List of contents

CHAPTER 1 Introduction	1
1.1 Insights into cancer disease	1
1.2 Protein tyrosine kinases	3
1.2.1 Classification of protein tyrosine kinases	4
1.2.2 Protein tyrosine kinases as targets in cancer the	nerapy 6
1.3 Tyrosine kinase inhibitors (TKIs)	7
1.3.1 Classification of TKIs	8
1.3.2 Side effects of TKIs	
1.3.3 Skin anatomy	14
1.4 Drug-induced photosensitivity	19
1.4.1 Mechanisms of drug-induced photosensitivity	23
1.4.2 Sunlight-mediated damage to biomolecules _	27
1.5 DNA damage repair	33
1.6 Cell death	37
1.7 Molecular photochemistry	40
1.7.1 Photophysical processes	41
1.7.2 Photochemical processes	47
1.7.3 Singlet oxygen	48
1.8 Background on TKIs photobehavior	51
1.8.1 Phototoxicity prediction based on chemical st	ructure 51
1.8.2 Photodynamic therapy	54
CHAPTER 2 Aims and Objectives	57
2.1 Significance of the study	59
2.2 Objectives	60
CHAPTER 3 Materials and Methods	63
3.1 Chemicals and reagents	65
3.2 Experimental procedures	66

3.2.1	Spectrophotometric techniques	66
3.2.2	Irradiation equipment	71
3.2.3	Cell culture conditions	
3.2.4	Microscopic techniques	72
3.2.5	Phototoxicity	76
3.2.6	Lipid photoperoxidation	
3.2.7	Protein photooxidation	84
3.2.8	Photogenotoxicity	85
3.2.9	Cell death	88
	TER 4 Screening of TKIs	91
4.1 T	yrosine kinase inhibitors (TKIs) selection criteria	93
4.1.1	Absorption of UVA light	93
4.1.2	Neutral red uptake (NRU) phototoxicity test	95
4.2 Pl	notostability of TKIs	99
CHAP	TER 5 Gefitinib	101
5.1 In	troduction	103
5.2 E	xperimental procedures	107
5.2.1	Neutral Red Uptake (NRU) phototoxicity test	107
5.2.2	Drug and metabolites cellular colocalization	107
5.2.3	Photosensitized lipid peroxidation	107
5.2.4	Photoinduced protein oxidation assay	108
5.2.5	Single cell gel electrophoresis comet assay	108
5.2.6	Cell death assays	108
5.3 R	esults and discussion	109
5.3.1	Phototoxicity of gefitinib metabolites	109
5.3.2	Fluorescence	111
5.3.3		
5.3.4	Protein photooxidation	116

5.3.5	Photogenotoxicity	118
5.3.6	Cell death	120
	onclusions	123
CHAP	TER 6 Axitinib	125
	ntroduction	127
	xperimental procedures	129
6.2.1	Neutral red uptake (NRU) phototoxicity test	130
6.2.2	Photoinduced protein oxidation assay	130
6.2.3	Single cell gel electrophoresis comet assay	130
6.2.4	Photoinduced phosphorylation of γ-H2AX	130
6.3 R	esults and discussion	131
6.3.1	Photophysical properties	131
6.3.2	Phototoxicity of axitinib isomers	
6.3.3	Photogenotoxicity	139
	onclusions	144
	TER 7 Dasatinib	147
7.1 Iı	ntroduction	149
	xperimental procedures	151
7.2.1	Spectroscopic measurements	151
7.2.2	Phototoxicity assay in reconstructed human epidermis	152
7.2.3	Photosensitized lipid peroxidation	152
7.2.4	Photoinduced protein oxidation assay	152
7.2.5	Single cell gel electrophoresis comet assay	153
7.2.6	Photoinduced phosphorylation of γ-H2AX	153
7.3 R	esults and discussion	153
7.3.1		
7.3.2	Photosensitized damage to lipids and proteins	
7.3.3	Photogenotoxicity	165

7.3.4	Phototoxicity in reconstructed human epidermis	169
7.4 C	onclusions	172
CHAP	TER 8 Avapritinib	175
	ntroduction	
	xperimental procedures	
	Photoinduced protein oxidation assay	
8.2.2	Single cell gel electrophoresis (comet) assay	179
8.3 R	esults and discussion	179
	Fluorescence	
	Protein photooxidation	
	Photogenotoxicity	
	onclusions	
	TER 9 Conclusions	
	RENCES	
	NTIFIC CONTRIBUTIONS	
I ist o	f Signwas	
LIST 0	f figures	
Figure	1 Global cancer burden in 2020.	2
	2 Cancer therapy current approaches.	
	3 Protein tyrosine kinase (PTKs).	
Figure	4 Receptor tyrosine kinases (RTKs).	7
	5 Trends in tyrosine kinase inhibitors (TKIs) discovery.	
	6 Keratinocytes and fibroblast cells.	
	7 Ultraviolet (UV) spectrum-dependent skin penetration.	
Figure	8 Photoinduced DNA damage.	35
	9 Histone H2AX in DNA damage repair.	
	10 Necrosis vs Apoptosis.	39

Figure 11 Jablonski diagram.	42
Figure 12 Photochemical reactions.	48
Figure 13 Type II photodynamic reaction.	49
Figure 14 Molecular orbital diagrams.	49
Figure 15 Chemical structures of photoreactive TKIs.	52
Figure 16 Absorption spectrophotometry.	66
Figure 17 Fluorescence spectrophotometry.	67
Figure 18 Laser flash photolysis (LFP).	70
Figure 19 Expansion microscopy.	76
Figure 20 Lipid peroxidation assay probe C11-Bodipy.	83
Figure 21 Normalized absorption spectra of TKIs.	95
Figure 22 Neutral red uptake (NRU) assay of TKIs.	98
Figure 23 Photostability of TKIs.	100
Figure 24 Gefitinib (GFT) and its metabolites.	105
Figure 25 NRU dose-response curves for GFT and metabolites.	110
Figure 26 Emission spectra of GFT and metabolites.	112
Figure 27 Relative fluorescence emission of GFT and metabolites	113
Figure 28 Intracellular colocalization of of GFT and metabolites.	114
Figure 29 TBARS assay for GFT and metabolites.	115
Figure 30 Lipid peroxidation quenching experiment.	_ 116
Figure 31 Protein photooxidation by GFT and metabolites.	117
Figure 32 Photogenotoxicity by GFT and metabolites.	119
Figure 33 Apoptosis vs necrosis.	122
Figure 34 Photoisomerization of axitinib (AXT).	128
Figure 35 Absorption spectra of AXT.	131
Figure 36 Photostability of <i>(E)</i> -AXT upon UVA radiation.	133
Figure 37 Photostability of (Z)-AXT upon UVA radiation.	134
Figure 38 NRU dose-response curves for AXT.	137

Figure 39 Protein photooxidation by AXT.	138
Figure 40 Alkaline comet assay experiment for AXT.	139
Figure 41 Expansion microscopy.	140
Figure 42 H2AX histone detection by expansion microscopy	142
Figure 43 Immunofluorescence staining of γ-H2AX	143
Figure 44 Chemical structure of dasatinib (DAS).	149
Figure 45 Fluorescence properties of DAS.	155
Figure 46 Laser flash photolysis measurements.	156
Figure 47 Triplet-triplet energy transfer	157
Figure 48 Singlet oxygen measurements.	159
Figure 49 Quenching of ³ DAS* by biomolecules	161
Figure 50 Photosensitized lipid peroxidation by DAS	164
Figure 51 Photooxidation of HSA protein by DAS.	165
Figure 52 Alkaline comet assay experiment for DAS.	166
Figure 53 Immunofluorescence staining of γ-H2AX for DAS.	168
Figure 54 Phototoxicity of DAS in the reconstructed epidermis.	170
Figure 55 Histological analysis.	171
Figure 56 Chemical structure of avapritinib (AVP)	177
Figure 57 Fluorescence emission properties of AVP	180
Figure 58 Photooxidation of HSA protein by AVP.	181
Figure 59 Photogenotoxicity of AVP.	182
List of tables	
Table 1 Documentation on FDA-Approved tyrosine kinase inhibitors.	_ 9
Table 2 Classification of adverse effects of TKI therapy.	_ 12
Table 3 Photosensitizing FDA reported drugs.	_ 22
Table 4 Main differences between phototoxicity and photoallergy.	_ 27
Table 5 Guideline for Type I/Type II oxidation mechanisms.	_ 30

Table 6 Values of phototoxic potential (PIF) by NRU assay.	99
Table 7 GFT and metabolites concentration for cell death assays	108
Table 8 HaCaT NRU assay of GFT and its metabolites.	110
Table 9 Emission maximum wavelength of GFT and metabolites.	112
Table 10 HaCaT NRU phototoxicity of AXT isomers	137
Table 11 Expansion microscopy.	141
Table 12 Photophysical parameters of DAS in different media.	160
List of aquations	
List of equations	
Equation 1 Beer-Lamber law.	44
Equation 2 Planck equation.	68
Equation 3 Fluorescence quantum yield.	68
Equation 4 Stern-Volmer.	70
Equation 5 Singlet oxygen quantum yield.	71
Equation 6 UVA irradiation dose.	72
Equation 7 Photoirritant factor (PIF).	78
Equation 8 Quantification of lipid peroxidation.	84
Equation 9 Quantification of carbonyl content.	85
Equation 10 Quantification of DNA damage by comet assay	87
Equation 11 Quantification of LDH activity.	91
Equation 12 Stern Volmer for singlet oxygen quenching by DAS	152