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Abstract. In computer-based numerical simulations, some methods to

determine the electronic and optical properties of semiconductor nanos-
tructures, require computing the energies that correspond to the inte-

rior eigenvalues of a Hamiltonian matrix. We study the case in which

the Schrödinger equation is expanded into a matrix that has a block-
tridiagonal structure. Additionally, the matrix can have two extra non

zero blocks in the corners due to periodic boundary conditions. Given

that not the whole eigenspectrum is required, we choose to use projec-
tion methods to compute the necessary set of eigenvalues. The shift-

and-invert Lanczos method requires to solve a linear system at each it-
eration. We have developed a parallel code that improves the scalability

of this step by exploiting the block structure. Results show that, to solve

these specific cases, this method offers better scalability when compared
to a general-purpose solver such as MUMPS.

Keywords. electronic structure calculation, eigenvalue problem, shift-
and-invert, cyclic reduction, Schur complement

1. Introduction and motivation

There is an increasing interest in methods that can provide an accurate picture
of the electronic structure of large systems. This kind of computations allows the
design of new devices that are essential for many emerging technologies.

In order to understand the electronic and optical properties of semiconductor
hetero and nanostructures, it is imperative to know the allowed energy levels for
electrons and their quantum state, completely determined by their corresponding
wavefunctions. These quantities are provided by the Schrödinger equation, a linear
partial differential equation (PDE) which, in its single particle (an electron from
now on) time-independent version, reads

Ĥψ(r) =

[
− h̄2

2m0
∇2 + V (r)

]
ψ(r) = Eψ(r), (1)



where Ĥ is the Hamiltonian operator, h̄ is the reduced Planck constant, m0 is
the free electron mass, V (r) is the microscopic potential energy affecting the elec-
tron, and ψ(r) and E are the sought electron wavefunction and energy, respec-
tively. When the unknown ψ(r) is expanded as a linear combination of unknown
coefficients ci times known basis functions φi(r),

ψ(r) =
∑
i

ciφi(r), (2)

the Schrödinger PDE is transformed into an algebraic (maybe generalized) eigen-
value problem.

Commonly used basis functions for the expansion of the Schrödinger equation
include plane waves, often encountered in density functional theory codes [17];
atomic-like orbitals, giving rise to the family of empirical tight-binding methods
(ETB) [19]; or the solution at the Brillouin zone center for the primitive cell
of bulk materials, leading to the development of the k · p / Envelope Function
Approximation (EFA) methods [15,14,3]. More precisely, the EFA provides a set
of coupled PDEs that mimick the Schrödinger equation, but replacing the mi-
croscopic potential by the primitive cell average of some quantities. In addition,
the EFA method can be mapped into ETB if the system of PDEs obtained in
the EFA is discretized in a mesh coincident with the underlying Bravais lattice
sites [7,8]. Popular options to solve the EFA equations are the finite difference
method (FDM) and the finite element method (FEM). Although the number of
basis functions is in principle infinite, in practice it is limited to a low figure
(between 1-20) chosen on physical intuition grounds.

In a semiconductor heterostructure, the matrix resulting from the expansion
in (2), will have the following characteristics:

• Each atom or primitive cell (in ETB) or discretization node (in EFA) will
contribute with Nb basis functions to the wavefunction, and with an Nb×Nb

block to the matrix A representing Ĥ.
• The topology of the non-vanishing interactions between the atomic-like

orbitals, in ETB, or the chosen stencil in FDM will determine which blocks
in A will have non-zero entries.

If, in addition, the semiconductor heterostructure has translational symmetry
along the x, y coordinates and varies along the z axis (i.e., is effectively one-
dimensional), the obtained A matrix will be block-tridiagonal, with the possibility
that non-zero blocks appear in the upper-left and lower-right corners if periodic
boundary conditions are imposed (block cyclic tridiagonal structure).

The above one-dimensional case appears in the study of quantum wells, su-
perlattices, design of chirped superlattices for quantum cascade lasers [10], An-
derson localization in non-ideal superlattices, etc. Although a typical dimension
of the resulting matrix may be of the order of 105 × 105 for one-dimensional
structures hundreds of nanometers long, and a single solution is typically not too
much time consuming, efficient solvers for the resulting block cyclic tridiagonal
matrices are needed since in a typical application solutions must be sought for a
large number of k-points inside the first Brillouin zone, and then an outer loop
of Poisson-Schrödinger self-consistency may be required.



As we just need a few energies corresponding to eigenvalues from the inte-
rior of the spectrum, close to the Fermi level , we use an iterative eigensolver
that, by means of the shift-and-invert technique, solves a linear system in each
iteration. These linear systems are solved with a direct method based on matrix
factorization, that exploits the nonzero structure of the matrix to improve the
scalability. In particular, we use a Schur complement approach combined with a
parallel block-cyclic reduction.

The rest of the paper is organized as follows. Section 2 describes the method
used for the eigenvalue computation. Section 3 provides details of the linear system
solution used. Some computational results are given in section 4. Finally, we wrap
up with some conclusions in section 5.

2. Shift-and-invert Arnoldi for interior eigenvalues

For a square matrix A of order n, the standard eigenvalue problem formulated as

Ax = λx, (3)

has n solutions (λ, x), where λ is a scalar (eigenvalue) and x 6= 0 an n-vector
(eigenvector). If the matrix A is Hermitian, then all eigenvalues are real, otherwise
eigenvalues are complex in general.

The two major strategies to solve these eigenproblems are based on direct
methods and on projection methods. If the matrix is sparse and only a few eigen-
pairs are required, projecting the eigenproblem on a low-dimensional subspace
is usually a better option than the use of direct methods which first generate a
condensed form of the matrix and provide all its eigenpairs. Also, when working
with large sparse matrices it is desirable to preserve the sparsity of the matrix
and the transformation to condensed form of the direct methods produces a fill-in
with the consequent cost blow-up.

In this paper, we are considering matrices that have a block cyclic tridiagonal
structure, where the blocks are not too large. In turn, these blocks are also sparse,
but we will treat them as if they were fully populated. We employ projection
methods because only a small amount of eigenvalues are required, and because
direct methods are not well suited for the block cyclic tridiagonal structure when
having nonzero corner blocks.

One of the projection methods for non-symmetric matrices is the Arnoldi
algorithm. Given a matrix A and an initial unit vector v1, after j steps the method
computes matrices Vj and Hj , where the columns of Vj form an orthogonal basis
of the Krylov subspace Kj(A, v1) = span{v1, Av1, A2v1, . . . , A

j−1v1}, and Hj =
V ∗
j AVj is the restriction of A to this subspace. The method can be expressed by

the recurrence

vj+1hj+1,j = wj = Avj −
j∑

i=1

hi,jvi, (4)

where hi,j are the scalar coefficients obtained in the Gram-Schmidt orthogonal-
ization of Avj with respect to vi, i = 1, 2, . . . , j, and hj+1,j = ‖wj‖2. The upper



Hessenberg matrix Hj provides Ritz approximations to eigenpairs of A, (λ̃i, Vjyi),

being (λ̃i, yi) eigenpairs of Hj , i = 1, 2, . . . , j.
Since approximate eigenvalues may converge quite slowly, a practical imple-

mentation of Arnoldi must incorporate some restarting mechanism, such as the
Krylov-Schur [20] method. This method is particularly suitable for computing
exterior eigenvalues. However, in the case of interior eigenvalues, convergence is
usually prohibitively slow, and a common alternative is the shift-and-invert spec-
tral transformations [9] that consists in applying the Krylov method to matrix
(A − σI)−1. Then, convergence to the eigenvalues closest to σ will be fast, but
the drawback is that it requires to implicitly handle a matrix inverse by solving
linear systems at each iteration of the eigensolver. Most often direct solvers must
be employed to guarantee the robustness of the method.

3. Scalable solution of linear systems for block cyclic tridiagonal matrices

SLEPc [12] is a software library for the solution of large-scale eigenvalue problems
in parallel computers. Among others, it addresses the standard eigenvalue problem
of (3) and can work with either real or complex arithmetic, in single or double
precision, and it is not restricted to symmetric (Hermitian) problems. SLEPc has
been employed successfully in many different application areas such as nuclear
engineering [4] or plasma physics [16].

The library provides a collection of eigensolvers, most of which are based on
the subspace projection paradigm described in §2. It includes a robust and ef-
ficient parallel implementation of Krylov-Schur, among other methods, and also
provides built-in support for the shift-and-invert transformation to compute in-
terior eigenvalues.

It offers the users the possibility to specify many parameters such as the
number of eigenpairs to compute, the convergence tolerance or the dimension of
the built subspace, both programmatically and in run-time.

SLEPc is built on top of PETSc (Portable, Extensible Toolkit for Scientific
Computation, [2]), a parallel framework for the numerical solution of partial dif-
ferential equations. PETSc uses the MPI paradigm, and encapsulates mathemat-
ical algorithms using object-oriented programming techniques in order to be able
to manage the complexity of efficient numerical message-passing codes.

The solvers in PETSc and SLEPc have a neutral implementation with respect
to the data-structure. They allow to do the computation with different matrix
storage formats without needing to modify the code, and it is also possible to
use matrices that are not stored explicitly by implementing some user-defined
operations like the matrix-vector product.

One interesting characteristic of PETSc is that it offers the possibility to in-
terface with third-party software libraries in a straightforward way in order to
provide some functionality such as direct linear solvers and preconditioners, as
has been done with MUMPS [1], for example. MUMPS is a very reliable library
for factorization-based linear system solves for sparse matrices in parallel. Al-
though MUMPS is quite efficient in general, it often suffers from bad scalability
when many MPI processes are used. In this work, we want to demonstrate that



for the particular case of matrices with block cyclic tridiagonal structure, it is

possible to improve on MUMPS (at least from a certain number of processes) by

implementing a customized linear solver that exploits such structure.

3.1. Parallel cyclic reduction

Cyclic reduction is a well-known algorithm for the solution of tridiagonal linear

systems that is equivalent to Gaussian elimination without pivoting [6]. Cyclic

reduction is stable if A is strictly diagonally dominant or symmetric positive

definite, or in those cases where Gaussian elimination is stable with diagonal

pivots [11].

The cyclic reduction algorithm is recursive. During the first of its two stages, it

progresses reducing the number of rows with which it works. It classifies the rows

in even-numbered and odd-numbered and, on each recursive step, it eliminates

the even rows of the matrix in terms of the odd rows, halving them until a single

row is left and a simple equation with a single unknown is trivially solved. Once

the first unknown is solved, the algorithm starts the second stage in which it uses

the current recursion level solution(s) to compute the adjacent even rows on the

previous level, undoing the recursion.

It is possible to extend the method to the case where the coefficient matrix

has a block-tridiagonal structure,

T =



D1 U1

L2 D2 U2

L3 D3 U3

. . .
. . .

. . .

Lm−1Dm−1Um−1

Lm Dm


. (5)

Block-cyclic reduction was first studied in [11], and in this case, the algorithm

reduces the block-rows in a similar way as the cyclic reduction works with the

rows. In order for block-cyclic reduction to be numerically reliable, it must be

applied to matrices for which Gaussian elimination without pivoting is applicable,

or more precisely, when pivoting is applied only within the diagonal blocks. Since

during the first stage it is required to compute the inverse of the diagonal blocks,

these blocks need to be non-singular for the algorithm to be able to progress, in

the same way that the cyclic reduction cannot progress if a division by zero is hit

(when a zero pivot is found).

The nice feature of the cyclic reduction algorithm is that is more amenable to

parallelization than classical Gaussian elimination, because the task dependency

graph has many independent tasks in each recursion level, that can be assigned to

different processes, while classical Gaussian elimination is essentially sequential.

During the first stage, the even-numbered blocks are computed as



D̂2i = D−1
2i ,

L̂2i = D̂2iL2i,

Û2i = D̂2iU2i,

b̂2i = D̂2ib2i.

(6)

Then, the off-diagonal blocks L̂2i and Û2i, and b̂2i are sent to the process owning
the adjacent odd-numbered row blocks to compute them

D̂2i−1 = D2i−1 − L2i−1Û2i−2 − U2i−1L̂2i,

L̂2i−1 = −L2i−1L̂2i−2,

Û2i−1 = −U2i−1Û2i,

b̂2i−1 = b2i−1 − L2i−1b̂2i−2 − U2i−1b̂2i.

(7)

The backward substitution stage starts computing the first block of unknowns
with x1 = D̂1b̂1. Then, xi is sent to the adjacent even-numbered row blocks and,
on each recursive step, the corresponding parts of the solution are obtained with

x2i = b̂2i − L̂2ix2i−1 − Û2ix2i+1. (8)

The main computational cost of the algorithm lies in the first 3 operations
of (6) and (7). Note that, in the case of solving multiple linear systems with
the same matrix and different right-hand sides, these operations need not be
recomputed. This is the case of the shift-and-invert Arnoldi method, that needs
to invoke the linear solver in each iteration of the eigensolver.

3.2. Schur complement approach for the case of periodic boundary

As mentioned in §1, if periodic boundary conditions are imposed, then the coef-
ficient matrix is not purely block-tridiagonal, as in (5), but has additional non-
zero blocks on the upper-right and lower-left corners, and hence the block-cyclic
reduction method is not directly applicable.

The Schur complement [18, ch. 14] is a classical method that can be applied
to the resolution of linear systems. Let M be a square matrix of dimension n

partitioned as M =

[
A B
C D

]
, and then perform a block Gaussian elimination on

it. In our case, the matrix is block cyclic tridiagonal, with m block-rows with
blocks of size k (n = m · k), so we take A, B, C and D to be of dimensions
k×k, k×p, p×k and p×p, respectively (with p = n−k) as illustrated in Figure 1.
In our implementation, A and B are stored on the first process, and C and D are
partitioned among all the existing processes. Figure 1 also illustrates this data
distribution, where we can see how only the non-zero blocks of B are stored while
the full size of C is allocated. D is also stored compacted, reducing the unused
blocks to two.



A B

C D

P0

P1

P2

P3

A B

C D

Figure 1. Scheme of the partitioning of a square matrix into four smaller matrices to solve

a system of linear equations by using the Schur complement (left). Distribution of the four
sub-matrices among several processes and its representation in memory (right).

The Schur complement of M relative to D is

S = M/D = A−BD−1C. (9)

Assuming that D is non-singular, it is possible to solve the system of linear
equations [

A B
C D

] [
x
y

]
=

[
e
f

]
(10)

by solving

Sx = e−BD−1f, (11)

and once this small system is solved, the rest of the system can be solved in
parallel with

Dy = f − Cx. (12)

In our case, D is a block-tridiagonal matrix that can be factored in parallel
with the block-cyclic reduction algorithm. When computing the Schur comple-
ment (9), the D−1C operation implies a linear solve with multiple right-hand
sides, that can be computed in parallel, and since C has only two non-zero blocks
on its edges, the computation involving the null blocks can be avoided during the
solve stage of block-cyclic reduction, reducing the processing time. The remaining
operations to compute the Schur complement are only done by the first process,
as it stores the first block row of M that includes A and B. As B also has only two
non-zero blocks, the matrix multiplication B times D−1C can be cheaply done
by multiplying only these two blocks with the corresponding blocks of D−1C; one
of them is already stored in this first process and the other must be sent by the
process with the highest rank.



In order to obtain x, the system (11) is solved in a similar way as (9) by com-
puting D−1f in parallel with block-cyclic reduction. But this time no reduction
in the operations is possible as f does not have a zero pattern.

Once the first block of the solution is obtained, it must be sent from the
first to the last process for them both to compute f − Cx, and after that, the
block-cyclic reduction method can be used again to finally solve (12) in parallel.

4. Computational results

A set of experiments to measure the performance of the software were conducted
in Tirant, a machine consisting of 256 JS20 blade computing nodes, each of them
with two 64-bit PowerPC 970+ processors running at 2.2 GHz, and interconnected
with a low latency Myrinet network.

The servers run SuSE Linux Enterprise Server 10 as operating system, and
our software has been compiled in complex arithmetic and double precision with
gcc 4.6.1 using SLEPc 3.7.1, PETSc 3.7.1, MUMPS 5.0.1-p1, and MPICH2 1.0.8p1
as the inter-process communication library.

As the nodes have four computational cores, a limit of four processes per node
have been used during the executions.

In the experiments we compare the performance of a state of the art library
such as MUMPS with our implementation of the Schur complement that uses
the block-cyclic reduction algorithm to solve the block-tridiagonal system that
involves D of (9). We should remark that MUMPS stores (and works with) the
full matrix (in blocked sparse format) while our software reduces the operations to
the non-zero blocks (using dense storage), and except in the case of the sub-matrix
C, it initially reduces the memory footprint to them.

Two matrices arising from the ETB parametrization [13] of a quantum cas-
cade laser structure [5], and a 4/2 GaAs/AlAs superlattice with fluctuations in
the layer widths have been used in the tests. Their dimensions are 82,400 (qcl)
and 143,840 (anderson), respectively, and both have a block size of 20. In both
cases, we instructed SLEPc to obtain 40 eigenvalues closest to the target value
1.5 eV (lowest energy states in the conduction band) with the shift-and-invert
technique and a default tolerance of 10−8.

The relevant command-line options used in the experiments are:

• MUMPS: -matload block size 20 -eps nev 40 -eps target 1.5

-st type sinvert -st pc factor mat solver package mumps

• Schur complement: -eps nev 40 -eps target 1.5 -st type shell

Additionally, for the runs with the anderson matrix, the value of the -eps ncv

parameter was increased and set to 128 in order to reduce the number of restarts
and achieve a better performance.

Results of the executions can be seen in Figure 2. The plots show that the
eigensolver scales linearly (up to 64 MPI processes) when using the custom linear
solver based on Schur complement with block-cyclic reduction. In contrast, the
scalability of MUMPS is more limited, and performance degrades with 16 pro-
cesses or more. This can be attributed to the fact that MUMPS is based on a
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Figure 2. Total eigenproblem solve time to obtain 40 eigenvalues closest to 1.5 for the qcl and
anderson matrices using 4 processes per node.

classical scheme of factorization followed by triangular solves, where the latter op-
eration is inherently sequential and results in bad scalability. The cyclic reduction
scheme rearranges the operations in such a way that there is more opportunity
for a larger degree of parallelism.

5. Conclusions and future work

We have implemented a parallel linear solver that exploits the block cyclic tridi-
agonal structure of the coefficient matrix, and have analyzed its scalability when
used within an iterative eigensolver in the context of electronic structure calcu-
lations. In this type of applications, it is important to obtain the solution very
fast, especially when the process involves a self-consistency loop that requires
solving an eigenvalue problem in each iteration. Our results illustrate that ex-
ploiting the matrix structure in the solver may provide some advantage, such as
a better scalability, although it implies a higher development effort compared to
using general-purpose numerical libraries.

Currently we treat the blocks of the block cyclic tridiagonal matrices as dense,
therefore as a future work it remains to take profit of the sparsity of the blocks.
Another possible research direction would be to expand the software to work with
tridiagonal blocks that appear in some fast Poisson solvers.
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