
Received 3 April 2024, accepted 9 May 2024, date of publication 16 May 2024, date of current version 24 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3402069

An Unsupervised Generative Adversarial
Network System to Detect
DDoS Attacks in SDN
DANIEL M. BRANDÃO LENT 1, VITOR G. DA SILVA RUFFO 2, LUIZ F. CARVALHO 3,
JAIME LLORET 4, (Senior Member, IEEE), JOEL J. P. C. RODRIGUES 5, (Fellow, IEEE),
AND MARIO LEMES PROENÇA JR. 2
1Electrical Engineering Department, State University of Londrina, Londrina 86057-970, Brazil
2Computer Science Department, State University of Londrina, Londrina 86057-970, Brazil
3Department of Computer Engineering, Federal Technology University of Paraná, Apucarana 86036-370, Brazil
4Integrated Management Coastal Research Institute, Polytechnic University of Valencia, 46022 Valencia, Spain
5Superior School of Technology, Amazonas State University, Manaus 69050-010, Brazil

Corresponding author: Jaime Lloret (jlloret@dcom.upv.es)

This work was supported in part by the National Council for Scientific and Technological Development (CNPq) of Brazil under Grant
306397/2022-6 and Grant 306607/2023-9; in part by the Coordination for the Improvement of Higher Education Personnel Foundation of
Brazil; and in part by the Superintendency of Science, Technology and Higher Education (SETI) and the State University of Londrina
[Pró-Reitoria de Pesquisa e Pós-Graduação (PROPPG)].

ABSTRACT Network management is a crucial task to maintain modern systems and applications running.
Some applications have become vital for society and are expected to have zero downtime. Software-defined
networks is a paradigm that collaborates with the scalability, modularity and manageability of systems by
centralizing the network’s controller. However, this creates a weak point for distributed denial of service
attacks if unprepared. This study proposes an anomaly detection system to detect distributed denial of service
attacks in software-defined networks using generative adversarial neural networks with gated recurrent units.
The proposed system uses unsupervised learning to detect unknown attacks in an interval of 1 second.
A mitigation algorithm is also proposed to stop distributed denial-of-service attacks from harming the
network’s operation. Two datasets were used to validate this model: the first developed by the computer
networks study group Orion from the State University of Londrina. The second is a well-known dataset:
CIC-DDoS2019, widely used by the anomaly detection community. Besides the gated recurrent units, other
types of neurons are also tested in this work, they are: long short-term memory, convolutional and temporal
convolutional. The detection module reached an F1-score of 99% in the first dataset and 98% in the second,
while the mitigation module could drop 99% of malicious flows in both datasets.

INDEX TERMS Anomaly detection, deep learning, generative adversarial networks, software-defined
networks.

I. INTRODUCTION
The Internet has been a fundamental tool for modern
society for years. More and more people are dependent on
its resources for various daily tasks. Cloud data storage,
online banking transactions, navigation, media streaming,
and communication are among them. Each of them is

The associate editor coordinating the review of this manuscript and

approving it for publication was Salekul Islam .

expected to work with near zero downtime, with the risk of
causing severe injury to society in case of a halt. For this
reason, backup, maintenance, and security procedures must
be followed to avoid significant issues [1], [2].

This type of network structure tends to grow when new
features or modules are developed, leading to more devices,
such as servers or switches, connected to the network.
The growth of these systems can lead to a more complex
setup, laborious maintenance and may even hinder the

70690

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-1343-0398
https://orcid.org/0009-0000-5392-6921
https://orcid.org/0000-0002-3982-0917
https://orcid.org/0000-0002-0862-0533
https://orcid.org/0000-0001-8657-3800
https://orcid.org/0000-0002-0492-322X
https://orcid.org/0000-0002-7262-0060


D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

addition of new elements or features. For this reason, system
administrators may opt for a different networking paradigm:
Software Defined Networks (SDN) [3].

SDN has as its main characteristic the presence of a cen-
tralized controller that manages the networking appliances.
The control plane is separated from the data forwarding
plane since the switches rely on the controller to build their
forwarding table [4]. The instruction forwarding between
switches and the controller is made via the southbound inter-
face using an open protocol (e.g., OpenFlow). In contrast, the
northbound interface enables the communication between the
controller and the high-level network-managing applications
providing a top-down view of the whole network. With this
setup, applications can be developed with ease, not only to
manage resources but also to collect statistics and enable
security systems [5].
Despite the advantages of SDN, the presence of a central

controller responsible for managing the whole network is a
significant vulnerability [6]. The network might collapse if
the controller malfunctions or is attacked. For this reason, it is
ultimately essential to keep the controller secure from attacks,
especially the distributed denial of service (DDoS) type.

Denial of service is the most common type of network
attack [7]. Its objective is to overload a vital module or
device to make it unable to answer legitimate requests.
There are various ways a system can be attacked to have
its service denied, from sending enough packets to overload
the hardware memory to opening requests in an application
to reach maximum concurrent users. It is not trivial to
overload a server with requests from a single computer since
it could be easily detected and blocked, so this type of attack
often is performed in its distributed form, using multiple
infected computers to send requests simultaneously. This
way, a greater volume of traffic is made while it is more
difficult to tell legitimate and malicious apart.

For years anomaly detection systems have been studied
to protect machines from this type of attack [8]. Usually,
anomaly detection techniques can be classified into two main
categories: signature-based and anomaly-based. The former
has a collection of attack signatures and uses them to spot
known attacks occurrences on the network. At the same
time, the latter compares a traffic baseline from the expected
behavior of the network to the actual traffic and points
out anomalies when there is enough discrepancy. While
signature-based systems tend to have better precision with
known attacks, they are often unable to detect new, unknown
attacks in time. For this reason, anomaly-based systems have
been prioritized even with a higher false positive rate.

Anomaly-based systems usually have been developed
using machine learning since it is necessary to generalize
the regular network traffic. Different techniques have been
applied, such as random forest, support vector machines,
K-nearest neighbor, and others [9], [10], [11], [12]. However,
in recent years, studies have shown how deep learning
methods can overcome others’ performance due to how well
they can extract patterns and use larger volumes of data to

improve. Commonly, deep learning is based on using deep
neural networks to perform classification and prediction and
may be implemented in a variety of ways, such as recurrent,
convolutional, or generative adversarial networks.

Generative adversarial networks (GAN) have been used
in recent years in anomaly detection, data generation, data
reconstruction, classification, and other works. This method
uses two competing networks to improve together in their
respective tasks: the first is a generator with the objective
of creating samples as close as possible to real ones, and
the second is a discriminator that has to separate the fake
data from the original. With enough training, the generator
will be capable of creating nearly flawless data, while the
discriminator will be able to detect anomalies from the
dataset. In GAN’s study field, there are different procedures
to train and apply the networks; some of them are described
in section II. GAN have emerged as a powerful tool to detect
anomalies in computer networks and overcome the inherent
class imbalance of the problem [13].

In this work, recurrent neurons were inserted in the
discriminator to improve its capabilities to detect anomalies
in time series data while forcing the generator to create time-
consistent samples. Gated recurrent units are highlighted
in this work, since they are an efficient variant of long
short-term memory which are used to capture time-variant
system dynamics [14]. In addition, to diversify our tests,
other types of network neurons were also evaluated, such as
convolutional and temporal convolutional.

Considering this study, we present as our main
contributions:
• The use of Generative Adversarial Networks for
anomaly detection in two datasets;

• An unsupervised network anomaly detection system;
• Compare the proposed method with other deep learning
techniques;

• Present a mitigation algorithm to block the detected
attacks automatically before major consequences.

The remaining of this work is organized as follows:
section II presents fundamental concepts to understand the
proposed system; section III presents similar studies that
either use GAN or detect anomalies; section IV introduces the
proposed system; section V presents the validation datasets
and the model’s performance in them; section VI explains
the computational complexity of the system; and finally
section VII presents conclusions.

II. BACKGROUND CONCEPTS AND METHODS
A. GENERATIVE ADVERSARIAL NEURAL NETWORKS
Neural networks have been studied for decades and were
proven useful until nowadays, especially in reason of the
advancements made in their neurons and architectures.
From those improvements, recurrent and convolutional
neurons were developed, as well as deep networks and
autoencoders [15], [16], [17].

Generative adversarial networks are also a product of
this evolution. This paradigm uses competition between two

VOLUME 12, 2024 70691



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

neural networks to improve their performance [18]. The first,
called generator has the purpose of creating entries similar to
real data, be they images, the output of a function, or even
a molecule [19], [20], [21], [22], [23]. The second is a
discriminator, which has to separate the generator’s fake data
from real data. Both networks must be trained together but
are independent once the training is complete.

The learning method of a traditional GAN model occurs
in recurring iterations of the following process: first, random
values are inserted in the generative network to create fake
data samples, which are shuffled between regular samples.
Each real sample is labeled with zero, while the counterfeit
samples are labeled with one. The discriminator is then
trained with this set to correctly classify the samples using an
appropriate loss function, such as binary cross-entropy [24].
Next, the generator is trained to mislead the discriminator
using the previously generated samples. It does so by
relabeling them as zero and propagating the gradient from
the discriminator to the generator to update its weights,
which will work to maximize the discriminator’s error when
trying to detect fake samples. In other words, the difference
between the discriminator’s evaluation of an authentic and a
counterfeit sample should decrease [25].
It is noticeable and fundamental that the generator does

not receive regular samples directly in its training since
this would break the parity of the min-max competition,
precluding the learning process of the discriminator. Instead,
the generator learns the distribution of the original set by
minimizing the differences of classification between the types
of data [26], [27]. The generator’s input consists of random
values, so it is able to produce different results every time.
This is necessary since the output of a trained neural network
is deterministic, so it will always return the same results given
the same conditions and input. The random values should
change between epochs during training to avoid overfitting
to the same noise values.

The training process can be considered complete when
Nash Equilibrium is reached, which means the discriminator
is in a state where it has to ‘‘guess’’ the label of its input since
the original and fake samples are too similar [28]. In this state,
the generator also cannot change its samples considering
there is no room for improvement. This state has proven
challenging to reach due to different problems inherent to the
training process [29].
Among the training problems, one the most commonly

mentioned in the scientific community is the ‘‘mode col-
lapse’’. Due to the necessity of deceiving the discriminator,
the generator may start to specialize in a single sample class,
ignoring other types [30]. This results in less diverse data
produced by the generator, which leads to a bias from the
discriminator towards the more frequent class. In this case,
a local minimum can be reached, and both gradients may
vanish, causing a halt in improvement [31].

This problem has been addressed in different studies by
changing either the architecture of GAN and its loss functions
or the training method itself. Arjovsky et al. [32] proposed

Wasserstein GAN (WGAN) by changing the discriminator’s
loss function to act as a critic instead of a stratificator. This
way, the discriminator evaluates how far the generator is
from the original set, and its improvement is to maximize the
grade difference between data types, thus resulting in a better
gradient for the generator’s learning and, consequently, more
diverse outputs. The results presented in the study show that
the proportion of samples generated is similar to the original
set.

GAN networks can also be modified to improve their
performance in specific tasks. A typical example is the
deep convolutional network, which has kernels to process
the data through the network layers. Studies have used this
type of network to process and create images [33], [34].
This work used a recurrent neural network to improve the
discriminator’s ability to detect anomalies in a time series.
The generator is forced to create samples not only similar
to the original set, but also consistent with the sequence it
is generating [35], [36].

B. GATED RECURRENT UNIT NEURAL NETWORK
Recurrent neural networks (RNN) have special neurons
prepared to use context data to produce an output. Different
types of RNNs receive and use context in their own way.
The early generations used to receive the data and their last
output, but this would create a greater focus on short-term
context without the network having capabilities to store long-
term information [37]. Thus, neurons with memory modules
were created to store long-term context. Gated Recurrent Unit
(GRU) has this context module and uses gates to update and
apply this context during predictions [38], [39].

GRU neurons have two internal structures called gates to
control the stored information. These structures are conven-
tional neural network layers which calculate a non-linear
combination of their input. They are the ‘‘reset gate’’,
represented by r , and the ‘‘update gate’’, represented by z.
The first determines how much information should be
discarded, while the second regulates how much information
will be combined with the input to the output. The gates also
have their own set of trainable weights represented byWr Vr
in the reset gate and Wz Vz in the update gate, along with
the traditional ones from a neuron represented by W and V .
A bias value is also present, represented by b.

In equations 1 to 4, t represents the current iteration, while
t − 1 means the previous iteration; additionally, x represents
the input data and h the output of the network at a given
moment. For each equation, a brief explanation will be given.

First, the reset gate is calculated in 1. This equation
receives the input x, multiplies it by the network weights
W and combines with the reset gate’s weights Vr multiplied
by the previous output ht−1 added with the bias b. This
equation outputs a value between 0 and 1 due to the sigmoid
σ function. This value will be used in equation 2 to regulate
how much information from previous iterations should be
considered.

70692 VOLUME 12, 2024



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

In equation 2, h̄t is computed and it works as a preliminary
output of the network. Its result comes from the combination
of the previous iteration multiplied by the reset gate and the
network input. Those values are multiplied respectively to V
and W and inserted in a tanh function.

As mentioned before, the update gate is responsible to
regulate how much information from the last iteration should
be combined to the currently calculated output h̄t . To do
so, it combines the network input to the previous iteration
similarly to the reset gate in equation 3. It is important to
highlight that the weights used in each gate are different from
each other. The value of zt is also between 0 and 1.
Finally, the current output is defined by equation 4. It will

use the value defined by the update gate to combine the
preliminary output to the previous iteration’s output.
In the equation, zt multiplies the preliminary output while
the previous output is multiplied by 1− zt [40].

rt = σ (Wrxt + Vrht−1 + br ) (1)

h̄t = tanh(Wxt + V (rt · ht−1)+ bh) (2)

zt = σ (Wzxt + Vzht−1 + bz) (3)

ht = (1− zt ) · ht−1 + zt · h̄t (4)

GRU networks have already been used for anomaly detec-
tion in computer network traffic. For example, Tang et al. [41]
proposed a system to detect attacks using six raw features.
The author compared GRU networks with SVM, DNN, and
the traditional RNN in the NSL-KDD dataset. The results
showed GRU’s superiority over the other methods. Our work
has a similar approach, using just a few features extracted
from traffic. However, it differs by using GAN to make our
system capable of unsupervised learning to detect unknown
attacks.

C. SOFTWARE DEFINED NETWORKS AND ANOMALY
DETECTION
As described in the introduction, it is not uncommon to
have computer networks with enough switches and hosts
to hinder adding new features or equipment due to the
complexity of configuration and maintenance. Networking
devices require setup between equipment, and compatibility
is critical to a satisfactory orchestration of traffic data.
However, manufacturers rarely provide support for each
other’s equipment or features, thus creating the necessity of
a homogeneous ecosystem, which certainly would not be
viable to replace if necessary [42].
Software Defined Networks is a networking paradigm

that solves previously presented problems. Its main concept
is the centralization of the control plane, which removes
the autonomy from network switches that will instead be
in constant communication with the controller. An open
protocol (e.g., OpenFlow) enables this communication and
is not bound to a manufacturer, thus allowing for a
heterogeneous network with fewer restrictions [43].

The network controller works as an interface (called
northbound interface) for management applications and

security ones. The applications work as modules that can be
installed at any time and do not require the configuration
of switches since only the controller communicates with
them [43]. The system proposed in this study works as one of
these applications by consulting the controller for flows and
sending hostile IP information. In the same way, it would not
be required to update the application if a switch was added
or replaced. This ease of configuration is one of the inviting
aspects of SDN.

However, the strength of SDN is also itsmain vulnerability:
since the controller is fundamental for the network’s opera-
tion, any disruption may cause instabilities to the system [44].
Disruption may happen in different forms, but the main
one addressed in this study is the distributed denial of
service attack. It is possible to use the SDN resources to
collect network flow data and analyze it to detect anomalies,
protecting the controller and other hosts from attacks.

With the traffic data provided by the network controller,
it is possible to create a behavior baseline from the regular
traffic. Then, an anomaly threshold can be found to separate
anomalous behavior from the normal one. Anomaly detection
systems that work similarly in this way are classified as
‘‘anomaly-based’’ and have been studied due to their capacity
to detect unknown threats since using attack data to train it is
unnecessary. However, it is not uncommon for this system
to present a higher false positive rate seeing that network
behavior can have sudden changes due to external events.
In addition, the traffic behavior may increase or decrease over
time, requiring the baseline to be updated from time to time.

D. DISTRIBUTED DENIAL OF SERVICE ATTACKS
Despite common, distributed denial of service attacks have
diverse categories of how they are executed and how they
affect their victim. In this section, a brief overview of how
other studies describe attacks is presented.

Wabi et al. [45] sunder attacks by which SDN plane they
are affecting and describe their point of failure. For example,
attacks that affect the data plane exploit the switch’s limited
memory. When an unknown packet is received, the controller
has to be consulted to how it should be forwarded by having
information about it sent through the network. While the
controller makes its decision, the packet is stored in the
switch’s memory. With enough packets in a short period of
time, a saturation of this buffer may happen, which leads to
lost packets.

Another point of failure highlighted by Wabi et al. is the
SDN controller. Similarly to the data plane example, the
control plane also has limited resources to store forwarding
tables, network information, and data for the applications
installed. When the controller is overloaded, the whole
network may suffer from the attack.

A third point of failure can be highlighted: the southbound
interface. It is the communication channel between the data
plane and the controller. A DDoS attack could saturate
the bandwidth and interrupt the communication between

VOLUME 12, 2024 70693



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

the switches and the control plane. As a consequence,
similarly to an unavailable controller, the whole network
could malfunction. Wabi et al. also present other SDN
vulnerabilities. However the three presented are the most
relevant to this work.

Chaudhary and Mishra [46] spotlight some types of DDoS
attacks in their work. The first is UDP flood attack, that
targets a server with UDP datagrams to random ports. When
the server receives requests for ports that have no bound
application, an error packet must be sent back. Enough
requests could overwhelm the server and make legitimate
ones get declined due to lack of resources.

TCP Syn is another flooding attack that exploits the TCP
handshake protocol. When a user tries to setup a connection,
it sends a Syn packet to start the handshake, which the
server responds with an ACK and waits to receive it back.
When a malicious agent sends a Syn, it usually has a
spoofed IP, which means that the first ACK will be never
be corresponded. The server resources will be consumed and
legitimate connections will be refused.

Lastly, an NTP attack is a bandwidth depletion attack.
It exploits the protocol to synchronize the clock of machines
by making redundant requests. They return a list with
previous queries to the server, which is significantly more
costly than the query protocol itself. Again, with enough users
requesting this list, the bandwidth will be depleted.

All these classes of attack may target a server but
can also affect the software defined network that hosts
it. For this reason, a combination of anomaly detection
techniques with properly configured protocols and firewalls
are fundamental for any network’s integrity, availability and
confidentiality [47], [48].

III. RELATED WORK
This section gleans similar studies about generative adversar-
ial networks. It also contains brief descriptions of other deep
learning methods that may be combined with GAN networks
with some examples. In chapter V, some of those methods
were applied as a comparison to GRU.

A. GAN-SUPPORTED ANOMALY DETECTION
Generative adversarial network is a versatile architecture due
to the multiple possibilities of how they can be applied to
solve problems. The first three showcased articles are an
example of GAN being used as some form of data generation.
There are different reasons to do so, at it is useful to address
imbalance problems in a dataset and also to better improve
other machine learning models by producing adversarial
examples of data.

Ding et al. [49] used GAN to create samples to minimize
the imbalance of intrusion detection datasets. The study pro-
poses a tabular auxiliary classifier GAN (TACGAN), a more
suitable method to generate tabular data. This algorithm is
used only to create anomaly samples, while regular entries
were undersampled to reduce even more the imbalance. The
performance of their method was compared with several

other oversampling methods, and some worthy mentions
are SMOTE, WGAN, and ACGAN. Three well-known
datasets were studied: KDDCUP99, UNSW-NB15, and
CIC-IDS2017. The proposed algorithm effectively improved
the classification from the deep multilayer perceptron, which
is not the best detection method but served as an experiment.
The authors propose to use a better classifier combined with
the GAN upsample in future works.

Another work that addresses imbalance and data gener-
ation is Kumar et al.’s work [50]. The authors use GAN
to generate samples from a minority class to improve the
performance of a classifier. The method uses an autoencoder
to learn the data distribution and create a reduced feature
vector to help increase the performance of the tested
classifiers. Next, the GAN model is trained to generate
data, and the resulting samples feed the classifiers among
Random Forest, Decision Tree, Support Vector Machine, and
XGBoost. The latter was chosen as the best in performance
and was used in the final testing. Three network traffic
datasets were used: NSL-KDD, UNSW-NB15, and Bot-IoT.
The results are promising and outperform other state-of-the-
art systems.

An adversarial DDoS attack detection system was pro-
posed by Mustapha et al. [51]. This work presented a recur-
rent neural network anomaly detection system, and GAN
networks were used to generate adversarial attacks, reducing
its detection effectiveness. To do so, an explainable machine
learning technique called SHapley Additive exPlanations
(SHAP) was applied. This method shows how each feature
affects the analyzed model. This way, using both SHAP and
GAN to generate adversarial attacks, the recurrent model
can be enhanced to detect them. The CIC-DDoS2019 dataset
was used to validate the system. The authors addressed its
imbalance and used the benign samples from CIC-IDS2017
to even the amount of benign and anomalous flows. Despite
both our work and Mustapha’s aim to detect DDoS attacks,
the GAN modules are completely different, since their GAN
is used to improve the IDS by generating DDoS data, while
our method uses GAN as the IDS itself. However, there are
still development insights that could be used. For example,
the authors mention how the generator becomes too powerful
in the dispute between networks. While the reason for this
to happen is not clear, the solution presented was to train
the discriminator with four times more epochs. This prevents
the vanishing gradient problem, but does not solve the mode
collapse.

The former article used GAN to improve another machine
learning model, Kim and Pak [52] did it as well but in a
different way: they presented a method to detect intrusion
in real time by analyzing packet data using a recurrent
neural network. Upon receiving such a small amount of data
in the first packets from a session, the model is expected
to fail to classify every entry correctly. A GAN system is
trained with the misclassified entries to predict when the
recurrent network will misclassify that entry. With this, the
process is halted until the next packet arrives. The system

70694 VOLUME 12, 2024



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

was tested in three datasets: ISCX2012, CIC-IDS2017, and
CSE2018. In the study, not only the system’s detection rate
was measured, but also how fast attacks could be blocked.
Overall, the system had a better or equal detection rate than
the compared methods but had a quicker detection speed,
enabling attack mitigation before significant consequences.

B. GAN-ORIENTED ANOMALY DETECTION
The previous works show GAN as a support module, to solve
an issue with the dataset or the anomaly detection system.
However, it can also be used as the intrusion detection system
itself, as the following works suggest. These studies may
combine special neurons to the GAN architecture in order to
improve its performance.

Wang et al. [53] addressed the deep neural network prob-
lem of test-time evasion attacks (TTEA) using GAN. TTEA,
also known as adversarial attacks, happens when small
changes to the input causes the neural network’s decision to
change. To do inhibit it, they used class conditional GAN:
a type of network that allows the developer to select which
class the generator will mimic each time. Although it is
common for GAN to be used to address the adversarial attack
problem, this work presents a different approach: Both the
discriminator and the generator were applied to detect the
anomalies. In this case, the generator works as an image
reconstructor, and its error influences the system’s decision.
The datasets MNIST, CIFAR-10, and Tiny-ImageNet-200
were used to test the system. In all datasets, the mode collapse
problem was present specially in CIFAR-10 since it has more
diverse data, but the discriminator’s detection module could
still achieve state-of-the-art performance. The authors claim
that mode collapse did not impact the model’s performance
due to how the discriminator was still able to distinguish real
from fake, even with the reduced diversity of the generator’s
sample.

Hoh et al. [54] proposed a study that applies generative
adversarial networks to time series anomaly detection. In this
work, a conditional convolutional GAN is implemented.
Convolutional neurons rely on kernels to extract information
from data. They help the network to learn spacial relation-
ships in their input since they were designed to work with
computer vision, where relationship between pixels in the
same area are far more important than those away from each
other. In Hoh’s work, the generator also has an autoencoder
architecture to reconstruct data from its input, with transposed
convolutional layers in the decoder module. An autoencoder
will ‘‘compress’’ and ‘‘decompress’’ information using data
patterns learned from data and will generate error based on
how well the information could be reconstructed. When the
error is too high, the probability of the entry being an anomaly
increases since the patterns learned by the network were not
accurate. In this system, the discriminator is only used in
the training process as the generator’s reconstruction error is
used as the indicator of anomaly. The framework was tested
using a public dataset of malfunctioning industrial machine

investigation and inspection and a single stereo sound file of
a song. The authors’ proposed system could be adapted for
processing network traffic data, as it is a time series. In this
case, the different classes would be the variations of traffic
throughout the day.

A GAN framework is showcased in the work by
Li et al. [55]. It also uses an autoencoder as the generator
and real data as its input instead of random noise. However,
instead of being trained to output a copy of its input data, the
generator receives incomplete samples and has to recreate the
original ones. Themissing features may vary from each input,
so the generator is forced to specialize in all features. After the
codification, the decoder will then rebuild the original entry
from this ‘‘compressed’’ state by using previous knowledge
to fill the missing parts. This is a great solution for mode
collapse since the generator is required to recreate samples
from every class, and it is possible to intensify the training
in the classes that it has a poor performance. Additionally,
a single data sample might be used several times to train
the generator by swapping the missing features each time.
By using real samples as the generator’s input, it can create
more realistic samples, thus becoming more representative
of the original data distribution. The generated data can be
divided into different time windows and combined with real
data to feed the discriminator. This way, a single window from
the original time series can become multiple fake samples.
The tests presented show that the method is effective in
anomaly detection.

Another special architecture is presented in Adiban’s et al.
work [56]. They presented an anomaly detection model that
uses multiple generator networks to solve the mode collapse
problem. In this study, each generator is trained to create
samples from a specific class in order to force each mode
to be represented. In addition to detecting anomalies in the
data, the discriminator is also trained to specify the generator
from which the anomaly was created. The proposed system
was tested in two imbalanced datasets: the Industrial Control
System Security dataset and the UNSW-NB15 dataset. The
metrics accuracy and F1 score were applied to measure the
system’s performance, with F1 being the most important
due to the datasets’ imbalance. The results show how the
model outperforms state-of-the-art systems and present how
the generators can learn to recreate more data modes than
other GAN networks.

Outside of network security, but still in the field of time
series anomaly detection, is the work of Xu et al. [57]. The
proposed system applies long short-term memory networks
(LSTM) with a GAN architecture to detect anomalies in
time series datasets. LSTM and GRU neurons have the
same purpose: to select and store useful context information
from the time series. However, LSTM has an extra gate
when compared to GRU. This gate is an extra tool to select
how context will be passed through the iterations and adds
extra processing and trainable parameters. In addition to
LSTM-GAN, the extreme gradient boosting (XGBOOST)
algorithm is applied to the neural network to extract the most

VOLUME 12, 2024 70695



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

important features from data. The systemwas tested using the
ball-bearing time series dataset and achieved state-of-the-art
performance.

There is another paradigm that can be combined with
GAN: the transformers. A transformer is a type of archi-
tecture that has been used mainly in natural language
processing, but works such as Ma et al. [58] employed it
to detect anomalies in time series. This paradigm uses an
attention mechanism to define which features and moments
are valuable to the network’s prediction. The transformer
process can be done in parallel for the whole input, thus
permitting for long sequences of data to be entered without
significant impact to computational complexity or context
loss. In this work, a model with similar characteristics was
studied to compare with GRU: the temporal convolutional
networks.

Temporal convolutional networks employ successive con-
volutions to extract information from its input. Those con-
volutions reduce the dimensionality of data while extracting
from its spacial organization the temporal aspect. This type of
network offers as an advantage over recurrent networks the
ability of processing temporal data all at once, without the
possibility of losing context over time due to long sequences.
This allows for longer receptive fields since the information
will not be lost. Yang et al. [59] proposed an intrusion
detection system using TCN to detect anomalies in internet
of things (IoT) data. Their method uses federated learning to
combine training from different parties.

From the selected works presented in this section, it is
possible to confirm how GAN has different use cases, from
direct anomaly detection to data generation. Relevant work
proves its efficiency and how there are various methods
of avoiding inherent problems, including mode collapse
and vanishing gradient. Since those problems are frequently
present in other works, they will be addressed in this
study in chapter IV; there we present our unsupervised
method that combines GAN with GRU neurons to detect
and mitigate anomalies in network traffic along with insights
gathered during development. It is also worth noting how
novel anomaly detection techniques are still studied and
proposed due to the importance of the theme and its room
for improvement.

IV. PROPOSED SYSTEM
In this section, the proposed system is described in two
modules: detection and mitigation.

A. DETECTION MODULE
In this article, an unsupervised, anomaly-based anomaly
detection system is proposed. The system adapts the tradi-
tional generative adversarial networks concept to use gated
recurrent units. The generator network is trained to mimic
normal traffic behavior from the monitored network to
deceive the discriminator using latent noise from a uniform
distribution, as shown in Fig. 1. It is expected that, after
the training process, the discriminator will be able to detect

FIGURE 1. System training overview.

anomalies from real network traffic without needing previous
contact with it.

This system treats network traffic as a time series. The
GRU neurons store context information through iterations
to better classify them. For this reason, the discriminator
network’s input uses the ten last seconds of traffic to evaluate
if there is an anomaly in the last second. The GRU neurons
run through each second before reaching a final value, which
will be received by the next layers of the neural network to
make its estimation.

To summarize a whole second of network traffic, some
flow dimensions are collected from the SDN controller: total
bits, total packets, source and destination IP entropies, and
source and destination port entropies. It is essential to extract
the entropies of IP and port due to the nature of the neural
network’s learning. Information such as raw IP addresses
tends not to be helpful for a neural network since an address
being numerically greater than another has nomeaning. Thus,
this qualitative data is transformed into a quantitative one: the
entropy.

In this work, entropy works as a measure of randomness
in a variable. For example, to calculate the destination IP
entropy, the frequency of each IP is used. When multiple
different IPs are evenly accessed during the analyzed
period, entropy increases. Inversely, if fewer IPs become
significantly more frequent than others, the entropy tends to
decrease. This way, it is possible to transform the IP address
information into a quantitative value.

Equation 5 shows how Shannon’s entropy is calcu-
lated [60], where i represents an individual event, or an IP in
the previous example; pi the probability of the event to occur,
or the frequency of i among all IP occurrences on that day; and
N the number of possible events, or the number of different
IPs that appeared in the last second. The resulting entropy H
is then calculated for that dimension in that second.

H = −
N∑
i=1

pi log2(pi) (5)

Algorithm 1 briefly explains how each second of flow
is treated. The system uses a sliding window composed of
seconds as an input to decide for an anomaly. It works as

70696 VOLUME 12, 2024



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

a first in, first out queue so every second the oldest set of
dimensions is removed to make place for the most recent one.
Thus, each second is utilized 10 times for anomaly detection.
It is important to understand that the system works in discrete
intervals of one second. Therefore, the anomaly detection
happens not in real time, but with a one second delay in its
worst case scenario.

In this algorithm a threshold of 0.5 is applied to separate the
network’s answer (Algorithm 1 line 3). This threshold was
chosen as a neutral approach for the output, as lowering it
would make the system more sensible and more tolerant if
increased. As an unsupervised system, the neutral approach
is more adequate as the discriminator’s output can be seen as
a probability of the observed second has an anomaly in it.

Algorithm 1 Anomaly Detection
Require: Flows ← Last 10 seconds of flows; Trained

Discriminator
Ensure: Is the current second normal or anomalous
1: flow_dimensions← Extract Dimensions(Flows)
2: y← Discriminator(flow_dimensions)
3: if y > 0.5 then
4: return Anomalous
5: else
6: return Normal

1) SYSTEM’S HYPERPARAMETERS
Just as with every machine learning model, this system
required hyperparameter tuning. In this section the most
important system’s hyperparameters will be described:

• Neurons and layers in discriminator and generator.
This parameter defines how powerful the network is at
extracting patterns from data. If there are not enough
layers and neurons, the network will not be capable to
fit to the data. When an excessive amount is given to a
network, a longer training will be required, as well as a
larger dataset, otherwise the model will not be able to
generalize the problem and overfit to the training data.

• Number of input seconds. This is the amount of seconds
the discriminator will receive from data to determine if
there is an anomaly in the last second. Consequently,
the generator will also create that many seconds during
training. Too few secondsmake harder for the network to
separate outliers from real attacks, while too many will
hinder the generator’s training, consequently causing the
discriminator to underperform.

• Number of training epochs. It represents how many
times the whole dataset will be used to train the
neural networks. A sufficient amount is necessary for
both networks to converge. However, it is possible
for the model to overfit to the training data and
loose it’s generalization capacity. In GAN networks,
this hyperparameter can be divided in three, since the
discriminator and generator are trained alternately. The

TABLE 1. Considered hyperparameters.

discriminator and generator can each have their own
value of epochs. Additionally, the loop for the alternated
training is also considered an amount of epochs.

• Batch Size. This parameter controls how often the
network weights are updated, since the number repre-
sents the amount of entries of data are considered in
each weight update. A smaller value represents a more
detailed adjustment, which slows the training and is
more susceptible to overfitting.

The system’s hyperparameters were tuned using the second
dataset that will be presented in a later section. Table 1
presents the considered hyperparameters and points out
the chosen ones in bold. It is important to highlight how
some hyperparameters have different values for each neural
network, since they are different and their assignments have
different difficulty levels. It was observed that when one
of the networks become too dominant over the other, the
tendency is to stagnate the training process due to lack of
improvement from the other. To avoid this, the number of
neurons and individual epochs should be tuned.

The networks architecture used in this work is similar to
a funnel, since the discriminator’s input is bigger than the
output. For this reason, in Table 1 ‘‘Neurons in Generator’’
refers to the number of neurons in the first layer, which gets
lower after each layer. The same is valid for the discriminator
since its input is a matrix representing the last seconds of
traffic and its output a single number.

The final structure of each neural network is as follows:
the generator has an input layer followed by three dense
layers with 32, 16 and 60 neurons, respectively. Between
those layers there is a dropout of 0.3 to avoid an overfit during
training and increase the chances of the network discovering
new ‘‘classes’’ of traffic. For example, the generator could
learn to reproduce samples of peak traffic but never generate
samples of lower movement moments. The 60 neurons in
the last layer are used to match to the sample size from
the original dataset, that used 10 seconds of 6 different
dimensions. This vector is reshaped to work as an input for
the discriminator.

The discriminator’s final structure has a first layer
of 16 GRU neurons followed by three dense layers with 8,
4, and 1, respectively. The last layer outputs the probability
of the sample being an anomaly. No dropouts were used in
the discriminator since there were no classes to overfit for:

VOLUME 12, 2024 70697



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

the training had equal amounts of normal data and fake data.
In addition, the discriminator was frequently the network that
was ‘‘losing’’ the zero sum game, so adding difficulties to it
was avoided. As shown in Table 1, there was no success of
adding extra epochs to the discriminator.

During the system’s development, there was an issue with
how both networks behaved. During the training cycle of
alternating the training of each network, both networks could
overcome the other after its fit. For example, during the
discriminator fit, it would start with a low score but in few
epochs it would be able to differ the fake data from the
original. The same would happen with the generator: it would
start with a low error and it would increase during training
(remember that the generator’s objective is to maximize the
discriminator’s error). This is expected since the objective
of each training was being fulfilled. However, when the
discriminator was tested with data from another day, the
performance would vary from terrible to close to perfection.
In some cases, even in consecutive epochs, the difference
could be greater than 30% of F1-Score. For this reason,
a validation algorithm was developed to ‘‘stop’’ the training
in a better spot.

Since Nash equilibrium is a rare occurrence and the
performance of the discriminator was unstable as
the epochs passed, a validation algorithm was applied to the
discriminator to select the best one during training. To do
so, the discriminator is tested after each training cycle with a
subset of the training day that is never used in the fit process.
At the end of the last epoch, the network from the stepwith the
best result is chosen as the final model. Algorithm 2 presents
this logic.

Algorithm 2Model Selection During Training
Require: Val_Flows← Validation set of flows;
Require: Generator; Discriminator; Current_Best_F_score;

Current_Best_Discriminator;
Ensure: Best_Discriminator
1: Fake_Samples← Generator(Random_Numbers)
2: Val_Flows← Val_Flows + Fake_Samples
3: F-Score← f_score(Discriminator(Val_Flows))
4: if F-Score > Current_Best_F_Score then
5: return Discriminator
6: else
7: return Current_Best_Discriminator

B. MITIGATION MODULE
The mitigation module is an algorithm that decides which
flows should be blocked by the controller. This system must
be working at all times along with the detection module,
even when no threats are detected. In seconds when there are
no anomalies, the active IP’s are added to a safe list which
temporarily prevent them to be blocked when an attack is
detected.

When an anomaly is detected, the mitigation mod-
ule checks the IP that receives most flows and creates

a suspect list. This ensures that only traffic towards the victim
gets blocked and, if there are multiple targets, when the traffic
towards one diminishes, the mitigation algorithm will change
the victim accordingly. The IPs on the suspect list that are
not on the safe list are blocked for 20 seconds. The safe list
prevents regular users to be blocked in case they become
suspicious due to other users’ activity, which avoids false
positives. The safe list also has a timer for each IP but for
5minutes, so once the timer runs out the IPwill be susceptible
to be blocked again. Both lists use a dictionary to store the
IPs thus lowering the search time and avoiding to hinder
the system during high traffic load moments. Algorithm 3
summarizes the mitigation process. The blocked IPs are sent
to the SDN controller which will distribute block instructions
to the whole network automatically.

It is possible for a legitimate user to try to have its first
access to a host at the same time as an attack starts against
it. In this case, the user would be considered an attacker and
be blocked by the mitigation system. However, the block
list would only stop those flows for 20 seconds and some
attackers would be blocked some seconds later or earlier. This
way, while attackers get blocked and maybe change targets,
the legitimate users will eventually be unblocked and not
misclassified as an attacker again.

Algorithm 3 Anomaly Mitigation
Require: Flows← All flows from the last second
Require: Is_Anomalous← Detection Module Veredict
Ensure: List of blocked IPs
1: if Is_Anomalous then
2: Attacked IP← IP that received greatest number of

flows
3: Suspect IPs← IPs that sent flows to the attacked IP
4: add suspect IPs in block list if not in safe list for

20 seconds
5: else
6: Add flows to safe list for 5 minutes
7: Block flows from ips in block list
8: Reduce 1 second from IPs in Block list
9: Reduce 1 second from IPs in Safe list

V. PERFORMANCE EVALUATION AND RESULTS
ANALYSIS
This section presents the evaluation method as well as the
performance of the proposed system in two scenarios to
represent different networks and attack types. All tests were
made in aWindows 10 machine with a Ryzen 7 1700x, 32GB
of RAM and Python version 3.10.

To evaluate the detection method, two main metrics were
measured: F1-score and Matthew’s Correlation Coefficient
(MCC). Those metrics were chosen because the datasets
studied suffer from severe imbalance between classes, which
is comprehensible since both aim to be similar to real network
traffic. This imbalance will be addressed for each scenario
individually.

70698 VOLUME 12, 2024



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

To calculate both metrics it is only required to have the
true positive (TP), true negative (TN), false positive (FP)
and false negative (FN). F1-score, depicted in 8 represents
the harmonic mean of precision and recall, represented in 6
and 7 respectively. Despite being a good indicative of balance
between precision and recall, the F1-score has a flaw that
may be significant to this work: it does not consider the
true negatives (the benign class). This way, this metric might
return a high value even if the majority of the normal
seconds are classified as attacks. In the F1-score equation,
if the classes are inverted, a worse result would be reached,
showcasing the true performance of the model. For this
reason, another metric was added to the evaluation: the
Matthews’ correlation coefficient.

Precision =
TruePositive

TruePositive+ FalsePositive
(6)

Recall =
TruePositive

TruePositive+ FalseNegative
(7)

F1− score = 2
Precision× Recall
Precision+ Recall

(8)

The Matthews’ correlation coefficient is also a metric used
to evaluate models when there is imbalance in the dataset.
Represented in 9, this metric is applicable to binary problems.
The output of this metric can vary between −1 and 1, with
1 characterizing a perfect score, 0 a random prediction and
−1 an inverse prediction. In this equation, it is possible
to invert the positives and negatives (in this study’s case
anomaly and normal) and the result would still be the same
since there is not a preferred class, even when an imbalanced
dataset is used.

MCC = TN×TP−FN×FP
√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

(9)

A. FIRST SCENARIO
The first dataset was generated by the computer networks
study group from State University of Londrina. The Mininet
SDN emulator was used to create a network with six switches
structures in a tree topology with one switch as a root and
five as leaves. Each of the leaf switches are connected to
twelve hosts to form a total of 60 connected users. The Scapy
Python library generated artificial traffic to be sent over the
network and the softwareHping3 generated distributed denial
of service attacks.

This dataset contains three 24-hour days of traffic in form
of labeled flows. One of the days does not have any attacks,
while the other two have each a portscan and a DDoS in
different time intervals. To fit in the proposed system, the
flows were aggregated into groups of one second with the
dimensions described in section IV and then normalized to
the interval [0, 1]. Fig. 2 presents the testing day of this
scenario.

As mentioned at the start of this section, this dataset suffers
from imbalance caused by a discrepancy between the amount
of normal seconds and anomaly seconds. Each attack day
contains one hour and fifteen minutes of DDoS and an hour

and five minutes of portscan attacks. This is not a problem
for the system’s training since only normal traffic is used to
do so, but it is possible to misevaluate the performance when
metrics such as accuracy are employed.

B. SECOND SCENARIO
The second dataset named CIC-DDoS2019 was created by
the Canadian institute for Cyber security from the University
of New Brunswick. The dataset has two days of 8 hours
each, with a variety of distributed denial of service attacks.
The first day contains the following DDoS types: Portmap,
NetBIOs, LDAP, MSSQL, UDP, UDP-Lag, and SYN while
the second has NTP, DNS, LDAP, MSSQL, NetBIOS, SNMP
SSDP, UDP, UDP-Lag, WebDDoS, SYN, and TFTP.

The background traffic was emulated by a profiling system
that imitate human interactions of 25 users in different
operational systems and collected by a network traffic
analysis tool called CICFlowMeter-V3. The data has invalid
numbers such as NaN and inf in some fields. They were
treated by calculating their true values, if possible, and set to
zero otherwise. For example, if a flow has NaN in the bytes
per second field, it is first checked if it is possible to use the
total bits and flow duration fields to replace the invalid entry.
This way, the data inaccuracies are minimized.

This dataset also has imbalance that requires addressing.
It has more than 26 thousand seconds without anomalies, and
only 8 thousand with. Most of the imbalance is caused by
moments when there is no traffic in the network at all. It is
plausible to assume that there are no attacks when there is
no traffic and no need for an action of an anomaly detection
system. Therefore, the empty seconds were disregarded and
dropped in this experiment.

To use the dataset, one of the days had all attacks removed
before training the networks. Since the dataset is organized
in labeled flows, the seconds with anomalies were not
discarded, rather they had the anomalous flows removed and
the legitimate flows could be availed. This is advantageous
since it is important to supply as much data as possible to
deep learning models.

In the testing day, it was noticed that some attacks had
moments with close to zero packets of anomalous flows.
As a distributed denial of service attack, a small amount of
flows is ineffective, since the resources of the attacked system
would not be exhausted. For this reason, weakDDoS attempts
were ignored in this experiment, and the following process as
performed to remove them from the dataset: for each attack
type, every second with less flows than 1% of Q has its
flows removed, where Q is the maximum flows in a single
second of that attack type. Fig. 3 and 4 present the training
and testing day respectively. Since the anomalies studied are
distributed denial of service attacks, the moments without
traffic were removed since it is not possible for a DDoS
to be occurring. This makes the network training faster and
removes obvious true negatives that would otherwise inflate
the metrics. Consequently, the time in Figs. 3 and 4 is shorter
than the actual dataset.

VOLUME 12, 2024 70699



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

FIGURE 2. Orion dataset testing day.

FIGURE 3. CIC-DDoS2019 dataset training day.

TABLE 2. Anomaly detection confusion matrix in first scenario.

C. RESULTS AND ANALYSIS
The confusion matrix from the first scenario is represented
in Table 2, which yields the metrics presented in Table 3. The
results are adequate since aminimal portion of the dataset was
misclassified. Despite the greater amount of normal traffic in
this testing day, the MCC is still close to one as most of the
attacks were detected. Due to the model being unsupervised,
the imbalance of the dataset did not affect it’s performance.

TABLE 3. Anomaly detection metrics in the first scenario.

For the second scenario, Table 4 presents the confusion
matrix from the testing day. From the metrics in Table 5,
it is noticeable how the model had a worst performance
when compared with the first scenario yet still a satisfactory
one. This probably happens due to the more variable traffic
behavior of the emulated network, which causes more false
positives, in addition to some attack moments with little
impact to the monitored flow dimensions.

70700 VOLUME 12, 2024



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

FIGURE 4. CIC-DDoS2019 dataset testing day.

TABLE 4. Anomaly detection confusion matrix in the second scenario.

TABLE 5. Anomaly detection metrics in the second scenario.

FIGURE 5. Roc curve and AUC from first scenario.

Figs. 5 and 6 present a ROC curve with their corresponding
area under curve from both datasets respectively. This system
is unsupervised so it does not use data to find a threshold.
Rather, the neutral threshold of 0.5 is applied to avoid

FIGURE 6. Roc curve and AUC from second scenario.

FIGURE 7. Model predictions for the first scenario test day.

inputting any sensibility bias to the network’s decision. In this
study, the purpose of the ROC curve is to present how certain
the neural network is about its answers. In a perfect classifier,
the distance between classes in its answer is maximized
(normal class receives answers as close as possible to zero
and anomaly to one), which means that the threshold would

VOLUME 12, 2024 70701



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

FIGURE 8. Model predictions for the second scenario test day.

not matter for it. The ROC curves in both datasets have high
area under curve, which means that the network can separate
each class with confidence and with high success rate. It is
noticeable that in Fig. 5 the AUC is 1 for the networks, even
with their result not being perfect. This happens due to an
automatic rounding since the error is too small. In this case,
LSTM’s AUC should also be 1.

Figs. 7 and 8 are the discriminator’s answers for the testing
day of each dataset. It is noticeable how separated the normal
and anomaly classes are, which directly impacts the ROC
curve. The more separated the classes are, the higher is the
model’s confidence degree, which avoids false positives and
negatives in less defined traffic moments. It is also possible to
see that there are more false positives in the second scenario,
which is caused probably by the less regular traffic present
and smaller training data.

D. COMPARISON WITH OTHER METHODS
The proposed system was also implemented with four
other types of neurons: long short-term memory, temporal
convolutional neurons (TCN), convolutional neurons (CNN),
and traditional neurons (DNN). The three neuron types GRU,
LSTM and TCN were chosen due to being adapted to receive
sequential data such as time series. LSTM does store context
information to use in later predictions and TCN has the
advantage to be able to receive large sequences of data and
make use of the whole information during its prediction
without the need of a context module.

Convolutional networks can be adapted to process time
series, despite its main utility being image processing. In this
work, two dimensional convolutions were used, thus the data
is organized in a matrix where one axis represents the features
and the other the time. Since the kernels extract spacial
information of data, organizing in such way allows for this
type of information to be exploited.

As a way of demonstrating how important the special
neurons are for the performance of the system, the DNN is
also present for comparison. In this work, the conventional
deep network received all ten seconds of data as a single
vector.

Tables 6 and 7 present the results of each type of neural
network in scenarios one and two respectively. All five
models present great results in both datasets, with GRU

TABLE 6. Anomaly detection comparison in the first scenario.

TABLE 7. Anomaly detection comparison in the second scenario.

achieving a slightly higher score in the ROC curves. It is
safe to say that GRU, LSTM, TCN and CNN methods are
tied and one may overcome the other in different training
iterations. This happens due to the random nature of weight
initializing and the randomization of the training data that
may cause modest variation. During tests, the results from
eachmethod remained consistent to the presented results. The
DNN had a good performance, but not enough to reach the
other network’s.

Since the four methods are close to equivalent in resulting
metrics, it is fair to observe the resources required for each
implementation. In this case, GRU consumes less memory
and is less complex than LSTM, TCN and CNN. When
compared to LSTM, GRU is close to identical to it but
with only a two gates per neuron, whilst LSTM has three.
Despite being a slight difference, it adds up when training
with large datasets. The TCN is significantly different
than GRU, it uses chained causal and dilated convolutions
to process sequenced data, which increases the number
of trainable parameters, training time, execution time and
required memory. Convolutional neurons are not as costly
as TCN ones, but do also consume more memory compared
to GRU since each neuron produces a new batch of data.
Each neuron represents a kernel and outputs data with the
same dimension as the input minus one. Considering the
complexity and memory, GRU is superior than the other
network types.

In Table 8 the time in seconds to train each network in
each scenario is presented. There is a significant difference
between the duration of each dataset due to their size:
CICDDoS2019 has only a few hours of traffic, while the
Orion dataset has an entire day. The amount of traffic in each
scenario does not influence significantly in the training time
due to how the system works: each entry in the network is a
‘‘compilation’’ of a whole second of traffic. It is evident how
TCN is significantly slower than the other methods due to
the chained convolutions, while DNN is the fastest due to its
simplicity. GRU and LSTM have similar training time with a
slight advantage to GRU, as expected. The time difference

70702 VOLUME 12, 2024



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

TABLE 8. Training time comparison in seconds.

FIGURE 9. Mitigation in the first scenario.

between them would probably be emphasized by a larger
dataset or more training epochs, similarly to how the time
difference between them decreases in the smaller dataset.

E. MITIGATION RESULTS
After the detection module exports its result, the mitigation
algorithm was tested in both datasets.

In the first scenario, it is noticeable how effective the
algorithm was on blocking malicious flows without affecting
a significant portion of the legitimate flows as shown in
Fig. 9. Only 0.32% of attacking flows were not mitigated,
and only 0.10% of the normal flows were wrongly blocked.
In moments where the detection algorithm miss-classified
anomalous behavior, the block list is able to exclude flows
from the malicious IPs while the safe list avoids to stop
normal traffic.

In the second scenario, the same effectiveness is observed
as presented in Fig. 10. Although there is a significant
difference in the number of flows between both datasets, the
mitigation was successful in blocking most anomalous flows.
It is important to notice how the normal traffic in the first
dataset is significantly higher than in the second due to the
length of the day. The first scenario has a whole day and the
other only a few hours. Meanwhile, the amount of anomalous
traffic is significantly higher in the second scenario due
to the amount of attack instances and types present in the
dataset.

VI. COMPLEXITY ANALYSIS
During the design of this system, the complexity and
scalability were considered. This analysis is divided in three
modules: collection, detection andmitigation. In this case, the
O(n) notation will be used with n being the number of flows
in each second.

FIGURE 10. Mitigation in the second scenario. Notice the different scale
in each graphic.

In the collection step, the flows are received from
the controller and the flow dimensions are extracted and
organized. The calculation of bits and packets per second is
just a sum, so it isO(n). The entropy calculation goes through
the data 3 times for each, so O(3n). Thus, the data processing
step is considered O(n).

The detection phase uses the neural network’s calculation
to define if an anomaly is present in that second. Since the
data is already processed, the network is not required to go
through the data, so the complexity is always the same: O(1).

Finally, the mitigation step will use the list of flows to
check the most frequent ones, consult the safe list and block
them. This process requires to go through the data three times.
The safe list is a dictionary, so the consultation time does not
grow with the amount of flows. It is possible to conclude that
the complexity of this step is O(n).

VII. CONCLUSION
This work presented an unsupervised anomaly detection
system to detect distributed denial of service attacks on
software-defined networks using generative adversarial net-
works. When trained only with regular traffic, the GAN
discriminator is able to identify network attacks as anomalies
without previous knowledge. The GAN discriminator has
a gated recurrent unit layer to store context from previous
traffic seconds and help with anomaly detection.

This model was tested with two datasets: the Orion dataset,
generated by the computer networks study group from the
State University of Londrina, and CIC-DDoS2019, a widely
used dataset for benchmarking anomaly detection systems.
In both datasets, six flow dimensions were extracted to feed
the neural network with only regular traffic during training.

The first scenario results show that the neural network was
able to separate regular traffic from anomalous as shown in
Figure 7. The detection resulted in an f1-score of 0.998 and
a Matthew’s correlation coefficient of the same value. In the
second scenario, the model was also able to detect most of
the attacks and achieved an f1-score of 0.985 and an MCC of
0.979. It is noticeable how the imbalance of the datasets with
the minority of the attack class did not significantly affect
the detection’s performance since the training data does not
require anomalies.

VOLUME 12, 2024 70703



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

In the mitigation phase, the detection output determines
how the incoming flows will be treated using a block list
and a safe list. In this phase, the imbalance changes in both
datasets. The first is quite balanced, while the second now has
a majority of attack flows. In the two, 99% of the malicious
flows become blocked, and less than 1% of legitimate flows
get discarded.

The proposed model was compared with other deep-
learning techniques. They are long short-term memory,
temporal convolutional networks and convolutional neural
networks, twomodels designed to extract characteristics from
time series and one from images that could be alternatives in
the proposedmodel. All three networks achieve results within
1% from GRU’s. Due to the random nature of neural network
training, one may achieve a better result than the others, but
they would still be technically tied. Deep Neural Network
with Traditional neurons were also tested as some sort of
‘‘control group’’ to show how necessary the special neurons
are. The network still had good results but was clearly worse
than the others. The time each network takes to evaluate
the whole dataset was also measured. The GRU and LSTM
models were tied. Both CNN and TCNwere slower and DNN
was faster than all the others.

For future work, our group plans to study and test smaller
intervals of time to collect metrics and apply the detection
to reduce the system’s reaction time. Other flow dimensions
are also being studied to represent the network’s baseline
of regular traffic, such as average packet size and flow
duration. Additionally, other datasets are also being studied
to benchmark anomaly detection systems. For example,
UGR’16 has real traffic collected by a Spanish internet
service provider with many weeks of data. It has as an
advantage the massive amount of data and a completely
different network size, which can be great to evaluate the
system’s scalability. At last, we plan to study transformer
networks by developing a system that explores their self
attention capability as well as diffusion models in order to
explore their capabilities on generating accurate data.

REFERENCES
[1] I. T. Abdel-Halim and H. M. A. Fahmy, ‘‘Toward efficient vehicular-based

virtual network infrastructure for smart cities,’’ Eng. Sci. Technol., Int. J.,
vol. 44, Aug. 2023, Art. no. 101456.

[2] Q. Liu and T. Zhang, ‘‘Deep learning technology of computer network
security detection based on artificial intelligence,’’ Comput. Electr. Eng.,
vol. 110, Sep. 2023, Art. no. 108813.

[3] R. Kumar, U. Venkanna, and V. Tiwari, ‘‘Optimized traffic engineering
in software defined wireless network based IoT (SDWN-IoT): State-of-
the-art, research opportunities and challenges,’’ Comput. Sci. Rev., vol. 49,
Aug. 2023, Art. no. 100572.

[4] X. Etxezarreta, I. Garitano, M. Iturbe, and U. Zurutuza, ‘‘Software-
defined networking approaches for intrusion response in industrial control
systems: A survey,’’ Int. J. Crit. Infrastruct. Protection, vol. 42, Sep. 2023,
Art. no. 100615.

[5] A. Narwaria and A. P. Mazumdar, ‘‘Software-defined wireless sensor
network: A comprehensive survey,’’ J. Netw. Comput. Appl., vol. 215,
Jun. 2023, Art. no. 103636.

[6] N. S. Shaji, T. Jain, R. Muthalagu, and P. M. Pawar, ‘‘Deep-discovery:
Anomaly discovery in software-defined networks using artificial neural
networks,’’ Comput. Secur., vol. 132, Sep. 2023, Art. no. 103320.

[7] A. B. de Neira, B. Kantarci, and M. Nogueira, ‘‘Distributed denial of
service attack prediction: Challenges, open issues and opportunities,’’
Comput. Netw., vol. 222, Feb. 2023, Art. no. 109553.

[8] M. L. Proenca, B. B. Zarpelao, and L. S. Mendes, ‘‘Anomaly detection for
network servers using digital signature of network segment,’’ in Proc. Adv.
Ind. Conf. Telecommun./Service Assurance Partial Intermittent Resour.
Conf./E-Learning Telecommun. Workshop (AICT/SAPIR/ELETE), 2005,
pp. 290–295.

[9] S. Alem, D. Espes, L. Nana, E. Martin, and F. De Lamotte, ‘‘A novel
bi-anomaly-based intrusion detection system approach for Industry 4.0,’’
Future Gener. Comput. Syst., vol. 145, pp. 267–283, Aug. 2023.

[10] M. V. O. de Assis, L. F. Carvalho, J. J. P. C. Rodrigues, and M. L. Proença,
‘‘Holt-winters statistical forecasting and ACO metaheuristic for traffic
characterization,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2013,
pp. 2524–2528.

[11] J. I. I. Araya and H. Rifa-Pous, ‘‘Anomaly-based cyberattacks detection
for smart homes: A systematic literature review,’’ Internet Things, vol. 22,
Jul. 2023, Art. no. 100792.

[12] G. F. Scaranti, L. F. Carvalho, S. Barbon, and M. L. Proença, ‘‘Artificial
immune systems and fuzzy logic to detect flooding attacks in software-
defined networks,’’ IEEE Access, vol. 8, pp. 100172–100184, 2020.

[13] W. Lim, K. S. C. Yong, B. T. Lau, and C. C. L. Tan, ‘‘Future of generative
adversarial networks (GAN) for anomaly detection in network security:
A review,’’ Comput. Secur., vol. 139, Apr. 2024, Art. no. 103733.

[14] B. Lindemann, B. Maschler, N. Sahlab, and M. Weyrich, ‘‘A survey on
anomaly detection for technical systems using LSTM networks,’’ Comput.
Ind., vol. 131, Oct. 2021, Art. no. 103498.

[15] A. González-Muñiz, I. Díaz, A. A. Cuadrado, D. García-Pérez, and
D. Pérez, ‘‘Two-step residual-error based approach for anomaly detection
in engineering systems using variational autoencoders,’’ Comput. Electr.
Eng., vol. 101, Jul. 2022, Art. no. 108065.

[16] T. A. Naidu and S. Kumar, ‘‘Impact of deep learning models on hate speech
detection,’’ in Proc. 12th Int. Conf. Comput. Commun. Netw. Technol.
(ICCCNT), Jul. 2021, pp. 1–5.

[17] L. Duan, Y. Ren, and F. Duan, ‘‘Adaptive stochastic resonance based
convolutional neural network for image classification,’’ Chaos, Solitons
Fractals, vol. 162, Sep. 2022, Art. no. 112429.

[18] M. A. Contreras-Cruz, F. E. Correa-Tome, R. Lopez-Padilla, and
J. P. Ramirez-Paredes, ‘‘Generative adversarial networks for anomaly
detection in aerial images,’’ Comput. Electr. Eng., vol. 106, Mar. 2022,
Art. no. 108470.

[19] S. Shahriar, ‘‘GAN computers generate arts? A survey on visual arts,
music, and literary text generation using generative adversarial network,’’
Displays, vol. 73, Jul. 2022, Art. no. 102237.

[20] T. Song, Y. Ren, S. Wang, P. Han, L. Wang, X. Li, and A. Rodriguez-Patón,
‘‘DNMG: Deep molecular generative model by fusion of 3D information
for de novo drug design,’’Methods, vol. 211, pp. 10–22, Mar. 2023.

[21] S. Tripathi, A. I. Augustin, A. Dunlop, R. Sukumaran, S. Dheer,
A. Zavalny, O. Haslam, T. Austin, J. Donchez, P. K. Tripathi, and E. Kim,
‘‘Recent advances and application of generative adversarial networks in
drug discovery, development, and targeting,’’ Artif. Intell. Life Sci., vol. 2,
Dec. 2022, Art. no. 100045.

[22] M. Hashimoto, Y. Ide, andM.Aritsugi, ‘‘Anomaly detection for sensor data
of semiconductor manufacturing equipment using a GAN,’’ Proc. Comput.
Sci., vol. 192, pp. 873–882, Jan. 2021.

[23] H. Lu, V. Barzegar, V. P. Nemani, C. Hu, S. Laflamme, and
A. T. Zimmerman, ‘‘Joint training of a predictor network and a generative
adversarial network for time series forecasting: A case study of bearing
prognostics,’’ Exp. Syst. Appl., vol. 203, Oct. 2022, Art. no. 117415.

[24] T. Zhou, Q. Li, H. Lu, Q. Cheng, and X. Zhang, ‘‘GAN review: Models
and medical image fusion applications,’’ Inf. Fusion, vol. 91, pp. 134–148,
Mar. 2023.

[25] H. Navidan, P. F. Moshiri, M. Nabati, R. Shahbazian, S. A. Ghorashi,
V. Shah-Mansouri, and D. Windridge, ‘‘Generative adversarial networks
(GANs) in networking: A comprehensive survey & evaluation,’’ Comput.
Netw., vol. 194, Jul. 2021, Art. no. 108149.

[26] P.-Y. Tseng, P.-C. Lin, and E. Kristianto, ‘‘Vehicle theft detection by
generative adversarial networks on driving behavior,’’ Eng. Appl. Artif.
Intell., vol. 117, Jan. 2023, Art. no. 105571.

[27] Z. Li, H. Liu, C. Zhang, and G. Fu, ‘‘Generative adversarial networks for
detecting contamination events in water distribution systems using multi-
parameter, multi-site water quality monitoring,’’ Environ. Sci. Ecotechnol.,
vol. 14, Apr. 2023, Art. no. 100231.

70704 VOLUME 12, 2024



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

[28] X. Xia, X. Pan, N. Li, X. He, L. Ma, X. Zhang, and N. Ding, ‘‘GAN-based
anomaly detection: A review,’’ Neurocomputing, vol. 493, pp. 497–535,
Jul. 2022.

[29] A. Sajeeda and B. M. M. Hossain, ‘‘Exploring generative adversarial
networks and adversarial training,’’ Int. J. Cognit. Comput. Eng., vol. 3,
pp. 78–89, Jun. 2022.

[30] M. Allahyani, R. Alsulami, T. Alwafi, T. Alafif, H. Ammar, S. Sabban,
and X. Chen, ‘‘DivGAN: A diversity enforcing generative adversarial
network for mode collapse reduction,’’ Artif. Intell., vol. 317, Apr. 2023,
Art. no. 103863.

[31] P. T. Duy, N. H. Khoa, D. T. T. Hien, H. D. Hoang, and V.-H. Pham,
‘‘Investigating on the robustness of flow-based intrusion detection system
against adversarial samples using generative adversarial networks,’’ J. Inf.
Secur. Appl., vol. 74, May 2023, Art. no. 103472.

[32] M. Arjovsky, S. Chintala, and L. Bottou, ‘‘Wasserstein generative
adversarial networks,’’ in Proc. 34th Int. Conf. Mach. Learn., vol. 70, D.
Precup and Y. W. Teh, Eds. Aug. 2017, pp. 214–223.

[33] S. Devakumar and G. Sarath, ‘‘Forensic sketch to real image using
DCGAN,’’ Proc. Comput. Sci., vol. 218, pp. 1612–1620, Jan. 2023.

[34] X. Yu, M. Li, C. Ge, P. P. Shum, J. Chen, and L. Liu, ‘‘A generative
adversarial network with multi-scale convolution and dilated convolution
res-network for OCT retinal image despeckling,’’ Biomed. Signal Process.
Control, vol. 80, Feb. 2023, Art. no. 104231.

[35] N. Qiang, Q. Dong, H. Liang, J. Li, S. Zhang, C. Zhang, B. Ge, Y. Sun,
J. Gao, T. Liu, H. Yue, and S. Zhao, ‘‘Learning brain representation
using recurrent Wasserstein generative adversarial net,’’ Comput. Methods
Programs Biomed., vol. 223, Aug. 2022, Art. no. 106979.

[36] Q. Ni and X. Cao, ‘‘MBGAN: An improved generative adversarial network
with multi-head self-attention and bidirectional RNN for time series
imputation,’’ Eng. Appl. Artif. Intell., vol. 115, Oct. 2022, Art. no. 105232.

[37] H. Tang, X. Ling, L. Li, L. Xiong, Y. Yao, and X. Huang, ‘‘One-
shot pruning of gated recurrent unit neural network by sensitiv-
ity for time-series prediction,’’ Neurocomputing, vol. 512, pp. 15–24,
Nov. 2022.

[38] D. M. Brandão Lent, M. P. Novaes, L. F. Carvalho, J. Lloret,
J. J. P. C. Rodrigues, and M. L. Proença, ‘‘A gated recurrent unit deep
learning model to detect and mitigate distributed denial of service and
portscan attacks,’’ IEEE Access, vol. 10, pp. 73229–73242, 2022.

[39] C. Tang, L. Xu, B. Yang, Y. Tang, and D. Zhao, ‘‘GRU-based interpretable
multivariate time series anomaly detection in industrial control system,’’
Comput. Secur., vol. 127, Apr. 2023, Art. no. 103094.

[40] X. Pu, H. Xiao, J.Wang,W. Pei, J. Yang, and J. Zhang, ‘‘A novel GRU-TCN
network based interactive behavior learning of multi-energy microgrid
under incomplete information,’’ Energy Rep., vol. 9, pp. 608–616,
Sep. 2023.

[41] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
‘‘Deep recurrent neural network for intrusion detection in SDN-based
networks,’’ in Proc. 4th IEEE Conf. Netw. Softwarization Workshops
(NetSoft), Jun. 2018, pp. 202–206.

[42] J. Kim, Y. Kim, V. Yegneswaran, P. Porras, S. Shin, and T. Park, ‘‘Extended
data plane architecture for in-network security services in software-defined
networks,’’ Comput. Secur., vol. 124, Jan. 2023, Art. no. 102976.

[43] A. Bhardwaj, R. Tyagi, N. Sharma, A. Khare, M. S. Punia, and V. K. Garg,
‘‘Network intrusion detection in software defined networking with
self-organized constraint-based intelligent learning framework,’’ Meas.,
Sensors, vol. 24, Dec. 2022, Art. no. 100580.

[44] S. Wang, J. F. Balarezo, K. G. Chavez, A. Al-Hourani, S. Kandeepan,
M. R. Asghar, and G. Russello, ‘‘Detecting flooding DDoS attacks in
software defined networks using supervised learning techniques,’’ Eng.
Sci. Technol., Int. J., vol. 35, Nov. 2022, Art. no. 101176.

[45] A. A. Wabi, I. Idris, O. M. Olaniyi, and J. A. Ojeniyi, ‘‘DDOS attack
detection in SDN: Method of attacks, detection techniques, challenges and
research gaps,’’ Comput. Secur., vol. 139, Apr. 2024, Art. no. 103652.

[46] S. Chaudhary and P. K. Mishra, ‘‘DDoS attacks in industrial IoT:
A survey,’’ Comput. Netw., vol. 236, Nov. 2023, Art. no. 110015.

[47] Z. Zhao, Z. Li, Z. Zhou, J. Yu, Z. Song, X. Xie, F. Zhang, and R. Zhang,
‘‘DDoS family: A novel perspective for massive types of DDoS attacks,’’
Comput. Secur., vol. 138, Mar. 2024, Art. no. 103663.

[48] S. Kaur, K. Kumar, N. Aggarwal, and G. Singh, ‘‘A comprehensive
survey of DDoS defense solutions in SDN: Taxonomy, research chal-
lenges, and future directions,’’ Comput. Secur., vol. 110, Nov. 2021,
Art. no. 102423.

[49] H. Ding, L. Chen, L. Dong, Z. Fu, and X. Cui, ‘‘Imbalanced data
classification: A KNN and generative adversarial networks-based hybrid
approach for intrusion detection,’’ Future Gener. Comput. Syst., vol. 131,
pp. 240–254, Jun. 2022.

[50] V. Kumar and D. Sinha, ‘‘Synthetic attack data generation model applying
generative adversarial network for intrusion detection,’’ Comput. Secur.,
vol. 125, Feb. 2023, Art. no. 103054.

[51] A.Mustapha, R. Khatoun, S. Zeadally, F. Chbib, A. Fadlallah,W. Fahs, and
A. El Attar, ‘‘Detecting DDoS attacks using adversarial neural network,’’
Comput. Secur., vol. 127, Apr. 2023, Art. no. 103117.

[52] T. Kim and W. Pak, ‘‘Early detection of network intrusions
using a GAN-based one-class classifier,’’ IEEE Access, vol. 10,
pp. 119357–119367, 2022.

[53] H. Wang, D. J. Miller, and G. Kesidis, ‘‘Anomaly detection of adversarial
examples using class-conditional generative adversarial networks,’’ Com-
put. Secur., vol. 124, Jan. 2023, Art. no. 102956.

[54] M. Hoh, A. Schöttl, H. Schaub, and F. Wenninger, ‘‘A generative model
for anomaly detection in time series data,’’ Proc. Comput. Sci., vol. 200,
pp. 629–637, Jan. 2022.

[55] Y. Li, X. Peng, Z. Wu, F. Yang, X. He, and Z. Li, ‘‘M3GAN: A masking
strategy with a mutable filter for multidimensional anomaly detection,’’
Knowl.-Based Syst., vol. 271, Jul. 2023, Art. no. 110585.

[56] M. Adiban, S. M. Siniscalchi, and G. Salvi, ‘‘A step-by-step training
method for multi generator GANs with application to anomaly detection
and cybersecurity,’’ Neurocomputing, vol. 537, pp. 296–308, Jun. 2023.

[57] X. Xu, H. Zhao, H. Liu, and H. Sun, ‘‘LSTM-GAN-XGBOOST based
anomaly detection algorithm for time series data,’’ in Proc. 11th Int. Conf.
Prognostics Syst. Health Manag., Oct. 2020, pp. 334–339.

[58] M. Ma, L. Han, and C. Zhou, ‘‘BTAD: A binary transformer deep neural
network model for anomaly detection in multivariate time series data,’’
Adv. Eng. Informat., vol. 56, Apr. 2023, Art. no. 101949.

[59] R. Yang, H. He, Y. Xu, B. Xin, Y. Wang, Y. Qu, and W. Zhang, ‘‘Efficient
intrusion detection toward IoT networks using cloud–edge collaboration,’’
Comput. Netw., vol. 228, Jun. 2023, Art. no. 109724.

[60] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948.

DANIEL M. BRANDÃO LENT received the
bachelor’s degree from the State University of
Londrina (UEL), in 2021, and the master’s degree,
in 2023. He is currently pursuing the Ph.D.
degree in electrical engineering studying computer
network security and deep learning. He is a
member of the Orion Research Group that studies
computer networks and data communication with
the Computer Science Department, UEL.

VITOR G. DA SILVA RUFFO received the B.Sc.
degree (summa cum laude) in computer science
from the State University of Londrina, Londrina,
Brazil, in 2023, where he is currently pursuing
the M.Sc. degree in computer science. Since 2021,
he has been a member of the ORION Research
Group, Computer Science Department, State Uni-
versity of Londrina. His research interests include
software-defined networking, network anomaly
detection, and deep learning.

VOLUME 12, 2024 70705



D. M. Brandão Lent et al.: Unsupervised Generative Adversarial Network System

LUIZ F. CARVALHO received the master’s degree
in computer science from the State University
of Londrina, in 2014, and the Ph.D. degree
in electrical engineering and telecommunications
from the State University of Campinas, in 2018. He
has experience in computer science with emphasis
in computer networks, is part of the research group
on Computer Networks and Data Communication
and a Professor at Federal Technology University
of Paraná. His main research interests are manage-

ment and security of computer networks and Software-defined.

JAIME LLORET (Senior Member, IEEE) received
the B.Sc. and M.Sc. degrees in physics, in 1997,
the B.Sc. and M.Sc. degrees in electronic engi-
neering, in 2003, and the Ph.D. (Dr.Ing.) degree
in telecommunication engineering, in 2006. Since
January 2017, he has been the Chair of the
IntegratedManagement Coastal Research Institute
(IGIC). He is currently a Full Professor with the
Polytechnic University of Valencia. He is the Head
of the ‘‘Active and collaborative techniques and

use of technologic resources in the education (EITACURTE)’’ Innovation
Group. He has led many local, regional, national, and European projects.
Since 2016, he has been the Spanish Researcher with the highest H-index in
the telecommunications journal list according to Clarivate Analytics ranking.
He has authored 14 books and has more than 650 research papers published
in national and international conferences, and international journals (more
than 375 with Clarivate Analytics JCR). He is a Senior Member of ACM.
He is a fellow of IARIA. He was an Internet Technical Committee Chair of
the IEEE Communications Society and Internet Society, from 2013 to 2015.
He was the Chair of the Working Group of the Standard IEEE 1907.1,
from 2013 to 2018. He has been the general chair (or the co-chair) of
75 international workshops and conferences. He has been the co-editor
of 54 conference proceedings and the guest editor of several international
books and journals. He is the Editor-in-Chief of the Ad Hoc and Sensor
Wireless Networks (with Clarivate Analytics JCR) and the international
journal Networks Protocols and Algorithms. Moreover, he has been included
in the world’s top 2% scientists according to the Stanford University List,
since 2020.

JOEL J. P. C. RODRIGUES (Fellow, IEEE) is cur-
rently with Amazonas State University, Manaus,
Brazil, the Leader of the Center for Intelligence,
Fecomcio/CE, Brazil, and a Full Professor with
Lusfona University, Lisbon, Portugal. He is the
Leader of the Next Generation Networks and
Applications (NetGNA) Research Group (CNPq).
He has authored or coauthored about 1250 papers
in refereed international journals and conferences,
three books, two patents, and one ITU-T Recom-

mendation. He is a Member Representative of the IEEE Communications
Society on the IEEE Biometrics Council. He is a member of the Internet
Society, a Senior Member of ACM, and a fellow of AAIA. He has been
awarded several outstanding leadership and outstanding service awards
by the IEEE Communications Society and several best papers awards.
He was the Technical Activities Committee Chair of the IEEE ComSoc
Latin America Region Board, the Past-Chair of the IEEE ComSoc Technical
Committee (TC) on eHealth and the TC on Communications Software,
a Steering Committee Member of the IEEE Life Sciences Technical
Community, and the Publications Co-Chair. He has been the General Chair
and the TPC Chair of many international conferences, including IEEE ICC,
IEEE GLOBECOM, IEEE HEALTHCOM, and IEEE LatinCom. He is
the President of the Scientific Council, ParkUrbis Covilh Science and
Technology Park. He was the Director for Conference Development of
the IEEE ComSoc Board of Governors. He is the Editor-in-Chief of the
International Journal of E-Health and Medical Communications. He is
an editorial board member of several high-reputed journals (mainly, from
IEEE). He was an IEEE Distinguished Lecturer. He is a Highly Cited
Researcher (Clarivate), No. 1 of the top scientists in computer science in
Brazil (Research.com).

MARIO LEMES PROENÇA JR. received the
M.Sc. degree in computer science from the Infor-
matics Institute, Federal University of Rio Grande
do Sul (UFRGS), in 1998, and the Ph.D. degree
in electrical engineering and telecommunications
from the State University of Campinas (UNI-
CAMP), in 2005. He is currently an Associate
Professor and the Leader of the Orion Research
Group that studies computer networks with the
Computer ScienceDepartment, State University of

Londrina (UEL), Brazil. He is a Master’s Supervisor in computer science
with the Computer Science Department, UEL. He is also a Ph.D. Supervisor
with the Department of Electrical Engineering, UEL. He has supervised
more than 150 Ph.D. and M.Sc. students and graduate and undergraduate
students in computer science. He has authored or coauthored over 120 papers
in refereed international journals and conferences, book chapters, and one
software register patent. His research interests include computer networks,
network operations, management and security, and IT governance.

70706 VOLUME 12, 2024


