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§Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory of Intelligent
Computing & Information Processing of Ministry of Education, Xiangtan University, Xiangtan, China, 411105

July 1, 2023

Abstract

In this paper, a novel parallel structured divide-and-conquer (DC) algorithm is proposed for symmetric
banded eigenvalue problems, denoted by PBSDC, which modifies the classical parallel banded DC (PBDC) al-
gorithm by reducing its computational cost. The main tool that PBSDC uses is a parallel structured matrix
multiplication algorithm (PSMMA), which can be much faster than the general dense matrix multiplication
ScaLAPACK routine PDGEMM. Numerous experiments have been performed on Tianhe-2 supercomputer to com-
pare PBSDC with PBDC and ELPA. For matrices with few deflations, PBSDC can be much faster than PBDC
since computations are saved. For matrices with many deflations and/or small bandwidths, PBSDC can be faster
than the tridiagonalization-based DC implemented in LAPACK and ELPA. However, PBSDC would become
slower than ELPA for matrices with relatively large bandwidths.

1 Introduction

The banded symmetric eigenvalue problem is very important in various computational science applications. Matrices
generated from electronic structure calculations usually have banded structures [39, 4]. Banded matrices also appear
in the block Lanczos algorithm [40] and appear in the intermediate step of solvers for dense eigenvalue problems,
where a dense matrix is first reduced to a banded form and finally to the tridiagonal form [5, 6]. The symmetric
banded reduction from band to tridiagonal consists of memory bounded operations, and does not scale well. The
objective of this paper is to develop an efficient parallel eigensolver for symmetric banded matrices without using
tridiagonalization. The main tools that we used are the classical banded DC (BDC) algorithm [2, 19] and rank-
structured matrix techniques.

The main advantage of BDC is that the tridiagonalization step is avoided, which consists of memory-bound
BLAS-2 operations. The main problem of BDC is that it requires more floating-point operations than the classic
tridiagonal DC algorithm such as implemented in LAPACK and ELPA [38]. The worst complexity of BDC increases
from O(n3) to O(n3r) [2, 23], where n is the dimension of matrix and r is the semibandwidth. The main computation
part lies in computing the eigenvectors via matrix-matrix multiplications (MMM) in O(n3) flops. Thus, BDC
requires r times more MMM than tridiagonal DC implemented in ELPA. That explains why BDC is not widely
used in practice. In this work, we use a parallel structured matrix multiplication algorithm (PSMMA) [35] to reduce
the computational cost of BDC.

We first review some important works related with BDC. The BDC algorithm for symmetric eigenvalue problems
is well-studied, and it boils down to computing the eigendecomposition of a diagonal matrix plus a rank-r modifi-
cation, where r is the semibandwidth of matrix. Two methods were proposed by Arbenz in [2]. The first method
turns the rank-r modification into a small r× r eigenproblem, whose eigenvalues are computed by a bisection-type
algorithm, and the eigenvectors are suggested to be computed via inverse iteration. Unfortunately, this approach
was found to suffer from numerical stability issues for eigenvector computations. The second method considers the
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rank-r modification as a sequence of rank-one modifications, which is numerically stable but requires more flops
than the first one. Most works are based on the second approach since it’s numerically stable. For simplicity, the
second method will be denoted by BDC in the following sections. Later, Gansterer et al. [19, 20] proposed a similar
block-tridiagonal DC algorithm for block-tridiagonal matrices. Bai and Ward [4] presented a distributed-memory
parallel implementation of BDC, and their implementation was named PBDnC. Haidar, Ltaief and Dongarra [28]
implemented BDC by using tile algorithms via a dynamic runtime system for multicore architectures. The package
EigenExa [29] also implements BDC, and it fixes the semibandwidth to be 2. ELPA [38] has a routine for solving the
banded symmetric eigenvalue problem, which is based on tridiagonalization, the banded matrix is firstly reduced
to its tridiagonal form. ELPA requires the block size nb for data redistribution to be equal to the semibandwidth
r. Our implementation is similar to PBDnC and EigenExa, but we further use rank-structured matrix techniques
to reduce computational cost.

Rank-structured matrices include semiseparable and quasiseparable [16, 46], H [26], H2 [27], SSS [10] and
HSS [9] matrices, which are recently playing a very important role in the design of fast algorithms [50, 25, 46]. In
a previous work, BDC was accelerated by using HSS matrices on shared memory platforms [34]. Compared with
the classical tridiagonal DC in LAPACK, the accelerated BDC algorithm [34] can be much faster for matrices with
narrow bandwidths or many deflations. In this paper, we similarly accelerate BDC on distributed-memory parallel
platforms. Instead of using HSS matrices, we in this paper use PSMMA, which has been introduced recently in [35].
The process of PSMMA is similar to Cannon [8] and Fox [17] algorithms. PSMMA can be seen as a structured
version of PUMMA [11] but has three advantages over PUMMA. One advantage is that PSMMA constructs local
submatrices by using generators without any communication and thus the communication cost is reduced. Another
is that PSMMA combines with low-rank approximations and therefore the computation cost is also reduced. The
third is that PSMMA requires less workspace and the size of local matrix multiplications is also larger than PUMMA.
The details are included in section 3.

By incorporating PSMMA into the distributed parallel BDC algorithm [19], a parallel banded structured DC
(PBSDC) algorithm is proposed in section 3.2. For matrices with few deflations, PBSDC can be much faster than
that without using PSMMA since the computation cost can be reduced a lot. For matrices with small bandwidths
and many deflations, PBSDC can be 4–163 times faster than the tridagonlization based DC algorithm in ELPA.
The performance of ELPA highly depends on the block size parameter nb which is used for data distribution. The
banded eigensolver in ELPA requires r and nb to be equal. When r is large, PBSDC can be slower than ELPA
since PBSDC will requires more flops. Therefore, PBSDC is unfortunately only suitable for matrices with narrow
semibandwidths, and it can not be used for accelerating ELPA or ScaLAPACK for the dense eigenvalue problems
since nb is usually chosen to be around 64 in ScaLAPACK and ELPA.

In summary, our main contributions of this paper are as follows.

1. A parallel banded structured DC (PBSDC) algorithm is proposed for the eigenvalue problems on distributed-
memory parallel machines, which exploits the low-rank structure and can be much faster than BDC.

2. Many numerical tests have been done on a supercomputer to compare PBSDC with BDC and ELPA. It is
interesting to see that PBSDC can be 4–163 times faster than ELPA for matrices with narrow semibandwidths.
PBSDC becomes slower than ELPA when semibandwidths are large.

Thus, PSMMA can makes BDC faster than ELPA for narrow banded symmetric matrices, but does not helps for
matrices with relatively large semibandwidths.

The remaining sections of this paper are organized as follows. Section 2 introduces the classical banded DC
algorithm and shows how it can be accelerated by using rank-structured matrix techniques. Section 3 introduces
the parallel structured matrix multiplication algorithm (PSMMA) and the implementation details of PBSDC are
shown in section 3.2. Section 4 includes all the numerical results, and conclusions and future works are summarized
in section 5.

2 Preliminaries

In this section, we first review the process of classical direct methods for the symmetric banded eigenvalue problems
and the process of classical banded DC algorithm [2] in the first two subsections. Some related works are introduced
in section 2.3, which all exploit the off-diagonally low-rank structure of symmetric banded matrices.
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2.1 Classical direct method for symmetric banded matrices

In this subsection, we briefly introduce the classical direct method for solving a standard eigenvalue problem,

AX = XΛ,

where A is a n × n symmetric banded matrix, X is the n × n eigenvector matrix and Λ = diag(λ1, · · · , λn) is a
diagonal matrix and its diagonal entries are eigenvalues.

The classical direct method is based on symmetric bandwidth reduction, and it consists of three steps. The
input banded matrix is first reduced to tridiagonal form through sequences of Householder transformations, and
then compute the eigendecomposition of that tridiagonal matrix, and finally the eigenvectors are computed via
backtranform. Figure 1 shows the main process of direct eigensolvers for symmetric banded matrices. It consists of
the following three steps.

(I) Reduce the banded matrix D to tridiagonal form,

T = V DV T , (1)

where V is an orthonormal matrix. This is done via the bulge chasing procedure [40, 6], and the operations
are memory-bounded.

(II) Solve the tridiagonal eigenvalue problem:

T Ŷ = Ŷ Λ, (2)

which can be solved by QR [18], DC [12, 24, 45], Multiple Relatively Robust Representation (MRRR) [15, 49,
41]. ELPA implements an efficient DC algorithm [3].

(III) Backtransform to obtain the eigenvectors of the banded matrix,

X̂ = V T Ŷ . (3)

Figure 1: The main process of classical DC algorithm for symmetric banded matrices.

The main drawback of this approach is that it is based on tridiagonalization which is hard is to scale to many
processes. For banded matrices with size of around 10, 000, the total time of classical direct method usually stops
decreasing when using more than 1024 processes [33].

2.2 BDC for the banded symmetric eigenproblem

In this subsection, we briefly introduce the banded DC algorithm for the symmetric banded eigenvalue problem.
For additional details, we refer to works [2, 28, 20]. The divide-and-conquer algorithm consists of three stages: (a)
divide a big problem into small subproblems; (b) solve small problems; (c) synthesize the solution of small problems.

Assume that A ∈ Rn×n is a symmetric banded matrix, with semibandwidth (the number of nonzero diagonals
above or below the main diagonal) equal to r. Partition A as

A =

[
B1 CT1
C1 B2

]
, (4)
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where C1 is a matrix of all zeros except for the r×r top-right block which is upper triangular. Furthermore, assume
the compact SVD of C1 is XΣY T , with Σ = diag(σi) of size r × r. Then, A can be split into the following form,

A =

[
B̂1 0

0 B̂2

]
+ ZΣZT , (5)

where B̂1 = B1 − Y ΣY T , B̂2 = B2 −XΣXT , and Z =

[
Y
X

]
.

Solve the subproblems independently, B̂i = QiDiQ
T
i , i = 1, 2, and substitute them into (5),

A =

[
Q1

Q2

] [
D1

D2

] [
QT1

QT2

]
+

r∑
i=1

σiziz
T
i

= Q(0)DQ(0)T +

r∑
i=1

σiziz
T
i

= Q(0){D + σ1u1u
T
1 +

r∑
i=2

σiuiu
T
i }Q(0)T ,

(6)

where ui = Q(0)T zi, i = 1, . . . , r. Thus, the computation is reduced to a sequence of r rank-one updates.
As is well-known, the eigenvalues of a diagonal plus rank-one perturbation can be computed by solving a secular

equation, and the corresponding eigenvectors can be expressed explicitly, see Theorem 2.1 in Reference [12] Lemma
5.2 in Reference [14] and also References [7, 48]. For completeness, we restate this result in the following theorem.

Theorem 1 (Bunch, Nielsen, and Sorensen [7]) Assume that D = diag(d1, . . . , dn) such that d1 < d2 < · · · <
dn, and u ∈ Rn is a vector and a scalar ρ > 0. Then, the eigenvector corresponding to λi, an eigenvalue of
M = D + ρuuT , is

qi =
( u1

d1−λi
, . . . , un

dn−λi

)T
/

√√√√ n∑
j=1

u2j
(dj − λi)2

, (7)

and the eigenvalues of M satisfy
d1 < λ1 < d2 < λ2 < · · · < dn < λn. (8)

The eigenvectors of D + σ1u1u
T
1 = Q(1)D(1)Q(1)T have off-diagonally low-rank structure and Q(1) is a Cauchy-

like matrix. Therefore, Q(1) can be approximated by a rank-structured matrix accurately. In a previous work [34],
Q(1) is approximated by an HSS matrix QH(≈ Q(1)), and the products of QH and Q(0) can be done by using the fast
HSS matrix multiplication algorithms. Similarly, repeating the process r times, we obtain the eigendecomposition
of D +

∑r
i=1 σiuiu

T
i in (6) approximately.

In this paper we extend this technique to distributed-memory parallel platforms. As in the case of tridiagonal
DC [35], we can use a structured parallel matrix multiplication algorithm (PSMMA) instead of using HSS matrix
algorithms. We find that PSMMA has better scalability than HSS for rank-structured Cauchy-like matrices [32].
By incorporating PSMMA into BDC, we propose a parallel structured banded DC (PBSDC) algorithm. In the
next section, we briefly introduce PSMMA and describe the implementation details of PBSDC, which is based on
ScaLAPACK, and similar to PBDnC [4] and EigenExa [29].

2.3 Related works

There have been many works that exploit the off-diagonally low-rank property of some matrices arising in the
symmetric (banded) eigenvalue problems. Vogel et al. [47] propose a superfast divide-and-conquer method for
a class of symmetric matrices with off-diagonal low-rank structure, which can compute all the eigenvalues and
eigenvectors but in a factorized form. In some applications, the eigenvectors are required explicitly. In this paper,
we focus on the case of computing eigenvectors explicitly. Kressner and Susnjara [30] present a fast algorithm for
computing spectral projectors of banded matrices by combining QDWH with HODLR [1], and a structured spectral
DC algorithm is further proposed for computing all the eigenpairs of a symmetric banded matrix [44]. Although
these two works exploit the low-rank structure, they are not built on BDC. As opposed to previous works, we are
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interested in the distributed-memory parallel case in this work. For distributed-memory machines, a parallel hybrid
tridiagonal DC algorithm was proposed in [32] by using STRUMPACK (STRUctured Matrices PACKage) [43],
which provides some distributed-memory parallel HSS algorithms. Recently, a parallel tridiagonal DC algorithm is
proposed in [35] by using PSMMA, which scales up to 4096 processes and has better scalability than that [32] using
STRUMPACK. We extend the techniques used in [35] to the symmetric banded matrices, and propose a parallel
BDC algorithm. For BDC with rank-structured accelerations, there are no results for distributed-memory parallel
machines in previous works.

3 The PBSDC Algorithm

In this section, we first introduce some parallel matrix multiplication algorithms briefly, which compute C = A×B,
and PSMMA is included in section 3.1. Then, the implementation details of PBSDC based on PSMMA are
introduced in section 3.2.

3.1 PSMMA for structured matrices

Cannon’s algorithm [8] was the first efficient algorithm for parallel matrix multiplication providing theoretically
optimal communication cost. However, it requires the process grid to be square, which limits its practical usage,
and Fox’s algorithm [17] has the same problem. Both Cannon and Fox algorithms were initially based on the block
data distribution (BDD) format. The PUMMA algorithm [11] is a generalized Fox algorithm, and it works for a
general p × q processor grid. PUMMA was designed for ScaLAPACK and used the block cyclic data distribution
(BCDD) form. PSMMA is designed for structured matrix multiplications, and it works for general process grids
and uses the BCDD form.

We introduce PSMMA for computing C = A×B, where A ∈ Rm×k is a general matrix, B ∈ Rk×n is a structured
matrix. By ‘structured matrix’ we mean a matrix whose entries can be expressed by using O(n) parameters, where
n is the dimension of matrix, and these parameters are called generators. The case that A is a structured matrix
and B is a general matrix is similar. When both A and B are structured matrices, all operations can be performed
locally without any communication. In the following sections, we assume A is stored in BCDD and B is represented
by its generators.

Assume that matrix A has M block rows and K block columns, and matrix B has K block rows and N block
columns. Block (I, J) of C is then computed by

C(I, J) =

K−1∑
`=0

A(I, `)·B(`, J), (9)

where I = 0, 1, . . . ,M − 1, J = 0, 1, . . . , N − 1. Fig. 2 shows a 6× 6 block matrix stored in a 2× 3 process grid. It
is easy to see that the matrix in BCDD form can be obtained from the original matrix by row and column block
permutations.

Since the matrix B can be represented by its generators, any submatrices of B can be formed locally. This fact
enables us to treat the submatrices of A in each process as a whole continuous block, and we only need to construct
the proper submatrices of B correctly. After discovering this fact, the implementation of PSMMA becomes very
natural and simple, just following the equation (9). The whole procedure of PSMMA is shown in Algorithm 1.

To illustrate the algorithm from the process point of view, we show how the submatrices of C stored at process
P0 (located at position (0, 0) of the process grid) are computed for the matrix shown in the left subfigure of Figure 2.
This consists of three steps, and the process is depicted in Figure 3. The column indices of B are fixed, and its row
indices are determined by the column indices of A. After each step, matrix A would be shifted leftward, and the
local matrix A on process P0 is updated by the matrix on process P1. As shown in the right subfigure of Figure 2,
the local matrix A of process P0 at step 1 is updated by that of process P1, which is located at the right of process
P0. After process P0 has received all the A submatrices from all other processes, the algorithm finishes.

Algorithm 1 works for matrices both in BCDD and BDD form. It only depends on the distribution of A to
determine the row indices of local matrix B. In step 3(b) of Algorithm 1, we construct a low rank approximation
only when the local matrix B is probably low rank. For the banded DC algorithm in section 2, matrix B is a
Cauchy-like matrix and we can check whether the intersection of CIndex and RIndex is empty or not. If the
intersection is empty, the B submatrix is probably numerically low-rank. Otherwise, the B submatrix is probably
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Figure 2: A matrix with 6 × 6 blocks is distributed over a 2 × 3 process grid. (left) Matrix point-of-view; (right)
Process point-of-view.

Algorithm 1 PSMMA for a structured matrix B

Input: A ∈ Rm×k, B ∈ Rk×n, where A is distributed over a p × q process grid, B is a structured matrix and all
processes have a copy of its generators;

Output: C = A×B;
1: Each process constructs the column indices (CIndex ) of matrix B based on its process column in the process

grid;
2: Set C = 0.
3: do ` = 0, q − 1

(a) For each process (i, j), construct the row indices (RIndex ) of matrix A based on the process column
mod (j + `, q);

(b) Calculate the required B subblock B(RIndex,CIndex), and construct its low-rank approximation (if
needed) by using its generators, B ≈ UBVB ;

(c) Multiply the copied A subblock with the currently residing B subblock: C = C + (A·UB)·VB ;

(d) Shift matrix A leftward cyclically along each process row;

4: end do

full rank. For Cauchy-like matrices in our problem, we use SRRSC [31] to construct a low-rank approximation to
matrix B.

3.2 The PBSDC algorithm

In this subsection, we show the details of our implementation based on ScaLAPACK. Our routines follow the scheme
of ScaLAPACK routine PDSTEDC, and we modify it and its dependent routines. EigenExa [29] is also written based
on the same guideline. The main point is to change the tridiagonal matrix to a banded matrix. The banded DC
algorithm previously proposed for shared memory platforms [34] is also implemented similarly, which is based on
LAPACK routines.

The parallel strategy used in ScaLAPACK is data parallelism. Data parallelism distributes data evenly to all
processors and invokes all relevant processors to work on the same task as the algorithm proceeds [4]. So does
EigenExa [29] and our PBSDC. In contrast, PBDnC [4] is based on a mixed data/task parallel strategy. Note that
task parallelism assigns each processor to a different task working simultaneously whenever possible. However, this
approach requires to redistribute matrices from one subgrid to the supergrid (via communication), and may have
workload imbalance problem.

We assume that A ∈ Rn×n is a symmetric banded matrix with semibandwidth r, and its diagonal entries
are stored in a vector D of length n, and its off-diagonal entries are stored in a tall matrix E ∈ Rn×r. In
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Figure 3: The process for computing the submatrices of C located at process (0, 0).

our implementation, the routine mpdsbedc is the starting routine, which is modified from ScaLAPACK routine
PDSTEDC. Their input parameters are also similar and the difference is that E is now a tall-skinny matrix instead
of a vector. The routine mpdsbedc first checks the size of n and if n is smaller than nb (the block size for cyclic
distribution), or the number of processes np = 1, it calls the LAPACK routine DSYEVD after some preparations.
Otherwise, mpdsbedc calls the main computational routine mpdlaed0.

The routine mpdlaed0 is modified from ScaLAPACK routine PDLAED0. It consists of the three stages of DC
algorithm: (a) It divides the whole problem into some subproblems and constructs the divide-and-conquer tree,
shown in Figure 4. It computes the SVD of off-diagonal blocks Ci = XiΣiY

T
i , and constructs the subproblems.

Assume that there are q subproblems,

B̂1 = B1 − Y1Σ1Y
T
1 ,

B̂i = Bi −Xi−1Σi−1X
T
i−1 − YiΣiY Ti , for 2 ≤ i ≤ q − 1,

B̂q = Bq −Xq−1Σq−1X
T
q−1.

(b) Each subproblem is solved by calling LAPACK routine DSYEVD, which is designed for symmetric dense matrices.
There is another routine called DSBEVD that is designed for symmetric banded matrices. The reason why we do not
use DSBEVD is that it is usually slower than DSYEVD. (c) It updates the Z vectors, see equation (6), by calling routine
mpdlaedz, which is modified from ScaLAPACK routine PDLAEDZ. The difference from PDLAEDZ is that mpdlaedz

updates several vectors instead of just one vector. Finally, the merged eigenvalue problem is solved by mpdlaed1,
which recursively computes the eigendecomposition of matrix D +

∑r
i=1 σiuiu

T
i . It is done by using r rank-one

updates.
The routine mpdlaed1 is modified from ScaLAPACK routine PDLAED1, and it calls mpdlaed2 to perform defla-

tions and mpdlaed3 to solve secular equations and compute the eigenvectors of a diagonal matrix with rank-one
perturbation. The routines mpdlaed2 and mpdlaed3 are modified from ScaLAPACK routines PDLAED2 and PDLAED3,
respectively. PDLAED3 originally uses general matrix multiplication routine PDGEMM to update eigenvectors. We use
PSMMA to update eigenvectors in our PBSDC algorithm. To combine with PSMMA, we need to further modify
mpdlaed2 and mpdlaed3. Note that PBSDC becomes the classic parallel BDC algorithm without using PSMMA.

The excellent performance of DC algorithm is partially due to deflation [7, 12], which happens in two cases. If
the entry zi of z are negligible or zero, the corresponding (λi, q̂i) is already an eigenpair of D+ σkzz

T . Similarly, if
two eigenvalues in D are identical then one entry of z can be transformed to zero by applying a sequence of plane
rotations. About the deflation process, we refer the interested readers to [12, 22]. The functionality of mpdlaed2 is
to perform deflations [12]. In mpdlaed2, all the deflated eigenvalues are moved to the end of D by a permutation
matrix, and so are the corresponding eigenvectors. After some deflations, (6) reduces to

A = Q(0)

{
(GP )

(
D̄ + bkz̄z̄

T

D̄d

)
(GP )T +

r∑
i=2

σiuiu
T
i

}
Q(0)T , (10)
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Figure 4: The divide-and-conquer tree for the DC algorithm.

where G is the product of all rotations, P is a permutation matrix, and D̄d are the deflated eigenvalues. Assume
that D̄ + bkz̄z̄

T = Q̂ΛQ̂T , the eigenvectors of A are updated as

Q(1) = Q(0)(GP )

(
Q̂

Id

)
=

[(
Q1

Q2

)
GP

](
Q̂

Id

)
. (11)

To improve efficiency, Gu [21] suggested a permutation strategy, which has been used in ScaLAPACK. The matrix in

square brackets is permuted as

(
Q11 Q12 0 Q14

0 Q22 Q23 Q24

)
, and complexity can be reduced by exploiting its sparsity

structure. By Theorem 1, we know that Q̂ is a rank-structured Cauchy-like matrix. When the size of matrix Q̂
is large, we can use PSMMA to update the eigenvectors instead of using Gu’s strategy, since it will be faster.
PSMMA and Gu’s strategy cannot be used together since the permutations would destroy the rank-structure of
Q̂. Therefore, we detect the size of matrix Q̂ and when it is large enough, we use PSMMA instead of using Gu’s
permutation strategy.

When the PSMMA algorithm is chosen, mpdlaed1 calls a new routine mpdlaed3a which is similar to mpdlaed3

and computes the generators of Q̂, and passes them to PSMMA to update the eigenvectors via structured matrix-
matrix multiplications.

Remark 1 To keep the orthogonality of Q̂ (see equation (7)), di − λj must be computed by

di − λj =

{
(di − dj)− γj if i ≤ j
(di − dj+1) + µj if i > j

, (12)

where γi = λi − di (the distance between λi and di), and µi = di+1 − λi (the distance between λi and di+1), which

can be returned by calling the LAPACK routine DLAED4. In our implementation, Q̂ is represented by using five
generators, {di}, {γi}, {µi}, {ui} and {vi}.

Remark 2 The main difference of PBSDC with the classical parallel BDC (PBDC) is that PBSDC further uses
PSMMA to update eigenvectors instead of using PDGEMM.

4 Numerical results

Numerical results are obtained on the Tianhe-2 supercomputer [37, 36], located in Guangzhou, China. Each
compute node is equipped with two Intel Xeon E5-2692 CPUs and our experiments only use CPU cores. For all
these numerical experiments, we only used plain MPI, run 24 MPI processes per node in principle, and one process
per core. The details of compute nodes are shown in Table 1.
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Table 1: The test platform and environment of one node.

Items Values
2*CPU Intel Xeon CPU E5-2692 v2@2.2GHz

Memory size 64GB (DDR3)
Operating System Linux 3.10.0

Complier Intel ifort 2013 sp1.2.144
Optimization -O3 -mavx

Example 1 In this example we use some matrices from LAPACK testing, whose eigenvalues are illustrated in
Table 2. These matrices have been used in some previous works [28, 34, 42]. In our experiments, the parameter k
is set to 106, and the dimension of matrix is n = 20, 000. We use the LAPACK routine DLATMS to generate some
symmetric banded matrices, and then store them in sparse form. The diagonal elements are stored in a vector D of
length n, and the upper nonzero entries are stored in another matrix E of size n× r, where r is the semibandwidth
of the banded matrix.

Since matrices of Types 1 and 2 only have two distinct eigenvalues and many eigenvalues are multiple, they
would produce many deflations, nearly 100%. This is very good for PBSDC since there are no large matrix-matrix
multiplications for PBSDC in this case and it does not require extra flops. The percentage of deflations for Type
3 is about 50% and for Type 4 about 20%. Since Type 3 and Type 4 represent the general case, we use these two
types of matrices to present the results of PBSDC. For a random symmetric banded matrix with Gaussian nonzero
entries, the percentage of eigenvalues computed by deflation is also about 20%− 50%.

Table 2: Some matrices from LAPACK testing

Type Description

Type 1 λ1 = 1, λi = 1
k , i = 2, 3, . . . , n

Type 2 λi = 1, i = 2, 3, . . . , n− 1, λn = 1
k

Type 3 λi = k
−( i−1

n−1
)
, i = 2, 3, . . . , n

Type 4 λi = 1 − ( i−1
n−1 )(1 − 1

k ), i = 2, 3, . . . , n

We let r be 5 and 15, and the results are shown in left and right subfigures of Figure 5, respectively. To the
best of authors’ knowledge, ELPA is the only open source parallel distributed-memory package that can compute
the full eigendecomposition of a general banded symmetric matrix. Thus, we compare PBSDC with ELPA (version
2018.11.001). ELPA provides an interface to compute the eigendecomposition of symmetric banded matrices, but
requires nb to be equal to r. For PBSDC, we let nb be 64.

From the results of Figure 5, we can see that PBSDC can be much faster than ELPA for matrices with small
bandwidths and many deflations. However, PBSDC becomes slower than ELPA when the bandwidth is large,
especially when there are few deflations, which is verified by the right subfigure of Figure 5. For matrices of Type 4
with semibandwidth r = 15, PBSDC becomes slower than ELPA when using more than 256 processes. For matrices
of Type 3 with r = 15, PBSDC is competitive with ELPA and becomes slower than ELPA when using more than
4096 processes.

The results also show that the scalability of PBSDC is not as good as ELPA. This is because our implementation
is based on ScaLAPACK routines, which only use one whole MPI communicator, while ELPA uses both row and
column process communicators. We would like to rewrite our whole codes in the ELPA style and its scalability and
performance should be improved. Some future works are summarized in the next section.

Example 2 In this example, we test the weak scalability of PBSDC by using a constructed Toeplitz matrix, which
is defined as

• BandedToeplitz, real symmetric and with semibandwidth 5, with diagonal entries equal to two and all nonzero
off-diagonal entries equal to one.

9



Figure 5: The execution times of PBSDC and ELPA. The left is for r = 5 and the right is for r = 15.

Matrix BandedToeplitz is very difficult for DC algorithm since only 14.6% of eigenvalues are computed by
deflation. We test the weak scalability of PBSDC, and use different processes to solve problems of different sizes,
and the relations are illustrated in Table 3. For these matrices, ELPA uses nb = r = 5 when using its banded
routine interface, and PBSDC chooses nb = 64.

Table 3: The numbers of processes and the sizes of matrices.

np 64 256 1024 4096
n 5000 10000 20000 40000

The execution times of PBDC, PBSDC and ELPA are reported in Figure 6. Note that PBDC is based on our
implementation of PBSDC without using PSMMA. We use this example to show that PSMMA makes PBSDC much
faster than PBDC. From the results, we can see that PBSDC is always faster than ELPA, and PBDC becomes slower
than ELPA when the number of processes is larger than 1024. This is because PBSDC uses PSMMA when the size
of matrix Q̂ is large and therefore requires fewer floating point operations than PBDC. PBSDC is competitive with
respect to ELPA for matrices with small bandwidths even if there are very few deflations.

Figure 6: The execution times of PBDC, PBSDC and ELPA for BandedToeplitz.
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Example 3 In this example, we use some matrices from real applications to test the proposed PBSDC algorithm,
which are obtained from the SuiteSparse matrix collection [13]:

• LF10000: real symmetric, with n = 19, 998 and r = 3;

• linverse: real symmetric, with n = 11, 999 and r = 4.

We compare PBSDC with ELPA by using an increasing number of MPI processes, and the execution times are
reported in Figure 7. For these two matrices, ELPA chooses nb to be 3 and 4, respectively. For PBSDC, we also
let nb = 64. From it, we can see that PBSDC can be 4–163 times faster than the banded algorithm in ELPA.

Figure 7: The execution times of PBSDC and ELPA.

Matrix linverse is easy for the DC algorithm since nearly 86% of the eigenvalues are computed by deflation.
Therefore, PBSDC does not require more floating pointing operations than ELPA for matrix linverse. That is
why PBSDC can have such a large speedup over the banded algorithm in ELPA. For matrix LF10000, only 30% of
eigenvalues are computed by deflation, and the largest size of the secular equation is 12, 524, and the computation
of eigenvectors is accelerated by PSMMA.

Remark 3 In this example, we choose two matrices with small bandwidths. Most matrices from real applications
usually have bandwidths around hundreds or thousands. For matrices with relatively large r (say larger than 20),
PBSDC would be slower than ELPA. Our initial aim is to use PBSDC to acclerate ELPA. Unfortunately, PBSDC
cannot be used to accelerate ELPA that since ELPA usually chooses r = nb = 64. See the next example.

Example 4 In this example, we use some random banded matrices to show that the performance of ELPA
highly depends on the parameter nb. The size of the random matrix is 11, 999, and its entries are from Gaussian
distribution. The semibandwidth r is fixed to be 3 and 5, respectively. As opposed to previous examples which use
the banded interface of ELPA, requiring nb = r, in this example we use the dense interface, i.e., treat these banded
matrices as dense matrices and apply ELPA to them by choosing different nb.

Note that ELPA takes five steps to solve the eigenvalue problem of a symmetric dense matrix. Step I reduces a
dense matrix to banded form. Step II transforms a banded matrix to tridiagonal form. Step III solves the tridiagonal
eigenvalue problem via DC. Step IV back transforms to the intermediate, sparse banded form of the problem. Step
V back transforms to the standard eigenvalue problem. In this example, we only measure the computation times
of Step II-IV and sum them up. We choose nb to be 5 and 64, respectively, and the results are shown in Table 4.

The results show that the performance of ELPA highly depends on the parameter nb. Though the matrix is
banded with r = 5 or 3, ELPA is much faster when treating it as a matrix with larger semibandwidth 64. Note that
ELPA requires more flops when choosing nb = 64 than choosing nb = 5 or 3. When r = 3, PBSDC is competitive
with ELPA with nb = 64. For matrices with r = 5, PBSDC would be slower than ELPA with nb = 64 when the
number of processes is larger than 16. Therefore, PBSDC is only suitable for matrices with small bandwidths. Some
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Table 4: The execution times (in seconds) of Step II-IV of ELPA compared to PBSDC.

np
r = 5 r = 3

nb = 5 nb = 64 PBSDC nb = 3 nb = 64 PBSDC
16 50.51 31.70 27.27 76.80 30.60 6.69
64 18.27 9.45 11.47 27.21 9.17 3.67
256 9.81 4.45 5.43 12.95 4.25 2.47
1024 6.24 3.39 4.96 7.55 3.27 3.42

improvements are required to make it more useful for practical problems. For ELPA, this example shows that it is
better to use a relatively large nb even if the input is a symmetric banded matrix with very small bandwidth. This
result has not been reported in any works before.

5 Conclusions and future works

A parallel banded structured DC (PBSDC) algorithm is proposed for symmetric eigenvalue problems by exploiting
rank-structured techniques, which computes the eigenpairs directly without tridiagonalization. The tool that we
use is a parallel structured matrix multiplication algorithm, PSMMA [35]. The main goal of this work is to evaluate
the performance of PBSDC on distributed-memory machines. For large matrices with few deflations, PBSDC is
much faster than the classical PBDC algorithm, see the results in Example 2. PSMMA saves a lot of floating point
operations and reduces communication cost comparing with that using PDGEMM. We further compare PBSDC with
ELPA [38]. Numerical results show that PBSDC can be 4− 163× faster than the banded eigensolver in ELPA for
matrices with narrow bandwidths and/or many deflations. For matrices with large bandwidths, PBSDC would be
slower than ELPA.

Numerical results show that PBSDC is suitable for matrices with small bandwidths and it is numerically stable.
Another approach is applying spectrum slicing methods to the symmetric banded matrix such as multiple shift-
and-invert Lanczos (MSIL) method [51]. Compared with PBSDC, MSIL may be faster but it may suffer from
numerical stability problem such as some eigenvalues may be missing, eigenvectors computed from different slices
may not be highly orthogonal, etc. Since spectrum slicing methods are quite different from PBSDC, we will not
talk about those methods in this paper. Our implementation is based on ScaLAPACK, and only uses one MPI
communicator. Similar to the implementation of ELPA, our codes can be modified by using both row and column
process communicators. For matrices with relatively large bandwidths, PBSDC can be combined with successive
band reduction [6] to reduce the computational cost, and it will our future work.
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