Contents

Agradecimientos i
Abstract ii
Resumen iv
Resum vii

1 Introduction 1
 1.1 Motivation .. 1
 1.2 Aims ... 4
 1.3 Thesis organisation .. 6

2 State of the art 9
 2.1 Hierarchical structure of bone 9
 2.1.1 Introduction to hierarchical levels of the bones structure . 10
 2.1.2 Cancellous bone and lamellar tissue structure, features
 and properties ... 13
 2.1.3 Mechanical behaviour of bone 16
 2.1.4 Elastic properties of bone 18
 2.1.5 Strength properties of bone 22
 2.1.6 Bone failure at different scales 25
 2.2 Experimental characterisation of cancellous bone 29
 2.3 Bone tissue characterisation using imaging techniques 34
 2.3.1 Conventional imaging techniques for bone 35
2.3.2 Techniques to evaluate bone hierarchical levels 38
2.3.3 Artifacts introduced in bone images 43
2.3.4 Image segmentation methods 46
2.4 Morphometric characterisation of cancellous bone 48
2.5 Numerical modelling of cancellous bone 54
 2.5.1 Parametric numerical models of bone 54
 2.5.2 Image-based models .. 56
 2.5.3 Definition of material properties in numerical models 58
 2.5.4 Estimation of bone elastic properties 59
 2.5.5 Modeling failure in numerical models 60
2.6 Osteoporotic bone tissue characterisation 62
 2.6.1 Age-related bone diseases 63
 2.6.2 Epidemiology and impact of osteoporosis 65
 2.6.3 Pathogenesis of osteoporosis 67
 2.6.4 Diagnosis of osteoporosis 71
 2.6.5 Osteoporotic tissue ... 74
2.7 Additive manufacturing in biomechanics 77
 2.7.1 Definition of additive manufacturing processes 78
 2.7.2 Fused Deposition Modelling (FDM) Technology 81
 2.7.3 Polylactic acid (PLA) 83
 2.7.4 Implementation of additive manufacturing in biomedical
 field ... 84

3 Image analysis of cancellous bone 89
 3.1 Introduction .. 89
 3.2 Cancellous bone samples description 90
 3.2.1 Swine cancellous bone samples from lumbar vertebrae .. 91
 3.2.2 Human cancellous bone samples from femoral heads 94
 3.2.2.1 Classification of the human femoral cancellous
 bone specimens ... 101
 3.3 Cancellous architecture assessment at the stereomicroscope .. 102
 3.4 μ-CT images analysis of cancellous bone specimens 111
 3.5 Lamellar tissue assessment at the field emission scanning elec-
 tron microscope (FESEM) .. 114
 3.5.1 Cancellous bone sample preparation procedure for FESEM 115
 3.5.2 Imaging assessment of lamellar tissue structure 117
 3.5.3 Imaging assessment of lamellar tissue porosity 119
 3.6 Conclusions ... 122
4 Explicit expressions for the estimation of the elastic constants of lamellar bone as a function of mineral content and porosity

4.1 Introduction .. 127
4.2 Explicit modelling of porosity at tissue level 129
 4.2.1 Modelling porosity at tissue level 131
 4.2.2 Strength limits inferred of lamellar tissue 135
 4.2.3 Micro-FE of trabecular vertebral specimen 138
 4.2.4 Bone failure modelling ... 139
 4.2.5 Material property degradation MPDG for damage evolution law .. 140
4.3 Results .. 143
 4.3.1 Stiffness of lamellar tissue as a function of bone mineral density (BMD) and microporosity 143
 4.3.2 Numerical modelling of the trabecular bone strength 148
 4.3.3 Discussion of the obtained results 152
4.4 Conclusions .. 158

5 Estimation of the strength limits of lamellar bone as a function of mineral content and porosity

5.1 Introduction .. 159
5.2 Finite element model description 165
5.3 Bounds on the ultimate tensile strength of non-porous lamellar tissue for different bone mineral content 167
5.4 Bounds on ultimate compressive strength of non-porous lamellar tissue for different bone mineral content 170
5.5 In-plane ultimate strength of porous lamellar tissue considering mineral content and lacunae concentration 173
 5.5.1 Tensile and compressive strength 173
5.6 Results obtained for in-plane strength limits 176
 5.6.1 Ultimate strength of non-porous lamellar tissue 176
 5.6.2 In-plane ultimate strength of lamellar tissue considering mineral content and lacunae concentration 178
 5.6.2.1 Ultimate tensile and compressive strength 179
 5.6.2.2 Intralamelar shear stress evolution with porosity and mineral content .. 185
5.7 Discussion .. 186
5.8 Conclusions .. 187
6 Experimental characterisation and numerical simulation of the mechanical behaviour of osteoporotic, osteoarthrosic and healthy cancellous human bone

6.1 Introduction ... 189
6.2 Methodology to obtain the cancellous bone samples 191
6.3 High resolution scanning, image segmentation and morphometric characterisation ... 193
 6.3.1 Micro-CT image segmentation 194
 6.3.2 Assessment of the bone mineral density using micro-CT images ... 195
 6.3.3 Morphometric analysis of the human cancellous bone specimens ... 202
 6.3.3.1 Morphometric results of the healthy, osteoarthrosic and osteoporotic cancellous bone specimens ... 208
6.4 Compression mechanical characterisation of human cancellous bone specimens ... 214
 6.4.1 Apparent elastic modulus (E_{app}) estimation 215
 6.4.2 Compression mechanical behaviour of human cancellous bone up to failure ... 217
6.5 Correlation between morphometric parameters and apparent properties of human cancellous bone ... 222
6.6 Numerical modelling and calibration of the elastic and failure properties of human cancellous bone ... 228
 6.6.1 Finite element model generation and failure criterion .. 228
 6.6.2 Elastic and failure properties using FE models for healthy and diseased human cancellous specimens 231
6.7 Comparison of apparent and tissue Young’s modulus estimated by µ-CT, compression tests and FE models 235
6.8 Conclusions ... 237

7 Mechanical characterisation of cancellous bone surrogates and gyroids made out of additive manufacturing. Experimental testing and numerical correlation

7.1 Introduction ... 241
7.2 Analysis of the compressive behaviour of cancellous bone surrogates ... 243
 7.2.1 Preparation and manufacture of bone surrogates 244
 7.2.2 Experimental results of the cancellous bone surrogates subjected to compression load ... 247
 7.2.3 Calibration of elastic and failure properties of cancellous bone surrogates ... 251
7.3 Characterisation of the compressive behaviour of triply periodic minimal surface (TPMS) structures 253
 7.3.1 Introduction 254
 7.3.2 Analysis and design of a gyroid TPMS 256
 7.3.2.1 Experimental compression characterisation of sheet and solid gyroids 258
 7.3.2.2 Numerical estimation of elastic and failure properties of sheet gyroid 261
 7.3.3 Design and evaluation of non-isotropic gyroids 264
 7.3.3.1 Geometric generation of non-isotropic sheet gyroids 265
 7.3.3.2 3D printing process to obtain the polylactic acid (PLA) samples 266
 7.3.3.3 Analysis of the mechanical compression behaviour of non-isotropic sheet gyroids 268
 7.3.3.4 Numerical calibration of the elastic and failure properties of non-isotropic sheet gyroids 275
 7.4 Conclusions 279

8 Thesis conclusions and main contributions 281
 8.1 Conclusions 281
 8.2 Main contributions of the thesis 285

9 Future work 289