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Planning as heuristic search is one of the most successful approaches to classical planning but 
unfortunately, it does not trivially extend to Generalized Planning (GP); GP aims to compute 
algorithmic solutions that are valid for a set of classical planning instances from a given domain, 
even if these instances differ in their number of objects, the initial and goal configuration of 
these objects and hence, in the number (and possible values) of the state variables. State-space 
search, as it is implemented by heuristic planners, becomes then impractical for GP. In this paper 
we adapt the planning as heuristic search paradigm to the generalization requirements of GP, and 
present the first native heuristic search approach to GP. First, the paper introduces a new pointer-

based solution space for GP that is independent of the number of classical planning instances 
in a GP problem and the size of those instances (i.e. the number of objects, state variables and 
their domain sizes). Second, the paper defines an upgraded version of our GP algorithm, called 
Best-First Generalized Planning (BFGP), that implements a best-first search in our pointer-based 
solution space for GP. Lastly, the paper defines a set of evaluation and heuristic functions for

BFGP that assess the structural complexity of the candidate GP solutions, as well as their fitness 
to a given input set of classical planning instances. The computation of these evaluation and 
heuristic functions does not require grounding states or actions in advance. Therefore our GP as 
heuristic search approach can handle large sets of state variables with large numerical domains, 
e.g. integers.

1. Introduction

Automated Planning (AP) is a model-based approach to the control of autonomous systems. In more detail, AP explores model-

based computations to generate sequences of actions (a.k.a. plans) that accomplish defined objectives across various domains. In 
AP, plans are typically generated by taking into account a model encompassing initial conditions, available actions, and the goals 
to be accomplished. There is a wide palette of different AP models that deal with partial state observability, non-deterministic state 
transitions, durative actions, or temporally extended goals [1,2]. Classical planning is the simplest AP model, which assumes that the 
system dynamics can be modeled as a finite, deterministic, and fully observable, transition system. In this kind of transition systems, 
classical planning studies the synthesis of sequences of actions that are able to transform an initial state into a state where a set of 
given goals is satisfied.
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Fig. 1. Three different classical planning problems from blocksworld. Each problem has a different number of blocks. The figure shows the blocks configuration for 
their initial state (left side) and goals (right side) of each problem. The leftmost problem is the Sussman anomaly problem.

We illustrate the notion of a classical planning problem using the blocksworld, a popular classical planning domain, which consists 
of a set of blocks, a table, and a robot hand [3]. The robot hand can be empty or holding one block, and a block can be on top 
of another block or on the table. Different classical planning problems can be defined in the blocksworld, by changing the number 
of blocks, and their initial or goal configuration. A well-known blocksworld problem, since it is small but non-trivial, is the Sussman 
anomaly [4] (the leftmost problem shown in Fig. 1); in the Sussman anomaly there are three blocks that we labeled as 𝑏0, 𝑏1, and 
𝑏2. Initially block 𝑏1 is on the table, 𝑏2 on top of 𝑏0, and 𝑏0 on the table, and the goal is to stack the three blocks such that 𝑏0 is on 
top of 𝑏1, which in turn is on top of 𝑏2. Fig. 1 shows three different classical planning problems from blocksworld. Each problem has 
a different number of blocks. The figure shows the blocks configuration for the initial state (left side) and goals (right side) of each 
problem. The leftmost classical planning problem corresponds to the Sussman anomaly problem.

Heuristic search is one of the most successful approaches to classical planning [5–8]. Winners of the International Planning Competi-

tion are often heuristic planners [9], and the workshop on Heuristics and Search for Domain-Independent Planning is one of the discussion 
forums with the longest tradition at the International Conference on Automated Planning and Scheduling (ICAPS), the major conference 
for research on AP. Briefly, the planning as heuristic search approach addresses the synthesis of sequential plans as a combinatorial 
search in the space of the states reachable from the initial state. This combinatorial search is usually implemented as a forward 
search, guided by heuristics that are automatically extracted from the representation of the planning problem. In the last decade a 
wide landscape of effective search algorithms, and heuristic functions, have been developed for classical planning [10–14]. Most of 
these heuristic search techniques are based on the notion of relaxed plan, a solution to a relaxation of the classical planning prob-

lem; the cost of the relaxed plan is an informative and cheap estimate of the actual cost-to-go for many different classical planning 
problems.

Generalized planning (GP) addresses the representation and computation of solutions that are valid for a set of classical planning 
instances from a given domain [15–24]. In the worst case each classical planning instance may require a completely different solution 
but in practice, many classical planning domains are known to have algorithmic solutions [25,26]. In other words, one can compute a 
single compact general solution that exploits some common structure of the different classical planning instances in a given domain. 
Generalized plans are then algorithmic solutions that supplement sequences of planning actions with control-flow. For example, 
a generalized plan that solves any classical planning instance from the blocksworld domain [3], no matter the actual number, or 
identity of the blocks, and no matter the initial and goal configuration of the blocks, can be compactly specified as follows: “put all 
the blocks on the table and then, in a proper order, move each block to its goal placement”.

Unfortunately search algorithms and heuristic functions from classical planning cannot be directly applied to GP. The computation 
of relaxed plans, as it is implemented by off-the-shelf heuristic planners, requires a pre-processing step for grounding states and 
actions. On the other hand, GP solutions must be able to generalize to (possibly infinite) sets of classical planning instances, with 
different sets of objects (i.e. state variables with different domain sizes and/or different number of state variables) as well as with 
different initial states and goal configuration for the objects. These particular generalization requirements of GP make it impractical 
to ground states and actions and hence, to directly apply the state-space search or the cost-to-go estimates of heuristic planners. 
What is more, the knowledge represented in a given set of classical planning instances may not be enough to specify an algorithmic 
solution that solves them all. For example, the classical planning instances from the blocksworld do not include representation features

for explicitly specifying whether “all blocks are on the table”, or for specifying “the proper order for moving the blocks to their goal 
placements”. A key challenge in GP is then, given a set of planning instances, to automatically discover the representation features 
required for computing a compact and general solution for those instances.

Because of the algorithmic kind of generalized plans, GP is a promising research direction to help bridge the current gap between 
automated planning and programming [27]. Unfortunately, most of the work on GP inherits the STRIPS representation, in which 
states are represented using exclusively Boolean variables (i.e. propositions that specify the properties and relations of the world 
objects), and state-transitions correspond to actions for object manipulations. In this work we introduce a novel pointer-based 
representation for GP problems and solutions, that allows us to adapt the planning as heuristic search paradigm to GP. Our pointer-

based representation is closer to common programming languages like Python, C++ or Java, while it also naturally applies to the

STRIPS problems traditionally addressed by the AP community. Given a GP problem that comprises a finite set of classical planning 
instances from a given domain, our GP as heuristic search approach implements a combinatorial search to synthesize a program that 
solves the full set of input instances. With respect to previous work, our heuristic search approach to GP introduces the following 
contributions:

1. A pointer-based representation for GP problems and solutions. Our representation formalism is closer to common programming 
2

languages, while it also applies to object-centered representations (like STRIPS) traditionally used in AP.
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2. A tractable solution-space for GP. We leverage the computational models of the Random-Access Machine [28] and the Intel x86

FLAGS register [29] to define a compact and general solution search space for GP. Remarkably our new search space for GP 
is independent of the number of input planning instances in a GP problem, and the size of these instances (i.e. the number of 
objects, state variables, and their domain sizes).

3. A heuristic search algorithm for GP with grounding-free evaluation/heuristic functions. We present the BFGP algorithm that imple-

ments a Best-First Search in our GP solution-space. We also define evaluation and heuristic functions for guiding BFGP. These 
functions assess the structural complexity of the candidate GP solutions, as well as their fitness to an input set of classical plan-

ning instances. Evaluating these functions does not require to ground states/actions in advance, so they apply to GP problems 
where state variables have large domains (e.g. integers).

4. A translator from the STRIPS fragment of PDDL to our pointer-based representation for GP. We automate the representation change 
from PDDL to pointer-based, and show several solutions to planning domains from the International Planning Competition [30]

which are validated on large random instances.

A preliminary description of our GP as heuristic search approach previously appeared as ICAPS and IJCAI conference papers [31,

32]. In this work we extend the seminal ideas presented in the conference papers, and provide a more exhaustive evaluation of our 
GP as heuristic search approach. Compared to the conference papers, the present paper includes the following novel material:

• We formalize the notion of pointers over the set of objects of a planning problem, and introduce a pointer-based formalization 
for states, state-constraints, and planning action schemes. We also introduce a pointer-based formalization for classical planning 
problems and their solutions. We show that our pointer-based formalization naturally applies to the STRIPS planning tasks 
traditionally addressed in AP.

• We introduce the notion of a partially specified planning program, that refers to the sketch of an algorithmic planning solution, 
and that enables a better formalization of our GP search algorithm and heuristics functions.

• We provide new theoretical results of our heuristic search algorithm for GP, that include termination, soundness, completeness, 
and complexity proofs. We also implemented new evaluation functions for guiding our GP as heuristic search approach, and 
extended the empirical evaluation, including more results at a wider landscape of planning domains, to characterize better the 
performance of our GP as heuristic search approach.

The paper is structured as follows: Section 2 reviews previous research work related to computing policies and generalization in 
planning, and it pinpoints the main differences with our approach. Section 3 provides the planning models we rely on in this work 
(namely the classical planning model and the GP model) and it also presents the formalisms we leverage for the representation of our 
GP solutions (i.e. planning programs and the Random Access Machine). Section 4 shows how to extend the classical planning model 
with a set of pointers over objects, and the corresponding primitive operations for manipulating these pointers. This extension allows 
us to define, in an agnostic manner, a set of features and a set of actions for computing GP solutions that can solve any instance from 
a given planning domain. Section 5 describes our GP as heuristic search approach; the section provides details on our solution space, 
evaluation functions, and heuristic search algorithm for GP. Section 6 presents the empirical evaluation of our GP as heuristic search

approach and comparisons with the classical planning compilation for GP, that serves as a baseline. Finally, Section 7 wraps-up our 
work and discusses open issues and future work.

2. Related work

Here we first review previous work on GP according to the following three dimensions: problem representation, solution representa-

tion, and computational approach. Then, we connect the research work on GP with other relevant areas in AI, such as program synthesis, 
deep learning, and (deep) reinforcement learning. Last, we discuss the features that distinguish our GP as heuristic search approach from 
the reviewed related work.

Regarding problem representation, there are two different approaches for the specification of the set of classical planning instances 
that are comprised in a GP problem. The explicit approach, that enumerates every classical planning instance in a GP problem [33], 
and the implicit approach, that defines the constraints that hold for the set of classical planning instances of a GP problem. The 
implicit approach is of interest because it can compactly specify infinite sets of classical planning instances (e.g. the infinite set 
of the classical planning instances that belong to the blocksworld domain) [34,35,20]. In addition to the set of classical planning 
instances, extra background knowledge can be specified with the aim of reducing the space of GP solutions. For instance, plan traces

demonstrating how to solve some of the input instances [36–38], the full state space [22], the particular subset of state features

that can be used for computing a generalized plan [39,40], negative examples that specify undesired behavior for the targeted GP 
solutions [41,22], or state invariants that any state in a given domain must satisfy [42].

With respect to solution representation, different formalisms appeared in the AP literature to represent solutions that are valid for 
a set of classical planning instances; sequential plans are used in conformant planning [43,44], conditional tree-like plans are used in 
contingent planning [45,2], or policies are used in FOND planning, as well as in MDP/POMDP planning [46]. In all these planning 
settings, a set of different classical planning instances, with different initial states, can be implicitly represented as a disjunctive 
formulae over the state variables. Different goals can also be considered by coding them as part of the state representation, e.g. using 
static state variables [33]. Further, the notion of feature in GP is related to the notion of state observation in the POMDP formalism, 
3

where observations depend on the current state and the action just taken [47]. With this regard it can be understood that GP solvers 
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compute, at the same time, a generalized plan and an observation function that is useful for compactly representing the generalized 
plan. The notion of feature in GP is also related to Qualitative numeric planning [48,49,20] which leverages propositions to abstract 
the value of numeric state variables.

The connection between AP and programming representations is not exclusive from our GP approach; programs of different 
kinds are proposed as an alternative to traditional planning action languages [50–52,27]. GOLOG programs have been also used 
to represent planning solutions, that could branch and loop, and that could contain non-deterministic parts [53]. Furthermore the 
semantics compatibility between GOLOG and PDDL [50] can be exploited and a PDDL planner can be embedded [54] to address 
the sub-problems that are combinatorial in nature. Since the early days of AI, hierarchies, LTL formulae, and policies, are also 
used to specify sketches of general planning solutions [55]. In the AP literature these solution sketches are often called domain-

specific control knowledge, since they are traditionally used to control the planning process, and they apply to the entire set of 
classical planning instances that belong to a given domain [56,57,36,37]. Last but not least, algorithmic solutions, represented 
either as lifted policies, finite automata, or as programs with control-flow constructs for branching and looping, are used to represent GP 
solutions [34,58,39,59–61,15,33,21,24].

Regarding the computation of generalized plans, there are two main approaches to GP. The top-down/offline approach considers the 
entire set of classical planning instances in a given GP problem as a single batch, and computes a solution plan that is valid for the 
full batch at once. A common approach for the offline computation of generalized plans is compiling the GP problem into another 
form of problem solving, and using an off-the-shelf solver to work out the compiled problem. For example, GP problems have been 
compiled into classical planning problems [61,33], conformant planning problems [39], LTL synthesis problems [62], FOND planning 
problems [63,20], MAXSAT problems [22], or ASP problems [64]. The compilation approach is appealing because it leverages 
the latest advances of other well-founded scientific communities, with robust and scalable solvers. In addition, the computational 
complexity of some of these tasks is theoretically characterized with respect to structural features of the input problems, which may 
provide insights on the difficulty of the addressed GP problem. A weak point of the compilation approach is however the size of 
the compiled problems to be solved; solvers are usually sensitive to the size of the input problems. On the other hand, the bottom-

up/online approach incrementally processes the set of classical planning instances in a GP problem [15,17,65]. Given a classical 
planning instance, a solution to that instance is computed and then, the solution is merged with solutions computed for the previous 
instances. The online approach is then appealing for handling GP problems that comprise large sets of classical planning instances. 
The main drawback of online approaches is dealing with the over-fitting produced by the individual processing of the different 
classical planning instances in a GP problem.

As noted by previous work on GP, the aims of GP are connected to program synthesis [33,20,62,31]. Program synthesis is a task 
traditionally studied by the computer-aided verification community [66], and that aims to compute programs such that they satisfy a 
given correctness specification [67–69]. Program synthesis follows the functional programming paradigm. This means that a program 
is a function composition, where each function in the composition maps its input parameters into a single output, and where looping 
is implemented with recursion. Work on program synthesis is classified according to how the correctness specification of a program 
is formulated. The programming by example (PbE) paradigm specifies the desired program behavior with a finite and non-empty set of 
ground input/output examples. This approach is related to the explicit representation of GP problems; a ground input/output example 
can be understood as the initial/goal state pair that represents a classical planning instance, and the instruction set of the functional 
programming language can be understood as the available actions for transforming an initial state into a goal state. Program synthesis 
also allows the implicit representation of the input correctness specifications, e.g. using fist-order formulae specified in SMTLIB,1

the formal language for SAT-Modulo Theories (SMT) [70]. The mainstream approach for program synthesis is to specify a formal 
grammar that incrementally enumerates the space of possible programs, and to leverage the satisfiability machinery of SMT solvers 
to validate whether a candidate program is actually a solution [71]. With this regard, work on theorem proving is also related to 
program synthesis, specially since SMT solvers allow the representation and satisfaction of first-order logic formulae [72]. Lastly, 
another popular trend in program synthesis is Programming by sketches that addresses program synthesis in the particular setting 
where a partially specified solution is provided as input [73].

Besides computational methods for formal verification and logic satisfaction, optimization methods (that are predominant in 
Machine Learning [74]) have also been applied to the computation of planning solutions that generalize. For instance, off-the-shelf 
Deep Learning (DL) tools, have been successfully applied to the computation of generalized policies for classical and probabilistic 
planning domains [75–77]. Generalized policies are a powerful solution representation formalism whose applicability goes beyond 
classical planning; generalized policies can represent planning solutions that deal with non-deterministic actions [78]. Further, 
generalized policies can represent solutions to planning problems whose aim is not the satisfaction of a given goal condition but the 
optimization of a given utility function [79]. The aims of GP are also related to Reinforcement Learning (RL) [80]; while the cited 
DL approaches can be viewed as off-line optimization approaches to GP, the RL paradigm can be viewed as an online optimization 
approach to GP. RL methods incrementally compute policies, by iteratively addressing a set of sequential decision-making episodes. 
In RL learning experience is however not given beforehand (learning experience is collected by the autonomous exploration of the 
state space), and RL assumes that there is an explicit notion of reward function (which helps to guide exploration towards the most 
promising portions of the state-space). Note that DL and DRL approaches learn policies, without requiring a symbolic representation 
of the state and the action space. This means that it is possible to compute (deep) policies that generalize from raw sensor data 
(e.g. sequences of images) [81,82]. The main disadvantage of computing solutions represented as deep policies is that they are black-
4
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box models that lack transparency and explanation capacity, which makes it difficult to interpret the produced solutions. This is a 
strong requirement in application areas that require humans in the loop, such as health, law, or defense [83].

With regard to the reviewed related work, our GP as heuristic planning approach is framed as follows:

• Numeric state variables. Previous work on GP mainly followed the object-centered STRIPS representation. Addressing program-

ming tasks with such representation is unpractical since it may require to encode all values in the domain of a state variable as 
objects. Other approaches, such as Qualitative Numeric Planning (QNP) [48,49], handle large numeric state variables qualita-

tively with propositions to denote whether a variable is equal to zero. In this work we handle GP problems with integer state 
variables, which allow to naturally address diverse programming tasks as if they were GP problems.

• Explicit problem representation. In this work, a GP problem comprises the explicit enumeration of a finite set of classical planning 
instances to be solved. Interestingly our experimental results show that, in several domains, solving a small set of a few randomly 
generated classical planning instances, is enough to obtain a solution that generalizes to the infinite set of problems that belong 
to a given domain.

• No background knowledge. Our approach does not require any additional help such as state invariants, plans/traces/demonstrations, 
negative examples, or the specification of the subset of features to appear in the generalized plans. With this regard, we leverage 
the computational models of the Random-Access Machine [28] and the Intel x86 FLAGS register [29] to produce an agnostic set 
of state features that is shared for the different classical planning instances of a given domain (no matter their actual number of 
objects).

• Generalized plans represented as structured programs. Structured programming provides a white-box modeling paradigm that is 
widely popular. In this work we focus on generalized plans represented as structured programs, with control flow constructs for 
branching and looping the program execution flow. The application of a generalized plan on a particular classical planning in-

stance is then a deterministic matching-free process, which makes it easier to define effective evaluation and heuristic functions. 
Further, the asymptotic complexity of structured programs can be assessed from their structure, which is helpful to establish 
preferences on the possible generalized plans.

• Off-line satisfiability approach. This work follows an off-line approach to GP that aims to compute, at once, a generalized plan that 
solves all the classical planning instances that are given as input. Because many heuristic search algorithms are easily extended 
to online versions, we believe that our GP as heuristic search approach is a stepping stone towards online approaches that can 
deal with larger sets of classical planning instances.

• Native heuristic search for GP. By native heuristic search, we mean that we defined a search space, evaluation/heuristic functions, 
and a search algorithm, that are specially targeted to GP. Our GP as heuristic search approach is related to an existing classical 
planning compilation for GP [33]. Our approach overcomes however the main drawback of the compilation whose search space 
grows exponentially with the number and domain size of the state variables; in practice, this drawback limited the applicability 
of the compilation to planning instances of small size since the performance of off-the-shelf classical planners is sensitive to 
the size of the input instances. Our experiments support this claim, and show that our BFGP algorithm significantly reduces 
the CPU-time required to compute and validate generalized plans, compared to the classical planning compilation approach to 
GP [33].

3. Background

This section introduces the necessary notation to formalize our GP as heuristic search approach. First, the section formalizes the 
classical planning model and the generalized planning model. Then the section formalizes planning programs, our formalism for the 
compact representation of planning solutions. Lastly the section formalizes the Random Access Machine, given that our GP as heuristic 
planning approach borrows several mechanisms from this abstract computation machine.

3.1. Classical planning

Our formalization of the classical planning model is similar to the abstract planning framework called Finite Functional Planning, 
introduced for the theoretical analysis of planning languages [84]. Let 𝑋 be a set of state variables, where each variable 𝑥 ∈𝑋 has 
a domain 𝐷𝑥. A proposition is a state variable 𝑥 ∈𝑋 with domain 𝐷𝑥 = {0, 1}, where 𝑥 = 0 and 𝑥 = 1 are interpreted as 𝑓𝑎𝑙𝑠𝑒 and 
𝑡𝑟𝑢𝑒 assignments, respectively. A state 𝑠 is a total assignment of values to the set of state variables, i.e. 𝑠 = ⟨𝑥0 = 𝑣0,… , 𝑥𝑁 = 𝑣𝑁 ⟩, 
such that ∀0≤𝑖≤𝑁𝑣𝑖 ∈ 𝐷𝑥𝑖

and where 𝑁 is the number of state variables in X. For a subset of the state variables 𝑋′ ⊆ 𝑋, let 
𝐷[𝑋′] = ×𝑥∈𝑋′𝐷𝑥 denote its joint domain. The state space is denoted as 𝑆 = 𝐷[𝑋]. Given a state 𝑠 ∈ 𝑆 , and a subset of variables 
𝑋′ ⊆𝑋, let 𝑠|𝑋′ = ⟨𝑥𝑖 = 𝑣𝑖⟩𝑥𝑖∈𝑋′ be the projection of 𝑠 onto 𝑋′ i.e. the partial state that is defined by the values assigned by 𝑠 to the 
subset of state variables in 𝑋′. The projection of 𝑠 onto 𝑋′ defines the subset {𝑠 ∣ 𝑠 ∈ 𝑆, 𝑠|𝑋′ ⊆ 𝑠} of the states that are consistent with 
the corresponding partial state. Last, let us define a state-constraint as a Boolean function 𝐶 ∶ 𝑆 → {0, 1} over the state variables, that 
implicitly defines the subset of states 𝑆𝐶 ⊆ 𝑆 that are consistent with that constraint.

Let 𝐴 be a set of deterministic actions such that each action 𝑎 ∈ 𝐴 is characterized by two functions; an applicability function

𝜌𝑎 ∶ 𝑆 → {0, 1} and a successor function 𝜃𝑎 ∶ 𝑆 → 𝑆 . An action 𝑎 ∈ 𝐴 is applicable in a given state 𝑠 ∈ 𝑆 iff 𝜌𝑎(𝑠) = 1. The execution 
of an applicable action 𝑎 ∈𝐴, in a state 𝑠 ∈ 𝑆 results in the successor state 𝑠′ = 𝜃𝑎(𝑠). Please note that this definition of deterministic 
actions generalizes actions with conditional effects [85], common in GP since their state-dependent outcomes allow the adaptation of 
5
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A classical planning instance is a tuple 𝑃 = ⟨𝑋,𝐴, 𝐼,𝐺⟩, where 𝑋 is a set of state variables, 𝐴 is a set of actions, 𝐼 ∈ 𝑆 is an 
initial state, and 𝐺 is a constraint on the value of the state variables that induces the subset of goal states 𝑆𝐺 = {𝑠 ∣ 𝑠 ⊨ 𝐺, 𝑠 ∈
𝑆}. Given a classical planning instance 𝑃 , a plan is an action sequence 𝜋 = ⟨𝑎1,… , 𝑎𝑚⟩ whose execution induces a trajectory 𝜏 =⟨𝑠0, 𝑎1, 𝑠1,… , 𝑎𝑚, 𝑠𝑚⟩ such that, for each 1 ≤ 𝑖 ≤ 𝑚, 𝑎𝑖 is applicable in 𝑠𝑖−1 and results in the successor 𝑠𝑖 = 𝜃𝑎𝑖 (𝑠𝑖−1). A plan 𝜋 solves

𝑃 if and only if the execution of 𝜋 in 𝑠0, where 𝑠0 = 𝐼 , finishes in a goal state, i.e. 𝑠𝑚 ∈ 𝑆𝐺 .

Planning languages, such as PDDL [86], can compactly represent the infinite set of classical planning instances of a given domain 
using a finite set of functions and action schemes. Given a finite set of objects Ω, and a finite set of functions Φ defined over that set 
of objects, we assume that each state variable 𝑥 ∈𝑋 stands for a function interpretation 𝑥 ≡ 𝜙(⃖⃗𝑜), where 𝜙 ∈ Φ is a function with 
arity 𝑎𝑟(𝜙), and ⃖⃗𝑜 ∈ Ω𝑎𝑟(𝜙) is a vector of objects comprised in the Cartesian product space of Ω𝑎𝑟(𝜙); objects and function signatures 
can by typed so the number of possible function interpretations is constrained. Functions in Φ can be Boolean e.g. to represent PDDL 
predicates, or numeric e.g. to represent PDDL numeric fluents. Likewise, given a set of action schemes Ξ, we assume that each action 
𝑎 ∈ 𝐴 is built from an action schema 𝜉 ∈ Ξ by substituting each variable in the action scheme with an object from Ω. An action 
scheme 𝜉 ∈ Ξ is a tuple 𝜉 = ⟨𝑛𝑎𝑚𝑒(𝜉), 𝑝𝑎𝑟(𝜉), 𝑝𝑟𝑒(𝜉), eff (𝜉)⟩ where:

• 𝑛𝑎𝑚𝑒(𝜉) is the identifier of the action schema,

• 𝑝𝑎𝑟(𝜉) is the list of free variables, again these variables can be typed so they can only be substituted by objects of the same type,

• 𝑝𝑟𝑒(𝜉) is a conjunction of Boolean formulae, where each formula is a logical evaluation, i.e. ==, <, >, ≤, ≥, between two 
function symbols 𝜙1, 𝜙2 ∈ Φ defined over 𝑝𝑎𝑟(𝜉), or a function symbol 𝜙 also defined over 𝑝𝑎𝑟(𝜉) and a value 𝑣, that compactly 
represents the subset of states where the corresponding ground actions are applicable, and

• eff (𝜉) is a set of logical assignments, where each function symbol 𝜙 gets the value either from another function symbol 𝜙′ (both 
defined over 𝑝𝑎𝑟(𝜉)) or from a constant value 𝑣, that compactly represents the updates of the state variables caused by the 
application of the corresponding ground actions.

3.2. Generalized planning

Generalized planning is an umbrella term that refers to more general notions of planning [21]. This work builds on top of the 
inductive formalism for GP, where a GP problem is a finite set of classical planning instances that belong to the same domain [19,62].

Definition 1 (GP problem). A GP problem is a non-empty set  = {𝑃1, … , 𝑃𝑇 } of 𝑇 classical planning instances from a given domain 
.

Each instance 𝑃𝑡 ∈  , 1 ≤ 𝑡 ≤ 𝑇 , may actually differ in the set of state variables 𝑋𝑡, actions 𝐴𝑡, initial state 𝐼𝑡, and goals 𝐺𝑡, but 
the corresponding set of state variables 𝑋𝑡 is induced from the common set of functions Φ. Likewise, the set of actions 𝐴𝑡 is induced 
from the common set of action schemes Ξ, when grounded over the particular set of objects Ω𝑡 of the instance.

The aim of GP is to compute algorithmic planning solutions, a.k.a. generalized plans, which work for the full input set of planning 
problems. There are diverse representations for GP solutions, ranging from generalized polices [34,58], to finite state controllers [39,59], 
formal grammars [60], hierarchies [87,61], or programs [15,33]. Each representation has its own expressiveness capacity, as well 
as its own validation complexity and computational complexity. In spite of this representation diversity, we can define a common 
condition under which a generalized plan is considered a solution to a GP problem.

Definition 2 (GP solution). A generalized plan Π solves a GP problem  = {𝑃1, … , 𝑃𝑇 } iff, for every classical planning instance 𝑃𝑡 ∈  , 
1 ≤ 𝑡 ≤ 𝑇 , the execution of Π on 𝑃𝑡, denoted as 𝑒𝑥𝑒𝑐(Π, 𝑃𝑡) = ⟨𝑎1,… , 𝑎𝑚⟩, induces a classical plan that solves 𝑃𝑡.

Example. Fig. 2 shows the initial state and goal of two classical planning instances, 𝑃1 = ⟨𝑋,𝐴, 𝐼1,𝐺1⟩ and 𝑃2 = ⟨𝑋,𝐴, 𝐼2,𝐺2⟩, for 
sorting two six-element lists. In this particular example the two instances share the same set of state variables 𝑋 = {𝑥𝑖 ≡ 𝑣𝑒𝑐𝑡𝑜𝑟(𝑜𝑖)|0 ≤
𝑖 ≤ 5} that is built with the one-arity function Φ = {𝑣𝑒𝑐𝑡𝑜𝑟} and the set of objects Ω1 = Ω2 = {𝑜0, … , 𝑜5}, and where ∀𝑥∈𝑋𝐷𝑥 = 𝐍0. 
The two classical planning instances also share the set of deterministic actions 𝐴, with 6×52 actions 𝑠𝑤𝑎𝑝(𝑜𝑖, 𝑜𝑗 ), that swap the content 
of two list positions 𝑖 < 𝑗, and that are induced from the single action scheme Ξ = {𝑠𝑤𝑎𝑝(𝑥, 𝑦)}. An example solution plan for 𝑃1 is 
𝜋1 = ⟨𝑠𝑤𝑎𝑝(𝑜0, 𝑜5), 𝑠𝑤𝑎𝑝(𝑜1, 𝑜2), 𝑠𝑤𝑎𝑝(𝑜1, 𝑜3)⟩ while 𝜋2 = ⟨𝑠𝑤𝑎𝑝(𝑜0, 𝑜2), 𝑠𝑤𝑎𝑝(𝑜3, 𝑜5)⟩ is an example of a sequential plan that solves 
𝑃2. Note that  = {𝑃1, 𝑃2} is a GP problem since it comprises two classical planning instances that are built using the same set of 
functions Φ and action schemes Ξ. Fig. 3 shows an example of a generalized plan that solves  , and that is represented as a sorting 
network [88]. The sorting network is illustrated using two different types of items (namely the wires and the comparators). For each 
state variable, there is a wire that carries the value of that variable from left to right in the network. On the other hand, comparators 
connect two different wires, corresponding to a pair of variables (𝑥𝑖, 𝑥𝑗 ), such that 𝑖 < 𝑗. When a pair of values traveling through 
a pair of wires (𝑖, 𝑗), encounters a comparator, then the comparator applies the action 𝑠𝑤𝑎𝑝(𝑜𝑖, 𝑜𝑗 ) iff 𝑣𝑒𝑐𝑡𝑜𝑟(𝑜𝑖) ≥ 𝑣𝑒𝑐𝑡𝑜𝑟(𝑜𝑗 ), which 
in turn is 𝑥𝑖 ≥ 𝑥𝑗 . The sorting network of Fig. 3 can actually solve any instance for sorting the content of any six-element list, no 
matter its initial content. This solution is however not valid for sorting lists with different lengths. In this paper we will show how to 
represent, and compute, planning solutions that leverage indirect memory addressing to generalize no matter the number of objects, 
6

and corresponding state variables.
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Fig. 2. Example of two classical planning instances for sorting the content of two six-element lists by swapping the list elements.

Fig. 3. Example of a generalized plan, represented as a sorting network that solves any classical planning instance for sorting the content of a six-element list, no matter 
its initial content.

3.3. Planning programs

In this work we represent planning solutions as planning programs [33]. Unlike sequential plans, planning programs include a control 
flow construct which allows the compact representation of solutions to classical and GP problems. Formally a planning program Π is 
a sequence of 𝑛 instructions, where each instruction Π[𝑖] is associated with a program line 0 ≤ 𝑖 < 𝑛, and it is either:

• A planning action Π[𝑖] ∈𝐴.

• A goto instruction Π[𝑖] = 𝗀𝗈(𝑖′, !𝑦), where 𝑖′ is a program line 0 ≤ 𝑖′ < 𝑖 or 𝑖 + 1 < 𝑖′ < 𝑛, and 𝑦 is a proposition.

• A termination instruction Π[𝑖] = 𝖾𝗇𝖽. The last instruction of a planning program is always a termination instruction, i.e. Π[𝑛 −1] =
𝖾𝗇𝖽.

The execution model for a planning program is a program state (𝑠, 𝑖), i.e. a pair of a planning state 𝑠 ∈ 𝑆 and program counter 
0 ≤ 𝑖 < 𝑛. Given a program state (𝑠, 𝑖), the execution of a programmed instruction Π[𝑖] is defined as:

• If Π[𝑖] ∈𝐴, the new program state is (𝑠′, 𝑖 + 1), where 𝑠′ = 𝜃Π[𝑖](𝑠) is the successor when applying Π[𝑖] in 𝑠.
• If Π[𝑖] = 𝗀𝗈(𝑖′, !𝑦), the new program state is (𝑠, 𝑖 + 1) if 𝑦 holds in 𝑠, and (𝑠, 𝑖′) otherwise.2 Proposition 𝑦 can be the result of an 

arbitrary expression on state variables, e.g. a state feature [89].

• If Π[𝑖] = 𝖾𝗇𝖽, program execution terminates.

To execute a planning program Π on a classical planning instance 𝑃 = ⟨𝑋,𝐴, 𝐼,𝐺⟩, the initial program state is set to (𝐼, 0), i.e. the 
initial state of 𝑃 and the first program line of Π. A program Π solves 𝑃 iff the execution terminates in a program state (𝑠, 𝑖) that 
satisfies the goal condition, i.e. Π[𝑖] = 𝖾𝗇𝖽 and 𝑠 ∈ 𝑆𝐺 . Otherwise the execution of the program fails. If a planning program fails to 
solve the planning instance, the only possible sources of failure are:

1. Inapplicable program, i.e. executing action Π[𝑖] ∈𝐴 fails in program state (𝑠, 𝑖) since Π[𝑖] is not applicable in 𝑠.
2. Incorrect program, i.e. execution terminates in a program state (𝑠, 𝑖) that does not satisfy the goal condition, i.e. (Π[𝑖] = 𝖾𝗇𝖽) ∧(𝑠 ∉

𝑆𝐺).
3. Infinite program, i.e. execution enters into an infinite loop that never reaches an 𝖾𝗇𝖽 instruction.

In this work we model instructions Π[𝑖] ∈𝐴 as if they were always applicable but that their effects only update the current state 
iff the preconditions of the action hold in the current planning state. Formally, when executing Π[𝑖] in (𝑠, 𝑖), the new program state 
is (𝑠′, 𝑖 + 1) iff Π[𝑖] is applicable, otherwise it is (𝑠, 𝑖 + 1). Therefore, in this work the execution of a program on a classical planning 
instance will never return an inapplicable program, and only incorrect or infinite program are possible sources of failure. This particular 
action modeling is common in reinforcement learning [80], and in conformant planning [44], because it delivers compact solutions that 
apply to sets of different problems (typically with different initial states).

2 We adopt the convention of jumping to line 𝑖′ whenever 𝑦 is false, following the semantics of JMPZ instructions in the Random-Access Machine that jump when a 
7

register equals zero.
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3.4. The random-access machine

The Random-Access Machine (RAM) is an abstract computation machine, in the class of the register machines, that is polynomially 
equivalent to a Turing machine [90]. The RAM enhances a multiple-register counter machine [91] with indirect memory addressing; 
indirect memory addressing is useful for coding RAM programs that access an unbounded number of registers, no matter how many 
there are. A register in a RAM machine is then a memory location with both an address i.e. a unique identifier that works as a natural 
number (that we denote as 𝑟), and a content i.e. a single natural number (that we denote as [𝑟]).

A RAM program Π is a finite sequence of 𝑛 instructions, where each program instruction Π[𝑖], is associated with a program line

0 ≤ 𝑖 < 𝑛. The execution of a RAM program starts at its first program instruction Π[0]. The execution of program instruction Π[𝑖]
updates the RAM registers and the current program line. Diverse base instructions sets, that are Turing complete, can be defined. We 
focus on the three base sets of RAM instructions:

• Base1. {𝚒𝚗𝚌(𝑟), 𝚍𝚎𝚌(𝑟), 𝚓𝚖𝚙𝚣(𝑟, 𝑖), 𝚑𝚊𝚕𝚝() | 𝑟 ∈ 𝑅}. Respectively, these instructions increment/decrement a register by one, jump 
to program line 0 ≤ 𝑖 < 𝑛 if the content of a register 𝑟 is zero (i.e. if [𝑟] == 0), or end the program execution.

• Base2. {𝚒𝚗𝚌(𝑟1), 𝚌𝚕𝚎𝚊𝚛(𝑟1), 𝚓𝚖𝚙𝚣(𝑟1, 𝑟2, 𝑖), 𝚑𝚊𝚕𝚝() | 𝑟1, 𝑟2 ∈ 𝑅}. In this set the value of a register cannot be decremented but 
instead, it can be set to zero with a clear instruction. In addition, jump instructions go to program line 0 ≤ 𝑖 < 𝑛 if the content of 
two given registers is the same (i.e. if [𝑟1] == [𝑟2]).

• Base3. {𝚒𝚗𝚌(𝑟1), 𝚜𝚎𝚝(𝑟1, 𝑟2), 𝚓𝚖𝚙𝚣(𝑟1, 𝑟2, 𝑖), 𝚑𝚊𝚕𝚝() | 𝑟1, 𝑟2 ∈𝑅}. This set comprises no instruction to decrement, or clear, a register 
but instead, it includes an instruction to set a register to the value of another register.

The three base sets are equivalent [90]; one can build the instructions of one base set with instructions of another base set. Further, 
the expansive instruction set (that contains the instructions of Base 1,2 and 3) does not alter the expressiveness of the individual Base 
sets, since each of them already is Turing complete. The choice of the set of RAM instructions depends on the convenience of the 
programmer for the problem being addressed.

4. Planning with a random-access machine

The synthesis of effective features for a planning domain is a challenging research question investigated since the early days of 
AP [92]. Furthermore, the set of ground actions for the different problems of a given domain, is usually different since it depends on 
the number of objects in the problem; e.g. back to the sorting example illustrated in Figs. 2 and 3, classical planning problems for 
sorting a vector of length six induced 6×52 𝑠𝑤𝑎𝑝(𝑜𝑖, 𝑜𝑗 ), 𝑖 < 𝑗 actions, while instances for sorting a vector of length seven would induce 
a set of 7×62 𝑠𝑤𝑎𝑝(𝑜𝑖, 𝑜𝑗 ) actions. This section extends the classical planning model with a set of pointers, defined over the objects of 
a classical planning instance, and with the primitive instructions for manipulating those pointers; the extension allows the agnostic 
definition of a set of state features, and a set of actions, that are shared by the different instances of a classical planning domain (no 
matter their actual number of objects).

First, the section shows how to compactly represent a transition system using pointers. Then the section shows that the pointer-

based representation naturally applies to the STRIPS formalism. Last, the section formalizes our extension of the classical planning 
model with a RAM machine, that produces the aimed set of state features and actions that are shared by all the instances of a 
classical planning domain. Those sets of shared state features and actions are later leveraged (at Section 5) for the computation of 
GP solutions, that generalize no matter the number of world objects.

4.1. Representing transition systems with pointers over objects

A transition system can be graphically represented as a directed graph and hence formalized as a pair (𝑆, →), where 𝑆 is a set of 
states, and → denotes a relation of state transitions 𝑆 × 𝑆 . Transition systems differ from finite automata since the sets of states and 
transitions are not necessarily finite. Further a transition system does not necessary define a start/initial state or a subset of final/goal

states. Transitions between states may be labeled,3 and the same label may appear on more than one transition. A prominent 
example are transition systems that correspond to a classical planning problem [1,2], where state transitions are labeled with actions

(i.e. between two states 𝑠, 𝑠′ ∈ 𝑆 , there exists a transition (𝑠 
𝑎
←←←←←←→ 𝑠′) iff the execution of action 𝑎 in state 𝑠 produces the state 𝑠′). Given 

a state 𝑠 and an action label 𝑎, if there exists only a single tuple (𝑠, 𝑎, 𝑠′) in → then the transition is said to be deterministic. In this 
work we restrict ourselves to deterministic transitions systems, i.e. transition systems such that all their transitions are deterministic.

States. WLOG we assume that the states of a transition system are factored; given a set of world objects Ω, a state is factored into 
a finite set of variables 𝑋 s.t. each variable 𝑥 ∈𝑋 either represents a property of a world object, or a relation over 𝑘 world objects. 
Formally 𝑥 ≡ 𝜙(𝑜1, … , 𝑜𝑘), where 𝜙 is a 𝑘-ary function in ℕ, and {𝑜𝑖}𝑘1 are objects in Ω. For instance in the example illustrated 
by Figs. 2 and 3, given the one-arity function 𝑣𝑒𝑐𝑡𝑜𝑟 and the six-objects set Ω = {𝑜0, 𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5}, each state variable 𝑥𝑖 ∈ 𝑋 is 
defined as 𝑥𝑖 ≡ 𝑣𝑒𝑐𝑡𝑜𝑟(𝑜𝑖).
8

3 When the set of labels is a singleton, the transition system is essentially unlabeled, so the simpler definition that omits labels applies.
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Bool constraint_all_sorted () {

For (Pointer z:=1; z<|Ω|; z++) {

If ( vector(z-1) > vector(z) )

Return False;

}

Return True;

}

Fig. 4. Boolean function constraint_all_sorted that checks whether the vector of state variables is sorted in increasing order. The constraint is implemented 
leveraging the single pointer 𝑧 over the objects in Ω; 𝑣𝑒𝑐𝑡𝑜𝑟(𝑧) is interpreted as 𝑣𝑒𝑐𝑡𝑜𝑟(𝑜𝑧) ≡ 𝑥𝑧 ∈𝑋.

Bool schema_swap (Pointer z1, Pointer z2) {

If (z1>=0 and z2>=0 and z1<|Ω| and z2<|Ω| and z1<z2){

Variable aux;

aux:= vector(z1);

vector(z1):= vector(z2);

vector(z2):= aux;

Return True;

}

Return False;

}

Fig. 5. Pointer-based representation of the swap action schema. When applicable, the swap action schema exchanges the value of the state variables indexed by its 
two parameters, the pointers 𝑧1 and 𝑧2 .

Definition 3 (Pointer). Given a set of objects Ω, with |Ω| denoting the number of objects in the set, we define a pointer as a 
finite-domain variable 𝑧 whose domain is 𝐷𝑧 = [0, … , |Ω| − 1].

Pointers and state constraints. Pointers are variables for indexing the objects of a transition system. In combination with function 
symbols, pointers are useful to define state constraints that produce not only compact, but general representations of a possibly infinite 
set of states. By general we mean that a constraint represents a set of states that share some common structure, no matter the 
actual number of objects. Fig. 4 shows the Boolean function constraint_all_sorted that implements a global constraint for 
checking whether the content of the vector of state variables is sorted in increasing order; the constraint_all_sorted function 
is procedurally defined, leveraging a single pointer 𝑧, and it applies to any number of objects, and to any domain size of the 
corresponding state variables.

Action schemes. Action schemes compactly specify a (possibly infinite) set of transitions that share a common structure; action 
schemes generalize over any number, or identity of world objects. They do not refer to specific objects but instead, they leverage 
parameters to indirectly refer to the different world objects. Next we show that pointers over objects enable the compact and general 
definition of (possibly infinite) sets of state transitions via action schemes.

Definition 4 (Action schema with pointers). Given a set of 𝑋 state variables, an action schema with pointers is a tuple ⟨name, params, 
pre, eff ⟩ where:

• name is the label that uniquely identifies the action schema.

• params is a finite set of pointers 𝑍 defined over the set Ω of objects.

• pre is a state constraint where state variables are indirectly addressed via the function symbols and the pointers in params, i.e. 
𝑥 ≡ 𝜙(⃖⃗𝑧) such that 𝜙 ∈ Φ and ⃖⃗𝑧 ∈ 𝑍𝑎𝑟(𝜙). The pre state constraint implicitly represents the subset of states where the action 
schema is applicable.

• eff is a partial assignment of the state variables where a subset of the state variables is indirectly addressed via the function 
symbols and the pointers in params. The eff partial assignment implicitly represents the successor state that results from the 
execution of the action schema at a given state.

Fig. 5 illustrates our pointer-based definition of an action schema; when applicable, the swap action schema exchanges the value 
of the state variables indexed by its two parameters (the pointers 𝑧1 and 𝑧2). The state variables are global, so they can be accessed 
from any action schema. The swap action schema is succinct, because it compactly defines an infinite set of different state transitions 
that share a common structure. The swap action schema is also general, because it applies to any sorting instance, no matter the 
length of the vector of state variables or the domain size of those variables. What is more, the execution of the swap action schema 
is a deterministic matching-free process since the input pointers do always index a single object in Ω.

4.2. Representing STRIPS problems with pointers over objects

Since the early 1970s, the STRIPS formalism is widely used for research in automated planning [93]. Even today, STRIPS is 
an essential fragment of PDDL [86], the input language of the International Planning Competition, and most planners support the
9

STRIPS representation. Here we show that our pointer-based representation naturally applies to object-centered classical planning 
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Fig. 6. Example of a three-block state from the blocksworld (left), and its corresponding Boolean functions representation (right).

formalisms, such as STRIPS. In fact, our pointer-based representation can be understood as an instantiation of F-STRIPS [94], where 
the single level of indirection of pointers over objects is enough to represent STRIPS problems with constant memory access.

STRIPS compactly represents the set of states of a transition system using a finite set of objects, and a finite set of first-order 
logic (FOL) predicates, that indicate properties of the objects and their relations. Likewise, STRIPS compactly represents the space 
of possible state transitions using FOL operators, which are defined as a tuple 𝑜𝑝 = ⟨𝑛𝑎𝑚𝑒(𝑜𝑝), 𝑎𝑟𝑔𝑠(𝑜𝑝), 𝑝𝑟𝑒(𝑜𝑝), eff −(𝑜𝑝), eff +(𝑜𝑝)⟩
where, 𝑛𝑎𝑚𝑒(𝑜𝑝) is a unique identifier of the operator, 𝑎𝑟𝑔𝑠(𝑜𝑝) is a set of variable symbols specifying the arguments of the operator, 
and 𝑝𝑟𝑒(𝑜𝑝), eff −(𝑜𝑝), eff +(𝑜𝑝) are sets of FOL predicates, with variables exclusively taken from 𝑎𝑟𝑔𝑠(𝑜𝑝), and that respectively 
specify the preconditions, negative effects and positive effects. The representation of a STRIPS problem is completed by specifying an 
initial state, that defines the initial situation of the objects, and the target set of goal states, typically specified as a partial state.

State representation. When applying our pointer-based formalism to a STRIPS problem, each state variable 𝑥 ∈𝑋 has domain 
𝐷𝑥 = {0, 1}, and it is built as a FOL STRIPS predicate 𝜙 ∈Φ grounded by a vector of objects ⃖⃗𝑜 ∈Ω𝑎𝑟(𝜙). Fig. 6 shows the representation 
of a blocksworld state using the STRIPS formalism, as well as using our formalism. In this state there are three blocks, Ω = {𝑏0, 𝑏1, 𝑏2}, 
that are stacked in a single tower. Predicates clear(?x), holding(?x), and ontable(?x), are encoded as three different Boolean 
functions that map each vector of objects to either 0 or 1 in the current state. Omitted state variables are assumed to be zero valued. 
Our vector 𝑋 of state variables is the result of unifying the predicates and object tuple valuations into a vector. The length of the 
vector of state variables is then upper bounded by |𝑋| ≤∑

𝑘≥0 𝑛𝑘|Ω|𝑘, where 𝑛𝑘 is the number of first-order predicates with arity 𝑘. 
For instance, the 𝑋 vector contains at most |Ω|2 + 3|Ω| + 1 state variables for the blocksworld domain.4

Action representation. Given a FOL STRIPS operator 𝑜𝑝 = ⟨𝑛𝑎𝑚𝑒(𝑜𝑝), 𝑎𝑟𝑔𝑠(𝑜𝑝), 𝑝𝑟𝑒(𝑜𝑝), eff −(𝑜𝑝), eff +(𝑜𝑝)⟩, our pointer-based 
formalism produces its corresponding pointer-based action schema ⟨name, params, pre, eff ⟩:

• The name of the action schema is 𝑛𝑎𝑚𝑒(𝑜𝑝), the name of the given FOL STRIPS operator.

• For each argument in 𝑎𝑟𝑔𝑠(𝑜𝑝), the action schema has a pointer that indexes an object 𝑜 ∈Ω.

• The set 𝑝𝑟𝑒(𝑜𝑝) is transformed into a conjunctive arithmetic-logic expression with conditions of two kinds: (i) conditions asserting 
that each pointer of the action schema is within its domain and (ii), for each precondition in 𝑝𝑟𝑒(𝑜𝑝) a condition asserting that 
the state variable addressed by the pointers content equals to some specific value of its domain.

• Each negative effect in eff −(𝑜𝑝) is transformed into an indirect variable assignment that sets the corresponding state variable to 
0. Likewise, each positive effect in eff +(𝑜𝑝) is transformed into an indirect variable assignment that sets the corresponding state 
variable to 1.

Next we show the grammar that formalizes our pointer-based representation of STRIPS action schemes,

Π ∶∶= 𝐼𝑓 (𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆){𝐴𝑆𝑆𝐼𝐺𝑁𝑀𝐸𝑁𝑇𝑆}

𝑅𝑒𝑡𝑢𝑟𝑛 𝐹𝑎𝑙𝑠𝑒;

𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∶∶= (𝑧 >= 0 𝑎𝑛𝑑 𝑧 < |Ω|) 𝑎𝑛𝑑 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∣

(𝑝(𝑧1,… , 𝑧𝑘) == 0) 𝑎𝑛𝑑 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∣

(𝑝(𝑧1,… , 𝑧𝑘) == 1) 𝑎𝑛𝑑 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∣

(𝑇 𝑟𝑢𝑒)

𝐴𝑆𝑆𝐼𝐺𝑁𝑀𝐸𝑁𝑇𝑆 ∶∶= 𝑝(𝑧1,… , 𝑧𝑘) ∶= 0; 𝐴𝑆𝑆𝐼𝐺𝑁𝑀𝐸𝑁𝑇𝑆 ∣

𝑝(𝑧1,… , 𝑧𝑘) ∶= 1; 𝐴𝑆𝑆𝐼𝐺𝑁𝑀𝐸𝑁𝑇𝑆 ∣

𝑅𝑒𝑡𝑢𝑟𝑛 𝑇 𝑟𝑢𝑒;

where 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 includes assertions over predicates 𝑝(𝑧1, … , 𝑧𝑘) instantiated with the action arguments (i.e. the pointers), 
and represents the operator preconditions (== denotes the equality operator, ∶= indicates an assignment, and a semicolon denotes 

4 State-invariants [95] can be leveraged to save space for the memory allocation of the state variables, e.g. in the blocksworld one block cannot be on top of two 
10

different blocks simultaneously.
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(:action unstack

:parameters (?x ?y)

:precondition (and (clear ?x) (handempty) (on ?x ?y))

:effect (and (holding ?x) (clear ?y)

(not (clear ?x)) (not (handempty)) (not (on ?x ?y)))))

Fig. 7. The unstack STRIPS operator from the blocksworld domain represented with PDDL.

Bool schema_unstack (Pointer z1, Pointer z2) {

If (z1>=0 and z2>=0 and z1<|Ω| and z2<|Ω| and clear(z1)=1 and handempty()=1 and on(z1,z2)=1){

clear(z1) := 0;

handempty() := 0;

on(z1,z2) := 0;

holding(z1) := 1;

clear(z2) := 1;

Return True;

}

Return False;

}

Fig. 8. The unstack action schema from blocksworld defined with two pointers (𝑧1 and 𝑧2).

void init() {

clear(b0) := 1; on(b0,b1) := 1; on(b1,b2) := 1; ontable(b2) := 1;

}

Bool goals() {

Return (ontable(b0)=1 and ontable(b1)=1 and ontable(b2)=1);

}

Fig. 9. The init and goals procedures for representing the STRIPS planning problem of unstacking the three-block tower of Fig. 6.

the end of a program instruction). 𝐴𝑆𝑆𝐼𝐺𝑁𝑀𝐸𝑁𝑇𝑆 is a conjunction of assignments representing the operator positive/negative 
effects; in more detail 𝑝(𝑧1, … , 𝑧𝑘) ∶= 1 denotes a positive effect while 𝑝(𝑧1, … , 𝑧𝑘) ∶= 0 denotes a negative effect. Fig. 8 shows 
our pointer-based definition for the unstack action schema from the blocksworld that implements the corresponding operator 
represented in the STRIPS fragment of PDDL of Fig. 7. The action schema of Fig. 8 is implemented using two pointers (𝑧1 and 𝑧2), and 
it applies to any blocksworld instance, no matter the number of blocks or their identity.

Problem representation. We complete our pointer-based representation of a STRIPS problem with the init and goals procedures: 
the init procedure is a write-only procedure, that implements a total variable assignment of the state variables for specifying the initial 
state of the STRIPS problem. The goals procedure is a read-only Boolean procedure, that encodes the state-constraint that specifies the 
subset of goal states. Fig. 9 shows the init and goals procedures for the planning problem of unstacking the 3-block tower of Fig. 6. 
The content of the init and goals procedures is inductively formalized as follows:

𝐼𝑁𝐼𝑇 ∶= (𝑝(𝑜1,… , 𝑜𝑘) ∶= 1); 𝐼𝑁𝐼𝑇 ∣;

𝐺𝑂𝐴𝐿𝑆 ∶= 𝑅𝑒𝑡𝑢𝑟𝑛(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆);

𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∶= (𝑝(𝑜1,… , 𝑜𝑘) == 0) 𝑎𝑛𝑑 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∣

(𝑝(𝑜1,… , 𝑜𝑘) == 1) 𝑎𝑛𝑑 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∣

(𝑇 𝑟𝑢𝑒)

Solution representation. Our pointer-based representation of a sequential plan 𝜋 comprises instructions for: (i), invoking the 
Boolean function that encodes an action scheme and (ii), incrementing/decrementing the value of a pointer. Formally:

𝜋 ∶= 𝑆𝑇𝐴𝑇𝐸𝑀𝐸𝑁𝑇𝑆;

𝑆𝑇𝐴𝑇𝐸𝑀𝐸𝑁𝑇𝑆 ∶= 𝑎(𝑧1,… , 𝑧𝑘); 𝑆𝑇𝐴𝑇𝐸𝑀𝐸𝑁𝑇𝑆 ∣

𝑧++; 𝑆𝑇𝐴𝑇𝐸𝑀𝐸𝑁𝑇𝑆 ∣

𝑧−−; 𝑆𝑇𝐴𝑇𝐸𝑀𝐸𝑁𝑇𝑆 ∣

;

where 𝑎(𝑧1, … , 𝑧𝑘) is an action scheme instantiated with a set of pointers {𝑧1, … , 𝑧𝑘} ⊆𝑍 , and {z++, z- | 𝑧 ∈𝑍} are the instructions 
11

to increment/decrement a pointer 𝑧 ∈𝑍 . Pointers are always initialized to zero.
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void ONTABLE-SEQUENTIAL-PLAN (){

int z1=0, z2=0;

z2++;

act_unstack(z1,z2);

act_putdown(z1);

z1++;

z2++;

act_unstack(z1,z2);

act_putdown(z1);

}

Fig. 10. Pointer-based representation of the sequential plan 𝜋 = ⟨unstack(b0,b1), putdown(b0), unstack(b1,b2), putdown(b1)⟩ for unstacking the three-

block tower of Fig. 6.

unstack(?𝑥,?𝑦) unstack(𝑧1 ,𝑧2)

unstack(𝑏0 ,𝑏0)

unstack(𝑏0 ,𝑏1)

unstack(𝑏0 ,𝑏2)

. . .

𝑍 grounding

𝑧1 = 0

𝑧2 = 1

𝑍 indexing in

current state

Ω
g
ro

u
n
d
in

g

Map 𝑍 →Ω

Fig. 11. Relation between the action scheme 𝑢𝑛𝑠𝑡𝑎𝑐𝑘(?𝑥, ?𝑦) (i), the action 𝑢𝑛𝑠𝑡𝑎𝑐𝑘(𝑧1, 𝑧2) instantiated with pointers (𝑧1 , 𝑧2), and (ii), the ground actions instantiated 
with the set of three blocks Ω = {𝑏0 , 𝑏1, 𝑏2}. Pointers 𝑧1 and 𝑧2 are bound variables in [0, … , |Ω|), that currently are indexing blocks 𝑏0 and 𝑏1 , respectively.

Fig. 10 illustrates our pointer-based representation of the four-action sequential plan 𝜋 = ⟨unstack(b0,b1), putdown(b0),

unstack(b1,b2), putdown(b1)⟩ for unstacking the three-block tower of Fig. 6. In more detail, the ONTABLE-SEQUENTIAL-
PLAN() program leverages two pointers, 𝑍 = {𝑧1, 𝑧2}, that are initialized to zero so they initially point to the first object (block 𝑏0
in this case). After executing the first 𝑧2++ instruction, 𝑧2 points to the second block, 𝑏1, while 𝑧1 still points to block 𝑏0. This means 
that the first 𝚊𝚌𝚝_𝚞𝚗𝚜𝚝𝚊𝚌𝚔(𝚣𝟷,𝚣𝟸) instruction of the program in Fig. 10 is actually executing the ground action 𝚞𝚗𝚜𝚝𝚊𝚌𝚔(𝚋𝟶,𝚋𝟷), 
which corresponds to the first step of plan 𝜋. Likewise, the first 𝚊𝚌𝚝_𝚙𝚞𝚝𝚍𝚘𝚠𝚗(𝚣𝟷) program instruction executes the ground action 
𝚙𝚞𝚝𝚍𝚘𝚠𝚗(𝚋𝟶), i.e. the second step of the sequential plan 𝜋. The second 𝚊𝚌𝚝_𝚞𝚗𝚜𝚝𝚊𝚌𝚔(𝚣𝟷,𝚣𝟸) program instruction is executing the 
ground action 𝚞𝚗𝚜𝚝𝚊𝚌𝚔(𝚋𝟷,𝚋𝟸), since both 𝑧1 and 𝑧2 are increased just before that instruction is executed. Finally, the second 
𝚊𝚌𝚝_𝚙𝚞𝚝𝚍𝚘𝚠𝚗(𝚣𝟷) executes the ground action 𝚙𝚞𝚝𝚍𝚘𝚠𝚗(𝚋𝟷), which is the fourth and last step of the sequential plan 𝜋.

Fig. 11 illustrates the particular relation between an action scheme (i), its corresponding action instantiated over pointers and (ii), 
the ground actions instantiated over the set of world objects Ω. In Fig. 11, the pointers 𝑧1 and 𝑧2 are bound variables in [0, … , |Ω|), 
that currently are indexing blocks 𝑏0 and 𝑏1, respectively.

Beyond STRIPS. Our pointer-based representation supports object typing by simply specializing pointers to the subset of objects of 
a particular type [86]. Furthermore, our pointer-based representation naturally supports classical planning with numeric state variables, 
as defined in PDDL2.1 [96]. To support the representation of numeric state variables, the vector of state variables store integers

instead of Boolean values. Goals and action preconditions can then include assertions over numeric state variables, and action effects 
can include assignments of the numeric state variables. For example, distance(b0,b1)=7 can be used to indicate that the physical 
distance between blocks 𝑏0 and 𝑏1 is of seven units. Likewise distance(z1,z2)>distance(z2,z3) can be used to indicate that 
the distance between the blocks indexed by pointers 𝑧1 and 𝑧2 is larger than the distance between the blocks pointed by 𝑧2 and 𝑧3.

4.3. Extending the classical planning model with a RAM

Now we are ready to leverage our pointer-based representation, with the notion of Random-Access Machine (RAM), to extend the 
classical planning model. The extension produces an agnostic set of state features, and a set of actions, that are shared for the different 
classical planning instances of a given domain (no matter their actual number of objects).

Given a classical planning instance 𝑃 = ⟨𝑋,𝐴, 𝐼,𝐺⟩, s.t. the state variables and actions are generated with the set of functions Φ
and action schemes Ξ of a given domain, grounded with a set of objects Ω. Then, the classical planning instance extended with a RAM 
machine of |𝑍| +2 registers (i.e. |𝑍| pointers that reference the planning objects, plus two dedicated FLAGS registers namely the zero

and carry flags), is defined as 𝑃 ′
𝑍
= ⟨𝑋′

𝑍
,𝐴′

𝑍
, 𝐼 ′

𝑍
,𝐺⟩ where:

• The new set of state variables 𝑋′
𝑍

comprises:

– The state variables 𝑋 of the original planning instance, such that each state variable 𝑥𝑖 ∈ 𝑋 is 𝑥𝑖 ≡ 𝜙(⃖⃗𝑜) with 𝜙 ∈ Φ and 
⃖⃗𝑜 ∈Ω𝑎𝑟(𝜙), as defined above.

– Two Boolean variables 𝑌 = {𝑦𝑧, 𝑦𝑐}, that play the role of the zero and carry FLAGS registers, respectively.
12

– The pointers 𝑍 , a set of extra state variables s.t. each 𝑧 ∈𝑍 has finite domain 𝐷𝑧 = [0, … , |Ω| − 1].
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– A set of derived state variables 𝑋𝑍 = { 𝜙(⃖⃗𝑧) | 𝜙 ∈Φ, ⃖⃗𝑧 ∈𝑍𝑎𝑟(𝜙) } whose value is given by the interpretations of the functions of 
the domain with the corresponding pointers.

• The new set of actions 𝐴′
𝑍

will represent the set of actions that is shared for the different classical planning instances in a given 
domain, and it includes:

– The planning actions 𝐴′ that result from reformulating each action scheme 𝜉 ∈ Ξ into its corresponding pointer-based 
version. The reformulation is a two-step procedure that requires 𝑍 to contain, at least, as many pointers as the largest arity of 
an scheme in Ξ: (i), each parameter in 𝑝𝑎𝑟(𝜉) is replaced with a pointer in 𝑍 and (ii), preconditions and effects are rewritten 
to refer to these pointers.

– The RAM actions that implement the following sets of RAM instructions {𝚒𝚗𝚌(𝑧1), 𝚍𝚎𝚌(𝑧1), 𝚌𝚖𝚙(𝑧1, 𝑧2), 𝚜𝚎𝚝(𝑧1, 𝑧2) | 𝑧1, 𝑧2 ∈
𝑍} over the pointers in 𝑍 , and {𝚝𝚎𝚜𝚝(𝜙(⃖⃖⃖⃗𝑧1)), 𝚌𝚖𝚙(𝜙(⃖⃖⃖⃗𝑧1), 𝜙(⃖⃖⃖⃗𝑧2)) | ⃖ ⃖⃖⃗𝑧1, ⃖⃖⃖⃗𝑧2 ∈ 𝑍𝑎𝑟(𝜙)} over the lists of pointers in 𝑍𝑎𝑟(𝜙) for each 
function symbol 𝜙 ∈ Φ. Respectively, these RAM instructions increment/decrement a pointer by one while keeping the values 
within the pointer domain, compare two pointers, set the value of a pointer 𝑧2 to another pointer 𝑧1, test whether 𝜙(⃖⃖⃖⃗𝑧1) is 
greater than zero, and compare the value of 𝜙(⃖⃖⃖⃗𝑧1) and 𝜙(⃖⃖⃖⃗𝑧2). The 𝚌𝚖𝚙(𝜙(⃖⃖⃖⃗𝑧1), 𝜙(⃖⃖⃖⃗𝑧2)) instructions are only required for numeric 
functions5 to compare whether 𝜙(⃖⃖⃖⃗𝑧1) is greater, equal or smaller than 𝜙(⃖⃖⃖⃗𝑧2). The outcome of executing a RAM action is captured 
in a value, here denoted as 𝑟𝑒𝑡:

𝑖𝑛𝑐(𝑧1) ⟹ 𝑟𝑒𝑡 ∶=

{
𝑧1 + 1 if 𝑧1 + 1 < |Ω|
0 Otherwise

𝑑𝑒𝑐(𝑧1) ⟹ 𝑟𝑒𝑡 ∶= 𝑧1 − 1,

𝑐𝑚𝑝(𝑧1, 𝑧2) ⟹ 𝑟𝑒𝑡 ∶= 𝑧1 − 𝑧2,

𝑠𝑒𝑡(𝑧1, 𝑧2) ⟹ 𝑟𝑒𝑡 ∶= 𝑧2,

𝑡𝑒𝑠𝑡(𝜙(⃖⃖⃖⃗𝑧1)) ⟹ 𝑟𝑒𝑡 ∶= 𝜙(⃖⃖⃖⃗𝑧1),

𝑐𝑚𝑝(𝜙(⃖⃖⃖⃗𝑧1), 𝜙(⃖⃖⃖⃗𝑧2)) ⟹ 𝑟𝑒𝑡 ∶= 𝜙(⃖⃖⃖⃗𝑧1) − 𝜙(⃖⃖⃖⃗𝑧2).

Once a RAM action is executed, its returned value is used to update the Boolean FLAGS 𝑌 = {𝑦𝑧, 𝑦𝑐} as defined, i.e. 𝑦𝑧 ∶=
(𝑟𝑒𝑡 == 0) and 𝑦𝑐 ∶= (𝑟𝑒𝑡 > 0). FLAGS are dedicated to capture the outcome of RAM instructions. The combination of both 
FLAGS registers can then represent any outcome of a three-way comparison [97].

• The new initial state 𝐼 ′
𝑍

is the initial state of the original planning instance, but extended with all pointers set to zero and the 
two FLAGS set to False. The goals are the same as those of the original planning instance.

The number of pointers |𝑍| is a parameter that indicates how many pointers are used in the extension. At least 𝑍 must contain as 
many pointers as the largest arity of the functions Φ and action schemes Ξ of the given domain. Therefore {𝑌 ∪𝑍 ∪𝑋𝑍}, becomes a 
subset of state variables shared by all the instances that belong to the same domain, no matter their number of objects. Likewise 𝐴′

𝑍
becomes a set of actions that is shared by all the instances that belong to the same domain, no matter their actual number of objects.

Example. Here we extend the classical planning instance 𝑃1 = ⟨𝑋,𝐴, 𝐼1,𝐺1⟩ (illustrated in Fig. 2) using a RAM with 𝑍 = {𝑖, 𝑗}
two pointers. According to this extension, our pointer-based representation of the sequential plan 𝜋1 = ⟨𝑠𝑤𝑎𝑝(𝑜0, 𝑜5), 𝑠𝑤𝑎𝑝(𝑜1, 𝑜2),
𝑠𝑤𝑎𝑝(𝑜1, 𝑜3)⟩ is the following sequence of thirteen actions 𝜋′

1 = ⟨𝑖𝑛𝑐(𝑗)5, 𝑠𝑤𝑎𝑝(𝑖, 𝑗), 𝑖𝑛𝑐(𝑖), 𝑑𝑒𝑐(𝑗)3, 𝑠𝑤𝑎𝑝(𝑖, 𝑗), 𝑖𝑛𝑐(𝑗), 𝑠𝑤𝑎𝑝(𝑖, 𝑗)⟩; where 
superscripts refer to the number of times that an instruction is sequentially repeated, and where 𝑠𝑤𝑎𝑝(𝑖, 𝑗) refers to the pointer-based 
action schema defined in Fig. 5. Likewise, our pointer-based version of the sequential plan 𝜋2 = ⟨𝑠𝑤𝑎𝑝(𝑜0, 𝑜2), 𝑠𝑤𝑎𝑝(𝑜3, 𝑜5)⟩, that 
solves the classical planning problem 𝑃2 in Fig. 2, is the ten-action sequence 𝜋′

2 = ⟨𝑖𝑛𝑐(𝑗)2, 𝑠𝑤𝑎𝑝(𝑖, 𝑗), 𝑖𝑛𝑐(𝑖)3, 𝑖𝑛𝑐(𝑗)3, 𝑠𝑤𝑎𝑝(𝑖, 𝑗)⟩.
4.3.1. Theoretical properties

Our extension of a classical planning problem with a RAM machine preserves the solution space of the original problem. Sequential 
plans in the extended planning model may however be longer (e.g. the pointer-based version of plan 𝜋1 from the previous example 
required thirteen steps while the original sequential plan only had three steps). As a rule of thumb, an increment of the original plan 
length happens when pointers must be incremented (or decremented) multiple times to access the corresponding objects before the 
corresponding action is executed.

Theorem 1. Given a classical planning instance 𝑃 = ⟨𝑋,𝐴, 𝐼,𝐺⟩, its extension 𝑃 ′
𝑍

, using a RAM machine with 𝑍 pointers s.t. |𝑍| ≥
𝑚𝑎𝑥𝑎∈𝐴𝑎𝑟(𝑎), preserves the solution space of 𝑃 .

Proof. ⇒: Let 𝜋 = ⟨𝑎1,… , 𝑎𝑚⟩ be a plan that solves 𝑃 , an equivalent plan 𝜋′ that solves 𝑃 ′
𝑍

is built as follows; for each action 𝑎𝑖 ∈ 𝜋, 
𝐴′ contains a pointer-based action schema 𝑎′

𝑖
that replaces each parameter in 𝑝𝑎𝑟(𝑎𝑖) with a pointer 𝑧 ∈ 𝑍 . For each such pointer 

𝑧, the plan repeatedly applies RAM actions inc(𝑧) or dec(𝑧) until they reference the associated vector of objects ⃖⃗𝑜, and then it 
13

5 Compare instructions are syntactic sugar for Boolean functions since they can be implemented composing test instructions.
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applies 𝑎′
𝑖
. The resulting plan 𝜋′ has exactly the same effect as 𝜋 on the original planning state variables in 𝑋, and since the goal 

condition of 𝑃 ′
𝑍

is the same as that of 𝑃 , it follows that 𝜋′ solves 𝑃 ′
𝑍

.

⇐: Let 𝜋′ = ⟨𝑎′1,… , 𝑎′𝑚⟩ be a plan that solves 𝑃 ′
𝑍

. Identify each action in 𝐴′ among those of 𝜋′, and execute 𝜋′ to identify the 
assignment of objects to pointers when applying each action in 𝐴′. Construct a plan 𝜋 corresponding to the subsequence of actions in 
𝐴′ from 𝜋′, replacing each action schema 𝑎′

𝑖
∈𝐴′ by an original action 𝑎𝑖 ∈𝐴 and choosing as parameters of 𝑎𝑖 the objects referenced 

by the pointers of 𝑎′
𝑖

at the moment of execution. Hence 𝑎𝑖 has the same effect as 𝑎′
𝑖

on the state variables in 𝑋, implying that 𝜋 has 
the same effect as 𝜋′ on 𝑋. Since the goal condition of 𝑃 is the same as that of 𝑃 ′

𝑍
, it follows that 𝜋 solves 𝑃 . □

The execution of a plan corresponding to a classical planning problem extended with a RAM machine is a deterministic matching-free 
process that does not require explicit action grounding; the plan execution itself determines the values of the pointers that feed the 
action schemes.

Theorem 2. The new set of actions 𝐴′
𝑍

is independent of the number of objects, state variables, and their domain size.

Proof. The number of actions of a classical planning instance, extended with a RAM of |𝑍| pointers, is

|𝐴′
𝑍
| = 2|𝑍|2 + ∑

𝜙∈Φ
|𝑍|2𝑎𝑟(𝜙) + |𝐴′|. (1)

This number exclusively depends on the number of pointers in 𝑍 , on the arity of the functions in Φ, and on the arity of the action 
schemes in Ξ. First, the increment/decrement instructions induce 2|𝑍| actions, the set instructions over pointers induce |𝑍|2 − |𝑍|
actions, and comparison instructions of pointers induce |𝑍|2 − |𝑍| actions; comparison instructions can compare two pointers but 
for symmetry breaking, we only consider the single parameter ordering (𝑧𝑖, 𝑧𝑗 ) where 𝑖 < 𝑗, i.e. we consider cmp(𝑧1,𝑧2) but not

cmp(𝑧2,𝑧1). Second, test instructions are defined over each function symbol and list of pointers with the same size as its arity, 
inducing 

∑
𝜙 |𝑍|𝑎𝑟(𝜙) actions, and comparison of predicates with pointers induce 

∑
𝜙(|𝑍|2𝑎𝑟(𝜙) − |𝑍|𝑎𝑟(𝜙)) actions. Therefore, the total 

number of RAM instructions are 2|𝑍| +2(|𝑍|2 − |𝑍|) +∑
𝜙(|𝑍|𝑎𝑟(𝜙) + |𝑍|2𝑎𝑟(𝜙) − |𝑍|𝑎𝑟(𝜙)) = 2|𝑍|2 +∑

𝜙 |𝑍|2𝑎𝑟(𝜙) which only depends 
on the number of pointers in 𝑍 and the arity of each function symbol 𝜙. Last, as defined by our abstraction procedure, the number 
of actions in 𝐴′ is given by the number of parameters of the actions schemes Ξ and the number of pointers in 𝑍 to replace those 
parameters. This means that the size of 𝐴′ is upper bounded by |𝐴′| ≤∑

𝜉∈Ξ |𝑍||𝑝𝑎𝑟(𝜉)|. Last, it follows that 𝐴′
𝑍

, whose size is given by |𝐴′
𝑍
| = 2|𝑍|2 +∑

𝜙 |𝑍|2𝑎𝑟(𝜙) + |𝐴′|, it is also independent of the number of objects Ω, state variables in 𝑋 and their domain size. □

5. Generalized planning as heuristic search

This section presents our GP as heuristic search approach; first the section details the search space of our GP as heuristic search

approach and then, the section explains the particular details of our heuristic search algorithm for GP, called BFGP.

5.1. The search space

Here we characterize the branching factor of the space of planning programs introduced in Section 3.3, and we show that its size 
depends on the domain of the planning state variables (which unfortunately may be unbound). Then we define a tractable GP search 
space by conditioning the branching and looping of planning programs with the FLAGS registers of the RAM model. We show that our 
new search space for GP is independent of the number of input planning instances in a GP problem, and the size of these instances 
(i.e. the number of objects, state variables, and their domain sizes). This enables the definition of a heuristic search approach for GP, 
capable of managing large sets of state variables with large numerical domains, such as integers.

5.1.1. Planning programs conditioned over valued state variables

The branching and looping of the planning programs introduced in Section 3.3 are conditioned over valued state variables [33], 
i.e. go to some line 𝑖 if state variable 𝑥 has value 𝑣. The space of this kind of solutions can be characterized by a binary encoding; 
given a set of state variables 𝑋, a set of actions 𝐴, a maximum number of program lines 𝑛 such that the last instruction is Π𝑛−1 = 𝑒𝑛𝑑, 
and defining the propositions of 𝗀𝗈𝗍𝗈 instructions as (𝑥 = 𝑣) atoms where 𝑥 ∈𝑋 and 𝑣 ∈𝐷𝑥, the space of possible planning programs

is encoded with three bit-vectors:

1. The action vector of length (𝑛 − 1) × |𝐴|, indicating whether an action 𝑎 ∈𝐴 is programmed on line 0 ≤ 𝑖 < 𝑛 − 1.

2. The transition vector of length (𝑛 − 1) × (𝑛 − 2), indicating whether a 𝗀𝗈(𝑖′, ∗) instruction is programmed on line 0 ≤ 𝑖 < 𝑛 − 1.

3. The proposition vector of length (𝑛 − 1) ×
∑

𝑥∈𝑋 |𝐷𝑥|, indicating whether a 𝗀𝗈(∗, !⟨𝑥 = 𝑣⟩) instruction is programmed on line 
0 ≤ 𝑖 < 𝑛 − 1.

Definition 5 (Partially specified planning program). A partially specified planning program Π is a planning program s.t. the content of 
14

some of its program lines may be undefined, i.e. ∃𝑖 ∈ [0, 𝑛) s.t. Π[𝑖] =< 𝚎𝚖𝚙𝚝𝚢 >.
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A partially specified planning program is encoded as the concatenation of the previous three bit-vectors and the length of the 
resulting bit-vector is:

(𝑛− 1)

(|𝐴|+ (𝑛− 2) +
∑
𝑥∈𝑋

|𝐷𝑥|
)

. (2)

The previous binary encoding allows us to quantify the similarity of two partially specified planning programs (e.g. the Hamming 
distance of their corresponding bit-vector representation) and more importantly, to systematically enumerate the space of all possible 
planning programs with a maximum of 𝑛 lines. Let us define the empty program as the particular partially specified planning program 
whose instructions are all undefined (i.e. all bits of its bit-vector representation are set to False). Starting from the empty program, 
we can enumerate the entire set of possible planning programs with two search operators:

• program(i,a), that programs an action 𝑎 ∈𝐴 at line 𝑖 of a program

• program(i,i’,x,v), that programs a 𝗀𝗈𝗍𝗈(𝑖′, !⟨𝑥 = 𝑣⟩) instructions at line 𝑖 of a program.

These two search operators are only applicable when Π[𝑖] =< 𝚎𝚖𝚙𝚝𝚢 > (meaning that 𝑖 is an undefined program line i.e. in the 
bit-vector representation the bits corresponding to the encoding of the program line 𝑖 are set to False). Given the bit-vector repre-

sentation of a partially specified planning program, the application of the program(i,a) or program(i,i’,x,v) search operators 
set the corresponding bits to True. With this regard, the partially specified planning program of a given search node is at Hamming 
distance 1 from its parent, when programming a planning action with program(i,a), or at Hamming distance 2, when program-

ming a 𝗀𝗈𝗍𝗈 instruction with program(i,i’,x,v). In fact, this is the search space leveraged by the classical planning compilation 
approach for computing planning programs with an off-the-shelf classical planner [33]. Equation (2) reveals that the number of 
planning programs with 𝑛 lines depends on the number of grounded actions |𝐴|, and the number of state variables 𝑥 ∈𝑋 and their 
domain 𝐷𝑥. This dependence causes an scalability issue, limiting the applicability of the cited compilation to planning instances of 
contained size. In the worst case, the domain of state variable might be infinite, e.g. a numeric state variable, hence the search space 
might be intractable.

5.1.2. Planning programs conditioned over a feature language

We overcome the intractability of the previous solution space by conditioning the branching and looping of planning programs

with a finite feature language. In more detail, we leverage our extension of the classical planning model with a RAM, since it produces 
a minimalist but general set of features for the classical planning instances of a given domain.

Definition 6 (The feature language). We define the feature language as the four possible joint values of the two Boolean variables 
𝑌 = {𝑦𝑧, 𝑦𝑐}, and we denote this language as  = {(¬𝑦𝑧 ∧ ¬𝑦𝑐), (𝑦𝑧 ∧ ¬𝑦𝑐), (¬𝑦𝑧 ∧ 𝑦𝑐), (𝑦𝑧 ∧ 𝑦𝑐)}.

Our feature language  is minimalist, it only contains four elements. We say that  is general because it is independent of the 
number of objects (and hence, of the number of state variables and their domain). Features in  are a function of (i) the state variables 
and (ii) the last executed instruction. The value of FLAGS 𝑌 = {𝑦𝑧, 𝑦𝑐} depend on the last executed instruction, and considering that 
only RAM instructions update the variables in 𝑌 , we have a space of 2|𝑌 | × (2|𝑍|2 +∑

𝜙 |𝑍|2𝑎𝑟(𝜙)) state observations implemented 
with only |𝑌 | Boolean variables. The four joint values of {𝑦𝑧, 𝑦𝑐} can model then a large space of observations, e.g. = 0, ≠ 0, 
< 0, > 0, ≤ 0, ≥ 0 as well as relations =, ≠, <, >, ≤, ≥ on pairs of state variables.

Definition 7 (The GP with a RAM search space). Given a GP problem  , that is built extending a set {𝑃1, … , 𝑃𝑇 } of classical planning 
instances from a given domain with a RAM of |𝑍| pointers. Our GP search space is the set of partially specified planning programs 
that can be built with 𝑛 program lines, the common set of planning actions 𝐴′

𝑍
, and 𝗀𝗈𝗍𝗈 instructions that are exclusively conditioned 

on a feature in .

According to Definition 7, we represent GP solutions as planning programs where goto instructions can exclusively be conditioned 
on a feature in . Limiting the conditions of goto instructions to any of the four features in  bounds the number of planning 
programs. Although the 𝑌 = {𝑦𝑧, 𝑦𝑐} flags have four possible value combinations, the fourth case (𝑦𝑧 ∧ 𝑦𝑐) ∈  can never happen as 
a result of a comparison; this fourth case is however useful for representing unconditional goto. The proposition vector required to 
encode a planning program becomes now a vector of only (𝑛 − 1) × 4 bits (one bit for each of the four features in ). Equation (2)

simplifies then to:

(𝑛− 1)
(|𝐴′

𝑍
|+ (𝑛− 2) + 4

)
. (3)

Equation (3) shows that the size of our new solution space for GP is independent of the number of objects and hence of the number 
of original state variables and their domain size; Theorem 2 already showed that 𝐴′

𝑍
no longer grows with the number of objects. 

This novel GP solution space can now scale to planning problems where state variables have large domains (e.g. integers) and that 
15

have a large number of state variables.
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0. set(j,tail)

1. swap(i,j)

2. dec(j)

3. inc(i)

4. cmp(j,i)

5. goto(1, ¬(¬𝑦𝑧 ∧ ¬𝑦𝑐 ))
6. end

0. set(min,i)

1. cmp(vector(j),vector(min))

2. goto(5, ¬(¬𝑦𝑧 ∧ ¬𝑦𝑐 ))
3. set(min, j)

4. swap(i,min)

5. inc(j)

6. cmp(length,j)

7. goto(1, ¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
8. inc(i)

9. set(j,i)

10. cmp(length,i)

11. goto(0, ¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
12. end

Fig. 12. Two examples of generalized plans: (left) for reversing a list; (right) for sorting a list with the selection-sort algorithm.

Theorem 3. The space of planning programs that exclusively branch and loop over the features in  preserves the solution space of planning 
programs that branch and loop over valued state variables.

Proof. Given a GP problem  and a planning program Π conditioned over valued state variables that solves  . An equivalent 
planning program, that exclusively branches over any of the features in , is built replacing each goto(i,!(x=v)) instruction in 
Π, where 𝑥 ≡ 𝜙(⃖⃗𝑜) s.t. 𝜙 ∈ Φ and ⃖⃗𝑜 ∈ Ω𝑎𝑟(𝜙), by a finite block of instructions that: (i) increments/decrements a vector of auxiliary 
pointers ⃖⃖⃖⃖⃖⃖⃗𝑧𝑎𝑢𝑥, with size 𝑎𝑟(𝜙), until they index objects ⃖⃗𝑜, (ii) given auxiliary static state variables for each possible value, i.e. ∀𝑣∈𝐷𝑥

𝑥𝑣, 
and a dedicated object for each new state variable 𝑜𝑣 such that 𝑥𝑣 ≡ 𝜙(𝑜𝑣), increments/decrements another auxiliary pointer 𝑧𝑠𝑡𝑎𝑡𝑖𝑐
in a function 𝜙𝑠𝑡𝑎𝑡𝑖𝑐(𝑧𝑠𝑡𝑎𝑡𝑖𝑐) until it reaches object 𝑜𝑣 such that 𝑥𝑣 ≡ 𝜙𝑠𝑡𝑎𝑡𝑖𝑐(𝑜𝑣) which equals 𝑣, (iii) compares the content of these two 
state variables with a cmp(𝜙(⃖⃖⃖⃖⃖⃖⃗𝑧𝑎𝑢𝑥), 𝜙𝑠𝑡𝑎𝑡𝑖𝑐 (𝑧𝑠𝑡𝑎𝑡𝑖𝑐)) instruction and (iv), jumps to target line 𝑖 when the state variables differ in their 
content with a goto(i,!(𝑦𝑧 ∧ ¬𝑦𝑐)) instruction. □

Example. Fig. 12 shows two examples of planning programs that were synthesized by our BFGP algorithm searching in our tractable 
GP solution-space: (left) a generalized plan for reversing a list, and (right) a generalized plan for sorting a list. Note that goto
instructions are exclusively conditioned on a feature in , and that both planning programs are solutions for an infinite set of classical 
planning problems; they generalize with a swap action schema of arity 2 and a vector function symbol of arity 1, no matter the 
number of objects Ω and no matter the state variables content, i.e. 𝑥𝑖 ≡ vector(𝑜𝑖) such that 𝑜𝑖 ∈ Ω, 𝑥𝑖 ∈𝑋 and 𝐷𝑥𝑖

⊆ ℕ0. In the 
planning program for reversing a list (left), line 0 sets pointer 𝑗 to the last element of the list. Line 1 swaps in the vector the element 
pointed by 𝑖 (initially set to zero) and the element pointed by 𝑗, then pointer 𝑗 is decremented, pointer 𝑖 is incremented, and this 
sequence of instructions is repeated until the condition on line 5 becomes false, i.e. when 𝑗 > 𝑖, which means that reversing the list is 
finished. The planning program for sorting a list (right) is actually an implementation of the selection-sort algorithm. In this program, 
pointers 𝑗 and 𝑖 are used for inner (lines 5-7) and outer (lines 8-11) loops respectively, and 𝑚𝑖𝑛 to point to the minimum value in 
the inner loop (lines 3-4); ¬𝑦𝑧 ∧ ¬𝑦𝑐 on line 2 represents whether the content of vector(𝑗) is less than the content of vector(𝑚𝑖𝑛), 
while 𝑦𝑧 ∧ ¬𝑦𝑐 on line 7 represents whether 𝑗 == 𝑙𝑒𝑛𝑔𝑡ℎ (resp. 𝑖 == 𝑙𝑒𝑛𝑔𝑡ℎ on line 11). Note that object ordering affects to the 
actual sequential plan that is eventually produced by the execution of the generalized plan but object ordering does not affect the 
correctness/completeness of the generalized plan. This is a common feature of structured programs e.g. a SelectionSort program is 
sound and complete but the actual number of executed swap instructions depends on the input list to be sorted.

5.2. The search algorithm

Given a GP problem, our heuristic search algorithm (called BFGP) implements a Best-First Search (BFS) in our solution space of 
planning programs with 𝑛 program lines, and a RAM machine with |𝑍| pointers. Algorithm 1 shows the BFGP pseudo-code; BFGP

is a frontier search algorithm meaning that, to reduce memory requirements, BFGP stores only the open list of generated nodes but 
not the closed list of expanded nodes [98]. The BFGP algorithm runs as follows:

1. Initialization. The empty program is the root node of the search-tree developed by BFGP. This means that initially, the empty 
program Π𝑒𝑚𝑝𝑡𝑦 is evaluated by the evaluation functions 𝑓 ∈  and then inserted into an 𝑂𝑝𝑒𝑛 list, which is implemented as a 
priority queue.

2. Selection. While 𝑂𝑝𝑒𝑛 list is not empty, extractBestProgram gets the best partial program Π from 𝑂𝑝𝑒𝑛 . A program Π
is better than another program Π′ iff exists a prefix of 𝑓 values for Π that is smaller than the same prefix for Π′, e.g. given 
 = ⟨𝑓5, 𝑓1⟩, Π is better than Π′ if 𝑓5(Π, ) < 𝑓5(Π′, ), or if they tie for 𝑓5 but 𝑓1(Π) < 𝑓1(Π′). In case both programs tie for all 
𝑓 ∈  , older programs (those inserted earlier in 𝑂𝑝𝑒𝑛 ) will be considered better, hence extracted first from 𝑂𝑝𝑒𝑛 .

3. Expansion. Once the best partial program Π is extracted from 𝑂𝑝𝑒𝑛 , the expandProgram procedure computes all children 
programs of Π that are syntactically valid for a given set of pointers 𝑍 and bounded number of program lines 𝑛. In more 
detail, BFGP expands Π by generating one successor node Π′ for each program that result from programming the maximum 
16

undefined program line that is reached after executing Π on all the instances in  . Given a partially specified program Π, only its 
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𝑚𝑎𝑥𝑃𝑡∈(𝑃 )𝑓4(Π, 𝑃𝑡) line is programmable. BFGP implements this particular node expansion procedure because it guarantees that 
duplicate successors are not generated in the BFGP search-tree. In addition, this node expansion procedure induces a tractable 
branching factor of (|𝐴′

𝑍
| + (𝑛 − 2) × 4); at a given program line BFGP can only program a planning action in 𝐴′

𝑍
or a 𝗀𝗈𝗍𝗈

instruction that can jump to 𝑛 − 2 different destination program lines, and that is conditioned by any of the four different 
features in . The depth of the search tree developed by the BFGP algorithm is the number of program lines 𝑛, since only an 
undefined line can be programmed.

4. Insertion. Before a new search node is inserted into the open list, the corresponding program Π′ is executed on the classical 
planning instances in  . This execution can result in the three following different outcomes:

(a) Π′ is a solution for  . If the execution of Π′ solves all the instances 𝑃𝑡 ∈  , then search ends, and Π′ will be returned as a 
valid solution for the GP problem  .

(b) Π′ fails to solve  . If the execution of Π′ on a given instance 𝑃𝑡 ∈  fails, this means that the search node corresponding 
to the partially planning program Π′ is a dead-end. The search node will be discarded, so Π′ is not inserted into the open 
list. The source of failure could be either because a terminal instruction is executed but the goal condition does not hold, or 
because an infinite loop is detected.

(c) Π′ may still be a solution for  . This means that the execution of Π′ on some of the classical planning instances in  reached 
an undefined program line (Π′ might solve some of the instances in ). As a consequence Π′ is inserted into 𝑂𝑝𝑒𝑛 by 
calling insertProgram at its corresponding position according to its evaluation over  functions.

Algorithm 1: Best-First Generalized Planning (BFGP).

Data: The GP problem  , pointers 𝑍 , program lines 𝑛, a list of evaluation functions 
Result: A generalized plan Π that solves 
𝑂𝑝𝑒𝑛 ← {Π𝑒𝑚𝑝𝑡𝑦} ;

while 𝑂𝑝𝑒𝑛 ≠ ∅ do

Π ← extractBestProgram(𝑂𝑝𝑒𝑛 ) ;
𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠 ← expandProgram(Π, 𝑍, 𝑛) ;
for Π′ ∈ 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠 do

if isDeadEnd(Π′, ) then
continue

if isGoal(Π′ , ) then
return (Π′)

𝑂𝑝𝑒𝑛 ← insertProgram(𝑂𝑝𝑒𝑛 , Π′);

end

end

return () // no solution found

Example. Let us recover from the previous example (Fig. 2) the GP problem  = {𝑃1, 𝑃2}, and the partially specified program 
Π = 0.swap(i,j) 1.inc(i) 2.dec(j) 3.goto(2,!(𝑦𝑧 ∧ ¬𝑦𝑐)) 4.<empty> 5.end, where lines [0, 3] are programmed and 
only line 4 is unspecified. Imagine now that BFGP extracts this program from the open list because it has the best evaluation value. 
In this case, the execution of Π on the classical planning instances 𝑃1 and 𝑃2, implemented by the node evaluation procedure, ended 
in both instances at the undefined program line 4. This means that the only programmable line is 4. Assuming that two pointers are 
available (i.e. 𝑍 = {𝑖, 𝑗}) we can program any of following twelve actions in line 4. {𝑖𝑛𝑐(𝑖), 𝑖𝑛𝑐(𝑗), 𝑑𝑒𝑐(𝑖), 𝑑𝑒𝑐(𝑗), 𝑐𝑚𝑝(𝑖, 𝑗), 𝑠𝑒𝑡(𝑖, 𝑗), 
𝑠𝑒𝑡(𝑗, 𝑖), 𝑡𝑒𝑠𝑡(𝑣𝑒𝑐𝑡𝑜𝑟(𝑖)), 𝑡𝑒𝑠𝑡(𝑣𝑒𝑐𝑡𝑜𝑟(𝑗)), 𝑐𝑚𝑝(𝑣𝑒𝑐𝑡𝑜𝑟(𝑖), 𝑣𝑒𝑐𝑡𝑜𝑟(𝑗)), 𝑠𝑤𝑎𝑝(𝑖, 𝑗), 𝑠𝑤𝑎𝑝(𝑗, 𝑖) }. A 𝗀𝗈𝗍𝗈 can only be programmed after a RAM 
action, which is not the case of line 4, since line 3 has another 𝗀𝗈𝗍𝗈 instruction.6 In other words the search node corresponding to 
the partially specified program from the previous example would have twelve children that could be added to the open list.

5.2.1. The evaluation functions

Here we present the evaluation and heuristic functions that guide the BFGP algorithm. The functions that range from 𝑓1 to 𝑓6
were introduced in prior work [31], while 𝑓7, 𝑓8 and 𝑓9 are introduced for first time in this article. Here we define two different 
families of evaluation functions, that exploit two different sources of information, to guide a combinatorial search in our GP solution 
space of partially specified planning programs:

• Program structure. Given a partially specified planning program Π, we define a set of evaluation functions 𝑓 (Π), that establish 
preferences/priors on the structure of the aimed generalized plans. For instance, following the Occam’s razor principle a structural 
function can prefer generalized plans of simpler complexity or it can prefer generalized plans with more programmed lines so 
execution failures can be detected earlier in the search.

– 𝑓1(Π), the number of 𝗀𝗈𝗍𝗈 instructions in Π.

6 In the hypothetical case that previous line 3. would contain a RAM action, a 𝗀𝗈𝗍𝗈 instruction for jumping to lines [0, 3] conditioned by the corresponding four 
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features in  could also be programmed at line 4.
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– 𝑓2(Π), the number of undefined program lines in Π.

– 𝑓3(Π), the maximum number of occurrences that any instruction 𝑤 ∈𝐴′
𝑍

is programmed in Π, i.e.,

𝑓3(Π) =𝑚𝑎𝑥𝑤∈𝐴′
𝑍

∑
𝑤𝑖∈Π

1(𝑤 ==𝑤𝑖).

– 𝑓7(Π), the max number of nested 𝗀𝗈𝗍𝗈 instructions in Π. A 𝗀𝗈𝗍𝗈 instruction jumps from an origin program line to a destination 
program line. We say that a 𝗀𝗈𝗍𝗈 instruction is nested when it appears within the origin and destination lines of another 𝗀𝗈𝗍𝗈
instruction.

• Fitness to the input instances. Given a partially specified planning program Π and a GP problem  = {𝑃1, … , 𝑃𝑇 }, we define a set 
of evaluation functions 𝑓 (Π, ) that assess the performance of Π on  , executing Π on each of the classical planning instances 
𝑃𝑡 ∈  , 1 ≤ 𝑡 ≤ 𝑇 . Section 3 defined the execution of a planning program on a classical planning instance as a deterministic 
procedure that terminates either succeeding to solve that instance or failing it. Likewise the execution of a partially specified 
planning program is a deterministic procedure that introduces a new termination case, reaching an unspecified program line. When 
the program execution terminates because an unspecified program line is reached, 𝑓 (Π, ) functions can be used to assess the 
cost of that program execution, as well as to estimate how far is the program from solving the given GP problem.

– 𝑓4(Π, ) = 𝑛 −𝑚𝑎𝑥𝑃𝑡∈𝑓4(Π, 𝑃𝑡), where 𝑓4(Π, 𝑃𝑡) returns the number of the undefined program line eventually reached after 
executing Π on the classical planning instance 𝑃𝑡 ∈  .

– 𝑓5(Π, ) =
∑

𝑃𝑡∈ 𝑓5(Π, 𝑃𝑡), where

𝑓5(Π, 𝑃𝑡) =
∑
𝑥∈𝑋𝑡

(𝑣𝑥 −𝐺𝑡(𝑥))2.

Here, 𝑣𝑥 ∈ 𝐷𝑥 is the value eventually reached, for the state variable 𝑥 ∈ 𝑋𝑡, after executing Π on the classical planning 
instance 𝑃𝑡 ∈  , and 𝐺𝑡(𝑥) is the value for this same variable as specified in the goals of 𝑃𝑡. Note that for Boolean variables the 
squared difference becomes a simple difference. This means that for STRIPS planning problems, where all the state variables 
are Boolean, 𝑓5(Π, 𝑃𝑡) is actually a counter of how many atomic goals in 𝐺𝑡 are still not true.

– 𝑓6(Π, ) =
∑

𝑃𝑡∈ |𝑒𝑥𝑒𝑐(Π, 𝑃𝑡)|, where 𝑒𝑥𝑒𝑐(Π, 𝑃𝑡) is the sequence of actions induced from executing the planning program Π
on the planning instance 𝑃𝑡.

– 𝑓8(Π, ) = 𝑓5(Π, ) + 𝑓6(Π, ) is the sum of an estimation to the goal and the total accumulated cost, akin to an evaluation 
function for 𝐴∗ searching algorithm.

– 𝑓9(Π, ) =𝑊 ⋅ 𝑓5(Π, ) + 𝑓6(Π, ) is similar to 𝑓8 but the estimation to the goal is multiplied by a factor 𝑊 , which is set to 
5 by default, akin to an evaluation function for 𝑊 𝐴∗ searching algorithm.

All these functions are evaluation functions (i.e. smaller values are preferred). The structural functions 𝑓1(Π), 𝑓2(Π), 𝑓3(Π) and 
𝑓7(Π), are all computed in linear time by traversing the bit-vector representation of Π. On the other hand, the computational 
complexity of the three empirical functions 𝑓4(Π, ), 𝑓5(Π, ), 𝑓6(Π, ), 𝑓8(Π, ) and 𝑓9(Π, ) is given by the complexity of the 
partially specified program Π. Performance-based functions accumulate a set of 𝑇 costs (one for each classical planning instance in 
the GP problem) that could actually be combined with different aggregation functions, e.g. sum, max, average, weighted average, etc. 
Functions 𝑓4(Π, ) and 𝑓5(Π, ) are the only cost-to-go heuristic functions; they provide an estimate on how far is a partially specified 
planning program from solving a GP problem. With this regard, 𝑓5(Π, ) requires that the goal condition of the classical planning 
instances in a GP problem is specified as a partial state. On the other hand 𝑓4(Π, ) does not impose requirements on the structure 
of the goal condition, so they can even be a black-box Boolean procedure over the state variables.

Example. We illustrate how our evaluation functions work on the following partially specified program Π = 0.swap(i,j)
1.inc(i) 2.dec(j) 3.goto(2,!(𝑦𝑧 ∧ ¬𝑦𝑐)) 4.<empty> 5.end, where only line 4 is not programmed yet. The value of 
the evaluation functions for this partially specified program is 𝑓1(Π) = 1, 𝑓2(Π) = 5 − 4 = 1, 𝑓3(Π) = 0, 𝑓7(Π) = 1. Given the GP 
problem  = {𝑃1, 𝑃2} that comprises the two classical planning instances illustrated in Fig. 2, and pointers 𝑖 and 𝑗 starting at the 
first and last object indexes, respectively, we can compute 𝑓4 and 𝑓5 to evaluate how far Π is from solving the GP problem of sorting 
lists, the accumulated cost 𝑓6, and evaluation functions 𝑓8 and 𝑓9 that combine heuristic-like functions with accumulated cost. In 
this case 𝑓4(Π, ) = 5 − 4 = 1, 𝑓5(Π, ) = 32, 𝑓6(Π, ) = 14 + 14 = 28, 𝑓8(Π, ) = 32 + 28 = 60 and 𝑓9(Π, ) = 32 + 5 ⋅ 28 = 172.

5.2.2. Theoretical properties

Theorem 4 (Termination). Given a generalized planning problem  , a finite set of pointers 𝑍 , and a finite number of program lines 𝑛, the 
execution of the BFGP algorithm always terminates.

Proof. By definition of the expansion procedure of the BFGP algorithm (i), only unspecified lines can be programmed and (ii), 
children programs always have one more line programmed than their parent. This means that BFGP increases the number of 
programmed lines, until all lines are programmed. When all lines are programmed BFGP necessarily terminates, either by succeeding 
to solve  , or by failing to solve some of the classical planning instances in  . The only possible cause for the non-termination of the 
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BFGP algorithm would be that BFGP could generate duplicate search nodes, allowing the infinite re-opening of an already discarded 
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node. By definition of the expansion procedure of the BFGP algorithm, the re-opening of an already discarded node is impossible;

BFGP only allows programming the maximum undefined program line that is reached after the execution of that program on all the 
instances in  . □

Theorem 5 (Completeness). Given a GP problem  , a maximum number of pointers |𝑍|, and maximum number of program lines 𝑛, if there 
is a planning program Π within these bounds that solves  , then the BFGP algorithm can compute it.

Proof. The BFGP algorithm implements a complete enumeration of the entire space of planning programs with a maximum number 
of pointers |𝑍| and maximum number of program lines 𝑛 except: (i), a search node was identified as a dead-end or (ii), the ancestor 
of a search node was identified as a dead-end. BFGP is safe because it only discards a search node when its corresponding partially 
specified planning program failed to solve an input planning instance (which is actually the definition for not being a GP solution). 
Furthermore, if a partially specified planning program failed to solve an input planning instance, any planning program that can be 
built programming the remaining undefined program lines will also fail to solve that problem. □

Theorem 6 (Soundness). If the execution of the BFGP algorithm on a GP problem  outputs a generalized plan Π, this means that Π is a 
solution for  .

Proof. The BFGP algorithm runs until: (i) the open list is empty, which means that search space is exhausted without finding a 
solution and no generalized plan is output or (ii), BFGP extracted from the open list a planning program whose execution, in all the 
classical planning instances 𝑃𝑡 ∈  , resulted successful. This is actually the definition of a solution for a GP problem. □

Theorem 7 (Time and Memory). The time and memory consumption of the BFGP algorithm are characterized by the big-Oh expression 
𝑂((|𝐴′

𝑍
| + (𝑛 − 2) × 4)𝑛).

Proof. The BFGP algorithm is an implementation of a BFS, whose memory and time complexity are characterized as 𝑂(𝑏𝑑 ), where 
𝑏 denotes the branching factor and 𝑑 denotes the depth of the corresponding search tree. The branching factor of the search tree 
induced by the BFGP algorithm is the number of different instructions that can be programmed at an undefined program line, which 
is 𝑏 ≤ |𝐴′

𝑍
| + (𝑛 − 2) × 4; gotos can only be programmed after RAM operations. The depth of the search tree induced by the BFGP is 

given by the maximum number of program lines 𝑛. □

BFGP may be incomplete in the sense that either the bound 𝑛 on the maximum number of program lines, or the maximum number 
of pointers available |𝑍|, may be too small to accommodate a solution to a given GP problem. With respect to solution quality BFGP 
does not guarantee that the computed planning programs are optimal. BFGP can however be run in anytime mode and use 𝑓6(Π, )
to rank GP solutions according to their execution cost in the classical planning instances that are comprised in the given GP problem 
(e.g. to prefer a sorting planning program with smaller computational complexity).

6. Evaluation

This section evaluates the empirical performance of our GP as heuristic search approach. All experiments are performed in an 
Ubuntu 20.04 LTS, with AMD® Ryzen 7 3700x 8-core processor × 16 and 32 GB of RAM.7

6.1. Benchmarks

We report results in nine different domains; three propositional domains and six numeric domains. In the propositional domains the 
functions Φ that induce the state variables are Boolean. In the numeric domains these functions are positive numeric functions. Next, 
we provide more details on each of the nine domains:

• Corridor, an agent moves from an arbitrary initial location to a destination location in a corridor.

• Gripper, a robot must pick all balls from room A and drop them in room B.

• Visitall, starting from the bottom-left corner of a squared grid, an agent must visit all cells.

• Fibonacci, compute the 𝑛𝑡ℎ term of the Fibonacci sequence.

• Find, counts the number of occurrences of a specific value in a list.
• Reverse, for reversing the content of a list.
• Select, find the minimum value of a list.
• Sorting, for sorting the values of a vector.

• Triangular Sum, compute the 𝑛𝑡ℎ triangular number.
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Corridor, gripper and visitall are propositional, the remaining six domains are numeric. For each domain, we build a GP problem 
that comprises ten randomly generated classical planning instances8; in the case of the corridor domain, instances go from corridors 
of length 3 to 12; in gripper, instances have from 2 to 11 balls in room A to be dropped in room B; in visitall instances are squared 
grids ranging from 2 × 2 to 11 × 11 cells; Fibonacci and triangular sum instances ranging from the 2𝑛𝑑 to the 11𝑡ℎ number in the 
sequence; and the remaining domains, find, reverse, select and sorting have instances with vectors from size 2 to 11 that are initialized 
with random content. The result of arithmetical operations in these domains is bounded to 102 in the synthesis of GP solutions, and 
to 109 in the validation of GP solutions.

All domains include the base set of RAM instructions {𝚒𝚗𝚌(𝑧1), 𝚍𝚎𝚌(𝑧1), 𝚌𝚖𝚙(𝑧1, 𝑧2), 𝚜𝚎𝚝(𝑧1, 𝑧2) | 𝑧1, 𝑧2 ∈𝑍}, such that 𝑧1 and 𝑧2
are pointers of the same type, and the RAM instructions {𝚝𝚎𝚜𝚝(𝜙(⃖⃖⃖⃗𝑧1)), 𝚌𝚖𝚙(𝜙(⃖⃖⃖⃗𝑧1), 𝜙(⃖⃖⃖⃗𝑧2)) | ⃖ ⃖⃖⃗𝑧1, ⃖⃖⃖⃗𝑧2 ∈𝑍𝑎𝑟(𝜙) }, for each function 𝜙 ∈ Φ
and where function parameters and pointers also are of the same type. We remind the reader that compare instructions are only 
defined for numeric functions. In addition, each domain contains the regular planning action schemes that do not affect the FLAGS. 
We also recall that planning actions are modeled as they are always executable, but that their effects only update the current state if 
their preconditions hold in the current state. Otherwise the execution of an action has no effect.

• Propositional domains. The corridor domain needs two planning action schemes, 𝚖𝚘𝚟𝚎_𝚕𝚎𝚏𝚝(𝑧1, 𝑧2) and 𝚖𝚘𝚟𝚎_𝚛𝚒𝚐𝚑𝚝(𝑧1, 𝑧2), to 
move from location at 𝑧1 to location at 𝑧2, which must be exactly one location to the left or the right of 𝑧1 , respectively. The 
gripper domain includes the following three action schemes; 𝚖𝚘𝚟𝚎(𝑧1, 𝑧2) to denote the robot is moving from the room pointed 
by 𝑧1 to the one pointed by 𝑧2, 𝚙𝚒𝚌𝚔(𝑧1, 𝑧2, 𝑧3) to pick the ball pointed by 𝑧1, at room pointed by 𝑧2, and with the gripper 
pointed by 𝑧3, and 𝚍𝚛𝚘𝚙(𝑧1, 𝑧2, 𝑧3), to drop ball 𝑧1 at room 𝑧2 with gripper 𝑧3. Visitall needs four action schema to move in 
the four cardinal directions of grid, i.e. 𝚖𝚘𝚟𝚎_𝚕𝚎𝚏𝚝(𝑧1, 𝑧2, 𝑧3) to move one to the left from column 𝑧1 to 𝑧2, at row 𝑧3 (resp. for 
𝚖𝚘𝚟𝚎_𝚛𝚒𝚐𝚑𝚝), and 𝚖𝚘𝚟𝚎_𝚞𝚙(𝑧1, 𝑧2, 𝑧3) to move once up from row 𝑧1 to 𝑧2, at column 𝑧3 (resp. for 𝚖𝚘𝚟𝚎_𝚍𝚘𝚠𝚗); every move visits 
the destination cell.

• Numeric domains. The triangular sum and Fibonacci domains include the action schemes 𝚟𝚎𝚌𝚝𝚘𝚛_𝚒𝚗𝚌(𝑧1) and 𝚟𝚎𝚌𝚝𝚘𝚛_𝚍𝚎𝚌(𝑧1), 
to increase and decrease by one the content of the vector at 𝑧1, and the action scheme 𝚟𝚎𝚌𝚝𝚘𝚛_𝚊𝚍𝚍(𝑧1, 𝑧2) for adding the content 
of the vector at 𝑧2 to the content at 𝑧1. Select only requires one action schema to mark a specific vector index at 𝑧1 as selected, 
i.e. 𝚜𝚎𝚕𝚎𝚌𝚝(𝑧1). Find includes the 𝚊𝚌𝚌𝚞𝚖𝚞𝚕𝚊𝚝𝚎(𝑧1) action schema for counting the number of occurrences of the target element. 
Reverse and Sorting include the 𝚜𝚠𝚊𝚙(𝑧1, 𝑧2) action scheme to swap the vector values addressed by 𝑧1 and 𝑧2.

6.2. Synthesis and validation of GP solutions

Here we present the first experiments to evaluate the performance of the BFGP algorithm. First, we assess every evalua-

tion/heuristic function 𝑓𝑖 by running BFGP(𝑓𝑖). Then we show the solutions generated by the best configuration, 𝐵𝐹𝐺𝑃 (𝑓5). Last, 
the synthesized solutions are validated w.r.t. test sets of larger instances (i.e. larger number of objects).

6.2.1. Performance of BFGP(𝑓𝑖)

Table 1 details the results of the first synthesis experiment where the BFGP algorithm uses each of our nine different evalua-

tion/heuristic functions (the computation bounds are 3, 600 seconds of CPU time and 32𝐺𝐵 of memory and best results are shown in 
bold). Regarding structure-based functions 𝑓2 dominates in all domains and metrics (except in the reverse domain where 𝑓3 is faster 
and 𝑓1 expands fewer nodes) and it also has the highest coverage solving 7 out of 9 domains (𝑓1, 𝑓3 and 𝑓7 have lower coverage 
failing in the same four domains, namely corridor, gripper, sorting and visitall). Regarding performance-based functions, 𝑓5 is the clear 
winner with the best scores in more than half of domains and with full coverage over the benchmarks, followed by 𝑓4 and 𝑓9 that 
cover 6 domains but improving the metrics of 𝑓5 in several domains, e.g., 𝑓4 has the lowest memory consumption in all domains and 
expands and/or evaluates fewer nodes in Fibonacci, reverse and triangular sum.

Table 2 summarizes the results from Table 1, grouping results by domains and averaging the metrics by the total number of 
functions that solved each domain. There are 5 domains which are solved by all the nine evaluation/heuristic functions. In the rest 
of domains, there are at least 5 or more functions that do not solve them, i.e. gripper is only solved by 𝑓2, 𝑓4, 𝑓5 and 𝑓8; corridor and 
visitall are the least solved domains (only 𝑓5 solved them); and sorting which is solved by 𝑓2 and 𝑓5 but it is the hardest in terms of 
each metric average.

6.2.2. The synthesized solutions

Fig. 13 shows the programs computed by 𝐵𝐹𝐺𝑃 (𝑓5). In Corridor there are two pointers, 𝑙1 and 𝑙2, that start pointing to the first 
location; the solution moves the agent to the rightmost cell, then one by one to the left while not at goal cell. In Fibonacci, pointers 𝑖
and 𝑗 are used to compute the 𝑛-th Fibonacci number, where 𝑖 addresses the 𝐹𝑖 number to which 𝐹𝑖−1 and 𝐹𝑖−2 are added using 𝑗 as 
an auxiliary pointer; and finishes when 𝑖 reaches the 𝑛-th element (the last one). In Find, there is a pointer 𝑖 to iterate over a vector, 
accumulating for each vector location the occurrences of a target value.

The Gripper solution uses one pointer for balls (𝑏1), two for rooms (𝑟1 and 𝑟2) and one for grippers 𝑔1; for each ball 𝑏1, the agent 
will pick it up from room 𝑟1 (always room A) using gripper 𝑔1 (always left gripper), sets 𝑟2 to room B, moves from A to B, drop 
ball 𝑏1 at room B, goes back to room A, and continues with the next ball. The Reverse domain uses two pointers 𝑖 and 𝑗 and finds a 
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Table 1

We report the number of program lines 𝑛, and pointers |𝑍| per domain, and for each evaluation/heuristic function, CPU time (secs), memory peak (MBs), and the 
numbers of expanded and evaluated nodes. TE stands for Time-Exceeded (>1h of CPU time). Best results in bold.

Domain 𝑛, |𝑍| 𝑓1 𝑓2 𝑓3

Time Mem. Exp. Eval. Time Mem. Exp. Eval. Time Mem. Exp. Eval.

Corridor 10, 2 TE - - - TE - - - TE - - -

Fibonacci 7, 2 167 164 42.6K 373.8K 72 5 38.0K 38.1K 1,254 259 627.2K 783.9K

Find 4, 1 0 4 9 31 0 4 4 14 0 4 8 31

Gripper 8, 4 TE - - - 1,988 5 1.1M 1.1M TE - - -

Reverse 7, 2 83 45 82.6K 148.8K 109 5 135.8K 135.9K 80 68 88.8K 164.0K

Select 7, 2 550 82 354.3K 361.3K 458 5 340.4K 340.4K 336 115 228.2K 281.2K

Sorting 9, 2 TE - - - 3,555 5 3.5M 3.5M TE - - -

T. Sum 5, 2 1 6 373 2.7K 0 5 207 238 1 6 408 3.0K

Visitall 13, 4 TE - - - TE - - - TE - - -

Average 160.2 60.2 96.0K 177.3K 883.1 4.9 730.6K 730.6K 334.2 90.4 188.9K 246.4K

𝑓4 𝑓5 𝑓6

Corridor 10, 2 TE - - - 86 41 16.8K 78.1K TE - - -

Fibonacci 7, 2 77 5 38.1K 38.2K 187 189 68.5K 457.7K 287 333 104.8K 793.4K

Find 4, 1 0 4 4 14 0 4 4 14 0 4 9 31

Gripper 8, 4 2,015 6 1.1M 1.1M 20 39 3.6K 74.9K TE - - -

Reverse 7, 2 98 5 136.4K 137.3K 186 81 220.1K 221.0K 188 87 216.9K 220.1K

Select 7, 2 434 6 348.8K 349.6K 78 81 29.0K 196.3K 524 142 339.2K 346.9K

Sorting 9, 2 TE - - - 2,054 2,483 988.9K 6.3M TE - - -

T. Sum 5, 2 0 5 207 238 1 6 343 2.3K 1 6 448 3.2K

Visitall 13, 4 TE - - - 998 67 116.6K 122.7K TE - - -

Average 437.3 5.2 270.6K 270.9K 401.1 332.3 160.4K 828.1K 200.0 114.4 132.3K 272.7K

𝑓7 𝑓8 𝑓9

Corridor 10, 2 TE - - - TE - - - TE - - -

Fibonacci 7, 2 239 264 81.3K 627.4K 273 285 86.3K 687.6K 159 182 62.5K 435.1K

Find 4, 1 0 4 9 31 0 4 4 14 0 4 4 14

Gripper 8, 4 TE - - - TE - - - 22 38 3.6K 74.1K

Reverse 7, 2 146 62 169.5K 205.1K 204 78 219.8K 220.9K 203 78 219.8K 220.9K

Select 7, 2 456 95 292.7K 332.8K 559 140 339.2K 346.8K 536 82 332.6K 346.7K

Sorting 9, 2 TE - - - TE - - - TE - - -

T. Sum 5, 2 1 6 428 3.0K 1 6 388 3.0K 1 6 336 2.3K

Visitall 13, 4 TE - - - TE - - - TE - - -

Average 168.4 86.2 108.8K 233.7K 207.4 102.6 129.1K 251.7K 153.5 65.0 103.1K 179.9K

Table 2

We report for each domain, the time (secs), memory peak (MBs), and 
expanded and evaluated nodes averaged by the number of functions that 
solved the domain in Table 1.

Domain Time Mem. Exp. Eval. #𝑓𝑖 Solved

Corridor 86.0 41.0 16.8K 78.1K 1

Fibonacci 442.6 227.9 0.2M 0.6M 9

Find 0.0 4.0 6.1 21.6 9

Gripper 1,011.3 22.0 1.1M 1.2M 4

Reverse 144.1 56.6 165.5K 186.0K 9

Select 436.8 83.1 289.4K 322.4K 9

Sorting 2,805.5 1,244 2.2M 4.9M 2

T. Sum 0.8 5.8 348.7 2.2K 9

Visitall 998.0 67.0 116.6K 122.7K 1

solution with 𝑂(𝑛2) complexity of a vector of size 𝑛; it moves all values from 𝑗 to 𝑛 − 1 indexes once to the right and places the last 
element in the 𝑗-th location, using 𝑖 as an auxiliary pointer; then increases 𝑗 by one until it reaches the end of the vector. The Select

domain has two pointers 𝑖 and 𝑗; it iterates over the vector with pointer 𝑖, and assigns 𝑖 to 𝑗 every time the value pointed by 𝑖 is 
smaller than the one pointed by 𝑗, at the end 𝑗 will point to the smallest value which will be selected.

The Sorting solution is succinct but easy to interpret; while visiting each vector index in increasing order with 𝑖 and 𝑗 pointers 
s.t. 𝑗 = 𝑖 − 1, if 𝑖𝑡ℎ value is smaller than 𝑗𝑡ℎ it moves the value backwards in the vector until it is relatively sorted, then proceeds 
searching for the next pair of adjacent and unsorted values, until all values are sorted. In Triangular Sum, given a vector initialized 
as 𝑣𝑖𝑑𝑥 = 𝑖𝑑𝑥, each index is visited in increasing order with pointers 𝑖 and 𝑗 such that 𝑗 = 𝑖 − 1, executing for each one 𝑣𝑖 ← 𝑣𝑖 + 𝑣𝑗 . 
21

The last domain, Visitall, has two pointers 𝑟1 and 𝑟2 for rows, and two more 𝑐1 and 𝑐2 to iterate over columns. Since the agent starts 
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CORRIDOR

0. move_right(l1,l2)

1. set(l1,l2)

2. inc(l2)

3. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

4. move_left(l1,l2)

5. set(l1,l2)

6. dec(l2)

7. test(goal_at(l1))

8. goto(4,¬(¬𝑦𝑧 ∧ 𝑦𝑐))

9. end

FIBONACCI

0. vector_add(i,j)

1. dec(j)

2. vector_add(i,j)

3. set(j,i)

4. inc(i)

5. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

6. end

FIND

0. accumulate(i)

1. inc(i)

2. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
3. end

GRIPPER

0. pick(b1,r1,g1)

1. inc(r2)

2. move(r1,r2)

3. drop(b1,r2,g1)

4. move(r2,r1)

5. inc(b1)

6. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
7. end

REVERSE

0. set(i,j)

1. swap(i,j)

2. inc(i)

3. goto(1,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

4. inc(j)

5. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

6. end

SELECT

0. cmp(vector(i),vector(j))

1. goto(3,¬(¬𝑦𝑧 ∧ ¬𝑦𝑐))

2. set(j,i)

3. inc(i)

4. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

5. select(j)

6. end

SORTING

0. cmp(vector(i),vector(j))

1. goto(5,¬(¬𝑦𝑧 ∧ ¬𝑦𝑐))

2. swap(i,j)

3. dec(i)

4. dec(i)

5. set(j,i)

6. inc(i)

7. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

8. end

TRIANGULAR SUM

0. vector_add(i,j)

1. set(j,i)

2. inc(i)

3. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

4. end

VISITALL

0. inc(c1)

1. move_right(c2,c1,r1)

2. inc(c2)

3. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

4. inc(r1)

5. move_up(r2,r1,c1)

6. dec(c1)

7. move_left(c2,c1,r1)

8. dec(c2)

9. goto(5,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

10. inc(r2)

11. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

12. end

Fig. 13. Solutions computed by BFGP(𝑓5).

GRIPPER

0. test(goal_at(b1,r2))

1. goto(3,¬(¬𝑦𝑧 ∧ 𝑦𝑐 ))
2. inc(r1)

3. test(goal_at(b1,r2))

4. goto(6,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
5. inc(r2)

6. pick(b1,r1,g1)

7. move(r1,r2)

8. drop(b1,r2,g1)

9. move(r2,r1)

10. inc(b1)

11. goto(6,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
12. end

Fig. 14. Alternative solution to the Gripper domain. This program is interpreted as moving 𝑟1 to room A if both pointers are initially in room B, otherwise move 𝑟2
to room B, then for each ball run a pick action, move to room B, drop it, move back to room A, until all balls have been moved.

in the bottom-left corner, the strategy consists of visiting the grid row by row, going first to the right, once up, then all to the left, 
until all rows are visited.

BFGP implements an inductive approach to GP, this means that the computed generalized plans are synthesized with the only 
requirement of satisfying the formal specification given by the finite set of input examples. Therefore, in domains where input 
examples follow a clear distribution, it may then be exploited by BFGP (e.g. the locations of a corridor or grid, or the indexes of a 
vector, which are naturally expressed in a specific order). However, the object ordering does not affect the correctness/completeness 
of the approach, e.g. the Sorting program is able to sort any input list no matter its size or content, or the Blocks Ontable program 
(Fig. 15) puts all blocks onto the table no matter the block names, their ordering, or the initial towers settings, with the cost of an 
extra iteration. In the particular case of Gripper, rooms are constants in the domain, for that reason they always appear in the same 
order. In case we shuffle the rooms order for each instance, we would either need more lines to solve Gripper (i.e. solve the problem 
for each possible permutation), or add the goal information in the initial state, as it is done in Corridor and Grid, to keep the solution 
short. In the latter, the planning program of Fig. 14 solves all Gripper instances with no particular order in rooms.

6.2.3. Validation of the synthesized solutions

Here we validate the BFGP(𝑓5) solutions of Fig. 13 with a larger and harder set of instances. Table 3 reports the CPU time, 
and peak memory, yield when running the solutions synthesized by 𝐵𝐹𝐺𝑃 (𝑓5) on a validation set. All the solutions synthesized by 
22

𝐵𝐹𝐺𝑃 (𝑓5) were successfully validated. The largest CPU times and memory peaks correspond to the configuration that implements 
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Table 3

Validation set, CPU time (secs) and memory peak for program validation, with/out 
infinite program detection. Best results in bold.

Domain Instances Time∞ Mem∞ Time Mem

Corridor 100 0.42 11.4MB 0.13 10.8MB

Fibonacci 33 0.03 5.8MB 0.02 5.6MB

Find 100 9.84 70.1MB 0.69 48.5MB

Gripper 1,000 153.53 1,007.6MB 16.88 968.2MB

Reverse 100 6.67 30.2MB 1.40 12.5MB

Select 100 18.39 163.8MB 1.38 113.2MB

Sorting 100 4.98 31.9MB 1.49 12.5MB

Triangular Sum 1,000 72.69 706.2MB 9.59 685.7MB

Visitall 50 44.48 403.3MB 3.83 79.7MB

Table 4

For each domain we report, CPU time (secs), memory peak (MBs), num. of expanded and evaluated nodes of BFGP(𝑓3, 𝑓5), BFGP(𝑓5, 𝑓3) and BFGP(𝑓5). Best results 
in bold.

Domain
BFGP(𝑓3, 𝑓5) BFGP(𝑓5, 𝑓3) BFGP(𝑓5)

Time Mem. Exp. Eval. Time Mem. Exp. Eval. Time Mem. Exp. Eval.

Corridor 38 25 7.8K 44.2K 38 25 7.8K 44.2K 86 41 16.8K 78.1K

Fibonacci 1,227 139 579.7K 718.2K 457 139 293.8K 431.2K 187 189 68.5K 457.7K

Find 0 4 3 14 0 4 4 14 0 4 4 14

Gripper 19 37 3.2K 69.5K 20 37 3.4K 69.6K 20 39 3.6K 74.9K

Reverse 125 61 134.6K 163.8K 201 61 219.9K 220.9K 186 81 220.1K 221.0K

Select 65 64 23.6K 152.9K 65 64 23.6K 152.9K 78 81 29.0K 196.3K

Sorting 1,137 1,604 516.4K 3.9M 1,215 1,596 555.2K 4.0M 2,054 2,483 988.9K 6.3M

T. Sum 1 6 304 2.2K 1 6 304 2.2K 1 6 343 2.3K

Visitall 276 30 32.3K 42.8K 969 43 116.6K 121.6K 998 67 116.6K 122.7K

Average 320.9 218.9 144.2K 566.0K 329.6 219.4 135.6K 560.3K 401.1 332.3 160.4K 828.1K

the detection of infinite programs, which requires saving states to detect whether they are revisited during execution. Skipping this 
mechanism validates terminating programs with less memory and much faster [41].

In the validation set, each state variable from the planning domain is bounded by 109, instead of 102 which was the synthesis 
bound. Corridor is validated over 100 instances with corridors of length 𝑛 ∈ [13, 112] and random initial and goal locations. Gripper

is validated over 1,000 instances of 𝑛 ∈ [12, 1011] balls that are initially in room A and need to be moved to room B. Fibonacci has 
a validation set of 33 instances, ranging from the 12𝑡ℎ Fibonacci term to the 44𝑡ℎ, i.e. the integer 701,408,733 (the 45𝑡ℎ number 
would overflow the validation bound). The solutions for Select, and Find domains, are validated on 100 instances each, with vector 
sizes ranging from 100 to 1,090, and random integer elements bounded by 109. Similarly, Reverse and Sorting have 100 validation 
instances with vectors of random integers, but their sizes range from 12 to 111. The solution for Triangular Sum is validated over 
1,000 instances, the last one corresponding to the 1,011𝑡ℎ term in the sequence, i.e. the integer 511,566. In Visitall, there are 50
validation instances with squared grids ranging from 12 × 12 to 61 × 61.

6.3. Performance of BFGP with function combinations

The base performance of BFGP with a single evaluation/heuristic function is improved combining both structural and cost-

to-go information; we can guide the search of BFGP with a cost-to-go heuristic function and break ties with a structural evalu-

ation function, and vice versa. Thus, we run all configurations of BFGP(𝑓𝑖, 𝑓𝑗 ) and BFGP(𝑓𝑗 , 𝑓𝑖) such that 𝑓𝑖 ∈ {𝑓1, 𝑓2, 𝑓3, 𝑓7}
and 𝑓𝑗 ∈ {𝑓4, 𝑓5, 𝑓6, 𝑓8, 𝑓9}, and select the configuration that solves all domains with the best average time. There are 40
BFGP(𝑓𝑖, 𝑓𝑗 )/BFGP(𝑓𝑗 , 𝑓𝑖) configurations, but only BFGP(𝑓3, 𝑓5) and BFGP(𝑓5, 𝑓3) are able to solve all domains. The performance 
of these two configurations is then compared against BFGP(𝑓5), since it is the only single evaluation/heuristic function that solve 
all domains in the previous experiment. Table 4 summarizes that comparison, showing that BFGP(𝑓5) is improved in every domain 
either by BFGP(𝑓3, 𝑓5) or BFGP(𝑓5, 𝑓3). Furthermore, BFGP(𝑓3, 𝑓5) has the best average performance in time and memory, shortly 
followed by BFGP(𝑓5, 𝑓3) that has the best average in node expansions and evaluations, empirically proving that goal-oriented 
functions might be benefited when combined with structural-based functions.

6.4. Comparative synthesis performance with related GP solvers

The comparative analysis of GP solvers performance is complex mainly because of their different assumptions, problem specifica-

tion, feature language, hyper-parameters, and different solution representations (non-/deterministic, boolean/numeric, …) [21]. In 
this regard, we have chosen the two closest GP solvers in terms of solution representation, i.e. Planning Programs (PP) [33] and Hier-

archical Finite State Controllers (HFSC) [61]. Both approaches are compilation-based, where the input is a classical planning domain 
23

with some instances, and an upper bound in the number of program lines (𝑛) for PP, or in the number of controller states (|𝑄|) for
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Table 5

Computing CPU time (secs) for solving domains in the GP compilation approaches, i.e. PP [33] and HFSC [61], and 𝐵𝐹𝐺𝑃 (𝑓3 , 𝑓5). Accumulated size of the classical 
plans, ∑𝑖 |𝜋𝑖|, and number of instructions, ∑𝑖 |Π𝑖|.

Domain || PP HFSC BFGP(𝑓3, 𝑓5)

𝑛 Time (s)
∑

𝑖 |𝜋𝑖| ∑
𝑖 |Π𝑖| |𝑄| Time (s)

∑
𝑖 |𝜋𝑖| ∑

𝑖 |Π𝑖| 𝑛, |𝑍| Time (s)
∑

𝑖 |𝜋𝑖| ∑
𝑖 |Π𝑖|

Corridor 10 6 188.72 68 260 3 1.31 66 279 10,2 39.39 64 500

Fibonacci 4 6 68.84 40 70 5 1,296.52 39 138 7,2 675.99 36 108

Find 8 5 27.99 80 165 3 119.86 88 283 4,1 0.02 24 132

Gripper 10 6 2.48 260 406 4 8.28 260 806 8,4 19.22 260 455

Reverse 4 6 TE - - 5 TE - - 7,2 40.61 34 144

Select 6 5 TE - - 3 599.28 36 161 7,2 27.15 6 123

Sorting 10 8 TE - - 7 TE - - 9,2 1,158.12 107 1,641

Triangular Sum 3 4 55.23 18 43 3 218.44 30 104 5,2 0.16 12 48

Visitall 3 7 TE - - 4 201.02 49 193 13,4 60.84 46 243

HFSC. Both approaches produce a single domain and instance that can be solved with an off-the-shelf classical planner. Solutions 
to the produced instances are computed following a top-down strategy, with the LAMA-2011 [99] planner (first solution setting) of 
the Fast-Downward [8] system, that produce sequences of interleaved programming and executing actions, from which the programs, 
controllers and classical plans can be induced.

Section 5 already discussed the relation between the search spaces of PP (worst case intractable, e.g. integer representation) and

BFGP (tractable with bounded size). PP and HFSC are proven to have equivalent solutions in the other representation [61], so the 
theory proven in Section 5 actually applies to both. A priori, there are some strengths and weaknesses that were already previously 
identified for PP and HFSC [61,33]:

• Strengths:

– GP problems can be solved with an off-the-shelf classical planner,

– classical planners are biased towards shorter solution plans (which may produce succinct generalized plans),

– good performance for small bounds and problems with small number of objects.

• Weaknesses:

– Computation sensitive to the order of the input instances and their number of objects,

– scalability dramatically drops down when the number of input instances grows,

– require hand-coding features as derived predicates in several domains or extra knowledge to compute generalized plans with 
deterministic behavior, e.g. in gripper domain the balls need to be serialized to know which ball is the next one to be picked,

– the synthesized generalized plans can over-fit because the feature language includes all fluents in the set of classical planing 
instances given as input.

Compared to PP and HFSC, the strengths and weakness of BFGP are:

• Strengths:

– The computation of generalized plans is not affected by the order of input instances,

– the scalability of BFGP decreases smoothly and continuously with the number of objects,

– solutions do not over-fit because of the feature language (over-fitting is only due to poorly sampled input instances),

– domains do not require extra knowledge (BFGP implements an agnostic feature generation).

• Weaknesses:

– BFGP is not using off-the-shelf classical planning machinery, although most of them could be adapted [65],

– generalized plans are longer because of pointer manipulations, which may reduce performance in simple instances,

– BFGP may require to increase the default number of input pointers.

The experimental setting for comparing GP solvers uses the same || = 10 random input instances as in BFGP synthesis experi-

ments. Since we observed that PP and HFSC were limited by this number, we have however proceed on removing the largest instance 
from the pool of instances, until one of them solved the problem without over-fitting. In addition, we encoded extra knowledge in 
the PP and HFSC domains, when necessary, with the form of derived predicates to guarantee generalization, which in turn helped to 
compute shorter generalized plans, e.g. in corridor domain it requires to know whether the agent is at the goal or in the rightmost 
location; and in gripper it requires to serialize the balls and know whether no more balls are in room A; and so on. The comparison 
of the three GP solvers is shown in Table 5; even with the advantage given to PP and HFSC, with the hand-crafted extra knowl-

edge in their domains and the reduction of input instances (yielding to shortest number of executed instructions in half of domains 
i.e.

∑
𝑖 |Π𝑖|), BFGP outperforms PP and HFSC in many aspects, i.e. full coverage over the benchmarks, best computation time in 6
24

out of 9 domains, and shortest classical plans in all domains (i.e. 
∑

𝑖 |𝜋𝑖|), with less assumptions.
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6.5. Validation of GP solutions in more complex domains

Here we present several GP benchmarks, with known polynomial time solutions, that are too complex for our current BFGP

algorithm (within the given time and memory bounds). Our aim is showing that our approach is expressive enough to represent 
solutions to GP problems coming from IPC planning domains, noise-free supervised classification tasks, and numeric domains. These 
solutions are succinctly represented as GP plans, instead of long sequences of grounded actions for large problems, and validated 
efficiently without being affected by the grounding methods of current off-the-shelf classical planners.

• Blocks Ontable, towers of blocks where all blocks must be placed on the table.

• Grid, an agent has to move from an arbitrary location to a destination one in a 2D grid.

• Miconic, is an elevator problem where passengers at origin, wait for the elevator to enter, and then served at their destination 
floor.

• Michalski Trains, is a classic of relational supervised machine learning. A binary noise-free classification task with 10 trains that 
either go east or west, and multiple features such as the number of wheels, wagons, or their shape for each train among others. 
The goal is to learn the features that classify all trains in the right direction.

• Satellite, consists of taking images of different targets with instruments that are boarded in satellites. In addition, instruments 
need to be calibrated and in specific modes for taking each image; and each satellite has only power for one instrument at a 
time, so it needs to switch the current instrument off, switch on the next and calibrate it, before using a new instrument for 
taking images.

• Sieve of Erathostenes, is a method to find prime numbers up to a certain bound using only additive and iterative mechanisms.

• Spanner, consists of tighten all loose nuts at the end of a corridor, with the picked spanners along the corridor. Spanners can 
only be used once, and when the agent moves to the next room it can not go back, so if there are unpicked spanners in visited 
rooms the task could become unsolvable.

Fig. 15 shows the hand-coded solutions for these benchmarks. In Blocks Ontable, given 𝑛 blocks the complexity of the solution is 
cubic, i.e. 𝑂(𝑛3), where it searches 𝑛 times, every 𝑜1 block that is on top of an 𝑜2 block, then unstack and put 𝑜1 down on the table. In 
Spanner, an agent picks up all available spanners in location 𝑙2, walks to the next 𝑙1 location and repeats the process until it reaches 
the last location (the gate), collecting all spanners on its path; once in the gate, it tightens each loose nut with a spanner. The solution 
to Michalski Trains is summarized as, each train 𝑡1 will go east if it has a car which is closed and short, otherwise it will go west. In 
Sieve of Eratosthenes all numbers are initially classified as primes, and it should decide whether they are not; so it iterates over 𝑖 and 
uses 𝑗 and 𝑘 as auxiliary pointers, where the first acts as a counter that ranges from 0 to 𝑖, and second adds up to the next multiple 
of 𝑖, i.e. 𝑘 % 𝑖 = 0; then every 𝑘-th number will be set to no prime, 𝑖 is increased by one and the process repeats until 𝑖 reaches the 
last element. In Grid, the agent moves to the top-right corner, then it moves left while not at the goal column, then down while not 
at the goal row, visiting the resulting coordinate. In Miconic, the elevator moves to the upmost floor, then for every floor down, it 
boards and departs all available passengers, once in the bottom floor, it moves upwards serving the remaining passengers that are in 
the elevator until reaching the upmost floor again. The last domain, Satellite, is the most complex because it requires iteration over 
multiple variable types, i.e. satellites, instruments, modes and directions. The solution to this domain consists of switching off all 
instruments and turning all satellites to the first direction; then for each satellite, the 𝑖1 instrument is switched on, calibrated with its 
calibration target direction 𝑑2, and used to take images of every direction 𝑑2 in every mode 𝑚1; once it finishes, the satellite turns 
to the first direction 𝑑1 again, switches off the current instrument, and continues with the next one, until all satellites have used all 
their instruments.

We get some main take away lessons from the analysis of Fig. 15 solutions; solutions have common high-level structures, that 
either iterate over all combinations of variable types (i.e. Blocks, Miconic, Satellite, . . . ), or build complex logic queries (i.e. Michalski 
Trains) which in some cases require the goal information to be coded in the initial state (i.e. Grid with goal_column and goal_row). 
This suggests that planning programs may be synthesized more efficiently using predefined structures (such as FOR or IF-THEN-

ELSE constructs [100]) although this is out of the scope of this paper.

Table 6 shows the validation results in complex domains, where validation without infinite detection again scales better. All 
domains are successfully validated (except Blocks Ontable and Satellite with infinite detection mode that get a time- and memory-

exceeded, respectively). Blocks Ontable can be solved with 13 lines and 3 pointers, and the validation set consists of 100 instances that 
range from 12 to 111 blocks. Grid requires 21 lines of code and 4 pointers, and it is validated with 50 instances with grids between 
12 × 12 and 111 × 111 size. Miconic needs 25 lines and 3 pointers, and 100 instances that validates from 12 floors and 18 passengers 
to 111 floors and 166 passengers. Michalski Trains uses 15 lines and 6 pointers to classify all the trains in the unique classical task 
with 10 trains and their features. Satellite is by difference the most complex in terms of required lines and pointers, which are 43 and 
5, respectively. Its validation set consists of 20 instances, starting with 11 satellites, 22 instruments and modes, and 44 directions, 
and finishing with 30 satellites, 60 instruments and modes and 120 directions. Sieve of Erathostenes requires 16 lines and 3 pointers 
to classify either as prime or non-prime, all the numbers comprised in the first 114 natural numbers. Spanner, uses 14 lines and 5
pointers to solve all 100 instances of the validation set, that range from 24 spanners and nuts and a corridor with 12 locations, to 
25

222 spanners and nuts and a corridor with 111 locations.
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BLOCKS ONTABLE

0. dec(o2)

1. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

2. dec(o1)

3. goto(2,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

4. unstack(o1,o2)

5. put_down(o1)

6. inc(o1)

7. goto(4,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

8. inc(o2)

9. goto(2,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

10. inc(o3)

11. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

12. end

SPANNER

0. pickup_spanner(l2,s1,m1)

1. inc(s1)

2. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
3. dec(s1)

4. goto(3,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
5. inc(l2)

6. walk(l1,l2,m1)

7. inc(l1)

8. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
9. tighten_nut(l1,s1,m1,n1)

10. inc(s1)

11. inc(n1)

12. goto(9,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
13. end

MICHALSKI TRAINS

0. test(has_car(t1,c1))

1. goto(7,¬(¬𝑦𝑧 ∧ 𝑦𝑐 ))
2. test(closed(c1))

3. goto(7,¬(¬𝑦𝑧 ∧ 𝑦𝑐 ))
4. test(short(c1))

5. goto(7,¬(¬𝑦𝑧 ∧ 𝑦𝑐 ))
6. set_eastbound(t1)

7. inc(c1)

8. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
9. set_westbound(t1)

10. dec(c1)

11. goto(10,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
12. inc(t1)

13. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
14. end

SIEVE OF ERATHOSTENES

0. inc(i)

1. inc(i)

2. set(k,i)

3. dec(j)

4. goto(3,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
5. inc(k)

6. goto(13,¬(¬𝑦𝑧 ∧ 𝑦𝑐 ))
7. inc(j)

8. cmp(i,j)

9. goto(5,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
10. set_no_prime(k)

11. cmp(i,j)

12. goto(3,¬(¬𝑦𝑧 ∧ 𝑦𝑐 ))
13. inc(i)

14. goto(2,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
15. end

GRID

0. inc(c2)

1. move_right(c1,c2)

2. inc(c1)

3. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

4. inc(r2)

5. move_up(r1,r2)

6. inc(r1)

7. goto(4,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

8. test(goal_column(c1))

9. goto(14,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

10. dec(c2)

11. move_left(c1,c2)

12. dec(c1)

13. goto(8,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

14. test(goal_row(r1))

15. goto(20,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

16. dec(r2)

17. move_down(r1,r2)

18. dec(r1)

19. goto(14,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

20. end

MICONIC

0. inc(f2)

1. up(f1,f2)

2. inc(f1)

3. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
4. board(p1,f1)

5. depart(p1,f1)

6. inc(p1)

7. goto(4,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
8. dec(p1)

9. goto(8,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
10. dec(f2)

11. down(f1,f2)

12. dec(f1)

13. goto(4,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
14. board(p1,f1)

15. depart(p1,f1)

16. inc(p1)

17. goto(14,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
18. dec(p1)

19. goto(18,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
20. inc(f2)

21. up(f1,f2)

22. inc(f1)

23. goto(14,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
24. end

SATELLITE

0. switch_off(i1,s1)

1. inc(i1)

2. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
3. dec(i1)

4. goto(3,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
5. turn_to(s1,d1,d2)

6. inc(d2)

7. goto(5,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
8. set(d2,d1)

9. inc(s1)

10. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
11. dec(s1)

12. goto(11,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
13. switch_on(i1,s1)

14. test(calibration_target(i1,d2))

15. goto(19,¬(¬𝑦𝑧 ∧ 𝑦𝑐 ))

16. turn_to(s1,d2,d1)

17. calibrate(s1,i1,d2)

18. turn_to(s1,d1,d2)

19. inc(d2)

20. goto(14,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
21. set(d2,d1)

22. take_image(s1,d2,i1,m1)

23. inc(m1)

24. goto(22,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
25. dec(m1)

26. goto(25,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
27. inc(d2)

28. turn_to(s1,d2,d1)

29. inc(d1)

30. goto(22,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))

31. dec(d1)

32. goto(31,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
33. turn_to(s1,d1,d2)

34. set(d2,d1)

35. switch_off(i1,s1)

36. inc(i1)

37. goto(13,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
38. dec(i1)

39. goto(38,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
40. inc(s1)

41. goto(13,¬(𝑦𝑧 ∧ ¬𝑦𝑐 ))
42. end

Fig. 15. Solutions to complex domains.

7. Conclusions

The paper presented an innovative solution space for GP that enables the definition of a heuristic search approach to GP. This 
novel solution space for GP is independent of the number of input planning instances in a GP problem, and the size of these instances 
(i.e. the number of objects, state variables, and their domain sizes). Therefore our GP as heuristic search approach can handle large 
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sets of state variables with large numerical domains, e.g. integers.
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Table 6

Validation of complex domains, CPU time (secs) and memory peak for program validation, 
with/out infinite program detection. TE and ME stands for time (1 h) and memory exceeded, 
respectively. Best results in bold.

Domain 𝑛, |𝑍| || Time∞ Mem∞ Time Mem

Blocks Ontable 13, 3 100 TE – 148.59 17 MB

Grid 21, 4 50 0.67 14 MB 0.15 10 MB

Miconic 25, 3 100 2,248.59 13,129 MB 12.68 166 MB

Michalski Trains 15, 6 1 0.04 7 MB 0.00 4 MB

Satellite 43, 5 20 – ME 89.83 51 MB

Sieve of Erathostenes 16, 3 100 9.60 39 MB 0.43 13 MB

Spanner 14, 5 100 326.79 1,512 MB 5.10 61 MB

We believe that this work is a step-forward towards building stronger connections between the areas of automated planning

and programming. The work presented a formalization of classical planning as a vector transformation task, which is a common 
programming task. According to this formalism, computing a sequential plan for this tasks is computing a composition of vector 
transformation operations. Likewise computing a generalized plan is computing an algorithmic expression of the vector transforma-

tions.9 With this regard, the BFGP algorithm starts from an empty program, but nothing prevents us from starting search from a 
partially specified generalized plan [102] to develop new online approaches that scale up better. In fact, local search approaches 
have already shown successful for both planning [103] and program synthesis [104,68].

Our cost-to-go heuristics are still less informed than current state-of-the-art heuristics for classical planning; note that our heuristics 
only consider goals that are explicitly provided in the problem representation. A clear example is 𝑓5(Π, 𝑃𝑡), that builds on top of 
the Euclidean distance, and that for STRIPS planning problems is actually a goal counter. We believe that better estimates may be 
obtained by building on top of the powerful ideas of modern planning heuristics [105,8,106]. In more detail, a promising approach 
for the development of more informative heuristics for GP is to consider sub-goals, that are not explicitly given in the problem 
representation [10,65]. For instance sets of sub-goals can be discovered as a pre-processing step, without grounding, regarding 
the set of relevant atoms that are traversed by the polynomial IW(1) algorithm, when achieving individual goals [107]. Besides 
landmarks, heuristic planners implement complementary ideas such as helpful actions [7], multiple queues for combining different 
heuristics [8], or novelty-based exploration [108]. Incorporating those classical planning technologies into the GP as heuristic search

approach is a promising research direction [109]. In addition to more informative heuristics, we are interested in more expressive 
solution representations, where not only goal-agnostic (e.g. Blocks Ontable in Fig. 6) and goal-oriented (e.g. Grid in Fig. 6) generalized 
plans are computed, but also solutions which include distance functions that measure progress towards (sub-)goals; distance functions

are known to be required to represent compact algorithmic solutions to polynomially-approximable (poly-APX) domains [110].

Since we are approaching GP as a classic tree search, a wide landscape of effective techniques, coming from combinatorial search

and classical planning, could help to improve the base performance of our approach. We mention some of the more promising 
ones. Exploration in search can be more effective when adding one open list per evaluation function [8] and more sophisticated 
mechanisms could be implemented for handling closed nodes. For instance, delayed duplicate detection could be implemented to 
manage large closed lists with magnetic disk memory [111]. Further, once a search node is canceled (e.g. because 𝑓𝑖(Π, ) identified 
that the planning program fails on a given instance), any program equivalent to this node should also be canceled, e.g. any program 
that can be built with transpositions of the causally-independent instructions. Given that the depth of the search-tree is bounded, 
techniques coming from SAT/CSP/SMTs, such a non-chronological backtracking, limited discrepancy search [112], or taboo search [113], 
might also result effective to improve our approach. SATPLAN planners exploit multiple-thread computing to parallelize search in 
solution spaces with different bounds [114]. This same idea could be applied to multiple searches for GP solutions with different 
program sizes.

Last but not least, another interesting research direction is the extension of our GP as heuristic search approach for computing 
generalized plans starting from different input settings. For instance, the computation of generalized plans from a set of plan traces

that demonstrates how to solve several planning problems. We are also interested on exploring the application of our GP as heuristic 
search approach to planning problems that are not goal-oriented, where the objective is to maximize a given utility function [115]. In 
this particular setting, ideas from approximated policy iteration [116], and reinforcement learning [80], could be incorporated to our 
framework. With this regard, we are exploring the extension of our approach to GP problems that include real state variables. We 
believe that we can address this kind of GP problems by introducing the notion of precision for the comparison of real variables, and 
redefining accordingly our mechanism for the update of the FLAGS registers.
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9 We have already explored this general scope of our GP approach to synthesize complex action models from examples [101].
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