

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos

Emisiones de CO2 como criterio de adjudicación de obras públicas: Adaptación del proyecto de urbanización Sector Sur PRR-7 Malilla Sur en Valencia.

Trabajo Fin de Máster

Máster Universitario en Planificación y Gestión en Ingeniería Civil

AUTOR/A: Cozza Centeno, Emilio

Tutor/a: Montalbán Domingo, María Laura

Cotutor/a: García Segura, Tatiana

CURSO ACADÉMICO: 2023/2024

UNIVERSITAT POLITÉCNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. MÁSTER UNIVERSITARIO EN PLANIFICACIÓN Y GESTIÓN EN INGENIERÍA CIVIL.

EMISIONES DE CO2 COMO CRITERIO DE ADJUDICACIÓIN DE OBRAS PÚBLICAS: ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 MALILLA SUR EN VALENCIA.

MAYO DE 2024

AUTOR: Emilio Cozza Centeno

TUTOR: María Laura Montalbán Domingo

COTUTOR: Tatiana García Segura

AGRADECIMIENTOS

A mis tutoras, Laura Montalbán Domingo y Tatiana García, por su apoyo, dedicación y paciencia para el desarrollo de este trabajo final de máster.

A todos los que conforman la UPV, por el increíble lugar donde me permitieron pasar un año espectacular.

A la Universidad Nacional de Córdoba, por la formación brindada a lo largo de mi carrera de grado que permitió sacarle el máximo provecho al máster.

A mis compañeros, y ahora amigos, que han recorrido este maravilloso año conmigo, dando apoyo desde lo académico y emocional.

A mi familia y seres queridos, que acompañan siempre.

RESUMEN EJECUTIVO

Planteamiento del problema a resolver.

En la actualidad, la lucha contra el cambio climático se ha convertido en un punto crucial para el desarrollo de todos los sectores de la economía. La industria de la construcción, lejos de estar alejado de esta preocupación, representa uno de los principales sectores con necesidad de cambio para adaptarse a las necesidades del medioambiente. La complejidad a la hora de abordar el cambio en este sector no solo viene dada por el volumen de producción que representa a nivel mundial la construcción, sino también a la histórica resistencia al cambio e innovación del sector ante variables que no giren en torno a lo económico.

La urgencia de abordar el cambio climático ha llevado a un aumento significativo en la atención hacia la medición y reducción de las emisiones de gases de efecto invernadero. Este trabajo de fin de máster se centra en el papel crucial que representa una adecuada gestión de los proyectos de construcción pertenecientes al sector público para el control de las emisiones de dióxido de carbono. La huella de carbono, que abarca las emisiones directas e indirectas de gases de efecto invernadero asociadas con la ejecución de un proyecto, se ha convertido en un indicador clave para evaluar el impacto ambiental de la construcción y, por ende, resulta primordial atender la necesidad de desarrollar métodos de cálculo, no solo más precisos y adecuados, sino también prácticos y ejecutables.

Para lograr aprovechar las reglas de juego que propone la licitación pública, en donde las condiciones están brindadas desde la demanda, resulta fundamental incluir y darles protagonismo a los criterios medio ambientales. Para realizar este cambio, es fundamental contar con estándares y metodologías de evaluación claras y unificadas para establecer comparativas y análisis de información de manera sencilla y obtener indicadores representativos y útiles para tomar decisiones.

A partir de mejorar la precisión y practicidad con la que se evalúen las emisiones de CO2, se podrá aumentar la cantidad de proyectos que tengan presentes a este criterio ambiental como criterio de adjudicación y se facilitará la implementación de políticas públicas en torno a la construcción que ayuden a combatir de manera efectiva al cambio climático, basando las decisiones en información concreta y precisa.

Objetivos.

Objetivo general:

El objetivo general es establecer las pautas necesarias para poder incluir a las emisiones de CO2 como criterio de adjudicación en contrataciones de construcción.

Objetivos específicos:

Dentro de los objetivos específicos presentes en este trabajo de investigación destacan:

	■ ^	nalizar el contexto en el cual se enmarca la
3. Estructura	C bb	analizar el contexto en el cual se enmarca la contratación pública española mediante la revisión ibliográfica. Analizar los lineamientos propuestos por el Acuerdo aris 2030 y el Green Public Procurement. Analizar propuestas de otros países acordes a la emática a estudiar. Iroponer los requerimientos necesarios para lograr implementar como criterio de adjudicación a las misiones de CO2 en licitaciones públicas españolas. Ivaluar los limitantes actuales a partir del cálculo de misiones en un proyecto de urbanización. Definir aspectos con potencial de mejora para ptimizar la inclusión de criterios de ambientales sociados a las emisiones de CO2.
organizativa.	1 INTI	RODUCCIÓN
	1.1	Introducción
	1.2	Planteamiento del problema
	1.3	Justificación
	1.3.1	Justificación de elección de la temática
	1.3.2 conoci	Justificación de uso de las competencias y mientos adquiridos en el máster.
	1.4	Planteamiento de la investigación
	1.4.1	Alcance
	1.4.2	Objetivos
	1.4.3	Metodología
	2 CON	ITEXTO
	2.1	Europa
	2.1.1	Acuerdo de Paris 2030
	2.1.2	Green Public Procurement (GPP)
	2.1.3	CO2 Performance Ladder
	2.2	España
	2.2.1	Ley de Contratos del Sector Público (LCSP)
	2.2.2	Estrategia España circular 2030
	2.2.3	Plan de contratación pública ecológica.
	2.2.4	Registro de Huella de Carbono (RHC)
		RCO TEORICO
	3.1	Huella de carbono
	3.2	Análisis del ciclo de vida
	3.3	Propuestas en otros países

- 3.3.1 Estableciendo los criterios de la huella de carbono para proyectos de construcción pública
- 3.3.2 Reducción de la huella de carbono de edificaciones: Nuevos estándares y evaluaciones finlandesas
- 3.3.3 Avanzando en la Contratación Pública Verde y la Contratación Baja en Carbono en Europa: perspectivas
- 3.3.4 Utilizando la contratación pública como política de descarbonización: un vistazo a Alemania.
- 4 PROYECTO: "ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 MALILLA SUR"
 - 4.1 Objeto del proyecto
 - 4.2 Ámbito de actuación.
 - 4.3 Descripción de las obras
 - 4.4 Información adicional
 - 4.4.1 Clasificación de las obras
 - 4.4.2 Clasificación del contratista
 - 4.4.3 Presupuesto de la obra
- 5 CÁLCULO DE EMISIONES
 - 5.1 Base de datos
 - 5.2 Cálculo de emisiones
 - 5.3 Limitaciones en el cálculo
 - 5.4 Resultados

6 PROPUESTAS

- 6.1 Propuesta 1: Base de datos única para cálculo de emisiones.
- 6.2 Propuesta 2: Fase de diseño: cuadro de precios con información ambiental de emisiones y energía.
- 6.3 Propuesta 3: Fase de diseño: identificar capítulos del presupuesto con mayor preponderancia y con mayor potencial de mejoría.
- 6.4 Propuesta 4: Fase de diseño, establecer línea base de emisiones para comparativa de ofertas.
- 6.5 Propuesta 5: Presentación de ofertas con mejoras en los valores ambientales de fase de diseño.

7 CONCLUSIONES

- 7.1 Cumplimiento de los objetivos
- 7.2 Conclusiones de la investigación
- 7.3 Pautas y lineamientos para futuras investigaciones
- 7.3.1 Contratos colaborativos (IPD) y huella de carbono.

DE VALÈNCIA	CANALES Y PUERTOS
	7.3.2 Base de datos de emisiones.
	7.3.3 Inclusión de criterios de adjudicaciones desde la perspectiva del Análisis de Ciclo de Vida.
	8 BIBLIOGRAFÍA
	9 Anexos
	9.1 Emisiones unitarias
4. Método.	Este trabajo de investigación se dividirá en tres ejes para lograr un orden que permita la integración de los conceptos a abordar y en torno a los que se desarrollaran las conclusiones pertinentes. En primer lugar, se realizará a partir de la revisión de la literatura, un estudio exhaustivo del contexto en el que se enmarca la contratación pública en España, vinculando la forma
	en la que se realizan mayoritariamente las contrataciones obras publicas de construcción con las pretensiones y necesidades que se generan a partir del estudio de la temática de esta investigación.
	Por otra parte, se hará una recopilación de alternativas ejecutadas en otros países, que se amolden a las necesidades correspondientes de esta investigación, aprovechando de esa manera los resultados obtenidos en lugares con una mayor
	experiencia y dedicación en la materia. Se hará un análisis crítico de dicha información, utilizándola como base para establecer los lineamientos de la propuesta planteada como
	solución a la problemática dentro del contexto en el que se enmarca esta investigación.
	Por último, se ejecutará el cálculo de emisiones de dióxido de carbono en un proyecto en particular denominado: "ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 MALILLA SUR". Se utilizará como herramienta de cálculo la base de datos BEDEC del Instituto de Tecnología de la
	Construcción. Se utilizará como base de información del proyecto el contenido del presupuesto en base al cual se efectuarán los cálculos. En función de la información de dichos ítems se buscará calcular las emisiones vinculándolos a la base de datos en caso de ser posible, y en caso de no coincidir definir
	las causas que lo impiden.
	Tras cumplir estas etapas de la investigación, se realizarán las propuestas para incluir como criterio de adjudicación a las emisiones de CO2 y se realizarán conclusiones pertinentes y se establecerán líneas de investigación futuras que permitan
	profundizar y atender necesidades de la temática abordada.
Cumplimiento de objetivos.	Con respecto al objetivo general, establecer las pautas necesarias para poder incluir a las emisiones de CO2 como criterio de adjudicación en contrataciones de construcción, se cumplió con lo establecido en un comienzo de la investigación.

Combinar un análisis de contexto y lineamientos de propuestas

	en otros países con un ejercicio práctico, como el cálculo de
	em otros países con un ejercicio practico, como el calculo de emisiones de un proyecto en particular, permitió comprender y obtener conclusiones sobre la realidad de la situación en la que se encuentra la temática, y entender las necesidades para materializar una propuesta ejecutable. Con respecto a los objetivos particulares planteados: Analizar el contexto en el cual se enmarca la contratación pública española mediante la revisión bibliográfica. Se cumplió, analizando tanto la Ley de Contratos del Sector Público como lo asociado al Plan de Contratación Pública Ecológica. Analizar los lineamientos propuestos por el Acuerdo Paris 2030 y el Green Public Procurement para adaptarlo a las necesidades propias de España. Se cumplió, permitiendo de esta manera proyectar los lineamientos de la propuesta realizada para alinearse con las necesidades establecidas por la Unión Europea. Analizar propuestas de otros países acordes a la temática a estudiar. Se cumplió, analizando investigaciones y publicaciones referentes a la temática que funcionaron como ejes de la propuesta realizada. Proponer los requerimientos necesarios para lograr implementar como criterio de adjudicación a las emisiones de CO2 en licitaciones públicas españolas. Se cumplió, estableciendo los puntos necesarios con los que posteriormente se ejecutaron las propuestas de la investigación. Evaluar los limitantes actuales a partir del cálculo de emisiones en un proyecto de urbanización. Se cumplió, a partir de los cálculos del proyecto se lograron conclusiones sobre el proceso de cálculo y puntos importantes al analizar los resultados. Definir aspectos con potencial de mejora para optimizar la inclusión de criterios de ambientales asociados a las emisiones de CO2. Se cumplió, estableciendo los lineamientos para futuras investigaciones presentes en el documento.
6. Contribuciones.	La contribución de este trabajo de investigación se encuentra en el análisis de la situación de las contrataciones del sector público de construcción español y su relación con el contexto
	europeo, el estudio de las limitaciones presentes para adaptar
	su situación a los requerimientos de un mercado con altas exigencias desde el punto de vista ambiental, los limitantes
	para su futuro desarrollo y las propuestas planteadas para
	atender las necesidades requeridas.
7. Recomendaciones.	Se presentan recomendaciones para la inclusión del cálculo de emisiones de CO2 como criterio de adjudicación, centradas principalmente en generar herramientas prácticas y ejecutables para un mercado con recursos limitados y con múltiples protagonistas involucrados. Dentro de las

	recomendaciones se busca generar información en los	
	proyectos que brinden una medida comparativa de las	
	emisiones presentes y funcione como una base de información	
	que permita tomar decisiones estratégicas en la temática.	
8. Limitaciones.	Las limitaciones que se encontraron en este trabajo de	
	investigación fueron principalmente asociados a plazos y	
	equipo de investigación limitado, al desarrollarse como un	
	trabajo de investigación de carácter académico, el volumen de	
	información analizado fue acotado al análisis de la situación	
	actual que brindo el estudio bibliográfico, sin acudir a	
	herramientas como entrevistas a especialistas en la materia, o	
	encuestas sobre la viabilidad de aplicación de las propuestas a	
	empresas y actores involucrados en la ejecución de proyectos,	
	ofertas o incluso protagonistas asociados a la evaluación y	
	comparativa de las mismas.	
	Por otro lado, para el análisis práctico se centró en un proyecto	
	sobre el que se evaluaron los limitantes y deficiencias del	
	propio proyecto y de una única base de datos utilizada.	

RESUMEN

En un contexto en el que la conciencia ambiental se ha convertido en un eje fundamental para el desarrollo de la sociedad, y la cual establece los principales **desafíos** a afrontar por la **administración pública**, resulta primordial impulsar desde la demanda al **desarrollo sostenible** como un lineamiento básico e innegociable.

En el marco de los objetivos planteados por el **Acuerdo Paris 2030**, en donde se refleja la urgencia de abordar el cambio climático de manera efectiva y colaborativa, se establece la necesidad de **disminuir las emisiones de CO2** impulsando una transición a fuentes de energía limpias y **practicas sostenibles** en diversos sectores que conforman la actividad social.

El sector de la construcción, con gran protagonismo en el impulsado por el sector público, representa una parte importante de las emisiones presentes en la sociedad. Es por ello por lo que en la presente investigación se analizarán los principales aspectos que limitan, tanto desde el punto de vista técnico como legal, la inclusión de las emisiones de CO2 como criterio de adjudicación en las licitaciones públicas en España.

Para realizar esta investigación se realizará un diagnóstico de la situación actual mediante el estudio del **contexto** donde se enmarcan las **contrataciones públicas españolas**, analizando las **restricciones** que se presentan para acoplarse a las **directrices** establecidas por la Unión Europea, enmarcadas en el **Green Public Procurement (GPP)**, y cumplir con los **objetivos** establecidos en el **Acuerdo Paris 2030** en la temática de emisiones de CO2.

Se utilizará para elaborar la propuesta de esta investigación al estudio de **alternativas implementadas** en diferentes países de la **Unión Europea**, utilizando como modelo a los más desarrollados en la inclusión de criterios medioambientales en sus compras y contrataciones públicas.

Con el objetivo de tomar dimensión real de las restricciones analizadas, se realizará el **cálculo de emisiones** sobre un **proyecto de urbanización** concreto denominado: "ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 MALILLA SUR", perteneciente al ayuntamiento de Valencia. En el mismo se calcularán las emisiones de CO2 utilizando como herramienta de cálculo la **base de datos BEDEC** del Instituto de Tecnología de la Construcción.

Palabras clave: Huella de carbono; sostenibilidad; criterios de adjudicación; emisiones, criterios medioambientales.

RESUM

En un context en el qual la consciència ambiental s'ha convertit en un eix fonamental per al desenvolupament de la societat, i la qual establix els principals **desafiaments** a afrontar per **l'administració pública**, resulta primordial impulsar des de la demanda al **desenvolupament sostenible** com un lineamiento bàsic i innegociable.

En el marc dels objectius plantejats per l'Acord Paris 2030, on es reflectix la urgència d'abordar el canvi climàtic de manera efectiva i col·laborativa, s'establix la necessitat de disminuir les emissions de CO2 impulsant una transició a fonts d'energia netes i practiques sostenibles en diversos sectors que conformen l'activitat social.

El **sector de la construcció**, amb gran protagonisme en l'impulsat pel sector públic, representa una part important de les emissions presents en la societat. És per això que en la present investigació s'analitzaran els principals aspectes que limiten, tant des del punt de vista tècnic com legal, la inclusió de les **emissions de CO₂** com a **criteri d'adjudicació** en les licitacions públiques a Espanya.

Per a realitzar esta investigació es realitzarà un diagnòstic de la situació actual mitjançant l'estudi del **context** on s'emmarquen les **contractacions públiques espanyoles**, analitzant les **restriccions** que es presenten per a acoblar-se a les **directrius** establides per la Unió Europea, emmarcades en el **Green Public Procurement (GPP)**, i complir amb els **objectius** establits en **l'Acord Paris 2030** en la temàtica d'emissions de CO₂.

S'utilitzarà per a elaborar la proposta d'esta investigació a l'estudi **d'alternatives implementades** en diferents països de la **Unió Europea**, utilitzant com a model als més desenvolupats en la inclusió de criteris mediambientals en les seues compres i contractacions públiques.

Amb l'objectiu de prendre dimensió real de les restriccions analitzades, es realitzarà el càlcul d'emissions sobre un projecte d'urbanització concret denominat: "ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 MALILLA SUR ", pertanyent a l'ajuntament de València. En el mateix es calcularan les emissions de CO2 utilitzant com a ferramenta de càlcul la base de dades BEDEC de l'Institut de Tecnologia de la Construcció.

Paraules clau: Petjada de carboni; sostenibilitat; criteris d'adjudicació; emissions, criteris mediambientals.

SUMMARY

In a context where environmental awareness has become a fundamental axis for societal development, establishing the main **challenges** to be faced by **public administration**, it is essential to drive **sustainable development** as a basic and non-negotiable guideline from the demand side.

Within the framework of the objectives set by the **Paris Agreement 2030**, which reflects the urgency of effectively and collaboratively addressing climate change, there is a need to **reduce CO2 emissions** by promoting a transition to clean energy sources and **sustainable practices** across various sectors constituting social activity.

The **construction sector**, with significant prominence driven by the public sector, represents a significant portion of emissions in society. Therefore, this research will analyze the main technical and legal aspects limiting the inclusion of **CO2 emissions** as a **criterion for awarding** public tenders in Spain.

To conduct this research, a diagnosis of the current situation will be carried out by studying the context in which Spanish public procurement contracts are framed, analyzing the constraints for complying with the guidelines established by the European Union under the Green Public Procurement (GPP) and meeting the objectives set in the Paris Agreement 2030 regarding CO2 emissions.

The research proposal will involve studying **alternatives implemented** in different **European Union** countries, using the most developed ones in the inclusion of environmental criteria in their public purchases and contracts as a model.

In order to grasp the real dimension of the analyzed constraints, **CO2 emissions** will be calculated for a specific **urbanization project** named "ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 MALILLA SUR" belonging to the Valencia City Council. CO2 emissions will be calculated using the **BEDEC database** from the Instituto de Tecnología de la Construcción.

Keywords: Carbon footprint; sustainability; award criteria; emissions, environmental criteria.

Cuadro de contenido

1	INTR	ODUCCIÓN
	1.1	Introducción
	1.2	Planteamiento del problema
	1.3	Justificación
	1.3.1	Justificación de elección de la temática16
	1.3.2	Justificación de uso de las competencias y conocimientos adquiridos en el máster. 16
	1.4	Planteamiento de la investigación
	1.4.1	Alcance
	1.4.2	Objetivos
	1.4.3	Metodología18
2	CON	TEXTO19
	2.1	Europa
	2.1.1	Acuerdo de Paris 2030
	2.1.2	Green Public Procurement (GPP)
	2.1.3	CO2 Performance Ladder
	2.2	España23
	2.2.1	Ley de Contratos del Sector Público (LCSP)
	2.2.2	Estrategia España circular 2030
	2.2.3	Plan de contratación pública ecológica30
	2.2.4	Registro de Huella de Carbono (RHC)
3	MAR	CO TEORICO35
	3.1	Huella de carbono35
	3.2	Análisis del ciclo de vida
	3.3	Propuestas en otros países
	3.3.1 pública	Estableciendo los criterios de la huella de carbono para proyectos de construcción 39
		Reducción de la huella de carbono de edificaciones: Nuevos estándares y ones finlandesas
		Avanzando en la Contratación Pública Verde y la Contratación Baja en Carbono en perspectivas
		Utilizando la contratación pública como política de descarbonización: un vistazo a ia44
4 ՏԼ	PROY JR" 47	ECTO: "ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 MALILLA
	4.1	Objeto del proyecto

	4.2	Ambito de actuación	47
	4.3	Descripción de las obras	48
	4.4	Información adicional	49
	4.4.1	Clasificación de las obras	49
	4.4.2	Clasificación del contratista	49
	4.4.3	Presupuesto de la obra	49
5	CÁLC	CULO DE EMISIONES	51
	5.1	Base de datos	51
	5.2	Cálculo de emisiones	53
	5.3	Limitaciones en el cálculo	54
	5.4	Resultados	57
6	PROF	PUESTAS	65
	6.1	Propuesta 1: Base de datos única para cálculo de emisiones	66
	6.2 emision	Propuesta 2: Fase de diseño: cuadro de precios con información ambiental es y energía	
	6.3 prepond	Propuesta 3: Fase de diseño: identificar capítulos del presupuesto con may derancia y con mayor potencial de mejoría	-
	6.4 ofertas.	Propuesta 4: Fase de diseño, establecer línea base de emisiones para comparativa 73	de
	6.5 de diseí	Propuesta 5: Presentación de ofertas con mejoras en los valores ambientales de fa	
7	CON	CLUSIONES	76
	7.1	Cumplimiento de los objetivos	76
	7.2	Conclusiones de la investigación	76
	7.3	Pautas y lineamientos para futuras investigaciones	77
	7.3.1	Contratos colaborativos (IPD) y huella de carbono.	77
	7.3.2	Base de datos de emisiones	78
	7.3.3 Vida.	Inclusión de criterios de adjudicaciones desde la perspectiva del Análisis de Ciclo 78	de
8	BIBLI	OGRAFÍA	79
9	Anex	os	81
	9.1	Emisiones unitarias	81

Cuadro de figuras

Figura 1. Esquema de CO2 Performance Ladder	23
Figura 2. Principios de la Estrategia de Economía Circular	29
Figura 3. Secciones del RHC.	
Figura 4. Esquema de cálculo de reducción de Huella de Carbono.	34
Figura 5. Ejemplo de fuentes de emisiones de GEI de una organización	36
Figura 6. Análisis de las etapas del Ciclo de Vida.	
Figura 7. Valores por unidad de medida de emisiones de cada alternativa del caso de estud	lio.40
Figura 8. Resultados de concurso según indicadores de Carbon efficiency y Carbon economy	y 41
Figura 9. Handprint entre propuesta base de un proyecto y alternativa	
Figura 10. Costes asociados a la inclusión de criterios ambientales	
Figura 11. Croquis de emplazamiento de proyecto a calcular	
Figura 12. Resumen de presupuesto de proyecto por capítulo.	
Figura 13. Información ambiental de materiales del BEDEC.	
Figura 14. Información ambiental de maquinaria del BEDEC.	52
Figura 15. Partidas de obra y conjuntos del BEDEC	
Figura 16. Cuadro de descompuestos de partida del presupuesto	
Figura 17. Información ambiental de Vibrador de aguja.	54
Figura 18. Información ambiental de HM-20.	
Figura 19. Valores ambientales de capítulo "PAVIMENTACIONES".	54
Figura 20. Partida de presupuesto sin descomposición	55
Figura 21. Partida del presupuesto con material no presente en la base de datos	
Figura 22. Partida de presupuesto con elementos sin información ambiental en la base de d	
Figura 23. Información de transformadores eléctricos trifásicos de BEDEC	
Figura 24. Partidas del presupuesto que no podrían ser calculadas por la base de datos si tuv	
descomposición.	
Figura 25. Partidas del presupuesto que podría ser calculada por la base de datos si tu	
descomposición.	
Figura 26. Tabla resumen de resultados de emisiones y energía	
Figura 27. Emisiones y energía de maquinaría y materiales	
Figura 28. Materiales con mayores valores de consumo	
Figura 29. Total de emisiones y consumo de energía de materiales en el proyecto	
Figura 30. Total de emisiones y consumo de energía de maquinarias en el proyecto	
Figura 31. Etapas del ciclo de vida donde se enmarcan las propuestas	
Figura 32. Esquema de propuestas en el proceso de contratación	
Figura 33. Ejemplo de esquematización de información para base de datos	
Figura 34. Ejemplo de esquematización de información para firmes de carretera	
Figura 35. Partida de presupuesto no presente en base de datos	
Figura 36. Resultados de cálculo de emisiones de proyecto de urbanización	72

1 INTRODUCCIÓN

1.1 Introducción

En el presente trabajo de investigación, correspondiente al Trabajo de Fin de Máster del Máster en Planificación y Gestión de Ingeniería Civil de la Universidad Politécnica de Valencia, se realizaron propuestas para la evaluación de las emisiones de dióxido de carbono como criterio de adjudicación en la licitación pública en España.

Para la elaboración de dichas propuestas, se realizó un análisis desde dos enfoques principales. Por un lado, el estudio de la normativa en la que se enmarcan las licitaciones públicas en España, dentro de la Ley de contratos del Sector Público y el Plan de Contratación Pública Ecológica, con el fin de lograr alcanzar los objetivos desarrollados a partir de los lineamientos del tratado internacional para abordar el cambio climático denominado Acuerdo París. Por otra parte, se realizó el estudio de propuestas ejecutadas en diferentes países de la Unión Europea con mayor desarrollo y avance en la temática, con el objetivo de tomar como referencia aquellas metodologías y propuestas con resultados satisfactorios en dichos países y adaptarlas a las necesidades y condiciones propias de España.

Para poder analizar los limitantes técnicos de la propuesta, se realizó el estudio de las emisiones de un proyecto de urbanización perteneciente al ayuntamiento de la ciudad de Valencia, denominado: "ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 MALILLA SUR", utilizando como herramienta para el cálculo la base de datos BEDEC perteneciente al Instituto de Tecnología de la Construcción. A partir de las limitaciones presentes en este análisis se plantearán las necesidades y mejoras necesarias para el funcionamiento adecuado de las propuestas planteadas.

1.2 Planteamiento del problema

Actualmente, la lucha contra el cambio climático es crucial para el desarrollo de todos los sectores de la economía. La industria de la construcción, lejos de estar alejado de esta preocupación, representa uno de los principales sectores con necesidad de cambio para adaptarse a las necesidades del medioambiente. La complejidad a la hora de abordar el cambio en este sector no solo viene dada por el volumen de producción que representa a nivel mundial la construcción, sino también a la histórica resistencia al cambio e innovación del sector ante variables que no giren en torno a lo económico.

La urgencia de abordar el cambio climático ha llevado a un aumento significativo en la atención hacia la medición y reducción de la huella de carbono. Este trabajo de fin de máster se centra en el papel crucial que representa una adecuada gestión de los proyectos de construcción pertenecientes al sector público para el control de las emisiones de dióxido de carbono. La huella de carbono, que abarca las emisiones directas e indirectas de gases de efecto invernadero asociadas con la ejecución de un proyecto, se ha convertido en un indicador clave para evaluar el impacto ambiental de la construcción y, por ende, resulta primordial atender la necesidad de desarrollar métodos de cálculo, no solo más precisos y adecuados, sino también prácticos y ejecutables.

Para aprovechar las reglas de juego que propone la licitación pública, donde las condiciones están brindadas desde la demanda, es fundamental incluir y darles protagonismo a criterios ambientales, como las emisiones de dióxido de carbono. Para realizar este cambio, es fundamental contar con estándares y metodologías de evaluación claras y unificadas para establecer comparativas y análisis de información de manera sencilla y obtener indicadores representativos y útiles para tomar decisiones.

A partir de lograr mejorar la precisión y practicidad con la que se evalúen las emisiones de CO2, se podrá aumentar la cantidad de proyectos involucrados en tener presentes a este criterio ambiental como criterio de adjudicación y se facilitará la implementación de políticas públicas en torno a la construcción que ayuden a combatir de manera efectiva al cambio climático, basando las decisiones en información concreta y precisa.

1.3 Justificación

1.3.1 Justificación de elección de la temática

La elección de la temática de esta investigación, sobre la necesidad de incluir como criterio de adjudicación a las emisiones de dióxido de carbono en proyectos contratados mediante licitación pública, se fundamenta en la necesidad de abordar los desafíos medioambientales e integrar prácticas sostenibles en la gestión de proyectos de construcción. La industria de la construcción es una de las principales fuentes de emisiones de gases de efecto invernadero, y es fundamental la necesidad de afrontar esta problemática desde la gestión de la contratación impulsada por el sector público.

Es de suma relevancia a la hora de tomar decisiones contar con información fiable y representativa, más cuando estas incumben en el interés público. Ante esto, las emisiones de CO2 se presentan como un indicador representativo de la viabilidad medioambiental de los proyectos, ya que esta no se evalúa únicamente en el momento de ejecución del proyecto, sino que también puede ser abordada a lo largo del ciclo de vida de la obra a ejecutar, es decir, incluyendo la construcción, operación y posterior disposición final.

Además, la elección de esta temática se justifica con la necesidad del sector de alinearse con los objetivos planteados en todos los sectores de la economía, hacia un futuro sustentable y afrontando, a la hora de asumir la viabilidad de un proyecto, una amplitud de variables que van más allá de solo indicadores económicos. Ante esta situación, el sector de la construcción requiere que el entorno en el que se desarrolla, y particularmente desde nuestra posición como profesionales encargados de gestionar proyectos, modifique los principales criterios sobre los que se desarrolla, con la sostenibilidad e innovación como ejes fundamentales.

1.3.2 Justificación de uso de las competencias y conocimientos adquiridos en el máster.

Para realizar el presente trabajo de investigación, se utilizaron competencias y conocimientos obtenidos en el Máster de Planificación y Gestión de Ingeniería Civil.

Destaca entre los conocimientos utilizados para esta investigación, el aprendido en Metodología de Investigación en Gestión de la Construcción, cuyas herramientas permitieron abordar la problemática a investigar, respetando un orden en el desarrollo de la investigación, con métodos

adecuados, búsquedas bibliográficas fiables, entre otras. Permitió enfocar la investigación de manera normalizada, ordenada y bajo una visión crítica.

Se destacan además para la temática elegida, competencias obtenidas en las asignaturas de Calidad, Innovación y Sostenibilidad en el Sector de la Construcción, principalmente desde el enfoque brindado hacia un sector de la construcción con una gran necesidad de adaptarse al dinamismo presente en el mercado.

Por su parte, resulto fundamental el aporte de la asignatura Evaluación de Inversiones en la Construcción, entendiendo la necesidad de tomar decisiones en cuanto a la elección de un proyecto a partir de análisis multicriterio, además de la importancia de comprender las ventajas y desventajas de las diferentes formas de contratación presentes en la construcción.

En cuanto al cálculo de emisiones en el proyecto de urbanización realizado en esta investigación, resultaron muy importantes los conocimientos de la asignatura Planificación y Administración de obras, principalmente para entender la documentación presente en el proyecto, así como para aterrizar las propuestas planteadas a herramientas realmente ejecutables.

1.4 Planteamiento de la investigación

1.4.1 Alcance

El alcance del presente trabajo es el estudio del contexto y limitaciones para la inclusión de las emisiones de CO2 como criterio de adjudicación en licitaciones públicas en España.

1.4.2 Objetivos

Objetivo general:

El objetivo general es establecer las pautas necesarias para poder incluir a las emisiones de CO2 como criterio de adjudicación en contrataciones públicas de construcción en España.

Objetivos específicos:

Dentro de los objetivos específicos presentes en este trabajo de investigación destacan:

- Analizar el contexto en el cual se enmarca la contratación pública española mediante la revisión bibliográfica.
- Analizar los lineamientos propuestos por el Acuerdo Paris 2030 y el Green Public Procurement.
- Analizar propuestas de otros países acordes a la temática a estudiar.
- Proponer los requerimientos necesarios para lograr implementar como criterio de adjudicación a las emisiones de CO2 en licitaciones públicas españolas.
- Evaluar los limitantes actuales a partir del cálculo de emisiones en un proyecto de urbanización.
- Definir aspectos con potencial de mejora para optimizar la inclusión de criterios de ambientales asociados a las emisiones de CO2.

1.4.3 Metodología

Este trabajo de investigación se dividirá en tres ejes para lograr un orden que permita la integración de los conceptos a abordar y en torno a los que se desarrollaran las conclusiones pertinentes.

En primer lugar, se realizará a partir de la revisión de la literatura, un estudio exhaustivo del contexto en el que se enmarca la contratación pública en España, vinculando la forma en la que se realizan mayoritariamente las contrataciones obras publicas de construcción con las pretensiones y necesidades que se generan a partir del estudio de la temática de esta investigación.

Por otra parte, se hará una recopilación de alternativas ejecutadas en otros países, que se amolden a las necesidades correspondientes de esta investigación, aprovechando de esa manera los resultados obtenidos en lugares con una mayor experiencia y dedicación en la materia. Se hará un análisis crítico de dicha información, utilizándola como base para establecer los lineamientos de la propuesta planteada como solución a la problemática dentro del contexto en el que se enmarca esta investigación.

Por último, se ejecutará el cálculo de emisiones de dióxido de carbono en un proyecto en particular denominado: "ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 MALILLA SUR". Se utilizará como herramienta de cálculo la base de datos BEDEC del Instituto de Tecnología de la Construcción. Se utilizará como base de información del proyecto el contenido del presupuesto en base al cual se efectuarán los cálculos. En función de la información de dichos ítems se buscará calcular las emisiones vinculándolos a la base de datos en caso de ser posible, y en caso de no coincidir definir las causas que lo impiden.

Tras cumplir estas etapas de la investigación, se realizarán las propuestas para incluir como criterio de adjudicación a las emisiones de CO2 y se realizarán conclusiones pertinentes y se establecerán líneas de investigación futuras que permitan profundizar y atender necesidades de la temática abordada.

2 CONTEXTO

2.1 Europa

2.1.1 Acuerdo de Paris 2030

El Acuerdo de París se refiere a un acuerdo internacional sobre cambio climático adoptado en diciembre de 2015 durante la COP21 (Conferencia de las Partes de la Convención Marco de las Naciones Unidas sobre el Cambio Climático) en París. El acuerdo tiene como objetivo abordar el cambio climático y limitar el calentamiento global.

Dentro de sus principales objetivos se encuentra:

- Limitar el calentamiento global por debajo de 2 grados Celsius sobre los niveles preindustriales, y se esfuerza por limitar el aumento a 1.5 grados Celsius. Esto busca reducir los impactos negativos del cambio climático.
- Contribuciones determinadas a nivel nacional (NDC), que se refieren a compromisos voluntarios de los países participantes para reducir sus emisiones de gases de efecto invernadero.
- Revisión y aumento de objetivos, los países se comprometen a revisar y, de ser necesario, aumentar sus objetivos de reducción de emisiones en el tiempo. Esta revisión debe llevarse a cabo cada cinco años.
- Financiamiento climático, punto en el que se reconoce la importancia de movilizar financiamiento para ayudar a los países en desarrollo a adaptarse al cambio climático y mitigar sus emisiones.
- Transparencia y rendición de cuentas, donde se establece un marco para la transparencia y la rendición de cuentas para asegurar que los países cumplan con sus compromisos.

El funcionamiento de este acuerdo funciona en ciclos de cinco años de medidas climáticas cada vez más ambiciosas llevadas a cabo por los países comprometidos. Las estrategias que se requieren plantear son bajo lineamientos a largo plazo, no siendo obligatorias, pero si funcionan como un contexto de prioridades de planificación y desarrollo de los países, marcando una visión y dirección clara.

En la búsqueda de un entorno colaborativo entre los países que integran el acuerdo, se proporciona un marco para el apoyo financiero, técnico y de creación de capacidad para aquellos que lo necesiten. Con esto se resalta la necesidad de que los países desarrollados deben tomar la iniciativa en la prestación de asistencia financiera a los países menos dotados y más vulnerables.

Con respecto al entorno tecnológico, se busca la cooperación tecnológica entre los países, en busca de transferencia de tecnologías limpias y sostenibles a los países en desarrollo, enfocado principalmente en alternativas energéticas renovables y eficientes, así como la adecuada gestión de recursos como el agua.

2.1.2 Green Public Procurement (GPP)

El "Green Public Procurement" (GPP), se refiere a la práctica de incluir criterios ambientales en los procesos de adquisición de bienes, servicios y obras por parte del sector público. El objetivo principal del GPP es fomentar la sostenibilidad ambiental al promover la adquisición de productos y servicios que tienen un menor impacto ambiental a lo largo de su ciclo de vida.

Criterios Ambientales

La incorporación de criterios ambientales en la contratación pública verde (Green Public Procurement) implica la definición y aplicación de estándares ambientales que guían la adquisición de bienes, servicios y obras por parte de entidades gubernamentales. Estos criterios aseguran que los productos y servicios adquiridos cumplan con requisitos específicos relacionados con la sostenibilidad y el impacto ambiental.

Se destacan dentro de los principales criterios ambientales planteados:

- Eficiencia energética, se busca fomentar la adquisición de productos y servicios que utilicen energía de manera más eficiente. Se encuentra enfocado principalmente a la etapa de operación de las obras (en el caso de análisis de esta investigación).
- Reducción de emisiones de gases de efecto invernadero, busca promover la compra de productos y servicios con un menor impacto con respecto a las emisiones de dióxido de carbono.
- Gestión de residuos, con estos criterios se busca minimizar la cantidad de residuos generados durante la producción, uso y disposición de productos.
- Uso de recursos sostenibles, se centran en la adquisición de productos fabricados con materias primas renovables o recicladas. Además, se incluye la posibilidad de contar con materiales que tengan ciertas certificaciones que los hagan más ventajosos con respecto a su comportamiento con el medio ambiente.
- Análisis a lo largo del ciclo de vida, se establece la necesidad de considerar el ciclo de vida completo en las contrataciones y adquisiciones, desde la extracción hasta la eliminación. En términos del objeto de esta investigación se reduce a la consideración de la huella de carbono total.
- Innovación, fomentada a partir de dar preferencia a productos y servicios que incorporan nuevas tecnologías o enfoques que reducen significativamente el impacto ambiental.

La inclusión de estos criterios en la contratación pública no solo reduce el impacto ambiental directo de las contrataciones públicas, sino que también impulsa la demanda de productos y servicios más sostenibles, estimulando así la innovación y el desarrollo de un mercado con mayor beneficio desde el punto de vista ambiental.

Proceso de contratación.

Dentro del GPP se detallan diferentes procesos de contratación junto con las condiciones que se deben establecer hacia una contratación ecológica. Dentro de los procesos nombrados en la Unión Europea destacan procedimiento abierto, procedimiento restringido, el dialogo competitivo, procedimiento negociado y adjudicación directa. En este informe se remarcará el interés en los procedimientos abiertos, siendo este el de mayor presencia en el contexto de estudio y como adaptar cuestiones de los procedimientos competitivo con negociación y diálogo

competitivo para aprovechar las ventajas que estos presentan frente a criterios sociales y ambientales.

Dentro de las temáticas abordadas para la contratación, se da especial atención a los criterios de selección y adjudicación, y a como resulta importante incluir además de criterios técnicos, financieros y económicos a los sociales y ambientales. Para la inclusión de estos criterios ambientales es necesario relacionar dentro de las especificaciones técnicas de los pliegos cuestiones que puedan ser vinculables al criterio en cuestión. Una vez incluidos se debe definir los parámetros considerados para la evaluación de la oferta y como ponderaran en la selección de esta.

El proceso de contratación planteado en el GPP (bajo el procedimiento competitivo con negociación y diálogo competitivo es una modalidad de licitación en la que se permite la negociación entre la entidad contratante y los licitadores previamente seleccionados, con el objetivo de mejorar las ofertas y conseguir la mejor relación calidad-precio.

- Anuncio de licitación.
- Selección de licitadores: la entidad contratante selecciona a los licitadores que cumplen con los requisitos establecidos en el pliego de condiciones y los invita a participar en la siguiente fase.
- Fase de diálogo competitivo: se abre una fase de diálogo con los licitadores seleccionados, en la que se busca mejorar sus ofertas a través de la discusión y negociación de las diferentes soluciones propuestas.
- Presentación de ofertas finales: una vez concluida la fase de diálogo, se solicita a los licitadores que presenten sus ofertas finales.
- Evaluación de las ofertas.
- Adjudicación del contrato.

A la hora de definir los requisitos de la contratación, se establece en el GPP la siguiente secuencia:

- Identificar los requisitos legales y regulatorios.
- Identificar los requisitos ambientales y sociales: se debe identificar los requisitos específicos en términos de sostenibilidad que se espera que cumpla el proveedor, como la gestión de residuos, la reducción de emisiones de gases de efecto invernadero, el uso de materiales sostenibles, etc.
- Establecer objetivos y metas claras: se deben establecer objetivos y metas claras para la sostenibilidad que se espera alcanzar a través del contrato, y deben ser medibles y verificables.
- Definir los criterios de evaluación: se deben definir los criterios de evaluación que se utilizarán para evaluar la capacidad del proveedor para cumplir con los requisitos del contrato.
- Definir los términos y condiciones: se deben definir los términos y condiciones del contrato, incluyendo cualquier requisito de informes y verificación, y cualquier penalización por incumplimiento.

Con respecto a las capacidades de los ofertantes en relación con cuestiones ambientales, se destaca la importancia de que los ofertantes tengan una sólida capacidad técnica ambiental para tomar decisiones de compra sostenibles y ofrece diversas estrategias y herramientas para

mejorar esta capacidad técnica. Además, se enfoca en la importancia de considerar los sistemas de gestión ambiental en la contratación pública sostenible, con gran relevancia en la gestión efectiva de la cadena de suministro y una evaluación constante del verdadero cumplimiento de los criterios de sostenibilidad.

Por parte de los criterios de elección, establece como primordial la libertad de los ofertantes para brindar altos niveles de competitividad bajo el desarrollo de métodos innovadores y eficientes, que mantengan siempre las condiciones mínimas requeridas y abriendo la oportunidad a soluciones variadas.

Se establecen cláusulas de desempeño en los contratos, referidas a disposiciones específicas que marcan los criterios de evaluación y las expectativas de desempeño ambiental y social de los proveedores. Incentiva a los proveedores a mejorar su desempeño ambiental y social y les brinda una ventaja competitiva al demostrar su compromiso con la sostenibilidad. Es de suma importancia establecer un proceso de seguimiento y evaluación para garantizar que se cumplan las cláusulas de desempeño.

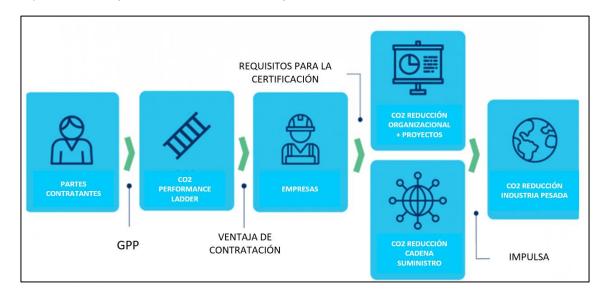
2.1.3 CO2 Performance Ladder

El CO2 Performance Ladder es un sistema de certificación y clasificación de sostenibilidad diseñado para empresas en Europa, con el objetivo de reducir su huella de carbono y promover prácticas sostenibles.

Para obtener la certificación, las empresas deben cumplir con una serie de requisitos, que incluyen:

- Realizar una evaluación exhaustiva de su huella de carbono y establecer objetivos de reducción.
- Implementar medidas concretas para reducir sus emisiones, como la eficiencia energética, la transición a fuentes de energía renovable, el uso de tecnologías más limpias y el fomento de la movilidad sostenible.
- Comunicar su compromiso y progreso a los empleados, los clientes y otros grupos de interés relevantes.

Tal y como se presenta en la *Figura 1*, el CO2 Performance Ladder funciona como una herramienta para las empresas que brinda una ventaja en la contratación, certificando el



compromiso con la reducción tanto organizacional como de proyectos de las emisiones de CO2 y en su cadena de suministro para lograr impulsar la reducción de emisiones.

Figura 1

Esquema de CO2 Performance Ladder. Fuente: CO2 Performance Ladder (2020).

El sistema se basa en cinco niveles, cada uno con requisitos específicos en términos de reducción de emisiones y prácticas sostenibles. Estos niveles son:

- Nivel 1: Conocimiento de las emisiones de CO2 y determinación de objetivos.
- Nivel 2: Medición de emisiones de CO2 y establecimiento de objetivos de reducción.
- Nivel 3: Planificación de reducción de emisiones de CO2 y participación de proveedores.
- Nivel 4: Verificación de la eficacia de las medidas y contribución a la cadena de suministro.
- Nivel 5: Ambición integral, que implica liderazgo en sostenibilidad y colaboración con otras partes interesadas.

Empresas y proyectos que obtienen la certificación en los niveles superiores del CO2 Performance Ladder demuestran un compromiso sólido con la sostenibilidad y la reducción de emisiones de CO2 en todas sus operaciones.

Puntualmente los aspectos que considera son:

- Comprensión (fuentes de CO2).
- Reducción (Establecer objetivos ambiciosos).
- Transparencia (Para comunicar).
- Participación (Dentro del sector (niveles 4 y 5).

2.2 España

2.2.1 Ley de Contratos del Sector Público (LCSP)

La presente investigación se encuentra enmarcada dentro del contexto de contratos del sector público en España, es por ello por lo que se detalla a continuación los aspectos más importantes

y representativos de la Ley que rige el comportamiento de este tipo de contratación y bajo los cuales se regirá la propuesta realizada según el alcance de esta investigación.

La normativa bajo la cual se encuentra la contratación del sector público en España para la realización de obras, adquisición de bienes y contratación de servicios se enmarca bajo la Ley 9/2017 de Contratos del Sector Público.

Objeto y ámbito de aplicación.

Dentro del objeto y finalidad de esta ley se destaca, tal y como se indica en el Artículo 1 del Capítulo 1 perteneciente al Título I:

- "...regular la contratación del sector público, a fin de garantizar que la misma se ajusta a los principios de libertad de acceso a las licitaciones, publicidad y transparencia de los procedimientos, y no discriminación e igualdad de trato entre los licitadores; y de asegurar, en conexión con el objetivo de estabilidad presupuestaria y control del gasto, y el principio de integridad, una eficiente utilización de los fondos destinados a la realización de obras, la adquisición de bienes y la contratación de servicios mediante la exigencia de la definición previa de las necesidades a satisfacer, la salvaguarda de la libre competencia y la selección de la oferta económicamente más ventajosa." (Ley 9/2017 de Contratos del Sector Público, 2017, Capítulo 1, Artículo 1).
- "...se incorporarán de manera transversal y preceptiva criterios sociales y medioambientales siempre que guarde relación con el objeto del contrato, en la convicción de que su inclusión proporciona una mejor relación calidad-precio en la prestación contractual, así como una mayor y mejor eficiencia en la utilización de los fondos públicos. Igualmente se facilitará el acceso a la contratación pública de las pequeñas y medianas empresas, así como de las empresas de economía social." (Ley 9/2017 de Contratos del Sector Público, 2017, Capítulo 1, Artículo 1).

Contratos del sector público.

Acorde con lo indicado en el Artículo 12 de la LCSP, serán alcanzados por las normas de esta Ley contratos de obras, concesión de obras, concesión de servicios, suministro y servicios que celebren las entidades pertenecientes al sector público, las cuales están definidas dentro del Artículo 2 (ámbito de aplicación) y 3 (ámbito subjetivo) de la LCSP.

Incumbe a esta investigación principalmente los denominados contratos de obra, los cuales tienen como objeto:

- "La ejecución de una obra, aislada o conjuntamente con la redacción del proyecto, o la realización de alguno de los trabajos enumerados en el Anexo I." (Ley 9/2017 de Contratos del Sector Público, 2017, Capítulo 2, Artículo 13).
- "La realización, por cualquier medio, de una obra que cumpla los requisitos fijados por la entidad del sector público contratante que ejerza una influencia decisiva en el tipo o el proyecto de la obra." (Ley 9/2017 de Contratos del Sector Público, 2017, Capítulo 2, Artículo 13).

A la hora de definir qué se entiende como "obra", la LCSP (2017) lo define como "...el resultado de un conjunto de trabajos de construcción o de ingeniería civil, destinado a cumplir por sí mismo una función económica o técnica, que tenga por objeto un bien inmueble." (Ley 9/2017 de Contratos del Sector Público, 2017, Capítulo 2, Artículo 13).

Capacidad y solvencia del empresario.

En lo que respecta a que personas naturales o jurídicas podrán contratar contratos bajo el efecto de la LCSP, se definen en el capítulo 2 perteneciente al título II lo correspondiente a las normas generales y especiales sobre la capacidad que deben tener.

Mas allá de la figura legal que represente, calificación o solvencia económica requerida, existe un apartado de particular interés para la presente investigación referido a la solvencia técnica en los contratos de obra. En este artículo se detalla la necesidad del empresario de acreditar solvencia técnica, y se destaca únicamente para cuestiones medioambientales que "en los casos adecuados, indicación de las medidas de gestión medioambiental que el empresario podrá aplicar al ejecutar el contrato." (Ley 9/2017 de Contratos del Sector Público, 2017, Capítulo 2, Artículo 88).

Con respecto al artículo 94 de la LCSP, con respecto a la acreditación del cumplimiento de las normas de gestión medioambiental, se establece como criterio que ante la exigencia de presentar certificados expedidos por organismos independientes que acrediten que el licitador cumple con determinadas normas de gestión ambiental se deberán enmarcar dentro del sistema comunitario de gestión y auditoria medioambientales (EMAS) de la Unión Europea, o a otros sistemas reconocidos según cierto criterio establecido en la ley, incluyendo certificados equivalentes siempre que sea demostrable que las medidas son equivalentes a las exigidas y bajo la norma de gestión medioambiental aplicable.

Objeto del contrato.

Dentro de lo planteado en el título III de la LCSP, puntualmente en el capítulo 1 donde se encuentran las normas generales, se define que "El objeto de los contratos del sector público deberá ser determinado. El mismo se podrá definir en atención a las necesidades o funcionalidades concretas que se pretenden satisfacer, sin cerrar el objeto del contrato a una solución única. En especial, se definirán de este modo en aquellos contratos en los que se estime que pueden incorporarse innovaciones tecnológicas, sociales o ambientales que mejoren la eficiencia y sostenibilidad de los bienes, obras o servicios que se contraten" (Ley 9/2017 de Contratos del Sector Público, 2017, Capítulo 1, Artículo 99).

<u>Definición de determinadas prescripciones técnicas.</u>

Se destaca en este apartado que entiende la LCSP por algunos conceptos, dentro de los contratos de obra, que cabe resaltar para la presente investigación.

- Prescripción o especificación técnica: son especificaciones que definen las características requeridas para un material, producto, suministro, procedimiento de aseguramiento de calidad, actividades, reglas de elaboración del proyecto, entre otras, que permiten caracterizarlos de manera que respondan a la utilización a los que se destine.
- Norma: Corresponde a una especificación técnica aprobada por un organismo de normalización reconocido para una aplicación repetida o continuada cuyo cumplimiento no sea obligatorio. Puede estar incluida dentro de una norma internacional, europea o nacional.

Con respecto al medio ambiente, a la hora de definir las prescripciones técnicas, se detalla en el artículo 126, que cuando el objeto del contrato afecte o pueda afectar al medio

ambiente, las prescripciones técnicas se definirán aplicando criterios de sostenibilidad y protección ambiental, de acuerdo con los principios regulados en los artículos 3 y 4 de la Ley 16/2002, de 1 de julio, de Prevención y Control Integrados de la Contaminación.

Se destaca con respecto a la posibilidad de determinar una procedencia o fabricación determinada de productos que, "Salvo que lo justifique el objeto del contrato, las prescripciones técnicas no harán referencia a una fabricación o una procedencia determinada, o a un procedimiento concreto que caracterice a los productos o servicios ofrecidos por un empresario determinado, o a marcas, patentes o tipos, o a un origen o a una producción determinados, con la finalidad de favorecer o descartar ciertas empresas o ciertos productos." (Ley 9/2017 de Contratos del Sector Público, 2017, Capítulo 2, Artículo 126).

Etiquetas.

La LCSP entiende por "etiqueta" a cualquier documento o acreditación que confirme que las obras, productos, servicios, procesos o procedimientos de que se trate cumplen determinados requisitos. Son utilizadas como prescripción técnica, criterio de adjudicación o condiciones de ejecución para aquellas obras con características específicas de tipo medioambiental, social u otro.

Según lo establece el artículo 127 de la LCSP, los requisitos para poder incluir etiquetas dentro de alguno de estos requisitos del contrato son:

- Que los requisitos exigidos para la obtención de la etiqueta se refieran únicamente a criterios vinculados al objeto del contrato y sean adecuados para definir las características de las obras, los suministros o los servicios que constituyan dicho objeto.
- Que los requisitos exigidos para la obtención de la etiqueta se basen en criterios verificables objetivamente y que no resulten discriminatorios.
- Que las etiquetas se adopten con arreglo a un procedimiento abierto y transparente en el que puedan participar todas las partes concernidas, tales como organismos gubernamentales, los consumidores, los interlocutores sociales, los fabricantes, los distribuidores y las organizaciones no gubernamentales.
- Que las etiquetas sean accesibles a todas las partes interesadas.
- Que los requisitos exigidos para la obtención de la etiqueta hayan sido fijados por un tercero sobre el cual el empresario no pueda ejercer una influencia decisiva.
- Que las referencias a las etiquetas no restrinjan la innovación.

Procedimiento de adjudicación.

Con respecto a la adjudicación de los contratos de las Administraciones Públicas de interés para esta investigación, se indica que la adjudicación se realizará, ordinariamente utilizando una pluralidad de criterios de adjudicación basados en el principio de mejor relación calidad-precio, y utilizando el procedimiento abierto o el procedimiento restringido.

Se deberán respetar los principios de igualdad, transparencia y libre competencia, en donde se especifica, como medidas a destacar, que los órganos de contratación darán a los licitadores y candidatos un tratamiento igualitario y no discriminatorio y ajustarán su actuación a los principios de transparencia y proporcionalidad.

Admisibilidad de variantes.

En lo que respecta a la presente investigación es oportuno destacar las condiciones que se presentan en el artículo 142 con respecto a la admisibilidad de variantes. Se admitirán variantes cuando en la adjudicación hayan de tenerse en cuenta criterios distintos del precio, el órgano de contratación podrá tomar en consideración las variantes que ofrezcan los licitadores, siempre que las variantes se prevean en los pliegos. Se considerará que se cumple este requisito cuando se expresen los requisitos mínimos, modalidades, y características de estas, así como su necesaria vinculación con el objeto del contrato.

Además, se expresa que la posibilidad de ofrecer variantes será indicada en el anuncio de la licitación del contrato precisando sobre qué elementos y en qué condiciones queda autorizada su presentación.

Requisitos y clases de criterios de adjudicación del contrato.

Para la adjudicación de los contratos se utilizarán, según el artículo 145, una pluralidad de criterios de adjudicación que brinden la mejor relación calidad-precio. Se destaca otro criterio mencionado de interés en la investigación, el cual establece que se puede realizar el cálculo del coste del ciclo de vida con arreglo al artículo 148 de la presente ley en donde define y establece la metodología de cálculo para dicha metodología.

Con respecto a criterios medioambientales, se destacan la reducción del nivel de emisión de gases de efecto invernadero; al empleo de medidas de ahorro y eficiencia energética y a la utilización de energía procedentes de fuentes renovables durante la ejecución del contrato; y al mantenimiento o mejora de los recursos naturales que puedan verse afectados por la ejecución del contrato.

A la hora de cuantificar los criterios cualitativos, se establece que deberán ir acompañados de un criterio relacionado con los costes que podrá estar asociado al precio, o basado en la rentabilidad en caso de estar considerado el coste de ciclo de vida.

Para tener en cuenta múltiples criterios de adjudicación, se debe enmarcar la contratación en contratos que cumplan ciertos requisitos. Para los criterios ambientales este requisito establece que, contratos cuya ejecución pueda tener un impacto significativo en el medio ambiente, en cuya adjudicación se valorarán condiciones ambientales mensurables, tales como el menor impacto ambiental, el ahorro y el uso eficiente del agua y la energía y de los materiales, el coste ambiental del ciclo de vida, los procedimientos y métodos de producción ecológicos, la generación y gestión de residuos o el uso de materiales reciclados o reutilizados o de materiales ecológicos.

Los principales requisitos que debe cumplir un criterio de adjudicación incluyen:

- Estar vinculado al objeto del contrato.
- Formulado de manera objetivo y respetando los principios de igualdad.
- Garantizar la posibilidad de que las ofertas sean evaluadas en condiciones de competencia efectiva.

Cuando los órganos de contratación evalúen los costes mediante un planteamiento basado en el cálculo del coste del ciclo de vida, indicaran en los pliegos el método que se utilizará para determinar los costes de ciclo de vida. En el caso de externalidades medioambientales deberá cumplir con las siguientes condiciones:

- Estar basado en criterios verificables objetivamente y no discriminatorios.
- Ser accesible para todas las partes interesadas.
- La información necesaria debe poder ser facilitada con un esfuerzo razonable por parte de las empresas.

Dentro de lo que establece la LCSP se realizara la propuesta planteada en la presente investigación, analizando de esta manera que las alternativas planteadas no se contradigan con la normativa vigente y sean realmente ejecutables.

2.2.2 Estrategia España circular 2030

La Estrategia Española de Economía Circular (EEEC) se alinea con los objetivos de los dos planes de acción de economía circular de la Unión Europea, "Cerrar el círculo: un plan de acción de la UE para la economía circular" de 2015 y "Un nuevo Plan de Acción de Economía Circular para una Europa más limpia y competitiva" de 2020, además de con el Pacto Verde Europeo y la Agenda 2030 para el desarrollo sostenible.

Los principales objetivos que tiene esta estrategia son:

- Reducir en un 30% el consumo nacional de materiales, en relación con el PIB, tomando como referencia el año 2010.
- Reducir la generación de residuos un 15% respecto de lo generado en 2010.
- Reducir a la generación de residuos de alimentos en toda cadena alimentaria.
- Incrementar la reutilización.
- Mejorar en un 10% la eficiencia en el uso del agua.
- Reducir la emisión de gases de efecto invernadero por debajo de los 10 millones de toneladas de CO2 equivalente.

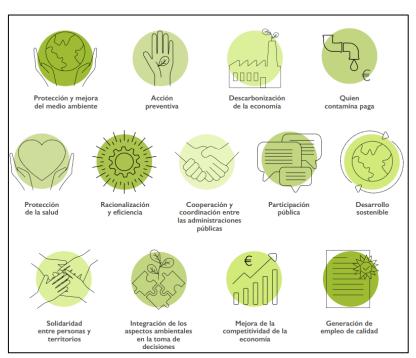
En el documento se indica que el seguimiento y evaluación de la Estrategia se realizará a través de un elenco de indicadores que coincidirán con los propuestos a nivel europeo, a los que se añaden las emisiones de gases de efecto invernadero vinculadas al ámbito de los residuos, por la relevancia de la Estrategia para alcanzar los objetivos de descarbonización.

Huella ecológica de la economía española.

La huella ecológica de España es un indicador de sostenibilidad ambiental que engloba el conjunto de impactos que se generan sobre el medio ambiente medido en superficie necesaria para producir los recursos consumidos y absorber los residuos generados por habitante. Según la Global Footprint Network, la huella ecológica por habitante en España se encuentra en el puesto 58 del mundo en huella ecológica por habitante. En términos de huella ecológica global, España se encuentra en el nivel 20 y produce menos impactos ambientales que países como Australia, Alemania, Francia y Reino Unido, lo que es coherente con los distintos grados de desarrollo económico.

Por otro lado, la biocapacidad se define como la superficie productiva disponible de un país. Cuando la huella ecológica, entendida como demanda de recursos naturales, supera la biocapacidad, se incurre en déficit ecológico, lo cual significa que un país consume más recursos de los que dispone, incurriendo, en un desarrollo no sostenible. España necesita 2,6 veces más superficie de la que dispone para mantener el nivel de vida y población actuales según la información provista por la Subdirección General de Economía Circular.

Se plantea como fundamental para poder iniciar una estrategia de economía circular aprovechar uno de los pilares más importantes del consumo, la contratación pública. Debido al gran volumen de gasto que tienen las distintas administraciones publicas dentro del mercado, se debe fomentar acciones desde allí hacia una contratación pública ecológica. En esta línea, el Nuevo Plan de Acción de la UE prevé hacer obligatorio un mínimo de criterios y objetivos a través de la normativa aplicable en cada sector.


Según lo indicado en el Acuerdo de París, y lo cual es ratificado en esa Estrategia, la necesidad de reducir las emisiones es primordial. Bajo las acciones de la economía circular de manera implícita se traducen en disminuir considerablemente estos valores de emisiones de GEI a partir del reaprovechamiento y reducción de producción. Es por ello, que se debe focalizar el interés cuantificando e identificando como a nivel de ciclo de vida aplicar los conceptos de esta estrategia puede funcionar como una herramienta fundamental para cumplimentar los objetivos de reducción.

Dentro de los principios fundamentales en los que se centra la Estrategia de Economía Circular, detallados en la *Figura 2*¡Error! No se encuentra el origen de la referencia., se destacan para el interés de esta investigación:

- Descarbonización de la economía.
- Cooperación y coordinación entre las administraciones públicas.
- Desarrollo sostenible.
- Integración de los aspectos ambientales en la toma de decisiones.

Figura 2

Principios de la Estrategia de Economía Circular. Fuente: Subdirección General de Economía Circular (2020).

Sectores prioritarios de actuación.

Mas allá de que los objetivos que se plantean en la Estrategia aspiren a funcionar de manera transversal y acaparando todos los sectores económicos, en el documento se centra

puntualmente en seis sectores, con el objetivo de poder dar seguimiento y planificar aquellos que considera fundamentales en el desarrollo. Entre ellos se encuentra:

- Construcción y demolición.
- Agroalimentario, pesquero y forestal.
- Industrial.
- Bienes de consumo.
- Turismo.
- Textil y confección.

Es de interés para la presente investigación principalmente el sector de la construcción. En lo que respecta a emisiones se destaca que el 35% de las emisiones son pertenecientes a la construcción, así como también tanto un 40% de los residuos generados.

Una gestión adecuada de los residuos de la construcción y demolición, que incluya una separación y manipulación correcta de los residuos peligrosos, puede suponer grandes beneficios en cuanto a la sostenibilidad y la calidad de vida. Asimismo, también puede reportar grandes beneficios para la industria de la construcción y el reciclaje, ya que puede incrementarse la oferta de materiales reciclados de construcción y demolición.

Mas allá de los problemas asociados al uso de recursos y residuos, la eficiencia energética cumple un rol fundamental a la hora de evaluar la sostenibilidad. La planificación de los sectores urbanos, rehabilitación de infraestructuras ineficientes y el estudio en general del impacto ambiental de la infraestructura debe ser comprendida como un fenómeno conjunto que considere al ciclo de vida completo.

2.2.3 Plan de contratación pública ecológica.

El Plan de Contratación Pública Ecológica de la Administración General del Estado responde a la necesidad de incorporar criterios ecológicos en la contratación pública abarcando a todas las Administraciones Públicas.

Dentro de sus principales objetivos se encuentra:

- Promover la adquisición por la administración pública de bienes, obras y servicios con el menor impacto medioambiental.
- Servir como instrumento de impulso de la Estrategia Española de Economía circular.
- Garantizar un uso más racional y económico de los fondos públicos.
- Promover cláusulas medioambientales en la contratación pública.
- Dar publicidad sobre las posibilidades que ofrece el marco jurídico de la contratación pública ecológica.

Determina un grupo de 20 bienes, obras y servicios prioritarios, de acuerdo con los criterios de contratación ecológica de la UE, entre los que destacan para esta investigación:

- La construcción y gestión de edificios
- La construcción y el mantenimiento de carreteras
- Suministro de electricidad
- Sistemas de climatización y el transporte.

Recoge una serie de criterios medioambientales generales de contratación, de carácter voluntario, que podrán ser incorporados a los pliegos de contratación como criterios de selección, de adjudicación, especificaciones técnicas y condiciones especiales de ejecución.

Se destacan a continuación ciertos apartados de interés del plan acerca de los temas pertinentes a la investigación.

En el apartado 6 referente a diseño, construcción y gestión de edificios, se establece como puntuable como criterio de adjudicación o bien condición especial de adjudicación a los siguientes puntos asociados a la eficiencia energético: estudio de huella de carbono del edificio, tanto en su fase de construcción como de uso, utilizando herramientas propias o las disponibles públicamente, facilitando información sobre las distintas opciones barajadas y proponiendo de manera motivada una opción final.

Con respecto al apartado 7 de diseño, construcción y mantenimiento de carreteras, se destaca de igual manera la posibilidad de puntuar a partir de criterios de estudio de emisiones, tal y como lo indicado en el artículo anterior.

Huella de carbono.

Se detalla un apartado especialmente a la emisión de dióxido de carbono, en donde se establece que los bienes, servicios y productos adquiridos por la administración pública suponen un importante impacto sobre el calentamiento global. No solo es de suma importancia de adquirir productos de baja emisión sino también la capacidad de evaluar de manera precisa y comparable los componentes que integran las adquisiciones.

Ante esto, se establece la necesidad de incluir en el grupo analizado de 20 bienes, obras y servicios prioritarios de este Plan un criterio de adjudicación que valore la inscripción al Registro de huella de carbono, compensación y proyectos de absorción del Real Decreto 163/2014, de 14 de marzo. La idea planteada establece un aumento gradual en el porcentaje de contrataciones que deba estar incluida.

2.2.4 Registro de Huella de Carbono (RHC)

El Registro de Huella de Carbono, creado por el Real Decreto 163/2014, de 14 de marzo, consiste según lo indicado en su definición en un registro que recoge los esfuerzos de las organizaciones españolas en el cálculo y reducción de las emisiones de gases de efecto invernadero que genera su actividad. A su vez, les facilita la posibilidad de compensar toda o parte de su huella de carbono, mediante una serie de proyectos forestales ubicados en territorio nacional. Estos proyectos, integran numerosos beneficios ambientales y sociales, entre los que se encuentra la absorción de dióxido de carbono de la atmósfera, también conocida como secuestro de carbono.

Todas las huellas inscritas vienen acompañadas obligatoriamente por un plan de reducción, y son chequeadas de forma previa a su registro. Cuando se reconoce que una organización ha reducido su huella, es debido a que cumple con un criterio estricto que demuestra una tendencia decreciente de emisiones.

Para reconocer una compensación en el marco del Registro, es necesario que las toneladas de CO2 adquiridas provengan de proyectos inscritos en éste.

A efectos de este real decreto se entenderá por:

- Huella de carbono de organización: la totalidad de gases de efecto invernadero (GEI) provenientes por efecto directo o indirecto de la actividad de dicha organización.
- Absorciones de dióxido de carbono (CO2): el secuestro de CO2 de la atmósfera por parte de sumideros biológicos.
- Sumideros biológicos: los formados por biomasa viva como depósito de CO2, excluyendo de la contabilización la materia orgánica muerta.
- Compensación: la adquisición de una determinada cantidad de CO2 equivalente procedente de las absorciones de CO2 generadas en los proyectos inscritos o procedente de proyectos de reducción de emisiones de gases de efecto invernadero realizadas por un tercero y reconocidas por el Ministerio de Agricultura, Alimentación y Medio Ambiente.

La inscripción de una huella de carbono y su compromiso de reducción se rige por los siguientes criterios básicos:

- El tipo de huella de carbono a inscribir corresponde a la huella de carbono de organización.
- El alcance mínimo necesario para la inscripción corresponde a las emisiones de gases de efecto invernadero de alcance 1 y 2. En todo caso, se anima a calcular las emisiones del alcance 3; éstas también pueden ser inscritas.
- Todas las emisiones correspondientes al alcance 3 y las de alcance 1 y 2 en el caso de organizaciones no PYMES o PYMES que cuenten con emisiones de proceso deberán estar verificadas por un tercero independiente.
- Su organización debe disponer de un plan de reducción de la huella de carbono.

El registro está dividido en tres secciones tal y como se esquematiza en la Figura 3:

- Una sección de huella de carbono y de compromisos de reducción de emisiones de gases de efecto invernadero.
- Una sección de proyectos de absorción de CO2.
- Una sección de compensación de huella de carbono.

Figura 3

Secciones del RHC. Fuente: Ministerio para la transición ecológica y el reto demográfico (2014).

En la sección correspondiente a "Sección de huella de carbono y de compromisos de reducción de emisiones de gases de efecto invernadero" se inscribirán tanto las huellas de carbono de organización como los compromisos de reducción de las emisiones de GEI asociadas. Deberá incluir la información del titular, actividad o proceso productivo asociado con un indicador cuantitativo de dicha actividad, información relativa a la huella de carbono en un periodo de doce meses junto con las limitaciones para su cálculo, referencia al plan de reducción de emisiones e información respecto a la compensación indicando cantidad compensada, tipo de compensación y proyecto con el que se realiza.

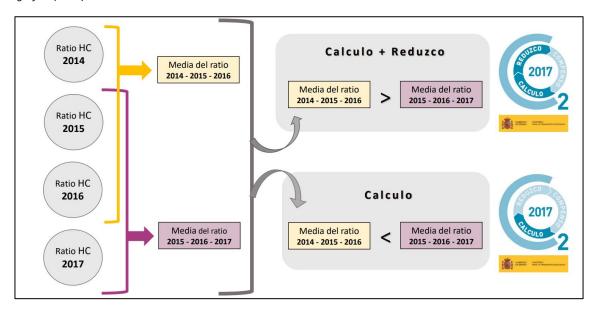
En lo que respecta la consideración de la huella de carbono en la contratación pública, en el decreto correspondiente al Registro de la Huella de Carbono se menciona la vinculación de este registro con la posibilidad de ser incluido como parte de la LCSP en aquellos contratos donde el órgano de contratación realice consideraciones medioambientales relativas a la huella de carbono, acreditando mediante la certificación brindada por este registro como valida.

Se inscribirá una reducción de la huella de carbono cuando pueda comprobarse una tendencia descendente de las emisiones relativas al nivel de actividad de la organización.

Para ello, se establecen los siguientes criterios:

- La reducción para un año determinado implica la inscripción de la huella de dicho año y los tres anteriores.
- Se analizan las emisiones en relación con un ratio, resultado de dividir las emisiones entre el índice de actividad definido por la organización.
- La media de los tres últimos años de este ratio debe ser inferior a la media del trienio anterior.

En el esquema de la *Figura 4* se presenta una explicación del criterio de reducción, tomando como ejemplo la siguiente situación: si la media del ratio de los años 2014-2015-2016 es mayor



a la media del ratio de los años 2015-2016-2017 se obtiene el sello Calculo + Reduzco 2017, en caso contrario, únicamente se obtiene el sello Calculo 2017.

Figura 4

Esquema de cálculo de reducción de Huella de Carbono. Fuente: Ministerio para la transición ecológica y el reto demográfico (2020).

3 MARCO TEORICO

3.1 Huella de carbono

Se define según el Ministerio para la Transición Ecológica y el Reto Demográfico como huella de carbono a la totalidad de gases de efecto invernadero emitidos por efecto directo o indirecto por un individuo, organización, evento o producto.

A fines de la presente investigación es importante diferenciar dos conceptos:

- Huella de carbono de una organización: mide la totalidad de GEI emitidos por efecto directo o indirecto provenientes del desarrollo de la actividad de dicha organización.
- Huella de carbono de producto: mide los GEI emitidos durante todo el ciclo de vida de un producto, desde la extracción de las materias primas, pasando por el procesado y fabricación y distribución, hasta la etapa de uso y final de la vida útil (depósito, reutilización o reciclado).

Las emisiones asociadas a una organización se pueden clasificar como emisiones directas e indirectas, definidas en la guía para el cálculo de le huella de carbono y para la elaboración de un plan de mejora de una organización del Ministerio para la Transición Ecológica y el Reto demográfico como:

- Emisiones directas: son emisiones de fuentes que son propiedad de o están controladas por la organización. De forma simplificada, podrían entenderse como las emisiones liberadas in situ donde se produce la actividad, por ejemplo, las emisiones debidas al sistema de calefacción si este se basa en la quema de combustibles fósiles.
- Emisiones indirectas: son emisiones consecuencia de las actividades de la organización, pero que ocurren en fuentes que son propiedad de o están controladas por otra organización. Un ejemplo de emisión indirecta es la de la electricidad consumida por una organización, cuyas emisiones se han producido donde se generó dicha electricidad.

Al referirse a huella de carbono de una organización y a las fuentes emisoras que se analizan en su cálculo, se utiliza al término alcance, clasificándolo en alcance 1, 2 y 3.

- Alcance 1: emisiones directas de GEI. Por ejemplo, emisiones provenientes de la combustión en calderas, hornos, vehículos, etc., que son propiedad de o están controladas por la entidad en cuestión. También incluye las emisiones fugitivas (p.ej. fugas de aire acondicionado, fugas de CH4 de conductos, etc.).
- Alcance 2: emisiones indirectas de GEI asociadas a la generación de electricidad adquirida y consumida por la organización.
- Alcance 3: otras emisiones indirectas. Algunos ejemplos de actividades de alcance 3 son la extracción y producción de materiales que adquiere la organización, los viajes de trabajo a través de medios externos, el transporte de materias primas, de combustibles y de productos (por ejemplo, actividades logísticas) realizados por terceros o la utilización de productos o servicios ofrecidos por otros.

Se presenta en la *Figura 5* un ejemplo de la huella de carbono de una organización a lo largo de su cadena de valor, detallando el aporte de elementos pertenecientes a los diferentes alcances.

Figura 5

Ejemplo de fuentes de emisiones de GEI de una organización. Fuente: GHG Protocol (s.f.).

De una manera simplificada, se puede calcular a la huella de carbono como:

Huella de carbono = Dato Actividad x Factor Emisión; donde:

- El dato de actividad es el parámetro que define el grado o nivel de la actividad generadora de las emisiones de GEI. Por ejemplo, cantidad de gas natural utilizado en la calefacción.
- El factor de emisión supone la cantidad de GEI emitidos por cada unidad del parámetro dato de actividad. Estos factores varían en función de la actividad que se trate.

El término CO2 equivalente (CO2 eq), cuya unidad es utilizada para exponer los resultados en cuanto a emisiones de GEI, incluye a los gases que se indican en el Protocolo de Kioto como máximos responsables del efecto invernadero que contribuyen al calentamiento global, los denominados gases de efecto invernadero (GEI), son:

- Dióxido de carbono (CO2).
- Metano (CH4).
- Óxido de nitrógeno (N2O).
- Hidrofluorocarbonos (HFCs).
- Perfluorocarbonos (PFCs).
- Hexafluoruro de azufre (SF6).
- Trifluoruro de nitrógeno (NF3).

Sin embargo, el CO2 es el GEI que influye en mayor medida al calentamiento del planeta, y es por ello por lo que las emisiones de GEI se miden en función de este gas. La t CO2eq es la unidad universal de medida que indica el potencial de calentamiento atmosférico o potencial de calentamiento global (PCG)2 de cada uno de estos GEI.

3.2 Análisis del ciclo de vida

El análisis del ciclo de vida (ACV) es una herramienta metodológica utilizada para el estudio del impacto ambiental de una materia prima, producto o actividad a lo largo de toda su vida útil.

Implica identificar y cuantificar los principales impactos ambientales a lo largo de la extracción de materias primas, la generación de la energía necesaria para la producción, la fabricación en sí, el almacenamiento, el transporte, la distribución y la gestión de los residuos cuando el producto deja de ser útil.

El Análisis de Ciclo de Vida se compone de varias fases:

- Definición de objetivos y alcance: en esta etapa, se establecen los objetivos del estudio y se determina qué partes del ciclo de vida se incluirán en el análisis.
- Inventario del Ciclo de Vida (ICV): se recopilan datos detallados sobre las entradas y salidas de materiales y energía en todas las etapas del ciclo de vida del producto o servicio.
- Evaluación de Impacto del Ciclo de Vida (EICV): los datos del inventario se utilizan para evaluar los impactos ambientales potenciales, como las emisiones de gases de efecto invernadero, la acidificación, el agotamiento de recursos, entre otros.
- Interpretación: los resultados se interpretan y se presentan para informar la toma de decisiones y la mejora continua.

La relación entre el Análisis del Ciclo de Vida y la huella de carbono está en que la huella de carbono es un aspecto específico del ACV, centrado en las emisiones de GEI durante todo el ciclo de vida.

Las etapas que componen el Ciclo de Vida se centran en Producto, Construcción, Uso y Fin de vida, tal y como se representa en la *Figura 6*.

Figura 6

Análisis de las etapas del Ciclo de Vida. Fuente: ITeC (s.f.).

Aunque las categorías exactas pueden variar según el contexto y la metodología específica utilizada, dentro de las etapas comunes del ciclo de vida encontramos:

- Extracción y Adquisición de Materias Primas: incluye la obtención de los recursos naturales necesarios para la producción del producto, como la extracción de minerales, la tala de árboles, etc.
- Producción: comprende todas las actividades necesarias para convertir las materias primas en productos finales. Esto puede incluir procesos industriales, fabricación y ensamblaje.
- Distribución y Transporte: implica el movimiento de los productos desde el lugar de producción hasta los puntos de venta o consumo.
- Uso: representa la fase durante la cual el consumidor utiliza el producto o servicio. En esta etapa, se pueden producir impactos ambientales relacionados con el consumo de energía, mantenimiento y posibles emisiones durante la operación.
- Mantenimiento y Reparación: involucra las actividades destinadas a extender la vida útil del producto, como el mantenimiento regular y las reparaciones.
- Fin de Vida Útil: comprende el manejo de los productos al final de su vida útil, ya sea a través de la reutilización, el reciclaje, la incineración controlada o el vertido en vertederos.

Es de suma importancia evaluar ofertas de proyectos de construcción no solo desde el punto de vista del precio, sino también considerando el ciclo de vida por varias razones:

- Costos a lo largo del ciclo de vida: la evaluación del ciclo de vida permite considerar no solo los costos iniciales de construcción, sino también los costos operativos, de mantenimiento y de demolición. Puede resultar en una perspectiva más completa de los costos totales durante todo el ciclo de vida del proyecto.
- Sostenibilidad ambiental: la evaluación del ciclo de vida permite identificar y cuantificar los impactos ambientales asociados con cada etapa del proyecto. Esto es esencial para promover la sostenibilidad y minimizar los efectos negativos en el medio ambiente a lo largo del tiempo.

- Eficiencia energética: En sintonía con los dos puntos anteriores, la eficiencia energética de los edificios o infraestructuras es una decisión que requiere un análisis en el tiempo, en donde optimizar el consumo de energía al analizarlo acumulado durante la vida útil del proyecto, muestra valores tanto económicos como ambientales que condicionan la elección de la alternativa.
- Durabilidad y calidad a largo plazo: la evaluación del ciclo de vida favorece la selección de materiales y métodos de construcción que garanticen durabilidad y calidad a largo plazo. Esto puede reducir la necesidad de reparaciones frecuentes o de reemplazo temprano, disminuyendo los costos de mantenimiento y las interrupciones del servicio que esta obra brinda.
- Requisitos regulatorios y certificaciones: Cada vez más, los requisitos regulatorios y las certificaciones se centran en aspectos relacionados con la sostenibilidad y el ciclo de vida. Evaluar estos aspectos desde el principio puede facilitar el cumplimiento de estándares y normativas.
- Valor para el cliente: al considerar el ciclo de vida, se puede ofrecer un mayor valor al cliente a largo plazo. Los proyectos que minimizan los costos operativos y demuestran un menor impacto ambiental pueden ser más atractivos y competitivos en el mercado.
- Reputación y responsabilidad corporativa: la evaluación del ciclo de vida puede contribuir a la imagen de las empresas. Al adoptar prácticas sostenibles y consideran el impacto ambiental a lo largo del ciclo de vida demuestran un compromiso con la responsabilidad social y ambiental.

3.3 Propuestas en otros países

Para establecer los criterios sobre los que se desarrolla la propuesta planteada en esta investigación, se realizará un estudio de propuestas similares en países de la Unión Europa con mayor avance en la materia. Dentro de las publicaciones e investigaciones analizadas se destacarán en este informe aquellas de mayor relevancia y aporte en lo que refiere al resultado de esta investigación.

3.3.1 Estableciendo los criterios de la huella de carbono para proyectos de construcción pública

En este artículo se describe un método para controlar el crecimiento de la huella de carbono de los edificios durante las etapas de diseño y contratación de proyectos de construcción.

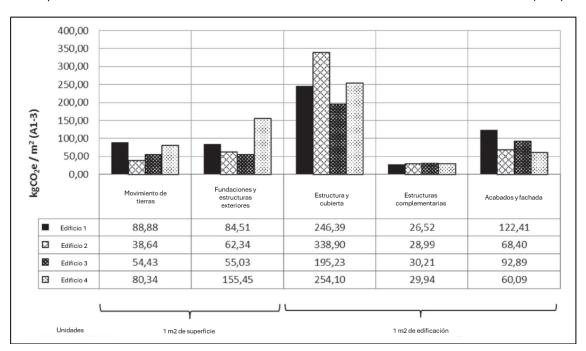
Como resultado, se proponen nuevos indicadores de eficiencia y economía de carbono de los edificios. Esto se obtuvo a partir de un concurso arquitectónico para un edificio público. El objetivo principal se centró en vincular a la sostenibilidad ambiental y económica de los edificios.

Las necesidades enmarcadas en este documento se centran en la necesidad de considerar el ciclo de vida completo de los proyectos, entendiendo a su cálculo con una estimación que debe ajustarse lo más posible a la realidad tanto en los valores de ejecución del proyecto como su posterior consumo en la fase de explotación. Para precisar esta estimación se plantea la necesidad de generar ambientes colaborativos entre los actores implicados en los proyectos.

Con respecto al GPP, destaca limitaciones en distintos países, como Finlandia, donde los criterios ambientales exigidos en las contrataciones no alcanzaban altos rendimientos por la falta de claridad en el nivel de exigencia solicitada. Se establece una necesidad de tener criterios claros

y practicables por parte del GPP para poder aumentar el grado de involucramiento en las contrataciones.

Para la temática del análisis del ciclo de vida se encontraron restricciones en cuanto a los plazos de evaluación de los proyectos, siendo este un impedimento a la hora de ejecutar las contrataciones por traducirse en procesos demasiado extensos, que, además, involucraron consultores externos por seguir siendo considerado una especialidad.


Los resultados de esta investigación surgen a partir de un concurso de diseño arquitectónico donde los puntos más relevantes se centran en los siguientes concetos:

- Se deben fijar valores de referencia para poder agilizar la manera de cuantificar y estimar condiciones de base de los proyectos, es decir estructuras típicas y generales de emisiones por unidad de medida, principalmente en las fases preliminares del diseño.
- Una vez analizado el diseño, se deben identificar y focalizar los esfuerzos en aquellos aspectos del proyecto con posibilidad de mejora o modificación.

En el concurso realizado se evaluaron los rendimientos ambientales correspondientes a 5 áreas de trabajo del proyecto entre las que se encuentran movimiento de tierras, fundaciones y estructura, fachada y cubierta, estructuras complementarias y revestimientos. En estas categorías se muestran los resultados obtenidos por cada una de las propuestas en la *Figura 7*.

Figura 7

Valores por unidad de medida de emisiones de cada alternativa del caso de estudio. Fuente: Matti Kuittinen (2015).

Se establecen dos coeficientes a partir de los cuales se evalúan los rendimientos ambientales y económicos para poder comparar los proyectos. Uno es denominado "carbon efficiency" y por otro lado se encuentra "carbon economy".

CARBON EFFICIENCY= (CxE/1000)

- C= Emisiones en fase de construcción.
- E= Energía requerida en fase de operación.

Este factor busca asegurar que no solo se modifiquen las emisiones en la etapa de construcción, sino que también se verifique que produce en la etapa de operación del edificio.

CARBON ECONOMY= (CxEx\$) x10-7

- C= Emisiones en fase de construcción.
- E= Energía requerida en fase de operación.
- \$= Coste en fase de construcción.

A partir de estos coeficientes se compararon las propuestas de los 4 participantes y se seleccionó la más ventajosa. Se presentan los resultado en la *Figura 8*.

Figura 8Resultados de concurso según indicadores de Carbon efficiency y Carbon economy. Fuente: Matti Kuittinen (2015).

	Building 1	Building 2	Building 3	Building 4
Gross building area m ²	1288,00	10546,00	498,50	1475,00
Carbon footprint (above ground, A1-3) kgCO ₂ e/m ²	395,32	436,29	317,37	348,79
Operative energy use kWh/m²/a	168,00	119,00	242,00	94,00
Construction cost EUR/m ²	3504,84	2996,21	3011,38	4152,08
Carbon efficiency	66,41	51,92	76,80	32,79
Carbon economy	23,28	15,56	23,13	13,61

Cabe destacar la importancia mencionada en el concurso analizado de establecer pautas claras de aquellos puntos donde se deben evaluar los resultados de estos factores, en función de estimar y asumir aquellas etapas del proyecto con potencial de mejora y significancia para el resultado. La necesidad de brindar agilidad al proceso de selección de ofertas es un factor fundamental para poder adaptar las necesidades ambientales con los plazos y recursos limitados presentes en el proceso tanto de presentación como de evaluación de ofertas.

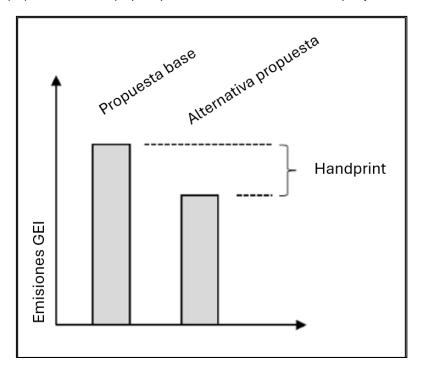
3.3.2 Reducción de la huella de carbono de edificaciones: Nuevos estándares y evaluaciones finlandesas

Los países nórdicos están trabajando hacia la neutralidad de carbono desde antes de los objetivos de la Unión Europea. Finlandia tiene como objetivo lograr la neutralidad de carbono para el año 2035 y está desarrollando un conjunto de políticas, que incluyen la construcción de bajo carbono. El nuevo enfoque incluye límites de carbono normativos para diferentes tipos de edificaciones antes de 2025. El Ministerio de Medio Ambiente de Finlandia ha desarrollado un método de evaluación y creará una base de datos genérica de emisiones. Esta base de datos abarcará todos los principales tipos de productos y materiales, fuentes de energía, modos de transporte, así como otros procesos principales como la gestión de residuos.

Además, se han desarrollado criterios para la adquisición verde pública desde la perspectiva de reducir los impactos climáticos de los edificios, incorporando el potencial de calentamiento global y los beneficios climáticos.

Se plantean en esta investigación limitantes desde cual es la manera más precisa y eficiente de analizar el impacto de los proyectos desde el ciclo de vida y cuáles son las necesidades para

estimar los valores ambientales, principalmente en la base de datos necesaria para normalizar la metodología de cálculo.


Handprint.

El concepto de handprint se refiere a las acciones positivas y sostenibles que una persona, organización o proyecto realiza para contrarrestar o compensar su huella ecológica o impacto negativo en el medio ambiente. Mientras que la huella de carbono se centra en las emisiones de gases de efecto invernadero y otros impactos ambientales negativos, el handprint se enfoca en las contribuciones positivas y las medidas que buscan mejorar la sostenibilidad y generar beneficios para el medio ambiente.

El término handprint es conceptualmente opuesto a huella (footprint) y busca resaltar las acciones que amplían de manera positiva el impacto ambiental neto de una entidad. Se plantea en el artículo una medida del handprint como la diferencia entre las emisiones de gases de efecto invernadero de una propuesta base con la de una solución alternativa optimizada desde el punto de vista ambiental, tal y como se representa en la ¡Error! No se encuentra el origen de la r eferencia.

Figura 9

Handprint entre propuesta base de un proyecto y alternativa. Fuente: Matti Kuittinen y Tarja Häkkinen (2020).

Dentro de las necesidades planteadas, se establece la de una base de datos genérica, que funcione de forma gratuita, transparente y con una modalidad de uso simple y estandarizada. Desde el Ministerio de Medio Ambiente de Finlandia se plantea la creación de esta base de datos única. Para ello, se busca que la información que se maneje se genérica, pudiendo a partir de ella establecer la línea base de la solución y con la que se compararan las alternativas, para luego a la hora de la ejecución ajustar los valores con información propia de los proveedores y sus productos particulares. Las emisiones genéricas al comparar alternativas y obtener permisos

asegurarían la agilidad en el proceso, siendo la etapa de revisión final, donde se miden los desempeños, en la que se ajuste a emisiones más específicas.

Se plantea que el principal problema no es la falta de información, ya que el mercado de información ambiental es abundante, el problema es que dificulta su correcta recopilación y selección, con un mayor déficit al evaluar ítems correspondientes al montaje, desmontaje, construcción y gestión de residuos.

Al plantear la base de datos genérica, se debe considerar que la variedad de fuentes de información obliga a manejar datos transferibles entre las plataformas, para ello se debe definir un esquema que normalice la estructura de la información y responsabilidades claras a proveedores sobre el tipo de información que deben brindar de sus productos.

3.3.3 Avanzando en la Contratación Pública Verde y la Contratación Baja en Carbono en Europa: perspectivas

En 2021, el Instituto para el Desarrollo Sostenible (IISD) inició una colaboración con SKAO (financiada por la Fundación IKEA) para ampliar la adopción de CO2 Performance Ladder en Europa. El objetivo del proyecto es identificar proyectos piloto en países europeos para demostrar la eficacia de una herramienta que trabaje para avanzar en la GPP y en los objetivos de reducción de carbono. El primer paso hacia ese objetivo fue realizar un análisis de la situación de la contratación pública verde y las posibilidades de la escala en 28 países europeos a través de investigaciones.

El CO2 Performance Ladder, explicado en este informe en el capítulo 2 (2.1.3.CO2 Performance Ladder), es un sistema de certificación y gestión de la sostenibilidad ambiental, enfocado en la reducción de emisiones de dióxido de carbono en las actividades empresariales y proyectos de construcción. Este enfoque fue desarrollado por la organización holandesa Stichting Klimaatvriendelijk Aanbesteden & Ondernemen (SKAO).

Las principales ventajas que se destacan en esta publicación al respecto de su uso son:

- Fácil de usar y bajos costos para comenzar.
- Herramienta en la cual la reducción de CO2 se premia en la adjudicación de la oferta.
- Requiere una acreditación de terceros lo que reduce la necesidad de autoridades para verificar que se cumplan las ofertas.
- Herramienta desarrollada utilizando la Directiva de Contratación de la Unión Europea.

La búsqueda principal de este artículo es la de comprender como a partir del poder que se puede ejercer desde la contratación, es posible estimular a la reducción estructural de emisiones en las empresas.

Esta herramienta planteada, asi como lo es en el contexto de estudio el Registro de la Huella de Carbono, es complementaria a las normativas y directrices de desarrollo planteadas por las normativas públicas, es decir trabajan en conjunto con por ejemplo el GPP.

Se mencionan dos principales usos de esta herramienta, como sistema de gestión de emisiones y como herramienta de contratación puntual. La certificación obtenida bajo el sistema de gestión permite a las empresas obtener información real sobre sus emisiones, sistematizar su control y

buscar oportunidad para reducirlas. La certificación obtenida consta de auditorías anuales que aseguran que se mantiene el compromiso adquirido.

En cuanto a beneficios para licitaciones, se plantea un concepto de descuentos ficticios en la presentación de la oferta en función del nivel de certificación de la empresa. El valor que se otorga a ese descuento sobre la oferta final presentada dependerá de la consideración que adopte la entidad licitante. Se plantea para un proyecto puntual ejemplificado en el documento, un descuento porcentual entre el 1-5% del precio de la oferta en función del nivel que pertenezca (nivel 1 corresponde al 1% y nivel 5 al 5%).

Se mencionan herramientas utilizadas con características u objetivos similares en países de Europa, destacando para el caso de España (donde se menciona a Barcelona como la ciudad más avanzada en la materia) al Registro de la Huella de Carbono. Entre algunos de los países mencionados destaca:

- Irlanda: Plan de acción nacional sobre ofertas verdes y Proyecto de Ley de economía circular.
- Reino Unido: Declaración de política de compras.
- Eslovenia: Core4Climate
- Polonia: Plan de acción de ciudades verdes y cambio climático.
- Noruega: Descarbonización completa de transporte y construcción.
- Alemania: Declaraciones de productos ambientales.
- Suecia: Herramientas de Ciclo de Vida.

En cuanto a la sección de la investigación dedicada al funcionamiento del GPP en distintos países de Europa, menciona especial a Berlín, Hamburgo, Bremen y Viena donde la aplicación del GPP es obligatoria (dentro de ciertos aspectos y condiciones).

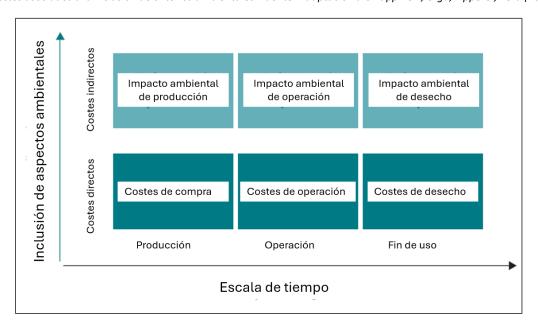
En la investigación se concluye que en la mayoría de los países hay una indicación aproximada de la inclusión del GPP como un porcentaje total de las adquisiciones gubernamentales con algún criterio medioambiental. Se destaca la necesidad de obtener información específica sobre los beneficios reales que se obtienen por su implementación para poder tener un control real del rendimiento ambiental obtenido por incluir criterios asociados al GPP.

Con respecto a las emisiones de CO2 se debe obtener información de cuantas emisiones se evitan a partir de incluir criterios ambientales, obtener indicadores específicos del rendimiento real de las contrataciones bajo GPP surge como una necesidad fundamental para llevar un seguimiento y trabajar con información que permita tomar medidas reales acordes al desempeño que tienen las contrataciones al establecer criterios de adjudicación asociadas a la optimización ambiental.

3.3.4 Utilizando la contratación pública como política de descarbonización: un vistazo a Alemania.

En esta publicación se analiza la postura de Alemania frente al uso de la contratación pública como una ventaja hacia la descarbonización de sus actividades productivas. En Alemania, las adquisiciones públicas ascienden al 15% por ciento del PIB, convirtiéndolo tanto en un fenómeno económico fundamental como en una actividad central del gobierno. Dado este impacto considerable, los gobiernos pueden utilizar sus decisiones de compra para perseguir objetivos políticos estratégicos, siendo la sostenibilidad uno de los principales.

La GPP describe procesos de adquisición con criterios ambientales en la convocatoria de ofertas y consideran consideraciones ambientales, como la eficiencia energética y el uso de materiales con bajo contenido de carbono en el proceso de adjudicación. Se mencionan, más allá de los proyectos de construcción de interés en esta investigación, algunos ejemplos de compras GPP dadas en Alemania a computadoras, muebles de oficina de madera sostenible, papel reciclado, servicios de limpieza con productos ecológicamente sostenibles, vehículos de baja emisión y electricidad de fuentes de energía renovable, etc.


Los principales problemas que se plantean en el uso de GPP y que frena a incluirlo como estrategia política en este artículo son:

- Percepción de que la inclusión de criterios medioambientales conduce a costes de adquisición más altos.
- Capacidad administrativa limitada, asociada además al punto anterior de costes, dado que ampliar la cantidad y modalidad de criterios a evaluar en una temática que se sigue considerando de especialidad en múltiples ambientes genera que a la hora de plantear esta estrategia de desarrollo sustentable no se confíe en la capacidad de afrontar los requisitos administrativos que la acompañan.

Se esquematiza en el artículo los costes asociados a lo largo del ciclo de vida del proyecto en la *Figura 10* estableciendo como costes directos a los comúnmente considerados en la perspectiva tradicional y destacando como costes indirectos al propio impacto ambiental de cada fase del proyecto.

Figura 10

Costes asociados a la inclusión de criterios ambientales. Fuente: Adaptación a Chiappinelli, Olga; Zipperer, Vera (2017).

Se establecen dos formas de incluir a los criterios medioambientales en las contrataciones, como requisito técnico y como criterio de adjudicación. Para el primer caso, en donde el carácter de cumplimiento es obligatorio para la contratación, se mencionan medidas como etiquetas de proveedores certificados, siempre y cuando esto no altere las barreras de las leyes de competitividad. Para el segundo caso, se destaca el cambio de enfoque desde ofertas analizadas

por precio más bajo a ofertas económicamente más ventajosas. Se presentas dos formas de evaluar los criterios ambientales como criterio de adjudicación:

- Pesos específicos, dando puntaje a partir de una media ponderada con el peso relativo de cada criterio considerado.
- Monetización de criterios no económicos, en este caso se mantiene la idea de precio más bajo, monetizando de manera ficticia a aquellos criterios que no se relacionen con lo económico.

Para lograr ampliar el uso de la GPP se indican algunas medidas que se llevan a cabo:

- Brindar capacitaciones sobre este tipo de contratación, tanto a quienes participan desde la oferta como las entidades contratantes.
- Dar facilidades de financiación para afrontar los costes incrementales, que se esperan que disminuyan a medida que la implementación de este sistema avance, que tengan las empresas para cambiar el enfoque de sus ofertas.
- Incentivos financieros por uso de GPP, es decir, no solo afrontar los costes adicionales sino también motivar más allá de la propia adjudicación de contrato a contrataciones que incluyan mayor cantidad de criterios.
- Consecuencias aplicadas al no uso de criterios de la GPP tanto a nivel de empresa como en ofertas de proyectos.

4 PROYECTO: "ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 MALILLA SUR"

Se utilizará el proyecto "ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 MALILLA SUR" para realizar el cálculo de emisiones de CO2. Este proyecto perteneciente al ayuntamiento de Valencia cuenta con un presupuesto de ejecución de TRES MILLONES NOVECIENTOS NOVENTA Y CUATRO MIL NOVECIENTOS VEINTIDÓS EUROS CON OCHENTA Y CINCO CÉNTIMOS (3.994.922,85 €).

El presente proyecto corresponde a un proyecto de urbanización y se enmarca en la tipología de Obras de primer establecimiento, reforma o gran reparación según lo establecido en la Ley de Contratos del Sector Público.

4.1 Objeto del proyecto

En vista de las consideraciones realizadas tanto por los informes técnicos y principalmente a la modificación de la planta viaria a consecuencia de la propuesta de accesos para el nuevo hospital La Fe y el desarrollo del Sector Fuente de San Luis, ubicado al sur de las vías del ferrocarril, es necesario completar el desarrollo de la Carretera de Malilla, y salvar la playa de vías del ferrocarril mediante desdoblamiento del paso superior de comunicación. Con el fin de recoger estos condicionantes, se procede a la adaptación del Proyecto de Urbanización del Programa de Actuación Integrada de la Unidad de Ejecución Única del Sector PRR-7 "Malilla Sur"

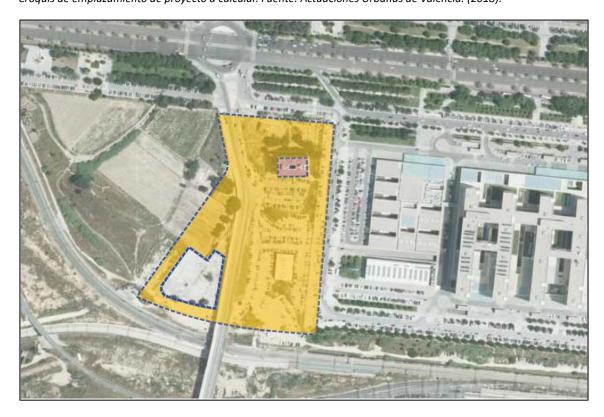
En él se consideran todos aquellos trabajos necesarios para la ejecución de las demoliciones, movimiento de tierras, pavimentaciones, el saneamiento y drenaje, redes de distribución de riego, jardinería, hidrantes, agua potable, energía eléctrica, alumbrado público, telecomunicaciones, la regulación y control del tráfico, así como los desvíos y reposiciones necesarios para la ejecución de las obras dentro del ámbito del sector. Y las obras complementarias que se precisen para satisfacer la conexión e integración adecuadas de la nueva urbanización con las redes de infraestructuras existentes.

Para este Proyecto de Urbanización se han considerado las indicaciones de las distintas administraciones, los Servicios Técnicos Municipales y las concesionarias.

4.2 Ámbito de actuación.

El Sector PRR-7 "Malilla Sur" es un sector de Suelo Urbanizable de uso residencial que debe destinarse a la construcción de viviendas sujetas a régimen de protección pública, a consecuencia de la modificación del Plan General de Ordenación que realizó el Ayuntamiento de València, tras acuerdo suscrito con la Conselleria de Sanidad, para garantizar la construcción de la nueva Ciudad Sanitaria la Fe en el barrio de Malilla.

La ordenación está motivada entre otras razones, para poder recoger el edificio de viviendas situado en la Carrera Malilla nº 119 evitando la afección real del edificio, y la parcela de la antigua empresa gráfica "Ediciones Bidasoa, S.A." Se han recogido las alegaciones presentadas en el trámite de información pública, así como por el desdoblamiento del paso superior sobre las vías del ferrocarril, con la reserva de suelo para el tranvía, y por la variación que ha supuesto la ejecución de los viales de acceso al nuevo hospital La Fe, en el límite oeste de la actuación.



Los terrenos del presente proyecto están situados al sur de la ciudad, en la Carrera de Malilla, limitando al norte con el Bulevar Sur (Avda. Fernando Abril Martorell), al sur con las vías de RENFE, al este con la Ciudad Sanitaria La Fe, y al oeste con un equipamiento proyectado Deportivo Recreativo GRP-1 (E/TD).

El ámbito se corresponde con el Sector SUR PRR-7 "Malilla Sur", ocupando la Unidad de ejecución una superficie de 35.700 m2, esquematizado en la *Figura 11*.

Figura 11

Croquis de emplazamiento de proyecto a calcular. Fuente: Actuaciones Urbanas de Valencia. (2018).

4.3 Descripción de las obras

Las obras para realizar en este proyecto incluyen las siguientes:

- Trabajos previos: donde se incluyen demoliciones de edificaciones, pavimentos, acequias y otros sistemas de riego, vallados, tuberías, líneas aéreas de telefonía y energía, entre otras; y despeje y desbroce del terreno.
- Explanaciones.
- Firmes: lo que incluirá calzadas, aparcamientos, aceras y carril bici.
- Bordillos y rigolas.
- Secciones viarias tipo.
- Red de saneamiento.
- Jardinería y riego.
- Red de agua potable.
- Red de baja presión.
- Energía eléctrica y alumbrado público.

- Telefonía y comunicaciones por cable.
- Red de gas.
- Regulación y control de tráfico.
- Muros y vallados en reposiciones.
- Mobiliario urbano.
- Otras reposiciones: entre ellas se encuentran accesos a parcelas privadas, conexiones a viales de acceso y reposición de vallados varios.

4.4 Información adicional

4.4.1 Clasificación de las obras

A los efectos de clasificación del Proyecto, la obra según objeto y contenido, y a tenor de lo dispuesto en el art. 106 de la Ley de Contratos del Sector Público se clasifica según el epígrafe a) Obras de primer establecimiento, reforma o gran reparación.

4.4.2 Clasificación del contratista

Para poder contratar la presente obra será necesario que el empresario haya obtenido previamente la siguiente clasificación:

- Grupo "G Viales y Pistas" Subgrupo "6" Categoría "5" Obras viales sin cualificación específica (cuantía superior a dos millones cuatrocientos mil euros e inferior o igual a cinco millones de euros).
- Grupo "I Instalaciones Eléctricas" Subgrupo "9" Categoría "3" Instalaciones eléctricas sin cualificación específica (cuantía superior a trescientos sesenta mil euros e inferior o igual a ochocientos cuarenta mil euros).

4.4.3 Presupuesto de la obra

De la aplicación de las mediciones a los cuadros de precios resulta el presupuesto de ejecución material, que asciende a la cantidad de DOS MILLONES SETECIENTOS SETENTA Y CUATRO MIL CUATROCIENTOS CUARENTA Y CUATRO EUROS CON SESENTA Y CINCO CÉNTIMOS (2.774.444,65 €). Sumándole el 13 % de gastos generales y el 6 % de Beneficio industrial resulta el presupuesto de ejecución por contrata, que asciende a la cantidad de TRES MILLONES TRESCIENTOS UN MIL QUINIENTOS OCHENTA Y NUEVE EUROS CON TRECE CÉNTIMOS (3.301.589,13 €), y sumándole el 21 % de I.V.A. nos resulta un presupuesto global de licitación de TRES MILLONES NOVECIENTOS NOVENTA Y CUATRO MIL NOVECIENTOS VEINTIDÓS EUROS CON OCHENTA Y CINCO CÉNTIMOS (3.994.922,85 €), y que aparece reflejado en el Documento nº 4 "Presupuesto".

Se presenta el desglose por capítulos del presupuesto en la Figura 12.

Figura 12Resumen de presupuesto de proyecto por capítulo. Fuente: Actuaciones Urbanas de Valencia. (2018).

CAP RESUMEN	EUROS	%
COI DEMOLICIONES Y TRABAJOS PREVIOS	78.190,05	2,82
C02 MOVIMIENTO DE TIERRAS	143.638,84	5,18
C03 PAVIMENTACIONES	541.446,06	19,52
C04 ENCINTADOS - BORDILLOS Y RIGOLAS	67.071,86	2,42
COS RED DE SANEAMIENTO Y DRENAJE	321.356,59	11,58
CO6 RED DE ABASTECIMIENTO DE AGUA ALTA PRESIÓN	69.931,94	2,52
CO7 RED DE ABASTECIMIENTO AGUA BAJA PRESIÓN	8.598,66	0,31
COB RED DE TELECOMUNICACIONES	66.576,21	2,40
CO9 GAS CANALIZADO	9.777,15	0,35
C10 RED DE MEDIA TENSION	36.169,64	1,30
C11 CENTROS DE TRANSFORMACION	109.431,35	3,94
C12 RED DE BAJA TENSION	124.457,98	4,49
C13 ALUMBRADO PUBLICO	294.885,78	10,63
C14 JARDINERIA Y MOBILIARIO	280.803,78	10,12
C15 RED DE RIEGO	86.460,93	3,12
C16 CONTROL DE TRAFICO	10.609,89	0,38
C17 MUROS Y ESTRUCTURAS	107.210,33	3,86
C18 VARIOS Y LEGALIZACIONES	31.058,08	1,12
C19 SEGURIDAD Y SALUD	20.185,58	0,73
C20 DESVIOS DE ACEQUIAS	5.960,96	0,21
C21 SEMAFORIZACIÓN	244.463,39	8,81
C22 PANTALLA ACÚSTICA	94.362,52	3,40
C23 GESTIÓN DE RESIDUOS	21.797,08	0,79
TOTAL EJECUCIÓN MATERIAL	2.774.44	44,65
13,00 % Gastos generales		
6.00 % Beneficio industrial		
0,00 % beneficio inausinal		
SUMA DE G.G. y B.I.	527.14	44,48
TOTAL PRESUPUESTO EJECUCIÓN POR CONTRATA	3.301.58	89,13
21,00 % I.V.A	693.3	33,72
TOTAL PRESUPUESTO GLOBAL DE LICITACIÓN	3.994.92	22,85

5 CÁLCULO DE EMISIONES

En este apartado de la investigación se realizará el cálculo de emisiones asociado al proyecto "ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 "MALILLA SUR"" detallado en el capítulo 4 del presente informe.

Se utilizará como herramienta de cálculo la base de datos online del BEDEC perteneciente al Instituto de Tecnología de la Construcción de Cataluña (ITEC).

Para el cálculo de emisiones de cada partida se utilizará el producto entre las maquinarias y materiales correspondientes a cada una de ellas por el valor de emisiones asociado obtenido de la base de datos mencionada.

A partir de los resultados y los limitantes o restricciones encontradas en el procedimiento de cálculo se obtendrán las conclusiones pertinentes, así como también los lineamientos sobre los cuales se fundamentarán las propuestas de esta investigación.

5.1 Base de datos

El Instituto de Tecnología de la Construcción de Cataluña - ITeC es una fundación privada sin ánimo de lucro que, desde 1978, desarrolla actividades de investigación, diseño y desarrollo de productos y servicios de base tecnológica para el sector de la construcción.

El BEDEC es una base de datos online que trabaja en todas las fases del ciclo de vida de una obra. Además, la información presente en la base de datos se actualiza periódicamente, estando presente múltiples versiones en donde se actualiza y añade la información correspondiente.

La información ambiental presente es:

- Cantidad de residuos de obra y embalaje.
- Separación selectiva de residuos.
- Emisiones de CO 2.
- Coste energético.
- Energía primaria renovable y no renovable.
- Agotamiento de ozono estratosférico.
- Formación de ozono troposférico.
- Acidificación del suelo y de los recursos de agua.
- Potencial de eutrofización.
- Porcentaje de materia prima.
- Porcentaje de material reciclado preconsumo y posconsumo.
- Agotamiento de recursos abióticos fósiles y no fósiles.
- Factor de desmontabilidad.

La información presente en la base de datos se encuentra agrupada en tres categorías, dentro de las cuales se agrupan en distintas secciones:

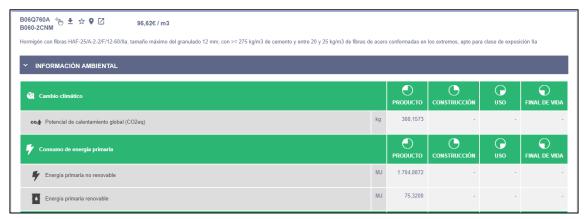
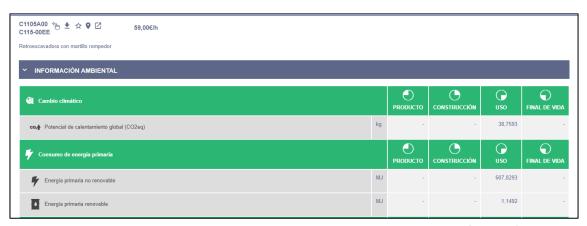

 Materiales, cuya información presente sobre emisiones de CO2 y consumo de energía está asociada al producto. Se presenta en la Figura 13 la información ambiental correspondiente a un material presente en la base de datos.

Figura 13


Información ambiental de materiales del BEDEC. Fuente: BEDEC (2024).

 Maquinarías, cuya información presente sobre emisiones de CO2 y consumo de energía está asociada al uso. Se presenta en la Figura 14 la información correspondiente a una maquinaria presente en la base de datos.

Figura 14

Información ambiental de maquinaria del BEDEC. Fuente: BEDEC (2024).


Partidas de obra y conjuntos, donde se encuentran partidas de obra con la información de las maquinarías y materiales que la componen, teniendo en ella el desglose de la información ambiental de cada uno de sus elementos, asi como el valor total dado por la suma de estos. Se presenta en la *Figura 15* la interfaz de acceso a las categorías de partidas y conjuntos de la base de datos.

Figura 15

Partidas de obra y conjuntos del BEDEC. Fuente: BEDEC (2024).

5.2 Cálculo de emisiones

Para realizar el cálculo de emisiones del proyecto se utilizará como método al producto entre la información ambiental obtenida de la base de datos de cada uno de los elementos que componen el proyecto por su cantidad. Para realizar este cálculo es necesario obtener el valor de emisiones de CO2 y consumo de energía unitario de cada una de las partidas.

Se utilizará la información correspondiente al cuadro de precios del presupuesto, en donde se encuentra el desglose de maquinarias y materiales necesarios para ejecutar las partidas. A partir de esta información y mediante el uso de hojas de cálculo de Excel se vinculará la información ambiental obtenida en la base de datos con la información propia del proyecto.

El objetivo del cálculo está centrado no solo en la cuantificación de los valores ambientales, sino también en obtener una herramienta que brinde agilidad a la hora de analizar los resultados y que permita obtener información organizada y detallada para realizar los análisis y conclusiones necesarios para evaluar la situación ambiental del proyecto.

Se ejemplifica el cálculo a partir de la partida del presupuesto "BASE HORMIGÓN EN APARCAMIENTOS". El cuadro de descompuestos indica el rendimiento por unidad de medida de la partida, siendo en este caso m3. Dentro de los elementos que conforman esta partida presentes en la *Figura 16*, interesan para el cálculo ambiental "Hormigón en masa HM-20" y "Vibrador para aguja 50mm".

Figura 16

Cuadro de descompuestos de partida del presupuesto. Fuente: Actuaciones Urbanas de Valencia (2018).

DFIRM0202	M3	BASE HORMIGON EN APARCAMIENTOS			
A006002	1,025 m3	Hormigon en masa HM-20	42,60	43,67	
O01002	0,600 h	Oficial de 1ª	9,22	5,53	
O01004	0,600 h	Ayudante peón especialista	8,72	5,23	
M005020	0,200 h	Vibrador para aguja 50 mm	1,38	0,28	
PHGN0101	3,000 ud	Corte de juntas de dilatacion	0,17	0,51	
%PRC1	0,552 %	Coste indirectos	6,00	3,31	
			COSTE UNITARIO TOTAL		58,53

Para calcular las emisiones y el consumo de energía de esta partida se consulta los valores ambientales en el BEDEC. Se obtiene la información de uso del Vibrador aguja en la *Figura 17* y la información de producto de HM-20 en la *Figura 18*.

Figura 17

Información ambiental de Vibrador de aguja. Fuente: BEDEC (2024).

Figura 18

Información ambiental de HM-20. Fuente: BEDEC (2024).

Una vez calculadas las emisiones y consumo de energía unitarios de cada partida se calcula el total en el proyecto según las mediciones indicadas en el presupuesto. Se presentan, a modo de ejemplo de los resultados obtenidos, en la *Figura 19* los valores ambientales obtenidos para el capítulo 3 del presupuesto del proyecto correspondiente a pavimentaciones.

Figura 19
Valores ambientales de capítulo "PAVIMENTACIONES". Fuente: Elaboración propia.

CODIGO	RESUMEN	CANTIDAD	CO2 (kg CO2)	Energia (MJ)
C03	PAVIMENTACIONES		1.461.448,92	12.842.578,55
DFIRM0102	M3 BASE GRANULAR ZAHORRA ARTIFIC	4672,06	52.934,08	908.565,24
DFIRM0202	M3 BASE HORMIGON EN APARCAMIENTOS	323,66	63.742,41	309.713,98
DFIRM0203	M3 BASE HORMIGON EN PAVIMENTOS	3777,87	744.023,16	3.615.087,25
DPAV0101	M2 PAVIMENTO DE BALDOSA EN ACERAS	10756,4	205.005,15	1.196.919,49
DFIRM0301	M2 RIEGO DE IMPRIMACION	9558,3	5.451,41	341.122,22
DFIRM0302	M2 RIEGO DE ADHERENCIA	13646,4	5.328,77	448.460,64
PC_DFIRM0403	T AC22 BIN 40/50 S CALIZO	1330,26	12.990,61	199.300,01
PC_DFIRM060	T MBC FA MICROAGLOMERADO FONOABSORBENTE	1046,45	369.121,15	5.632.515,26
DPAV0101C	M2 PAVIMENTO DE BALDOSA COLOREADA EN ACERAS	35,4	674,69	3.939,14
DFIRM0406	T CAPA RODADURA CARRIL BICI AC8 SURF	57,88	2.177,51	186.955,34

5.3 Limitaciones en el cálculo

A la hora de realizar los cálculos de emisiones del proyecto: "ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 MALILLA SUR" a través de la información obtenida de la base de datos del BEDEC perteneciente al Instituto del ITeC., se presentaron diferentes limitaciones que se corresponden por un lado a déficits en el proyecto y otras asociadas a la propia base de datos.

Con respecto a la información del proyecto, se utilizó como base para el cálculo la información correspondiente al cuadro de descompuestos de las partidas del presupuesto. De este apartado se obtienen aquellos elementos, correspondientes a maquinaria y materiales, que afectan al cálculo de emisiones de CO2 y consumo de energía. Dentro de la estructura de este documento, se encuentran partidas cuya información esta detallada y completa con respecto a los materiales y maquinarias que intervienen en ella, asi como sus rendimientos. Sin embargo, en múltiples partidas del presupuesto el detalle sobre los elementos que intervienen se encuentra incompleto o incluso ausente, limitando el detalle al precio de la partida sin descomposición.

La falta de información con el detalle suficiente para operar los cálculos de la manera planteada en esta investigación es una de las principales limitaciones que se encontraron para ejecutar los cálculos de manera precisa. Se encuentran múltiples partidas sin descomposición tal y como se muestra en la *Figura 20*.

Figura 20
Partida de presupuesto sin descomposición. Fuente: Actuaciones Urbanas de Valencia (2018).

JPNAC002	M2	P.P. CIMENTACION PANTALLA ACUSTICA	
		Sin descomposición	
		COSTE UNITARIO TOTAL	26,26
		Asciende el precio total de la partida a la mencionada cantidad de VEINTISEIS EUROS con VEINTISEIS CÉNTIMOS	

Dentro de aquellas partidas del presupuesto cuya descomposición se encuentra presente, se encontraron limitaciones a la hora de vincularlas a la información provista por la base de datos. Una de las causas asociada a esta problemática que limita el cálculo es la presencia de materiales específicos que no se encuentran en la base de datos, y que no son posible de asemejar a alguna partida con información disponible. Por ejemplo, en el capítulo de semaforización se encuentran los semáforos presentes en las partidas y no se encuentran presentes en la base de datos, ni elementos similares a los que asemejar su cuantificación desde la perspectiva ambiental. Se presenta en la *Figura 21* el ejemplo mencionado, en donde se detalla la unidad de semáforo a colocar.

Figura 21

Partida del presupuesto con material no presente en la base de datos. Fuente: Actuaciones Urbanas de Valencia (2018).

DSEN2008	UD	SEMÁFORO 12/100 V-R LED			
DSEÑ0008	1,000 UD	Semáforo 2 focos incand.D=100mm.	211,83	211,83	
O07004	0,500 h	Especialista electricidad	13,64	6,82	
%PRC1	2,187 %	Coste indirectos	6,00	13,12	
		С	OSTE UNITARIO TOTAL		231,77
		Asciende el precio total de la partida a la mencionad SETENTA Y SIETE CÉNTIMOS	da cantidad de DOSCIENTOS TREI	NTA Y UN EU	ROS con

Por otra parte, se encuentra una limitación propia de la base de datos. Existen partidas del presupuesto cuyos elementos se encuentran presentes en la base de datos, pero sin información ambiental. Tal y como se mencionó anteriormente, la información ambiental presente en la base de datos presenta un carácter dinámico, donde se presentan actualizaciones periódicas en las que se amplía la información presente. Al momento en el que se realiza este informe, se encuentran partidas cuya información ambiental no está presente en la base de datos del BEDEC. Un ejemplo de esta limitación se ve con los transformadores, presentes en el presupuesto como

se observa en la *Figura 22*, y cuya información ambiental es nula a la hora de consultar la base de datos, representada en la *Figura 23*.

Figura 22

Partida de presupuesto con elementos sin información ambiental en la base de datos. Fuente: Actuaciones Urbanas de Valencia (2018).

PUEC.6ebC	UD	TRANSFD 400 KVA AISL BÑ ACEITE
		Sin descomposición
		COSTE UNITARIO TOTAL 5.320,00
		Asciende el precio total de la partida a la mencionada cantidad de CINCO MIL TRESCIENTOS VEINTE EUROS
PUEC.6ebV	UD	TRANSFD 630 KVA AISL BÑ ACEITE
		Sin descomposición
		COSTE UNITARIO TOTAL
		Asciende el precio total de la partida a la mencionada cantidad de SIETE MIL SEISCIENTOS TRES EUROS con CUARENTA CÉNTIMOS

Figura 23

Información de transformadores eléctricos trifásicos de BEDEC. Fuente: Adaptación a BEDEC (2024)

Dentro de las partidas sin descomposición y sobre las cuales no se realizó el cálculo de emisiones, se distinguen dos variantes. Por un lado, aquellas que no se encuentran detalladas en el proyecto y que en caso de estar detalladas se considera que tampoco sería posible calcularla con la información provista en la base de datos, y, por otro lado, aquellas sin descomposición que se considera que si pudiera ser calculada con la información del BEDEC.

Se muestran como ejemplo de las situaciones planteadas la *Figura 24*, en donde los elementos puntuales tales como DEFENSA DE TRANSFORMADOR. PROTECCIÓN FÍSICA TRANSFORMADOR o EQUIPO DE CONTROL: EKORUCT — UNIDAD COMPACTA DE TELEMANDO, no podrían ser vinculados a información presente en la base de datos utilizada. Por otra parte, y ejemplificando la situación de partidas del presupuesto que con su debida descomposición podrían se calculadas, se presenta en la *Figura 25*, la partida correspondiente a ACERA PERIMETRAL, cuyas maquinarias y materiales necesarias para su ejecución se encuentran disponibles en la base de datos y podría realizarse su cálculo con el detalle de elementos que intervienen y su rendimiento.

Figura 24

Partidas del presupuesto que no podrían ser calculadas por la base de datos si tuviesen descomposición. Fuente: Actuaciones Urbanas de Valencia (2018).

PUEC32bg	UD	DEFENSA DE TRANSFORMADOR. PROTECCIÓN FÍSICA TRANSFORMADOR	
		Sin descomposición	
		COSTE UNITARIO TOTAL	220,40
		Asciende el precio total de la partida a la mencionada cantidad de DOSCIENTOS VEINTE EUROS cor CUARENTA CÉNTIMOS	
PUEC33ag	UD	EQUIPO DE CONTROL: EKORUCT - UNIDAD COMPACTA DE TELEMANDO	
		Sin descomposición	
		COSTE UNITARIO TOTAL	8.040,47
		Asciende el precio total de la partida a la mencionada cantidad de OCHO MIL CUARENTA EUROS co CUARENTA Y SIETE CÉNTIMOS	ı
PUEC33atg	UD	SISTEMA TELEGESTIÓN	
		Sin descomposición	
		COSTE UNITARIO TOTAL	5.050,00
		Asciende el precio total de la partida a la mencionada cantidad de CINCO MIL CINCUENTA EUROS	

Figura 25

Partidas del presupuesto que podría ser calculada por la base de datos si tuviese descomposición. Fuente: Actuaciones Urbanas de Valencia (2018).

ſ	Acera UD	ACERA PERIMETRAL	
		Sin descomposición	
		COSTE UNITARIO TOTAL	1.158,00
		Asciende el precio total de la partida a la mencionada cantidad de MIL CIENTO CINCUENTA Y OCHO EUROS	

Se presenta como un limitante importante la falta de coincidencia entre el esquema de información de la base de datos con la esquematización brindada por el proyecto. Unificar la forma en la que se presenta la información generaría que se agilice el proceso de cálculo y que no se produzcan errores en el emparejamiento de la partida con la información ambiental de la base de datos.

Los principales valores ausentes en la base de datos están relacionados a materiales específicos, por lo que se presenta una necesidad de poder encuadrar ciertos materiales con alto detalle de especificación a definiciones menos exigentes cuyos valores ambientales se puedan generalizar y utilizar información representativa por más que no coincida exactamente. Es decir, optar en el cálculo por materiales con características generales que puedan incluir a aquellos con características más específicas.

5.4 Resultados

Se presentan a continuación en la *Figura 26* los resultados obtenidos en el cálculo en el proyecto. Los resultados se presentan por capítulos del presupuesto con las siguientes columnas:

- \$ TOTAL: Presupuesto de cada capítulo.
- %PR: Porcentaje del presupuesto que representa cada capítulo con respecto al total.
- %PR CAL: Porcentaje del presupuesto que representa cada capítulo con respecto al total calculado (sin contar las partidas que no fue calculada las emisiones).
- CO2: Cantidad de kg de CO2 de cada capítulo.
- %CO2: Porcentaje que representa cada capítulo con respecto al total de emisiones calculadas.
- Energía: Cantidad de MJ de cada capítulo.
- %EN: Porcentaje que representa cada capítulo con respecto al total de energía calculada.

- PRES NC: Cantidad de presupuesto que no fue realizado el cálculo de emisiones con respecto al total del capítulo.
- %NC: Porcentaje de presupuesto no calculado con respecto al presupuesto del capítulo.
- CO2/€: Kg de CO2 por € de presupuesto calculado.
- EN/€: MJ de energía por € de presupuesto calculado.

Se presenta en la *Figura 27* el detalle de la maquinaria y materiales en cada capítulo. Las columnas CO2 MAQ y CO2 MAT indican el valor de emisiones asociado al capítulo, por su parte %CO2 MAQ y %CO2 MAT indican los valores porcentuales que representa con respecto al total de emisiones del capítulo. De igual manera, se presentan los valores correspondientes al consumo de energía en las columnas EN MAQ y EN MAT con los valores porcentuales asociados en %EN MAQ y %EN MAT.

Figura 26Tabla resumen de resultados de emisiones y energía. Fuente: elaboración propia.

RESUMEN	\$ TOTAL	%PR	%PR CAL	CO2	%CO2	Energia	%EN	PRES NC	%NC	CO2/€	EN/€
	2.773.776,92 €	100%	100%	3.210.492	100%	36.823.558	100%	964.783,49 €	34,78%	1,77	20,36
DEMOLICIONES Y TRABAJOS PREVIOS	78.190,04 €	2,8%	4,3%	68.760	2,1%	1.075.153	2,9%	359,85 €	0,5%	0,88	13,81
MOVIMIENTO DE TIERRAS	143.638,84 €	5,2%	7,9%	317.761	9,9%	5.366.531	14,6%	- €	0,0%	2,21	37,36
PAVIMENTACIONES	541.446,04 €	19,5%	29,9%	1.461.449	45,5%	12.842.579	34,9%	- €	0,0%	2,70	23,72
ENCINTADOS - BORDILLOS Y RIGOLAS	67.071,86 €	2,4%	3,7%	131.462	4,1%	647.532	1,8%	- €	0,0%	1,96	9,65
RED DE SANEAMIENTO Y DRENAJE	321.356,61 €	11,6%	15,6%	484.709	15,1%	6.803.146	18,5%	39.702,41 €	12,4%	1,72	24,15
RED DE ABASTECIMIENTO DE AGUA ALTA PRESIÓN	69.931,95€	2,5%	2,8%	48.018	1,5%	779.148	2,1%	19.442,54 €	27,8%	0,95	15,43
RED DE ABASTECIMIENTO AGUA BAJA PRESIÓN	8.598,66 €	0,3%	0,3%	8.050	0,3%	91.154	0,2%	3.227,28 €	37,5%	1,50	16,97
RED DE TELECOMUNICACIONES	66.576,20 €	2,4%	3,3%	77.068	2,4%	1.313.127	3,6%	7.696,07 €	11,6%	1,31	22,30
GAS CANALIZADO	9.110,88 €	0,3%	0,5%	5.691	0,2%	132.784	0,4%	679,68€	7,5%	0,68	15,75
RED DE MEDIA TENSION	36.169,64 €	1,3%	1,9%	29.328	0,9%	573.501	1,6%	2.378,00 €	6,6%	0,87	16,97
CENTROS DE TRANSFORMACION	109.430,90 €	3,9%	0,9%	5.297	0,2%	10.804	0,0%	93.522,43 €	85,5%	0,33	0,68
RED DE BAJA TENSION	124.457,98 €	4,5%	6,1%	113.634	3,5%	2.310.613	6,3%	14.659,20 €	11,8%	1,03	21,04
ALUMBRADO PUBLICO	294.885,78 €	10,6%	7,4%	5.020	0,2%	53.551	0,1%	160.214,66 €	54,3%	0,04	0,40
JARDINERIA Y MOBILIARIO	280.803,78 €	10,1%	8,4%	208.610	6,5%	2.408.210	6,5%	128.089,37 €	45,6%	1,37	15,77
RED DE RIEGO	86.460,93 €	3,1%	1,0%	26.186	0,8%	733.869	2,0%	67.827,84 €	78,4%	1,41	39,39
CONTROL DE TRAFICO	10.609,89 €	0,4%	0,5%	2.872	0,1%	50.370	0,1%	1.143,20 €	10,8%	0,30	5,32
MUROS Y ESTRUCTURAS	107.210,33 €	3,9%	4,8%	208.502	6,5%	1.541.898	4,2%	20.897,74 €	19,5%	2,42	17,86
VARIOS Y LEGALIZACIONES	31.058,08 €	1,1%	0,0%	0	0,0%	0	0,0%	31.058,08 €	100,0%	-	-
SEGURIDAD Y SALUD	20.185,58 €	0,7%	0,0%	0	0,0%	0	0,0%	20.185,58 €	100,0%	-	-
DESVIOS DE ACEQUIAS	5.960,96 €	0,2%	0,3%	5.335	0,2%	57.143	0,2%	925,90 €	15,5%	1,06	11,35
SEMAFORIZACIÓN	244.463,39 €	8,8%	0,4%	2.739	0,1%	32.443	0,1%	236.615,05 €	96,8%	0,35	4,13
PANTALLA ACÚSTICA	94.362,52 €	3,4%	0,0%	0	0,0%	0	0,0%	94.362,52 €	100,0%	-	-
GESTIÓN DE RESIDUOS	21.796,08 €	0,8%	0,0%	0	0,0%	0	0,0%	21.796,08 €	100,0%	-	-

Figura 27Emisiones y energía de maquinaría y materiales. Fuente: elaboración propia.

CODIGO	RESUMEN	\$ TOTAL	%PR	%PR CAL	CO2	%CO2	CO2 MAQ	%CO2 MAQ	CO2 MAT	%CO2 MAT	Energia	%EN	EN MAQ	%EN MAQ	EN MAT	%EN MAT
		2.773.776,92 €	100%	100%	3.210.492	100%	461.452	14,4%	2.690.906	83,8%	36.823.558	100%	7.278.496	19,8%	28.615.572	77,7%
C01	DEMOLICIONES Y TRABAJOS PREVIOS	78.190,04 €	2,8%	4,3%	68.760	2,1%	65.482	95,2%	1.828	2,7%	1.075.153	2,9%	1.028.840	95,7%	9.770	0,9%
C02	MOVIMIENTO DE TIERRAS	143.638,84 €	5,2%	7,9%	317.761	9,9%	199.114	62,7%	107.058	33,7%	5.366.531	14,6%	3.124.109	58,2%	2.060.341	38,4%
C03	PAVIMENTACIONES	541.446,04 €	19,5%	29,9%	1.461.449	45,5%	64.349	4,4%	1.396.853	95,6%	12.842.579	34,9%	1.063.479	8,3%	11.775.218	91,7%
C04	ENCINTADOS - BORDILLOS Y RIGOLAS	67.071,86 €	2,4%	3,7%	131.462	4,1%	14	0,0%	131.448	100,0%	647.532	1,8%	223	0,0%	647.309	100,0%
C05	RED DE SANEAMIENTO Y DRENAJE	321.356,61 €	11,6%	15,6%	484.709	15,1%	21.450	4,4%	425.643	87,8%	6.803.146	18,5%	356.983	5,2%	5.841.856	85,9%
C06	RED DE ABASTECIMIENTO DE AGUA ALTA PRESIÓN	69.931,95 €	2,5%	2,8%	48.018	1,5%	9.248	19,3%	37.832	78,8%	779.148	2,1%	145.597	18,7%	627.245	80,5%
C07	RED DE ABASTECIMIENTO AGUA BAJA PRESIÓN	8.598,66 €	0,3%	0,3%	8.050	0,3%	511	6,3%	7.393	91,8%	91.154	0,2%	8.134	8,9%	81.899	89,8%
C08	RED DE TELECOMUNICACIONES	66.576,20 €	2,4%	3,3%	77.068	2,4%	6.120	7,9%	70.505	91,5%	1.313.127	3,6%	96.156	7,3%	1.212.213	92,3%
C09	GAS CANALIZADO	9.110,88 €	0,3%	0,5%	5.691	0,2%	3.121	54,8%	2.570	45,2%	132.784	0,4%	49.031	36,9%	83.753	63,1%
C10	RED DE MEDIA TENSION	36.169,64 €	1,3%	1,9%	29.328	0,9%	2.090	7,1%	27.237	92,9%	573.501	1,6%	32.836	5,7%	540.666	94,3%
C11	CENTROS DE TRANSFORMACION	109.430,90 €	3,9%	0,9%	5.297	0,2%	5.278	99,6%	20	0,4%	10.804	0,0%	10.428	96,5%	376	3,5%
C12	RED DE BAJA TENSION	124.457,98 €	4,5%	6,1%	113.634	3,5%	6.628	5,8%	107.006	94,2%	2.310.613	6,3%	104.112	4,5%	2.206.501	95,5%
C13	ALUMBRADO PUBLICO	294.885,78 €	10,6%	7,4%	5.020	0,2%	0	0,0%	5.020	100,0%	53.551	0,1%	0	0,0%	53.551	100,0%
C14	JARDINERIA Y MOBILIARIO	280.803,78 €	10,1%	8,4%	208.610	6,5%	71.841	34,4%	134.993	64,7%	2.408.210	6,5%	1.130.354	46,9%	1.249.960	51,9%
C15	RED DE RIEGO	86.460,93 €	3,1%	1,0%	26.186	0,8%	0	0,0%	23.057	88,1%	733.869	2,0%	0	0,0%	684.213	93,2%
C16	CONTROL DE TRAFICO	10.609,89 €	0,4%	0,5%	2.872	0,1%	982	34,2%	1.890	65,8%	50.370	0,1%	15.431	30,6%	34.939	69,4%
C17	MUROS Y ESTRUCTURAS	107.210,33 €	3,9%	4,8%	208.502	6,5%	3.905	1,9%	204.477	98,1%	1.541.898	4,2%	91.699	5,9%	1.448.308	93,9%
C18	VARIOS Y LEGALIZACIONES	31.058,08 €	1,1%	0,0%	0	0,0%	0	18	0		0	0,0%	0		0	
C19	SEGURIDAD Y SALUD	20.185,58 €	0,7%	0,0%	0	0,0%	0	1-	0	-	0	0,0%	0	-	0	-
C20	DESVIOS DE ACEQUIAS	5.960,96 €	0,2%	0,3%	5.335	0,2%	695	13,0%	3.961	74,2%	57.143	0,2%	11.203	19,6%	34.893	61,1%
C21	SEMAFORIZACIÓN	244.463,39 €	8,8%	0,4%	2.739	0,1%	625	22,8%	2.114	77,2%	32.443	0,1%	9.882	30,5%	22.562	69,5%
C22	PANTALLA ACÚSTICA	94.362,52 €	3,4%	0,0%	0	0,0%	0		0		0	0,0%	0		0	-
C23	GESTIÓN DE RESIDUOS	21.796,08 €	0,8%	0,0%	0	0,0%	0	(8)	0	-	0	0,0%	0		0	

A partir de los resultados obtenidos se evidencia que existe una amplia diferencia en cuanto a emisiones y energía por parte de los materiales con respecto a la maquinaria. A nivel porcentual, los materiales representan el 83,8% de las emisiones directas y el 77,7% del consumo de energía. Esto viene asociado principalmente al volumen que representan los materiales y a que, al venir calculados sus valores ambientales como producto, esto implica que se tienen en cuenta tanto en las emisiones como el consumo de energía todo el proceso que corresponde desde su obtención hasta los procesos requeridos para su producción. Por parte de la maquinaría, y según como está estructurada la base de datos, los valores ambientales vienen dado por el propio consumo de la máquina. Contabilizar las emisiones correspondientes a la fabricación de la máquina sería complejo debido a que se debería relacionar el periodo de amortización de la maquinaria no solo para el proyecto, sino también en las partidas en las que actúa, siendo esto algo impracticable.

De la mano con lo analizado anteriormente se puede ver cómo, en capítulos con mayor cantidad de maquinaria respecto a materiales, como Demoliciones y Trabajos Previos, tienen un bajo valor de emisiones y consumo de energía por euro de presupuesto con respecto a los demás.

Con lo que respecta a los valores propios del proyecto analizado, el capítulo de PAVIMENTACIONES representa, además de los mayores valores a nivel presupuesto, las emisiones y consumo más altas por euro de presupuesto. Si analizamos los principales materiales utilizados en este capítulo, tal y como sucede además en el capítulo ENCINTADOS — BORDILLOS Y RIGOLAS o MUROS Y ESTRUCTURAS, coincide con aquellos materiales con más altos valores de emisiones y consumo de energía, tales como son los hormigones, morteros y mezclas bituminosas presentes en la *Figura 28*.

Figura 28Materiales con mayores valores de consumo. Fuente: elaboración propia.

CODIGO (BEDEC)	DESCRIPCIÓN	CONSUMO (CO2) kg/udm 🛂	CONSUMO (Energía) MJ/udm	PRECIO \$/udm	UdM
B05A1000 / B052-06J1	Lechada de cemento	930,00	3.950,00	€ 130,00	m3
B0511302 / B055-065X	Cemento portland	925,20	3.949,16	€ 118,72	t
B8111G71 / B811-1ZVE	Mortero hidrofugo M700	494,17	2.347,16	€ 66,29	m3
D0701911 / B07F-0LT7	Mortero cemento m450	421,66	1.886,48	€ 285,09	m3
B055JJQ0 / B050-06FW	Mezcla Betuminosa asfaltico 35/50	326,58	4.978,19	€ 543,04	t
B065EH0A / B06E-109X	HA-30 20mm	282,90	1.287,54	€ 104,58	m3
B065970C / B06E-11CS	HA-25 20mm	282,69	1.283,62	€ 91,71	m3

Con respecto al capítulo MOVIMIENTO DE TIERRAS, los valores altos de emisiones y consumo por euro están asociados principalmente a que representan grandes volúmenes de trabajo con gran consumo de maquinaria y bajo coste de materiales. Dentro de los materiales están las tierras de aportación, cuyos valores ambientales, teniendo en cuenta su obtención, presentan altos valores de emisión y consumo de energía para obtenerla.

Se encuentran bajos valores de emisiones y consumo de energía por euro en aquellos capítulos donde el porcentaje de presupuesto no calculado es alto. Esto se debe principalmente a que, en capítulos como CENTROS DE TRANSFORMACIÓN, por ejemplo, las partidas que fueron posible calcular están asociadas a aquellas que no tienen que ver con materiales y si con maquinarias,

reafirmando la conclusión de que el principal limitante encontrado a la hora de realizar los cálculos se encontró en la presencia de déficit en información de materiales.

La forma en la que se estructura la información para el cálculo permite obtener análisis desde múltiples perspectivas. Existen maquinarias y materiales que se utilizan en múltiples partidas y por ende en múltiples capítulos del proyecto. Por este motivo, a la hora de analizar los posibles puntos de mejora del proyecto es importante analizar el total de emisiones y consumo de energía que se presenta a lo largo de todo el proyecto de ciertos elementos cuya optimización puede ser crítica. Se presentan en la *Figura 29* y la

Figura 30.

Figura 29

Total de emisiones y consumo de energía de materiales en el proyecto. Fuente: elaboración propia.

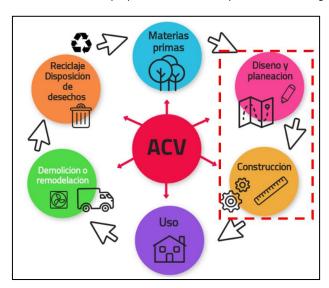
COL	DIGO (BEDEC)	DESCRIPCIÓN	CONSUMO (CO2)	CONSUMO (Energía)	PRECIO \$/udm_	UdM	Emisiones total	Energia total
	· ·	v	kg/udm ▾	MJ/udm ▼	▼	*	41	٧
	B050-06FW	Mezcla Betuminosa asfaltico 35/50	326,58	4978,19	€ 543,04	t	358.837,1	5.469.898,3
	/ B06E-109X	HA-30 20mm	282,9	1287,54	€ 104,58	m3	,	634.860,2
	/ B07F-0LT7	Mortero cemento m450	421,66	1886,48	€ 285,09	m3		407.147,7
	/ B03E-05OG	Tierra sin clasificar	3,85	74,12	€ 6,37	m3		1.561.699,5
	/ B03E-05OF	Tierra seleccionada	4,65	89,46	€ 10,49	m3		1.167.135,3
	/ BG32-0798	Cable Al rigido 1x240 RZ1	4,07	68,86	€ 4,12 € 280,83	m	53.076,9	898.003,3
	/ B07F-0LSQ / B0FG0-0EWS	Mortero m40a 1:6 5 N/mm2 Baldosa 20x20	237,41 3,75	1113,65 39,75	€ 280,83 € 3,75	m3 m2		240.352,4 450.397,7
	/ B962-0GQM	Bordillo hormigón recto	7,57	39,78	€ 3,73	u		183.950,7
	/ BFB3-099U	Tuberia polietileno 400 alta dens	38,17	1453,06	€ 44,49	m		1.227.436,1
	/ BFB3-0989	Tuberia polietileno 1000 alta dens	236,89	9020,36	€ 293,37	m	25.843,5	984.076,2
	/ B03F-05NW	Zahorra aritificial	4,2479	81,79	€ 19,92	m3		458.123,0
	B9F0-0HQX	Adoquin de hormigón 8cm espesor	13,08	68,71	€ 11,53	m2		88.746,2
	/ BD1A-1NDM	Tubo PVC 110 mm	3,44	98,97	€ 4,30	m	15.398,1	443.008,1
	/ / B0B8-108F	Malla electrosoldada 15x15 8mm	13,02	138,84	€ 5,53	m2		156.007,6
	/ BFB3-09A3	Tuberia polietileno 500 alta dens	59,51	2265,3	€ 72,92	m		438.131,7
BG39B1E0	/ BG32-078Y	Cable Al rigido 1x150 RV	2,5	41,88	€ 2,34	m		182.052,4
	/ B052-06J1	Lechada de cemento	930	3950	€ 130,00	m3		42.625,2
	/ B055-065X	Cemento portland	925,2	3949,16	€ 118,72	t	9.984,0	42.616,2
BD131A7B	/ BD1A-1NE5	Tubería PVC 200	7,63	219,09	€ 9,49	m	9.613,8	276.053,4
BFG1D2A0	/ BFG3-0C2H	Tubo horm. 400 enchufe campana	73,81	812,35	€ 98,40	m	7.255,5	79.854,0
B971-TT40		Rigola hormigón	1,3652	8,23	€ 0,82	u	7.148,2	43.092,3
BG39B1H0	/ BG32-079G	Cable Al rigido 1x300 RZ1	4,85	79,46	€ 6,51	m	6.722,1	110.131,6
BFB1J400 /	BFB3-0975	Tubo PE 160 mm 10 bar	9,28	353,42	€ 10,82	m	4.303,0	163.873,8
BD5Z4DC0	/ BD50-1KM0	Marco y reja de fundicion 535x335x45	50,01	615,73	€ 32,59	u	4.250,9	52.337,1
	/ BFB3-096R	Tubo PE 200 mm 10 bar	14,46	550,28	€ 16,89	m		158.488,9
BFB18400 /	/ BFB3-0993	Tubo PE 50 mm 10 bar	0,93	35,36	€ 1,15	m	4.019,7	152.836,5
	/ BD1A-1NDM	Tubería PVC 110	3,44	98,87	€ 4,30	m		101.737,2
	2 / BHM2-0FH8	Columna acero galvanizado 5m	43,05	459,1	€ 199,98	u	-	30.759,7
	/ BDD1-1KH0	Marco y tapa de fundición 40x40	61,67	768,09	€ 36,47	u		29.955,5
	/ BFB3-096X	Tubo PE 110 mm 10 bar	4,45	169,44	€ 5,18	m		80.896,6
	/ B057-06IQ	Emulsión bituminosa cationica asfaltica	200	29870	€ 300,00	t	1.911,7	285.506,4
B9H1-I58A	/ 	Mezcla bituminosa AC8 50/70 cal	26,47	2928,24	€ 70,27	t		177.960,9
	/ BN10-2MVK	Valvula compuerta 200	119,7	1510,63	€ 568,65	u		18.127,6
	/ BN10-2MVO	Valvula compuerta 150	70,72	892,54	€ 333,15	u		16.958,3
	/ BHM2-0FH3	Columna acero galvanizado 6m	51,67	551,41	€ 237,58 € 275,03	u		14.336,7
	/ BHM0-0FGH	Báculo acero h=6m Banco sencillo de madera	109,79	1171,74		u u		14.060,9
	/ BQ11-0SP2 / B06E-11CS	HA-25 20mm	39,68 282,69	490,46 1283,62	€ 320,08 € 91,71	m3		16.185,2 5.907,2
	/ B03L-05MU	Arena de sílice (amarilla)	2,65	51,12	€ 189,53	t	1.286,0	24.808,5
	/ B034-0ZC8	Arido calcareo	2,18	31,38	€ 18,62	t	-	18.367,2
	/ BFB3-099M	Tubo PE 90 mm 10 bar	3	114,22	€ 3,66	m		46.776,5
	/ B03A-0ZCB	Filler calcareo	15,84	184,65	€ 34,36	t		12.772,9
	/ B06E-1289	HM 20	190,74	899,58	€ 87,24	m3		5.037,6
	/ B03L-05N5	Arena 0 a 3,5 mm calcarea	2,65	51,12	€ 19,35	t		17.652,7
	/ BN44-2JS2	Valvula mariposa 700	421,22	5362,19	€ 4.116,47	u	-	10.724,4
BHM11F22	/ BHM2-0FH5	Columna acero galvanizado 4m	34,44	367,6	€ 191,16	u	723,2	7.719,6
BQ225190	/ BQ22-0TDK	Papelera de pie 165 l	20,07	763,84	€ 174,94	u	702,5	26.734,4
B06NN12C	/ B069-2A9O	HM 15	144,81	708,56	€ 78,71	m3	579,2	2.834,2
BFB19400 /	/BFB3-0999	Tubo PE 63 mm 10 bar	1,48	56,33	€ 1,80	m	570,6	21.718,6
B0331800 /	/ B03J-0K8J	Grava de cantera de piedra cal 12 a 18	2,65	51,12	€ 21,12	t	550,3	10.614,8
	2 / BHM2-0FH4	Columna acereo galvanizado h=2,4m	21,53	229,75	€ 121,57	m		5.743,8
	/ BD7C-0L6X	Tuberia PVC helicoidal 1000	48,52	1383,28	€ 75,84	m	509,5	14.524,4
	/ P4DG-3XQ4	Encofrado metalico < 3m	10,33	116,44	€ 18,44	m2	423,5	4.774,0
	/ B9M1-1KQO	Emulsión de resinas sintéticas en base acuosa, para car		63,72	€ 5,37	kg	-	8.050,1
	/ B811-1ZVE	Mortero hidrofugo M700	494,172	2347,164	€ 66,29	m3		962,3
	/ BN10-2MVF	Valvula compuerta 100	38,42	484,9	€ 199,91	u		1.939,6
	/ BJM9-FFVY	Ventosa 50	34,49	422,37	€ 189,62	u		1.689,5
	/ BBM4-0SIG	Cartel para señales 0,4*0,6	11,1048	158,808	€ 55,74	u		1.429,3
	/ B9H0-2MT8	Aglomerado asf. En frio	50	7510	€ 830,00	t		8.110,2
	/ B9M0-1KQQ	Emulsión de resinas sintéticas en base acuosa, para car		47,9667	€ 5,84	kg		3.030,0
	/B0D31-07P4	Lata de madera de pino	43,45	907,91	€ 388,96	m3		1.271,1
	/ B0F10-1BN7	Ladrillo perforado 24x11,5x7	0,47	5,21	€ 0,22	u	60,7	672,4
BJS6G7B1 /	/ BJSI-2F6P / BDG0-1C29	Inundador caudal 0,9 I/min	0,14	2,94	€ 31,41	u		1.040,8
	•	Banda señalización polietileno Grava de cantera piedra gran 5-12	0,03	1,09	€ 0,13 € 25,35	m +		1.288,7
	/ B03J-0K8B / BFB3-096T	Tubo PE 32 mm 10 bar	2,65 0,4	51,12 15,24	€ 25,35 € 0,56	t m	12,8 10,5	247,7 400,1
	/ BBA1-2XWQ	Pintura acrilica blanca para marcas viales	3,9547	80,6968	€ 0,58	m ka		198,3
	/ B0B7-106R	Acero en barras corrugadas	0,88	14,24	€ 2,38	kg ka		59,8
DUD28000 /	P0D1-100K	Acero en parras corrugadas	0,00	17,24	€ 1,1/	kg	3,1	0رود

Figura 30Total de emisiones y consumo de energía de maquinarias en el proyecto. Fuente: elaboración propia.

CODIGO (BEDEC)	DESCRIPCIÓN E	CONSUMO (CO2) kg/udm	CONSUMO (Energía) MJ/udm	PRE		UdM	Emisiones Total kg/udm	Energia Total MJ/udm
C133E0N0 / C13D-00F3	Tractor con fresadora	105,94	1.661,40	€ 4	1,75	h	125.275,02	1.964.620,65
C1502D00 / C151-0033	Camión cisterna 6m3	61,29	961,18	€ 5	1,24	h	74.704,69	1.171.555,81
C1331100 / C136-00F4	Motoniveladora pequeña	48,06	755,13	€ 7	9,14	h	59.280,58	931.396,94
C1311440 / C138-00KQ	Pala cargadora s/neumáticos 15 a 20t	93,54	1.469,67	€ 10	0,80	h	39.154,65	615.189,56
C1501800 / C154-003M	Camión transp.12 t	61,50	966,25	€ 4	8,40	h	37.764,07	593.340,64
C1313330 / C13C-00LP	Retroexcavadora s/ neum 8 a 10 t	36,69	576,50	€ 5	2,25	h	29.972,02	470.913,57
C1105A00 / C115-00EE	Retroexcavadora con martillo rompedor	38,76	608,98	€ 5	9,00	h	21.670,85	340.488,10
C1503000 / C152-003B	Camión grúa	103,36	1.623,94	€ 5	7,92	h	20.064,13	315.243,51
C1709B00 / C175-00G4	Extendedora p/pavimento mezcla bitum	89,92	1.412,83	€ 5	4,96	h	13.554,48	212.965,29
C200D000 / C20O-00DR	Vibrador de aguja	7,17	174,21	€	1,30	h	12.159,51	295.440,51
C1335080 / C131-005E	Rodillo vibratorio autopropulsado 8 a 10 t	41,34	648,35	€ 5	6,76	h	9.337,11	146.437,26
C110F900 / C113-00JJ	Fresadora pavim.,carg.aut.	55,30	868,81	€ 10	0,25	h	6.586,93	103.492,56
C150G800 / C15G-00DD	Grúa autropopulsada de 12 t	640,82	1.006,84	€ 5	2,53	h	5.126,57	8.054,76
C1101200 / C111-0056	Compresor+dos martillos neumáticos	4,96	77,95	€ 1	4,32	h	3.824,53	60.090,11
C170D0A0 / C173-005K	Rodillo vibratorio autopropulsado neumatico	55,30	868,81	€ 6	6,00	h	2.288,62	35.958,31
C150MKA0 / C156-003X	Camión semiremolque 25 t con plataforma (bañera)	116,28	1.823,49	€ 4	6,74	h	1.207,68	18.938,77
C1B02A00 / C1B0-006C	Maquina para pintar bandas de vial, autopropulsada	33,59	527,78	€ 3	5,53	h	951,56	14.950,77
C133A0K0 / C13A-00FQ	Bandeja vibrante,pla.60cm	10,34	162,39	€	5,49	h	923,00	14.501,97
C1502F00 / C151-0032	Camión cisterna 10m3	78,55	1.234,20	€ 5	8,07	h	701,48	11.021,50
C170E000 / C174-00GD	Barredora autopropulsada	5,32	83,63	€ 4	2,46	h	634,06	9.962,36
C17A3C50 / C17C-00GK	Planta asfaltica 60 t/h	19,60	476,38	€ 11	5,00	h	286,31	6.958,74
CRE23000 / CRE0-00C0	Motosierra	1,29	20,30	€	3,41	h	217,13	3.411,37
CL40AAAA /CL40-00J3	Plataforma elevadora	20,52	321,74	€ 3	9,44	h	49,25	772,18
C1505120 C15E-0062	Dúmper de 1,5 t de carga útil, con mecanismo hidráulico	5,68	89,32	€ 2	5,58	h	14,19	222,93
C2001000 / C20H-00DN	Martillo romp.man.	2,15	53,90	€	3,69	h	7,10	177,86

6 PROPUESTAS

Según lo analizado a lo largo de la investigación con el estudio del contexto, el análisis de propuestas en otros países y la ejecución del cálculo de emisiones en el proyecto de urbanización, se realizan las propuestas para incluir el cálculo de emisiones de CO2 como criterio de adjudicación en contrataciones de construcción públicas bajo la forma de contratación diseño-licitación-construcción (DBB por sus siglas en inglés).


A partir de las propuestas planteadas se busca incluir como criterio de adjudicación en los proyectos de construcción al cálculo de emisiones de CO2, logrando generar una metodología que permita adaptarse a los recursos limitados por parte de la administración pública a la hora de su evaluación. Además se busca incluir una metodología de cálculo que se acople y adapte al proceso de contratación para lograr una inclusión ágil y practicable, a partir de las cuales se logre obtener información útil no solo para la propia contratación sino también para obtener información a la hora de realizar el seguimiento de la situación ambiental de los proyectos para responder a las necesidades planteadas por las directivas europeas establecidas por la GPP y los lineamientos planteados por parte del Acuerdo Paris 2030.

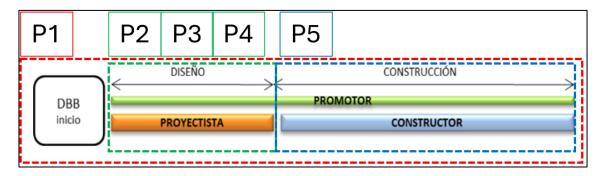
Las propuestas realizadas se limitan al estudio de emisiones de CO2 tanto en la fase de diseño como en la presentación de ofertas para la etapa de construcción para lograr optimizar el rendimiento ambiental del proyecto. La información obtenida a partir de la aplicación de esta metodología puede funcionar como una fuente de información que permita a futuro vincularse a la información requerida para certificaciones tales como el CO2 Performance Ladder a nivel europeo o el Registro de Huella de Carbono en España.

Desde el punto de vista del Análisis de Ciclo de Vida, las propuestas se centran en las etapas de Diseño y Planificación y Construcción, tal y como se indica en la *Figura 31*.

Figura 31

Etapas del ciclo de vida donde se enmarcan las propuestas. Fuente: Adaptación Chávez Virgen, M. (2019).

Se realizan 5 propuestas para la inclusión del cálculo de la huella de carbono como criterio de adjudicación, las cuales actúan en distintas etapas del proceso de contratación tal y como se esquematiza en la *Figura 32*:



- Propuesta 1: base de datos única para cálculo de emisiones.
- Propuesta 2: fase de diseño: cuadro de precios con información ambiental de emisiones y energía.
- Propuesta 3: fase de diseño: identificar capítulos del presupuesto con mayor preponderancia y con mayor potencial de mejoría.
- Propuesta 4: fase de diseño, establecer línea base de emisiones para comparativa de ofertas.
- Propuesta 5: fase de construcción, presentación de ofertas con mejoras en los valores ambientales de fase de diseño.

Figura 32

Esquema de propuestas en el proceso de contratación. Fuente: elaboración propia.

6.1 Propuesta 1: Base de datos única para cálculo de emisiones.

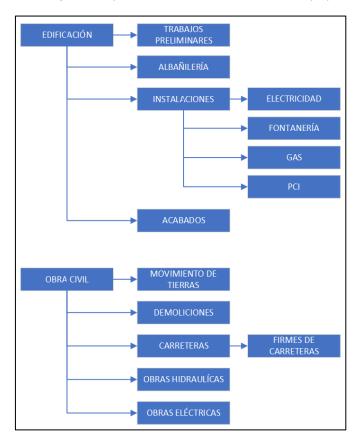
Generar una base de datos de las emisiones de CO2 de los materiales y maquinarias implicadas en los proyectos de construcción, es un paso fundamental para abordar la problemática desde una perspectiva integral, uniforme y lograr que la información que se utilice brinde indicadores representativos que permitan plantear estrategias y controles adecuados.

Una base de datos de emisiones única permitiría a la administración pública monitorear y evaluar el impacto de los proyectos a lo largo del tiempo. Facilitaría la identificación áreas de mejora y generaría información que facilite estimaciones de emisiones en función de las diferentes tipologías de proyectos.

La recopilación de datos de emisiones, además, serviría como base para establecer objetivos y metas específicos en términos de alcanzar los requerimientos de los acuerdos internacionales y estrategias planteadas a nivel macro. Tener información fiable y actualizada favorece al desarrollo de mejora continua y la innovación en prácticas de construcción más sostenibles. Facilita la retroalimentación sobre el rendimiento ambiental y brinda oportunidades para la adopción de nuevas tecnologías y enfoques más eficientes.

A la hora de analizar la bibliografía y realizar el cálculo de emisiones en el proyecto presente en esta investigación, se encontró un déficit muy grande en la uniformidad de la información. Para solucionar este problema, se deben abordar dos puntos principales: esquematización adecuada de la información y evitar información duplicada y contradictoria.

Por un lado, se debe lograr una esquematización de la información que sea acorde a la dinámica con la que se actualiza e incrementa la información de los elementos que conforman los proyectos. Tal y como se analizó en la base de datos utilizada, estas presentan actualizaciones



(trimestrales en el caso del BEDEC), en donde se agregan elementos pertenecientes a la base de datos en función de presencia de nuevos tipos de materiales y maquinarias. Al pertenecer la construcción a un mercado dinámico y en constante evolución, es necesario que la falta de información de ciertas partidas específicas no limite la posibilidad de generar cálculos representativos de ciertas etapas de los proyectos. Para ello, se presenta como solución una adecuada categorización de los elementos que forman la base de datos en distintos niveles, que permitan utilizar información más general para aquellas partidas que no estén presentes cuando se aborda el análisis del proyecto.

Para facilitar la ejecución de las mediciones del proyecto, se plantea hacer un esquema de información que agrupe desde categorías generales de construcción hacia el detalle de las partidas, y con esta categorización realizar una adecuada codificación. Como esquema general se presenta en la *Figura 33* una ejemplificación de un esquema para algunas áreas de trabajo.

Figura 33

Ejemplo de esquematización de información para base de datos. Fuente: elaboración propia.

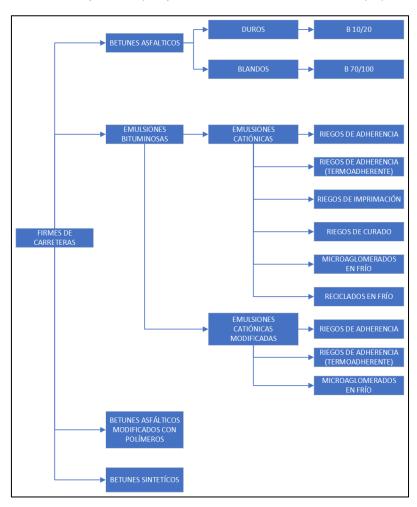

Se toma como ejemplo, según los limitantes encontrados en el proyecto de estudio de esta investigación, la forma de esquematizar la información perteneciente a los betunes asfalticos y sus derivados para firmes de carreteras. Lograr agrupar la información en subcategorías adecuadas genera que, a la hora de no tener información específica sobre un cierto material, se lo pueda identificar, aunque de manera menos precisa, dentro del grupo de materiales al que pertenece, llegando a niveles de detalle que se adapten a la información presente en la base de datos. En este caso para categorizar estos elementos se podría dividir según lo esquematizado en la *Figura 34*, en lo referente al apartado de firmes de carreteras.

Figura 34

Ejemplo de esquematización de información para firmes de carretera. Fuente: elaboración propia.

De esta manera, y tomando como ejemplo la partida no presente en la base de datos utilizada en el proyecto MBC FA MICROAGLOMERADO FONOABSORBENTE (*Figura 35*), podríamos situar al microaglomerado fonoabsorbente detallado en el presupuesto dentro de la categoría de mezclas bituminosas en caliente, utilizando como valor de emisiones al que más se asemeje en cuanto a características técnicas de los presentes, sin la necesidad de limitar el cálculo por la ausencia de este. Dicha elección respondería a un criterio preestablecido con el que se deberán trabajar aquellas en las que se encuentre este mismo inconveniente.

Figura 35

Partida de presupuesto no presente en base de datos. Fuente: Actuaciones Urbanas de Valencia (2018).

PC_DFIRM0601	T MBC FA MICROAGLOMERADO FONOABSORBENTE	1046,45	40,30	42.171,94
	Suministro y puesta en obra de capa de rodadura de mezcla bituminosa en caliente tipo microaglomerado fonoabsorbente, incluso barrido previo de la superficie, extendido a máquina y compactado.			

Por otra parte, como eje del desarrollo de la base de datos mencionada, se debe solucionar la problemática presente con respecto a la pluralidad de información presente en distintas bases de datos. Para ello es que se considera la importancia de no trabajar con información duplicada.

Tal como se analizó en el análisis bibliográfico, el principal problema de la información ambiental no se encuentra en la falta de información sino en la cantidad de fuentes que detallan y cuantifican diferentes valores para mismos elementos.

6.2 Propuesta 2: Fase de diseño: cuadro de precios con información ambiental de emisiones y energía.

A la hora de realizar el proyecto de construcción en fase de diseño, se debe considerar la información ambiental como un elemento importante a considerar. Para ello, se propone cuantificar los valores de emisiones de la totalidad del proyecto en esta etapa. Igual que se realiza el presupuesto, hay que asignar valores a cada partida y cuantificar las emisiones de cada uno de sus elementos.

Una vez definida la fuente de donde se obtenga la información fiable para asignar valores ambientales a las partidas del proyecto, se plantea cómo deberán incluirse las emisiones. Aprovechando la estructura presente en el cuadro de precios del presupuesto que ya se realizan en fase de diseño, se propone incluir de la misma manera la información ambiental. Para ello, es de suma importancia alcanzar un nivel de detalle en el cuadro de precios que asegure la inclusión de los materiales y maquinarias de cada elemento del presupuesto. De esta manera se evita que exista mayor libertad a la hora de definir los elementos implicados en cada actividad y que los resultados obtenidos sean claros y precisos.

Dada la variabilidad presente en las características de los proyectos de construcción, tanto por la propia singularidad que presentan, como el continuo avance de tecnologías, materiales y metodologías de trabajo, el proceso de cálculo de un proyecto a otro tiene un carácter dinámico que se debe adaptar a las necesidades propias de cada caso en particular. Respondiendo a esta variabilidad, lo que se busca lograr con esta propuesta es estandarizar un proceso de cálculo que logre reducir la variabilidad de los resultados bajo una metodología que responda y se pueda adaptar a las necesidades de los proyectos.

El cálculo de emisiones de cada partida, tal y como se realizó en el proyecto calculado en la presente investigación, se realizará mediante el producto de la cantidad a ejecutar de cada partida por unidad de medida por el valor unitario de emisiones calculado en función de la información proveniente de la base de datos. Cada partida del presupuesto estará conformada por los elementos necesarios para su ejecución, compuesta por los materiales que la conforman y las maquinarias empleadas, en función de cuyos rendimientos se obtendrá el valor ambiental unitario para la unidad de medida de la partida a ejecutar.

Tomando como ejemplo el cálculo de emisiones asociadas a una partida de obra de 30 m3 de "BASE DE HORMIGONES", se obtendría el resultado de la siguiente manera:

En primer lugar, se debe tener la información respecto al rendimiento de los materiales y maquinarias por unidad de obra de la partida a calcular. Supongamos que el rendimiento para realizar 1 m3 de base de hormigones se detalla de la siguiente manera:

1,025 m3	Hormigón en masa HM 20
0,2 h	Vibrador aguja

 Luego se deberán obtener de la base de datos utilizada los valores ambientales asociados a los elementos que conforman la partida de obra:

190,7389 kgCO2/m3	Hormigón en masa HM		
923,4872 MJ/m3	20		
7,1670 kgCO2/h	Vibrador aguja		
179,4973 MJ/h			

- Obtenidos los valores se calcula el valor por unidad de medida de dicha partida como el producto entre el rendimiento y la información ambiental:
 - Emisiones directas de CO2:

HM 20: 1,025 m3 x 190,7389 kgCO2/m3 = 195,51 kgCO2.

Vibrador aguja: 0,2 h x 7,1670 kgCO2/h = 1,43 kgCO2.

Consumo de energía:

HM 20: 1,025 m3 x 923,4872 MJ/m3 = 946,57 MJ.

Vibrador aguja: $0.2 \text{ h} \times 179,4973 \text{ MJ/h} = 35,90 \text{ MJ}$,

- Calculados los valores unitarios de los elementos que conforman la partida de obra se suman para obtener el valor unitario total de la partida.
 - Emisiones directas de CO2:

195,51 kgCO2 + 1,43 kgCO2 = 196,94 kgCO2/m3.

Consumo de energía:

946,57 MJ + 35,9 MJ = 982,47 MJ/m3.

946,57 MJ + 35,90 MJ = 982,47 MJ/m3.

- El valor total para la partida del proyecto se obtendrá como el producto entre la cantidad a ejecutar (30 m3 en este ejemplo) por el valor obtenido unitario para la partida.
 - Emisiones directas de CO2:

30 m3 x 196,94 kgCO2/m3 = 5908,2 kgCO2.

Consumo de energía:

 $30 \text{ m}3 \times 982,47 \text{ MJ/m}3 = 29474,1 \text{ MJ}.$

Una vez calculadas las partidas del presupuesto, se tendrá la información correspondiente al total de emisiones como su suma, y se podrá discretizar agrupando los valores de cada capítulo o, como sea conveniente al analizar el proyecto. A partir de ello, se podrá identificar a posteriori el impacto con respecto al nivel de emisiones de cada etapa del proyecto.

6.3 Propuesta 3: Fase de diseño: identificar capítulos del presupuesto con mayor preponderancia y con mayor potencial de mejoría.

Una vez realizados los cálculos de emisiones, se debe analizar e interpretar la información obtenida. Para ello, se utilizará como primera medida la discretización del proyecto en capítulos correspondiente al presupuesto. A partir de esta información, se podrá identificar la relevancia

de cada etapa del proyecto y obtener valores representativos que permitan focalizar las propuestas de mejoras en áreas concretas de trabajo.

Tal y como destaca el artículo "Estableciendo los criterios de la huella de carbono para proyectos de construcción pública" (Kuittinen, M. Setting the carbon footprint criteria for public construction projects), es necesario jerarquizar las áreas de trabajo a mejorar en el proyecto debido a que los recursos y plazos son limitados a la hora de realizar tanto los proyectos en fase de diseño como la presentación de ofertas para la fase de construcción.

Son importantes para el análisis, según lo analizado en el proyecto de estudio del presente informe, tanto el valor absoluto de emisiones que representa cada capítulo, como el valor relativo con respecto al volumen de producción de la porción de proyecto a analizar. Para lograr relativizar con respecto a una unidad de medida única las emisiones, se toma como referencia las emisiones de CO2 por euro (o unidad monetaria correspondiente al proyecto).

Es muy importante realizar ambos análisis porque, si focalizamos solo los esfuerzos de mejora en los valores absolutos de emisiones más altos, podemos dejar partidas con altas ineficiencias ambientales y no serían detectadas por el bajo volumen de producción del proyecto. Además, de esta manera lograremos identificar el impacto de la disminución de emisiones en relación con el cambio de coste generado en el proyecto.

Continuando con el ejemplo de BASE DE HORMIGONES, y asumiendo un precio de 60 €/m3, los valores absolutos y relativos de dicha partida se calcularían de la siguiente manera:

m3 BASE DE HORMIGONES						
kgCO2		MJ	kgCO2/€	MJ/€		
	196,94	982,47	3,28	16,37		

Así se pueden comparar los valores de emisiones que representan las partidas independientemente del volumen de producción, y detectar ineficiencias ambientales en partidas del presupuesto que dado al pequeño volumen de producción que representen no serían representativas en el valor absoluto del proyecto.

Otra herramienta que nos brinda el valor relativo de emisiones y consumo de energía es detectar irregularidades de manera simple con proyectos previamente calculados. Así podemos comparar valores con partidas similares en proyectos más eficientes y detectar irregularidades por emisiones superiores a las calculadas en otros proyectos de manera sencilla y sin necesidad de adentrarse en el detalle de cada etapa del proyecto.

Se utilizarán los resultados obtenidos en el proyecto de estudio de esta investigación para realizar un análisis de los valores obtenidos, se presenta en la *Figura 36* los valores de emisiones y consumo de energía de los capítulos correspondientes a:

- DEMOLICIONES Y TRABAJOS PREVIOS.
- MOVIMIENTO DE TIERRAS.
- PAVIMENTACIONES.
- RED DE SANEAMIENTO Y DRENAJE.
- RED DE TELECOMUNICACIONES.
- MUROS Y ESTRUCTURAS.

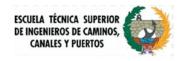


Figura 36

Resultados de cálculo de emisiones de proyecto de urbanización. Fuente: elaboración propia.

CODIGO	RESUMEN	%PR CAL	CO2	%CO2	%CO2 MAQ	%CO2 MAT	Energia	%EN	%EN MAQ	%EN MAT	CO2/€	EN/€
C01	DEMOLICIONES Y TRABAJOS PREVIOS	4,3%	68.760	2,0%	95,2%	2,7%	1.075.153	2,7%	95,7%	0,9%	0,88	13,81
C02	MOVIMIENTO DE TIERRAS	7,9%	317.761	9,5%	62,7%	33,7%	5.366.531	13,7%	58,2%	38,4%	2,21	37,36
C03	PAVIMENTACIONES	29,9%	1.461.449	43,5%	4,4%	95,6%	12.842.579	32,8%	8,3%	91,7%	2,70	23,72
C05	RED DE SANEAMIENTO Y DRENAJE	15,6%	484.709	14,4%	4,4%	87,8%	6.803.146	17,4%	5,2%	85,9%	1,72	24,15
C08	RED DE TELECOMUNICACIONES	3,3%	77.068	2,3%	7,9%	91,5%	1.313.127	3,4%	7,3%	92,3%	1,31	22,30
C17	MUROS Y ESTRUCTURAS	4,8%	208.502	6,2%		98,1%	1.541.898					17,86

Los resultados que se obtienen se describen de la siguiente manera:

- %PR CAL: corresponde al porcentaje de presupuesto que representa el capítulo con respecto al presupuesto total.
- CO2 y %CO2: corresponde a los kg de CO2 del capítulo y el porcentaje que representa con respecto al total de emisiones del proyecto.
- " %CO2 MAQ y %CO2 MAT: corresponde al porcentaje de emisiones de CO2 que representa la maquinaria y materiales en el capítulo correspondiente.
- Energía y %EN: corresponde a los MJ de consumo de energía del capítulo y el porcentaje que representa con respecto al total de consumo de energía del proyecto.
- %EN MAQ y %EN MAT: corresponde al porcentaje de consumo de energía que representa la maquinaria y materiales en el capítulo correspondiente.
- CO2/€ y EN/€: corresponde a los kg CO2 y MJ por euro respectivamente que representa cada capítulo.

El análisis se centra en tres ejes a analizar:

- Valores absolutos de emisiones: Este valor vendrá representado por los valores de CO2 y Energía, y porcentualmente con respecto al total del proyecto en las columnas de %CO2 y %, se puede observar cómo capítulos tales como PAVIMENTACIONES y en menor medida RED DE SANEAMIENTO Y DRENAJE o MOVIMIENTO DE TIERRAS, representan valores porcentuales importantes dentro del cálculo de emisiones y consumo de energía. Estos valores muestran partes del proyecto en donde dada la tipología de obra a ejecutar y la importancia que representan dentro de esta, los esfuerzos por optimizar el rendimiento ambiental son de suma importancia. Esto nos indica que el rendimiento ambiental del proyecto está relacionado con las particularidades del proyecto y por eso, hay que interpretar e identificar los capítulos más relevantes de producción.
- Valores relativos de emisiones: Este valor vendrá representado por el CO2/€ y EN/€, este valor es de suma importancia para identificar deficiencias en partidas del presupuesto, ya que nos indica el rendimiento independiente del volumen de producción, siendo un indicador importante a la hora de detectar deficiencias en el proyecto. Se puede observar como el capítulo como DEMOLICIONES Y TRABAJOS PREVIOS o RED DE TELECOMUNICACIONES, presentan bajos valores ambientales por euro con respecto al proyecto. En el primer caso se debe al alto porcentaje asociado a maquinarias presente en el proyecto con respecto a los materiales, mientras que en el segundo está asociado a un bajo consumo de materiales en masa tal como puede ser el hormigón o betunes asfalticos presentes en otros capítulos.
- Valores ambientales asociados a maquinarias y materiales: Se debe efectuar un seguimiento de los materiales y maquinarias implicados en el proyecto. En primer lugar,

analizar el porcentaje de emisiones asociadas a maquinarias y materiales nos dará un primer indicio de los aspectos a considerar en la partida analizada. Si relacionamos las emisiones y el consumo con los porcentajes de maquinaria y materiales implicados, nos brindará una primera aproximación al comportamiento de dicha partida con respecto a sus valores ambientales. Por otro lado, independientemente del capítulo o partida analizada, se debe cuantificar la implicancia de cada material y maquinaria que está presente en el proyecto. Esto nos permite encontrar aquellos elementos implicados desde un análisis transversal a los trabajos a realizar y encontrar puntos críticos que puedan afectar de manera repetitiva en diferentes áreas de trabajo y que no sean fácilmente detectables sin una adecuada cuantificación en el análisis. Es decir que se pueden encontrar materiales o maquinarias que no se detecten como grandes deficiencias en el análisis puntual por partidas del presupuesto pero que en el valor acumulado del proyecto sean significativos para su optimización.

6.4 Propuesta 4: Fase de diseño, establecer línea base de emisiones para comparativa de ofertas.

Tras finalizar los cálculos correspondientes a emisiones y consumo de energía del proyecto, con su respectivo análisis y optimización en fase de diseño, se establece la línea base ambiental sobre la cual se evaluarán las ofertas de las empresas participantes del proceso de adjudicación para su construcción.

La línea base de emisiones y consumo de energía se establecerá fijando los valores ambientales del proyecto tras finalizar la fase de diseño, y permitirá comparar el valor total de emisiones y consumo de energía proyectado con el valor total de las propuestas de mejora en la fase de licitación por parte del ente constructor. Esto permitirá comparar ágilmente las propuestas y permitir flexibilidad en las formas de optimizar el proyecto a partir de una referencia.

Tal y como se plantea en el estudio de las propuestas en diferentes países, uno de los puntos a mejorar se encuentra en el registro de la información con respecto a optimizaciones ambientales. Es muy importante tener un seguimiento del beneficio real que nos da aplicar herramientas de optimización independientemente de qué área se apliquen. Tener un registro representativo y ejecutable nos brinda información que logra evidenciar el funcionamiento de las herramientas aplicadas. En el caso de estudio, las alternativas propuestas se deben comparar con respecto a un punto de partida, que vendrá representado por la línea base ambiental planteada en esta propuesta.

Introduciendo para este apartado el concepto de "handprint" mencionado en el capítulo 3 de este informe en el estudio de propuestas en otros países, puntualmente en el artículo "Reducción de la huella de carbono de edificaciones: Nuevos estándares y evaluaciones finlandesas" (Kuittinen, M., Häkkinen, T. Reduced carbon footprints of buildings: new Finnish standards and assessments), en donde se define este concepto como las acciones positivas y sostenibles que una persona, organización o proyecto realiza para contrarrestar o compensar su huella ecológica o impacto negativo en el medio ambiente. Se considera como acción positiva en el proyecto a la disminución de emisiones y consumo de energía con respecto a la línea base del proyecto.

6.5 Propuesta 5: Presentación de ofertas con mejoras en los valores ambientales de fase de diseño.

Una vez finalizada la fase de diseño y con el proyecto lanzado a licitación comienza la etapa de presentación de ofertas para la fase de construcción. En esta etapa se propone que las empresas ofertantes añadan propuestas que mejoren el rendimiento ambiental con respecto a las emisiones de CO2 y el consumo de energía.

Tal y como se plantea en las propuestas en fase de diseño, se establecen los puntos críticos en donde enfocar las propuestas de mejora del proyecto. Las modificaciones que se realicen al proyecto para lograr optimizar los valores ambientales deberán cumplir con ciertos requisitos técnicos y económicos.

Las modificaciones realizadas en la propuesta no deben disminuir tanto la calidad como la funcionalidad del proyecto a ejecutar, se deben plantear alternativas que como mínimo respeten las condiciones planteadas en fase de diseño y deberán justificarse con un informe técnico que demuestre que la alternativa planteada satisface dicha condición.

Las alternativas propuestas en la presentación de ofertas para la fase de construcción vendrán vinculadas a una modificación en el precio del proyecto. Este cambio de precio deberá limitarse según las características del proyecto. La optimización ambiental del proyecto no puede analizarse de manera aislada de su precio de ejecución.

Serán eximidas de análisis las ofertas que superen cierto monto previamente establecido en la fase de diseño. Estos límites variarán en función del tipo de proyecto, presupuesto total de ejecución y las propias características técnicas y particularidades presentes en cada uno. De esta manera, se logrará optimizar el proceso de selección evitando el análisis de ofertas que no cumplan los requisitos mínimos de precio.

Se debe establecer una relación entre las modificaciones de precio derivadas del planteo de alternativas más eficientes desde el punto de vista ambiental con el beneficio de la disminución de emisiones y consumo de energía, logrando comparar las ofertas que estén dentro de los límites permitidos de precio y optimizar el rendimiento ambiental del proyecto.

Tomando como referencia lo analizado en el CAPITULO 3 del presente informe, en el artículo "Utilizando la contratación pública como política de descarbonización: un vistazo a Alemania" (Chiappinelli, O., & Zipperer, V. Using public procurement as a decarbonisation policy: A look at Germany), se establecen dos alternativas para la inclusión de las emisiones de CO2 como criterio de adjudicación en la evaluación de las ofertas para la fase de construcción:

- Pesos específicos, dando puntaje a partir de una media ponderada con el peso relativo de cada criterio considerado. Bajo esta metodología, se brindará un peso relativo al criterio ambiental dentro del cálculo de puntajes para la evaluación de la oferta. Así, las variaciones en el precio asociadas a las mejores ambientales se plasmarán en el puntaje correspondiente al precio y las ofertas se compararán directamente con el puntaje global obtenido.
- Monetización de criterios no económicos, en este caso se mantiene la idea de precio más bajo, monetizando de manera ficticia a aquellos criterios que no se relacionen con lo económico. Se plantea bajo esta propuesta un valor económico a los kg de CO2 y

consumo de energía que se sumarán al precio final de la oferta, comparando así el precio total equivalente con la monetización del criterio ambiental.

7 CONCLUSIONES

7.1 Cumplimiento de los objetivos

Con respecto al objetivo general, establecer las pautas necesarias para poder incluir a las emisiones de CO2 como criterio de adjudicación en contrataciones de construcción, se cumplió con los establecido en un comienzo de la investigación. El hecho de combinar un análisis de contexto y lineamientos de propuestas en otros países, con un ejercicio práctico, como fue el cálculo emisiones de un proyecto en particular, permitió comprender y obtener conclusiones sobre la realidad de la situación en la que se encuentra la temática, así como también entender las necesidades que se tienen para materializar una propuesta ejecutable.

Cabe mencionar que dentro de lo que fueron las propuestas realizadas, solo se abordó la problemática desde la fase de diseño y construcción. Si bien se cumple con el objetivo planteado, abordar la temática con un enfoque mas amplio teniendo en cuenta el ciclo de vida completo del proyecto es una necesidad a futuro para ampliar la optimización ambiental de los proyectos.

Con respecto a los objetivos particulares planteados:

- Analizar el contexto en el cual se enmarca la contratación pública española mediante la revisión bibliográfica. Se cumplió, analizando tanto la Ley de Contratos del Sector Público como lo asociado al Plan de Contratación Pública Ecológica.
- Analizar los lineamientos propuestos por el Acuerdo Paris 2030 y el Green Public Procurement para adaptarlo a las necesidades propias de España. Se cumplió, permitiendo de esta manera proyectar los lineamientos de la propuesta realizada para alinearse con las necesidades establecidas por la Unión Europea.
- Analizar propuestas de otros países acordes a la temática a estudiar. Se cumplió, analizando investigaciones y publicaciones referentes a la temática que funcionaron como ejes de la propuesta realizada.
- Proponer los requerimientos necesarios para lograr implementar como criterio de adjudicación a las emisiones de CO2 en licitaciones públicas españolas. Se cumplió, estableciendo los puntos necesarios con los que posteriormente se realizaron las propuestas planteadas.
- Evaluar los limitantes actuales a partir del cálculo de emisiones en un proyecto de urbanización. Se cumplió, a partir de los cálculos realizados en el proyecto se lograron obtener conclusiones acerca tanto del proceso de cálculo como de puntos importantes a la hora de analizar los resultados.
- Definir aspectos con potencial de mejora para optimizar la inclusión de criterios de ambientales asociados a las emisiones de CO2. Se cumplió, estableciendo los lineamientos para futuras investigaciones presentes en el documento.

7.2 Conclusiones de la investigación

La inclusión de la huella de carbono en licitaciones públicas de construcción es tema de vital importancia para afrontar la emergencia actual del cambio climático. Los valores que representa tanto económicamente como a nivel ambiental la construcción, mayormente la impulsada desde el sector público, sumado a los objetivos planteados por parte de los acuerdos y planes a nivel

europeo, resaltan la urgencia de abordar de manera practica y eficiente la contratación pública desde una perspectiva ecológica.

Al realizar esta investigación se encontraron múltiples desafíos a afrontar por parte de la administración pública para poder hacer efectiva la inclusión de la huella de carbono como criterio de adjudicación de manera integral en todos sus proyectos de construcción. Los desafíos que se encuentran incluyen desde aspectos legales y leyes que necesitan ser revisadas, falta de estandarización de información, necesidad de capacitación y una estructura que permita afrontar los costes asociados a replantear el enfoque tradicional de la contratación.

A pesar de los múltiples desafíos presentes, la urgencia de afrontar esta problemática requiere herramientas que se puedan aplicar en el corto plazo y que se adapten desde los aspectos legales y económicos, asi como también, respetando la competitividad y sin censurar a las empresas de menor respaldo económico. A partir de esto juega un papel fundamental la innovación tanto por parte de las empresas licitantes como por la cadena de suministro en general, para poder adaptar los más rápido posible las condiciones del mercado a favor de una perspectiva sustentable.

7.3 Pautas y lineamientos para futuras investigaciones

A partir del trabajo de investigación realizado, y al tratarse de una temática que afronta una problemática de actualidad, surgen múltiples aspectos en los que profundizar y ampliar la investigación resultaría ventajoso. Se destacan tres temáticas consideradas de alto interés.

7.3.1 Contratos colaborativos (IPD) y huella de carbono.

La metodología de contratación IPD (Integrated Project Delivery) puede ser una herramienta efectiva para potenciar y optimizar la inclusión de la huella de carbono como criterio de adjudicación en proyectos de construcción.

Al tratarse de una metodología de contratación con un enfoque colaborativo, se motiva a la toma de decisiones conjunta y fomentar el compromiso de las partes desde la fase de diseño. A partir de esto se puede manejar de manera dinámica la evaluación de alternativas.

Esta metodología propone objetivos compartidos, pudiendo funcionar en este caso a un trabajo colectivo que aproveche la pluralidad de conocimientos para obtener resultados innovadores y adaptados a la necesidad del proyecto.

IPD promueve la transparencia para compartir información. Esto facilita la medición y la evaluación de la huella de carbón, la implementación de sistemas de seguimiento y medición puede ser integrada en la metodología IPD para evaluar y mejorar continuamente el desempeño ambiental.

En cuanto a las propuestas presentes en esta investigación, tal y como muestra su esquematización, las mismas están incluidas en diferentes etapas de la fase de contratación. Aplicar una metodología de trabajo como IPD agilizaría la busca de optimizaciones ambientales y permitiría evitar dividir el proceso en cálculos propios de la fase de diseño que a posteriori buscan ser optimizados por los ofertantes, a un único proceso de optimización conjunto donde los actores implicados puedan nutrir sus propuestas en un ambiente colaborativo.

7.3.2 Base de datos de emisiones.

En la propuesta número uno de esta investigación ("base de datos única para el cálculo de emisiones") se establece una necesidad de generar una fuente de información única y con una estructura que permita evitar controversias en el cálculo y facilite su uso a partir de una esquematización adecuada de la información.

Esta herramienta que se plantea como una necesidad tiene suma importancia para lograr que el resto de las propuestas funcionen de manera adecuada. Por este motivo, se considera fundamental profundizar en la investigación y creación de una estructura óptima para generar esta plataforma.

Se considera una línea de investigación futura de suma importancia al estudio de tipologías de obra presentes en proyectos de construcción, asi como también el análisis exhaustivo de bases de datos presentes en el mercado para poder unificar criterios y generar un esquema y categorización de información óptimo para la inclusión de la huella de carbono como criterio de adjudicación.

7.3.3 Inclusión de criterios de adjudicaciones desde la perspectiva del Análisis de Ciclo de Vida.

En la presente investigación se realizaron propuestas para la inclusión del cálculo de huella de carbono como criterio de adjudicación. Estas propuestas se aplicaron a dos etapas del ciclo de vida del proyecto: al diseño y a la construcción.

Se considera como una línea de investigación futura a la inclusión de criterios de adjudicación sobre emisiones de gases de efecto invernadero que contemplen el ciclo de vida completo de la edificación. Dentro de esta línea de investigación se destacan como temáticas importantes el estudio de la fase de explotación de los proyectos, su disposición final una vez cumpla con su periodo de utilidad, gestión de residuos, entre otros puntos importantes.

Para tener un enfoque más completo del ciclo de vida del proyecto es necesario ampliar y profundizar sobre el marco legal que aplica sobre estos, definiendo responsabilidades de los agentes implicados y generando una metodología de control y fiscalización de los rendimientos ambientales extendido en el tiempo para poder materializar un control efectivo y representativo de la situación real de las edificaciones durante el ciclo de vida completo.

8 BIBLIOGRAFÍA

- Real Decreto 163/2014, de 14 de marzo, por el que se crea el registro de huella de carbono, compensación y proyectos de absorción de dióxido de carbono.
- Ministerio de Transición Ecológica y Reto Demográfico. (2020). Estrategia de España para la Economía Circular 2030. Madrid, España.
- European Commission, Directorate-General for Environment, (2012). GPP, Green Public Procurement: a collection of good practices.
- European Commission, Directorate-General for Environment, (2016). Buying green! a handbook on green public procurement.
- Acuerdo de París. (2015). París, Francia.
- Plan de Contratación Pública Ecológica. (2019). Guía para la implementación de criterios sostenibles en la contratación pública. Madrid, España: Ministerio de Medio Ambiente.
- Ley 9/2017, de 8 de noviembre, de Contratos del Sector Público (BOE nº 272, de 9 de noviembre de 2017). Madrid, España: Boletín Oficial del Estado.
- Actuaciones Urbanas de Valencia Sociedad Anónima. (2018). ADAPTACIÓN DEL PROYECTO DE URBANIZACIÓN SECTOR SUR PRR-7 "MALILLA SUR". Valencia, España.
- Ministerio de Transición Ecológica y Reto Demográfico. (2021). Plan Nacional Integrado de Energía y Clima 2021-2030. Madrid, España.
- Ministerio de Hacienda y Administraciones Públicas. (2015). Il Informe General sobre el Estado de la Contratación Pública Verde en la Administración General del Estado, sus Organismos Públicos y las Entidades Gestoras de la Seguridad Social. Madrid, España.
- CO2 Performance Ladder. (2020). Handbook of the CO2 Performance Ladder. Países Bajos.
- CO2 Performance Ladder. (2021). Manual de Certificación de CO2 Performance Ladder. Países Bajos.
- Lira, A., Chávez, M. M. y Vilchis, S. R. S. (2019). ¿Qué es el análisis del ciclo de vida? Unidades de Apoyo para el Aprendizaje. CUAED/Facultad de Arquitectura-UNAM.
- Curran, M. A. (Ed.). (2014). Goal and Scope Definition in Life Cycle Assesment [Definición de objetivos y alcance en la evaluación del ciclo de vida]. Heidelberg, Alemania: Springer.
- Kuittinen, M. (2015). Setting the carbon footprint criteria for public construction projects. Aalto University, Department of Architecture.
- Kuittinen, M., & Häkkinen, T. (2020). Reduced carbon footprints of buildings: new Finnish standards and assessments. Building & Cities.
- Larsen, H. N., Solli, C., Grorud, C., & Ibenholt, K. (2015). The carbon footprint of central government procurement: Evaluating the GHG intensities of government procurement in Norway.

- Molenaar K.; Sobin N.; Gransberg D.; McCuen T.; Korkmaz S.; Horman M. (2009) "Sustainable, High-Performance Projects and Project Delivery Methods". A Report for the Charles Pankow Foundation.
- Chiappinelli, Olga; Zipperer, Vera (2017): Using public procurement as a decarbonisation policy: A look at Germany, DIW Economic Bulletin.
- Chiappinelli, Olga; Gruner, Friedemann; Weber, Gustav (2019): Green Public Procurement: Climate provisions in public tenders can help reduce German carbon emissions, DIW Economic Bulletin.
- Turley, L., Casier, L., & Bechauf, R. (2022). Advancing Green Public Procurement and Low-Carbon Procurement in Europe: Insights. International Institute for Sustainable Development.
- Actuaciones Urbanas de Valencia S.A. & Ayuntamiento de Valencia. (2018). Adaptación del proyecto de urbanización Sector Sur PRR-7 "Malilla Sur".
- Instituto de Tecnología de la Construcción de Cataluña (ITeC). (2024). Base de Datos BEDEC.
- GHG Protocol. (s.f.). GHG Protocol Standards and Guidance Update Process. https://ghgprotocol.org/ghg-protocol-standards-and-guidance-update-process-0
- ITEC. (s.f.). Gestión ambiental. Recuperado de https://itec.es/programas/tcqi/gestion-ambiental/

9 Anexos

9.1 Emisiones unitarias

Partida	Rendimiento	Tipo	Clasif. Final	Emisiones	Energia	Total Partida	Emisiones Total	Energia Total
M2 DEMO.EDIFICACION HASTA 2 PLANTAS	0,1	Maq	Retroexcavadora s/ neum 8 a 10 t	3,66922	57,64996	1098,5	4030,63817	63328,48106
M2 DEMO.EDIFICACION HASTA 2 PLANTAS	0.05	Mag	Compresor+dos martillos neumáticos	0.24806	3.897465	1098.5	272.49391	4281.365303
M2 DEMO, PAVIMENTO CUALQUIER TIPO	0.05	Mag	Retroexcavadora con martillo rompedor	1.937965	30,448925	9986,65	19353,77817	304082,7569
M2 DEMO. PAVIMENTO CUALQUIER TIPO	0,05	Maq	Compresor+dos martillos neumáticos	0,24806	3,897465	9986,65	2477,288399	38922,61884
ML DEMOLICION MURO CUALQUIER TIPO	0,1	Mag	Compresor+dos martillos neumáticos	0,49612	7,79493	68,4	33,934608	533,173212
ML DEMOLICION MURO CUALQUIER TIPO	0,03	Maq	Retroexcavadora s/ neum 8 a 10 t	1,100766	17,294988	68,4	75,2923944	1182,977179
ML DEMOLICION MURO CON ALAMBRADA	0,1	Maq	Compresor+dos martillos neumáticos	0,49612	7,79493	103	51,10036	802,87779
ML DEMOLICION MURO CON ALAMBRADA	0,025	Maq	Retroexcavadora s/ neum 8 a 10 t	0,917305	14,41249	103	94,482415	1484,48647
ML DESMANTELAMIENTO ALAMBRADA	0,028	Maq	Compresor+dos martillos neumáticos	0,1389136	2,1825804	553,2	76,84700352	1207,403477
ML DEMOLICION DE CAJERO DE ACEQUIA	0,1	Maq	Compresor+dos martillos neumáticos	0,49612	7,79493	83,7	41,525244	652,435641
ML DEMOLICION DE CAJERO DE ACEQUIA	0,05	Maq	Retroexcavadora con martillo rompedor	1,937965	30,448925	83,7	162,2076705	2548,575023
ML DEMOLICION TUBERIA HGON VARIOS Ø	0,2	Maq	Compresor+dos martillos neumáticos	0,99224	15,58986	376,9	373,975256	5875,818234
ML DEMOLICION TUBERIA HGON VARIOS Ø	0,1	Maq	Retroexcavadora con martillo rompedor	3,87593	60,89785	376,9	1460,838017	22952,39967
UD ARRANQUE DE POSTE DE MADERA	0,1	Maq	Retroexcavadora con martillo rompedor	3,87593	60,89785	5	19,37965	304,48925
UD ARRANQUE DE POSTE DE MADERA	0,04	Maq	Camión grúa	4,134328	64,957712	5	20,67164	324,78856
UD DESMONTAJE TORRETA ELECTRICA	1	Maq	Compresor+dos martillos neumáticos	4,9612	77,9493	13	64,4956	1013,3409
UD DESMONTAJE TORRETA ELECTRICA	0,5	Maq	Retroexcavadora con martillo rompedor	19,37965	304,48925	13	251,93545	3958,36025
UD DESMONTAJE TORRETA ELECTRICA	0,5	Maq	Camión grúa	51,6791	811,9714	13	671,8283	10555,6282
UD ARRANQUE DE BACULO DE ILU	0,1	Maq	Retroexcavadora con martillo rompedor	3,87593	60,89785	11	42,63523	669,87635
UD ARRANQUE DE BACULO DE ILU	0,05	Maq	Camión grúa	5,16791	81,19714	11	56,84701	893,16854
ML DESMONTAJE LINEAS AÉREAS VARIAS	0,02	Maq	Retroexcavadora con martillo rompedor	0,775186	12,17957	490,3	380,0736958	5971,643171
ML DESMONTAJE LINEAS AÉREAS VARIAS	0,05	Maq	Camión grúa	5,16791	81,19714	490,3	2533,826273	39810,95774
UD TRASPLANTE DE ARBOL DE 25	4	Maq	Camión grúa	413,4328	6495,7712	16	6614,9248	103932,3392
UD TRASPLANTE DE ARBOL DE 25	4	Maq	Retroexcavadora s/ neum 8 a 10 t	146,7688	2305,9984	16	2348,3008	36895,9744
UD ARRANQUE DE CARTEL PUBLICITARIO	0,4	Maq	Compresor+dos martillos neumáticos	1,98448	31,17972	4	7,93792	124,71888
UD ARRANQUE DE CARTEL PUBLICITARIO	0,05	Maq	Camión grúa	5,16791	81,19714	4	20,67164	324,78856
UD ARRANQUE DE CARTEL PUBLICITARIO	0,05	Maq	Camión transp.12 t	3,07491	48,312295	4	12,29964	193,24918
M2 FRESADO DE FIRME	0,04	Maq	Fresadora pavim.,carg.aut.	2,211864	34,752372	2978	6586,930992	103492,5638
M2 FRESADO DE FIRME	0,04	Maq	Barredora autopropulsada	0,212916	3,34532	2978	634,063848	9962,36296
M2 FRESADO DE FIRME	0,04	Maq	Camión transp.12 t	2,459928	38,649836	2978	7325,665584	115099,2116
ML ARRANQUE BARRERA SEG. DOBLE SENO	0,3	Maq	Compresor+dos martillos neumáticos	1,48836	23,38479	235,8	350,955288	5514,133482
ML ARRANQUE BARRERA SEG. DOBLE SENO	0,05	Maq	Camión transp.12 t	3,07491	48,312295	235,8	725,063778	11392,03916
UD CATA DE 1x1x1,5 m	1,5	Act	Excavación en zanja/pozo	2,751915	43,23747	8	22,01532	345,89976
UD CATA DE 1x1x1,5 m	1,95	Act	Transporte a vertedero	9,5937192	150,7343604	8	76,7497536	1205,874883
UD CATA DE 1x1x1,5 m	1	Act	Relleno de zanja/pozo tier. Pres	5,76161	104,42738	8	46,09288	835,41904
UD CATA DE 1x1x1,5 m	0,13	Act	Aglomerado asf. En frio	8,884785858	1013,769317	8	71,07828686	8110,154532
UD CATA DE 1x1x1,5 m	0,5	Mat	HM 15	72,405	354,28	8	579,24	2834,24
UD CATA DE 1x1x1,5 m	0,5	Act	Colocación de hormigón en pozos	1,193805	29,005965	8	9,55044	232,04772
ML APEO SOPORTE Y MANTENIMIENTO	0,3	Act	Demolición de hormigón	0,99124776	15,57427014	28	27,75493728	436,0795639
ML APEO SOPORTE Y MANTENIMIENTO	0,39	Act	Transporte a vertedero	1,91874384	30,14687208	28	53,72482752	844,1124182
ML APEO SOPORTE Y MANTENIMIENTO	0,05	Mat	Lata de madera de pino	2,1725	45,3955	28	60,83	1271,074
ML APEO SOPORTE Y MANTENIMIENTO	0,5	Maq	Camión grúa	51,6791	811,9714	28	1447,0148	22735,1992
ML APEO SOPORTE Y MANTENIMIENTO	0,2	Act	Colocación de hormigón en pozos	0,477522	11,602386	28	13,370616	324,866808
ML APEO SOPORTE Y MANTENIMIENTO	0,09	Act	Aglomerado asf. En frio	6,151005594	701,8402961	28	172,2281566	19651,52829
ML APEO SOPORTE Y MANTENIMIENTO	0,2	Mat	HM 20	38,148	179,916	28	1068,144	5037,648
M2 ARRANQUE ARBOL/ARBUSTO I/ TROCEADO	0,06	Maq	Motosierra	0,07752	1,217958	934,23	72,4215096	1137,852902
M2 ARRANQUE ARBOL/ARBUSTO I/ TROCEADO	0,01	Maq	Camión grúa	1,033582	16,239428	934,23	965,6033119	15171,36082
M2 ARRANQUE ARBOL/ARBUSTO I/ TROCEADO	0,01	Maq	Camión transp.12 t	0,614982	9,662459	934,23	574,5346339	9026,959072
UD ARRANQUE ARBOL INCLUSO TROCEADO	4	Maq	Motosierra	5,168	81,1972	28	144,704	2273,5216
UD ARRANQUE ARBOL INCLUSO TROCEADO	1,5	Maq	Camión grúa	155,0373	2435,9142	28	4341,0444	68205,5976
UD ARRANQUE ARBOL INCLUSO TROCEADO	1,5	Maq	Camión transp.12 t	92,2473	1449,36885	28	2582,9244	40582,3278
UD DESMONTAJE PTO ALUMBRADO PÚBLICO	0,6	Maq	Camión grúa	62,01492	974,36568	16	992,23872	15589,85088
UD TRASLADO DE LUMINARIAS Y RECOLOCACIÓN	2	Maq	Camión grúa	206,7164	3247,8856	4	826,8656	12991,5424
UD TRASLADO DE LUMINARIAS Y RECOLOCACIÓN	0,2	Mat	HM 15	28,962	141,712	4	115,848	566,848
UD TRASLADO DE LUMINARIAS Y RECOLOCACIÓN	1,05	Mat	Acero en barras corrugadas	0,924	14,952	4	3,696	59,808
UD TRASLADO DE LUMINARIAS Y RECOLOCACIÓN	1,25	Act	Hormigón en masa 15 Mpa	238,425	1124,475	4	953,7	4497,9
UD TRASLADO DE LUMINARIAS Y RECOLOCACIÓN	0,2	Act	Excv pozo deficientes retro	0,9539972	14,9889896	4	3,8159888	59,9559584
UD DEMOLICIÓN DE SUMIDERO O IMBORNAL	0,45	Maq	Compresor+dos martillos neumáticos	2,23254	35,077185	15	33,4881	526,157775
UD DEMOLICIÓN DE SUMIDERO O IMBORNAL	0,45	Maq	Pala cargadora s/neumáticos 15 a 20t	42,09264	661,350645	15	631,3896	9920,259675
UD APERTURA DE HUECO EN MURO TIERRA ARMADA				-	-	3	0	0
M2 DESPEJE Y DESBROCE DEL TERRENO	0,003	Maq	Pala cargadora s/neumáticos 15 a 20t	0,2806176	4,4090043	19589,35	5497,116383	86369,52838

M2 DESPEJE Y DESBROCE DEL TERRENO	0,08	Act	Transporte a vertedero	0,39358848	6,18397376	19589,35	7710,142491	121140,0264
M3 EXCAV. CUALQ, TERRENO + TRANSP	0,003	Maq	Pala cargadora s/neumáticos 15 a 20t	0,2806176	4,4090043	14671,42	4117,058669	64686,35387
M3 EXCAV. CUALQ, TERRENO + TRANSP	0,08	Act	Transporte a vertedero	0,39358848	6,18397376	14671,42	5774,501897	90727,6763
M3 TERRAPLEN CON TIERRAS DE PRESTAM	1,3	Mat	Tierra sin clasificar	5,005	96,356	16207,6	81119,038	1561699,506
M3 TERRAPLEN CON TIERRAS DE PRESTAM	0,02	Maq	Motoniveladora pequeña	0,961232	15,10256	16207,6	15579,26376	244776,2515
M3 TERRAPLEN CON TIERRAS DE PRESTAM	0,02	Maq	Tractor con fresadora	2,1188	33,228	16207,6	34340,66288	538546,1328
M3 TERRAPLEN CON TIERRAS DE PRESTAM	0,02	Maq	Camión cisterna 6m3	1,2258	19,2236	16207,6	19867,27608	311568,4194
M2 REFINO Y COMPACTACION DE LA CAJA	0,002	Maq	Motoniveladora pequeña	0,0961232	1,510256	25722,16	2472,49633	38847,04647
M2 REFINO Y COMPACTACION DE LA CAJA	0,002	Mag	Tractor con fresadora	0,21188	3,3228	25722,16	5450,011261	85469,59325
M2 REFINO Y COMPACTACION DE LA CAJA	0,002	Mag	Camión cisterna 6m3	0.12258	1.92236	25722.16	3153.022373	49447,2515
M3 TERRAPLEN EN CORONACION	1.3	Mat	Tierra seleccionada	6,045	116.298	10035,73	60665,98785	1167135,328
M3 TERRAPLEN EN CORONACION	0,02	Mag	Motoniveladora pequeña	0.961232	15.10256	10035,73	9646,664819	151565.2145
M3 TERRAPLEN EN CORONACION	0,02	Mag	Tractor con fresadora	2,1188	33,228	10035,73	21263,70472	333467,2364
M3 TERRAPLEN EN CORONACION	0,02	Mag	Camión cisterna 6m3	1,2258	19.2236	10035,73	12301,79783	192922,8592
M2 REFINO Y COMPACTACION DE LA EXPL	0.02	Mag	Motoniveladora pequeña	0.961232	15,10256	25217.9	24240.25245	380854.8478
M2 REFINO Y COMPACTACION DE LA EXPL	0,02	Maq	Tractor con fresadora	2,1188	33,228	25217,9	53431,68652	837940,3812
M2 REFINO Y COMPACTACION DE LA EXPL	0,02	Mag	Camión cisterna 6m3	1.2258	19.2236	25217,9	30912,10182	484778.8224
M2 REFINO DE TALUDES	0,02	Mag	Retroexcavadora s/ neum 8 a 10 t	0,366922	5,764996	2847,36	1044,759026	16415,01901
	1,1	Mat	Zahorra aritificial	4,67269	89,969	5092,01	23793,38421	458123,0477
M3 BASE GRANULAR ZAHORRA ARTIFIC	0,03	Maq	Motoniveladora pequeña	1,441848	22,65384	5092,01	7341,904434	115353,5798
M3 BASE GRANULAR ZAHORRA ARTIFIC	0,02	Maq	Tractor con fresadora	2,1188	33,228	5092,01	10788,95079	169197,3083
M3 BASE GRANULAR ZAHORRA ARTIFIC	0,02	Maq	Camión cisterna 6m3	1,2258	19,2236	5092,01	6241,785858	97886,76344
M3 BASE GRANULAR ZAHORRA ARTIFIC	0,02	Maq	Pala cargadora s/neumáticos 15 a 20t	1,870784	29,393362	5092,01	9526,050836	149671,2932
M3 BASE HORMIGON EN APARCAMIENTOS	1,025	Mat	HM 20	195,5085	922,0695	323,66	63278,28111	298437,0144
M3 BASE HORMIGON EN APARCAMIENTOS	0,2	Maq	Vibrador de aguja	1,434	34,842	323,66	464,12844	11276,96172
M3 BASE HORMIGON EN PAVIMENTOS	1,025	Mat	HM 20	195,5085	922,0695	4002,92	782604,8848	3690970,443
M3 BASE HORMIGON EN PAVIMENTOS	0,2	Maq	Vibrador de aguja	1,434	34,842	4002,92	5740,18728	139469,7386
M2 PAVIMENTO DE BALDOSA EN ACERAS	1,05	Mat	Baldosa 20x20	3,9375	41,7375	10791,2	42490,35	450397,71
M2 PAVIMENTO DE BALDOSA EN ACERAS	0,032	Mat	Arena 0 a 3,5 mm calcarea	0,0848	1,63584	10791,2	915,09376	17652,67661
M2 PAVIMENTO DE BALDOSA EN ACERAS	0,001	Mat	Cemento portland	0,9252	3,94916	10791,2	9984,01824	42616,17539
M2 PAVIMENTO DE BALDOSA EN ACERAS	0,001	Mat	Lechada de cemento	0,93	3,95	10791,2	10035,816	42625,24
M2 PAVIMENTO DE BALDOSA EN ACERAS	0,02	Mat	Mortero cemento m450	8.4332	37,7296	10791.2	91004,34784	407147,6595
M2 PAVIMENTO DE BALDOSA EN ACERAS	0.02	Mat	Mortero m40a 1:6 5 N/mm2	4,7482	22,273	10791,2	51238,77584	240352,3976
M2 RIEGO DE IMPRIMACION	1	Act	Barrido o limpieza de superficie	0.0106458	0.167266	9558.3	101,7557501	1598,778608
M2 RIEGO DE IMPRIMACION	0.001	Mat	Emulsión bituminosa cationica asfaltica	0.2	29.87	9558.3	1911.66	285506.421
M2 RIEGO DE IMPRIMACION	0,001	Maq	Extendedora p/pavimento mezcla bitum	0,3596864	5,6513208	9558,3	3437,990517	54017,0196
M2 RIEGO DE ADHERENCIA	1	Act	Barrido o limpieza de superficie	0.0106458	0.167266	13646.4	145.2768451	2282,578742
M2 RIEGO DE ADHERENCIA	0,001	Mat		0.2	29.87	13646,4	2729.28	407617,968
	0,001	Mag	Emulsión bituminosa cationica asfaltica	-/-	2.8256604	13646,4		
THE THEOD DEFINITION OF			Extendedora p/pavimento mezcla bitum	0,1798432	,		2454,212244	38560,09208
T AC22 BIN 40/50 S CALIZO	0,052	Mat	Filler calcareo	0,82368	9,6018	1330,26	1095,708557	12772,89047
T AC22 BIN 40/50 S CALIZO	0,44	Mat	Arido calcareo	0,9592	13,8072	1330,26	1275,985392	18367,16587
T AC22 BIN 40/50 S CALIZO	0,006	Maq	Planta asfaltica 60 t/h	0,1176	2,85828	1330,26	156,438576	3802,255553
T AC22 BIN 40/50 S CALIZO	0,05	Maq	Camión transp.12 t	3,07491	48,312295	1330,26	4090,429777	64267,91355
T AC22 BIN 40/50 S CALIZO	0,035	Maq	Extendedora p/pavimento mezcla bitum	3,147256	49,449057	1330,26	4186,668767	65780,10256
T AC22 BIN 40/50 S CALIZO	0,017	Maq	Rodillo vibratorio autopropulsado 8 a 10 t	0,70278	11,02195	1330,26	934,8801228	14662,05921
T AC22 BIN 40/50 S CALIZO	0,017	Maq	Rodillo vibratorio autopropulsado neumatico	0,9400422	14,7697581	1330,26	1250,500537	19647,61841
T MBC FA MICROAGLOMERADO FONOABSORBENTE	1,05	Mat	Mezcla Betuminosa asfaltico 35/50	342,909	5227,0995	1046,45	358837,1231	5469898,272
T MBC FA MICROAGLOMERADO FONOABSORBENTE	0,006	Maq	Planta asfaltica 60 t/h	0,1176	2,85828	1046,45	123,06252	2991,047106
T MBC FA MICROAGLOMERADO FONOABSORBENTE	0,08	Maq	Camión transp.12 t	4,919856	77,299672	1046,45	5148,383311	80890,24176
T MBC FA MICROAGLOMERADO FONOABSORBENTE	0,035	Maq	Extendedora p/pavimento mezcla bitum	3,147256	49,449057	1046,45	3293,446041	51745,9657
T MBC FA MICROAGLOMERADO FONOABSORBENTE	0,017	Maq	Rodillo vibratorio autopropulsado 8 a 10 t	0,70278	11,02195	1046,45	735,424131	11533,91958
T MBC FA MICROAGLOMERADO FONOABSORBENTE	0,017	Maq	Rodillo vibratorio autopropulsado neumatico	0,9400422	14,7697581	1046,45	983,7071602	15455,81336
M2 PAVIMENTO DE BALDOSA COLOREADA EN ACERAS	1,05	Mat	Baldosa 20x20	3,9375	41,7375	35,4	139,3875	1477,5075
M2 PAVIMENTO DE BALDOSA COLOREADA EN ACERAS	0.032	Mat	Arena 0 a 3,5 mm calcarea	0.0848		35,4	3.00192	57,908736
M2 PAVIMENTO DE BALDOSA COLOREADA EN ACERAS	0,001	Mat	Cemento portland	0,9252	3,94916	35,4	32,75208	139,800264
M2 PAVIMENTO DE BALDOSA COLOREADA EN ACERAS	0,001	Mat	Lechada de cemento	0,93	3,95	35,4	32,922	139,83
M2 PAVIMENTO DE BALDOSA COLOREADA EN ACERAS	0,001	Mat	Mortero cemento m450	8,4332		35.4	298,53528	1335,62784
M2 PAVIMENTO DE BALDOSA COLOREADA EN ACERAS	0,02	Mat	Mortero m40a 1:6 5 N/mm2	4.7482	22,273	35,4	168,08628	788,4642
T CAPA RODADURA CARRIL BICI ACS SURF	1,05	Mat		27,7935	3074.652	57,88	1608,68778	177960.8578
T CAPA RODADURA CARRIL BICI ACS SURF			Mezcla bituminosa AC8 50/70 cal		2.85828		6.806688	
	0,006	Maq	Planta asfaltica 60 t/h	0,1176	,	57,88	-,	165,4372464
T CAPA RODADURA CARRIL BICI AC8 SURF	0,08	Maq	Camión transp.12 t	4,919856	77,299672	57,88	284,7612653	4474,105015
T CAPA RODADURA CARRIL BICI ACS SURF	0,035	Maq	Extendedora p/pavimento mezcla bitum	3,147256	49,449057	57,88	182,1631773	2862,111419
T CAPA RODADURA CARRIL BICI AC8 SURF	0,017	Maq	Rodillo vibratorio autopropulsado 8 a 10 t	0,70278	11,02195	57,88	40,6769064	637,950466

T CAPA RODADURA CARRIL BICI ACS SURF	0,017	Maq	Rodillo vibratorio autopropulsado neumatico	0,9400422	14,7697581	57,88	54,40964254	854,8735988
ML RIGOLA DE 20X50X8 cm	0,092	Mat	HM 20	17,54808	82,76136	2618	45940,87344	216669,2405
ML RIGOLA DE 20X50X8 cm	0,004	Mat	Mortero m40a 1:6 5 N/mm2	0,94964	4,4546	2618	2486,15752	11662,1428
ML RIGOLA DE 20X50X8 cm	2	Mat	Rigola hormigón	2,7304	16,46	2618	7148,1872	43092,28
ML BORDILLO H 20x30x50	0,02	Mat	HM 20	3,8148	17,9916	2312,1	8820,19908	41598,37836
ML BORDILLO H 20x30x50	0,03	Mat	Mortero m40a 1:6 5 N/mm2	7,1223	33,4095	2312,1	16467,46983	77246,10495
ML BORDILLO H 20x30x50	2	Mat	Bordillo hormigón recto	15,14	79,56	2312,1	35005,194	183950,676
ML BORDILLO H 20X20/30X50 MONTABLE	0,02	Mat	HM 20	3,8148	17,9916	70,01	267,074148	1259,591916
ML BORDILLO H 20X20/30X50 MONTABLE	0,03	Mat	Mortero m40a 1:6 5 N/mm2	7,1223	33,4095	70,01	498,632223	2338,999095
ML BORDILLO SEPARADOR CARRIL BICI 13X30X50	0,8	Mat	Mortero m40a 1:6 5 N/mm2	189,928	890,92	78	14814,384	69491,76
ML BORDILLO SEPARADOR CARRIL BICI 13X30X50	0,032	Maq	Dúmper de 1,5 t de carga útil, con mecanismo hidráulio	0,1819104	2,8581408	78	14,1890112	222,9349824
ML BORDILLO SEPARADOR CARRIL BICI 13X30X51	2	Mat	Bordillo hormigón recto	15.14	79.56	0	0	0
M3 EXCAV. ZANJAS >1'5 M	0,05	Maq	Retroexcavadora s/ neum 8 a 10 t	1,83461	28,82498	2785,13	5109,627349	80281,31655
M3 EXCAV. ZANJAS >1'5 M	1,3	Act	Transporte a vertedero	6.3958128	100.4895736	2785.13	17813,1701	279876,5261
M3 RELLENO ZANJA/POZOS PRESTAMO	1.1	Mat	Tierra sin clasificar	4,235	81,532	1830.77	7753,31095	149266,3396
M3 RELLENO ZANJA/POZOS PRESTAMO	0,1	Mag	Retroexcavadora s/ neum 8 a 10 t	3.66922	57,64996	1830,77	6717,497899	105543,8173
M3 RELLENO ZANJA/POZOS PRESTAMO	0.02	Mag	Rodillo vibratorio autopropulsado 8 a 10 t	0.8268	12,967	1830,77	1513,680636	23739,59459
M3 RELLENO ZANJA/POZOS PRESTAMO	0,016	Mag	Camión cisterna 6m3	0.98064	15.37888	1830,77	1795.326293	28155,19214
M2 BLINDAJE METALICO DESLIZANTE	0,016	iviaq	Camion cisterna oms	0,56064	15,57000	1663,05	1/35,520235	20155,15214
	4.005			105 5005	000 0005		400040 040	C00543.0537
M3 HORMIGÓN 20 MPa EN ZANJA/POZO	1,025	Mat	HM 20	195,5085	922,0695	661,06	129242,849	609543,2637
M3 HORMIGÓN 20 MPa EN ZANJA/POZO	0,5	Maq	Vibrador de aguja	3,585	87,105	661,06	2369,9001	57581,6313
M2 MALLA 15X15 D.8 mm. B 500-T	1	Mat	Malla electrosoldada 15x15 8mm	13,02	138,84	1123,65	14629,923	156007,566
ML TUBERIA POLIETILENO (PEAD) 400 SN 8	1,05	Mat	Tuberia polietileno 400 alta dens	40,0785	1525,713	804,5	32243,15325	1227436,109
ML TUBERIA POLIETILENO (PEAD) 500 SN 8	1,05	Mat	Tuberia polietileno 500 alta dens	62,4855	2378,565	184,2	11509,8291	438131,673
ML TUBERIA POLIETILENO (PEAD) 630 SN 8	1,05	Mat	Tuberia polietileno 500 alta dens	62,4855	2378,565	211,7	13228,18035	503542,2105
ML TUBERIA POLIETILENO (PEAD) 700 SN 8	1,05	Mat	Tuberia polietileno 1000 alta dens	248,7345	9471,378	103,9	25843,51455	984076,1742
ML TUBERIA POLIETILENO (PEAD) 800 SN 8	1,05	Mat	Tuberia polietileno 1000 alta dens	248,7345	9471,378	96,1	23903,38545	910199,4258
UD SUMIDERO MEDIANO (540x260 mm)	0,36	Act	Excavación en zanja/pozo	0,6604596	10,3769928	85	56,139066	882,044388
UD SUMIDERO MEDIANO (540x260 mm)	0,36	Act	Transporte a vertedero	1,77114816	27,82788192	85	150,5475936	2365,369963
UD SUMIDERO MEDIANO (540x260 mm)	0,21	Mat	HM 15	30,4101	148,7976	85	2584,8585	12647,796
UD SUMIDERO MEDIANO (540x260 mm)	0.21	Act	Colocación de hormigón en pozos	0.5013981	12.1825053	85	42.6188385	1035,512951
UD SUMIDERO MEDIANO (540x260 mm)	0,02	Mat	Mortero cemento m450	8,4332	37,7296	85	716,822	3207,016
UD SUMIDERO MEDIANO (540x260 mm)	0,057	Mat	Grava de cantera piedra gran 5-12	0,15105	2,91384	85	12,83925	247,6764
UD SUMIDERO MEDIANO (540x260 mm)	1	Mat	Marco y reja de fundicion 535x335x45	50,01	615.73	85	4250,85	52337,05
UD IMB. RECT. MODELO "VALENCIA"	0,465	Act	Excavación en zanja/pozo	0.85309365	13.4036157	4	3.4123746	53.6144628
UD IMB. RECT. MODELO "VALENCIA"	0,465	Act	Transporte a vertedero	2,28773304	35,94434748	4	9,15093216	143,7773899
UD IMB. RECT. MODELO "VALENCIA"	0.125	Mat	HM 15	18,10125	88.57	4	72,405	354.28
UD IMB. RECT. MODELO "VALENCIA"	0.125	Act	Colocación de hormigón en pozos	0.29845125	7.25149125	4	1,193805	29,005965
UD IMB. RECT. MODELO "VALENCIA"	0,02	Mat	Mortero cemento m450	8,4332	37,7296	4	33,7328	150,9184
UD IMB. RECT. MODELO "VALENCIA"	0.06	Mat		0.159	3,0672	4	0.636	12,2688
		Mat	Grava de cantera piedra gran 5-12			4		
UD IMB. RECT. MODELO "VALENCIA"	1		Marco y reja de fundicion 535x335x45	50,01	615,73		200,04	2462,92
UD P.R. 100 BASE F. LAD Y EL. <2 m	3,925	Act	Excavación en zanja/pozo	7,20084425	113,1380465	29	208,8244833	3281,003349
UD P.R. 100 BASE F. LAD Y EL. <2 m	4,31	Act	Transporte a vertedero	21,20457936	333,1615863	29	614,9328014	9661,686003
UD P.R. 100 BASE F. LAD Y EL. <2 m	0,977	Mat	HM 15	141,47937	692,26312	29	4102,90173	20075,63048
UD P.R. 100 BASE F. LAD Y EL. <2 m	0,758	Mat	HM 20	144,58092	681,88164	29	4192,84668	19774,56756
UD P.R. 100 BASE F. LAD Y EL. <2 m	1,735	Act	Colocación de hormigón en pozos	4,14250335	100,6506986	29	120,1325972	2918,870258
UD P.R. 100 BASE F. LAD Y EL. <2 m	4,45	Mat	Ladrillo perforado 24x11,5x7	2,0915	23,1845	29	60,6535	672,3505
UD P.R. 100 BASE F. LAD Y EL. <2 m	2,37	Act	Enlucido mortero hidrofu. M700	17,5678146	83,4416802	29	509,4666234	2419,808726
UD P.R. 100 BASE F. LAD Y EL. <2 m	2,38	Mat	Malla electrosoldada 15x15 8mm	30,9876	330,4392	29	898,6404	9582,7368
UD P.R. 100 BASE F. LAD Y EL. <2 m	0,6	Maq	Camión transp.12 t	36,89892	579,74754	29	1070,06868	16812,67866
UD P.R. 100 BASE F. LAD. y EL. >2 m	7,947	Act	Excavación en zanja/pozo	14,57964567	229,0721161	47	685,2433465	10766,38945
UD P.R. 100 BASE F. LAD. y EL. >2 m	10,331	Act	Transporte a vertedero	50,82703234	798,5829114	47	2388,87052	37533,39684
UD P.R. 100 BASE F. LAD. y EL. >2 m	0,977	Mat	HM 15	141,47937	692,26312	47	6649,53039	32536,36664
UD P.R. 100 BASE F. LAD. y EL. >2 m	0,758	Mat	HM 20	144,58092	681.88164	47	6795.30324	32048,43708
UD P.R. 100 BASE F. LAD. y EL. >2 m	2,386	Act	Colocación de hormigón en pozos	5,69683746	138,416465	47	267,7513606	6505,573854
UD P.R. 100 BASE F. LAD. y EL. >2 m	4.45	Mat	Ladrillo perforado 24x11,5x7	2.0915	23.1845	47	98.3005	1089,6715
		Act	Enlucido mortero hidrofu. M700	17,5678146	83,4416802	47	825,6872862	3921,758969
	2 27			17,3070140	03,4410002		,	
UD P.R. 100 BASE F. LAD. y EL. >2 m	2,37			20.0076	220 4202	47	1AEC A170	
UD P.R. 100 BASE F. LAD. y EL. >2 m UD P.R. 100 BASE F. LAD. y EL. >2 m	2,38	Mat	Malla electrosoldada 15x15 8mm	30,9876	330,4392	47	1456,4172	15530,6424
UD P.R. 100 BASE F. LAD. y EL. >2 m UD P.R. 100 BASE F. LAD. y EL. >2 m UD P.R. 100 BASE F. LAD. y EL. >2 m	2,38 1,2	Mat Maq	Malla electrosoldada 15x15 8mm Camión transp.12 t	73,79784	1159,49508	47	3468,49848	54496,26876
UD P.R. 100 BASE F. LAD. y EL. >2 m UD P.R. 100 BASE F. LAD. y EL. >2 m UD P.R. 100 BASE F. LAD. y EL. >2 m UD ARQUETA REGISTRO 40×40 LADRILLO	2,38 1,2 0,001	Mat Maq Mat	Malla electrosoldada 15x15 8mm Camión transp.12 t Cemento portland	73,79784 0,9252	1159,49508 3,94916	47 25	3468,49848 23,13	54496,26876 98,729
UD P.R. 100 BASE F. IAD. y EL. >2 m UD P.R. 100 BASE F. IAD. y EL. >2 m UD P.R. 100 BASE F. IAD. y EL. >2 m UD ARQUETA REGISTRO 40×40 IADRILLO UD ARQUETA REGISTRO 40×40 IADRILLO	2,38 1,2 0,001 0,004	Mat Maq Mat Mat	Maila electrosoldada 15x15 8mm Camión transp.12 t Cemento portiand Mortero m40a 1:6 5 N/mm2	73,79784 0,9252 0,94964	1159,49508 3,94916 4,4546	47 25 25	3468,49848 23,13 23,741	54496,26876 98,729 111,365
UD P.R. 100 BASE F. LAD. y EL. >2 m UD P.R. 100 BASE F. LAD. y EL. >2 m UD P.R. 100 BASE F. LAD. y EL. >2 m UD ARQUETA REGISTRO 40×40 LADRILLO	2,38 1,2 0,001	Mat Maq Mat	Malla electrosoldada 15x15 8mm Camión transp.12 t Cemento portland	73,79784 0,9252	1159,49508 3,94916	47 25	3468,49848 23,13	54496,26876 98,729

UD ARQUETA REGISTRO 40x40 LADRILLO	1	Mat	Marco y reja de fundicion 535x335x45	50,01	615,73	25	1250,25	15393,25
ML CONDUC. TUB 315 PEAD ACOM. CALZA	1,21	Act	Excavación en zanja/pozo	2,2198781	34,8782258	189,8	421,3328634	6619,887257
ML CONDUC. TUB 315 PEAD ACOM. CALZA	1,41	Act	Transporte a vertedero	6,93699696	108,9925375	189,8	1316,642023	20686,78362
ML CONDUC. TUB 315 PEAD ACOM. CALZA	0,58	Act	Colocación de hormigón en pozos	1,3848138	33,6469194	189,8	262,8376592	6386,185302
ML CONDUC. TUB 315 PEAD ACOM. CALZA	0,72	Act	Relleno de zanja/pozo tier. Pres	4,1483592	75,1877136	189,8	787,3585762	14270,62804
ML CONDUC. TUB 315 PEAD ACOM. CALZA	0,16	Mat	HM 15	23,1696	113,3696	189,8	4397,59008	21517,55008
ML CONDUC. TUB 315 PEAD ACOM. CALZA	0,42	Mat	HM 20	80,1108	377,8236	189,8	15205,02984	71710,91928
ML CONDUC. TUB 250 PEAD IMB. CALZAD	1,02	Act	Excavación en zanja/pozo	1,8713022	29,4014796	890	1665,458958	26167,31684
ML CONDUC, TUB 250 PEAD IMB, CALZAD	1,19	Act	Transporte a vertedero	5,85462864	91,98660968	890	5210.61949	81868.08262
ML CONDUC. TUB 250 PEAD IMB. CALZAD	0,58	Act	Colocación de hormigón en pozos	1,3848138	33,6469194	890	1232,484282	29945,75827
ML CONDUC, TUB 250 PEAD IMB, CALZAD	0,72	Act	Relleno de zanja/pozo tier. Pres	4,1483592	75.1877136	890	3692.039688	66917,0651
ML CONDUC. TUB 250 PEAD IMB. CALZAD	0,55	Mat	HM 15	79,6455	389,708	890	70884,495	346840,12
ML CONDUC. TUB 250 PEAD IMB. CALZAD	0.27	Mat	HM 20	51,4998	242.8866	890	45834,822	216169,074
M3 EXCAV. ZANJAS/POZOS <4 M	0,066	Mag	Retroexcavadora s/ neum 8 a 10 t	2,4216852	38,0489736	1079.98	2615,371582	41092,13051
M3 TRANSPORTE TIERRAS	0,125	Maq	Camión transp.12 t	7,687275	120,7807375	1623,65	12481,44405	196105,6444
M3 ARENA EN RELLENO Y ASIENTOS	1	Mat	Arena de sílice (amarilla)	2.65	51.12	485.3	1286.045	24808.536
M3 ARENA EN RELLENO Y ASIENTOS	0,005	Maq	Pala cargadora s/neumáticos 15 a 20t	0,467696	7,3483405	485,3	226,9728688	3566,149645
M3 ARENA EN RELLENO Y ASIENTOS	0.003			0.34884	5.47047	485.3		
	,	Maq	Camión semiremolque 25 t con plataforma (bañera)	-,	,		169,292052	2654,819091
	1,1	Mat	Zahorra aritificial	4,67269	89,969	471,4	2202,706066	42411,3866
M3 RELLENO ZANJA/POZO ZAHORRAS	0,1	Maq	Retroexcavadora s/ neum 8 a 10 t	3,66922	57,64996	471,4	1729,670308	27176,19114
M3 RELLENO ZANJA/POZO ZAHORRAS	0,02	Maq	Rodillo vibratorio autopropulsado 8 a 10 t	0,8268	12,967	471,4	389,75352	6112,6438
M3 RELLENO ZANJA/POZO ZAHORRAS	0,015	Maq	Camión cisterna 6m3	0,91935	14,4177	471,4	433,38159	6796,50378
UD ARQUETA DE REGISTRO 40x40x110	0,306	Act	Excavación en zanja/pozo	0,56139066	8,82044388	39	21,89423574	343,9973113
UD ARQUETA DE REGISTRO 40x40x110	0,378	Act	Transporte a vertedero	1,859705568	29,21927602	39	72,52851715	1139,551765
UD ARQUETA DE REGISTRO 40x40x110	0,118	Mat	HA-25 20mm	33,35742	151,46716	39	1300,93938	5907,21924
UD ARQUETA DE REGISTRO 40x40x110	1	Mat	Marco y tapa de fundición 40x40	61,67	768,09	39	2405,13	29955,51
UD ARQUETA DE REGISTRO 40x40x110	0,079	Mat	Mortero cemento m450	33,31114	149,03192	39	1299,13446	5812,24488
UD ARQUETA DE REGISTRO 40x40x110	1,76	Act	Enlucido mortero cto.	12,6160672	56,4434816	39	492,0266208	2201,295782
UD ARQUETA DE REGISTRO 40x100x110	1,456	Act	Excavación en zanja/pozo	2,67119216	41,96917088	3	8,01357648	125,9075126
UD ARQUETA DE REGISTRO 40x100x110	1,602	Act	Transporte a vertedero	7,881609312	123,8340745	3	23,64482794	371,5022236
UD ARQUETA DE REGISTRO 40x100x110	0,22	Mat	HA-25 20mm	62,1918	282,3964	3	186,5754	847,1892
UD ARQUETA DE REGISTRO 40x100x110	1	Mat	Marco y tapa de fundición 40x40	61,67	768,09	3	185,01	2304,27
UD ARQUETA DE REGISTRO 40x100x110	0,176	Mat	Mortero cemento m450	74,21216	332,02048	3	222,63648	996,06144
UD ARQUETA DE REGISTRO 40x100x110	3,08	Act	Enlucido mortero cto.	22,0781176	98,7760928	3	66,2343528	296,3282784
ML TUBERIA PE Ø160 MM 10 ATM	1,05	Mat	Tubo PE 160 mm 10 bar	9,744	371,091	441,6	4302,9504	163873,7856
ML TUBERIA PE Ø200 MM 10 ATM	1,05	Mat	Tubo PE 200 mm 10 bar	15,183	577,794	274,3	4164,6969	158488,8942
M3 HORMIGON DE REFUERZO TUBERIAS	1,025	Mat	HM 20	195,5085	922,0695	58,01	11341,44809	53489,2517
M3 HORMIGON DE REFUERZO TUBERIAS	1	Mat	Malla electrosoldada 15x15 8mm	13,02	138,84	58,01	755,2902	8054,1084
M3 HORMIGON DE REFUERZO TUBERIAS	0,12	Mag	Vibrador de aguja	0,8604	20,9052	58,01	49,911804	1212,710652
ML TUB. HORM. EN MASA B 400 mm CAM.	1	Mat	Tubo horm. 400 enchufe campana	73.81	812.35	98.3	7255.523	79854.005
ML TUB. HORM. EN MASA B 400 mm CAM.	0,05	Mag	Camión grúa	5,16791	81.19714	98.3	508,005553	7981,678862
ML INST. BANDA SEÑALIZAC.	1.01	Mat	Banda señalización polietileno	0,0303	1.1009	1170.6	35,46918	1288,71354
UD VALVULA COMPUERTA Ø100 FD	1	Mat	Valvula compuerta 100	38,42	484,9	4	153,68	1939,6
UD VALVULA COMPUERTA Ø150 FD	1	Mat	Valvula compuerta 150	70,72	892.54	19	1343,68	16958,26
UD VALVULA COMPUERTA Ø200 FD	1	Mat	Valvula compuerta 200	119,7	1510,63	12	1436,4	18127,56
UD VENTOSA 50	1	Mat	Ventosa 50	34,49	422,37	4	137.96	1689,48
UD DESAGUE 80 COMPLETO	-	- Aug			-	3	0	0
UD HIDRANTE 100 (TRES BOCAS)						4	0	0
UD ARQUETA DE ACOMETIDA 40x40x110	0,306	Act	Excavación en zanja/pozo	0,56139066	8,82044388	13	7,29807858	114,6657704
UD ARQUETA DE ACOMETIDA 40x40x110	0,378	Act	Transporte a vertedero	1.859705568	29.21927602	13	24,17617238	379,8505882
UD ARQUETA DE ACOMETIDA 40x40x110	0,378	Mat	HA-25 20mm	33.35742	-	13	433.64646	-
UD ARQUETA DE ACOMETIDA 40x40x110 UD ARQUETA DE ACOMETIDA 40x40x110	0,110	Mat		61.67	151,46716 768.09	13	801,71	1969,07308 9985,17
	0.070		Marco y tapa de fundición 40x40	,				
UD ARQUETA DE ACOMETIDA 40x40x110	0,079	Mat	Mortero cemento m450	33,31114	149,03192	13	433,04482	1937,41496
	4.76		Enlucido mortero cto.	12,6160672	56,4434816	13	164,0088736	733,7652608
UD ARQUETA DE ACOMETIDA 40x40x110	1,76	Act						0
PA CONTROL, INSPECCIONES Y PRUEBAS	1,76	Act		-	-	1	0	-
PA CONTROL, INSPECCIONES Y PRUEBAS UD CONEXIÓN A RED GENERAL					-	4	0	0
PA CONTROL, INSPECCIONES Y PRUEBAS UD CONEXIÓN A RED GENERAL ML TUBERIA PE Ø110 MM 10 ATM	1,76	Mat	Tubo PE 110 mm 10 bar	- - 4,6725	- 177,912	4 454,7	0 2124,58575	0 80896,5864
PA CONTROL, INSPECCIONES Y PRUEBAS UD CONEXIÓN A RED GENERAL ML TUBERIA PE Ø110 MM 10 ATM PA CONEXIÓN A RED ARTERIAL Ø800		Mat	Tubo PE 110 mm 10 bar	-	-	4 454,7 1	0	0
PA CONTROL, INSPECCIONES Y PRUEBAS UD CONEXIÓN A RED GENERAL ML TUBERIA PE Ø110 MM 10 ATM PA CONEXIÓN A RED ARTERIAL Ø800 UD VALVULA MARIPOSA Ø800 FD		Mat		421,22	5362,19	4 454,7 1 2	0 842,44	0 10724,38
PA CONTROL, INSPECCIONES Y PRUEBAS UD CONEXIÓN A RED GENERAL ML TUBERIA PE Ø110 MM 10 ATM PA CONEXIÓN A RED ARTERIAL Ø800		Mat	Tubo PE 110 mm 10 bar	-	-	4 454,7 1	0	0
PA CONTROL, INSPECCIONES Y PRUEBAS UD CONEXIÓN A RED GENERAL ML TUBERIA PE Ø110 MM 10 ATM PA CONEXIÓN A RED ARTERIAL Ø800 UD VALVULA MARIPOSA Ø800 FD		Mat	Tubo PE 110 mm 10 bar Valvula mariposa 700	421,22	5362,19	4 454,7 1 2	0 842,44	0 10724,38
PA CONTROL, INSPECCIONES Y PRUEBAS UD CONEXIÓN A RED GENERAL ML TUBERIA PE GLIO MM 10 ATM PA CONEXIÓN A RED ARTERIAL Ø800 UD VALVULA MARIPOSA Ø800 FD UD VALVULA MARIPOSA Ø800 FD	1,05 1 2	Mat Mat Maq	Tubo PE 110 mm 10 bar Valvula mariposa 700 Camión grúa	- 421,22 206,7164	- 5362,19 3247,8856	4 454,7 1 2 2	0 842,44 413,4328	0 10724,38 6495,7712

UD ARQUETA DE REGISTRO 110x110x240	1	Mat	Marco y tapa de fundición 40x40	61,67	768.09	3	185.01	2304,27
UD ARQUETA DE REGISTRO 110x110x240	0.935	Mat	Mortero cemento m450	394.2521		3	1182.7563	5291,5764
UD ARQUETA DE REGISTRO 110x110x240	6.19	Act	Enlucido mortero cto.	44,3712818	,	3	133,1138454	595,5428712
	6,19	Act	Enlucido mortero cto.	44,3/12818		37	133,1138454	595,5428/12
				-	-		-	0
UD SUPLEMENTOS VÁLVULAS				-	-	37	0	0
PA CONTROL, INSPECCIONES Y PRUEBAS BAJA PRESIÓN				-	-	1	0	0
UD ARQUETA "D" 90X109X110 cm	1,85	Act	Excavación en zanja/pozo	3,3940285	53,326213	5	16,9701425	266,631065
UD ARQUETA "D" 90X109X110 cm	2,222	Act	Transporte a vertedero	10,93192003	171,7598712	5	54,65960016	858,7993559
UD ARQUETA "D" 90X109X110 cm	1,053	Mat	HA-25 20mm	297,67257		5	1488,36285	6758,2593
UD ARQUETA "D" 90X109X110 cm	1	Mat	Marco y tapa de fundición 40x40	61,67	768,09	5	308,35	3840,45
UD ARQUETA "H" 80X70X82 cm	1,45	Act	Excavación en zanja/pozo	2,6601845	41,796221	5	13,3009225	208,981105
UD ARQUETA "H" 80X70X82 cm	1,74	Act	Transporte a vertedero	8,56054944	134,5014293	5	42,8027472	672,5071464
UD ARQUETA "H" 80X70X82 cm	0,69	Mat	HA-25 20mm	195,0561	885,6978	5	975,2805	4428,489
UD ARQUETA "H" 80X70X82 cm	1	Mat	Marco y tapa de fundición 40x40	61,67	768,09	5	308,35	3840,45
UD ARQUETA "M" 30X30X61 cm	0,3	Act	Excavación en zanja/pozo	0.550383	8.647494	8	4.403064	69,179952
UD ARQUETA "M" 30X30X61 cm	0,36	Act	Transporte a vertedero	1,77114816	27,82788192	8	14,16918528	222,6230554
UD ARQUETA "M" 30X30X61 cm	0.273	Mat	HA-25 20mm	77.17437	350,42826	8	617,39496	2803,42608
UD ARQUETA "M" 30X30X61 cm	1	Mat	Marco y tapa de fundición 40x40	61,67	768,09	8	493,36	6144,72
UD ARQUETA 60X60 RESERVA MUNICIPAL	0,65	Act	Excavación en zanja/pozo	1,1924965		19	22,6574335	355,988503
UD ARQUETA 60X60 RESERVA MUNICIPAL	0.835	Act	Transporte a vertedero	4,10807976	64,54522612	19	78.05351544	1226,359296
UD ARQUETA 60X60 RESERVA MUNICIPAL UD ARQUETA 60X60 RESERVA MUNICIPAL	0,835	Mat	HM 15	10,1367	49,5992	19	192,5973	942,3848
UD ARQUETA 60X60 RESERVA MUNICIPAL UD ARQUETA 60X60 RESERVA MUNICIPAL	1,725	Mat	Ladrillo perforado 24×11,5×7	0,81075		19	15,40425	170,75775
				,	,			· ·
UD ARQUETA 60X60 RESERVA MUNICIPAL	1,44	Act	Enlucido mortero cto.	10,3222368	46,1810304	19	196,1224992	877,4395776
UD ARQUETA 60X60 RESERVA MUNICIPAL	0,014	Mat	Mortero cemento m450	5,90324	26,41072	19	112,16156	501,80368
ML LIMPIEZA Y MANDRILADO DE CONDUCT				-	-	6522,18	0	0
ML INST. BANDA AMARILLA SEÑALIZAC.	1,01	Mat	Banda señalización polietileno	0,0303	1,1009	1640,46	49,705938	1805,982414
PA ENTERRAMIENTO DE LINEA TELEFONIA				-	-	1	0	0
ML PRISMA DE TELEFONÍA T-1	0,3	Mat	HM 15	43,443	212,568	678,21	29463,47703	144165,7433
ML PRISMA DE TELEFONÍA T-1	6,6	Mat	Tubo PVC 110 mm	22,704	653,202	678,21	15398,07984	443008,1284
ML PRISMA DE TELEFONÍA T-1	1,1	Mat	Tubo PE 110 mm 10 bar	4.895	186,384	678.21	3319.83795	126407,4926
ML PRISMA DE TELEFONÍA T-1	2,2	Mat	Tubo PE 110 mm 10 bar	9,79	372,768	678,21	6639,6759	252814,9853
ML PRISMA DE TELEFONÍA T-2	0.2	Mat	HM 15	28,962	141,712	182,75	5292,8055	25897,868
ML PRISMA DE TELEFONÍA T-2	4,4	Mat	Tubo PVC 110 mm	15,136	435,468	182,75	2766,104	79581,777
ML PRISMA DE TELEFONÍA T-2	1,1	Mat	Tubo PE 110 mm 10 bar	4.895	186,384	182,75	894.56125	34061,676
ML PRISMA DE TELEFONÍA T-2	2,2	Mat	Tubo PE 110 mm 10 bar	9,79	372,768	182,75	1789,1225	
	1.02	Mat			57.4566			68123,352
The Foot IIII and			Tubo PE 63 mm 10 bar	1,5096		378	570,6288	21718,5948
ML TUBERIA PE AD Ø90 MM GAS	1,02	Mat	Tubo PE 90 mm 10 bar	3,06	116,5044	401,5	1228,59	46776,5166
UD VALVULA DE ESFERA Ø100 MM				-	-	4	0	0
M3 EXCV ZANJA MEDIOS RETRO	0,12	Maq	Retroexcavadora s/ neum 8 a 10 t	4,403064		1086,68	4784,721588	75176,47024
M3 EXCV POZO MEDIOS RETRO	0,12	Maq	Retroexcavadora s/ neum 8 a 10 t	4,403064	69,179952	74,82	329,4372485	5176,044009
	4,2	Mat	Tubería PVC 200	32,046	920,178	300	9613,8	276053,4
ML CANALIZACIÓN BAJO ACERA DE M.T. CUATRO TUBOS DE Ø200	0,36	Mat	Arena 0 a 3,5 mm calcarea	0,954	18,4032	300	286,2	5520,96
ML CANALIZACIÓN BAJO ACERA DE M.T. CUATRO TUBOS DE Ø200	2,1	Mat	Banda señalización polietileno	0,063	2,289	300	18,9	686,7
M3 RELL ZNJ TIE PRO BAND	0,15	Maq	Bandeja vibrante,pla.60cm	1,55037	24,359145	595,34	922,9972758	14501,97338
M3 RELL ZNJ TIE PRO BAND	0,015	Mag	Camión cisterna 10m3	1,178283	18,5129475	595,34	701,4790012	11021,49816
M3 RELL ZNJ TIE PRO BAND	0,015	Mag	Camión semiremolque 25 t con plataforma (bañera)	1,7442	27,35235	595,34	1038,392028	16283,94805
M3 RELL ZNJ TIE PRO BAND	0,05	Maq	Retroexcavadora s/ neum 8 a 10 t	1,83461	28,82498	595,34	1092,216717	17160,66359
UD ARQUETA REGISTRABLE EN ACERA IBERDROLA MT	0,12	Mat	HM 15	17,3772	85,0272	26	451,8072	2210,7072
UD ARQUETA REGISTRABLE EN ACERA IBERDROLA MT	165	Mat	Ladrillo perforado 24x11,5x7	77,55	859.65	26	2016,3	22350,9
UD ARQUETA REGISTRABLE EN ACERA IBERDROLA INT	0.05	Mat	Mortero cemento m450	21.083	94.324	26	548.158	2452.424
UD ARQUETA REGISTRABLE EN ACERA IBERDROLA INT	3500	Mat	Acero en barras corrugadas	3080	49840	26	80080	1295840
UD ARQUETA REGISTRABLE EN ACERA IBERDROLA MT	0,05	Mat	Mortero cemento m450	21,083	94,324	26	548,158	2452,424
ML TENDIDO LSMT AL 3X400MM2 TIPO SS	3	Mat	Cable Al rigido 1x300 RZ1	14,55	238,38	462	6722,1	110131,56
UD ENSAYOS LSMT Y OCAS				-	-	2	0	0
ML CANALIZACIÓN BAJO CALZADA DE M.T. CUATRO TUBOS DE	1,05	Mat	Tubo PE 200 mm 10 bar	15,183		0	0	0
ML CANALIZACIÓN BAJO CALZADA DE M.T. CUATRO TUBOS DE	4,2	Mat	Tubería PVC 200	32,046	920,178	0	0	0
ML CANALIZACIÓN BAJO CALZADA DE M.T. CUATRO TUBOS DE	0,28	Mat	HM 15	40,5468		0	0	0
ML CANALIZACIÓN BAJO CALZADA DE M.T. CUATRO TUBOS DE	2,1	Mat	Banda señalización polietileno	0,063	2,289	26	1,638	59,514
M3 ARENA PARA ZANJA MT/BT	1	Mat	Arena 0 a 3,5 mm calcarea	2,65	51,12	7,36	19,504	376,2432
UD EDIFICIO PREFABRICADO 4460 X 2380 X 2600	4	Maq	Grúa autropopulsada de 12 t	2563,284	4027,378	1	2563,284	4027,378
UD TRANSFD 630 KVA AISL BÑ ACEITE				-	· ·	2	0	0
UD SISTEMA ALUMBRADO CT						2	0	0
UD EQUIPO DE SEGURIDAD CT						2	0	0
				1-	-	14	10	ĮU

UD ENTRADA / SALIDA: CGMCOSMOS-L INTERRUPTOR-				-	-	3	0	0
SECCIONADOR								
UD PROTECCIÓN TRANSFORMADOR 1: CGMCOSMOS-P PROTECCIÓN FUSIBLES				-	-	1	0	0
UD PUENTES MT TRANSFORMADOR 1Y 2: CABLES MT 12/20 KV				-	-	3	0	0
UD DEFENSA DE TRANSFORMADOR. PROTECCIÓN FÍSICA TRANSFORMADOR				-	-	3	0	0
UD EQUIPO DE CONTROL: EKORUCT - UNIDAD COMPACTA DE				-	-	1	0	0
TELEMANDO								
UD SISTEMA TELEGESTIÓN				-	-	2	0	0
UD TIERRAS PROT TRANSFORMACIÓN				-	-	2	0	0
UD TIERRAS SERV TRANSFORMACIÓN				-	-			0
UD MATERIAL DIVERSO DE INSTALACION CTS / CRTS				-	-	2	0	0
UD CUADROS BT - B2 TRANSFORMADOR: CUADROS BAJA TENSIÓN UNESA				-	-	3	0	0
UD PUENTES BT - B2 TRANSFORMADOR: PUENTES				-	-	2	0	0
TRANSFORMADOR-CUADRO								
UD ACERA PERIMETRAL				-	-		0	0
UD CERTIFICADO DE PASO Y CONTACTO EN CT				-	-	2	0	0
UD CERTIFICADO OCA CT				-	-	2	0	0
UD EDIF. PREF. 6080X2380X2600	4	Maq	Grúa autropopulsada de 12 t	2563,284	4027,378	1	2563,284	4027,378
UD TRANSFD 400 KVA AISL BÑ ACEITE				-	-	1	0	0
UD EQUIPO COMPACTO DE CORTE 2L2P				-	-	1	0	0
PA PARTIDA ADECUACIÓN CT EXIST				-	-			0
UD INST. FUSIBLES EN CUADRO BT PARA ENERG. LSBT EN CT				-	-	96	0	0
UD CGPM ESQU 10 250/400A + NICHO + O.CIVIL				-	-	18	0	0
ML CANALIZACIÓN BT PARA 4 TUBOS DE 160 MM + CUATRI	1,05	Mat	Tubo PE 160 mm 10 bar	9,744	371,091	245	2387,28	90917,295
TELEMAN B/ACERA								
ML CANALIZACIÓN BT PARA 4 TUBOS DE 160 MM + CUATRI TELEMAN B/ACERA	4,2	Mat	Tubería PVC 110	14,448	415,254	245	3539,76	101737,23
ML CANALIZACIÓN BT PARA 4 TUBOS DE 160 MM + CUATRI	0,145	Mat	Arena 0 a 3,5 mm calcarea	0,38425	7,4124	245	94,14125	1816,038
TELEMAN B/ACERA	·		·	ļ *	1			· .
ML CANALIZACIÓN BT PARA 4 TUBOS DE 160 MM + CUATRI TELEMAN B/ACERA	2,1	Mat	Banda señalización polietileno	0,063	2,289	245	15,435	560,805
ML CANALIZACIÓN BT PARA 9 TUBOS DE 160 MM + CUATRI	1.05	Mat	Tubo PE 160 mm 10 bar	9.744	371.091	210	2046.24	77929.11
TELEMAN B/ACERA	1,03	Iviat	Tubo i E 100 iiiii 10 bai	3,744	371,031	210	2040,24	77525,11
ML CANALIZACIÓN BT PARA 9 TUBOS DE 160 MM + CUATRI	9,5	Mat	Tubería PVC 110	32,68	939,265	210	6862,8	197245,65
TELEMAN B/ACERA								
ML CANALIZACIÓN BT PARA 9 TUBOS DE 160 MM + CUATRI	0,145	Mat	Arena 0 a 3,5 mm calcarea	0,38425	7,4124	210	80,6925	1556,604
TELEMAN B/ACERA								
ML CANALIZACIÓN BT PARA 9 TUBOS DE 160 MM + CUATRI TELEMAN B/ACERA	2,1	Mat	Banda señalización polietileno	0,063	2,289	210	13,23	480,69
ML CANALIZACIÓN BT PARA 6 TUBOS DE 160 MM + CUATRI	1,05	Mat	Tubo PE 160 mm 10 bar	9,744	371,091	120	1169,28	44530,92
TELEMAN B/ACERA								
ML CANALIZACIÓN BT PARA 6 TUBOS DE 160 MM + CUATRI	6,3	Mat	Tubería PVC 110	21,672	622,881	120	2600,64	74745,72
TELEMAN B/ACERA								
ML CANALIZACIÓN BT PARA 6 TUBOS DE 160 MM + CUATRI	0,145	Mat	Arena 0 a 3,5 mm calcarea	0,38425	7,4124	120	46,11	889,488
TELEMAN B/ACERA								
ML CANALIZACIÓN BT PARA 6 TUBOS DE 160 MM + CUATRI TELEMAN B/ACERA	2,1	Mat	Banda señalización polietileno	0,063	2,289	120	7,56	274,68
ML CANALIZACIÓN BT PARA 12 TUBOS DE 160 MM + CUATRI	1,05	Mat	Tubo PE 160 mm 10 bar	9,744	371,091	100	974,4	37109,1
TELEMAN B/ACERA				-,	_,			
ML CANALIZACIÓN BT PARA 12 TUBOS DE 160 MM + CUATRI	12,6	Mat	Tubería PVC 110	43.344	1245,762	100	4334,4	124576.2
TELEMAN B/ACERA				1.,				
ML CANALIZACIÓN BT PARA 12 TUBOS DE 160 MM + CUATRI	0,145	Mat	Arena 0 a 3,5 mm calcarea	0,38425	7,4124	100	38,425	741,24
TELEMAN B/ACERA			,		,			
ML CANALIZACIÓN BT PARA 12 TUBOS DE 160 MM + CUATRI	2,1	Mat	Banda señalización polietileno	0,063	2.289	100	6.3	228.9
TELEMAN B/ACERA							7	
ML CANALIZACIÓN BT PARA 16 TUBOS DE 160 MM + CUATRI	2,1	Mat	Tubo PE 160 mm 10 bar	19,488	742,182	60	1169,28	44530,92
TELEMAN B/ACERA					,			
ML CANALIZACIÓN BT PARA 16 TUBOS DE 160 MM + CUATRI	16.8	Mat	Tubería PVC 110	57.792	1661.016	60	3467.52	99660.96
TELEMAN B/ACERA	· ·			' -	_,			

ML CANALIZACIÓN BT PARA 16 TUBOS DE 160 MM + CUATRI TELEMAN B/ACERA	0,145	Mat	Arena 0 a 3,5 mm calcarea	0,38425	7,4124	60	23,055	444,744
ML CANALIZACIÓN BT PARA 16 TUBOS DE 160 MM + CUATRI TELEMAN B/ACERA	2,1	Mat	Banda señalización polietileno	0,063	2,289	60	3,78	137,34
ML CANALIZACIÓN BT PARA 12 TUBOS DE 160 MM+ CUATRI TELEMA B/CALZADA	1,05	Mat	Tubo PE 160 mm 10 bar	9,744	371,091	20	194,88	7421,82
ML CANALIZACIÓN BT PARA 12 TUBOS DE 160 MM+ CUATRI TELEMA B/CALZADA	13	Mat	Tubería PVC 110	44,72	1285,31	20	894,4	25706,2
ML CANALIZACIÓN BT PARA 12 TUBOS DE 160 MM+ CUATRI TELEMA B/CALZADA	0,17	Mat	HM 15	24,6177	120,4552	20	492,354	2409,104
ML CANALIZACIÓN BT PARA 12 TUBOS DE 160 MM+ CUATRI TELEMA B/CALZADA	2,1	Mat	Banda señalización polietileno	0,063	2,289	20	1,26	45,78
ML CANALIZACIÓN BT PARA 4 TUBOS DE 160 MM + CUATRI TELEMA B/CALZADA	1,05	Mat	Tubo PE 160 mm 10 bar	9,744	371,091	30	292,32	11132,73
ML CANALIZACIÓN BT PARA 4 TUBOS DE 160 MM + CUATRI TELEMA B/CALZADA	4,2	Mat	Tubería PVC 110	14,448	415,254	30	433,44	12457,62
ML CANALIZACIÓN BT PARA 4 TUBOS DE 160 MM + CUATRI TELEMA B/CALZADA	0,12	Mat	HM 15	17,3772	85,0272	30	521,316	2550,816
ML CANALIZACIÓN BT PARA 4 TUBOS DE 160 MM + CUATRI TELEMA B/CALZADA	2,1	Mat	Banda señalización polietileno	0,063	2,289	30	1,89	68,67
ML CANALIZACIÓN BT PARA 6 TUBOS DE 160 MM + CUATRI	1,05	Mat	Tubo PE 160 mm 10 bar	9,744	371,091	15	146,16	5566,365
TELEMA B/CALZADA								
ML CANALIZACIÓN BT PARA 6 TUBOS DE 160 MM + CUATRI TELEMA B/CALZADA	6,3	Mat	Tubería PVC 110	21,672	622,881	15	325,08	9343,215
ML CANALIZACIÓN BT PARA 6 TUBOS DE 160 MM + CUATRI TELEMA B/CALZADA	0,13	Mat	HM 15	18,8253	92,1128	15	282,3795	1381,692
ML CANALIZACIÓN BT PARA 6 TUBOS DE 160 MM + CUATRI TELEMA B/CALZADA	,	Mat	Banda señalización polietileno	0,063	, and the second	15		34,335
UD ARQUETA REGISTRABLE EN ACERA IBERDROLA BT		Mat	HM 15	17,3772		26		2210,7072
UD ARQUETA REGISTRABLE EN ACERA IBERDROLA BT	165	Mat	Ladrillo perforado 24x11,5x7	77,55	859,65	26	2016,3	22350,9
UD ARQUETA REGISTRABLE EN ACERA IBERDROLA BT	0,05	Mat	Mortero cemento m450	21,083	94,324	26	548,158	2452,424
UD ARQUETA REGISTRABLE EN ACERA IBERDROLA BT		Mat	Acero en barras corrugadas	3080		26	80080	1295840
UD ARQUETA REGISTRABLE EN ACERA IBERDROLA BT	0,05	Mat	Mortero cemento m450	21,083	94,324	26	548,158	2452,424
ML TEND LSBT 3X240+1X150MM2 TIPO SG AL	3,15	Mat	Cable Al rigido 1x240 RZ1	12,8205	216,909	4140	53076,87	898003,26
ML TEND LSBT 3X240+1X150MM2 TIPO SG AL	1,05	Mat	Cable Al rigido 1x150 RV	2,625	43,974	4140	10867,5	182052,36
PA PARTIDA ALZADA CONECTAR INSTALACIONES EXISTENTES				-	-	1		0
UD MEDICIONES RED BAJA TENSIÓN				-	-	21	-	0
UD COLUMNA 6 M. DOBLE EN V	1	Mat	Columna acero galvanizado 4m	34,44	367,6	21	723,24	7719,6
UD COLUMNA MAHUELLA 4 M	1	Mat	Columna acero galvanizado 6m	51,67	551,41	26	1343,42	14336,66
UD COLUMNA 5 M SIMPLE	1	Mat	Columna acero galvanizado 5m	43,05	459,1	67	2884,35	30759,7
UD COLUMNA MAHUELLA 4 METROS EN T	1	Mat	Columna acero galvanizado 4m	34,44	367,6	2		735,2
UD LUMINARIA HERMETICA CAMPANAR PEQUEÑA 24L 38 W 5118				-	-	30		0
UD LUMINARIA HERMETICA CAMPANAR PEQUEÑA 32L 51 W 5118- 5068				-	-	57		0
UD LUMINARIA HERMETICA CAMPANAR PEQUEÑA 48L 73W 5119					-	40	0	0
ML CONDUCTOR COBRE 3X2,5 MM2.				-	-	750		0
ML CONDUCTOR COBRE 1X6 MM2.				-	-	10923		0
ML CONDUCTOR COBRE AMARILLO-VERDE 1X16 MM2.				-	-	2763		0
UD ARMARIO METÁLICO DE DOS COMPARTIMENTOS				-	-	1		0
UD CGP Y MODULO DE MEDIDA				-	-	1		0
UD CUADRO DE PROTECCIÓN				-	-	1		0
UD MONTAJE COLUMNAS 5 A 10 M.				-	-	82		0
UD MONTAJE COLUMNAS 4 M.				-	-	28		0
UD MONTAJE DE INSTALACIÓN ELEC. SUBTERRANEA				-	-	132		0
UD CAJA DE CONEXIÓN				-	-	132		0
UD PIQUETA T.T.				-	-	110		0
UD EMPALME TERMORRETACTIL				-	-	32	0	0
UD SOLDADURA ALUMINOTERMICA				-	-	111	0	0
UD PARTIDA ALZADA ADECUACIÓN INSTALACIONES EXISTENTES				-	-	1		0
ML ZANJA EN TIERRA 2				-	-	2619		0
ML ZANJA EN CALZADA				-	-	144		0
UD ARQUETA DE REGISTRO 40X40X70				-	-	143		0
UD CIMENTACIÓN BACULO HASTA 5 M.				-	-	90	0	0

UD CIMENTACIÓN BACULOS HASTA 8 M.					I	20	0	0
UD CIMENTACIÓN PARA BASAMENTO				-	-	1	0	0
	0.02	14	Polodo	1.870784	29,393362	3318.09	6207,429683	97529.82052
	0,003	Maq Mat	Pala cargadora s/neumáticos 15 a 20t HM 15	0,43443	2,12568	1948,5	846,486855	4141,88748
ML BORDILLO H 10X20X50 REDONDEADO	0,03	Mat	Mortero m40a 1:6 5 N/mm2	7,1223	33,4095	1948,5 1230.1	13877,80155	65098,41075
	1,05	Mat	Adoquin de hormigón 8cm espesor	13,734	72,1455		16894,1934	88746,17955
	0,03	Mat	Mortero cemento m450	12,6498	56,5944	1230,1	15560,51898	69616,77144
	0,1	Mat	Arena 0 a 3,5 mm calcarea	0,265	5,112	1384,3	366,8395	7076,5416
	0,15	Mat	Grava de cantera de piedra cal 12 a 18	0,3975	7,668		550,25925	10614,8124
	0,15	Mat	Zahorra aritificial	0,637185	12,2685	1384,3	882,0551955	16983,28455
	0,1	Maq	Pala cargadora s/neumáticos 15 a 20t	9,35392	146,96681	1384,3	12948,63146	203446,1551
	0,1	Maq	Rodillo vibratorio autopropulsado 8 a 10 t	4,134	64,835	1384,3	5722,6962	89751,0905
	0,84	Mat		1,846908	53,5248	150,4	277,7749632	8050,12992
M2 PAVIMENTO DE SEGURIDAD	0,42	Mat	Emulsión de resinas sintéticas en base acuosa, para cap	0,461748	20,146014	150,4	69,4468992	3029,960506
M2 PLANTA TAPIZANTE Y DE FLOR				-	-	2830,65	0	0
UD ARBUSTOS Y PLANTAS DE FLOR				•	-	160	0	0
UD PLANTACIÓN QUERCUS ILEX				-	-	40	0	0
UD PLANTACION BRACHYCHITON ACERIFOL				-	-	18	0	0
UD PLANTACION PHOENIX DACTYLIFERA				-	-	1	0	0
UD PLANTACION CELTIS AUSTRALIS						72	0	0
UD PLANTACION OLEA EUROPEA					-	1	0	0
UD PLANTACION JACARANDA MIMOSIFOLIA					-	13	0	0
UD FORMACION DE ALCORQUE DE 200X100				-	-	160	0	0
UD FORMACION DE ALCORQUE DE Ø150				-	-	25	0	0
UD BANCO DE MADERA MOD. NEOBARCINO	1	Mat	Banco sencillo de madera	39.68	490,46	33	1309.44	16185,18
	0,032	Mat	HM 15	4,63392	22,67392	33	152,91936	748,23936
UD PAPELERA PEAD 1 VASO	1	Mat	Papelera de pie 165 l	20,07	763,84	35	702,45	26734.4
	0,05	Mat	HM 15	7,2405	35,428	35	253,4175	1239,98
UD FUENTE BEBEDERO C/INSTALACIÓN	0,05	IVIAT	UNI TO	7,2405	35,420	1	0	0
				-	-	2	•	0
				•	-	3	0	-
UD JUEGO COLUMPIO TRADICIONAL				•	-	1	0	0
UD JUEGO COMPLEJO BABY				•	-	-	0	•
UD JUEGO TOBOGÁN-TORRE				-	-	1	0	0
ML VALLA JARDINES ZONAS NO PISABLES				-	-		0	0
UD SETO VINURNUM LUCIDUM				-	-	163,5	0	0
UD PLANTACIÓN GREVILLEA ROBUSTA				-	-	31	0	0
UD PLANTACIÓN PLATANUS X HISPÁNICA				-	-	16	0	0
UD PLANTACIÓN FICUS NITIDA				-	-	8	0	0
UD PLANTACIÓN MELIA AZEDARACH				-	-	23	0	0
UD PLANTACIÓN FRAXINUS ORNUS				-	-	3	0	0
UD PLANTACIÓN QUERCUS FAGINEA VALENTINA				-	-		0	0
UD PLANTACIÓN GINGKO BILOBA				•	-	1	0	0
UD PLANTACIÓN MORUS ALBA "FRUIT-LESS"				-	-	8	0	0
UD PLANTACIÓN ACER MONSPESSULANUM				-	-	19	0	0
UD PLANTACIÓN LAGUNARIA PATERSONII					-	9	0	0
ML PELD. IN SITU HORMIG.RULETEADO	1	Mat	Encofrado metalico < 3m	10,33	116,44	41	423,53	4774,04
	0,01	Mat	Mortero hidrofugo M700	4,94172	23,47164	41	202,61052	962,33724
ML PELD. IN SITU HORMIG.RULETEADO	0,09	Mat	HA-25 20mm	25,4421	115,5258	41	1043,1261	4736,5578
ML PELD. IN SITU HORMIG.RULETEADO	6	Mat	Acero en barras corrugadas	5,28	85,44	41	216,48	3503,04
	0,5	Mag	Compresor+dos martillos neumáticos	2,4806	38,97465	4	9,9224	155,8986
	0.016	Mat	HM 20	3,05184	14,39328	4	12.20736	57,57312
UD ACOMETIDA DE RED DE RIEGO+CONTAD	-,			-	-	1		0
	0,16	Act	Excavación en zanja/pozo	0,2935376	4,6119968	25	7,33844	115,29992
	0.192	Act	Transporte a vertedero	0,944612352	14,84153702	25	23.6153088	371.0384256
	0,14	Act	Relleno de zanja/pozo tier. Pres	0,8066254	14,6198332	25		365,49583
ML TUBERIA PE Ø32 MM CONEXION FUENT	1,05	Mat	Tubo PE 32 mm 10 bar	0,42	16,002	25	10,5	400,05
	1,05	ividt	TUDO FE 52 MIN 10 DAF	0,42	10,002	1		
				•			0	0
UD CABEZAL PARA GOTEO				-	-	11	0	0
UD PROGRAMADOR AUTONOMO			/	-	-	14	0	0
ML TENDIDO TUBERIA PVC 200 mm	1,02	Mat	Tubería PVC 200	7,7826	223,4718	2333,4	18159,91884	521449,0981
ML TENDIDO TUBERIA PVC 200 mm	0,16	Act	Excavación en zanja/pozo	0,2935376	4,6119968	2333,4	684,9406358	10761,63333
ML TENDIDO TUBERIA PVC 200 mm	0,192 0,014	Act Act	Transporte a vertedero Relleno de zanja/pozo tier. Pres	0,944612352 0,08066254	14,84153702 1.46198332	2333,4	2204,158462 188,2179708	34631,24249 3411,391879

	I-					I		1
ML TENDIDO TUBERIA PE 50 mm	1	Mat	Tubo PE 50 mm 10 bar	0,93	35,36	4322,3	4019,739	152836,528
ML TENDIDO PE 16 PARA GOTEO	1	Mat	Tubo PE 32 mm 10 bar	0,4	15,24	174,2	69,68	2654,808
UD INUNDADOR AUTOCOMPENSADO, MODELO PCB-25 HUNTER,	1	Mat	Inundador caudal 0,9 I/min	0,14	2,94	354	49,56	1040,76
CAUDAL DE 60 L/H								
UD BOCA DE RIEGO ENLACE RAPIDO 1 "				-	-	9	0	0
UD ARQUETA DE REGISTRO 30 X 30	0,001	Mat	Cemento portland	0,9252	3,94916	186	172,0872	734,54376
UD ARQUETA DE REGISTRO 30 X 31	0,02	Mat	Mortero m40a 1:6 5 N/mm2	4,7482	22,273	0	0	0
UD ARQUETA DE REGISTRO 30 X 32	0,032	Mat	HM 15	4,63392	22,67392	0	0	0
UD ARQUETA DE REGISTRO 30 X 33	35	Mat	Ladrillo perforado 24x11,5x7	16,45	182,35	0	0	0
UD ARQUETA DE REGISTRO 40 X 40	0,001	Mat	Cemento portland	0,9252	3,94916	91	84,1932	359,37356
UD ARQUETA DE REGISTRO 40 X 41	0,02	Mat	Mortero m40a 1:6 5 N/mm2	4,7482	22,273	0	0	0
UD ARQUETA DE REGISTRO 40 X 42	0,032	Mat	HM 15	4,63392	22,67392	0	0	0
UD ARQUETA DE REGISTRO 40 X 43	35	Mat	Ladrillo perforado 24x11,5x7	16,45	182,35	0	0	0
UD ASPERSOR EMERG. TURB 4-9M				-	-	154	0	0
UD FILTRO DE MALLA EN "Y" DE 2"				-	-	14	0	0
UD REGULADOR DE PRESIÓN					-	14	0	0
ML TENDIDO TUBERIA PE 63 mm	1	Mat	Tubo PE 63 mm 10 bar	1.48	56.33	5	7.4	281.65
UD ARQUETA REGISTRO 60x60 + llave	0.001	Mat	Cemento portland	0.9252	3.94916	12	11,1024	47.38992
	0,001	Mat	·	0,94964	4.4546	12	11,39568	53,4552
			Mortero m40a 1:6 5 N/mm2 HM 15			12		
UD ARQUETA REGISTRO 60x60 + llave	0,071	Mat		10,28151	50,30776		123,37812	603,69312
UD ARQUETA REGISTRO 60x60 + llave	60	Mat	Ladrillo perforado 24x11,5x7	28,2	312,6	12	338,4	3751,2
UD SEÑAL REFLEX. CIRC/TRIAN/OCT 600	0,02	Mat	HM 15	2,8962	14,1712	35	101,367	495,992
UD SEÑAL REFLEXIVA RECTANGULAR-600	0,02	Mat	HM 15	2,8962	14,1712	3	8,6886	42,5136
UD CARTEL DE 40 X 60 CM ALUMINIO	1	Mat	Cartel para señales 0,4*0,6	11,1048	158,808	9	99,9432	1429,272
UD DESMONTAJE SEÑAL VERTICAL	0,56	Maq	Compresor+dos martillos neumáticos	2,778272	43,651608	11	30,560992	480,167688
UD DESPLAZAMIENTO CARTEL				-	-	1	0	0
UD HITO O BALIZA CILINDRICA H75				-	-	10	0	0
ML PINTURA VIAL DISCONT 15 CM 1/2	0,025	Mat	Pintura acrilica blanca para marcas viales	0,0988675	2,01742	98,3	9,71867525	198,312386
ML PINTURA VIAL DISCONT 15 CM 1/3	0,013	Mat	Microesferas de vidrio para señaliz para marcas viales	0,0113347	0,1510236	0	0	0
ML PINTURA VIAL DISCONT 15 CM 1/4	0,004	Maq	Maquina para pintar bandas de vial, autopropulsada	0,1343656	2,1111256	0	0	0
ML PINTURA VIAL CONTINUA 15 CM	0,05	Mat	Pintura acrilica blanca para marcas viales	0,197735	4,03484	1395,5	275,9391925	5630,61922
ML PINTURA VIAL CONTINUA 15 CM	0,025	Mat	Microesferas de vidrio para señaliz para marcas viales	0,0217975	0,29043	1395.5	30,41841125	405,295065
ML PINTURA VIAL CONTINUA 15 CM	0.008	Mag	Maguina para pintar bandas de vial, autopropulsada	0.2687312	4.2222512	1395.5	375.0143896	5892,15155
ML PINTURA VIAL DISCONT 10 CM 2/5'5	0.013	Mat	Pintura acrilica blanca para marcas viales	0,0514111	1.0490584	1854.3	95,33160273	1945,268991
ML PINTURA VIAL DISCONT 10 CM 2/5'5	0.007	Mat	Microesferas de vidrio para señaliz para marcas viales	-	0.0813204	1854.3	11.31734919	150,7924177
ML PINTURA VIAL DISCONT 10 CM 2/5'5	0,003	Mag	Maquina para pintar bandas de vial, autopropulsada	0,1007742	1,5833442	1854,3	186,8655991	2935,99515
ML PINTURA VIAL CONTINUA 10 CM	0.025	Mat	Pintura acrilica blanca para marcas viales	0.0988675	2.01742	571.1	56.46322925	1152.148562
	-,		·	-,	-,		,	
ML PINTURA VIAL CONTINUA 10 CM	0,015	Mat	Microesferas de vidrio para señaliz para marcas viales		0,174258	571,1	7,46913135	99,5187438
ML PINTURA VIAL CONTINUA 10 CM	0,006	Maq	Maquina para pintar bandas de vial, autopropulsada	0,2015484	3,1666884	571,1	115,1042912	1808,495745
ML PINTURA VIAL CONTINUA 40 CM	0,15	Mat	Pintura acrilica blanca para marcas viales	0,593205	12,10452	260	154,2333	3147,1752
ML PINTURA VIAL CONTINUA 40 CM	0,07	Mat	Microesferas de vidrio para señaliz para marcas viales	0,061033	0,813204	260	15,86858	211,43304
ML PINTURA VIAL CONTINUA 40 CM	0,008	Maq	Maquina para pintar bandas de vial, autopropulsada	0,2687312	4,2222512	260	69,870112	1097,785312
ML PINTURA VIAL CONTINUA 50 CM	0,25	Mat	Pintura acrilica blanca para marcas viales	0,988675	20,1742	642,9	635,6191575	12969,99318
ML PINTURA VIAL CONTINUA 50 CM	0,125	Mat	Microesferas de vidrio para señaliz para marcas viales	0,1089875	1,45215	642,9	70,06806375	933,587235
ML PINTURA VIAL CONTINUA 50 CM	0,008	Maq	Maquina para pintar bandas de vial, autopropulsada	0,2687312	4,2222512	642,9	172,7672885	2714,485296
UD MARCA VIAL TRAFICO, SIGNOS	0,25	Mat	Pintura acrilica blanca para marcas viales	0,988675	20,1742	115	113,697625	2320,033
UD MARCA VIAL TRAFICO, SIGNOS	0,48	Mat	Microesferas de vidrio para señaliz para marcas viales	0,418512	5,576256	115	48,12888	641,26944
UD MARCA VIAL TRAFICO, SIGNOS	0,008	Maq	Maquina para pintar bandas de vial, autopropulsada	0,2687312	4,2222512	115	30,904088	485,558888
M2 PINTURA CONTINUA	0,5	Mat	Pintura acrilica blanca para marcas viales	1,97735	40,3484	76	150,2786	3066,4784
M2 MARCA VIAL REFLX CALZ SUPERFICIE	0,25	Mat	Pintura acrilica blanca para marcas viales	0,988675	20,1742	3,86	3,8162855	77,872412
M2 MARCA VIAL REFLX CALZ SUPERFICIE	0.48	Mat	Microesferas de vidrio para señaliz para marcas viales	0,418512	5,576256	3,86	1,61545632	21,52434816
M2 MARCA VIAL REFLX CALZ SUPERFICIE	0.008	Mag	Maquina para pintar bandas de vial, autopropulsada	0.2687312	4.2222512	3.86	1.037302432	16,29788963
M3 HORMIGÓN 15 MPa DE LIMPIEZA	1.025	Mat	HM 15	148.43025	726,274	79.05	11733,41126	57411.9597
KG ACERO B 500 S EN BARRAS D<25 mm	1,025	Mat	Acero en barras corrugadas	0,924	14,952	34338,99	31729,22676	513436,5785
M2 ENCF MET VERTICAL	1,03	Mat	Encofrado metalico < 3m	10,33	116.44	2083,47	21522,2451	242599,2468
	1							<u> </u>
M3 HGON P/ARMAR HA-30/P/20	1	Mat	HA-30 20mm	282,9	1287,54	493,08	139492,332	634860,2232
M3 HGON P/ARMAR HA-30/P/20	1	Maq	Vibrador de aguja	7,17	174,21	493,08	3535,3836	85899,4668
ML BARANDILLA TUBULAR PROTECCIÓN				-	-	242,2	0	0
M2 GEOCELDA PEHD				-	-	612	0	0
M2 INSTALACIÓN GEOCELDAS				-	-	612	0	0
M2 HIDROSIEMBRA	1	Act	Hidrosiembra	-	-	612	0	0
PA PROYECTO ELECTRICO LEGALIZADO				-	-	1	0	0
PA PROYECTO ALUMBRADO LEGALIZADO						1	0	0

							-	-
PA PRUEBA DE ESTANQUIDAD PA CONTROL DE CALIDAD				-	-	1		0
				-	-	1	0	0
UD SEGURIDAD Y SALUD				-	-	1	0	0
ML TUBERIA PVC HELICOIDAL 1000 mm	1,05	Mat	Tuberia PVC helicoidal 1000	50,946	1452,444	10	509,46	14524,44
ML TUBERIA PVC HELICOIDAL 1000 mm	0,08	Maq	Camión grúa	8,268656	129,915424	10	82,68656	1299,15424
UD ADECUACION MARCO-TAPA POZO REG.	0,06	Mat	HM 15	8,6886	42,5136	2	17,3772	85,0272
UD ADECUACION MARCO-TAPA POZO REG.	0,06	Act	Colocación de hormigón en pozos	0,1432566	3,4807158	2	0,2865132	6,9614316
UD ADECUACION MARCO-TAPA POZO REG.	0,07	Act	Aglomerado asf. En frio	4,784115462	545,8757858	2	9,568230924	1091,751572
ML CANALIZACION SUBTERRANEA ACERA				-	-	1077	0	0
ML CANALIZACION SUBTERRANEA CALZADA				-	-	374	0	0
UD ARQUETA DE REGISTRO 60 * 60 * 60				-	-	36	0	0
UD ARQUETA DE REGISTRO 60 * 60 * 85				-	-	51	0	0
UD POZO TOMA DE TIERRA 80 * 80 * 115				-	-	6	0	0
UD BASE DE CIMENTACION 1,00 * 1,00 * 1,00				-	-	15	0	0
UD BASE DE CIMENTACION 0,4 * 0,4 * 0,6				-	-	33	0	0
UD SEMÁFORO BÁCULO A REUBICAR	0,3	Mag	Martillo romp.man.	0,6456	16,16919	3	1,9368	48,50757
UD SEMÁFORO BÁCULO A REUBICAR	0,8	Mag	Plataforma elevadora	16,416	257,392	3	49,248	772,176
UD SEMÁFORO BÁCULO A REUBICAR	0,5	Mag	Camión grúa	51,6791	811,9714	3	155,0373	2435,9142
UD SEMÁFORO COLUMNA A REUBICAR	0,3	Maq	Martillo romp.man.	0,6456		8	5,1648	129,35352
UD SEMÁFORO COLUMNA A REUBICAR	0,5	Maq	Camión grúa	51,6791	811,9714	8	413,4328	6495,7712
UD SEMÁFORO 13/200 R/A/V LED N/B	0,5	Iviaq	Cultifori graa	-	-	29		0
UD SEMÁFORO 13/200 R/A/V LED N/A				_		11	0	0
				ľ	_	**		ľ
Semáforo de policarbonato de 3 focos Rojo Amarillo Verde, de								
diámetro 200 mm. con iluminación mediante led. Nivel alto						-	-	-
UD SEMÁFORO 13/200 V/A/A LED N/B				-	-	8	0	0
UD SEMÁFORO 13/200 V/A/A LED N/A				-	-	1	0	0
UD SEMÁFORO 11/200 ÁMBAR LED N/A				-	-	1		0
UD SEMÁFORO 11/200 ÁMBAR LED N/B				-	-	1		0
UD SEMAFORO 12/200 PPC PEATON LED				-	-	30		0
UD SEMAFORO 12/200 PPC PEATON/BICI LED				-	-	8	0	0
UD SEMÁFORO 12/100 V-R LED				-	-	12	0	0
UD ACTUADOR PASO DE PEATONES				-	-	4	0	0
UD SEMAFORO DETECTOR DE PEATONES				-	-	2	0	0
UD COLUMNA PARA SEMÁFORO	1	Mat	Columna acereo galvanizado h=2,4m	21,53	229,75	25	538,25	5743,75
UD SOPORTE PARA SEMAFORO DE 95 mm				-	-	18	0	0
UD SOPORTE PARA SEMAFORO DE 212 mm				-	-	54	0	0
UD SOPORTE DOBLE PARA SEMAFORO				-	-	1	0	0
UD BÁCULO METÁLICO GALVANIZADO	1	Mat	Báculo acero h=6m	109,79	1171,74	12	1317,48	14060.88
UD ALARGADERA DE 2,00 m				-	-	12	0	0
UD BAJANTE BÁCULO S. SIMPLE				-	-	11	0	0
UD BAJANTE BÁCULO S. DOBLE						1		0
UD PERNO DE BÁCULO						60	0	0
UD TUERCA 1" PARA BÁCULO					_	120	0	0
UD ARANDELA PARA BÁCULO					-	120	0	0
UD CAJA ESTANCA 100 x 100						17	0	0
UD ARMARIO CD PREINSTALADO					-	6	0	0
UD PLACA PARA TOMA DE TIERRA						6	0	-
					-			0
ML CABLE DE ACOMETIDA 1x50				-	-	685	0	0
ML CABLE DE ACOMETIDA 1x35				-	-	1348	0	0
ML CABLE CONEXIÓN 2×2.5				-	-	1531	0	0
ML CABLE CONEXIÓN 3x2.5				-	-	3345	0	0
ML CABLE CONEXIÓN 4x2.5				-	-	3880	0	0
ML CABLE DE 2 PARES DE 0,9 mm2				-	-	1487		0
ML CABLE DE 4 PARES DE 0,9 mm2				-	-	519	0	0
ML CABLE DE 8 PARES DE 0,9 mm2				-	-	1466	0	0
ML CABLE 1x16 BICOLOR TOMA T.					-	1707	0	0
UD REGULADOR MODULAR ELECTRÓNICO mod. CITY				-	-	6	0	0
UD T. DE SALIDAS 2G DETECTOR				-	-	33	0	0
UD MODULO AMPLIACIÓN CHASIS				-	-	6	0	0
UD REGLETA SALIDAS HASTA 16 GR				-	-	1	0	0
UD REGLETA SALIDAS HASTA 24 GR					-	2		0
UD REGLETA SALIDAS HASTA 22 GR						1		0
UD SAI APLICACIONES GENERALES 2000 VA						6	0	0
OD SAFAFEIGACIONES GENERALES 2000 VA					-	0	0	U

UD BATERÍA 24 A/H				-	-	40	0	0
UD MODULO PARA COMUNICACIONES				-	-	6	0	0
UD UNIDAD DE ACCIONAMIENTO				-	-	6	0	0
UD MODULO DE ACTUACIÓN POR FASE				-	-	6	0	0
UD PROTECC DIFERENCIAL Y MAGN TRAN				-	-	6	0	0
UD PROTECC ALIMENTAC. REGULADOR				-	-	6	0	0
UD LUZ DE PANEL COMPLETA				-	-	20	0	0
UD COLUMNA EMPOTRADA DETECTOR	1	Mat	Columna acereo galvanizado h=2,4m	21,53	229,75	12	258,36	2757
UD ARMARIO DETECTOR REFORZADO				-	-	8	0	0
UD DETECTOR ELECTROMAG DOBLE				-	-	15	0	0
ML REGATA BOBINA DETECTORES				-	-	400	0	0
UD BECO DE 25 mm				-	-	71	0	0
UD ARMARIO ACOMETIDA 1600x700x360 mm				-	-	1	0	0
UD EQUIPO DE MEDIDA				-	-	1	0	0
UD T. AMPLIACIÓN EQUIPO INT.				-	-	1	0	0
UD LICENCIA DE SOFTWARE DE REGULADOR				-	-	6	0	0
UD PROGRAMACIÓN Y DOCUMENTACIÓN				-	-	6	0	0
UD GESTIÓN DE ACOMETIDA				-	-	1	0	0
M2 SUMINISTRO Y MONTAJE PANTALLA ACUS				-	-	812	0	0
M2 P.P. CIMENTACION PANTALLA ACUSTICA				-	-	812	0	0
UD GESTIÓN DE RESIDUOS				-	-	1	0	0