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ABSTRACT 

The increasing development and integration of renewable energy sources into the electrical 
system present significant challenges in ensuring a constant balance between energy 
generation and demand. Unlike conventional energy sources, renewable energies, such as 
solar and wind power, are inherently intermittent and not always available. This variability 
in energy generation complicates the task of maintaining the stability and reliability of the 
electrical system, and therefore, short-term imbalance forecasting becomes crucial to 
achieve this goal. 

This thesis project focuses on the application of Machine Learning techniques in the 
electrical system of Hungary, with the main objective of improving the ability to forecast 
these imbalances. Although various algorithms will be explored, the research will focus on 
LightGBM, explaining its characteristics in detail and evaluating its performance using 
appropriate metrics. The results obtained from this study will provide valuable information 
for grid operators and regulatory entities, allowing them to improve efficiency in managing 
the electrical system imbalance, resulting in reduced operational costs and optimized energy 
planning. 

 

Keywords: renewable energy; electrical system; energy balance; Machine Learning; 
Hungary; LightGBM; grid operators; forecasting methods.  
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CHAPTER 1 

INTRODUCTION 

Electricity is the cornerstone of our modern society, powering homes, businesses, and 
factories, and achieving more importance as technology develops. Nevertheless, since 
electric energy can't be stored through a simple method, it must be generated and consumed 
at the same time and, therefore, it requires a complex system to manage it. 

The main objective of the electric power system is to match the quantity of supplied energy 
with the demanded one, ensuring that way the stability and reliability of the grid and 
maintaining it within the frequency limits. However, this is not an easy task. 

Over the last decades, several initiatives have moved many countries to modernise their 
electricity grids, incorporating renewable energy sources. This behaviour is crucial to take 
steps to fight against climate change and will help to meet the objectives of the Paris 
Agreement [1] and the EU Renewable Energy Directive [2], which aim to increase the 
renewable energy in the system. But on the other hand, the incorporation of this kind of 
sources implies a challenge to grid operators. Unlike traditional energy sources such as coal, 
petroleum, or natural gas, renewables are of variable nature and most of the time 
unpredictable (especially solar and wind power), complicating the task of maintaining the 
balance on the grid. 

These imbalances can lead to several impacts, including grid instability, power outages, 
increased electricity prices, and inefficiency in energy planning. For that reason, short-term 
forecasting has emerged as an excellent tool to deal with this problem and provide so 
valuable information. 

The primary objective of this research is to develop a predictive model using Machine 
Learning techniques to improve the accuracy of short-term imbalance forecasts in the 
Hungarian electrical system. While various algorithms will be evaluated, this research 
focuses particularly on LightGBM, a gradient boosting algorithm known for its speed and 
performance with large datasets. 

The study aims to uncover the complex relationships influencing energy imbalances by using 
historical data from MAVIR (the Hungarian TSO), such as historical imbalances, power 
generation differentiating among different sources (with an emphasis on renewables), energy 
demand and its forecasted values, energy prices in the day-ahead market, and the imported-
exported balance of energy, among others. 

The proposed LighGBM model provides a deterministic forecast to predict the average of 
the next quarter-hour imbalance. Within its configuration, we can highlight the Time Series 
Cross-Validation (TSCV) method, which ensures that the model is trained in the correct 
chronological order, and the randomized search, to explore a huge amount of hyperparameter 
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combinations and find the one that works the best. Moreover, evaluation metrics such as the 
nMAE or the variance ratio will be used to assess its accuracy. 

To sum up, this research will provide meaningful information to TSOs and BRPs about the 
power system imbalances, that can be used to optimize the energy planning. And, at the same 
time, it will prove the potential of Machine Learning techniques to obtain information in 
complex research fields. 

The algorithm performs a deterministic forecast to predict the average of the next quarter-
hour imbalance. Using 22 months of historical data from MAVIR to train and test the model. 
The objective of the study is to prove that GBM techniques can provide valuable information 
that can be used by TSOs and BRPs. 

 

The structure of this thesis is as follows: 

• Chapter 2 Theoretical Framework: Explains in detail all the necessary concepts of 
energy systems to fully understand this work.  

• Chapter 3 Literature Review: Examines previous research on imbalance forecasting 
and the application of Machine Learning in energy system imbalances. 

• Chapter 4 Methodology: Describes the data analysis process and preprocessing steps, 
also explaining Machine Learning in general and LightGBM in particular. 

• Chapter 5 Experimental Setup: Details the design of experiments such as the 
hyperparameter tunning and the evaluation metrics. 

• Chapter 6 Results: Presents the comparative performance of different models and 
discusses the findings. 

• Chapter 7 Conclusion and further steps: Summarizes the key findings, contributions, 
and suggests directions for future research.  
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CHAPTER 2 

THEORETICAL FRAMEWORK 

2.1 Power System Imbalances Effects 

Electrical power system mismatches might cause fluctuations in system parameters such as 
voltage and frequency (Figure 1), which could cause adverse impacts. These effects include: 

Grid instability and unreliability: That could lead to power outages, disrupting both 
residential and commercial activities. Producing that way financial losses for business due 
to the machinery damage and decrease of productivity. In addition, this consistent power 
supply could be especially critical to hospitals and emergency services. 

Higher electricity prices: Managing expensive resources such as backup power plants or 
energy storage systems can affect electricity prices for consumers. Moreover, imbalances 
can also lead to volatile energy prices. 

On the other hand, if these grid fluctuations are correctly managed, good outcomes can be 
achieved such as: 

Energy Efficiency and Sustainability: Effective management of power system imbalances 
facilitates the integration of renewable energy sources, reducing reliance on fossil fuels and 
contributing to sustainability goals. 

After the presentation of the previous effects, it’s clear that the significance of these 
imbalances cannot be overstated under any circumstance and must be correctly managed. 

Figure 1: How the frequency varies with the energy imbalances [1] 
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2.2 Energy Reserves and Cooperations 

The rectification of these fluctuations needs to be quantified to take the proper solution. This 
process involves a combination of real-time monitoring, forecasting techniques, and 
mathematical modelling. Then, [3] in order to manage these mismatches, TSOs 
(Transmission System Operators) will activate different types of energy reserves, which are 
responsible for maintaining the grid frequency within acceptable limits and can be classified 
into three types: 

Frequency Containment Reserve (FCR) is an example of a primary reserve. It acts as the 
first measure to compensate for deviations since can stabilize the frequency within seconds. 
However, it is only used for the initial stabilization of the grid. 

Some common FCR providers are hydropower plants and battery generators. Which are 
continuously monitoring grid frequency to reset the balance as quickly as possible. That 
immediacy has as a cost a higher price than other reserve types. 

Automatic Frequency Restoration Reserve (aFRR) is a type of secondary reserve. It’s 
activated by TSOs based on pre-defined frequency limits and restores the balance of the grid. 
Its time response is slower than the FCR, responding within minutes (5 or 7.5 minutes). 

These reserves are typically provided by pumped-storage power plants or gas turbines, which 
can be quickly activated and used for a longer duration. Besides that, they are less expensive 
than the primary ones.  

Manual Frequency Restoration Reserve (mFRR) belongs to the tertiary reserves 
category. These reserves must be activated within 12.5 and 15 minutes. As its name indicates 
they are always triggered manually by TSOs, who are the ones responsible for informing the 
operator when the device must be turned on. Since they have the lowest time-response they 
are the least expensive reserve. 

Furthermore, the stability and reliability of power systems could be reinforced by the 
collaboration among grid operators across different regions. This procedure receives the 
name of FRR cooperations. 

These alliances ensure the efficient utilization of frequency restoration reserves among the 
interconnected power systems by sharing reserves and coordinating response actions to 
restore the grid frequency. 

Figure 2: Activation time on the different reserves. [4] 
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Several initiatives, such as MARI (Manually Activated Reserves Initiative) [5], PICASSO 
(Platform for the International Coordination of Automated Frequency Restoration and Stable 
System Operation) [6] and IGCC (International Grid Control Cooperation) [7] coordinate 
several European grid operators. They aim to establish common standards and practices for 
frequency restoration reserve management. 

To better illustrate the concept of FRR cooperations, IGCC is going to be explained as an 
example: 

The International Grid Control Cooperation has twenty-one operational TSOs across Europe 
(including Hungary) [7] which are physically connected to perform the imbalance netting 
process. 

The imbalance netting process 
consists of continuous 
communication among TSOs in 
order to avoid different TSOs 
utilizing frequency restoration 
reserves (FRR) in opposite 
directions. Their objective is to 
use their respective frequency 
restoration control errors, 
compensating each other their grid 
imbalances and optimising the 
amount of FRR used. 

 

 

 

 

The employment of these reserves is not free. it has a particular operational cost. This 
expense is determined by the energy bought on the markets, particularly on the day-ahead 
and intraday markets.  

 

2.3 Day-ahead and Intraday Markets 

[8] Given the absence of a system to easily store large quantities of electricity and 
considering the need to balance the electricity grid, energy must be traded daily. 

To execute these electricity transactions, two kinds of markets are employed: 

Day-ahead market: In this market, participants submit their bids and offers for electricity 
for the following day, based on their anticipated energy needs and generation capacity. In 
addition, are the bids and offers the ones that establish the market-clearing price, as shown 
in Figure 4. That way, market participants optimize their operations and protect against 

Figure 3: Imbalance netting in IGCC [7] 
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volatility. However, real-time deviations from these forecasts are inevitable, necessitating 
the use of the intraday market, which will be explained below. 

 
Figure 4: Intersection of the supply (blue) and demand (orange) [9] 

 

Figure 4 shows all the bids ordered from higher to lower in colour orange and all the offers 
ordered from lower to higher coloured in blue. The intersection between them indicates the 
price of energy in MWh for the following day. 

Intraday market: In contrast with the previous market, this is a short-term one; it allows 
trading closer to real-time. Its target is to correct any unexpected variations in demand or 
supply that may arise along the day, which are not covered by the energy bought on the day-
ahead market. 

These two markets are necessary for grid stability. Their combination makes it possible to 
plan the energy bought and correct it if there's a mismatch between supply and demand. 

 

2.4 TSOs and BRPs Roles 

As will be explained in the data analysis section, there exists a tendency toward negative 
imbalances in the data. Far from being a coincidence, this trend is logically explicable. To 
do it, it’s essential to comprehend the role of the BRPs (Balance Responsible Parties), which 
are typically entities such as power generators, suppliers, retailers, or large consumers of 
electricity. 

Electricity suppliers and consumers set contractual agreements specifying the quantity of 
electricity to be bought and sold. Nevertheless, as has been explained before, the actual 
amounts differ from the scheduled production or consumption values and such variations 
must be managed to maintain grid balance. In this process, grid operators apply a balancing 
responsibility system, which makes all market participants responsible for the imbalances 
they generate. 
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The TSO imposes an imbalance charge on BRPs to cover the costs of balancing the system 
using power reserves. This mechanism incentivizes the market to reduce imbalances and 
transfer the financial risk to the BRPs. 

 
Figure 5:Example of how the BRPs work. [10] 

As it has been just explained, BRPs are penalized for the difference between power generated 
and consumed. However, the amount of the penalization depends on the quantity differed 
and if the deviation is upwards or downwards (positive or negative imbalance). 

Although in both cases an external entity is needed to achieve balance, positive variations 
have a greater charge than negative ones. The explanation lies in the fact that for correcting 
positive imbalances, power must be generated, using fuel (natural gas, oil, or coal) and 
machinery costs (motor oil, soft water, maintenance…). So, the price of producing power is, 
a priori, higher than the price of not producing it. 

For that reason, BRPs are completely rational when they try to avoid causing upward control, 
causing, that way, a negative preference in the imbalance data. 

 

2.5 Short-Term Imbalance Forecast on Power Systems 

As the imbalances of the electric power system can fluctuate within relatively short periods 
(from minutes to several hours), it will be very useful for grid operators to predict potential 
changes and anticipate them to avoid too large frequency variations. That’s just what the 
short-term imbalance forecast can provide. 

With this tool, operators are provided with information that helps them anticipate 
fluctuations in the grid by managing the activity of power plants and optimizing the 
utilization of energy storage systems to ensure that supply matches demand in real-time. 
Furthermore, due to the growth of renewable energy sources and their variable nature, this 
kind of forecast has a key role in integrating it into the grid.  
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CHAPTER 3 

LITERATURE REVIEW 

In their study, Garcia and Kirschen [11] expose the negative aspects of simplistic methods 
such as ARIMA (Auto-Regressive Integrated Moving Average) and propose the 
incorporation of ANN (Artificial Neural Network) to uncover the non-linear and irregular 
patterns within the data, enabling precise forecasting of daily imbalance medians. The 
combination of those two models led to more accurate predictions than conventional 
forecasting methods. 

Kratochvil [12] used ARIMA as a model, in which five sections were assigned to the system 
imbalance in a way that the problem was reduced to a classification. We can outstand from 
this study that the autocorrelation of the system imbalance shows that the data earlier than 
two hours was not too useful to do short-term forecasts. 

In his master thesis [13], Contreras used GA-optimized Random Forest to make hourly 
imbalance predictions to build a bidding program that minimizes the imbalance cost. This 
research has shown that advanced modelling techniques are completely feasible for this 
purpose, their results are enough valuable to justify their deployment. 

In their study [14], Salem et al. used quantile regression forests to predict imbalances in the 
power system. This method was performed for two-hour timeframes on a 2-year dataset, 
achieving meaningful improvements compared to using six- or less-month datasets. They 
proved that their method was more accurate than the ones used by the TSOs at that time. 

Dumas et al. [15] combine volume imbalance forecasts with reserve costs. They use a two-
step approach, starting with the computation of probabilities for system imbalances and then 
based on that make predictions regarding the imbalance prices. 

In their work [16], Bottieau et al. proved that machine learning techniques were better than 
conventional methods by using a one-step-ahead forecasting model for system imbalance. 

Rojas et al. [17] compared three algorithms for two different lead times. The result was that 
the random forest algorithm was the most accurate and computationally more efficient 
compared to the linear regression and standard neural network models, especially in short-
term forecasts (15 minutes ahead). 

 

Thanks to all those investigations, it can be concluded that the random forest model stands 
out as one of the most effective methods for forecasting power system imbalances. 
Furthermore, optimal results can be achieved by using more than one-year of historical data 
and targeting the prediction of short-term fluctuations. 

In this research the LightGBM algorithm will be examined in detail and tested in several 
conditions, also being compared to other models to prove its superiority.  
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CHAPTER 4 

METHODOLOGY 

4.1 Data Analysis 

In this section of the document, a detailed analysis will be conducted on the datasets from 
MAVIR (the Hungarian TSO) [18], intended for forecasting short-term imbalances. Three 
datasets are available: 

“Imbalance forecasting main”: which includes data about the historical imbalances, solar 
power prognosis, prevision of electricity demand, the real-time imbalance of IGCC, and day-
ahead market prices. 

“Energy mix real-time data”: which includes parameters such as the gross system load, the 
net actual generation sum, and the power generated by the most important energy sources 
(Wind Onshore, Solar, Hydro Run-of-river and poundage, Nuclear, Fossil Gas…)  

“Import-export”: includes only two parameters, the actual and the planned import-export 
balances. 

All these datasets contain data from 2022-03-17 17:45:00 to 2024-01-25 05:15:00, 
providing approximately 1 year and 10 months of data. 

On the other hand, the parameter that is set as the target of the forecast is the one called 
“IBT15-30”, which is the average of three parameters: “Imbalance T20”, “ImbalanceT25” 
and “Imbalance T30”.  

After an extensive investigation of the data, this study presents the major insights, relations, 
and patterns that have been uncovered among these datasets. This analysis will start with the 
parameter Imbalance T0 (power imbalance at the time of doing the prediction). Since it has 
a strong relation with the target parameter. 

Imbalance T0:  

Indicates de imbalance between demand and supply in MW. The X indicates the difference 
between the time of the index and the time in which the value was measured. 26 parameters 
of this kind are provided, from “Imbalance T0” to “Imbalance T-125” with 5 minutes of step 
between parameters. 
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Let’s understand the nature of these parameters through some graphs: 

Figure 6: Graph of “Imbalance T0” along a day. 

Figure 6 illustrates the evolution of the imbalances during a particular day of the data, in 
which a dominance of negative values can be clearly appreciated. These fluctuations can be 
either positive (generation is bigger than consumption) or negative (generation is smaller 
than consumption) but they are rarely zero (generation is equal to consumption). 

The following histograms will reveal if this negative tendency belongs to that day or is a 
data general trait. 

 

Figure 7: Histogram of "Imbalance T0" (all data) 
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 If the analysis is done for each month, the next histograms are obtained. 

Figure 8: Histogram comparison of “Imbalance T0” for each month. 
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These histograms show that that negative tendency is not a coincidence, most months present 
it. Now can be conclusively stated that there exists a tendency toward negative imbalances 
in the data.  

As explained in the theoretical framework section, this phenomenon is due to the charges 
that impose TSOs on BRPs, which are higher when the control is done upwards. So is 
completely reasonable to find this tendency in the data. 

Once the nature of the imbalance has been uncovered, let’s explore if there are parameters 
that have a strong correlation with the target one (IBT15-30), with a correlation matrix. 

This matrix only shows the parameters that show correlations with other ones, it has been 
filtered to increase the clarity of the graph. We can observe that the target parameter 
correlates with two parameters “ImbalanceT0” and “IGCCT0”, both measure imbalances in 
real-time. Let’s explore them deeper: 

ImbalanceT0: Present a correlation of “0.79”. Its strong positive relation was to be expected 
since the target is the evolution of this parameter over time and, as can be seen in Figure 6, 
it follows tendencies most of the time. This correlation is clearly represented in the following 
scatter diagram: 

 

Figure 9: Correlation matrix. 
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IGCCT0: As it has been explained in section 2.4, IGCC is a cooperation that aims to 
coordinate efforts among several TSOs from several European countries, in order to manage 
the grid imbalances. So, this parameter shows how much aFRR demand has been netted 
between the cooperating partners. 

The value of the matrix that relates IGCCT0 with the target parameter is negative: “-0.62”. 
This is due to the fact that IGCC has a different sign convention for practical reasons. 

This is how its scatter diagram looks like: 

 

Figure 10: Scatter Diagram: ImbalanceT0 vs IBT15-30. 

 
 

Figure 11: Scatter Plot: IGCCT0 vs IBT15-30. 
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As was stated in the introduction, renewable energy sources affect the grid stability. In order 
to see how much relation they have with the target parameter; a correlation matrix will be 
presented. This matrix contains all the parameters related to renewable energies that are 
meant to be used as predictors. 

 

 

The correlation matrix shows that renewable 
energy sources have a relatively low impact 
on the target parameter. It should be noted 
that the Solar source is the one that has the 
highest value of correlation with IBT15-30, 
that’s because it represents a great piece in the 
distribution of electricity generation in 
Hungary (as shown in the graph) and because 
of its high variability. 

 

Figure 12: Correlation Heatmap (Renewable Energy Sources). 

Figure 13: Distribution of electricity generation in 
Hungary in 2022, by source [19]. 
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4.2 Pre-processing 

Once the data that’s going to be utilized is correctly analysed, the next step is to prepare it 
to provide it to the model as input. Several procedures must be done to do so: 

Set the same time section for the datasets: Since each of the datasets has data from 
different time sections, a start and end date must be established in order to have a common 
period across all datasets. In the study, have been the following date limits have been set:  

Start date: '2022-03-17 17:45:00+00:00' 

End date: '2024-01-25 05:15:00+00:00' 

Dealing with NaN values: The data that is being used in this study present some missing 
values that are filled with “NaN”. To address this situation, these missing values have been 
replaced by the mean of the two previous and the two next values, obtaining that way a good 
representation of the parameter tendency at this point. 

Scaling the data: This action ensures that the parameters have similar magnitude, avoiding 
the model’s sensitivity to the data scale. In this research, a method from scikit-learn is used: 
StandardScaler. It transforms the data such that every feature has a mean of 0 and a standard 
derivation of 1. Moreover, this modification helps the algorithm to learn and process faster. 

 

 

4.3 Feature Engineering 

This section aims to help the algorithm uncover patterns in the data by adding features or 
transforming them. These adjustments have been applied in this research: 

DateTime feature extraction: This technique transforms the index of the rows in 
information that can be used as inputs in the model. In this case, the index has been 
transformed into “hour”, “day”, “day of the week” and “month” parameters. This can 
provide very useful insights in this study since grid imbalances have a relation with power 
consumption and generation, which are very sensible to the time of the day, week, or month. 

Working day variable: As the power consumption and generation also are very influenced 
by whether it is a holiday or not, a parameter that considers it has been created. This binary 
feature takes into account only the Hungary holiday schedule.    
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4.4 Machine Learning Introduction 

As introduced earlier, machine learning will be employed to forecast power system 
imbalances, improving our ability to anticipate them more accurately. 

4.4.1 WHAT IS MACHINE LEARNING? 
[20] Machine learning emerged from the necessity to manage huge amounts of data, 
surpassing human capabilities. Data analysis allows comprehension of phenomena, 
modelling of behaviours, or making forecasts.  

In the past, humans would analyse data, design algorithms, and then apply them through 
machines to solve problems. Nowadays, humans simply input data, enabling machines to 
learn from themselves. Obtaining relations and conclusions that many years ago would have 
required extensive study. 

It’s also important to stand out that machine learning has strong a relationship with statistics, 
data science, and artificial intelligence. 

The machine learning method can be described in 5 steps: 

1- Gather the data: Clean and pre-process the data if it has noise or improve its format. 
The quantity and quality of data significantly impact model performance. 

2- Feature engineering: Select, transform, or create input variables to improve the 
model’s performance, which has to be chosen carefully. 

3- Training. Select the section of our data to make the model better and better at 
predicting. 

4- Testing: Select a different section than the previous one to evaluate the model’s 
accuracy. 

5- Prediction: Use the trained model to forecast future data. 

It goes without saying that this process is an iterative one, requiring many attempts and 
modifications until a robust model is achieved. 

Although several machine learning approaches exist supervised, unsupervised, semi-
supervised, and reinforcement learning, only the first one will be explained. This decision is 
based on the data employed in this study belonging to that category. 

Supervised learning involves training the model with labelled data, where the outcomes are 
known, enabling the machine learning model to uncover patterns within the data. Once 
trained, the model can forecast results from inputs where the outputs are unknown. 

4.4.2 MACHINE LEARNING BASICS 
This section will help to understand the most basic concepts of machine learning in order to 
facilitate the comprehension of the algorithm. These concepts are as follows: 
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Decision trees: Algorithm that makes 
predictions by splitting the data into 
subsets, based on the value of a chosen 
parameter. Each subset is also split into 
other subsets until a stopping criterion is 
reached. Finally, a decision tree is 
created, and each input can be classified 
according to the values of its parameters. 
An example of a simple decision tree is 
shown in Figure 14. 

 

 

Loss functions: This is how the 
difference between forecasted 
and observed values is measured. 
It is used during training to 
evaluate the model’s performance 
and penalize its errors. The 
accuracy of the model will be 
reflected in how low this function 
is. Depending on the kind of 
problem that is being faced, the 
loss function will be formulated 
in one way or another. A common 
one is the Root Mean Squared 
Error (RMSE), for regression 
problems. 

 

 

Overfitting: It’s a phenomenon that 
happens when a model performs well in the 
training data but fails its predictions with 
new data. Its explanation lies in the fact that 
the model has captured noise or random 
variations instead of real underlying 
patterns. 

 

 

Figure 14: Decision tree example. [21] 

 

Figure 15: Linear regression graph. [22] 

 
 

Figure 16: Overfitting graph. [23] 
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4.5 Light Gradient Boost Machine (LightGBM) 

To understand LightGBM, it is essential to first study which are its foundations: Gradient 
Boosting Machines (GBM). 

4.5.1 GRADIENT BOOSTING MACHINES (GBM) 
[15] Gradient Boosting Machines are machine learning algorithms that are used to solve both 
regression (our study case) and classification problems, through a gradual, additive, and 
sequential manner. Its methodology consists of combining sequentially weak learners 
(typically decision trees) to create a strong one and minimize a defined loss function.  

GBM is considered an algorithm that provides accurate results with a high prediction speed, 
especially with large and complex datasets, like the one that has been analysed in this study. 

To get a clearer vision of this kind of method, a step-by-step explanation is going to be done: 

1- To do a first prediction based on the observations in the training dataset, the GBM 
will build a base model, which is usually an average of the target parameter on the 
regression tasks. This first approach has a very low prediction value. However, it will 
be useful to consider it as the baseline from which the error could be reduced 
gradually. 

2- The algorithm will calculate the residuals (errors) which are: (observed value - 
predicted value). In our case, this is the difference between the observed value and 
the average value that has been calculated in the previous step. 

3- The algorithm will build a model to forecast these residuals. So, it will use a weak 
learner (such as a decision tree) to obtain the first prediction. 

4- Predictions from the decision tree are scaled using a parameter called the learning 
rate (this prevents overfitting). Then these scaled predictions are added to the average 
value and the next step is calculating the new and improved residuals. The evaluation 
of each forecast will determine the direction and magnitude of the needed 
adjustments to minimize the loss. 

5- The model will do iterations by adding new decision trees, each of which is trained 
to predict just the residuals from the previous prediction by rectifying the errors. 

Figure 17: Evolution of a GBM algorithm. [24] 
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Once the foundations have been understood, the LightGBM can be explained in detail. 

4.5.2 LIGHTGBM FEATURES 
[25] Light Gradient Boosting is an open-source distributed; gradient boosting framework 
developed by Microsoft [26]. Designed for efficient, scalable, and high-performance 
machine learning tasks, particularly in the realm of decision tree-based algorithms.  

The following are the key improvements over other GBM models: 

Leaf-wise Growth: LightGBM adopts a leaf-wise splitting strategy, in contrast with other 
boosting algorithms that use a level-wise approach. It selects the leaf to split that it believes 
will provide the most significant reduction in the loss function. This leads to deeper trees 
with fewer nodes, resulting in higher accuracy and faster training. 

By prioritizing splits based on their impact on the global loss rather than just the loss on a 
specific branch, it often will learn lower-error trees "faster" than level-wise (used by 
XGBoost). This speed is particularly beneficial for large-scale datasets and real-time 
applications. 

  

Histogram-based Splitting: It’s a technique used for efficiently finding optimal split points 
in decision trees during the training process. Instead of considering all possible split points 
for each feature individually, LightGBM constructs histograms of feature values and then 
selects the best split points from these histograms. This approach reduces computational 
complexity and memory usage, resulting in faster training times and improved scalability, 
especially for large datasets. 

Gradient-based One-Side Sampling (GOSS): This method uses a different sampling 
method that can achieve a good balance between reducing the number of data instances and 
keeping the accuracy for learned decision trees. LightGBM will put more focus on 
undertrained data points during tree construction, leading to more efficient and accurate 
model training. 

In a traditional gradient boosting algorithm, the gradient (residual error) for each observation 
provides useful information. For instance, if an observation has a small gradient, it indicates 

Figure 18: Level-wise vs leaf-wise tree growth strategy. [27] 
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a small training error, suggesting that it's already well-trained. Therefore, a simple method 
to decrease the number of instances is to remove observations with small gradients and 
concentrate on those with larger gradients, which means they have larger errors, so the data 
points are not learned well yet. 

However, this approach can alter the data distribution and negatively impact the model's 
accuracy. To address this, GOSS employs a new sampling technique that retains all 
observations with large gradients while down samples those with small gradients. To reduce 
the effect on data distribution, GOSS introduces a constant multiplier for the observations 
with small gradients when calculating the information gain. 

Exclusive Feature Bundling (EFB): It’s a feature engineering technique aimed at 
improving the efficiency and effectiveness of decision tree construction, especially for 
datasets with many categorical features. EFB identifies groups of categorical features that 
never occur together in the same data instances (mutually exclusive) and bundles them into 
a single feature during tree construction. This reduces the number of decision rules needed 
to split the data, leading to faster training times and more interpretable models. 

Categorical Feature Support: This characteristic allows the algorithm to directly handle 
categorical variables without requiring one-hot encoding. Resulting in faster training times 
and improved accuracy. 

Customizable Parameters: LightGBM offers a wide range of customizable parameters to 
fine-tune model performance and adapt to different machine learning tasks. 

 

4.5.3 WHY LIGHTGBM WAS CHOSEN OVER OTHER ALGORITHMS? 
In the context of short-term forecasting of system power imbalances, several machine 
learning algorithms were considered, including traditional linear models, decision trees, 
random forests, gradient boosting machines, and neural networks. After a comprehensive 
evaluation, LightGBM was chosen for several reasons: 

• High computational efficiency, which is critical for real-time forecasting 
applications. 

• Ability to handle large datasets, like the one used in this study. 
• Incorporation of mechanisms to reduce overfitting. 

Let’s look at its competitors: 

• Linear Regression has a limited ability to capture non-linear patterns, which are so 
present in the imbalance data. 

• Other tree-based methods such as Decision Trees, Random Forest, or other GBM are 
outperformed in terms of speed and efficiency while maintaining or exceeding 
accuracy levels. This will be proven in the results rection section 5.5. 

• Tree-based models still outperform deep learning in dealing with tabular data. [28] 
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CHAPTER 5 

EXPERIMENTAL SETUP 

5.1 Model Specifications 

Machine learning and Light GBM algorithm have been explained earlier. Now it’s time to 
particularise it to the study case. These are the adopted specifications: 

Deterministic forecasting: The model provides one single output for each input, however, 
unlike probabilistic forecasting, it does not offer information about the uncertainty of the 
prediction. Despite that, this method is used because its processing time is shorter since 
fewer parameters are computed.  

Although probabilistic forecasting is also an option to be considered, this procedure is not 
used in this research and will be proposed in the conclusion section in order to continue with 
the study. 

Timeseries split cross-validation (TSCV): As has been explained in the introduction to 
Machine Learning, the data should be split into two sections: training and evaluating. TSCV 
is a technique specifically designed for time series data samples, like the ones used in this 
study. Its virtue is that, unlike other cross-validation methods, TSCV respects the temporal 
order of the data. 

This method divides the dataset into multiple folds, ensuring that the model is trained on 
past data and evaluated on future data, simulating a real-word situation. So, using this 
methodology is necessary to accurately evaluate the performance of models based on time 
series data. 

 

 

 

 

 

 

 

 

 

Hyperparameter tuning: Optuna will be used for optimization, with a range of 100 to 500 
trials. Optuna is an efficient hyperparameter optimization framework that uses a combination 
of algorithms, such as Tree-structured Parzen Estimator (TPE) and Bayesian optimization, 
to intelligently sample the hyperparameter space. It selects sets of parameters from a 

Figure 19: Time series split example. [29] 
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predefined search space and evaluates their performance using TSCV. Optuna will repeat 
this process as many times as specified to find the configuration that minimizes the loss 
function. 

Unlike RandomizedSearch, which tests combinations of hyperparameters randomly, Optuna 
does this process using the history data of trials completed thus far. That way this last method 
can more effectively navigate the hyperparameter space, potentially leading to better model 
performance in fewer iterations. 

 

5.2 Evaluation Metrics 

Machine learning models need some evaluation metrics for several reasons: performance 
measurement, comparison of models, hyperparameter tuning, detecting overfitting, 
evaluation of business impact… 

In the case of this study, five different metrics have been employed: 

Root Mean Squared Error (RMSE): Commonly used in regression tasks, RMSE provides 
a measure of the average errors between forecasted and actual values. It’s characterized by 
its sensitivity to large errors, which are more penalized than the small ones, due to the 
squaring of differences. On the other hand, even though this measurement is expressed in 
the same units as the target value, it is not easy to interpret its value in isolation. So, it must 
be compared with the RMSE of other models. This is its mathematical formula: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = � 
1
𝑛𝑛

 �  (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

 

As in the following formulas, 𝑦𝑦� represents the forecasted values and 𝑦𝑦 represents the actual 
values. 

Mean Absolute Error (MAE): As RMSE, MAE is also widely used in regression problems. 
However, unlike RMSE, MAE penalizes all errors proportionally; measuring the average 
absolute difference between predicted and observed values. Moreover, MAE it’s easier to 
interpret than RMSE because it has a clear meaning: the average error of the model. Its 
mathematical expression is the following. 

 

𝑅𝑅𝑀𝑀𝑅𝑅 =  
1
𝑛𝑛

 � |𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�|
𝑛𝑛

𝑖𝑖=1
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Normalized Mean Absolute Error (nMAE): It’s a modification of MAE that provides its 
normalized value. The difference between the previous one is that nMAE is calculated by 
dividing MAE by the mean of the actual values and multiplying the result by 100, to give it 
a percentage format. It provides that way, a percentage that allows the comparison across 
models, datasets, and scales, giving an easily interpretable value. Mathematically, it’s 
expressed like this: 

𝑛𝑛𝑅𝑅𝑀𝑀𝑅𝑅 =  
𝑅𝑅𝑀𝑀𝑅𝑅

𝑅𝑅𝑀𝑀𝑀𝑀𝑛𝑛 𝑜𝑜𝑜𝑜 𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴 𝑉𝑉𝑀𝑀𝐴𝐴𝐴𝐴𝑀𝑀𝑉𝑉
 × 100 

Variance Ratio: It’s used in regression models to measure the ratio of the variance of the 
forecasted values to the variance of the actual values in the dataset. It should be as near to 1 
as possible, meaning that the predictions vary similarly to the actual values. Its formula is 
the following: 

𝑉𝑉𝑅𝑅 =  
𝑣𝑣𝑀𝑀𝑣𝑣(𝑦𝑦�)
𝑣𝑣𝑀𝑀𝑣𝑣(𝑦𝑦)

 

Correlation: This parameter quantifies the degree to which changes in one variable are 
associated with changes in another variable, in this case between forecasted values and the 
actual ones. It’s easy to interpret values near to 1 mean positive correlation, values near to -
1 indicate negative correlation, and values close to 0 mean weak or no correlation. 

Direction accuracy: Determines de percentage of predicted values that have the same sign 
as the actual values. If the actual value is positive and the forecasted value is also positive, 
the direction is considered to be correct. Similarly, if the actual value is negative and the 
forecasted value is also negative, the direction is considered to be correct. The more it 
approximates to 100% the better (although this may be a sign of overfitting), values far away 
from 1 mean a very poor accuracy. 
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CHAPTER 6 

RESULTS 

This chapter will show all the results achieved under different conditions, varying the 
selected input data, the number of iterations, the hyperparameters search space, and other 
parameters. Moreover, other models will be tested to demonstrate improvements over the 
baseline and the high efficiency of LightGBM. In order to have a clear idea of the parameters 
that are going to be analised, let’s take a look at their definitions: 

max_train_size: This parameter specifies the maximum number of training samples used in 
each split of time series cross-validation. It limits the size of the training set to prevent it 
from growing too large as more data becomes available over time. Depending on the amount 
of disponible data its value will have to be bigger or smaller. 

n_splits: This parameter defines the number of folds or splits the data is divided into during 
time series cross-validation. Its value depends on the dimension of the max_train_size. 

n_trials or n_iterations: These terms refer to the number of times the hyperparameter search 
algorithm runs to find the best set of hyperparameters for a model. Each trial or iteration 
involves selecting a different set of hyperparameters, training the model, and evaluating its 
performance, aiming to optimize the model's performance by finding the best 
hyperparameters. More iterations mean more probability of finding the best possible 
hyperparameters, but it will require more computational cost as a price. 

 

6.1 Baseline Model 

As a baseline, it’s going to be used a Linear Regression model, which will have as inputs 
only the imbalances parameters. This model provides the next benchmarks: 

 

RMSE MAE nMAE(%) Variance 
Ratio (%) 

Correlation Direction 
Accuracy (%) 

64.315 45.770 46.527 80.183 0.864 84.954 
Table 1: Baseline model results. 

Specifications: As max_train_size=35040 (one year of data) and n_splits=12. 

6.2 Different Datasets 

To reach the best results the entire dataset has been divided into smaller groups: 
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Subset Name Content  
IMBALANCES All parameters of type ‘Imbalance TX’ 
IGCCT0 ‘IGCCT0’ 
REST MAIN 'SolarprogT0', 'SolarprogT-50', 'SolarprogT50', 'SolarprogT-20', 

'SolarprogT20', 'SolarprogT-35', 'SolarprogT35', 
'GrossElectricityLoadforecastT0’, 
‘GrossElectricityLoadforecastgradT30', 
'GrossElectricityLoadforecastgradT15', 
'GrossElectricityLoadforecastgradT5', 
'GrossElectricityLoadforecastgradAVG', 'DAMpriceT-30', 
'DAMpriceT0', 'DAMpriceT30', 'DAMpriceT60' 

IMP-EXP 'Actual Import-Export', 'Planned Import-Export' 
ENERGY MIX 'Gross System Load - Validated',  

'Gross System Load - gross.op.meas', 
'Net actual generation sum', 'Nuclear', 'Fossil Brown 
coal/Lignite', 'Fossil Gas', 'Fossil Hard coal', 'Fossil Oil', 'Wind 
Onshore', 'Biomass', 'Solar', 'Waste', 'Hydro Run-of-river and 
poundage', 'Hydro Pumped Storage', 'Other renewable', 'Other', 
'Import-export balance', 'other correction of DSOs' 

DATES 'day', 'month', 'day_of_week', 'hour' 
IS WORKING DAY 'IsWorkingDay' 

Table 2: Data subsets. 

 

Firstly, in order to see which combination of subsets gives the best forecast the model will 
be tested with these common parameters: max_train_size = 35040 (a year of data), n_splits 
= 12, n_trials = 100. These are the results for the different subset combinations: 

 
IMB. IGCCT0 REST 

MAIN. 
IMP-
EXP 

EN. 
MIX 

DATES IS W. 
DAY 

nMAE 
(%) 

VR (%) Correlation 

✓       49.644 74.341 0.837 
✓ ✓      49.544 74.744 0.838 
✓ ✓ ✓     44.155 78.441 0.874 
✓ ✓ ✓ ✓    44.161 78.773 0.873 
✓ ✓ ✓ ✓ ✓   44.667 74.040 0.874 
✓ ✓ ✓ ✓  ✓  42.554 77.032 0.878 
✓ ✓ ✓ ✓  ✓ ✓ 42.815 77.448 0.878 
✓ ✓ ✓   ✓ ✓ 42.801 77.336 0.878 

Table 3: Comparison of the results of different subset combinations. 

As it is clearly appreciated, the best nMAE score is achieved with the sixth combination (the 
red one). These results show that the IMP-EXP, the ENERGY MIX, and the IGCCT0 subset 
do not provide too much useful information to the model. On the other hand, 
IMBALANCES, REST MAIN and DATES are the subsets that have more explanation 
power.  
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6.3 Max_train_size and n_splits. 

Secondly, this research will compare the results of varying the max_train_size and the 
n_splits. The n_trials will be set to 100 and IMBALANCES is going to be the single subset 
used in the following experiments. 

 

MAX_TRAIN_SIZE DAYS N_SPLITS nMAE (%) VR (%) Correlation 

2976 31 12 50.165 69.258 0.833 
5760 60 12 49.981 70.131 0.834 
5760 60 16 49.902 70.978 0.835 
35040 365 5 49.576 74.008 0.837 
35040 365 8 49.615 73.988 0.838 
35040 365 12 49.644 74.341 0.837 
35040 365 16 49.625 74.296 0.837 
48000 500 8 49.493 73.995 0.838 

Table 4: Comparison of results when varying max_train_size and n_splits. 

These results insight that the variance ratio and correlation are influenced by the 
max_train_size and the change of n_iter does not alter the results significantly. So, for the 
next experiments, these parameters will be 35040 (a year of data) and 12, respectively. That 
way, the research considers the variability of the imbalance through an entire year and can 
collect the patterns of every season. 

 

6.4 Hyperparameter Selection Method 

The next step is making a comparison between Randomized Search and Optuna, considering 
the accuracy and the execution time. For this experiment, the employed datasets are 
“IMBALANCES”, “IGCCT0”, “REST MAIN”, “IMP-EXP” and “DATES”. Which are the 
ones that have achieved the best score in section 6.2. 

The common parameters will be the max_train_size (35040), n_splits (12), and the 
hyperparameter search space. On the other hand, the variation of the hyperparameter tunning 
method and the n_iterations will be the parameters that are going to be analysed. 

 
HYPERPARAMETER 
TUNNING 

N_ITER. nMAE (%) VR (%) Correlation DIR. ACC. 
(%) 

EX. TIME 
(mins) 

Optuna 100 42.554 77.032 0.878 86.075 41 
Randomized 100 41.433 78.176 0.879 85.799 52 

Optuna 500 42.093 77.090 0.881 86.336 288 
Randomized 500 41.848 77.826 0.877 85.814 319 

Table 5: Comparison when varying hyperparameter selection method and n_iterations. 
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Two insights can be drawn from these experiments. On one hand, the results of the 
Randomized Search method are slightly better than its competitor in terms of nMAE and 
variance ratio, while they are slightly worse in correlation, direction accuracy, and execution 
time. On the other hand, considering the variation in the number of iterations, the Optuna 
method has subtly improved its results with an increase in iterations, whereas the 
Randomized Search method has shown the opposite trend (that is by chance, typically the 
more n_iterations the better the prediction, as it explores a larger number of hyperparameter 
combinations). 

So, in the case of this research seems that Randomized Search performs modestly better than 
Optuna, in general terms. Moreover, the models achieve good performance with only 100 
iterations, not improving the results too much with 500 iterations while investing too much 
more time. 

 

6.5 Comparison with other ML models 

Finally, to get to know the performance of the LightGBM model competitors. A common 
set of parameters have been set to do a comparison:  

max_train_size=35040, n_splits=12, hyperparameter tunning method: Optuna, 
n_iterations=100. 

 
ALGORITHM nMAE (%) VR (%) Correlation DIR. ACC. 

(%) 
EX. TIME 
(mins) 

Linear Regression 46.204 80.349 0.865 84.885 0.0617 
Random Forest 45.939 68.556 0.859 85.085 16 

XGBoost 42.749 77.900 0.879 85.952 89 
CatBoost 42.985 76.733 0.879 85.845 215 

LightGBM 42.554 77.032 0.878 86.075 41 
LightGBM + 

Linear Regression 
43.288 80.397 0.883 85.799 46 

Table 6: Comparison of LightGBM model competitors. 

 

As was anticipated while explaining LightGBM, this model outperforms both Linear 
Regression and Random Forest. Nevertheless, when it comes to comparing it to other GBM 
like XGBoost and CatBoost, Light GBM stands out not so much for its accuracy but for its 
efficiency and processing speed, which are clearly superior. 

Furthermore, an ensemble model combining LightGBM and Linear Regression has been 
tested. Achieving an improvement in the variance ratio and correlation but scoring a worse 
nMAE. It’s a good model but can’t be considered better that the single LightGBM model. 

Once the results have been presented and analysed, a final study conclusion could be drawn. 
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CHAPTER 7 

CONCLUSION AND FURTHER STEPS 

The results of this investigation demonstrate that LightGBM significantly improves the 
accuracy of short-term imbalance forecasts due to its advanced techniques. This model 
outperformed traditional algorithms such as Linear Regression and Random Forest, and it 
also proved its high efficiency compared to other gradient boosting methods like XGBoost 
and CatBoost. The results highlight the potential of LightGBM to provide valuable 
information about the factors that influence energy imbalances, contributing to maintaining 
grid stability and reliability. Achieving the next results: 
 

MODEL HYPERPARAMETE
R TUNNING 

nMAE 
(%) 

VR (%) Correlation DIR. 
ACC. (%) 

EX. TIME 
(mins) 

LightGBM Randomized 41.433 78.176 0.879 85.799 52 
Table 7: LightGBM best results. 

Specifications: max_train_size=35040, n_splits=12, and n_iterations=100. 

 
Although the model has achieved fine predictions, there is still much room for improvement. 
Through the development of Machine Learning models or the incorporation of additional 
input data, such as meteorological factors (e.g., temperature history and temperature 
prediction), as well as data on reserve activation. 
 
The study faced certain limitations, such as the deterministic forecasting methodology. 
Instead of this, it could be done with a probabilistic forecasting approach. Which consists of 
offering a range of possible outcomes with associated probabilities, giving a more 
comprehensive view of potential future states. This is particularly useful in managing 
uncertainties. In our research case, this methodology helps TSOs and BRPs to make more 
informed decisions, improving risk management. 
 
This probabilistic approach has not been pursued due to the limited computational resources 
available for the study and the real-time application requirements. Deterministic forecasting, 
on the other hand, requires less computational power and time, making it more suitable for 
this short-term forecast. 
 
Summarizing, this research highlights the potential of advanced Machine Learning 
techniques, particularly LightGBM, in managing power systems and dealing with the 
incorporation of renewable energy into the grid. While the results are promising, future work 
should be done to explore additional data sources, probabilistic methods, and new improved 
algorithms. This study marks a step toward achieving a more stable and efficient electrical 
grid, walking toward a sustainable energy future. 
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