cj LL ≤ 𝒂𝒂𝒋𝒋𝑻𝑻 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑬𝑬𝑗𝑗𝑠𝑠 ≤ CUL
j ,∀j ∈ J, ξ ∈ U (10) 
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3.1 IGDT problem formulation 

As mentioned earlier, for IGDT formulation, we need first to define the system model. The 
system model can be represented as shown in Equations 11-13. We also know that the mixin 
parameter can take any value in [0,1] where 1 -represents complete mixing and 0- represents 
bulk mixing (incomplete mixing).  

min
RCAT

coT(IRC− RCAT) (11) 

s. t. Cmin
j ≤ ajTRCAT + RCATTEjs ≤ Cmax

j  ,∀j ∈ J (12) 

0 ≤ RCAT ≤ IRC (13) 

IRC-Initial reservoir concentration before treatment, RCAT – reservoir concentration after 
treatment. co – the cost of unit treatment of water per unit volume. 

Suppose s is considered as an uncertain parameter. In that case, the constraint in (Eq. 12) 
becomes (Eq. 14), which should satisfy every realization of the parameter s∈U., which leads to 
an infinite number of constraints. The problem then becomes a semi-infinite optimization 
problem that is intractable.  

Cmin
j ≤ ajTRCAT + CRTEjs ≤ Cmax

j  ,∀j ∈ J,∀s ∈ U      (14) 

As the most common phenomenon and the previous assumption is complete mixing, and we 
need the system to satisfy the complete mixing case definitely, we solve the system model 
(equations 11-13) by assuming (s=e). Once we assume this, the problem is linear and can be 
easily solved to obtain a base objective value (#𝑂𝑂𝑂𝑂𝑂𝑂). 

The second component is to define the uncertainty model. The uncertainty model is assumed to 
be an envelope-based model, U(δ) = {s ∈ ℝI: (1 − δσ)e ≤ s ≤ e},δ ≥ 0 (Ben-Haim, 2006). The 
size of which is controlled by the scaling parameter 𝛿𝛿. Notice that the uncertainty set is a 
function of δ, and as 𝛿𝛿 is increased, the set increases in size, but the sets are all nested. Since 
there are bounds on s, i.e., 0 ≤ s ≤ 1, correspondingly, the bounds obtained for 𝛿𝛿 are: 

1 − δσ ≥ 0 ⇒ δ ≤
1
σ

(15) 

The uncertain model can be equivalently written as U(δ) = {s ∈ ℝI: As ≤ b}, δ ≥ 0 where 

A =  � II×I
−II×I

� and b =  �
e

(1 − ασ)e� , I is the identity matrix, e is the vector of all 1.

Now, based on the budget the decision maker can provide, the maximum objective value which 
is allowed is incorporated as a constraint obj′ > #obj, IGDT can be used to develop an 
uncertainty set and a solution such that the objective value corresponding to the robust solution 
is at most obj′. Thus, the info-gap formulation is below. 

max𝛿𝛿 (16) 
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s. t. coT(IRC− RCAT) ≤ obj′ (17) 

Cmin
j ≤ ajTRCAT + RCATTEjs ≤ Cmax

j  ∀s ∈ U(δ),∀j ∈ J (18) 

0 ≤ RCAT ≤ IRC (19) 

0 ≤ δ ≤
1
σ

(20) 

This formulation (Eq. 16-20) can be reformulated using the dualization technique, 

Consider LHS of equation 18, 

𝑎𝑎𝑗𝑗𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐶𝐶𝑅𝑅𝑇𝑇𝐸𝐸𝑗𝑗𝑠𝑠 ≥ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗  ∀𝑠𝑠 ∈ 𝑈𝑈(𝛿𝛿),∀𝑗𝑗 ∈ 𝐽𝐽 (21) 

This constraint is equivalent to  

min𝑎𝑎𝑗𝑗𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐶𝐶𝑅𝑅𝑇𝑇𝐸𝐸𝑗𝑗𝑠𝑠 ≥ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗

𝑠𝑠. 𝑡𝑡. 𝑠𝑠 ∈ ℝ𝐼𝐼: 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏,𝐴𝐴 =  � 𝐼𝐼
𝐼𝐼×𝐼𝐼

−𝐼𝐼𝐼𝐼×𝐼𝐼
� and 𝑏𝑏 =  �

𝑒𝑒
(1 − 𝛼𝛼𝛼𝛼)𝑒𝑒�

(22) 

Writing lagrangian for the above problem, 

Writing the Lagrangian and minimizing, the dual objective is: 

min
s∈ℝI

ajTCR + CRTEjs + μjT(As − b) (23) 

= �ajTCR − μjTb, if CRTEj + μjTA = 0
−∞, else

(24) 

Using strong duality: 

Cmin
j ≤ min

s∈U
ajTCR + CRTEjs = max

μ∈ℝ+2I
ajTCR− μjTb ∶  CRTEj + μjTA = 0 (25) 

Then, by asserting that since the maximum of the argument is at least Cmin
j  there should exist at 

least one value of the dual variable (μj) that makes the argument at least Cmin
j . We drop the 

maximization. Thus, the infinite number of constraints can be replaced with constraints (26), 
(27), and (28) for each j ∈ J. 

Cmin
j ≤ ajTCR− μjTb (26) 

CRTEj + μjTA = 0 (27) 

μj ≥ 0 (28) 

Similarly, the upper bound constraint (for some j ∈ J) can be reformulated to: 

ajTCR + νjTb ≤ Cmax
j (29) 
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CRTEj + νjTA = 0 (30) 

νj ≥ 0 (31) 

So the final IGDT problem of equations 16-20 can be reformulated into equations (32-40) 

max
𝛿𝛿,RCAT,μj,νj,j∈J

𝛿𝛿 (32) 

s. t. coT(IRC− RCAT) ≤ obj′ (33) 

ajTRCAT−  μjTb ≥ Cmin
j ,∀j ∈ J (34) 

CRTEj + μjTA = 0,∀j ∈ J (35) 

ajTRCAT +  νjTb ≤ Cmax
j ,∀j ∈ J (36) 

CRTEj −  νjTA = 0,∀j ∈ J (37) 

μj, νj ≥ 0,∀j ∈ J (38) 

0 ≤ RCAT ≤ IRC (39) 

0 ≤ δ ≤
1
σ

(40) 

where: μj, νjJ ∈ J is a dual variable that is required for writing the dual problem. The above 
formulation gives a larger and larger set as obj′ is increased since a more robust solution will 
increase the objective value but will be more immunized against larger realizations of the mixing 
parameter s. The obtained formulation is non-convex because of the terms μjTb  and νjTb. The 
cuckoo search algorithm is used to solve this problem. 

3.2 Cuckoo Search Algorithm 

Cuckoo search is a metaheuristic based on swarm intelligence inspired by the breeding behavior 
of a few species of cuckoos. Yang and Deb introduced this algorithm in the year 2009. The 
optimization algorithm has been applied in multiple areas in engineering as well as in the 
sciences. This algorithm and its variations have effectively solved the WDS design problem 
(Naveen Naidu et al. 2020; Pankaj et al. 2020; Wang et al. 2012).The working mechanism of the 
cuckoo search algorithm in (Figure 2) is extracted from (Pankaj et al. 2020). And the detailed 
explanation of the mechanism can be referred from (Yang and Deb 2009). This cuckoo search 
algorithm is used to obtain the robustness α for the info-gap problem formulation.  
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3.3 Illustrative example 

A 4x4 grid network is considered for this study, as shown in (Figure 3), where all the possible 
junctions where incomplete mixing is feasible are highlighted. The possibility of incomplete 
mixing is dependent on flow direction. The objective is to obtain optimal treatment costs. 
Sources 1 and 2 are at 0m elevation, and source-3 is 70m. The pump linking source-1 is of power 
2, and the pump linking source 2 is of power 1.5. The base demand, elevation, and concentration 
limits of all the nodes are mentioned in Table 1. 

Figure 3 A 4x4 grid network that is considered for this study with three reservoirs. The nodes where the non-
uniform mixing can occur are highlighted 

Initial concentrations at the sources before treatment IRC = (100,200,150). Treatment costs for 
each source co = (5000, 200,10000).  

Objective function: 

 

 

 

 

 

 

 

 

Replace the old nest 
with new nest 

Retain the old nest 

Start 

Initiate a random sets of n nests, with d dimensions 

Evaluate all the nests and obtain the fitness values and best 

Generate new nests using alpha and best nest, by levy-flight 

Evaluate its fitness, fnew 

Fitness has 
improved 

Abandon a fraction, Pa of worst nests and replace them 

Keep the current best nest 

FEval < MAX FEval 

Stop 

no yes 

no 

Figure 2 Cuckoo search algorithm flow chart 
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min
i=1,2,3

� coT (IRC− RCAT) (56) 

Here RCAT is the reservoir concentration after treatment entering the network. 

Constraints:  

Cjmin ≤ Cout
j �RCAT, Q, s(ξ)�BAM ≤ Cjmax (57) 

Cj = concentration of the flow from node j, Cjmin, Cjmax are the lower and upper bounds for the
concentration at node j.  

Surrogate model: 

As mentioned earlier, to apply RO and IGDT, a surrogate model is needed to replace the BAM 
model-based equations for outlet concentrations. A unique surrogate equation is developed for 
each outlet concentration (10 nodes- Illustrative example). After evaluating various forms, 
ajTRCAT + CRTEjs form has been selected based on the model accuracy. Here, aj is a vector and 
Ej is a matrix corresponding to node j. These equations are developed for a particular design of 
WDN (i.e., constant flow direction and flow values). The procedure to obtain the surrogate 
model is explained as a flowchart in (Figure 4).  

Table 1 Illustrative example node data 

Node-ID 
Base 

Demand 
(GPM) 

Min Co-
Limit 

Max Co-
Limit 

1 0 0 0 
2 10 40 70 
3 5 40 70 
4 10 40 70 
5 50 20 50 
6 0 0 0 
7 0 0 0 
8 10 20 50 
9 30 30 60 

10 0 0 0 
11 0 0 0 
12 0 0 0 
13 40 30 60 
14 80 30 60 
15 60 20 50 
16 60 40 70 
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Figure 4 Procedure for obtaining surrogate model 

The surrogate model's accuracy depends on the flow directions, and the node location, the 
maximum RMSE obtained for the cases studied is 2.876, with a minimum being R2 = 0.989. This 
shows that the linear approximation is decently accurate. Monte Carlo simulations are used to 
evaluate the reliability of the obtained design.  

After obtaining the surrogate models for each scenario, the nominal or deterministic problem is 
evaluated assuming complete mixing (i.e., s=e) for all cross junctions. The obtained treatment 
costs are assumed to be base treatment costs, and the mixing parameter set (s=e) as the nominal 
mixing parameter value. Using this nominal treatment cost, the maximum budget which can be 
provided is approximated by linearly increasing the nominal budget (10 times). For each of 
these approximated budgets, the info-gap problem is solved to obtain the least cost and the 
corresponding maximum robustness (δ). For solving this problem, a cuckoo search optimization 
algorithm is used. The initial nests (search agents) are taken to be 25, and the Lévy Flight 
parameters αlevy = 0.01, Pa = 0.25 and βlevy = 2/3 as suggested in (Yang and Deb 2009) are 
used. The algorithm is run for 200 iterations or 25*2*200 = 10000 function evaluations. For all 
the cases, the problem converged at (100 ± 10)  iterations. The uncertainty set obtained from 
this (δ) is reported. For each scenario, ten different linearly increasing budgets (Green) are 
solved, and their corresponding maximum treatment cost (Blue) and robust uncertainty set (X-
axis) are reported in the graphs (Figure 5).  
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4 CONCLUSIONS 

The present work is to understand the effect of non-uniform mixing as a water quality uncertain 
parameter. A simple treatment cost optimization problem is devised to understand the optimal 
design of the non-uniform mixing in a water distribution system. Non-uniform mixing 
uncertainty cannot assume any probability distribution. Handling this uncertainty requires a 
non-probabilistic approach. IGDT methodology is explored in this study. The complete 
methodology is explained with a simple grid network with three water sources. The complexity 
of the non-uniform mixing is clearly explained.  

With varying flow patterns, the outlet concentration patterns have changed. The worst-case 
cannot be assumed as it changes with a change in flow directions and values. Considering 
incomplete mixing at all junctions did not lead to worst-case (i.e., maximum constraint 
violations). The change in flow patterns changes the locations of cross junctions, changing the 
non-uniform mixing junctions. A new set of surrogate models are required for a change in each 
flow direction and flow value. A convex surrogate model which includes flow values and 
direction with reasonable accuracy is difficult to achieve.  

The treatment cost increases with an increase in the uncertainty set is observed from the results. 
Changes in flow direction changed the optimal treatment levels. The Monte Carlo simulation 
results show a small percentage of infeasibility is due to the surrogate model's approximation. 
This IGDT approach can be easily applied to any network and can solve this optimal treatment 
problem. Further study is to combine the water distribution network design problem with this 
treatment cost design problem. The emphasis was more on the theory, and less on using real 
data. This is why unitless cost data were used, and conservative water quality constituents. 
Applications to non-conservative water quality parameters, real cost data, and more complex 
systems are suggested as future work, as well as efficient extension to extended period 
simulations (EPS) loading conditions.  
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Figure 5 Results show the variation of uncertainty sets with an increase in budget values for four 
different flow directions, as shown in the network diagrams. 
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