
Artificial Intelligence 330 (2024) 104097

Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Generalized planning as heuristic search: A new planning

search-space that leverages pointers over objects

Javier Segovia-Aguas a,∗, Sergio Jiménez b, Anders Jonsson a

a Universitat Pompeu Fabra, Spain
b Universitat Politècnica de València, Spain

A R T I C L E I N F O A B S T R A C T

Keywords:

Generalized planning

Classical planning

Heuristic search

Planning and learning

Domain-specific control knowledge

Program synthesis

Programming by example

Planning as heuristic search is one of the most successful approaches to classical planning but
unfortunately, it does not trivially extend to Generalized Planning (GP); GP aims to compute
algorithmic solutions that are valid for a set of classical planning instances from a given domain,
even if these instances differ in their number of objects, the initial and goal configuration of
these objects and hence, in the number (and possible values) of the state variables. State-space
search, as it is implemented by heuristic planners, becomes then impractical for GP. In this paper
we adapt the planning as heuristic search paradigm to the generalization requirements of GP, and
present the first native heuristic search approach to GP. First, the paper introduces a new pointer-

based solution space for GP that is independent of the number of classical planning instances
in a GP problem and the size of those instances (i.e. the number of objects, state variables and
their domain sizes). Second, the paper defines an upgraded version of our GP algorithm, called
Best-First Generalized Planning (BFGP), that implements a best-first search in our pointer-based
solution space for GP. Lastly, the paper defines a set of evaluation and heuristic functions for

BFGP that assess the structural complexity of the candidate GP solutions, as well as their fitness
to a given input set of classical planning instances. The computation of these evaluation and
heuristic functions does not require grounding states or actions in advance. Therefore our GP as
heuristic search approach can handle large sets of state variables with large numerical domains,
e.g. integers.

1. Introduction

Automated Planning (AP) is a model-based approach to the control of autonomous systems. In more detail, AP explores model-

based computations to generate sequences of actions (a.k.a. plans) that accomplish defined objectives across various domains. In
AP, plans are typically generated by taking into account a model encompassing initial conditions, available actions, and the goals
to be accomplished. There is a wide palette of different AP models that deal with partial state observability, non-deterministic state
transitions, durative actions, or temporally extended goals [1,2]. Classical planning is the simplest AP model, which assumes that the
system dynamics can be modeled as a finite, deterministic, and fully observable, transition system. In this kind of transition systems,
classical planning studies the synthesis of sequences of actions that are able to transform an initial state into a state where a set of
given goals is satisfied.

* Corresponding author.
Available online 15 February 2024
0004-3702/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

E-mail addresses: javier.segovia@upf.edu (J. Segovia-Aguas), serjice@dsic.upv.es (S. Jiménez), anders.jonsson@upf.edu (A. Jonsson).

https://doi.org/10.1016/j.artint.2024.104097

Received 22 July 2021; Received in revised form 30 January 2024; Accepted 3 February 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:javier.segovia@upf.edu
mailto:serjice@dsic.upv.es
mailto:anders.jonsson@upf.edu
https://doi.org/10.1016/j.artint.2024.104097
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2024.104097&domain=pdf
https://doi.org/10.1016/j.artint.2024.104097
http://creativecommons.org/licenses/by-nc/4.0/

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

𝑏0

𝑏2

𝑏1 𝑏2

𝑏1

𝑏0

𝑏0

𝑏1

𝑏2

𝑏3

𝑏3

𝑏2

𝑏1

𝑏0

𝑏4

𝑏3

𝑏2

𝑏1

𝑏0

𝑏0

𝑏1

𝑏2

𝑏3

𝑏4

Fig. 1. Three different classical planning problems from blocksworld. Each problem has a different number of blocks. The figure shows the blocks configuration for
their initial state (left side) and goals (right side) of each problem. The leftmost problem is the Sussman anomaly problem.

We illustrate the notion of a classical planning problem using the blocksworld, a popular classical planning domain, which consists
of a set of blocks, a table, and a robot hand [3]. The robot hand can be empty or holding one block, and a block can be on top
of another block or on the table. Different classical planning problems can be defined in the blocksworld, by changing the number
of blocks, and their initial or goal configuration. A well-known blocksworld problem, since it is small but non-trivial, is the Sussman
anomaly [4] (the leftmost problem shown in Fig. 1); in the Sussman anomaly there are three blocks that we labeled as 𝑏0, 𝑏1, and
𝑏2. Initially block 𝑏1 is on the table, 𝑏2 on top of 𝑏0, and 𝑏0 on the table, and the goal is to stack the three blocks such that 𝑏0 is on
top of 𝑏1, which in turn is on top of 𝑏2. Fig. 1 shows three different classical planning problems from blocksworld. Each problem has
a different number of blocks. The figure shows the blocks configuration for the initial state (left side) and goals (right side) of each
problem. The leftmost classical planning problem corresponds to the Sussman anomaly problem.

Heuristic search is one of the most successful approaches to classical planning [5–8]. Winners of the International Planning Competi-

tion are often heuristic planners [9], and the workshop on Heuristics and Search for Domain-Independent Planning is one of the discussion
forums with the longest tradition at the International Conference on Automated Planning and Scheduling (ICAPS), the major conference
for research on AP. Briefly, the planning as heuristic search approach addresses the synthesis of sequential plans as a combinatorial
search in the space of the states reachable from the initial state. This combinatorial search is usually implemented as a forward
search, guided by heuristics that are automatically extracted from the representation of the planning problem. In the last decade a
wide landscape of effective search algorithms, and heuristic functions, have been developed for classical planning [10–14]. Most of
these heuristic search techniques are based on the notion of relaxed plan, a solution to a relaxation of the classical planning prob-

lem; the cost of the relaxed plan is an informative and cheap estimate of the actual cost-to-go for many different classical planning
problems.

Generalized planning (GP) addresses the representation and computation of solutions that are valid for a set of classical planning
instances from a given domain [15–24]. In the worst case each classical planning instance may require a completely different solution
but in practice, many classical planning domains are known to have algorithmic solutions [25,26]. In other words, one can compute a
single compact general solution that exploits some common structure of the different classical planning instances in a given domain.
Generalized plans are then algorithmic solutions that supplement sequences of planning actions with control-flow. For example,
a generalized plan that solves any classical planning instance from the blocksworld domain [3], no matter the actual number, or
identity of the blocks, and no matter the initial and goal configuration of the blocks, can be compactly specified as follows: “put all
the blocks on the table and then, in a proper order, move each block to its goal placement”.

Unfortunately search algorithms and heuristic functions from classical planning cannot be directly applied to GP. The computation
of relaxed plans, as it is implemented by off-the-shelf heuristic planners, requires a pre-processing step for grounding states and
actions. On the other hand, GP solutions must be able to generalize to (possibly infinite) sets of classical planning instances, with
different sets of objects (i.e. state variables with different domain sizes and/or different number of state variables) as well as with
different initial states and goal configuration for the objects. These particular generalization requirements of GP make it impractical
to ground states and actions and hence, to directly apply the state-space search or the cost-to-go estimates of heuristic planners.
What is more, the knowledge represented in a given set of classical planning instances may not be enough to specify an algorithmic
solution that solves them all. For example, the classical planning instances from the blocksworld do not include representation features

for explicitly specifying whether “all blocks are on the table”, or for specifying “the proper order for moving the blocks to their goal
placements”. A key challenge in GP is then, given a set of planning instances, to automatically discover the representation features
required for computing a compact and general solution for those instances.

Because of the algorithmic kind of generalized plans, GP is a promising research direction to help bridge the current gap between
automated planning and programming [27]. Unfortunately, most of the work on GP inherits the STRIPS representation, in which
states are represented using exclusively Boolean variables (i.e. propositions that specify the properties and relations of the world
objects), and state-transitions correspond to actions for object manipulations. In this work we introduce a novel pointer-based
representation for GP problems and solutions, that allows us to adapt the planning as heuristic search paradigm to GP. Our pointer-

based representation is closer to common programming languages like Python, C++ or Java, while it also naturally applies to the

STRIPS problems traditionally addressed by the AP community. Given a GP problem that comprises a finite set of classical planning
instances from a given domain, our GP as heuristic search approach implements a combinatorial search to synthesize a program that
solves the full set of input instances. With respect to previous work, our heuristic search approach to GP introduces the following
contributions:

1. A pointer-based representation for GP problems and solutions. Our representation formalism is closer to common programming
2

languages, while it also applies to object-centered representations (like STRIPS) traditionally used in AP.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

2. A tractable solution-space for GP. We leverage the computational models of the Random-Access Machine [28] and the Intel x86

FLAGS register [29] to define a compact and general solution search space for GP. Remarkably our new search space for GP
is independent of the number of input planning instances in a GP problem, and the size of these instances (i.e. the number of
objects, state variables, and their domain sizes).

3. A heuristic search algorithm for GP with grounding-free evaluation/heuristic functions. We present the BFGP algorithm that imple-

ments a Best-First Search in our GP solution-space. We also define evaluation and heuristic functions for guiding BFGP. These
functions assess the structural complexity of the candidate GP solutions, as well as their fitness to an input set of classical plan-

ning instances. Evaluating these functions does not require to ground states/actions in advance, so they apply to GP problems
where state variables have large domains (e.g. integers).

4. A translator from the STRIPS fragment of PDDL to our pointer-based representation for GP. We automate the representation change
from PDDL to pointer-based, and show several solutions to planning domains from the International Planning Competition [30]

which are validated on large random instances.

A preliminary description of our GP as heuristic search approach previously appeared as ICAPS and IJCAI conference papers [31,

32]. In this work we extend the seminal ideas presented in the conference papers, and provide a more exhaustive evaluation of our
GP as heuristic search approach. Compared to the conference papers, the present paper includes the following novel material:

• We formalize the notion of pointers over the set of objects of a planning problem, and introduce a pointer-based formalization
for states, state-constraints, and planning action schemes. We also introduce a pointer-based formalization for classical planning
problems and their solutions. We show that our pointer-based formalization naturally applies to the STRIPS planning tasks
traditionally addressed in AP.

• We introduce the notion of a partially specified planning program, that refers to the sketch of an algorithmic planning solution,
and that enables a better formalization of our GP search algorithm and heuristics functions.

• We provide new theoretical results of our heuristic search algorithm for GP, that include termination, soundness, completeness,
and complexity proofs. We also implemented new evaluation functions for guiding our GP as heuristic search approach, and
extended the empirical evaluation, including more results at a wider landscape of planning domains, to characterize better the
performance of our GP as heuristic search approach.

The paper is structured as follows: Section 2 reviews previous research work related to computing policies and generalization in
planning, and it pinpoints the main differences with our approach. Section 3 provides the planning models we rely on in this work
(namely the classical planning model and the GP model) and it also presents the formalisms we leverage for the representation of our
GP solutions (i.e. planning programs and the Random Access Machine). Section 4 shows how to extend the classical planning model
with a set of pointers over objects, and the corresponding primitive operations for manipulating these pointers. This extension allows
us to define, in an agnostic manner, a set of features and a set of actions for computing GP solutions that can solve any instance from
a given planning domain. Section 5 describes our GP as heuristic search approach; the section provides details on our solution space,
evaluation functions, and heuristic search algorithm for GP. Section 6 presents the empirical evaluation of our GP as heuristic search

approach and comparisons with the classical planning compilation for GP, that serves as a baseline. Finally, Section 7 wraps-up our
work and discusses open issues and future work.

2. Related work

Here we first review previous work on GP according to the following three dimensions: problem representation, solution representa-

tion, and computational approach. Then, we connect the research work on GP with other relevant areas in AI, such as program synthesis,
deep learning, and (deep) reinforcement learning. Last, we discuss the features that distinguish our GP as heuristic search approach from
the reviewed related work.

Regarding problem representation, there are two different approaches for the specification of the set of classical planning instances
that are comprised in a GP problem. The explicit approach, that enumerates every classical planning instance in a GP problem [33],
and the implicit approach, that defines the constraints that hold for the set of classical planning instances of a GP problem. The
implicit approach is of interest because it can compactly specify infinite sets of classical planning instances (e.g. the infinite set
of the classical planning instances that belong to the blocksworld domain) [34,35,20]. In addition to the set of classical planning
instances, extra background knowledge can be specified with the aim of reducing the space of GP solutions. For instance, plan traces

demonstrating how to solve some of the input instances [36–38], the full state space [22], the particular subset of state features

that can be used for computing a generalized plan [39,40], negative examples that specify undesired behavior for the targeted GP
solutions [41,22], or state invariants that any state in a given domain must satisfy [42].

With respect to solution representation, different formalisms appeared in the AP literature to represent solutions that are valid for
a set of classical planning instances; sequential plans are used in conformant planning [43,44], conditional tree-like plans are used in
contingent planning [45,2], or policies are used in FOND planning, as well as in MDP/POMDP planning [46]. In all these planning
settings, a set of different classical planning instances, with different initial states, can be implicitly represented as a disjunctive
formulae over the state variables. Different goals can also be considered by coding them as part of the state representation, e.g. using
static state variables [33]. Further, the notion of feature in GP is related to the notion of state observation in the POMDP formalism,
3

where observations depend on the current state and the action just taken [47]. With this regard it can be understood that GP solvers

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

compute, at the same time, a generalized plan and an observation function that is useful for compactly representing the generalized
plan. The notion of feature in GP is also related to Qualitative numeric planning [48,49,20] which leverages propositions to abstract
the value of numeric state variables.

The connection between AP and programming representations is not exclusive from our GP approach; programs of different
kinds are proposed as an alternative to traditional planning action languages [50–52,27]. GOLOG programs have been also used
to represent planning solutions, that could branch and loop, and that could contain non-deterministic parts [53]. Furthermore the
semantics compatibility between GOLOG and PDDL [50] can be exploited and a PDDL planner can be embedded [54] to address
the sub-problems that are combinatorial in nature. Since the early days of AI, hierarchies, LTL formulae, and policies, are also
used to specify sketches of general planning solutions [55]. In the AP literature these solution sketches are often called domain-

specific control knowledge, since they are traditionally used to control the planning process, and they apply to the entire set of
classical planning instances that belong to a given domain [56,57,36,37]. Last but not least, algorithmic solutions, represented
either as lifted policies, finite automata, or as programs with control-flow constructs for branching and looping, are used to represent GP
solutions [34,58,39,59–61,15,33,21,24].

Regarding the computation of generalized plans, there are two main approaches to GP. The top-down/offline approach considers the
entire set of classical planning instances in a given GP problem as a single batch, and computes a solution plan that is valid for the
full batch at once. A common approach for the offline computation of generalized plans is compiling the GP problem into another
form of problem solving, and using an off-the-shelf solver to work out the compiled problem. For example, GP problems have been
compiled into classical planning problems [61,33], conformant planning problems [39], LTL synthesis problems [62], FOND planning
problems [63,20], MAXSAT problems [22], or ASP problems [64]. The compilation approach is appealing because it leverages
the latest advances of other well-founded scientific communities, with robust and scalable solvers. In addition, the computational
complexity of some of these tasks is theoretically characterized with respect to structural features of the input problems, which may
provide insights on the difficulty of the addressed GP problem. A weak point of the compilation approach is however the size of
the compiled problems to be solved; solvers are usually sensitive to the size of the input problems. On the other hand, the bottom-

up/online approach incrementally processes the set of classical planning instances in a GP problem [15,17,65]. Given a classical
planning instance, a solution to that instance is computed and then, the solution is merged with solutions computed for the previous
instances. The online approach is then appealing for handling GP problems that comprise large sets of classical planning instances.
The main drawback of online approaches is dealing with the over-fitting produced by the individual processing of the different
classical planning instances in a GP problem.

As noted by previous work on GP, the aims of GP are connected to program synthesis [33,20,62,31]. Program synthesis is a task
traditionally studied by the computer-aided verification community [66], and that aims to compute programs such that they satisfy a
given correctness specification [67–69]. Program synthesis follows the functional programming paradigm. This means that a program
is a function composition, where each function in the composition maps its input parameters into a single output, and where looping
is implemented with recursion. Work on program synthesis is classified according to how the correctness specification of a program
is formulated. The programming by example (PbE) paradigm specifies the desired program behavior with a finite and non-empty set of
ground input/output examples. This approach is related to the explicit representation of GP problems; a ground input/output example
can be understood as the initial/goal state pair that represents a classical planning instance, and the instruction set of the functional
programming language can be understood as the available actions for transforming an initial state into a goal state. Program synthesis
also allows the implicit representation of the input correctness specifications, e.g. using fist-order formulae specified in SMTLIB,1

the formal language for SAT-Modulo Theories (SMT) [70]. The mainstream approach for program synthesis is to specify a formal
grammar that incrementally enumerates the space of possible programs, and to leverage the satisfiability machinery of SMT solvers
to validate whether a candidate program is actually a solution [71]. With this regard, work on theorem proving is also related to
program synthesis, specially since SMT solvers allow the representation and satisfaction of first-order logic formulae [72]. Lastly,
another popular trend in program synthesis is Programming by sketches that addresses program synthesis in the particular setting
where a partially specified solution is provided as input [73].

Besides computational methods for formal verification and logic satisfaction, optimization methods (that are predominant in
Machine Learning [74]) have also been applied to the computation of planning solutions that generalize. For instance, off-the-shelf
Deep Learning (DL) tools, have been successfully applied to the computation of generalized policies for classical and probabilistic
planning domains [75–77]. Generalized policies are a powerful solution representation formalism whose applicability goes beyond
classical planning; generalized policies can represent planning solutions that deal with non-deterministic actions [78]. Further,
generalized policies can represent solutions to planning problems whose aim is not the satisfaction of a given goal condition but the
optimization of a given utility function [79]. The aims of GP are also related to Reinforcement Learning (RL) [80]; while the cited
DL approaches can be viewed as off-line optimization approaches to GP, the RL paradigm can be viewed as an online optimization
approach to GP. RL methods incrementally compute policies, by iteratively addressing a set of sequential decision-making episodes.
In RL learning experience is however not given beforehand (learning experience is collected by the autonomous exploration of the
state space), and RL assumes that there is an explicit notion of reward function (which helps to guide exploration towards the most
promising portions of the state-space). Note that DL and DRL approaches learn policies, without requiring a symbolic representation
of the state and the action space. This means that it is possible to compute (deep) policies that generalize from raw sensor data
(e.g. sequences of images) [81,82]. The main disadvantage of computing solutions represented as deep policies is that they are black-
4

1 https://smtlib .cs .uiowa .edu/.

https://smtlib.cs.uiowa.edu/

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

box models that lack transparency and explanation capacity, which makes it difficult to interpret the produced solutions. This is a
strong requirement in application areas that require humans in the loop, such as health, law, or defense [83].

With regard to the reviewed related work, our GP as heuristic planning approach is framed as follows:

• Numeric state variables. Previous work on GP mainly followed the object-centered STRIPS representation. Addressing program-

ming tasks with such representation is unpractical since it may require to encode all values in the domain of a state variable as
objects. Other approaches, such as Qualitative Numeric Planning (QNP) [48,49], handle large numeric state variables qualita-

tively with propositions to denote whether a variable is equal to zero. In this work we handle GP problems with integer state
variables, which allow to naturally address diverse programming tasks as if they were GP problems.

• Explicit problem representation. In this work, a GP problem comprises the explicit enumeration of a finite set of classical planning
instances to be solved. Interestingly our experimental results show that, in several domains, solving a small set of a few randomly
generated classical planning instances, is enough to obtain a solution that generalizes to the infinite set of problems that belong
to a given domain.

• No background knowledge. Our approach does not require any additional help such as state invariants, plans/traces/demonstrations,
negative examples, or the specification of the subset of features to appear in the generalized plans. With this regard, we leverage
the computational models of the Random-Access Machine [28] and the Intel x86 FLAGS register [29] to produce an agnostic set
of state features that is shared for the different classical planning instances of a given domain (no matter their actual number of
objects).

• Generalized plans represented as structured programs. Structured programming provides a white-box modeling paradigm that is
widely popular. In this work we focus on generalized plans represented as structured programs, with control flow constructs for
branching and looping the program execution flow. The application of a generalized plan on a particular classical planning in-

stance is then a deterministic matching-free process, which makes it easier to define effective evaluation and heuristic functions.
Further, the asymptotic complexity of structured programs can be assessed from their structure, which is helpful to establish
preferences on the possible generalized plans.

• Off-line satisfiability approach. This work follows an off-line approach to GP that aims to compute, at once, a generalized plan that
solves all the classical planning instances that are given as input. Because many heuristic search algorithms are easily extended
to online versions, we believe that our GP as heuristic search approach is a stepping stone towards online approaches that can
deal with larger sets of classical planning instances.

• Native heuristic search for GP. By native heuristic search, we mean that we defined a search space, evaluation/heuristic functions,
and a search algorithm, that are specially targeted to GP. Our GP as heuristic search approach is related to an existing classical
planning compilation for GP [33]. Our approach overcomes however the main drawback of the compilation whose search space
grows exponentially with the number and domain size of the state variables; in practice, this drawback limited the applicability
of the compilation to planning instances of small size since the performance of off-the-shelf classical planners is sensitive to
the size of the input instances. Our experiments support this claim, and show that our BFGP algorithm significantly reduces
the CPU-time required to compute and validate generalized plans, compared to the classical planning compilation approach to
GP [33].

3. Background

This section introduces the necessary notation to formalize our GP as heuristic search approach. First, the section formalizes the
classical planning model and the generalized planning model. Then the section formalizes planning programs, our formalism for the
compact representation of planning solutions. Lastly the section formalizes the Random Access Machine, given that our GP as heuristic
planning approach borrows several mechanisms from this abstract computation machine.

3.1. Classical planning

Our formalization of the classical planning model is similar to the abstract planning framework called Finite Functional Planning,
introduced for the theoretical analysis of planning languages [84]. Let 𝑋 be a set of state variables, where each variable 𝑥 ∈𝑋 has
a domain 𝐷𝑥. A proposition is a state variable 𝑥 ∈𝑋 with domain 𝐷𝑥 = {0, 1}, where 𝑥 = 0 and 𝑥 = 1 are interpreted as 𝑓𝑎𝑙𝑠𝑒 and
𝑡𝑟𝑢𝑒 assignments, respectively. A state 𝑠 is a total assignment of values to the set of state variables, i.e. 𝑠 = ⟨𝑥0 = 𝑣0,… , 𝑥𝑁 = 𝑣𝑁 ⟩,
such that ∀0≤𝑖≤𝑁𝑣𝑖 ∈ 𝐷𝑥𝑖

and where 𝑁 is the number of state variables in X. For a subset of the state variables 𝑋′ ⊆ 𝑋, let
𝐷[𝑋′] = ×𝑥∈𝑋′𝐷𝑥 denote its joint domain. The state space is denoted as 𝑆 = 𝐷[𝑋]. Given a state 𝑠 ∈ 𝑆 , and a subset of variables
𝑋′ ⊆𝑋, let 𝑠|𝑋′ = ⟨𝑥𝑖 = 𝑣𝑖⟩𝑥𝑖∈𝑋′ be the projection of 𝑠 onto 𝑋′ i.e. the partial state that is defined by the values assigned by 𝑠 to the
subset of state variables in 𝑋′. The projection of 𝑠 onto 𝑋′ defines the subset {𝑠 ∣ 𝑠 ∈ 𝑆, 𝑠|𝑋′ ⊆ 𝑠} of the states that are consistent with
the corresponding partial state. Last, let us define a state-constraint as a Boolean function 𝐶 ∶ 𝑆 → {0, 1} over the state variables, that
implicitly defines the subset of states 𝑆𝐶 ⊆ 𝑆 that are consistent with that constraint.

Let 𝐴 be a set of deterministic actions such that each action 𝑎 ∈ 𝐴 is characterized by two functions; an applicability function

𝜌𝑎 ∶ 𝑆 → {0, 1} and a successor function 𝜃𝑎 ∶ 𝑆 → 𝑆 . An action 𝑎 ∈ 𝐴 is applicable in a given state 𝑠 ∈ 𝑆 iff 𝜌𝑎(𝑠) = 1. The execution
of an applicable action 𝑎 ∈𝐴, in a state 𝑠 ∈ 𝑆 results in the successor state 𝑠′ = 𝜃𝑎(𝑠). Please note that this definition of deterministic
actions generalizes actions with conditional effects [85], common in GP since their state-dependent outcomes allow the adaptation of
5

generalized plans to different classical planning instances.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

A classical planning instance is a tuple 𝑃 = ⟨𝑋,𝐴, 𝐼,𝐺⟩, where 𝑋 is a set of state variables, 𝐴 is a set of actions, 𝐼 ∈ 𝑆 is an
initial state, and 𝐺 is a constraint on the value of the state variables that induces the subset of goal states 𝑆𝐺 = {𝑠 ∣ 𝑠 ⊨ 𝐺, 𝑠 ∈
𝑆}. Given a classical planning instance 𝑃 , a plan is an action sequence 𝜋 = ⟨𝑎1,… , 𝑎𝑚⟩ whose execution induces a trajectory 𝜏 =⟨𝑠0, 𝑎1, 𝑠1,… , 𝑎𝑚, 𝑠𝑚⟩ such that, for each 1 ≤ 𝑖 ≤ 𝑚, 𝑎𝑖 is applicable in 𝑠𝑖−1 and results in the successor 𝑠𝑖 = 𝜃𝑎𝑖 (𝑠𝑖−1). A plan 𝜋 solves

𝑃 if and only if the execution of 𝜋 in 𝑠0, where 𝑠0 = 𝐼 , finishes in a goal state, i.e. 𝑠𝑚 ∈ 𝑆𝐺 .

Planning languages, such as PDDL [86], can compactly represent the infinite set of classical planning instances of a given domain
using a finite set of functions and action schemes. Given a finite set of objects Ω, and a finite set of functions Φ defined over that set
of objects, we assume that each state variable 𝑥 ∈𝑋 stands for a function interpretation 𝑥 ≡ 𝜙(⃖⃗𝑜), where 𝜙 ∈ Φ is a function with
arity 𝑎𝑟(𝜙), and ⃖⃗𝑜 ∈ Ω𝑎𝑟(𝜙) is a vector of objects comprised in the Cartesian product space of Ω𝑎𝑟(𝜙); objects and function signatures
can by typed so the number of possible function interpretations is constrained. Functions in Φ can be Boolean e.g. to represent PDDL
predicates, or numeric e.g. to represent PDDL numeric fluents. Likewise, given a set of action schemes Ξ, we assume that each action
𝑎 ∈ 𝐴 is built from an action schema 𝜉 ∈ Ξ by substituting each variable in the action scheme with an object from Ω. An action
scheme 𝜉 ∈ Ξ is a tuple 𝜉 = ⟨𝑛𝑎𝑚𝑒(𝜉), 𝑝𝑎𝑟(𝜉), 𝑝𝑟𝑒(𝜉), eff (𝜉)⟩ where:

• 𝑛𝑎𝑚𝑒(𝜉) is the identifier of the action schema,

• 𝑝𝑎𝑟(𝜉) is the list of free variables, again these variables can be typed so they can only be substituted by objects of the same type,

• 𝑝𝑟𝑒(𝜉) is a conjunction of Boolean formulae, where each formula is a logical evaluation, i.e. ==, <, >, ≤, ≥, between two
function symbols 𝜙1, 𝜙2 ∈ Φ defined over 𝑝𝑎𝑟(𝜉), or a function symbol 𝜙 also defined over 𝑝𝑎𝑟(𝜉) and a value 𝑣, that compactly
represents the subset of states where the corresponding ground actions are applicable, and

• eff (𝜉) is a set of logical assignments, where each function symbol 𝜙 gets the value either from another function symbol 𝜙′ (both
defined over 𝑝𝑎𝑟(𝜉)) or from a constant value 𝑣, that compactly represents the updates of the state variables caused by the
application of the corresponding ground actions.

3.2. Generalized planning

Generalized planning is an umbrella term that refers to more general notions of planning [21]. This work builds on top of the
inductive formalism for GP, where a GP problem is a finite set of classical planning instances that belong to the same domain [19,62].

Definition 1 (GP problem). A GP problem is a non-empty set  = {𝑃1, … , 𝑃𝑇 } of 𝑇 classical planning instances from a given domain
.

Each instance 𝑃𝑡 ∈  , 1 ≤ 𝑡 ≤ 𝑇 , may actually differ in the set of state variables 𝑋𝑡, actions 𝐴𝑡, initial state 𝐼𝑡, and goals 𝐺𝑡, but
the corresponding set of state variables 𝑋𝑡 is induced from the common set of functions Φ. Likewise, the set of actions 𝐴𝑡 is induced
from the common set of action schemes Ξ, when grounded over the particular set of objects Ω𝑡 of the instance.

The aim of GP is to compute algorithmic planning solutions, a.k.a. generalized plans, which work for the full input set of planning
problems. There are diverse representations for GP solutions, ranging from generalized polices [34,58], to finite state controllers [39,59],
formal grammars [60], hierarchies [87,61], or programs [15,33]. Each representation has its own expressiveness capacity, as well
as its own validation complexity and computational complexity. In spite of this representation diversity, we can define a common
condition under which a generalized plan is considered a solution to a GP problem.

Definition 2 (GP solution). A generalized plan Π solves a GP problem  = {𝑃1, … , 𝑃𝑇 } iff, for every classical planning instance 𝑃𝑡 ∈  ,
1 ≤ 𝑡 ≤ 𝑇 , the execution of Π on 𝑃𝑡, denoted as 𝑒𝑥𝑒𝑐(Π, 𝑃𝑡) = ⟨𝑎1,… , 𝑎𝑚⟩, induces a classical plan that solves 𝑃𝑡.

Example. Fig. 2 shows the initial state and goal of two classical planning instances, 𝑃1 = ⟨𝑋,𝐴, 𝐼1,𝐺1⟩ and 𝑃2 = ⟨𝑋,𝐴, 𝐼2,𝐺2⟩, for
sorting two six-element lists. In this particular example the two instances share the same set of state variables 𝑋 = {𝑥𝑖 ≡ 𝑣𝑒𝑐𝑡𝑜𝑟(𝑜𝑖)|0 ≤
𝑖 ≤ 5} that is built with the one-arity function Φ = {𝑣𝑒𝑐𝑡𝑜𝑟} and the set of objects Ω1 = Ω2 = {𝑜0, … , 𝑜5}, and where ∀𝑥∈𝑋𝐷𝑥 = 𝐍0.
The two classical planning instances also share the set of deterministic actions 𝐴, with 6×52 actions 𝑠𝑤𝑎𝑝(𝑜𝑖, 𝑜𝑗), that swap the content
of two list positions 𝑖 < 𝑗, and that are induced from the single action scheme Ξ = {𝑠𝑤𝑎𝑝(𝑥, 𝑦)}. An example solution plan for 𝑃1 is
𝜋1 = ⟨𝑠𝑤𝑎𝑝(𝑜0, 𝑜5), 𝑠𝑤𝑎𝑝(𝑜1, 𝑜2), 𝑠𝑤𝑎𝑝(𝑜1, 𝑜3)⟩ while 𝜋2 = ⟨𝑠𝑤𝑎𝑝(𝑜0, 𝑜2), 𝑠𝑤𝑎𝑝(𝑜3, 𝑜5)⟩ is an example of a sequential plan that solves
𝑃2. Note that  = {𝑃1, 𝑃2} is a GP problem since it comprises two classical planning instances that are built using the same set of
functions Φ and action schemes Ξ. Fig. 3 shows an example of a generalized plan that solves  , and that is represented as a sorting
network [88]. The sorting network is illustrated using two different types of items (namely the wires and the comparators). For each
state variable, there is a wire that carries the value of that variable from left to right in the network. On the other hand, comparators
connect two different wires, corresponding to a pair of variables (𝑥𝑖, 𝑥𝑗), such that 𝑖 < 𝑗. When a pair of values traveling through
a pair of wires (𝑖, 𝑗), encounters a comparator, then the comparator applies the action 𝑠𝑤𝑎𝑝(𝑜𝑖, 𝑜𝑗) iff 𝑣𝑒𝑐𝑡𝑜𝑟(𝑜𝑖) ≥ 𝑣𝑒𝑐𝑡𝑜𝑟(𝑜𝑗), which
in turn is 𝑥𝑖 ≥ 𝑥𝑗 . The sorting network of Fig. 3 can actually solve any instance for sorting the content of any six-element list, no
matter its initial content. This solution is however not valid for sorting lists with different lengths. In this paper we will show how to
represent, and compute, planning solutions that leverage indirect memory addressing to generalize no matter the number of objects,
6

and corresponding state variables.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

Fig. 2. Example of two classical planning instances for sorting the content of two six-element lists by swapping the list elements.

Fig. 3. Example of a generalized plan, represented as a sorting network that solves any classical planning instance for sorting the content of a six-element list, no matter
its initial content.

3.3. Planning programs

In this work we represent planning solutions as planning programs [33]. Unlike sequential plans, planning programs include a control
flow construct which allows the compact representation of solutions to classical and GP problems. Formally a planning program Π is
a sequence of 𝑛 instructions, where each instruction Π[𝑖] is associated with a program line 0 ≤ 𝑖 < 𝑛, and it is either:

• A planning action Π[𝑖] ∈𝐴.

• A goto instruction Π[𝑖] = 𝗀𝗈(𝑖′, !𝑦), where 𝑖′ is a program line 0 ≤ 𝑖′ < 𝑖 or 𝑖 + 1 < 𝑖′ < 𝑛, and 𝑦 is a proposition.

• A termination instruction Π[𝑖] = 𝖾𝗇𝖽. The last instruction of a planning program is always a termination instruction, i.e. Π[𝑛 −1] =
𝖾𝗇𝖽.

The execution model for a planning program is a program state (𝑠, 𝑖), i.e. a pair of a planning state 𝑠 ∈ 𝑆 and program counter
0 ≤ 𝑖 < 𝑛. Given a program state (𝑠, 𝑖), the execution of a programmed instruction Π[𝑖] is defined as:

• If Π[𝑖] ∈𝐴, the new program state is (𝑠′, 𝑖 + 1), where 𝑠′ = 𝜃Π[𝑖](𝑠) is the successor when applying Π[𝑖] in 𝑠.
• If Π[𝑖] = 𝗀𝗈(𝑖′, !𝑦), the new program state is (𝑠, 𝑖 + 1) if 𝑦 holds in 𝑠, and (𝑠, 𝑖′) otherwise.2 Proposition 𝑦 can be the result of an

arbitrary expression on state variables, e.g. a state feature [89].

• If Π[𝑖] = 𝖾𝗇𝖽, program execution terminates.

To execute a planning program Π on a classical planning instance 𝑃 = ⟨𝑋,𝐴, 𝐼,𝐺⟩, the initial program state is set to (𝐼, 0), i.e. the
initial state of 𝑃 and the first program line of Π. A program Π solves 𝑃 iff the execution terminates in a program state (𝑠, 𝑖) that
satisfies the goal condition, i.e. Π[𝑖] = 𝖾𝗇𝖽 and 𝑠 ∈ 𝑆𝐺 . Otherwise the execution of the program fails. If a planning program fails to
solve the planning instance, the only possible sources of failure are:

1. Inapplicable program, i.e. executing action Π[𝑖] ∈𝐴 fails in program state (𝑠, 𝑖) since Π[𝑖] is not applicable in 𝑠.
2. Incorrect program, i.e. execution terminates in a program state (𝑠, 𝑖) that does not satisfy the goal condition, i.e. (Π[𝑖] = 𝖾𝗇𝖽) ∧(𝑠 ∉

𝑆𝐺).
3. Infinite program, i.e. execution enters into an infinite loop that never reaches an 𝖾𝗇𝖽 instruction.

In this work we model instructions Π[𝑖] ∈𝐴 as if they were always applicable but that their effects only update the current state
iff the preconditions of the action hold in the current planning state. Formally, when executing Π[𝑖] in (𝑠, 𝑖), the new program state
is (𝑠′, 𝑖 + 1) iff Π[𝑖] is applicable, otherwise it is (𝑠, 𝑖 + 1). Therefore, in this work the execution of a program on a classical planning
instance will never return an inapplicable program, and only incorrect or infinite program are possible sources of failure. This particular
action modeling is common in reinforcement learning [80], and in conformant planning [44], because it delivers compact solutions that
apply to sets of different problems (typically with different initial states).

2 We adopt the convention of jumping to line 𝑖′ whenever 𝑦 is false, following the semantics of JMPZ instructions in the Random-Access Machine that jump when a
7

register equals zero.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

3.4. The random-access machine

The Random-Access Machine (RAM) is an abstract computation machine, in the class of the register machines, that is polynomially
equivalent to a Turing machine [90]. The RAM enhances a multiple-register counter machine [91] with indirect memory addressing;
indirect memory addressing is useful for coding RAM programs that access an unbounded number of registers, no matter how many
there are. A register in a RAM machine is then a memory location with both an address i.e. a unique identifier that works as a natural
number (that we denote as 𝑟), and a content i.e. a single natural number (that we denote as [𝑟]).

A RAM program Π is a finite sequence of 𝑛 instructions, where each program instruction Π[𝑖], is associated with a program line

0 ≤ 𝑖 < 𝑛. The execution of a RAM program starts at its first program instruction Π[0]. The execution of program instruction Π[𝑖]
updates the RAM registers and the current program line. Diverse base instructions sets, that are Turing complete, can be defined. We
focus on the three base sets of RAM instructions:

• Base1. {𝚒𝚗𝚌(𝑟), 𝚍𝚎𝚌(𝑟), 𝚓𝚖𝚙𝚣(𝑟, 𝑖), 𝚑𝚊𝚕𝚝() | 𝑟 ∈ 𝑅}. Respectively, these instructions increment/decrement a register by one, jump
to program line 0 ≤ 𝑖 < 𝑛 if the content of a register 𝑟 is zero (i.e. if [𝑟] == 0), or end the program execution.

• Base2. {𝚒𝚗𝚌(𝑟1), 𝚌𝚕𝚎𝚊𝚛(𝑟1), 𝚓𝚖𝚙𝚣(𝑟1, 𝑟2, 𝑖), 𝚑𝚊𝚕𝚝() | 𝑟1, 𝑟2 ∈ 𝑅}. In this set the value of a register cannot be decremented but
instead, it can be set to zero with a clear instruction. In addition, jump instructions go to program line 0 ≤ 𝑖 < 𝑛 if the content of
two given registers is the same (i.e. if [𝑟1] == [𝑟2]).

• Base3. {𝚒𝚗𝚌(𝑟1), 𝚜𝚎𝚝(𝑟1, 𝑟2), 𝚓𝚖𝚙𝚣(𝑟1, 𝑟2, 𝑖), 𝚑𝚊𝚕𝚝() | 𝑟1, 𝑟2 ∈𝑅}. This set comprises no instruction to decrement, or clear, a register
but instead, it includes an instruction to set a register to the value of another register.

The three base sets are equivalent [90]; one can build the instructions of one base set with instructions of another base set. Further,
the expansive instruction set (that contains the instructions of Base 1,2 and 3) does not alter the expressiveness of the individual Base
sets, since each of them already is Turing complete. The choice of the set of RAM instructions depends on the convenience of the
programmer for the problem being addressed.

4. Planning with a random-access machine

The synthesis of effective features for a planning domain is a challenging research question investigated since the early days of
AP [92]. Furthermore, the set of ground actions for the different problems of a given domain, is usually different since it depends on
the number of objects in the problem; e.g. back to the sorting example illustrated in Figs. 2 and 3, classical planning problems for
sorting a vector of length six induced 6×52 𝑠𝑤𝑎𝑝(𝑜𝑖, 𝑜𝑗), 𝑖 < 𝑗 actions, while instances for sorting a vector of length seven would induce
a set of 7×62 𝑠𝑤𝑎𝑝(𝑜𝑖, 𝑜𝑗) actions. This section extends the classical planning model with a set of pointers, defined over the objects of
a classical planning instance, and with the primitive instructions for manipulating those pointers; the extension allows the agnostic
definition of a set of state features, and a set of actions, that are shared by the different instances of a classical planning domain (no
matter their actual number of objects).

First, the section shows how to compactly represent a transition system using pointers. Then the section shows that the pointer-

based representation naturally applies to the STRIPS formalism. Last, the section formalizes our extension of the classical planning
model with a RAM machine, that produces the aimed set of state features and actions that are shared by all the instances of a
classical planning domain. Those sets of shared state features and actions are later leveraged (at Section 5) for the computation of
GP solutions, that generalize no matter the number of world objects.

4.1. Representing transition systems with pointers over objects

A transition system can be graphically represented as a directed graph and hence formalized as a pair (𝑆, →), where 𝑆 is a set of
states, and → denotes a relation of state transitions 𝑆 × 𝑆 . Transition systems differ from finite automata since the sets of states and
transitions are not necessarily finite. Further a transition system does not necessary define a start/initial state or a subset of final/goal

states. Transitions between states may be labeled,3 and the same label may appear on more than one transition. A prominent
example are transition systems that correspond to a classical planning problem [1,2], where state transitions are labeled with actions

(i.e. between two states 𝑠, 𝑠′ ∈ 𝑆 , there exists a transition (𝑠
𝑎
←←←←←←→ 𝑠′) iff the execution of action 𝑎 in state 𝑠 produces the state 𝑠′). Given

a state 𝑠 and an action label 𝑎, if there exists only a single tuple (𝑠, 𝑎, 𝑠′) in → then the transition is said to be deterministic. In this
work we restrict ourselves to deterministic transitions systems, i.e. transition systems such that all their transitions are deterministic.

States. WLOG we assume that the states of a transition system are factored; given a set of world objects Ω, a state is factored into
a finite set of variables 𝑋 s.t. each variable 𝑥 ∈𝑋 either represents a property of a world object, or a relation over 𝑘 world objects.
Formally 𝑥 ≡ 𝜙(𝑜1, … , 𝑜𝑘), where 𝜙 is a 𝑘-ary function in ℕ, and {𝑜𝑖}𝑘1 are objects in Ω. For instance in the example illustrated
by Figs. 2 and 3, given the one-arity function 𝑣𝑒𝑐𝑡𝑜𝑟 and the six-objects set Ω = {𝑜0, 𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5}, each state variable 𝑥𝑖 ∈ 𝑋 is
defined as 𝑥𝑖 ≡ 𝑣𝑒𝑐𝑡𝑜𝑟(𝑜𝑖).
8

3 When the set of labels is a singleton, the transition system is essentially unlabeled, so the simpler definition that omits labels applies.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

Bool constraint_all_sorted () {

For (Pointer z:=1; z<|Ω|; z++) {

If (vector(z-1) > vector(z))

Return False;

}

Return True;

}

Fig. 4. Boolean function constraint_all_sorted that checks whether the vector of state variables is sorted in increasing order. The constraint is implemented
leveraging the single pointer 𝑧 over the objects in Ω; 𝑣𝑒𝑐𝑡𝑜𝑟(𝑧) is interpreted as 𝑣𝑒𝑐𝑡𝑜𝑟(𝑜𝑧) ≡ 𝑥𝑧 ∈𝑋.

Bool schema_swap (Pointer z1, Pointer z2) {

If (z1>=0 and z2>=0 and z1<|Ω| and z2<|Ω| and z1<z2){

Variable aux;

aux:= vector(z1);

vector(z1):= vector(z2);

vector(z2):= aux;

Return True;

}

Return False;

}

Fig. 5. Pointer-based representation of the swap action schema. When applicable, the swap action schema exchanges the value of the state variables indexed by its
two parameters, the pointers 𝑧1 and 𝑧2 .

Definition 3 (Pointer). Given a set of objects Ω, with |Ω| denoting the number of objects in the set, we define a pointer as a
finite-domain variable 𝑧 whose domain is 𝐷𝑧 = [0, … , |Ω| − 1].

Pointers and state constraints. Pointers are variables for indexing the objects of a transition system. In combination with function
symbols, pointers are useful to define state constraints that produce not only compact, but general representations of a possibly infinite
set of states. By general we mean that a constraint represents a set of states that share some common structure, no matter the
actual number of objects. Fig. 4 shows the Boolean function constraint_all_sorted that implements a global constraint for
checking whether the content of the vector of state variables is sorted in increasing order; the constraint_all_sorted function
is procedurally defined, leveraging a single pointer 𝑧, and it applies to any number of objects, and to any domain size of the
corresponding state variables.

Action schemes. Action schemes compactly specify a (possibly infinite) set of transitions that share a common structure; action
schemes generalize over any number, or identity of world objects. They do not refer to specific objects but instead, they leverage
parameters to indirectly refer to the different world objects. Next we show that pointers over objects enable the compact and general
definition of (possibly infinite) sets of state transitions via action schemes.

Definition 4 (Action schema with pointers). Given a set of 𝑋 state variables, an action schema with pointers is a tuple ⟨name, params,
pre, eff ⟩ where:

• name is the label that uniquely identifies the action schema.

• params is a finite set of pointers 𝑍 defined over the set Ω of objects.

• pre is a state constraint where state variables are indirectly addressed via the function symbols and the pointers in params, i.e.
𝑥 ≡ 𝜙(⃖⃗𝑧) such that 𝜙 ∈ Φ and ⃖⃗𝑧 ∈ 𝑍𝑎𝑟(𝜙). The pre state constraint implicitly represents the subset of states where the action
schema is applicable.

• eff is a partial assignment of the state variables where a subset of the state variables is indirectly addressed via the function
symbols and the pointers in params. The eff partial assignment implicitly represents the successor state that results from the
execution of the action schema at a given state.

Fig. 5 illustrates our pointer-based definition of an action schema; when applicable, the swap action schema exchanges the value
of the state variables indexed by its two parameters (the pointers 𝑧1 and 𝑧2). The state variables are global, so they can be accessed
from any action schema. The swap action schema is succinct, because it compactly defines an infinite set of different state transitions
that share a common structure. The swap action schema is also general, because it applies to any sorting instance, no matter the
length of the vector of state variables or the domain size of those variables. What is more, the execution of the swap action schema
is a deterministic matching-free process since the input pointers do always index a single object in Ω.

4.2. Representing STRIPS problems with pointers over objects

Since the early 1970s, the STRIPS formalism is widely used for research in automated planning [93]. Even today, STRIPS is
an essential fragment of PDDL [86], the input language of the International Planning Competition, and most planners support the
9

STRIPS representation. Here we show that our pointer-based representation naturally applies to object-centered classical planning

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

Fig. 6. Example of a three-block state from the blocksworld (left), and its corresponding Boolean functions representation (right).

formalisms, such as STRIPS. In fact, our pointer-based representation can be understood as an instantiation of F-STRIPS [94], where
the single level of indirection of pointers over objects is enough to represent STRIPS problems with constant memory access.

STRIPS compactly represents the set of states of a transition system using a finite set of objects, and a finite set of first-order
logic (FOL) predicates, that indicate properties of the objects and their relations. Likewise, STRIPS compactly represents the space
of possible state transitions using FOL operators, which are defined as a tuple 𝑜𝑝 = ⟨𝑛𝑎𝑚𝑒(𝑜𝑝), 𝑎𝑟𝑔𝑠(𝑜𝑝), 𝑝𝑟𝑒(𝑜𝑝), eff −(𝑜𝑝), eff +(𝑜𝑝)⟩
where, 𝑛𝑎𝑚𝑒(𝑜𝑝) is a unique identifier of the operator, 𝑎𝑟𝑔𝑠(𝑜𝑝) is a set of variable symbols specifying the arguments of the operator,
and 𝑝𝑟𝑒(𝑜𝑝), eff −(𝑜𝑝), eff +(𝑜𝑝) are sets of FOL predicates, with variables exclusively taken from 𝑎𝑟𝑔𝑠(𝑜𝑝), and that respectively
specify the preconditions, negative effects and positive effects. The representation of a STRIPS problem is completed by specifying an
initial state, that defines the initial situation of the objects, and the target set of goal states, typically specified as a partial state.

State representation. When applying our pointer-based formalism to a STRIPS problem, each state variable 𝑥 ∈𝑋 has domain
𝐷𝑥 = {0, 1}, and it is built as a FOL STRIPS predicate 𝜙 ∈Φ grounded by a vector of objects ⃖⃗𝑜 ∈Ω𝑎𝑟(𝜙). Fig. 6 shows the representation
of a blocksworld state using the STRIPS formalism, as well as using our formalism. In this state there are three blocks, Ω = {𝑏0, 𝑏1, 𝑏2},
that are stacked in a single tower. Predicates clear(?x), holding(?x), and ontable(?x), are encoded as three different Boolean
functions that map each vector of objects to either 0 or 1 in the current state. Omitted state variables are assumed to be zero valued.
Our vector 𝑋 of state variables is the result of unifying the predicates and object tuple valuations into a vector. The length of the
vector of state variables is then upper bounded by |𝑋| ≤∑

𝑘≥0 𝑛𝑘|Ω|𝑘, where 𝑛𝑘 is the number of first-order predicates with arity 𝑘.
For instance, the 𝑋 vector contains at most |Ω|2 + 3|Ω| + 1 state variables for the blocksworld domain.4

Action representation. Given a FOL STRIPS operator 𝑜𝑝 = ⟨𝑛𝑎𝑚𝑒(𝑜𝑝), 𝑎𝑟𝑔𝑠(𝑜𝑝), 𝑝𝑟𝑒(𝑜𝑝), eff −(𝑜𝑝), eff +(𝑜𝑝)⟩, our pointer-based
formalism produces its corresponding pointer-based action schema ⟨name, params, pre, eff ⟩:

• The name of the action schema is 𝑛𝑎𝑚𝑒(𝑜𝑝), the name of the given FOL STRIPS operator.

• For each argument in 𝑎𝑟𝑔𝑠(𝑜𝑝), the action schema has a pointer that indexes an object 𝑜 ∈Ω.

• The set 𝑝𝑟𝑒(𝑜𝑝) is transformed into a conjunctive arithmetic-logic expression with conditions of two kinds: (i) conditions asserting
that each pointer of the action schema is within its domain and (ii), for each precondition in 𝑝𝑟𝑒(𝑜𝑝) a condition asserting that
the state variable addressed by the pointers content equals to some specific value of its domain.

• Each negative effect in eff −(𝑜𝑝) is transformed into an indirect variable assignment that sets the corresponding state variable to
0. Likewise, each positive effect in eff +(𝑜𝑝) is transformed into an indirect variable assignment that sets the corresponding state
variable to 1.

Next we show the grammar that formalizes our pointer-based representation of STRIPS action schemes,

Π ∶∶= 𝐼𝑓 (𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆){𝐴𝑆𝑆𝐼𝐺𝑁𝑀𝐸𝑁𝑇𝑆}

𝑅𝑒𝑡𝑢𝑟𝑛 𝐹𝑎𝑙𝑠𝑒;

𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∶∶= (𝑧 >= 0 𝑎𝑛𝑑 𝑧 < |Ω|) 𝑎𝑛𝑑 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∣

(𝑝(𝑧1,… , 𝑧𝑘) == 0) 𝑎𝑛𝑑 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∣

(𝑝(𝑧1,… , 𝑧𝑘) == 1) 𝑎𝑛𝑑 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∣

(𝑇 𝑟𝑢𝑒)

𝐴𝑆𝑆𝐼𝐺𝑁𝑀𝐸𝑁𝑇𝑆 ∶∶= 𝑝(𝑧1,… , 𝑧𝑘) ∶= 0; 𝐴𝑆𝑆𝐼𝐺𝑁𝑀𝐸𝑁𝑇𝑆 ∣

𝑝(𝑧1,… , 𝑧𝑘) ∶= 1; 𝐴𝑆𝑆𝐼𝐺𝑁𝑀𝐸𝑁𝑇𝑆 ∣

𝑅𝑒𝑡𝑢𝑟𝑛 𝑇 𝑟𝑢𝑒;

where 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 includes assertions over predicates 𝑝(𝑧1, … , 𝑧𝑘) instantiated with the action arguments (i.e. the pointers),
and represents the operator preconditions (== denotes the equality operator, ∶= indicates an assignment, and a semicolon denotes

4 State-invariants [95] can be leveraged to save space for the memory allocation of the state variables, e.g. in the blocksworld one block cannot be on top of two
10

different blocks simultaneously.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

(:action unstack

:parameters (?x ?y)

:precondition (and (clear ?x) (handempty) (on ?x ?y))

:effect (and (holding ?x) (clear ?y)

(not (clear ?x)) (not (handempty)) (not (on ?x ?y)))))

Fig. 7. The unstack STRIPS operator from the blocksworld domain represented with PDDL.

Bool schema_unstack (Pointer z1, Pointer z2) {

If (z1>=0 and z2>=0 and z1<|Ω| and z2<|Ω| and clear(z1)=1 and handempty()=1 and on(z1,z2)=1){

clear(z1) := 0;

handempty() := 0;

on(z1,z2) := 0;

holding(z1) := 1;

clear(z2) := 1;

Return True;

}

Return False;

}

Fig. 8. The unstack action schema from blocksworld defined with two pointers (𝑧1 and 𝑧2).

void init() {

clear(b0) := 1; on(b0,b1) := 1; on(b1,b2) := 1; ontable(b2) := 1;

}

Bool goals() {

Return (ontable(b0)=1 and ontable(b1)=1 and ontable(b2)=1);

}

Fig. 9. The init and goals procedures for representing the STRIPS planning problem of unstacking the three-block tower of Fig. 6.

the end of a program instruction). 𝐴𝑆𝑆𝐼𝐺𝑁𝑀𝐸𝑁𝑇𝑆 is a conjunction of assignments representing the operator positive/negative
effects; in more detail 𝑝(𝑧1, … , 𝑧𝑘) ∶= 1 denotes a positive effect while 𝑝(𝑧1, … , 𝑧𝑘) ∶= 0 denotes a negative effect. Fig. 8 shows
our pointer-based definition for the unstack action schema from the blocksworld that implements the corresponding operator
represented in the STRIPS fragment of PDDL of Fig. 7. The action schema of Fig. 8 is implemented using two pointers (𝑧1 and 𝑧2), and
it applies to any blocksworld instance, no matter the number of blocks or their identity.

Problem representation. We complete our pointer-based representation of a STRIPS problem with the init and goals procedures:
the init procedure is a write-only procedure, that implements a total variable assignment of the state variables for specifying the initial
state of the STRIPS problem. The goals procedure is a read-only Boolean procedure, that encodes the state-constraint that specifies the
subset of goal states. Fig. 9 shows the init and goals procedures for the planning problem of unstacking the 3-block tower of Fig. 6.
The content of the init and goals procedures is inductively formalized as follows:

𝐼𝑁𝐼𝑇 ∶= (𝑝(𝑜1,… , 𝑜𝑘) ∶= 1); 𝐼𝑁𝐼𝑇 ∣;

𝐺𝑂𝐴𝐿𝑆 ∶= 𝑅𝑒𝑡𝑢𝑟𝑛(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆);

𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∶= (𝑝(𝑜1,… , 𝑜𝑘) == 0) 𝑎𝑛𝑑 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∣

(𝑝(𝑜1,… , 𝑜𝑘) == 1) 𝑎𝑛𝑑 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ∣

(𝑇 𝑟𝑢𝑒)

Solution representation. Our pointer-based representation of a sequential plan 𝜋 comprises instructions for: (i), invoking the
Boolean function that encodes an action scheme and (ii), incrementing/decrementing the value of a pointer. Formally:

𝜋 ∶= 𝑆𝑇𝐴𝑇𝐸𝑀𝐸𝑁𝑇𝑆;

𝑆𝑇𝐴𝑇𝐸𝑀𝐸𝑁𝑇𝑆 ∶= 𝑎(𝑧1,… , 𝑧𝑘); 𝑆𝑇𝐴𝑇𝐸𝑀𝐸𝑁𝑇𝑆 ∣

𝑧++; 𝑆𝑇𝐴𝑇𝐸𝑀𝐸𝑁𝑇𝑆 ∣

𝑧−−; 𝑆𝑇𝐴𝑇𝐸𝑀𝐸𝑁𝑇𝑆 ∣

;

where 𝑎(𝑧1, … , 𝑧𝑘) is an action scheme instantiated with a set of pointers {𝑧1, … , 𝑧𝑘} ⊆𝑍 , and {z++, z- | 𝑧 ∈𝑍} are the instructions
11

to increment/decrement a pointer 𝑧 ∈𝑍 . Pointers are always initialized to zero.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

void ONTABLE-SEQUENTIAL-PLAN (){

int z1=0, z2=0;

z2++;

act_unstack(z1,z2);

act_putdown(z1);

z1++;

z2++;

act_unstack(z1,z2);

act_putdown(z1);

}

Fig. 10. Pointer-based representation of the sequential plan 𝜋 = ⟨unstack(b0,b1), putdown(b0), unstack(b1,b2), putdown(b1)⟩ for unstacking the three-

block tower of Fig. 6.

unstack(?𝑥,?𝑦) unstack(𝑧1 ,𝑧2)

unstack(𝑏0 ,𝑏0)

unstack(𝑏0 ,𝑏1)

unstack(𝑏0 ,𝑏2)

. . .

𝑍 grounding

𝑧1 = 0

𝑧2 = 1

𝑍 indexing in

current state

Ω
g
ro

u
n
d
in

g

Map 𝑍 →Ω

Fig. 11. Relation between the action scheme 𝑢𝑛𝑠𝑡𝑎𝑐𝑘(?𝑥, ?𝑦) (i), the action 𝑢𝑛𝑠𝑡𝑎𝑐𝑘(𝑧1, 𝑧2) instantiated with pointers (𝑧1 , 𝑧2), and (ii), the ground actions instantiated
with the set of three blocks Ω = {𝑏0 , 𝑏1, 𝑏2}. Pointers 𝑧1 and 𝑧2 are bound variables in [0, … , |Ω|), that currently are indexing blocks 𝑏0 and 𝑏1 , respectively.

Fig. 10 illustrates our pointer-based representation of the four-action sequential plan 𝜋 = ⟨unstack(b0,b1), putdown(b0),

unstack(b1,b2), putdown(b1)⟩ for unstacking the three-block tower of Fig. 6. In more detail, the ONTABLE-SEQUENTIAL-
PLAN() program leverages two pointers, 𝑍 = {𝑧1, 𝑧2}, that are initialized to zero so they initially point to the first object (block 𝑏0
in this case). After executing the first 𝑧2++ instruction, 𝑧2 points to the second block, 𝑏1, while 𝑧1 still points to block 𝑏0. This means
that the first 𝚊𝚌𝚝_𝚞𝚗𝚜𝚝𝚊𝚌𝚔(𝚣𝟷,𝚣𝟸) instruction of the program in Fig. 10 is actually executing the ground action 𝚞𝚗𝚜𝚝𝚊𝚌𝚔(𝚋𝟶,𝚋𝟷),
which corresponds to the first step of plan 𝜋. Likewise, the first 𝚊𝚌𝚝_𝚙𝚞𝚝𝚍𝚘𝚠𝚗(𝚣𝟷) program instruction executes the ground action
𝚙𝚞𝚝𝚍𝚘𝚠𝚗(𝚋𝟶), i.e. the second step of the sequential plan 𝜋. The second 𝚊𝚌𝚝_𝚞𝚗𝚜𝚝𝚊𝚌𝚔(𝚣𝟷,𝚣𝟸) program instruction is executing the
ground action 𝚞𝚗𝚜𝚝𝚊𝚌𝚔(𝚋𝟷,𝚋𝟸), since both 𝑧1 and 𝑧2 are increased just before that instruction is executed. Finally, the second
𝚊𝚌𝚝_𝚙𝚞𝚝𝚍𝚘𝚠𝚗(𝚣𝟷) executes the ground action 𝚙𝚞𝚝𝚍𝚘𝚠𝚗(𝚋𝟷), which is the fourth and last step of the sequential plan 𝜋.

Fig. 11 illustrates the particular relation between an action scheme (i), its corresponding action instantiated over pointers and (ii),
the ground actions instantiated over the set of world objects Ω. In Fig. 11, the pointers 𝑧1 and 𝑧2 are bound variables in [0, … , |Ω|),
that currently are indexing blocks 𝑏0 and 𝑏1, respectively.

Beyond STRIPS. Our pointer-based representation supports object typing by simply specializing pointers to the subset of objects of
a particular type [86]. Furthermore, our pointer-based representation naturally supports classical planning with numeric state variables,
as defined in PDDL2.1 [96]. To support the representation of numeric state variables, the vector of state variables store integers

instead of Boolean values. Goals and action preconditions can then include assertions over numeric state variables, and action effects
can include assignments of the numeric state variables. For example, distance(b0,b1)=7 can be used to indicate that the physical
distance between blocks 𝑏0 and 𝑏1 is of seven units. Likewise distance(z1,z2)>distance(z2,z3) can be used to indicate that
the distance between the blocks indexed by pointers 𝑧1 and 𝑧2 is larger than the distance between the blocks pointed by 𝑧2 and 𝑧3.

4.3. Extending the classical planning model with a RAM

Now we are ready to leverage our pointer-based representation, with the notion of Random-Access Machine (RAM), to extend the
classical planning model. The extension produces an agnostic set of state features, and a set of actions, that are shared for the different
classical planning instances of a given domain (no matter their actual number of objects).

Given a classical planning instance 𝑃 = ⟨𝑋,𝐴, 𝐼,𝐺⟩, s.t. the state variables and actions are generated with the set of functions Φ
and action schemes Ξ of a given domain, grounded with a set of objects Ω. Then, the classical planning instance extended with a RAM
machine of |𝑍| +2 registers (i.e. |𝑍| pointers that reference the planning objects, plus two dedicated FLAGS registers namely the zero

and carry flags), is defined as 𝑃 ′
𝑍
= ⟨𝑋′

𝑍
,𝐴′

𝑍
, 𝐼 ′

𝑍
,𝐺⟩ where:

• The new set of state variables 𝑋′
𝑍

comprises:

– The state variables 𝑋 of the original planning instance, such that each state variable 𝑥𝑖 ∈ 𝑋 is 𝑥𝑖 ≡ 𝜙(⃖⃗𝑜) with 𝜙 ∈ Φ and
⃖⃗𝑜 ∈Ω𝑎𝑟(𝜙), as defined above.

– Two Boolean variables 𝑌 = {𝑦𝑧, 𝑦𝑐}, that play the role of the zero and carry FLAGS registers, respectively.
12

– The pointers 𝑍 , a set of extra state variables s.t. each 𝑧 ∈𝑍 has finite domain 𝐷𝑧 = [0, … , |Ω| − 1].

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

– A set of derived state variables 𝑋𝑍 = { 𝜙(⃖⃗𝑧) | 𝜙 ∈Φ, ⃖⃗𝑧 ∈𝑍𝑎𝑟(𝜙) } whose value is given by the interpretations of the functions of
the domain with the corresponding pointers.

• The new set of actions 𝐴′
𝑍

will represent the set of actions that is shared for the different classical planning instances in a given
domain, and it includes:

– The planning actions 𝐴′ that result from reformulating each action scheme 𝜉 ∈ Ξ into its corresponding pointer-based
version. The reformulation is a two-step procedure that requires 𝑍 to contain, at least, as many pointers as the largest arity of
an scheme in Ξ: (i), each parameter in 𝑝𝑎𝑟(𝜉) is replaced with a pointer in 𝑍 and (ii), preconditions and effects are rewritten
to refer to these pointers.

– The RAM actions that implement the following sets of RAM instructions {𝚒𝚗𝚌(𝑧1), 𝚍𝚎𝚌(𝑧1), 𝚌𝚖𝚙(𝑧1, 𝑧2), 𝚜𝚎𝚝(𝑧1, 𝑧2) | 𝑧1, 𝑧2 ∈
𝑍} over the pointers in 𝑍 , and {𝚝𝚎𝚜𝚝(𝜙(⃖⃖⃖⃗𝑧1)), 𝚌𝚖𝚙(𝜙(⃖⃖⃖⃗𝑧1), 𝜙(⃖⃖⃖⃗𝑧2)) | ⃖ ⃖⃖⃗𝑧1, ⃖⃖⃖⃗𝑧2 ∈ 𝑍𝑎𝑟(𝜙)} over the lists of pointers in 𝑍𝑎𝑟(𝜙) for each
function symbol 𝜙 ∈ Φ. Respectively, these RAM instructions increment/decrement a pointer by one while keeping the values
within the pointer domain, compare two pointers, set the value of a pointer 𝑧2 to another pointer 𝑧1, test whether 𝜙(⃖⃖⃖⃗𝑧1) is
greater than zero, and compare the value of 𝜙(⃖⃖⃖⃗𝑧1) and 𝜙(⃖⃖⃖⃗𝑧2). The 𝚌𝚖𝚙(𝜙(⃖⃖⃖⃗𝑧1), 𝜙(⃖⃖⃖⃗𝑧2)) instructions are only required for numeric
functions5 to compare whether 𝜙(⃖⃖⃖⃗𝑧1) is greater, equal or smaller than 𝜙(⃖⃖⃖⃗𝑧2). The outcome of executing a RAM action is captured
in a value, here denoted as 𝑟𝑒𝑡:

𝑖𝑛𝑐(𝑧1) ⟹ 𝑟𝑒𝑡 ∶=

{
𝑧1 + 1 if 𝑧1 + 1 < |Ω|
0 Otherwise

𝑑𝑒𝑐(𝑧1) ⟹ 𝑟𝑒𝑡 ∶= 𝑧1 − 1,

𝑐𝑚𝑝(𝑧1, 𝑧2) ⟹ 𝑟𝑒𝑡 ∶= 𝑧1 − 𝑧2,

𝑠𝑒𝑡(𝑧1, 𝑧2) ⟹ 𝑟𝑒𝑡 ∶= 𝑧2,

𝑡𝑒𝑠𝑡(𝜙(⃖⃖⃖⃗𝑧1)) ⟹ 𝑟𝑒𝑡 ∶= 𝜙(⃖⃖⃖⃗𝑧1),

𝑐𝑚𝑝(𝜙(⃖⃖⃖⃗𝑧1), 𝜙(⃖⃖⃖⃗𝑧2)) ⟹ 𝑟𝑒𝑡 ∶= 𝜙(⃖⃖⃖⃗𝑧1) − 𝜙(⃖⃖⃖⃗𝑧2).

Once a RAM action is executed, its returned value is used to update the Boolean FLAGS 𝑌 = {𝑦𝑧, 𝑦𝑐} as defined, i.e. 𝑦𝑧 ∶=
(𝑟𝑒𝑡 == 0) and 𝑦𝑐 ∶= (𝑟𝑒𝑡 > 0). FLAGS are dedicated to capture the outcome of RAM instructions. The combination of both
FLAGS registers can then represent any outcome of a three-way comparison [97].

• The new initial state 𝐼 ′
𝑍

is the initial state of the original planning instance, but extended with all pointers set to zero and the
two FLAGS set to False. The goals are the same as those of the original planning instance.

The number of pointers |𝑍| is a parameter that indicates how many pointers are used in the extension. At least 𝑍 must contain as
many pointers as the largest arity of the functions Φ and action schemes Ξ of the given domain. Therefore {𝑌 ∪𝑍 ∪𝑋𝑍}, becomes a
subset of state variables shared by all the instances that belong to the same domain, no matter their number of objects. Likewise 𝐴′

𝑍
becomes a set of actions that is shared by all the instances that belong to the same domain, no matter their actual number of objects.

Example. Here we extend the classical planning instance 𝑃1 = ⟨𝑋,𝐴, 𝐼1,𝐺1⟩ (illustrated in Fig. 2) using a RAM with 𝑍 = {𝑖, 𝑗}
two pointers. According to this extension, our pointer-based representation of the sequential plan 𝜋1 = ⟨𝑠𝑤𝑎𝑝(𝑜0, 𝑜5), 𝑠𝑤𝑎𝑝(𝑜1, 𝑜2),
𝑠𝑤𝑎𝑝(𝑜1, 𝑜3)⟩ is the following sequence of thirteen actions 𝜋′

1 = ⟨𝑖𝑛𝑐(𝑗)5, 𝑠𝑤𝑎𝑝(𝑖, 𝑗), 𝑖𝑛𝑐(𝑖), 𝑑𝑒𝑐(𝑗)3, 𝑠𝑤𝑎𝑝(𝑖, 𝑗), 𝑖𝑛𝑐(𝑗), 𝑠𝑤𝑎𝑝(𝑖, 𝑗)⟩; where
superscripts refer to the number of times that an instruction is sequentially repeated, and where 𝑠𝑤𝑎𝑝(𝑖, 𝑗) refers to the pointer-based
action schema defined in Fig. 5. Likewise, our pointer-based version of the sequential plan 𝜋2 = ⟨𝑠𝑤𝑎𝑝(𝑜0, 𝑜2), 𝑠𝑤𝑎𝑝(𝑜3, 𝑜5)⟩, that
solves the classical planning problem 𝑃2 in Fig. 2, is the ten-action sequence 𝜋′

2 = ⟨𝑖𝑛𝑐(𝑗)2, 𝑠𝑤𝑎𝑝(𝑖, 𝑗), 𝑖𝑛𝑐(𝑖)3, 𝑖𝑛𝑐(𝑗)3, 𝑠𝑤𝑎𝑝(𝑖, 𝑗)⟩.
4.3.1. Theoretical properties

Our extension of a classical planning problem with a RAM machine preserves the solution space of the original problem. Sequential
plans in the extended planning model may however be longer (e.g. the pointer-based version of plan 𝜋1 from the previous example
required thirteen steps while the original sequential plan only had three steps). As a rule of thumb, an increment of the original plan
length happens when pointers must be incremented (or decremented) multiple times to access the corresponding objects before the
corresponding action is executed.

Theorem 1. Given a classical planning instance 𝑃 = ⟨𝑋,𝐴, 𝐼,𝐺⟩, its extension 𝑃 ′
𝑍

, using a RAM machine with 𝑍 pointers s.t. |𝑍| ≥
𝑚𝑎𝑥𝑎∈𝐴𝑎𝑟(𝑎), preserves the solution space of 𝑃 .

Proof. ⇒: Let 𝜋 = ⟨𝑎1,… , 𝑎𝑚⟩ be a plan that solves 𝑃 , an equivalent plan 𝜋′ that solves 𝑃 ′
𝑍

is built as follows; for each action 𝑎𝑖 ∈ 𝜋,
𝐴′ contains a pointer-based action schema 𝑎′

𝑖
that replaces each parameter in 𝑝𝑎𝑟(𝑎𝑖) with a pointer 𝑧 ∈ 𝑍 . For each such pointer

𝑧, the plan repeatedly applies RAM actions inc(𝑧) or dec(𝑧) until they reference the associated vector of objects ⃖⃗𝑜, and then it
13

5 Compare instructions are syntactic sugar for Boolean functions since they can be implemented composing test instructions.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

applies 𝑎′
𝑖
. The resulting plan 𝜋′ has exactly the same effect as 𝜋 on the original planning state variables in 𝑋, and since the goal

condition of 𝑃 ′
𝑍

is the same as that of 𝑃 , it follows that 𝜋′ solves 𝑃 ′
𝑍

.

⇐: Let 𝜋′ = ⟨𝑎′1,… , 𝑎′𝑚⟩ be a plan that solves 𝑃 ′
𝑍

. Identify each action in 𝐴′ among those of 𝜋′, and execute 𝜋′ to identify the
assignment of objects to pointers when applying each action in 𝐴′. Construct a plan 𝜋 corresponding to the subsequence of actions in
𝐴′ from 𝜋′, replacing each action schema 𝑎′

𝑖
∈𝐴′ by an original action 𝑎𝑖 ∈𝐴 and choosing as parameters of 𝑎𝑖 the objects referenced

by the pointers of 𝑎′
𝑖

at the moment of execution. Hence 𝑎𝑖 has the same effect as 𝑎′
𝑖

on the state variables in 𝑋, implying that 𝜋 has
the same effect as 𝜋′ on 𝑋. Since the goal condition of 𝑃 is the same as that of 𝑃 ′

𝑍
, it follows that 𝜋 solves 𝑃 . □

The execution of a plan corresponding to a classical planning problem extended with a RAM machine is a deterministic matching-free
process that does not require explicit action grounding; the plan execution itself determines the values of the pointers that feed the
action schemes.

Theorem 2. The new set of actions 𝐴′
𝑍

is independent of the number of objects, state variables, and their domain size.

Proof. The number of actions of a classical planning instance, extended with a RAM of |𝑍| pointers, is

|𝐴′
𝑍
| = 2|𝑍|2 + ∑

𝜙∈Φ
|𝑍|2𝑎𝑟(𝜙) + |𝐴′|. (1)

This number exclusively depends on the number of pointers in 𝑍 , on the arity of the functions in Φ, and on the arity of the action
schemes in Ξ. First, the increment/decrement instructions induce 2|𝑍| actions, the set instructions over pointers induce |𝑍|2 − |𝑍|
actions, and comparison instructions of pointers induce |𝑍|2 − |𝑍| actions; comparison instructions can compare two pointers but
for symmetry breaking, we only consider the single parameter ordering (𝑧𝑖, 𝑧𝑗) where 𝑖 < 𝑗, i.e. we consider cmp(𝑧1,𝑧2) but not

cmp(𝑧2,𝑧1). Second, test instructions are defined over each function symbol and list of pointers with the same size as its arity,
inducing

∑
𝜙 |𝑍|𝑎𝑟(𝜙) actions, and comparison of predicates with pointers induce

∑
𝜙(|𝑍|2𝑎𝑟(𝜙) − |𝑍|𝑎𝑟(𝜙)) actions. Therefore, the total

number of RAM instructions are 2|𝑍| +2(|𝑍|2 − |𝑍|) +∑
𝜙(|𝑍|𝑎𝑟(𝜙) + |𝑍|2𝑎𝑟(𝜙) − |𝑍|𝑎𝑟(𝜙)) = 2|𝑍|2 +∑

𝜙 |𝑍|2𝑎𝑟(𝜙) which only depends
on the number of pointers in 𝑍 and the arity of each function symbol 𝜙. Last, as defined by our abstraction procedure, the number
of actions in 𝐴′ is given by the number of parameters of the actions schemes Ξ and the number of pointers in 𝑍 to replace those
parameters. This means that the size of 𝐴′ is upper bounded by |𝐴′| ≤∑

𝜉∈Ξ |𝑍||𝑝𝑎𝑟(𝜉)|. Last, it follows that 𝐴′
𝑍

, whose size is given by |𝐴′
𝑍
| = 2|𝑍|2 +∑

𝜙 |𝑍|2𝑎𝑟(𝜙) + |𝐴′|, it is also independent of the number of objects Ω, state variables in 𝑋 and their domain size. □

5. Generalized planning as heuristic search

This section presents our GP as heuristic search approach; first the section details the search space of our GP as heuristic search

approach and then, the section explains the particular details of our heuristic search algorithm for GP, called BFGP.

5.1. The search space

Here we characterize the branching factor of the space of planning programs introduced in Section 3.3, and we show that its size
depends on the domain of the planning state variables (which unfortunately may be unbound). Then we define a tractable GP search
space by conditioning the branching and looping of planning programs with the FLAGS registers of the RAM model. We show that our
new search space for GP is independent of the number of input planning instances in a GP problem, and the size of these instances
(i.e. the number of objects, state variables, and their domain sizes). This enables the definition of a heuristic search approach for GP,
capable of managing large sets of state variables with large numerical domains, such as integers.

5.1.1. Planning programs conditioned over valued state variables

The branching and looping of the planning programs introduced in Section 3.3 are conditioned over valued state variables [33],
i.e. go to some line 𝑖 if state variable 𝑥 has value 𝑣. The space of this kind of solutions can be characterized by a binary encoding;
given a set of state variables 𝑋, a set of actions 𝐴, a maximum number of program lines 𝑛 such that the last instruction is Π𝑛−1 = 𝑒𝑛𝑑,
and defining the propositions of 𝗀𝗈𝗍𝗈 instructions as (𝑥 = 𝑣) atoms where 𝑥 ∈𝑋 and 𝑣 ∈𝐷𝑥, the space of possible planning programs

is encoded with three bit-vectors:

1. The action vector of length (𝑛 − 1) × |𝐴|, indicating whether an action 𝑎 ∈𝐴 is programmed on line 0 ≤ 𝑖 < 𝑛 − 1.

2. The transition vector of length (𝑛 − 1) × (𝑛 − 2), indicating whether a 𝗀𝗈(𝑖′, ∗) instruction is programmed on line 0 ≤ 𝑖 < 𝑛 − 1.

3. The proposition vector of length (𝑛 − 1) ×
∑

𝑥∈𝑋 |𝐷𝑥|, indicating whether a 𝗀𝗈(∗, !⟨𝑥 = 𝑣⟩) instruction is programmed on line
0 ≤ 𝑖 < 𝑛 − 1.

Definition 5 (Partially specified planning program). A partially specified planning program Π is a planning program s.t. the content of
14

some of its program lines may be undefined, i.e. ∃𝑖 ∈ [0, 𝑛) s.t. Π[𝑖] =< 𝚎𝚖𝚙𝚝𝚢 >.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

A partially specified planning program is encoded as the concatenation of the previous three bit-vectors and the length of the
resulting bit-vector is:

(𝑛− 1)

(|𝐴|+ (𝑛− 2) +
∑
𝑥∈𝑋

|𝐷𝑥|
)

. (2)

The previous binary encoding allows us to quantify the similarity of two partially specified planning programs (e.g. the Hamming
distance of their corresponding bit-vector representation) and more importantly, to systematically enumerate the space of all possible
planning programs with a maximum of 𝑛 lines. Let us define the empty program as the particular partially specified planning program
whose instructions are all undefined (i.e. all bits of its bit-vector representation are set to False). Starting from the empty program,
we can enumerate the entire set of possible planning programs with two search operators:

• program(i,a), that programs an action 𝑎 ∈𝐴 at line 𝑖 of a program

• program(i,i’,x,v), that programs a 𝗀𝗈𝗍𝗈(𝑖′, !⟨𝑥 = 𝑣⟩) instructions at line 𝑖 of a program.

These two search operators are only applicable when Π[𝑖] =< 𝚎𝚖𝚙𝚝𝚢 > (meaning that 𝑖 is an undefined program line i.e. in the
bit-vector representation the bits corresponding to the encoding of the program line 𝑖 are set to False). Given the bit-vector repre-

sentation of a partially specified planning program, the application of the program(i,a) or program(i,i’,x,v) search operators
set the corresponding bits to True. With this regard, the partially specified planning program of a given search node is at Hamming
distance 1 from its parent, when programming a planning action with program(i,a), or at Hamming distance 2, when program-

ming a 𝗀𝗈𝗍𝗈 instruction with program(i,i’,x,v). In fact, this is the search space leveraged by the classical planning compilation
approach for computing planning programs with an off-the-shelf classical planner [33]. Equation (2) reveals that the number of
planning programs with 𝑛 lines depends on the number of grounded actions |𝐴|, and the number of state variables 𝑥 ∈𝑋 and their
domain 𝐷𝑥. This dependence causes an scalability issue, limiting the applicability of the cited compilation to planning instances of
contained size. In the worst case, the domain of state variable might be infinite, e.g. a numeric state variable, hence the search space
might be intractable.

5.1.2. Planning programs conditioned over a feature language

We overcome the intractability of the previous solution space by conditioning the branching and looping of planning programs

with a finite feature language. In more detail, we leverage our extension of the classical planning model with a RAM, since it produces
a minimalist but general set of features for the classical planning instances of a given domain.

Definition 6 (The feature language). We define the feature language as the four possible joint values of the two Boolean variables
𝑌 = {𝑦𝑧, 𝑦𝑐}, and we denote this language as  = {(¬𝑦𝑧 ∧ ¬𝑦𝑐), (𝑦𝑧 ∧ ¬𝑦𝑐), (¬𝑦𝑧 ∧ 𝑦𝑐), (𝑦𝑧 ∧ 𝑦𝑐)}.

Our feature language  is minimalist, it only contains four elements. We say that  is general because it is independent of the
number of objects (and hence, of the number of state variables and their domain). Features in  are a function of (i) the state variables
and (ii) the last executed instruction. The value of FLAGS 𝑌 = {𝑦𝑧, 𝑦𝑐} depend on the last executed instruction, and considering that
only RAM instructions update the variables in 𝑌 , we have a space of 2|𝑌 | × (2|𝑍|2 +∑

𝜙 |𝑍|2𝑎𝑟(𝜙)) state observations implemented
with only |𝑌 | Boolean variables. The four joint values of {𝑦𝑧, 𝑦𝑐} can model then a large space of observations, e.g. = 0, ≠ 0,
< 0, > 0, ≤ 0, ≥ 0 as well as relations =, ≠, <, >, ≤, ≥ on pairs of state variables.

Definition 7 (The GP with a RAM search space). Given a GP problem  , that is built extending a set {𝑃1, … , 𝑃𝑇 } of classical planning
instances from a given domain with a RAM of |𝑍| pointers. Our GP search space is the set of partially specified planning programs
that can be built with 𝑛 program lines, the common set of planning actions 𝐴′

𝑍
, and 𝗀𝗈𝗍𝗈 instructions that are exclusively conditioned

on a feature in .

According to Definition 7, we represent GP solutions as planning programs where goto instructions can exclusively be conditioned
on a feature in . Limiting the conditions of goto instructions to any of the four features in  bounds the number of planning
programs. Although the 𝑌 = {𝑦𝑧, 𝑦𝑐} flags have four possible value combinations, the fourth case (𝑦𝑧 ∧ 𝑦𝑐) ∈  can never happen as
a result of a comparison; this fourth case is however useful for representing unconditional goto. The proposition vector required to
encode a planning program becomes now a vector of only (𝑛 − 1) × 4 bits (one bit for each of the four features in ). Equation (2)

simplifies then to:

(𝑛− 1)
(|𝐴′

𝑍
|+ (𝑛− 2) + 4

)
. (3)

Equation (3) shows that the size of our new solution space for GP is independent of the number of objects and hence of the number
of original state variables and their domain size; Theorem 2 already showed that 𝐴′

𝑍
no longer grows with the number of objects.

This novel GP solution space can now scale to planning problems where state variables have large domains (e.g. integers) and that
15

have a large number of state variables.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

0. set(j,tail)

1. swap(i,j)

2. dec(j)

3. inc(i)

4. cmp(j,i)

5. goto(1, ¬(¬𝑦𝑧 ∧ ¬𝑦𝑐))
6. end

0. set(min,i)

1. cmp(vector(j),vector(min))

2. goto(5, ¬(¬𝑦𝑧 ∧ ¬𝑦𝑐))
3. set(min, j)

4. swap(i,min)

5. inc(j)

6. cmp(length,j)

7. goto(1, ¬(𝑦𝑧 ∧ ¬𝑦𝑐))
8. inc(i)

9. set(j,i)

10. cmp(length,i)

11. goto(0, ¬(𝑦𝑧 ∧ ¬𝑦𝑐))
12. end

Fig. 12. Two examples of generalized plans: (left) for reversing a list; (right) for sorting a list with the selection-sort algorithm.

Theorem 3. The space of planning programs that exclusively branch and loop over the features in  preserves the solution space of planning
programs that branch and loop over valued state variables.

Proof. Given a GP problem  and a planning program Π conditioned over valued state variables that solves  . An equivalent
planning program, that exclusively branches over any of the features in , is built replacing each goto(i,!(x=v)) instruction in
Π, where 𝑥 ≡ 𝜙(⃖⃗𝑜) s.t. 𝜙 ∈ Φ and ⃖⃗𝑜 ∈ Ω𝑎𝑟(𝜙), by a finite block of instructions that: (i) increments/decrements a vector of auxiliary
pointers ⃖⃖⃖⃖⃖⃖⃗𝑧𝑎𝑢𝑥, with size 𝑎𝑟(𝜙), until they index objects ⃖⃗𝑜, (ii) given auxiliary static state variables for each possible value, i.e. ∀𝑣∈𝐷𝑥

𝑥𝑣,
and a dedicated object for each new state variable 𝑜𝑣 such that 𝑥𝑣 ≡ 𝜙(𝑜𝑣), increments/decrements another auxiliary pointer 𝑧𝑠𝑡𝑎𝑡𝑖𝑐
in a function 𝜙𝑠𝑡𝑎𝑡𝑖𝑐(𝑧𝑠𝑡𝑎𝑡𝑖𝑐) until it reaches object 𝑜𝑣 such that 𝑥𝑣 ≡ 𝜙𝑠𝑡𝑎𝑡𝑖𝑐(𝑜𝑣) which equals 𝑣, (iii) compares the content of these two
state variables with a cmp(𝜙(⃖⃖⃖⃖⃖⃖⃗𝑧𝑎𝑢𝑥), 𝜙𝑠𝑡𝑎𝑡𝑖𝑐 (𝑧𝑠𝑡𝑎𝑡𝑖𝑐)) instruction and (iv), jumps to target line 𝑖 when the state variables differ in their
content with a goto(i,!(𝑦𝑧 ∧ ¬𝑦𝑐)) instruction. □

Example. Fig. 12 shows two examples of planning programs that were synthesized by our BFGP algorithm searching in our tractable
GP solution-space: (left) a generalized plan for reversing a list, and (right) a generalized plan for sorting a list. Note that goto
instructions are exclusively conditioned on a feature in , and that both planning programs are solutions for an infinite set of classical
planning problems; they generalize with a swap action schema of arity 2 and a vector function symbol of arity 1, no matter the
number of objects Ω and no matter the state variables content, i.e. 𝑥𝑖 ≡ vector(𝑜𝑖) such that 𝑜𝑖 ∈ Ω, 𝑥𝑖 ∈𝑋 and 𝐷𝑥𝑖

⊆ ℕ0. In the
planning program for reversing a list (left), line 0 sets pointer 𝑗 to the last element of the list. Line 1 swaps in the vector the element
pointed by 𝑖 (initially set to zero) and the element pointed by 𝑗, then pointer 𝑗 is decremented, pointer 𝑖 is incremented, and this
sequence of instructions is repeated until the condition on line 5 becomes false, i.e. when 𝑗 > 𝑖, which means that reversing the list is
finished. The planning program for sorting a list (right) is actually an implementation of the selection-sort algorithm. In this program,
pointers 𝑗 and 𝑖 are used for inner (lines 5-7) and outer (lines 8-11) loops respectively, and 𝑚𝑖𝑛 to point to the minimum value in
the inner loop (lines 3-4); ¬𝑦𝑧 ∧ ¬𝑦𝑐 on line 2 represents whether the content of vector(𝑗) is less than the content of vector(𝑚𝑖𝑛),
while 𝑦𝑧 ∧ ¬𝑦𝑐 on line 7 represents whether 𝑗 == 𝑙𝑒𝑛𝑔𝑡ℎ (resp. 𝑖 == 𝑙𝑒𝑛𝑔𝑡ℎ on line 11). Note that object ordering affects to the
actual sequential plan that is eventually produced by the execution of the generalized plan but object ordering does not affect the
correctness/completeness of the generalized plan. This is a common feature of structured programs e.g. a SelectionSort program is
sound and complete but the actual number of executed swap instructions depends on the input list to be sorted.

5.2. The search algorithm

Given a GP problem, our heuristic search algorithm (called BFGP) implements a Best-First Search (BFS) in our solution space of
planning programs with 𝑛 program lines, and a RAM machine with |𝑍| pointers. Algorithm 1 shows the BFGP pseudo-code; BFGP

is a frontier search algorithm meaning that, to reduce memory requirements, BFGP stores only the open list of generated nodes but
not the closed list of expanded nodes [98]. The BFGP algorithm runs as follows:

1. Initialization. The empty program is the root node of the search-tree developed by BFGP. This means that initially, the empty
program Π𝑒𝑚𝑝𝑡𝑦 is evaluated by the evaluation functions 𝑓 ∈  and then inserted into an 𝑂𝑝𝑒𝑛 list, which is implemented as a
priority queue.

2. Selection. While 𝑂𝑝𝑒𝑛 list is not empty, extractBestProgram gets the best partial program Π from 𝑂𝑝𝑒𝑛 . A program Π
is better than another program Π′ iff exists a prefix of 𝑓 values for Π that is smaller than the same prefix for Π′, e.g. given
 = ⟨𝑓5, 𝑓1⟩, Π is better than Π′ if 𝑓5(Π, ) < 𝑓5(Π′, ), or if they tie for 𝑓5 but 𝑓1(Π) < 𝑓1(Π′). In case both programs tie for all
𝑓 ∈  , older programs (those inserted earlier in 𝑂𝑝𝑒𝑛) will be considered better, hence extracted first from 𝑂𝑝𝑒𝑛 .

3. Expansion. Once the best partial program Π is extracted from 𝑂𝑝𝑒𝑛 , the expandProgram procedure computes all children
programs of Π that are syntactically valid for a given set of pointers 𝑍 and bounded number of program lines 𝑛. In more
detail, BFGP expands Π by generating one successor node Π′ for each program that result from programming the maximum
16

undefined program line that is reached after executing Π on all the instances in  . Given a partially specified program Π, only its

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

𝑚𝑎𝑥𝑃𝑡∈(𝑃)𝑓4(Π, 𝑃𝑡) line is programmable. BFGP implements this particular node expansion procedure because it guarantees that
duplicate successors are not generated in the BFGP search-tree. In addition, this node expansion procedure induces a tractable
branching factor of (|𝐴′

𝑍
| + (𝑛 − 2) × 4); at a given program line BFGP can only program a planning action in 𝐴′

𝑍
or a 𝗀𝗈𝗍𝗈

instruction that can jump to 𝑛 − 2 different destination program lines, and that is conditioned by any of the four different
features in . The depth of the search tree developed by the BFGP algorithm is the number of program lines 𝑛, since only an
undefined line can be programmed.

4. Insertion. Before a new search node is inserted into the open list, the corresponding program Π′ is executed on the classical
planning instances in  . This execution can result in the three following different outcomes:

(a) Π′ is a solution for  . If the execution of Π′ solves all the instances 𝑃𝑡 ∈  , then search ends, and Π′ will be returned as a
valid solution for the GP problem  .

(b) Π′ fails to solve  . If the execution of Π′ on a given instance 𝑃𝑡 ∈  fails, this means that the search node corresponding
to the partially planning program Π′ is a dead-end. The search node will be discarded, so Π′ is not inserted into the open
list. The source of failure could be either because a terminal instruction is executed but the goal condition does not hold, or
because an infinite loop is detected.

(c) Π′ may still be a solution for  . This means that the execution of Π′ on some of the classical planning instances in  reached
an undefined program line (Π′ might solve some of the instances in ). As a consequence Π′ is inserted into 𝑂𝑝𝑒𝑛 by
calling insertProgram at its corresponding position according to its evaluation over  functions.

Algorithm 1: Best-First Generalized Planning (BFGP).

Data: The GP problem  , pointers 𝑍 , program lines 𝑛, a list of evaluation functions 
Result: A generalized plan Π that solves 
𝑂𝑝𝑒𝑛 ← {Π𝑒𝑚𝑝𝑡𝑦} ;

while 𝑂𝑝𝑒𝑛 ≠ ∅ do

Π ← extractBestProgram(𝑂𝑝𝑒𝑛) ;
𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠 ← expandProgram(Π, 𝑍, 𝑛) ;
for Π′ ∈ 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠 do

if isDeadEnd(Π′, ) then
continue

if isGoal(Π′ , ) then
return (Π′)

𝑂𝑝𝑒𝑛 ← insertProgram(𝑂𝑝𝑒𝑛 , Π′);

end

end

return () // no solution found

Example. Let us recover from the previous example (Fig. 2) the GP problem  = {𝑃1, 𝑃2}, and the partially specified program
Π = 0.swap(i,j) 1.inc(i) 2.dec(j) 3.goto(2,!(𝑦𝑧 ∧ ¬𝑦𝑐)) 4.<empty> 5.end, where lines [0, 3] are programmed and
only line 4 is unspecified. Imagine now that BFGP extracts this program from the open list because it has the best evaluation value.
In this case, the execution of Π on the classical planning instances 𝑃1 and 𝑃2, implemented by the node evaluation procedure, ended
in both instances at the undefined program line 4. This means that the only programmable line is 4. Assuming that two pointers are
available (i.e. 𝑍 = {𝑖, 𝑗}) we can program any of following twelve actions in line 4. {𝑖𝑛𝑐(𝑖), 𝑖𝑛𝑐(𝑗), 𝑑𝑒𝑐(𝑖), 𝑑𝑒𝑐(𝑗), 𝑐𝑚𝑝(𝑖, 𝑗), 𝑠𝑒𝑡(𝑖, 𝑗),
𝑠𝑒𝑡(𝑗, 𝑖), 𝑡𝑒𝑠𝑡(𝑣𝑒𝑐𝑡𝑜𝑟(𝑖)), 𝑡𝑒𝑠𝑡(𝑣𝑒𝑐𝑡𝑜𝑟(𝑗)), 𝑐𝑚𝑝(𝑣𝑒𝑐𝑡𝑜𝑟(𝑖), 𝑣𝑒𝑐𝑡𝑜𝑟(𝑗)), 𝑠𝑤𝑎𝑝(𝑖, 𝑗), 𝑠𝑤𝑎𝑝(𝑗, 𝑖) }. A 𝗀𝗈𝗍𝗈 can only be programmed after a RAM
action, which is not the case of line 4, since line 3 has another 𝗀𝗈𝗍𝗈 instruction.6 In other words the search node corresponding to
the partially specified program from the previous example would have twelve children that could be added to the open list.

5.2.1. The evaluation functions

Here we present the evaluation and heuristic functions that guide the BFGP algorithm. The functions that range from 𝑓1 to 𝑓6
were introduced in prior work [31], while 𝑓7, 𝑓8 and 𝑓9 are introduced for first time in this article. Here we define two different
families of evaluation functions, that exploit two different sources of information, to guide a combinatorial search in our GP solution
space of partially specified planning programs:

• Program structure. Given a partially specified planning program Π, we define a set of evaluation functions 𝑓 (Π), that establish
preferences/priors on the structure of the aimed generalized plans. For instance, following the Occam’s razor principle a structural
function can prefer generalized plans of simpler complexity or it can prefer generalized plans with more programmed lines so
execution failures can be detected earlier in the search.

– 𝑓1(Π), the number of 𝗀𝗈𝗍𝗈 instructions in Π.

6 In the hypothetical case that previous line 3. would contain a RAM action, a 𝗀𝗈𝗍𝗈 instruction for jumping to lines [0, 3] conditioned by the corresponding four
17

features in  could also be programmed at line 4.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

– 𝑓2(Π), the number of undefined program lines in Π.

– 𝑓3(Π), the maximum number of occurrences that any instruction 𝑤 ∈𝐴′
𝑍

is programmed in Π, i.e.,

𝑓3(Π) =𝑚𝑎𝑥𝑤∈𝐴′
𝑍

∑
𝑤𝑖∈Π

1(𝑤 ==𝑤𝑖).

– 𝑓7(Π), the max number of nested 𝗀𝗈𝗍𝗈 instructions in Π. A 𝗀𝗈𝗍𝗈 instruction jumps from an origin program line to a destination
program line. We say that a 𝗀𝗈𝗍𝗈 instruction is nested when it appears within the origin and destination lines of another 𝗀𝗈𝗍𝗈
instruction.

• Fitness to the input instances. Given a partially specified planning program Π and a GP problem  = {𝑃1, … , 𝑃𝑇 }, we define a set
of evaluation functions 𝑓 (Π, ) that assess the performance of Π on  , executing Π on each of the classical planning instances
𝑃𝑡 ∈  , 1 ≤ 𝑡 ≤ 𝑇 . Section 3 defined the execution of a planning program on a classical planning instance as a deterministic
procedure that terminates either succeeding to solve that instance or failing it. Likewise the execution of a partially specified
planning program is a deterministic procedure that introduces a new termination case, reaching an unspecified program line. When
the program execution terminates because an unspecified program line is reached, 𝑓 (Π, ) functions can be used to assess the
cost of that program execution, as well as to estimate how far is the program from solving the given GP problem.

– 𝑓4(Π, ) = 𝑛 −𝑚𝑎𝑥𝑃𝑡∈𝑓4(Π, 𝑃𝑡), where 𝑓4(Π, 𝑃𝑡) returns the number of the undefined program line eventually reached after
executing Π on the classical planning instance 𝑃𝑡 ∈  .

– 𝑓5(Π, ) =
∑

𝑃𝑡∈ 𝑓5(Π, 𝑃𝑡), where

𝑓5(Π, 𝑃𝑡) =
∑
𝑥∈𝑋𝑡

(𝑣𝑥 −𝐺𝑡(𝑥))2.

Here, 𝑣𝑥 ∈ 𝐷𝑥 is the value eventually reached, for the state variable 𝑥 ∈ 𝑋𝑡, after executing Π on the classical planning
instance 𝑃𝑡 ∈  , and 𝐺𝑡(𝑥) is the value for this same variable as specified in the goals of 𝑃𝑡. Note that for Boolean variables the
squared difference becomes a simple difference. This means that for STRIPS planning problems, where all the state variables
are Boolean, 𝑓5(Π, 𝑃𝑡) is actually a counter of how many atomic goals in 𝐺𝑡 are still not true.

– 𝑓6(Π, ) =
∑

𝑃𝑡∈ |𝑒𝑥𝑒𝑐(Π, 𝑃𝑡)|, where 𝑒𝑥𝑒𝑐(Π, 𝑃𝑡) is the sequence of actions induced from executing the planning program Π
on the planning instance 𝑃𝑡.

– 𝑓8(Π, ) = 𝑓5(Π, ) + 𝑓6(Π, ) is the sum of an estimation to the goal and the total accumulated cost, akin to an evaluation
function for 𝐴∗ searching algorithm.

– 𝑓9(Π, ) =𝑊 ⋅ 𝑓5(Π, ) + 𝑓6(Π, ) is similar to 𝑓8 but the estimation to the goal is multiplied by a factor 𝑊 , which is set to
5 by default, akin to an evaluation function for 𝑊 𝐴∗ searching algorithm.

All these functions are evaluation functions (i.e. smaller values are preferred). The structural functions 𝑓1(Π), 𝑓2(Π), 𝑓3(Π) and
𝑓7(Π), are all computed in linear time by traversing the bit-vector representation of Π. On the other hand, the computational
complexity of the three empirical functions 𝑓4(Π, ), 𝑓5(Π, ), 𝑓6(Π, ), 𝑓8(Π, ) and 𝑓9(Π, ) is given by the complexity of the
partially specified program Π. Performance-based functions accumulate a set of 𝑇 costs (one for each classical planning instance in
the GP problem) that could actually be combined with different aggregation functions, e.g. sum, max, average, weighted average, etc.
Functions 𝑓4(Π, ) and 𝑓5(Π, ) are the only cost-to-go heuristic functions; they provide an estimate on how far is a partially specified
planning program from solving a GP problem. With this regard, 𝑓5(Π, ) requires that the goal condition of the classical planning
instances in a GP problem is specified as a partial state. On the other hand 𝑓4(Π, ) does not impose requirements on the structure
of the goal condition, so they can even be a black-box Boolean procedure over the state variables.

Example. We illustrate how our evaluation functions work on the following partially specified program Π = 0.swap(i,j)
1.inc(i) 2.dec(j) 3.goto(2,!(𝑦𝑧 ∧ ¬𝑦𝑐)) 4.<empty> 5.end, where only line 4 is not programmed yet. The value of
the evaluation functions for this partially specified program is 𝑓1(Π) = 1, 𝑓2(Π) = 5 − 4 = 1, 𝑓3(Π) = 0, 𝑓7(Π) = 1. Given the GP
problem  = {𝑃1, 𝑃2} that comprises the two classical planning instances illustrated in Fig. 2, and pointers 𝑖 and 𝑗 starting at the
first and last object indexes, respectively, we can compute 𝑓4 and 𝑓5 to evaluate how far Π is from solving the GP problem of sorting
lists, the accumulated cost 𝑓6, and evaluation functions 𝑓8 and 𝑓9 that combine heuristic-like functions with accumulated cost. In
this case 𝑓4(Π, ) = 5 − 4 = 1, 𝑓5(Π, ) = 32, 𝑓6(Π, ) = 14 + 14 = 28, 𝑓8(Π, ) = 32 + 28 = 60 and 𝑓9(Π, ) = 32 + 5 ⋅ 28 = 172.

5.2.2. Theoretical properties

Theorem 4 (Termination). Given a generalized planning problem  , a finite set of pointers 𝑍 , and a finite number of program lines 𝑛, the
execution of the BFGP algorithm always terminates.

Proof. By definition of the expansion procedure of the BFGP algorithm (i), only unspecified lines can be programmed and (ii),
children programs always have one more line programmed than their parent. This means that BFGP increases the number of
programmed lines, until all lines are programmed. When all lines are programmed BFGP necessarily terminates, either by succeeding
to solve  , or by failing to solve some of the classical planning instances in  . The only possible cause for the non-termination of the
18

BFGP algorithm would be that BFGP could generate duplicate search nodes, allowing the infinite re-opening of an already discarded

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

node. By definition of the expansion procedure of the BFGP algorithm, the re-opening of an already discarded node is impossible;

BFGP only allows programming the maximum undefined program line that is reached after the execution of that program on all the
instances in  . □

Theorem 5 (Completeness). Given a GP problem  , a maximum number of pointers |𝑍|, and maximum number of program lines 𝑛, if there
is a planning program Π within these bounds that solves  , then the BFGP algorithm can compute it.

Proof. The BFGP algorithm implements a complete enumeration of the entire space of planning programs with a maximum number
of pointers |𝑍| and maximum number of program lines 𝑛 except: (i), a search node was identified as a dead-end or (ii), the ancestor
of a search node was identified as a dead-end. BFGP is safe because it only discards a search node when its corresponding partially
specified planning program failed to solve an input planning instance (which is actually the definition for not being a GP solution).
Furthermore, if a partially specified planning program failed to solve an input planning instance, any planning program that can be
built programming the remaining undefined program lines will also fail to solve that problem. □

Theorem 6 (Soundness). If the execution of the BFGP algorithm on a GP problem  outputs a generalized plan Π, this means that Π is a
solution for  .

Proof. The BFGP algorithm runs until: (i) the open list is empty, which means that search space is exhausted without finding a
solution and no generalized plan is output or (ii), BFGP extracted from the open list a planning program whose execution, in all the
classical planning instances 𝑃𝑡 ∈  , resulted successful. This is actually the definition of a solution for a GP problem. □

Theorem 7 (Time and Memory). The time and memory consumption of the BFGP algorithm are characterized by the big-Oh expression
𝑂((|𝐴′

𝑍
| + (𝑛 − 2) × 4)𝑛).

Proof. The BFGP algorithm is an implementation of a BFS, whose memory and time complexity are characterized as 𝑂(𝑏𝑑), where
𝑏 denotes the branching factor and 𝑑 denotes the depth of the corresponding search tree. The branching factor of the search tree
induced by the BFGP algorithm is the number of different instructions that can be programmed at an undefined program line, which
is 𝑏 ≤ |𝐴′

𝑍
| + (𝑛 − 2) × 4; gotos can only be programmed after RAM operations. The depth of the search tree induced by the BFGP is

given by the maximum number of program lines 𝑛. □

BFGP may be incomplete in the sense that either the bound 𝑛 on the maximum number of program lines, or the maximum number
of pointers available |𝑍|, may be too small to accommodate a solution to a given GP problem. With respect to solution quality BFGP
does not guarantee that the computed planning programs are optimal. BFGP can however be run in anytime mode and use 𝑓6(Π, )
to rank GP solutions according to their execution cost in the classical planning instances that are comprised in the given GP problem
(e.g. to prefer a sorting planning program with smaller computational complexity).

6. Evaluation

This section evaluates the empirical performance of our GP as heuristic search approach. All experiments are performed in an
Ubuntu 20.04 LTS, with AMD® Ryzen 7 3700x 8-core processor × 16 and 32 GB of RAM.7

6.1. Benchmarks

We report results in nine different domains; three propositional domains and six numeric domains. In the propositional domains the
functions Φ that induce the state variables are Boolean. In the numeric domains these functions are positive numeric functions. Next,
we provide more details on each of the nine domains:

• Corridor, an agent moves from an arbitrary initial location to a destination location in a corridor.

• Gripper, a robot must pick all balls from room A and drop them in room B.

• Visitall, starting from the bottom-left corner of a squared grid, an agent must visit all cells.

• Fibonacci, compute the 𝑛𝑡ℎ term of the Fibonacci sequence.

• Find, counts the number of occurrences of a specific value in a list.
• Reverse, for reversing the content of a list.
• Select, find the minimum value of a list.
• Sorting, for sorting the values of a vector.

• Triangular Sum, compute the 𝑛𝑡ℎ triangular number.
19

7 The source code, evaluation scripts, and used benchmarks can be found at: https://github .com /jsego /bfgp -pp.

https://github.com/jsego/bfgp-pp

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

Corridor, gripper and visitall are propositional, the remaining six domains are numeric. For each domain, we build a GP problem
that comprises ten randomly generated classical planning instances8; in the case of the corridor domain, instances go from corridors
of length 3 to 12; in gripper, instances have from 2 to 11 balls in room A to be dropped in room B; in visitall instances are squared
grids ranging from 2 × 2 to 11 × 11 cells; Fibonacci and triangular sum instances ranging from the 2𝑛𝑑 to the 11𝑡ℎ number in the
sequence; and the remaining domains, find, reverse, select and sorting have instances with vectors from size 2 to 11 that are initialized
with random content. The result of arithmetical operations in these domains is bounded to 102 in the synthesis of GP solutions, and
to 109 in the validation of GP solutions.

All domains include the base set of RAM instructions {𝚒𝚗𝚌(𝑧1), 𝚍𝚎𝚌(𝑧1), 𝚌𝚖𝚙(𝑧1, 𝑧2), 𝚜𝚎𝚝(𝑧1, 𝑧2) | 𝑧1, 𝑧2 ∈𝑍}, such that 𝑧1 and 𝑧2
are pointers of the same type, and the RAM instructions {𝚝𝚎𝚜𝚝(𝜙(⃖⃖⃖⃗𝑧1)), 𝚌𝚖𝚙(𝜙(⃖⃖⃖⃗𝑧1), 𝜙(⃖⃖⃖⃗𝑧2)) | ⃖ ⃖⃖⃗𝑧1, ⃖⃖⃖⃗𝑧2 ∈𝑍𝑎𝑟(𝜙) }, for each function 𝜙 ∈ Φ
and where function parameters and pointers also are of the same type. We remind the reader that compare instructions are only
defined for numeric functions. In addition, each domain contains the regular planning action schemes that do not affect the FLAGS.
We also recall that planning actions are modeled as they are always executable, but that their effects only update the current state if
their preconditions hold in the current state. Otherwise the execution of an action has no effect.

• Propositional domains. The corridor domain needs two planning action schemes, 𝚖𝚘𝚟𝚎_𝚕𝚎𝚏𝚝(𝑧1, 𝑧2) and 𝚖𝚘𝚟𝚎_𝚛𝚒𝚐𝚑𝚝(𝑧1, 𝑧2), to
move from location at 𝑧1 to location at 𝑧2, which must be exactly one location to the left or the right of 𝑧1 , respectively. The
gripper domain includes the following three action schemes; 𝚖𝚘𝚟𝚎(𝑧1, 𝑧2) to denote the robot is moving from the room pointed
by 𝑧1 to the one pointed by 𝑧2, 𝚙𝚒𝚌𝚔(𝑧1, 𝑧2, 𝑧3) to pick the ball pointed by 𝑧1, at room pointed by 𝑧2, and with the gripper
pointed by 𝑧3, and 𝚍𝚛𝚘𝚙(𝑧1, 𝑧2, 𝑧3), to drop ball 𝑧1 at room 𝑧2 with gripper 𝑧3. Visitall needs four action schema to move in
the four cardinal directions of grid, i.e. 𝚖𝚘𝚟𝚎_𝚕𝚎𝚏𝚝(𝑧1, 𝑧2, 𝑧3) to move one to the left from column 𝑧1 to 𝑧2, at row 𝑧3 (resp. for
𝚖𝚘𝚟𝚎_𝚛𝚒𝚐𝚑𝚝), and 𝚖𝚘𝚟𝚎_𝚞𝚙(𝑧1, 𝑧2, 𝑧3) to move once up from row 𝑧1 to 𝑧2, at column 𝑧3 (resp. for 𝚖𝚘𝚟𝚎_𝚍𝚘𝚠𝚗); every move visits
the destination cell.

• Numeric domains. The triangular sum and Fibonacci domains include the action schemes 𝚟𝚎𝚌𝚝𝚘𝚛_𝚒𝚗𝚌(𝑧1) and 𝚟𝚎𝚌𝚝𝚘𝚛_𝚍𝚎𝚌(𝑧1),
to increase and decrease by one the content of the vector at 𝑧1, and the action scheme 𝚟𝚎𝚌𝚝𝚘𝚛_𝚊𝚍𝚍(𝑧1, 𝑧2) for adding the content
of the vector at 𝑧2 to the content at 𝑧1. Select only requires one action schema to mark a specific vector index at 𝑧1 as selected,
i.e. 𝚜𝚎𝚕𝚎𝚌𝚝(𝑧1). Find includes the 𝚊𝚌𝚌𝚞𝚖𝚞𝚕𝚊𝚝𝚎(𝑧1) action schema for counting the number of occurrences of the target element.
Reverse and Sorting include the 𝚜𝚠𝚊𝚙(𝑧1, 𝑧2) action scheme to swap the vector values addressed by 𝑧1 and 𝑧2.

6.2. Synthesis and validation of GP solutions

Here we present the first experiments to evaluate the performance of the BFGP algorithm. First, we assess every evalua-

tion/heuristic function 𝑓𝑖 by running BFGP(𝑓𝑖). Then we show the solutions generated by the best configuration, 𝐵𝐹𝐺𝑃 (𝑓5). Last,
the synthesized solutions are validated w.r.t. test sets of larger instances (i.e. larger number of objects).

6.2.1. Performance of BFGP(𝑓𝑖)

Table 1 details the results of the first synthesis experiment where the BFGP algorithm uses each of our nine different evalua-

tion/heuristic functions (the computation bounds are 3, 600 seconds of CPU time and 32𝐺𝐵 of memory and best results are shown in
bold). Regarding structure-based functions 𝑓2 dominates in all domains and metrics (except in the reverse domain where 𝑓3 is faster
and 𝑓1 expands fewer nodes) and it also has the highest coverage solving 7 out of 9 domains (𝑓1, 𝑓3 and 𝑓7 have lower coverage
failing in the same four domains, namely corridor, gripper, sorting and visitall). Regarding performance-based functions, 𝑓5 is the clear
winner with the best scores in more than half of domains and with full coverage over the benchmarks, followed by 𝑓4 and 𝑓9 that
cover 6 domains but improving the metrics of 𝑓5 in several domains, e.g., 𝑓4 has the lowest memory consumption in all domains and
expands and/or evaluates fewer nodes in Fibonacci, reverse and triangular sum.

Table 2 summarizes the results from Table 1, grouping results by domains and averaging the metrics by the total number of
functions that solved each domain. There are 5 domains which are solved by all the nine evaluation/heuristic functions. In the rest
of domains, there are at least 5 or more functions that do not solve them, i.e. gripper is only solved by 𝑓2, 𝑓4, 𝑓5 and 𝑓8; corridor and
visitall are the least solved domains (only 𝑓5 solved them); and sorting which is solved by 𝑓2 and 𝑓5 but it is the hardest in terms of
each metric average.

6.2.2. The synthesized solutions

Fig. 13 shows the programs computed by 𝐵𝐹𝐺𝑃 (𝑓5). In Corridor there are two pointers, 𝑙1 and 𝑙2, that start pointing to the first
location; the solution moves the agent to the rightmost cell, then one by one to the left while not at goal cell. In Fibonacci, pointers 𝑖
and 𝑗 are used to compute the 𝑛-th Fibonacci number, where 𝑖 addresses the 𝐹𝑖 number to which 𝐹𝑖−1 and 𝐹𝑖−2 are added using 𝑗 as
an auxiliary pointer; and finishes when 𝑖 reaches the 𝑛-th element (the last one). In Find, there is a pointer 𝑖 to iterate over a vector,
accumulating for each vector location the occurrences of a target value.

The Gripper solution uses one pointer for balls (𝑏1), two for rooms (𝑟1 and 𝑟2) and one for grippers 𝑔1; for each ball 𝑏1, the agent
will pick it up from room 𝑟1 (always room A) using gripper 𝑔1 (always left gripper), sets 𝑟2 to room B, moves from A to B, drop
ball 𝑏1 at room B, goes back to room A, and continues with the next ball. The Reverse domain uses two pointers 𝑖 and 𝑗 and finds a
20

8 For reproducibility reasons we fix the random seed to generate the classical planning instances in the GP problems.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

Table 1

We report the number of program lines 𝑛, and pointers |𝑍| per domain, and for each evaluation/heuristic function, CPU time (secs), memory peak (MBs), and the
numbers of expanded and evaluated nodes. TE stands for Time-Exceeded (>1h of CPU time). Best results in bold.

Domain 𝑛, |𝑍| 𝑓1 𝑓2 𝑓3

Time Mem. Exp. Eval. Time Mem. Exp. Eval. Time Mem. Exp. Eval.

Corridor 10, 2 TE - - - TE - - - TE - - -

Fibonacci 7, 2 167 164 42.6K 373.8K 72 5 38.0K 38.1K 1,254 259 627.2K 783.9K

Find 4, 1 0 4 9 31 0 4 4 14 0 4 8 31

Gripper 8, 4 TE - - - 1,988 5 1.1M 1.1M TE - - -

Reverse 7, 2 83 45 82.6K 148.8K 109 5 135.8K 135.9K 80 68 88.8K 164.0K

Select 7, 2 550 82 354.3K 361.3K 458 5 340.4K 340.4K 336 115 228.2K 281.2K

Sorting 9, 2 TE - - - 3,555 5 3.5M 3.5M TE - - -

T. Sum 5, 2 1 6 373 2.7K 0 5 207 238 1 6 408 3.0K

Visitall 13, 4 TE - - - TE - - - TE - - -

Average 160.2 60.2 96.0K 177.3K 883.1 4.9 730.6K 730.6K 334.2 90.4 188.9K 246.4K

𝑓4 𝑓5 𝑓6

Corridor 10, 2 TE - - - 86 41 16.8K 78.1K TE - - -

Fibonacci 7, 2 77 5 38.1K 38.2K 187 189 68.5K 457.7K 287 333 104.8K 793.4K

Find 4, 1 0 4 4 14 0 4 4 14 0 4 9 31

Gripper 8, 4 2,015 6 1.1M 1.1M 20 39 3.6K 74.9K TE - - -

Reverse 7, 2 98 5 136.4K 137.3K 186 81 220.1K 221.0K 188 87 216.9K 220.1K

Select 7, 2 434 6 348.8K 349.6K 78 81 29.0K 196.3K 524 142 339.2K 346.9K

Sorting 9, 2 TE - - - 2,054 2,483 988.9K 6.3M TE - - -

T. Sum 5, 2 0 5 207 238 1 6 343 2.3K 1 6 448 3.2K

Visitall 13, 4 TE - - - 998 67 116.6K 122.7K TE - - -

Average 437.3 5.2 270.6K 270.9K 401.1 332.3 160.4K 828.1K 200.0 114.4 132.3K 272.7K

𝑓7 𝑓8 𝑓9

Corridor 10, 2 TE - - - TE - - - TE - - -

Fibonacci 7, 2 239 264 81.3K 627.4K 273 285 86.3K 687.6K 159 182 62.5K 435.1K

Find 4, 1 0 4 9 31 0 4 4 14 0 4 4 14

Gripper 8, 4 TE - - - TE - - - 22 38 3.6K 74.1K

Reverse 7, 2 146 62 169.5K 205.1K 204 78 219.8K 220.9K 203 78 219.8K 220.9K

Select 7, 2 456 95 292.7K 332.8K 559 140 339.2K 346.8K 536 82 332.6K 346.7K

Sorting 9, 2 TE - - - TE - - - TE - - -

T. Sum 5, 2 1 6 428 3.0K 1 6 388 3.0K 1 6 336 2.3K

Visitall 13, 4 TE - - - TE - - - TE - - -

Average 168.4 86.2 108.8K 233.7K 207.4 102.6 129.1K 251.7K 153.5 65.0 103.1K 179.9K

Table 2

We report for each domain, the time (secs), memory peak (MBs), and
expanded and evaluated nodes averaged by the number of functions that
solved the domain in Table 1.

Domain Time Mem. Exp. Eval. #𝑓𝑖 Solved

Corridor 86.0 41.0 16.8K 78.1K 1

Fibonacci 442.6 227.9 0.2M 0.6M 9

Find 0.0 4.0 6.1 21.6 9

Gripper 1,011.3 22.0 1.1M 1.2M 4

Reverse 144.1 56.6 165.5K 186.0K 9

Select 436.8 83.1 289.4K 322.4K 9

Sorting 2,805.5 1,244 2.2M 4.9M 2

T. Sum 0.8 5.8 348.7 2.2K 9

Visitall 998.0 67.0 116.6K 122.7K 1

solution with 𝑂(𝑛2) complexity of a vector of size 𝑛; it moves all values from 𝑗 to 𝑛 − 1 indexes once to the right and places the last
element in the 𝑗-th location, using 𝑖 as an auxiliary pointer; then increases 𝑗 by one until it reaches the end of the vector. The Select

domain has two pointers 𝑖 and 𝑗; it iterates over the vector with pointer 𝑖, and assigns 𝑖 to 𝑗 every time the value pointed by 𝑖 is
smaller than the one pointed by 𝑗, at the end 𝑗 will point to the smallest value which will be selected.

The Sorting solution is succinct but easy to interpret; while visiting each vector index in increasing order with 𝑖 and 𝑗 pointers
s.t. 𝑗 = 𝑖 − 1, if 𝑖𝑡ℎ value is smaller than 𝑗𝑡ℎ it moves the value backwards in the vector until it is relatively sorted, then proceeds
searching for the next pair of adjacent and unsorted values, until all values are sorted. In Triangular Sum, given a vector initialized
as 𝑣𝑖𝑑𝑥 = 𝑖𝑑𝑥, each index is visited in increasing order with pointers 𝑖 and 𝑗 such that 𝑗 = 𝑖 − 1, executing for each one 𝑣𝑖 ← 𝑣𝑖 + 𝑣𝑗 .
21

The last domain, Visitall, has two pointers 𝑟1 and 𝑟2 for rows, and two more 𝑐1 and 𝑐2 to iterate over columns. Since the agent starts

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

CORRIDOR

0. move_right(l1,l2)

1. set(l1,l2)

2. inc(l2)

3. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

4. move_left(l1,l2)

5. set(l1,l2)

6. dec(l2)

7. test(goal_at(l1))

8. goto(4,¬(¬𝑦𝑧 ∧ 𝑦𝑐))

9. end

FIBONACCI

0. vector_add(i,j)

1. dec(j)

2. vector_add(i,j)

3. set(j,i)

4. inc(i)

5. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

6. end

FIND

0. accumulate(i)

1. inc(i)

2. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
3. end

GRIPPER

0. pick(b1,r1,g1)

1. inc(r2)

2. move(r1,r2)

3. drop(b1,r2,g1)

4. move(r2,r1)

5. inc(b1)

6. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
7. end

REVERSE

0. set(i,j)

1. swap(i,j)

2. inc(i)

3. goto(1,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

4. inc(j)

5. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

6. end

SELECT

0. cmp(vector(i),vector(j))

1. goto(3,¬(¬𝑦𝑧 ∧ ¬𝑦𝑐))

2. set(j,i)

3. inc(i)

4. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

5. select(j)

6. end

SORTING

0. cmp(vector(i),vector(j))

1. goto(5,¬(¬𝑦𝑧 ∧ ¬𝑦𝑐))

2. swap(i,j)

3. dec(i)

4. dec(i)

5. set(j,i)

6. inc(i)

7. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

8. end

TRIANGULAR SUM

0. vector_add(i,j)

1. set(j,i)

2. inc(i)

3. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

4. end

VISITALL

0. inc(c1)

1. move_right(c2,c1,r1)

2. inc(c2)

3. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

4. inc(r1)

5. move_up(r2,r1,c1)

6. dec(c1)

7. move_left(c2,c1,r1)

8. dec(c2)

9. goto(5,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

10. inc(r2)

11. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

12. end

Fig. 13. Solutions computed by BFGP(𝑓5).

GRIPPER

0. test(goal_at(b1,r2))

1. goto(3,¬(¬𝑦𝑧 ∧ 𝑦𝑐))
2. inc(r1)

3. test(goal_at(b1,r2))

4. goto(6,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
5. inc(r2)

6. pick(b1,r1,g1)

7. move(r1,r2)

8. drop(b1,r2,g1)

9. move(r2,r1)

10. inc(b1)

11. goto(6,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
12. end

Fig. 14. Alternative solution to the Gripper domain. This program is interpreted as moving 𝑟1 to room A if both pointers are initially in room B, otherwise move 𝑟2
to room B, then for each ball run a pick action, move to room B, drop it, move back to room A, until all balls have been moved.

in the bottom-left corner, the strategy consists of visiting the grid row by row, going first to the right, once up, then all to the left,
until all rows are visited.

BFGP implements an inductive approach to GP, this means that the computed generalized plans are synthesized with the only
requirement of satisfying the formal specification given by the finite set of input examples. Therefore, in domains where input
examples follow a clear distribution, it may then be exploited by BFGP (e.g. the locations of a corridor or grid, or the indexes of a
vector, which are naturally expressed in a specific order). However, the object ordering does not affect the correctness/completeness
of the approach, e.g. the Sorting program is able to sort any input list no matter its size or content, or the Blocks Ontable program
(Fig. 15) puts all blocks onto the table no matter the block names, their ordering, or the initial towers settings, with the cost of an
extra iteration. In the particular case of Gripper, rooms are constants in the domain, for that reason they always appear in the same
order. In case we shuffle the rooms order for each instance, we would either need more lines to solve Gripper (i.e. solve the problem
for each possible permutation), or add the goal information in the initial state, as it is done in Corridor and Grid, to keep the solution
short. In the latter, the planning program of Fig. 14 solves all Gripper instances with no particular order in rooms.

6.2.3. Validation of the synthesized solutions

Here we validate the BFGP(𝑓5) solutions of Fig. 13 with a larger and harder set of instances. Table 3 reports the CPU time,
and peak memory, yield when running the solutions synthesized by 𝐵𝐹𝐺𝑃 (𝑓5) on a validation set. All the solutions synthesized by
22

𝐵𝐹𝐺𝑃 (𝑓5) were successfully validated. The largest CPU times and memory peaks correspond to the configuration that implements

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

Table 3

Validation set, CPU time (secs) and memory peak for program validation, with/out
infinite program detection. Best results in bold.

Domain Instances Time∞ Mem∞ Time Mem

Corridor 100 0.42 11.4MB 0.13 10.8MB

Fibonacci 33 0.03 5.8MB 0.02 5.6MB

Find 100 9.84 70.1MB 0.69 48.5MB

Gripper 1,000 153.53 1,007.6MB 16.88 968.2MB

Reverse 100 6.67 30.2MB 1.40 12.5MB

Select 100 18.39 163.8MB 1.38 113.2MB

Sorting 100 4.98 31.9MB 1.49 12.5MB

Triangular Sum 1,000 72.69 706.2MB 9.59 685.7MB

Visitall 50 44.48 403.3MB 3.83 79.7MB

Table 4

For each domain we report, CPU time (secs), memory peak (MBs), num. of expanded and evaluated nodes of BFGP(𝑓3, 𝑓5), BFGP(𝑓5, 𝑓3) and BFGP(𝑓5). Best results
in bold.

Domain
BFGP(𝑓3, 𝑓5) BFGP(𝑓5, 𝑓3) BFGP(𝑓5)

Time Mem. Exp. Eval. Time Mem. Exp. Eval. Time Mem. Exp. Eval.

Corridor 38 25 7.8K 44.2K 38 25 7.8K 44.2K 86 41 16.8K 78.1K

Fibonacci 1,227 139 579.7K 718.2K 457 139 293.8K 431.2K 187 189 68.5K 457.7K

Find 0 4 3 14 0 4 4 14 0 4 4 14

Gripper 19 37 3.2K 69.5K 20 37 3.4K 69.6K 20 39 3.6K 74.9K

Reverse 125 61 134.6K 163.8K 201 61 219.9K 220.9K 186 81 220.1K 221.0K

Select 65 64 23.6K 152.9K 65 64 23.6K 152.9K 78 81 29.0K 196.3K

Sorting 1,137 1,604 516.4K 3.9M 1,215 1,596 555.2K 4.0M 2,054 2,483 988.9K 6.3M

T. Sum 1 6 304 2.2K 1 6 304 2.2K 1 6 343 2.3K

Visitall 276 30 32.3K 42.8K 969 43 116.6K 121.6K 998 67 116.6K 122.7K

Average 320.9 218.9 144.2K 566.0K 329.6 219.4 135.6K 560.3K 401.1 332.3 160.4K 828.1K

the detection of infinite programs, which requires saving states to detect whether they are revisited during execution. Skipping this
mechanism validates terminating programs with less memory and much faster [41].

In the validation set, each state variable from the planning domain is bounded by 109, instead of 102 which was the synthesis
bound. Corridor is validated over 100 instances with corridors of length 𝑛 ∈ [13, 112] and random initial and goal locations. Gripper

is validated over 1,000 instances of 𝑛 ∈ [12, 1011] balls that are initially in room A and need to be moved to room B. Fibonacci has
a validation set of 33 instances, ranging from the 12𝑡ℎ Fibonacci term to the 44𝑡ℎ, i.e. the integer 701,408,733 (the 45𝑡ℎ number
would overflow the validation bound). The solutions for Select, and Find domains, are validated on 100 instances each, with vector
sizes ranging from 100 to 1,090, and random integer elements bounded by 109. Similarly, Reverse and Sorting have 100 validation
instances with vectors of random integers, but their sizes range from 12 to 111. The solution for Triangular Sum is validated over
1,000 instances, the last one corresponding to the 1,011𝑡ℎ term in the sequence, i.e. the integer 511,566. In Visitall, there are 50
validation instances with squared grids ranging from 12 × 12 to 61 × 61.

6.3. Performance of BFGP with function combinations

The base performance of BFGP with a single evaluation/heuristic function is improved combining both structural and cost-

to-go information; we can guide the search of BFGP with a cost-to-go heuristic function and break ties with a structural evalu-

ation function, and vice versa. Thus, we run all configurations of BFGP(𝑓𝑖, 𝑓𝑗) and BFGP(𝑓𝑗 , 𝑓𝑖) such that 𝑓𝑖 ∈ {𝑓1, 𝑓2, 𝑓3, 𝑓7}
and 𝑓𝑗 ∈ {𝑓4, 𝑓5, 𝑓6, 𝑓8, 𝑓9}, and select the configuration that solves all domains with the best average time. There are 40
BFGP(𝑓𝑖, 𝑓𝑗)/BFGP(𝑓𝑗 , 𝑓𝑖) configurations, but only BFGP(𝑓3, 𝑓5) and BFGP(𝑓5, 𝑓3) are able to solve all domains. The performance
of these two configurations is then compared against BFGP(𝑓5), since it is the only single evaluation/heuristic function that solve
all domains in the previous experiment. Table 4 summarizes that comparison, showing that BFGP(𝑓5) is improved in every domain
either by BFGP(𝑓3, 𝑓5) or BFGP(𝑓5, 𝑓3). Furthermore, BFGP(𝑓3, 𝑓5) has the best average performance in time and memory, shortly
followed by BFGP(𝑓5, 𝑓3) that has the best average in node expansions and evaluations, empirically proving that goal-oriented
functions might be benefited when combined with structural-based functions.

6.4. Comparative synthesis performance with related GP solvers

The comparative analysis of GP solvers performance is complex mainly because of their different assumptions, problem specifica-

tion, feature language, hyper-parameters, and different solution representations (non-/deterministic, boolean/numeric, …) [21]. In
this regard, we have chosen the two closest GP solvers in terms of solution representation, i.e. Planning Programs (PP) [33] and Hier-

archical Finite State Controllers (HFSC) [61]. Both approaches are compilation-based, where the input is a classical planning domain
23

with some instances, and an upper bound in the number of program lines (𝑛) for PP, or in the number of controller states (|𝑄|) for

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

Table 5

Computing CPU time (secs) for solving domains in the GP compilation approaches, i.e. PP [33] and HFSC [61], and 𝐵𝐹𝐺𝑃 (𝑓3 , 𝑓5). Accumulated size of the classical
plans, ∑𝑖 |𝜋𝑖|, and number of instructions, ∑𝑖 |Π𝑖|.

Domain || PP HFSC BFGP(𝑓3, 𝑓5)

𝑛 Time (s)
∑

𝑖 |𝜋𝑖| ∑
𝑖 |Π𝑖| |𝑄| Time (s)

∑
𝑖 |𝜋𝑖| ∑

𝑖 |Π𝑖| 𝑛, |𝑍| Time (s)
∑

𝑖 |𝜋𝑖| ∑
𝑖 |Π𝑖|

Corridor 10 6 188.72 68 260 3 1.31 66 279 10,2 39.39 64 500

Fibonacci 4 6 68.84 40 70 5 1,296.52 39 138 7,2 675.99 36 108

Find 8 5 27.99 80 165 3 119.86 88 283 4,1 0.02 24 132

Gripper 10 6 2.48 260 406 4 8.28 260 806 8,4 19.22 260 455

Reverse 4 6 TE - - 5 TE - - 7,2 40.61 34 144

Select 6 5 TE - - 3 599.28 36 161 7,2 27.15 6 123

Sorting 10 8 TE - - 7 TE - - 9,2 1,158.12 107 1,641

Triangular Sum 3 4 55.23 18 43 3 218.44 30 104 5,2 0.16 12 48

Visitall 3 7 TE - - 4 201.02 49 193 13,4 60.84 46 243

HFSC. Both approaches produce a single domain and instance that can be solved with an off-the-shelf classical planner. Solutions
to the produced instances are computed following a top-down strategy, with the LAMA-2011 [99] planner (first solution setting) of
the Fast-Downward [8] system, that produce sequences of interleaved programming and executing actions, from which the programs,
controllers and classical plans can be induced.

Section 5 already discussed the relation between the search spaces of PP (worst case intractable, e.g. integer representation) and

BFGP (tractable with bounded size). PP and HFSC are proven to have equivalent solutions in the other representation [61], so the
theory proven in Section 5 actually applies to both. A priori, there are some strengths and weaknesses that were already previously
identified for PP and HFSC [61,33]:

• Strengths:

– GP problems can be solved with an off-the-shelf classical planner,

– classical planners are biased towards shorter solution plans (which may produce succinct generalized plans),

– good performance for small bounds and problems with small number of objects.

• Weaknesses:

– Computation sensitive to the order of the input instances and their number of objects,

– scalability dramatically drops down when the number of input instances grows,

– require hand-coding features as derived predicates in several domains or extra knowledge to compute generalized plans with
deterministic behavior, e.g. in gripper domain the balls need to be serialized to know which ball is the next one to be picked,

– the synthesized generalized plans can over-fit because the feature language includes all fluents in the set of classical planing
instances given as input.

Compared to PP and HFSC, the strengths and weakness of BFGP are:

• Strengths:

– The computation of generalized plans is not affected by the order of input instances,

– the scalability of BFGP decreases smoothly and continuously with the number of objects,

– solutions do not over-fit because of the feature language (over-fitting is only due to poorly sampled input instances),

– domains do not require extra knowledge (BFGP implements an agnostic feature generation).

• Weaknesses:

– BFGP is not using off-the-shelf classical planning machinery, although most of them could be adapted [65],

– generalized plans are longer because of pointer manipulations, which may reduce performance in simple instances,

– BFGP may require to increase the default number of input pointers.

The experimental setting for comparing GP solvers uses the same || = 10 random input instances as in BFGP synthesis experi-

ments. Since we observed that PP and HFSC were limited by this number, we have however proceed on removing the largest instance
from the pool of instances, until one of them solved the problem without over-fitting. In addition, we encoded extra knowledge in
the PP and HFSC domains, when necessary, with the form of derived predicates to guarantee generalization, which in turn helped to
compute shorter generalized plans, e.g. in corridor domain it requires to know whether the agent is at the goal or in the rightmost
location; and in gripper it requires to serialize the balls and know whether no more balls are in room A; and so on. The comparison
of the three GP solvers is shown in Table 5; even with the advantage given to PP and HFSC, with the hand-crafted extra knowl-

edge in their domains and the reduction of input instances (yielding to shortest number of executed instructions in half of domains
i.e.

∑
𝑖 |Π𝑖|), BFGP outperforms PP and HFSC in many aspects, i.e. full coverage over the benchmarks, best computation time in 6
24

out of 9 domains, and shortest classical plans in all domains (i.e.
∑

𝑖 |𝜋𝑖|), with less assumptions.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

6.5. Validation of GP solutions in more complex domains

Here we present several GP benchmarks, with known polynomial time solutions, that are too complex for our current BFGP

algorithm (within the given time and memory bounds). Our aim is showing that our approach is expressive enough to represent
solutions to GP problems coming from IPC planning domains, noise-free supervised classification tasks, and numeric domains. These
solutions are succinctly represented as GP plans, instead of long sequences of grounded actions for large problems, and validated
efficiently without being affected by the grounding methods of current off-the-shelf classical planners.

• Blocks Ontable, towers of blocks where all blocks must be placed on the table.

• Grid, an agent has to move from an arbitrary location to a destination one in a 2D grid.

• Miconic, is an elevator problem where passengers at origin, wait for the elevator to enter, and then served at their destination
floor.

• Michalski Trains, is a classic of relational supervised machine learning. A binary noise-free classification task with 10 trains that
either go east or west, and multiple features such as the number of wheels, wagons, or their shape for each train among others.
The goal is to learn the features that classify all trains in the right direction.

• Satellite, consists of taking images of different targets with instruments that are boarded in satellites. In addition, instruments
need to be calibrated and in specific modes for taking each image; and each satellite has only power for one instrument at a
time, so it needs to switch the current instrument off, switch on the next and calibrate it, before using a new instrument for
taking images.

• Sieve of Erathostenes, is a method to find prime numbers up to a certain bound using only additive and iterative mechanisms.

• Spanner, consists of tighten all loose nuts at the end of a corridor, with the picked spanners along the corridor. Spanners can
only be used once, and when the agent moves to the next room it can not go back, so if there are unpicked spanners in visited
rooms the task could become unsolvable.

Fig. 15 shows the hand-coded solutions for these benchmarks. In Blocks Ontable, given 𝑛 blocks the complexity of the solution is
cubic, i.e. 𝑂(𝑛3), where it searches 𝑛 times, every 𝑜1 block that is on top of an 𝑜2 block, then unstack and put 𝑜1 down on the table. In
Spanner, an agent picks up all available spanners in location 𝑙2, walks to the next 𝑙1 location and repeats the process until it reaches
the last location (the gate), collecting all spanners on its path; once in the gate, it tightens each loose nut with a spanner. The solution
to Michalski Trains is summarized as, each train 𝑡1 will go east if it has a car which is closed and short, otherwise it will go west. In
Sieve of Eratosthenes all numbers are initially classified as primes, and it should decide whether they are not; so it iterates over 𝑖 and
uses 𝑗 and 𝑘 as auxiliary pointers, where the first acts as a counter that ranges from 0 to 𝑖, and second adds up to the next multiple
of 𝑖, i.e. 𝑘 % 𝑖 = 0; then every 𝑘-th number will be set to no prime, 𝑖 is increased by one and the process repeats until 𝑖 reaches the
last element. In Grid, the agent moves to the top-right corner, then it moves left while not at the goal column, then down while not
at the goal row, visiting the resulting coordinate. In Miconic, the elevator moves to the upmost floor, then for every floor down, it
boards and departs all available passengers, once in the bottom floor, it moves upwards serving the remaining passengers that are in
the elevator until reaching the upmost floor again. The last domain, Satellite, is the most complex because it requires iteration over
multiple variable types, i.e. satellites, instruments, modes and directions. The solution to this domain consists of switching off all
instruments and turning all satellites to the first direction; then for each satellite, the 𝑖1 instrument is switched on, calibrated with its
calibration target direction 𝑑2, and used to take images of every direction 𝑑2 in every mode 𝑚1; once it finishes, the satellite turns
to the first direction 𝑑1 again, switches off the current instrument, and continues with the next one, until all satellites have used all
their instruments.

We get some main take away lessons from the analysis of Fig. 15 solutions; solutions have common high-level structures, that
either iterate over all combinations of variable types (i.e. Blocks, Miconic, Satellite, . . .), or build complex logic queries (i.e. Michalski
Trains) which in some cases require the goal information to be coded in the initial state (i.e. Grid with goal_column and goal_row).
This suggests that planning programs may be synthesized more efficiently using predefined structures (such as FOR or IF-THEN-

ELSE constructs [100]) although this is out of the scope of this paper.

Table 6 shows the validation results in complex domains, where validation without infinite detection again scales better. All
domains are successfully validated (except Blocks Ontable and Satellite with infinite detection mode that get a time- and memory-

exceeded, respectively). Blocks Ontable can be solved with 13 lines and 3 pointers, and the validation set consists of 100 instances that
range from 12 to 111 blocks. Grid requires 21 lines of code and 4 pointers, and it is validated with 50 instances with grids between
12 × 12 and 111 × 111 size. Miconic needs 25 lines and 3 pointers, and 100 instances that validates from 12 floors and 18 passengers
to 111 floors and 166 passengers. Michalski Trains uses 15 lines and 6 pointers to classify all the trains in the unique classical task
with 10 trains and their features. Satellite is by difference the most complex in terms of required lines and pointers, which are 43 and
5, respectively. Its validation set consists of 20 instances, starting with 11 satellites, 22 instruments and modes, and 44 directions,
and finishing with 30 satellites, 60 instruments and modes and 120 directions. Sieve of Erathostenes requires 16 lines and 3 pointers
to classify either as prime or non-prime, all the numbers comprised in the first 114 natural numbers. Spanner, uses 14 lines and 5
pointers to solve all 100 instances of the validation set, that range from 24 spanners and nuts and a corridor with 12 locations, to
25

222 spanners and nuts and a corridor with 111 locations.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

BLOCKS ONTABLE

0. dec(o2)

1. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

2. dec(o1)

3. goto(2,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

4. unstack(o1,o2)

5. put_down(o1)

6. inc(o1)

7. goto(4,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

8. inc(o2)

9. goto(2,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

10. inc(o3)

11. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

12. end

SPANNER

0. pickup_spanner(l2,s1,m1)

1. inc(s1)

2. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
3. dec(s1)

4. goto(3,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
5. inc(l2)

6. walk(l1,l2,m1)

7. inc(l1)

8. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
9. tighten_nut(l1,s1,m1,n1)

10. inc(s1)

11. inc(n1)

12. goto(9,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
13. end

MICHALSKI TRAINS

0. test(has_car(t1,c1))

1. goto(7,¬(¬𝑦𝑧 ∧ 𝑦𝑐))
2. test(closed(c1))

3. goto(7,¬(¬𝑦𝑧 ∧ 𝑦𝑐))
4. test(short(c1))

5. goto(7,¬(¬𝑦𝑧 ∧ 𝑦𝑐))
6. set_eastbound(t1)

7. inc(c1)

8. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
9. set_westbound(t1)

10. dec(c1)

11. goto(10,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
12. inc(t1)

13. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
14. end

SIEVE OF ERATHOSTENES

0. inc(i)

1. inc(i)

2. set(k,i)

3. dec(j)

4. goto(3,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
5. inc(k)

6. goto(13,¬(¬𝑦𝑧 ∧ 𝑦𝑐))
7. inc(j)

8. cmp(i,j)

9. goto(5,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
10. set_no_prime(k)

11. cmp(i,j)

12. goto(3,¬(¬𝑦𝑧 ∧ 𝑦𝑐))
13. inc(i)

14. goto(2,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
15. end

GRID

0. inc(c2)

1. move_right(c1,c2)

2. inc(c1)

3. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

4. inc(r2)

5. move_up(r1,r2)

6. inc(r1)

7. goto(4,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

8. test(goal_column(c1))

9. goto(14,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

10. dec(c2)

11. move_left(c1,c2)

12. dec(c1)

13. goto(8,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

14. test(goal_row(r1))

15. goto(20,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

16. dec(r2)

17. move_down(r1,r2)

18. dec(r1)

19. goto(14,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

20. end

MICONIC

0. inc(f2)

1. up(f1,f2)

2. inc(f1)

3. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
4. board(p1,f1)

5. depart(p1,f1)

6. inc(p1)

7. goto(4,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
8. dec(p1)

9. goto(8,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
10. dec(f2)

11. down(f1,f2)

12. dec(f1)

13. goto(4,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
14. board(p1,f1)

15. depart(p1,f1)

16. inc(p1)

17. goto(14,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
18. dec(p1)

19. goto(18,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
20. inc(f2)

21. up(f1,f2)

22. inc(f1)

23. goto(14,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
24. end

SATELLITE

0. switch_off(i1,s1)

1. inc(i1)

2. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
3. dec(i1)

4. goto(3,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
5. turn_to(s1,d1,d2)

6. inc(d2)

7. goto(5,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
8. set(d2,d1)

9. inc(s1)

10. goto(0,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
11. dec(s1)

12. goto(11,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
13. switch_on(i1,s1)

14. test(calibration_target(i1,d2))

15. goto(19,¬(¬𝑦𝑧 ∧ 𝑦𝑐))

16. turn_to(s1,d2,d1)

17. calibrate(s1,i1,d2)

18. turn_to(s1,d1,d2)

19. inc(d2)

20. goto(14,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
21. set(d2,d1)

22. take_image(s1,d2,i1,m1)

23. inc(m1)

24. goto(22,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
25. dec(m1)

26. goto(25,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
27. inc(d2)

28. turn_to(s1,d2,d1)

29. inc(d1)

30. goto(22,¬(𝑦𝑧 ∧ ¬𝑦𝑐))

31. dec(d1)

32. goto(31,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
33. turn_to(s1,d1,d2)

34. set(d2,d1)

35. switch_off(i1,s1)

36. inc(i1)

37. goto(13,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
38. dec(i1)

39. goto(38,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
40. inc(s1)

41. goto(13,¬(𝑦𝑧 ∧ ¬𝑦𝑐))
42. end

Fig. 15. Solutions to complex domains.

7. Conclusions

The paper presented an innovative solution space for GP that enables the definition of a heuristic search approach to GP. This
novel solution space for GP is independent of the number of input planning instances in a GP problem, and the size of these instances
(i.e. the number of objects, state variables, and their domain sizes). Therefore our GP as heuristic search approach can handle large
26

sets of state variables with large numerical domains, e.g. integers.

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

Table 6

Validation of complex domains, CPU time (secs) and memory peak for program validation,
with/out infinite program detection. TE and ME stands for time (1 h) and memory exceeded,
respectively. Best results in bold.

Domain 𝑛, |𝑍| || Time∞ Mem∞ Time Mem

Blocks Ontable 13, 3 100 TE – 148.59 17 MB

Grid 21, 4 50 0.67 14 MB 0.15 10 MB

Miconic 25, 3 100 2,248.59 13,129 MB 12.68 166 MB

Michalski Trains 15, 6 1 0.04 7 MB 0.00 4 MB

Satellite 43, 5 20 – ME 89.83 51 MB

Sieve of Erathostenes 16, 3 100 9.60 39 MB 0.43 13 MB

Spanner 14, 5 100 326.79 1,512 MB 5.10 61 MB

We believe that this work is a step-forward towards building stronger connections between the areas of automated planning

and programming. The work presented a formalization of classical planning as a vector transformation task, which is a common
programming task. According to this formalism, computing a sequential plan for this tasks is computing a composition of vector
transformation operations. Likewise computing a generalized plan is computing an algorithmic expression of the vector transforma-

tions.9 With this regard, the BFGP algorithm starts from an empty program, but nothing prevents us from starting search from a
partially specified generalized plan [102] to develop new online approaches that scale up better. In fact, local search approaches
have already shown successful for both planning [103] and program synthesis [104,68].

Our cost-to-go heuristics are still less informed than current state-of-the-art heuristics for classical planning; note that our heuristics
only consider goals that are explicitly provided in the problem representation. A clear example is 𝑓5(Π, 𝑃𝑡), that builds on top of
the Euclidean distance, and that for STRIPS planning problems is actually a goal counter. We believe that better estimates may be
obtained by building on top of the powerful ideas of modern planning heuristics [105,8,106]. In more detail, a promising approach
for the development of more informative heuristics for GP is to consider sub-goals, that are not explicitly given in the problem
representation [10,65]. For instance sets of sub-goals can be discovered as a pre-processing step, without grounding, regarding
the set of relevant atoms that are traversed by the polynomial IW(1) algorithm, when achieving individual goals [107]. Besides
landmarks, heuristic planners implement complementary ideas such as helpful actions [7], multiple queues for combining different
heuristics [8], or novelty-based exploration [108]. Incorporating those classical planning technologies into the GP as heuristic search

approach is a promising research direction [109]. In addition to more informative heuristics, we are interested in more expressive
solution representations, where not only goal-agnostic (e.g. Blocks Ontable in Fig. 6) and goal-oriented (e.g. Grid in Fig. 6) generalized
plans are computed, but also solutions which include distance functions that measure progress towards (sub-)goals; distance functions

are known to be required to represent compact algorithmic solutions to polynomially-approximable (poly-APX) domains [110].

Since we are approaching GP as a classic tree search, a wide landscape of effective techniques, coming from combinatorial search

and classical planning, could help to improve the base performance of our approach. We mention some of the more promising
ones. Exploration in search can be more effective when adding one open list per evaluation function [8] and more sophisticated
mechanisms could be implemented for handling closed nodes. For instance, delayed duplicate detection could be implemented to
manage large closed lists with magnetic disk memory [111]. Further, once a search node is canceled (e.g. because 𝑓𝑖(Π, ) identified
that the planning program fails on a given instance), any program equivalent to this node should also be canceled, e.g. any program
that can be built with transpositions of the causally-independent instructions. Given that the depth of the search-tree is bounded,
techniques coming from SAT/CSP/SMTs, such a non-chronological backtracking, limited discrepancy search [112], or taboo search [113],
might also result effective to improve our approach. SATPLAN planners exploit multiple-thread computing to parallelize search in
solution spaces with different bounds [114]. This same idea could be applied to multiple searches for GP solutions with different
program sizes.

Last but not least, another interesting research direction is the extension of our GP as heuristic search approach for computing
generalized plans starting from different input settings. For instance, the computation of generalized plans from a set of plan traces

that demonstrates how to solve several planning problems. We are also interested on exploring the application of our GP as heuristic
search approach to planning problems that are not goal-oriented, where the objective is to maximize a given utility function [115]. In
this particular setting, ideas from approximated policy iteration [116], and reinforcement learning [80], could be incorporated to our
framework. With this regard, we are exploring the extension of our approach to GP problems that include real state variables. We
believe that we can address this kind of GP problems by introducing the notion of precision for the comparison of real variables, and
redefining accordingly our mechanism for the update of the FLAGS registers.

CRediT authorship contribution statement

Javier Segovia-Aguas: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Soft-

ware, Validation, Writing – original draft, Writing – review & editing. Sergio Jiménez: Conceptualization, Data curation, Formal
analysis, Funding acquisition, Investigation, Methodology, Software, Supervision, Validation, Writing – original draft, Writing – re-
27

9 We have already explored this general scope of our GP approach to synthesize complex action models from examples [101].

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

view & editing. Anders Jonsson: Conceptualization, Formal analysis, Funding acquisition, Investigation, Project administration,
Resources, Supervision, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

A link to the source code is included in the article.

Acknowledgements

This work has been co-funded by MCIN/AEI /10.13039/501100011033 under the Maria de Maeztu Units of Excellence Pro-

gramme (CEX2021-001195-M), TAILOR (H2020 #952215) and AIPLAN4EU (H2020 #101016442) projects. Javier Segovia-Aguas
is also supported by AGAUR SGR and the Spanish grant PID2019-108141 GB-I00. Sergio Jiménez is supported by the Spanish
MINECO project PID2021-127647NB-C22. Anders Jonsson is partially supported by Spanish grant PID2019-108141 GB-I00.

References

[1] M. Ghallab, D. Nau, P. Traverso, Automated Planning: Theory and Practice, Elsevier, 2004.

[2] H. Geffner, B. Bonet, A Concise Introduction to Models and Methods for Automated Planning, Morgan & Claypool Publishers, 2013.

[3] J. Slaney, S. Thiébaux, Blocks world revisited, Artif. Intell. 125 (1–2) (2001) 119–153.

[4] S.J. Russell, Artificial Intelligence a Modern Approach, Pearson Education, Inc., 2010.

[5] D.V. McDermott, A heuristic estimator for means-ends analysis in planning, in: AIPS, Vol. 96, 1996, pp. 142–149.

[6] B. Bonet, H. Geffner, Planning as heuristic search, Artif. Intell. 129 (1–2) (2001 Jun) 5–33.

[7] J. Hoffmann, FF: the fast-forward planning system, AI Mag. 22 (3) (2001) 57.

[8] M. Helmert, The fast downward planning system, J. Artif. Intell. Res. 26 (2006) 191–246.

[9] M. Vallati, L. Chrpa, M. Grześ, T.L. McCluskey, M. Roberts, S. Sanner, et al., The 2014 international planning competition: progress and trends, AI Mag. 36 (3)
(2015) 90–98.

[10] J. Hoffmann, J. Porteous, L. Sebastia, Ordered landmarks in planning, J. Artif. Intell. Res. 22 (2004) 215–278.

[11] M. Helmert, C. Domshlak, Landmarks, critical paths and abstractions: what’s the difference anyway?, in: Proceedings of the International Conference on
Automated Planning and Scheduling, Vol. 19, 2009.

[12] S. Richter, M. Westphal, The LAMA planner: guiding cost-based anytime planning with landmarks, J. Artif. Intell. Res. 39 (2010) 127–177.

[13] G. Frances, H. Geffner, Modeling and computation in planning: better heuristics from more expressive languages, in: Proceedings of the International Conference
on Automated Planning and Scheduling, Vol. 25, 2015.

[14] N. Lipovetzky, H. Geffner, Best-first width search: exploration and exploitation in classical planning, in: AAAI, 2017.

[15] E. Winner, M. Veloso, DISTILL: learning domain-specific planners by example, in: ICML, 2003, pp. 800–807.

[16] Y. Hu, H.J. Levesque, A correctness result for reasoning about one-dimensional planning problems, in: IJCAI, 2011, pp. 2638–2643.

[17] S. Srivastava, N. Immerman, S. Zilberstein, A new representation and associated algorithms for generalized planning, Artif. Intell. 175 (2) (2011) 615–647.

[18] S. Siddharth, I. Neil, Z. Shlomo, Z. Tianjiao, Directed search for generalized plans using classical planners, in: ICAPS, 2011, pp. 226–233.

[19] Y. Hu, G. De Giacomo, Generalized planning: synthesizing plans that work for multiple environments, in: IJCAI, 2011.

[20] L. Illanes, S.A. McIlraith, Generalized planning via abstraction: arbitrary numbers of objects, in: AAAI, Vol. 33, 2019, pp. 7610–7618.

[21] S. Jiménez, J. Segovia-Aguas, A. Jonsson, A review of generalized planning, Knowl. Eng. Rev. 34 (2019) e5.

[22] G. Francès, B. Bonet, H. Geffner, Learning general policies from small examples without supervision, in: AAAI, 2021.

[23] B. Bonet, H. Geffner, General policies, representations, and planning width, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021,
pp. 11764–11773.

[24] S. Ståhlberg, B. Bonet, H. Geffner, Learning generalized policies without supervision using gnns, in: KR, 2022.

[25] A. Fern, R. Khardon, P. Tadepalli, The first learning track of the international planning competition, Mach. Learn. 84 (1–2) (2011) 81–107.

[26] J. Seipp, F. Pommerening, G. Röger, M. Helmert, Correlation complexity of classical planning domains, in: IJCAI, 2016.

[27] R.I. Brafman, D. Tolpin, O. Wertheim, Probabilistic programs as an action description language, in: AAAI, 2023.

[28] S.S. Skiena, The Algorithm Design Manual: Text, vol. 1, Springer Science & Business Media, 1998.

[29] S.P. Dandamudi, Installing and using nasm, in: Guide to Assembly Language Programming in Linux, 2005, pp. 153–166.

[30] M. Vallati, L. Chrpa, M. Grzes, T.L. McCluskey, M. Roberts, S. Sanner, The 2014 international planning competition: progress and trends, AI Mag. 36 (3) (2015)
90–98.

[31] J. Segovia-Aguas, S. Jiménez, A. Jonsson, Generalized planning as heuristic search, in: ICAPS, 2021.

[32] J. Segovia-Aguas, S. Jiménez, A. Jonsson, Computing programs for generalized planning as heuristic search, in: IJCAI, 2022.

[33] J. Segovia-Aguas, S. Jiménez, A. Jonsson, Computing programs for generalized planning using a classical planner, Artif. Intell. 272 (2019) 52–85.

[34] R. Khardon, Learning action strategies for planning domains, Artif. Intell. 113 (1–2) (1999) 125–148.

[35] M. Martin, H. Geffner, Learning generalized policies from planning examples using concept languages, Appl. Intell. 20 (2004) 9–19.

[36] S. Yoon, A. Fern, R. Givan, Learning control knowledge for forward search planning, J. Mach. Learn. Res. 9 (4) (2008) 683–718.

[37] T. De la Rosa, S. Jiménez, R. Fuentetaja, D. Borrajo, Scaling up heuristic planning with relational decision trees, J. Artif. Intell. Res. 40 (2011) 767–813.

[38] T. Silver, K.R. Allen, A.K. Lew, L.P. Kaelbling, J. Tenenbaum, Few-shot bayesian imitation learning with logical program policies, in: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34, 2020, pp. 10251–10258.

[39] B. Bonet, H. Palacios, H. Geffner, Automatic derivation of finite-state machines for behavior control, in: AAAI, 2010.

[40] B. Bonet, H. Geffner, Features, projections, and representation change for generalized planning, in: International Joint Conference on Artificial Intelligence,
2018, pp. 4667–4673.
28

[41] J. Segovia-Aguas, S. Jiménez, A. Jonsson, Generalized planning with positive and negative examples, in: AAAI, 2020, pp. 9949–9956.

http://refhub.elsevier.com/S0004-3702(24)00033-X/bib190307BF3E4B8B4B7B1E875D8CA7AAB0s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibB9C2A2CD9C7E4FADD928E9281B82B07As1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibE7BD8F93AC29151F94639D5F34B4CEAEs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib62938B8B3126E5BEF5F2B68EED1BD7B0s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib2E744E4526975934D4C67B34940E4793s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibE1B11ABC9A18FB3E1D47D9C3385F17F6s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibDA69D47868CB467146EF17D503827A1As1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibD499C067A931BB56DD0BBDFB372B19D9s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib4B7CF5F0CAF7FBEE4AA0511DE852EE11s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib4B7CF5F0CAF7FBEE4AA0511DE852EE11s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib3AFA3C0F7482E890C672AC21CD2D2A05s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib19A366C95A1D213374B7E5F6D190B67Fs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib19A366C95A1D213374B7E5F6D190B67Fs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibC86810082255711901B0D423B081F70Cs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib0AE3405113065B6B7D8D6ECC199D7633s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib0AE3405113065B6B7D8D6ECC199D7633s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibAF5071E860F62508556C48CA3654C21Es1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibDEF64663DF08B495AAEC4463BAB8347Cs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib14F1052C889A65DCF50F63B8A1140A0Es1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib7F916AF9C49A9E72FC4049E7F0271912s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibFB340A1D049874D57AA1F5A69133270Bs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibF31E373F3B4E2117C22CFC63F27025AAs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibD07CEC77E41AFAE353E52224E8BA245Bs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib83E7BB1FFFB50CA554A8FE5D157EC234s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib616DF1076FCAE62CC19BFA72E9C7F1EDs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib3A4F7B1A2588F8E31056CEB4E9DE3FC6s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib3A4F7B1A2588F8E31056CEB4E9DE3FC6s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib850D0459DB768C8B9FCA9F3F54BE24E5s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib826E002BC37A85B377EA4738692F0BDCs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib722DE28E528D7A7E9903D676A9D862E0s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib9DB2BCBE70F6D269689735D8C8ACDF49s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibC6777FFA99C7FDDDECCB28C4147687E9s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib3184E302D8DAB7602FEE0000F1B1D585s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibABD97F6493E9CEA7E088ED9207227BCFs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibABD97F6493E9CEA7E088ED9207227BCFs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib64A94EA45162DC5A8D83EAB1A5450904s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib98D77B2FDD59ED26AC9CBDD8E8F19B19s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib522D8B288B72E30055F7D288BC93E938s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib0F16A566C99A71467E00DF7FA5265757s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib3594C560834742E79BB868B1A549B3EEs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib86FBEC1A867252D6AD5961F1C00C2A47s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib468CC492480BACB4C2BF5869CAE67BB1s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib36478E568D20693467593DAC57547CF3s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib36478E568D20693467593DAC57547CF3s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib6B72D602773A9E1FEEFCF9BC5A1738F6s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib09212317D27EDBFA9871DBD78E342402s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib09212317D27EDBFA9871DBD78E342402s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib84C5A6B27478EB22FB2BE1B9B2A7A93Cs1

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

[42] D. Lotinac, A. Jonsson, Constructing hierarchical task models using invariance analysis, in: Proceedings of the Twenty-Second European Conference on Artificial
Intelligence, 2016, pp. 1274–1282.

[43] D.E. Smith, D.S. Weld, Conformant graphplan, in: AAAI/IAAI, 1998, pp. 889–896.

[44] H. Palacios, H. Geffner, Compiling uncertainty away in conformant planning problems with bounded width, J. Artif. Intell. Res. 35 (2009) 623–675.

[45] L. Pryor, G. Collins, Planning for contingencies: a decision-based approach, J. Artif. Intell. Res. 4 (1996) 287–339.

[46] A. Kolobov, Planning with Markov decision processes: an AI perspective, Synth. Lect. Artif. Intell. Mach. Learn. 6 (1) (2012) 1–210.

[47] N. Roy, G. Gordon, S. Thrun, Finding approximate POMDP solutions through belief compression, J. Artif. Intell. Res. 23 (2005) 1–40.

[48] S. Srivastava, S. Zilberstein, N. Immerman, H. Geffner, Qualitative numeric planning, in: AAAI, 2011.

[49] B. Bonet, H. Geffner, Qualitative numeric planning: reductions and complexity, J. Artif. Intell. Res. 69 (2020) 923–961.

[50] G. Röger, M. Helmert, B. Nebel, On the relative expressiveness of adl and golog: the last piece in the puzzle, in: KR, 2008, pp. 544–550.

[51] M. Katz, D. Moshkovich, E. Karpas, Semi-black box: rapid development of planning based solutions, in: AAAI, 2018.

[52] J.A. Baier, S.A. McIlraith, Knowledge-based programs as building blocks for planning, Artif. Intell. 303 (2022) 103634.

[53] S. Sardina, G. De Giacomo, Y. Lespérance, H.J. Levesque, On the semantics of deliberation in indigolog—from theory to implementation, Ann. Math. Artif.
Intell. 41 (2–4) (2004) 259–299.

[54] J. Claßen, V. Engelmann, G. Lakemeyer, G. Röger, Integrating golog and planning: an empirical evaluation, in: Non-Monotonic Reasoning Workshop, 2008.

[55] S. Jiménez, T. De La Rosa, S. Fernández, F. Fernández, D. Borrajo, A review of machine learning for automated planning, Knowl. Eng. Rev. 27 (4) (2012)
433–467.

[56] F. Bacchus, F. Kabanza, Using temporal logics to express search control knowledge for planning, Artif. Intell. 116 (1–2) (2000) 123–191.

[57] D. Nau, Y. Cao, A. Lotem, H. Munoz-Avila, The SHOP planning system, AI Mag. 22 (3) (2001) 91.

[58] M. Martín, H. Geffner, Learning generalized policies from planning examples using concept languages, Appl. Intell. 20 (1) (2004) 9–19.

[59] J. Segovia-Aguas, S. Jiménez, A. Jonsson, Hierarchical finite state controllers for generalized planning, in: IJCAI, 2016.

[60] M. Ramirez, H. Geffner, Heuristics for planning, plan recognition and parsing, arXiv preprint, arXiv :1605 .05807.

[61] J. Segovia-Aguas, S. Jiménez, A. Jonsson, Computing hierarchical finite state controllers with classical planning, J. Artif. Intell. Res. 62 (2018) 755–797.

[62] B. Bonet, G. De Giacomo, H. Geffner, F. Patrizi, S. Rubin, High-level programming via generalized planning and LTL synthesis, in: KR, 2020.

[63] B. Bonet, G. Frances, H. Geffner, Learning features and abstract actions for computing generalized plans, in: AAAI, Vol. 33, 2019, pp. 2703–2710.

[64] D. Drexler, J. Seipp, H. Geffner, Learning sketches for decomposing planning problems into subproblems of bounded width, in: Proceedings of the International
Conference on Automated Planning and Scheduling, Vol. 32, 2022, pp. 62–70.

[65] J. Segovia-Aguas, S.J. Celorrio, L. Sebastiá, A. Jonsson, Scaling-up generalized planning as heuristic search with landmarks, in: International Symposium on
Combinatorial Search, 2022, pp. 171–179.

[66] R.P. Kurshan, Computer-Aided Verification of Coordinating Processes: the Automata-Theoretic Approach, vol. 302, Princeton University Press, 2014.

[67] A. Solar-Lezama, Program synthesis by sketching, Citeseer (2008).

[68] S. Gulwani, O. Polozov, R. Singh, et al., Program synthesis, Found. Trends® Program. Lang. 4 (1–2) (2017) 1–119.

[69] R. Alur, R. Singh, D. Fisman, A. Solar-Lezama, Search-based program synthesis, Commun. ACM 61 (12) (2018) 84–93.

[70] C. Barrett, A. Stump, C. Tinelli, et al., The smt-lib standard: Version 2.0, in: Proceedings of the 8th International Workshop on Satisfiability Modulo Theories
(Edinburgh, England), Vol. 13, 2010, p. 14.

[71] H. Barbosa, C.W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds,
Y. Sheng, C. Tinelli, Y. Zohar, cvc5: a versatile and industrial-strength SMT solver, in: Tools and Algorithms for the Construction and Analysis of Systems, 2022.

[72] D.W. Loveland, Automated Theorem Proving: a Logical Basis, Elsevier, 2016.

[73] A. Solar-Lezama, Program sketching, Int. J. Softw. Tools Technol. Transf. 15 (5) (2013) 475–495.

[74] A. Burkov, The Hundred-Page Machine Learning Book, vol. 1, Andriy Burkov, Canada, 2019.

[75] S. Toyer, F. Trevizan, S. Thiébaux, L. Xie, Action schema networks: generalised policies with deep learning, in: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32, 2018.

[76] T.P. Bueno, L.N. de Barros, D.D. Mauá, S. Sanner, Deep reactive policies for planning in stochastic nonlinear domains, in: Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33, 2019, pp. 7530–7537.

[77] S. Garg, A. Bajpai Mausam, Symbolic network: generalized neural policies for relational MDPs, in: International Conference on Machine Learning, PMLR, 2020,
pp. 3397–3407.

[78] S. Sanner, C. Boutilier, Practical solution techniques for first-order MDPs, Artif. Intell. 173 (5–6) (2009) 748–788.

[79] A. Fern, S. Yoon, R. Givan, Approximate policy iteration with a policy language bias: solving relational Markov decision processes, J. Artif. Intell. Res. 25
(2006) 75–118.

[80] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press, 2018.

[81] E. Groshev, M. Goldstein, A. Tamar, S. Srivastava, P. Abbeel, Learning generalized reactive policies using deep neural networks, in: Proceedings of the
International Conference on Automated Planning and Scheduling, Vol. 28, 2018.

[82] M. Junyent, A. Jonsson, V. Gómez, Deep policies for width-based planning in pixel domains, in: ICAPS, Vol. 29, 2019, pp. 646–654.

[83] J. Pearl, The limitations of opaque learning machines, in: Possible Minds: Twenty-Five Ways of Looking at AI, 2019, pp. 13–19.

[84] C. Bäckström, P. Jonsson, All PSPACE-complete planning problems are equal but some are more equal than others, in: SOCS, 2011.

[85] B. Nebel, On the compilability and expressive power of propositional planning formalisms, J. Artif. Intell. Res. 12 (2000) 271–315.

[86] P. Haslum, N. Lipovetzky, D. Magazzeni, C. Muise, An introduction to the planning domain definition language, Synth. Lect. Artif. Intell. Mach. Learn. 13 (2)
(2019) 1–187.

[87] D.S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J.W. Murdock, D. Wu, F. Yaman, SHOP2: an HTN planning system, J. Artif. Intell. Res. 20 (2003) 379–404.

[88] M. Ajtai, J. Komlós, E. Szemerédi, An 0 (n log n) sorting network, in: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, 1983,
pp. 1–9.

[89] D. Lotinac, J. Segovia-Aguas, S. Jiménez, A. Jonsson, Automatic generation of high-level state features for generalized planning, in: IJCAI, 2016.

[90] G.S. Boolos, J.P. Burgess, R.C. Jeffrey, Computability and Logic, Cambridge University Press, 2002.

[91] M.L. Minsky, Recursive unsolvability of post’s problem of “tag” and other topics in theory of Turing machines, Ann. Math. (1961) 437–455.

[92] M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink, J. Blythe, Integrating planning and learning: the PRODIGY architecture, J. Exp. Theor. Artif. Intell. 7 (1)
(1995) 81–120.

[93] R.E. Fikes, N.J. Nilsson, STRIPS: a new approach to the application of theorem proving to problem solving, Artif. Intell. 2 (3–4) (1971) 189–208.

[94] H. Geffner, Functional STRIPS: a more flexible language for planning and problem solving, in: Logic-Based Artificial Intelligence, Springer, 2000, pp. 187–209.

[95] M. Fox, D. Long, The automatic inference of state invariants in TIM, J. Artif. Intell. Res. 9 (1998) 367–421.

[96] M. Fox, D. Long, PDDL2.1: an extension to PDDL for expressing temporal planning domains, J. Artif. Intell. Res. 20 (2003) 61–124.

[97] J.B. Browning, B. Sutherland, Working with numbers, in: C++ 20 Recipes, Springer, 2020, pp. 115–145.

[98] R.E. Korf, W. Zhang, I. Thayer, H. Hohwald, Frontier search, J. ACM 52 (5) (2005) 715–748.

[99] S. Richter, M. Westphal, M. Helmert, Lama 2008 and 2011, in: International Planning Competition, 2011.

[100] J. Segovia-Aguas, Y. E-Martín, S. Jiménez, Representation and synthesis of c++ programs for generalized planning, in: Workshop on Generalization in Planning,
29

IJCAI, 2022.

http://refhub.elsevier.com/S0004-3702(24)00033-X/bibE1A50424AE6A1FD50EF494D7B61344AFs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibE1A50424AE6A1FD50EF494D7B61344AFs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibD4FF0F3D431E1C95D0C826DAED182F60s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib8993F8DBFC85468AA2413E2B146BC7A5s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib9C00CA076F6EACEA9401F8B87349B218s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibF5CEFB15E6A48684C03C34030E00125Es1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib205DAE842EAA3EC158605CD9E37B7B73s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib6AE15B01A19F179E1BCC7DD1066CC63Ds1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibEA8817195DCF0D4EC1C2322FE9C6CC71s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib9BDE5CF8EAB37D97557CE5D91CED6E3Ds1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib887CF6CCEA883273BBB81E3FD6506C53s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib4D57E105BD13CC024C8E196881CBEE4As1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibED930BD59D64BEC370E07746020093BCs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibED930BD59D64BEC370E07746020093BCs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib52239BCBB3FF0FBA62B8EF978EFD029Fs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibC113652547C39A7F0E0081E912EE9228s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibC113652547C39A7F0E0081E912EE9228s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib099EA71BD28473D9C967E23927360123s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibEE65331D4F2766C8DC0DD5014F940382s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib135C56B78B35E6CE049DDDAA385F1A33s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibAD6C43C081DD31AA9805376039F6699Bs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib7EA4E25DF2513510F5BB503C5FFDDEDFs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibB160C9872090200060BCA2EB54738EF6s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib9474E9657DD6DBB455F4EFFFCC71D402s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib13674C406530199B5DEBBD93748B7354s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibD5E45AC047834B48EC8DB3A2C1636938s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibD5E45AC047834B48EC8DB3A2C1636938s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibB7EC8DE40625D39B102C794E4F4024D5s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibB7EC8DE40625D39B102C794E4F4024D5s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib6FB06125D9D1F6BBF73052C95E2DC4B4s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib48FB1A39228C1D3CF836D461D55690C9s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibE564115DC5A47D3788B42C4A9CEDDA92s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibE61F9BB8EE186E51B08186382F78BCDFs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib1EE5666A43877D7A44C0BED720734593s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib1EE5666A43877D7A44C0BED720734593s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibEE48DA092FE13133567FBC042D48A793s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibEE48DA092FE13133567FBC042D48A793s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib58D4F62B8B678880D7456A6282A637F0s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibB0B5F5BBD16A4FA0BCF0DBE8B381FAD5s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibF918D7A586CCFDA7C0483A1577EBC48Cs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib41B30FED47382F123DA1FBF86FADBEB6s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib41B30FED47382F123DA1FBF86FADBEB6s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib584F131164BF887853965F3440862AB8s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib584F131164BF887853965F3440862AB8s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib716EDEA602A46EDCDCD505EEFF093A70s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib716EDEA602A46EDCDCD505EEFF093A70s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib6291D1CF425F5D09B79969770823D381s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib9903738C06398E4979E43150536B3133s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib9903738C06398E4979E43150536B3133s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib62EA68C58CD19B9F34F70E09CA364ABBs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib8293C2AD7EAA03F2321586A3ED565505s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib8293C2AD7EAA03F2321586A3ED565505s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib9682D258649A33205CA32B16439D57E1s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib69A6D10BB9156C03A8BFEE03D9DD0BBFs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib5699B8A48474496B0DA2830E17CCB5C3s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib7DC3E6092A42BDD26B48ABF24049E942s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib7CD68AFC668D9F468BB185E4A7A0086Es1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib7CD68AFC668D9F468BB185E4A7A0086Es1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib2B1B692DB3156AD36545C79D056F63D6s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib6AFB33022492C81DF3108AC8D54154B2s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib6AFB33022492C81DF3108AC8D54154B2s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib90779D8980592C9BBC3DD8A1670D4C61s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibFC6FB144B7B080ADC6BE4BCEC2074392s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibD302DFD529B574A4B4A014CB0B066137s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib77D387523DB012D73DB94AC2F177CAC6s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib77D387523DB012D73DB94AC2F177CAC6s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib19E04ADB18407C0FFB97941236B354DBs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib0C6D370EBBDDBF3FE9E6A5106B7B3E6Ds1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib971097D44DEC4197B052AB74F1442B0Fs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib28D0AB817B0C39A7C0D65D33724138E5s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib282A877FB2CAF59708D6CA5E075EF84Ds1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibD6B59D70CFA592FB95EB927418F3DB3Bs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibD095603D836C7440D3BB9F46BF88E146s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibB23270DDD58C031109E45068012631F4s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibB23270DDD58C031109E45068012631F4s1

Artificial Intelligence 330 (2024) 104097J. Segovia-Aguas, S. Jiménez and A. Jonsson

[101] J. Segovia-Aguas, J. Ferrer-Mestres, S. Jiménez, Synthesis of procedural models for deterministic transition systems, in: ECAI, 2023.

[102] B. Bonet, H. Geffner, General policies, representations, and planning width, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021,
pp. 11764–11773.

[103] A. Gerevini, A. Saetti, I. Serina, Planning through stochastic local search and temporal action graphs in LPG, J. Artif. Intell. Res. 20 (2003) 239–290.

[104] A. Solar-Lezama, The sketching approach to program synthesis, in: Asian Symposium on Programming Languages and Systems, Springer, 2009, pp. 4–13.

[105] J. Hoffmann, The metric-FF planning system: translating “ignoring delete lists” to numeric state variables, J. Artif. Intell. Res. 20 (2003) 291–341.

[106] G. Francès, et al., Effective planning with expressive languages, Ph.D. thesis, Universitat Pompeu Fabra, 2017.

[107] G. Frances, M. Ramírez Jávega, N. Lipovetzky, H. Geffner, Purely declarative action descriptions are overrated: classical planning with simulators, in: IJCAI,
International Joint Conferences on Artificial Intelligence Organization (IJCAI), 2017.

[108] N. Lipovetzky, H. Geffner, Width and serialization of classical planning problems, in: ECAI, 2012, pp. 540–545.

[109] C. Lei, N. Lipovetzky, K.A. Ehinger, Novelty and lifted helpful actions in generalized planning, in: International Symposium on Combinatorial Search, 2023.

[110] M. Helmert, R. Mattmüller, G. Röger, Approximation properties of planning benchmarks, in: ECAI 2006, IOS Press, 2006, pp. 585–589.

[111] R.E. Korf, Linear-time disk-based implicit graph search, J. ACM 55 (6) (2008) 1–40.

[112] R.E. Korf, Improved limited discrepancy search, in: AAAI/IAAI, Vol. 1, 1996, pp. 286–291.

[113] E. Nowicki, C. Smutnicki, A fast taboo search algorithm for the job shop problem, Manag. Sci. 42 (6) (1996) 797–813.

[114] J. Rintanen, Planning as satisfiability: heuristics, Artif. Intell. 193 (2012) 45–86.

[115] N. Lipovetzky, M. Ramirez, H. Geffner, Classical planning with simulators: results on the atari video games, in: IJCAI, 2015.
30

[116] D.P. Bertsekas, Approximate policy iteration: a survey and some new methods, J. Control Theory Appl. 9 (3) (2011) 310–335.

http://refhub.elsevier.com/S0004-3702(24)00033-X/bib0C5F47222B9C562F79D3D02EB6B02418s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibB9407CFCED6E28EDB6A86A4171736DFEs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibB9407CFCED6E28EDB6A86A4171736DFEs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibBD85D46F786A9719B1460BE838582F92s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib5595ECC86E55DF460011F6A3A986D669s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib2F69579FB4E668EA27FBB5B5E5FB7C14s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibEB055F560311A2C94B2705A1A5DAF584s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib42BB7EE927695500893414C647E4DE08s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib42BB7EE927695500893414C647E4DE08s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib995D7A4F2AA75B20E9E4AFA05104B226s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib6B921EEBCFC10932F193251AE44B4786s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibD7F47448FDEC4D96F8389C6349039088s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib4AC42D7E9D6A2853ABB66B3450D4EA2As1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bibF6C80341ED06470956CE1A9CA141D366s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib44A1C2C15F3426B49E3407E0ACA74502s1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib0894DEA3D5729C2BEE95931C64879CFAs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib8779DFD467DDF91F93B2CC1F9D4C20AAs1
http://refhub.elsevier.com/S0004-3702(24)00033-X/bib97C71717689214EC002D0A9C389693F6s1

	Generalized planning as heuristic search: A new planning search-space that leverages pointers over objects
	1 Introduction
	2 Related work
	3 Background
	3.1 Classical planning
	3.2 Generalized planning
	3.3 Planning programs
	3.4 The random-access machine

	4 Planning with a random-access machine
	4.1 Representing transition systems with pointers over objects
	4.2 Representing STRIPS problems with pointers over objects
	4.3 Extending the classical planning model with a RAM
	4.3.1 Theoretical properties

	5 Generalized planning as heuristic search
	5.1 The search space
	5.1.1 Planning programs conditioned over valued state variables
	5.1.2 Planning programs conditioned over a feature language

	5.2 The search algorithm
	5.2.1 The evaluation functions
	5.2.2 Theoretical properties

	6 Evaluation
	6.1 Benchmarks
	6.2 Synthesis and validation of GP solutions
	6.2.1 Performance of BFGP(fi)
	6.2.2 The synthesized solutions
	6.2.3 Validation of the synthesized solutions

	6.3 Performance of BFGP with function combinations
	6.4 Comparative synthesis performance with related GP solvers
	6.5 Validation of GP solutions in more complex domains

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

