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Abstract Identification of specific molecular mark-
ers for spermatogonial stem cells in teleost is crucial 
for enhancing the efficacy of reproductive biotech-
nologies in aquaculture, such as transplantation and 
surrogate production in fishes. Since it is not yet 
possible to distinguish spermatogonial stem cells 
of European eel (Anguilla anguilla) using specific 
molecular markers, we isolated spermatogonial cells 
from immature European eels to find these potential 

markers. We attempted this by studying three candi-
date genes: vasa, nanos2, and dnd1. Two vasa (vasa1 
and vasa2) genes, nanos2, and dnd1 were identi-
fied, characterized, and studied in the muscle, testis, 
and isolated spermatogonia. Our results showed that 
vasa1 and vasa2 had the highest levels of expression 
when measured by qPCR. In  situ hybridization and 
immunochemistry assays showed that the four genes 
were localized explicitly in type A spermatogonia. 
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However, vasa1 and vasa2 exhibited stronger signals 
in the immature testicular tissue than the other two 
potential markers. According to this, vasa1 and vasa2 
were found to be the most effective markers for sper-
matogonial cells in the European eel.

Keywords Testis · Fish · Gene expression · Vasa · 
Dnd1 · Nanos2

Introduction

The European eel (Anguilla anguilla) has a complex 
catadromous life cycle that includes a long reproduc-
tive migration across the Atlantic Ocean to reach their 
spawning site in the unknown areas of the Sargasso 
Sea (Schmidt 1923). During the last decades, differ-
ent factors have significantly impacted eel popula-
tions, resulting in a decline in the continental stocks 
of the eels (Dekker 2002). As a result, the European 
eel was included in 2007 in the Appendix II of CITES 
and the Red list of IUCN. Currently, eel production 
in aquaculture is based on extractive fishing, as their 
production cycle has not yet been closed. Therefore, 
to reduce pressure on eel stocks, reproduction in 
captivity is required. One of the main issues for the 
reproduction in captivity of the eels is that the repro-
ductive development is blocked in the pre-pubertal 
stage until their oceanic reproductive migration starts 
(Dufour et al. 1988). In general, limited development 
of gonads has been recorded when eels first migrate 
to oceans (gonadosomatic index = 1–2), although 
there are slight differences depending on the envi-
ronmental conditions (Gentile et  al. 2022; Palstra 
et al. 2011). Keeping these eels in captivity does not 
enhance further gonadal development, indicating the 
essentiality of environmental triggers, such as photo-
period, salinity, and temperature regimes, for sexual 
maturation (Burgerhout et  al. 2019; van Ginneken 
and Maes 2005). Achieving sexual maturation in cap-
tive conditions requires long hormonal treatments, 
limited by a great variation in the response of each 
eel (reviewed by Asturiano 2020). Regarding this, it 
is crucial to understand the molecular mechanisms 
involved in germ cell development to make advances 
in the reproduction of the European eel. For instance, 
spermatozoa production depends on the subpopulation 
of spermatogonial stem cells, which in fishes are con-
sidered to be undifferentiated type A spermatogonia 

(Schulz et al. 2010). Studying molecular markers for 
spermatogonial stem cells in fish provides a poten-
tial application for new reproductive biotechnologies, 
such as type A spermatogonia (SPGA) transplanta-
tion, in  vitro spermatogenesis or reprogramming of 
spermatogonial cell lines into pluripotent cells (Robles 
et al. 2017; Thoma et al. 2011). Several proteins have 
been identified in spermatogonial populations in cer-
tain fish species (Bosseboeuf et  al. 2014; Lacerda 
et al. 2013; Nagasawa et al. 2012; Ozaki et al. 2011). 
Some candidates, such as Notch1 (Yano et al. 2009), 
Ly75 (Nagasawa et al. 2010), Plzf (Ozaki et al. 2011), 
Oct-4 (Sánchez-Sánchez et  al. 2010), and SGSA-1 
(Kobayashi et al. 1998), have been proposed, but spe-
cific molecular markers for fish spermatogonial stem 
cells have yet to be discovered (Lacerda et al. 2018).

Vasa, or DDX4 (DEAD-box helicase 4), belongs to 
the RNA helicase of the DEAD (Asp-Glu-Ala-Asp) 
family. Vasa is implicated in the translational control of 
RNA activation (Hay et al. 1988; Lasko and Ashburner 
1988). It has been identified in various metazoan spe-
cies, such as cnidaria (Mochizuki et al. 2001), non-ver-
tebrate Ecdysozoa (Schüpbach and Wieschaus 1986), 
mammals (Castrillon et  al. 2000), or teleost species 
(Cao et al. 2012), and has been reported to be a germ 
cell marker in the animal kingdom.

Dead end (Dnd) protein encodes an RNA-binding 
protein (RBP) essential for primordial germ cell (PGC) 
migration and gametogenesis in vertebrates. In 2003, 
dnd1 was recognized as a component of zebrafish 
(Danio rerio) germplasm (also called germ granules or 
nuage) that is specifically expressed in PGCs through-
out embryogenesis (Weidinger et  al. 2003). The Dnd1 
protein is localized in perinuclear germ granules within 
PGCs, helping their polarization, motility, and survival.

Nanos is one of the essential genes for the develop-
ment of germ cells. Nanos2 expression was found to be 
restricted to the gonads of adult mammalian males and 
has been reported to be a specific marker of the male 
germinal stem cells of mice. In medaka (Oryzias latipes) 
and zebrafish, ovarian germ stem cells and spermato-
gonia in adult gonads exhibited expression of nanos2 
(Aoki et al. 2009; Draper 2017; Nakamura et al. 2010).

In our present study, we aimed to determine sper-
matogonia molecular markers by identifying vasa, 
nanos2, and dnd1 genes in the testicular tissue of 
immature European eels. In addition, we studied 
the expression pattern of these genes in the testis, 
in isolated spermatogonia, and muscles, and have 
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determined their distribution within the testicular tis-
sue through fluorescent in situ hybridization (FISH), 
immunohistochemistry, and immunocytochemistry.

Material and methods

Fish handling and sampling

Farmed immature European eels were bought alive at 
a local supermarket and transported to the facilities 
in the Laboratory of Fish Reproduction of the Uni-
versitat Politècnica de València (Valencia, East coast 
of Spain). Fish were anaesthetized upon arrival with 
benzocaine (60 ppm) and euthanized by decapitation. 
The maturation status of the eels was visually verified 
by checking the shading of the pectoral fin, which was 
transparent because of the immature stage of the eels 
(Okamura et  al. 2007; Peñaranda et  al. 2018). After 
dissection, only males were selected. Testes (n = 39) 
and muscle (n = 23) tissue samples were collected and 
stored in RNAlater (Ambion-Inc., Austin, TX, USA) 
and kept at − 20 °C until RNA extraction.

Isolation of spermatogonia

Testes from immature male European eels (n = 13) were 
dissected and washed with a phosphate-buffered saline 
(PBS), and the abdominal fat was removed. Testes were 
cut into small pieces and then transferred into 15-mL 
tubes containing 10 mL PBS and 0.2% trypsin for enzy-
matic dissociation. The mixture was incubated for 2 h at 
22 °C. DNA was eliminated by adding 40 µg/mL DNase 
I (Pan-Reac AppliChem, Spain). Between 10 and 12 
pipetting of the mixture was performed every 30 min to 
get better tissue dissociation. The obtained suspension 
was then filtered with a 40-µm meshed filter to separate 
debris, and the enzymatic reaction was stopped by add-
ing 1% bovine serum albumin (BSA; Sigma-Aldrich).

To enrich the percentage of spermatogonial stem 
cells, a Percoll density gradient was employed. The 
Percoll solution at 33% (v/v) was prepared and trans-
ferred into a 50-mL plastic tube. The cell suspen-
sion was slowly transferred to tubes avoiding mixing 
layers. After that, the suspension was centrifuged at 
400 × g for 20 min at 20 °C using a progressive accel-
eration and deceleration centrifuge program. When 
completed, the middle layer containing spermatogo-
nia was extracted from the mixture and transferred to 

a 15-mL plastic tube. It was then diluted 3 × in PBS 
and centrifuged again at 400 × g, 20  °C for 20  min. 
After this second centrifugation, the supernatant was 
carefully removed, and the pellet containing the tes-
ticular cells was resuspended in PBS. The obtained 
testicular cells were observed under a light optical 
microscope, and due to their spherical appearance, 
large size (10–20  µm), and large nuclei (6–10  µm) 
(Robles et al. 2017), the germ cells at the early devel-
opmental stage were distinguished from other cell 
types, and their number was counted using a Neu-
bauer cell hemocytometer at × 40 magnification. Cell 
viability was evaluated by adding 0.4% trypan blue.

RNA extraction and reverse transcription

RNA from the enriched spermatogonia fraction was 
extracted immediately after their isolation, while 
testis and muscle RNA were extracted from sam-
ples kept in RNAlater. Total RNA was isolated using 
phenol/chloroform extraction in the Trizol reagent 
(Life Technologies, Inc., Carlsbad, CA) according 
to Peñaranda et  al. (2010). RNA concentration and 
280/260 and 280/230 ratios were determined using 
NanoDrop 2000C Spectrophotometer (Fisher Scien-
tific SL, Spain). DNase I treatment and first-strand 
complementary DNA (cDNA) synthesis were per-
formed from 500 ng of total RNA using a QuantiTect 
Reverse Transcription kit (Qiagen, Hilden, Germany) 
following the manufacturer’s instructions.

Identification of vasa1, vasa2, nanos2, and dnd1 
sequences from European and Japanese eel genome 
datasets

The vasa1, vasa2, nanos2, and dnd1 sequences in ver-
tebrate species were retrieved from NCBI (http:// www. 
ncbi. nlm. nih. gov/) and Ensembl (https:// www. ensem bl. 
org/ index. html) databases. All the genomic sequences 
of vasa1, vasa2, nanos2, and dnd1 were retrieved from 
European (Anguilla anguilla; for accession/ID num-
ber GCF_013347855.1) (Henkel et  al. 2012a) and 
Japanese eel (Anguilla japonica) genomes by perform-
ing the TBLASTN algorithm of the CLC DNA Work-
bench software (CLC bio, Aarhus, Denmark) (Henkel 
et  al. 2012b). European eel vasa1, vasa2, nanos2, and 
dnd1 sequences were then used to retrieve the genomic 
sequence coding for the respective genes in the Japa-
nese eel genome (Henkel et al. 2012b). The exons and 

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
https://www.ensembl.org/index.html
https://www.ensembl.org/index.html
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splicing junctions were predicted using the empirical 
nucleotidic splicing signatures, that is, intron begins 
with “GT” and ends with “AG.” The percentage of Euro-
pean and Japanese eel Vasa (DEAD-box helicase 4) and 
DDX3X (DEAD-box helicase 3X-linked) identity was 
calculated with the Sequences Identities And Similari-
ties (SIAS) server (imed.med.ucm.es/Tools/sias.html).

Phylogenetic analysis of vasa1, vasa2, nanos2, and 
dnd1

Phylogenetic analyses were conducted to retrace the 
evolutionary scenarios of vasa, nanos2, and dnd1 fami-
lies, as well as to determine and classify the number of 
paralogs, gene duplications, and gene losses on osteich-
thyans of key-phylogenetical positions: a representative 
of an early sarcopterygian, the coelacanth (Latimeria 
chalumnae); mammalians; sauropsids (squamates, 
chelonians, and archosaurians); the non-teleost actin-
opterygian spotted gar; and the European and Japanese 
eels, as members of an early group of teleosts (elopo-
morphs), and other teleosts. Three phylogenetic trees 
were constructed with amino acid sequences of known 
or predicted sequences of Vasa and its closest paralo-
gous gene called DDX3X, Nanos2 (nanos C2HC-type 
zinc finger 2), and Dnd1 (dead end 1) (for accession/ID 
number, see Supplementary Table A).

The sequences were retrieved from NCBI or 
ENSEMBL, first aligned using Clustal Omega (Siev-
ers et  al. 2011) with Seaview 4.5.4 software (http:// 
doua. prabi. fr/ softw are/ seavi ew), and later manually 
adjusted. The JTT (Jones, Taylor, and Thornton) pro-
tein substitution matrix of the resulting alignment 
was determined using ProTest software (Abascal et al. 
2005). The alignment of peptide sequences was per-
formed with amino acid sequences of Vasa retrieved 

from NCBI for European eel (accession numbers 
XP_035234983.1 and XP_35248267.1), Japanese eel 
(accession numbers ASV71763.1 and BAO21641.1), 
and rice field eel (Monopterus albus, accession number 
ABA54551.1) to provide further details of vasa genes 
in eels (for alignment, see Supplementary Fig. A).

The three phylogenetic trees were constructed 
based on the sequence alignments using the maxi-
mum likelihood method (PhyML software, (Stama-
takis and Ott 2008)) with 1000 bootstrap replicates 
and subsequently visualized using treedyn (http:// 
phylo geny. lirmm. fr/ phylo_ cgi/). Human and fugu 
(Takifugu rubripes) DDX10 (DEAD-box helicase 
10), human RBM47 (RNA-binding motif protein 
47), and human NANOS1 (nanos C2HC-type zinc 
finger 1) were used as out-group for the Vasa, Dnd1, 
and Nanos2 phylogenetic analyses, respectively (for 
accession/ID number, see Supplementary Table A).

Gene expression analysis by quantitative real-time 
PCR

Quantitative real-time polymerase chain reactions 
(qPCR) were carried out using specific qPCR prim-
ers for European eel vasa1, vasa2, nanos2, and dnd1 
(Table 1). Acidic ribosomal phosphoprotein P0 (arp) 
was used as a reference gene as previously used for 
eel (Morini et al. 2015).

Primers

European eel vasa1, vasa2, nanos2, and dnd1–specific 
qPCR primers were designed based on European eel 
coding sequences using Primer3 Software (White-
head Institute/Massachusetts Institute of Technology, 

Table 1  Specific primers 
sets used for qPCR

Name of gene 5′-3′ Efficiency Length

vasa1 F TTT GGA GGG AGA GGT AGA GG
R CTC ATT TCC TGA TGC GTT CC

105 69

vasa2 F GTG TAT GAG GTC ACC CAG TA
R CTC TTG GTC TCT ACA AAC AC

98 98

dnd1 F CGG GAC ATC TAC GAG GAC AA
R TTC ATC ATC AGG CGG AAC TC

106 77

nanos2 F GAG CCA GCA GAG CAG AAA 
R CCG TCC TTC GCC TTCA 

97 194

arp F GTG CCA GCT CAG AAC ACT G
R ACA TCG CTC AAG ACT TCA ATGG 

105 107

http://doua.prabi.fr/software/seaview
http://doua.prabi.fr/software/seaview
http://phylogeny.lirmm.fr/phylo_cgi/
http://phylogeny.lirmm.fr/phylo_cgi/
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Boston, MA, USA). All primers were designed on two 
different exons to avoid amplifying potential genomic 
contamination. Primers were purchased from Integrate 
DNA Technology Inc. (IDT, Coralville, IA).

SYBR Green assay

Expression of vasa1, vasa2, nanos2, and dnd1 genes 
in spermatogonia, gonads, and muscles (negative 
control) of immature European eels was measured 
by performing qPCR assays using a model 7500 unit 
(Applied Biosystems; Foster City, CA, USA) with 
Maxima SYBR Green/ROX qPCR Master Mix (Fer-
mentas Corp. Glen Burnie, MD, USA). qPCR pro-
gram was performed as an initial step of 95  °C for 
10 min and 40 cycles of 95  °C for 15  s, 60  °C for 
30 s, and 95 °C for 15 s. To evaluate assay specific-
ity, the machine performed a melting curve analysis 
directly after PCR by slowly (0.3  °C/s) increasing 
the temperature from 60 to 95  °C, with continuous 
registration of any changes in fluorescent emission 
intensity. The total volume for each qPCR reaction 
was 20 µL, with 5 µL of diluted cDNA (1:20) tem-
plate, forward and reverse primers (250  nM each), 
and SYBR Green/ROX Master Mix (12 µL). Serial 
dilutions of the cDNA pool of gonad tissues were 
run in duplicate and used for standard curve to 
measure vasa1, vasa2, nanos2, and dnd1 in the sper-
matogonia, testis, and muscle. As a calibrator, a 1/32 
standard curve dilution was included in each run of 
the corresponding gene. Target and reference genes 
in samples were run in duplicate PCR reactions. A 
non-template control (cDNA replaced by water) for 
each primer pair was replicated in all plates. Data 
for all genes were normalized to eel reference gene 
arp. qPCR calculations were performed according 
to Roche Applied Science protocol, Technical Note 
No. LC 13/2001, part 4 “Calibrator normalized rela-
tive quantification.”

Localization analyses

Fluorescent in situ hybridization (FISH)

To detect the distribution of the potential sper-
matogonia markers (vasa1, vasa2, nanos2, and 
dnd1), testes from four immature European eels 
were dissected. For FISH, RNAscope Multiplex 

Fluorescent Reagent Kit v2 (Advanced Cell Diag-
nostics Inc. [ACD], CA, USA) was used following 
the manufacturer instructions. ACD created probes 
as vasa1 (Gene ID 118213421), vasa2 (Gene ID 
118206405), nanos2 (Gene ID manually character-
ized using CLC software; see the “RNA extraction 
and reverse transcription” section), and dnd1 (Gene 
ID 118224086) of European eel. ß-actin probe, tar-
geting LOC118216518 of European eel ß-actin-1 
(Gene ID DQ493907.1), was used as the positive 
control. Probe diluent was used as the negative con-
trol. Testes samples were fixed in 10% neutral buff-
ered formalin for 24  h at room temperature (RT). 
Then, samples were dehydrated in an increasing 
percentage of ethanol series (70, 80, 90, 95, 100%) 
followed by xylene and embedded in resin (Techno-
vit 7100) according to the manufacturer’s instruc-
tions. Sections of 5  µm thickness were cut with a 
Microtome HM325 and were mounted on Super-
frost® plus slides (Thermo Fisher Scientific, MA, 
USA). Two slides were stained with hematoxy-
lin–eosin (H&E) to determine the testis maturation 
stage (Peñaranda et al. 2010).

After dewaxing and rehydration, antigen 
retrieval was done by boiling the tissue sections in 
RNAscope® Target Retrieval Reagents at 98–102 °C 
for 15 min. Tissue sections were incubated with the 
appropriate probe at 40 °C for 2 h for probe hybridi-
zation. Localization of vasa1, vasa2, nanos2, and 
dnd1 RNA transcripts was done by labelling them 
with Opal 520 fluorophore (Akota Biosciences, MA, 
USA) by incubating the slides at 40 °C for 30 min. 
Preliminary testing of optimal fluorophore concen-
tration showed that the 1:750 dilution of the Opal 
fluorophore displayed a more intense signal than the 
1:1000 dilution. Therefore, 1:750 was used in further 
analyses (see Supplementary Fig. B). Slides were 
counterstained with DAPI at RT for 30  s, mounted 
with ProLong Gold Antifade Mountant (Thermo 
Fisher Scientific, MA, USA) and covered with a 
coverslip. The slides were stored in the dark at 4 °C. 
Between 5 and 15 photographs were taken after 
at least 8 h and until the 2 following weeks using a 
camera (Moticam 1080, MoticEurope S.L.U, Bar-
celona, Spain) mounted on a phase-contrast micro-
scope (Nikon Eclipse 80i). Positive signal was vis-
ible as fluorescent dots within a cell, correlated with 
the number of RNA copies. A quantitative analysis 
according to the manufacturer’s instruction was 
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applied to evaluate results using the image-based 
software QuPath version 0.4.1 (Bankhead et  al. 
2017). The software estimated the number of spots 
per cell counting the number of single spots and 
clusters. An approximate number of 1500 cells were 
counted in each photograph.

More detailed photographs were taken using an 
AxioObserver 780 confocal microscope (Zeiss, Jena, 
Germany) to diagnose the cell type in which the sig-
nal was present.

Immunohistochemistry

Three immature European eel males were sacrificed 
as described above, and their testes were dissected 
and fixed in modified Davidson’s fixative [mDF; 30% 
of 37–40% formaldehyde, 15% EtOH, 5% glacial ace-
tic acid in  ddH2O; (Howroyd et al. 2005)] for 24 h at 
RT. Tissues were subsequently dehydrated in increasing 
EtOH series, cleared in xylol and embedded into paraf-
fin. Sections of 5 µm thickness were cut and mounted 
on Superfrost Ultra Plus® slides (Thermo Fisher Scien-
tific, Massachusetts, USA). One slide was first stained 
with standard H&E staining to verify the sample’s tes-
ticular morphology and identify spermatogonia.

Immunohistochemistry localization of Vasa, 
Nanos2, and Dnd proteins was done using the 
3,3′-diaminobenzidine (DAB) immunoperoxidase 
visualization method. After dewaxing and rehydra-
tion, antigen retrieval was done by boiling the sec-
tions in the HistoVT One antigen retrieval solution 
(Nacalai Tesque Inc, Kyoto, Japan) in a TintoRe-
triever pressure cooker (Bio SB, Santa Barbara, 
CA, USA) under the 80–86 ℃ low-pressure setting 
for 20  min. Endogenous peroxidases were inhibited 
by treating the sections with 3%  H2O2 in PBS for 
30 min, after which non-specific binding was blocked 
with a blocking solution composed of 10% FBS and 
10% goat serum in PBS for 1 h at RT. After the pre-
liminary testing of optimal antibody concentrations, 
sections were labelled with anti-vasa (1:200; Abcam, 
ab13840), anti-nanos2 (1:10; Abcam, ab76568), or 
anti-dnd1 (1:10; Sigma-Aldrich, AV41198) antibod-
ies diluted in the blocking solution, for 1  h at RT. 
Subsequently, the sections were labelled with a goat 
anti-rabbit (1:250; Abcam, ab6721) antibody con-
jugated to horseradish peroxidase for 30  min at RT. 
The signal was then visualized by applying a solution 
of 0.05% DAB and 0.015%  H2O2 for approximately 

5 min. After washing, the slides were counterstained 
with hematoxylin for 3  min, dehydrated in increas-
ing EtOH series, cleared in xylol, and mounted with 
DPX. Sections labelled only with the secondary anti-
body were considered secondary-antibody control 
sections, while sections that were not labelled with 
antibodies but stained with DAB were termed DAB 
controls. Samples were visualized under the Nikon 
6100 Epifluorescent microscope.

Immunocytochemistry

Spermatogonia were isolated as described above 
(see the “Isolation of spermatogonia” section), and 
the cells were fixed in 10% NBF for 15 min at RT. 
The cells were centrifuged at 300 × g for 10 min and 
washed 3 times in PBS. After the last wash, the cells 
were resuspended in PBS containing 10% polyeth-
ylene glycol (PEG) to avoid crystallization of the 
salts contained in the PBS after evaporation and left 
overnight at 4 ℃. Approximately 200,000 cells were 
transferred per well of a chamber slide (Nunc Lab-
Tek, NY, USA) and were centrifuged at 1000 × g for 
5 min. The supernatant was aspirated, and the cells 
were left to dry at RT for 2 h. The cells were then 
permeated by using 0.25% Triton X-100 in PBS for 
10 min, and no antigen retrieval was done. As both 
FISH and immunohistochemistry displayed that vasa 
was more optimal in labelling spermatogonia, cells 
were labelled only with the anti-vasa (1:200; Abcam, 
ab13840) antibody for 1  h at RT. Subsequently, the 
sections were labelled with a goat anti-rabbit (1:500; 
Abcam, ab150078) antibody conjugated to Alexa 
555 for 30  min at RT, counterstained with DAPI, 
and mounted in 90% glycerol in PBS. Samples were 
visualized under the Nikon 6100 Epifluorescent 
microscope.

Statistics

Results are shown as mean ± standard error of the mean 
(SEM). Statistical analyses were performed to compare 
the transcript levels in the muscle, testes, and sper-
matogonia and the difference in the number of spots 
estimated between markers. Shapiro–Wilk and Levene 
tests were used to check the normality of data distribu-
tion and variance homogeneity, respectively. Due to the 
heteroscedasticity of variance, means were compared 
by the non-parametric Kruskal–Wallis test. Differences 
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Results

Characterization and phylogenetic analyses of 
potential spermatogonial biomarkers in eel

Vasa and its closest paralog gene DDX3X

The search in European and Japanese eel genomes 
(Henkel et al. 2012a, b) revealed two eel vasa paral-
ogous genes, called vasa1 and vasa2, and two ddx3x 
paralogous genes, called ddx3x1 and ddx3x2, ortholo-
gous to the other vertebrate vasa and ddx3x, respec-
tively. Only partial vasa2 and ddx3x2 sequences were 
achieved from the European and Japanese eel draft 
genomes. The missing part corresponds to the 3′ 
start. Two more exons are missing in the middle of 
the European eel vasa2 sequence. European eel vasa1 
and vasa2 display 98.24 and 90% (due to the miss-
ing exon in European eel vasa2) identity compared to 
their respective Japanese eel vasa1 and vasa2. Euro-
pean eel ddx3x1 and ddx3x2 display 98.31 and 99.33% 
identity compared to their respective Japanese ddx3x1 
and ddx3x2.

A single vasa gene has been retrieved in a non-tel-
eost actinopterygian, the spotted gar, as in sarcoptery-
gians and other teleost species. The coelacanth vasa 
is missing in databases. A single ddx3x gene has been 
retrieved in the spotted gar and in the coelacanth, a 
basal sarcopterygian, as in humans, tetrapods, and 
some other teleost species. Other teleosts such as 
fugu (T. rubripes), platyfish (Xiphophorus macula-
tus), tilapia (Oreochromis aureus), turbot (Scoph-
thalmus maximus), salmon (Salmo salar), goldfish 
(Carassius auratus), or zebrafish exhibit two ddx3x 
paralogous genes.

In the phylogenetic analyses, Vasa and DDX3X, 
both members of the DEAD-box helicase family, 
clustered in two monophyletic groups. In each Vasa 
and DDX3X monophyletic groups, actinopterygian 
and sarcopterygian sequences clustered in two well-
supported clades (Fig. 1).

Fig. 1  DEAD-box helicase consensus phylogenetic tree. The 
phylogenetic tree was constructed based on the amino acid 
sequences of DDX3X (DEAD-box helicase 3X-linked) and 
Vasa (DEAD-box helicase 4, DDX4) (for the references of 
each sequence, see Table  1) using the maximum likelihood 
method with 1000 bootstrap replicates. The number shown 
at each branch node indicates the bootstrap value (%). The 
DEAD-box helicase 10 (DDX10) was used as the out-group

▸

were considered significant when P < 0.05. All statisti-
cal procedures were performed using Statgraphics Plus 
5.1 (Statistical Graphics Corp., Rockville, MO, USA).
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Nanos2 and dnd1

The search in European and Japanese eel genomes 
(Henkel et  al. 2012a, b) revealed only one eel 
nanos2 and one dnd1 gene, orthologous to the 
other vertebrate nanos2 and dnd1, respectively. A 

single nanos2 and dnd1 gene has been retrieved 
in teleost species, as in sarcopterygians. The spot-
ted gar nanos2 is missing in the database. In both 
phylogenetic analyses, actinopterygians and sarcop-
terygians sequences clustered in two monophyletic 
groups (Figs. 2 and 3).

Fig. 2  Nanos2 (nanos 
C2HC-type zinc finger 2) 
consensus phylogenetic 
tree. The phylogenetic tree 
was constructed based on 
the amino acid sequences of 
Nanos2 (for the references 
of each sequence, see Table 
A) using the maximum 
likelihood method with 
1000 bootstrap replicates. 
The number shown at each 
branch node indicates the 
bootstrap value (%). The 
Nanos1 (nanos C2HC-type 
zinc finger 1) was used as 
the out-group

Fig. 3  Dnd1 (dead end 1) 
consensus phylogenetic 
tree. The phylogenetic tree 
was constructed based on 
the amino acid sequences 
of dnd1 (for the references 
of each sequence, see Table 
A) using the maximum 
likelihood method with 
1000 bootstrap replicates. 
The number shown at each 
branch node indicates the 
bootstrap value (%). The 
RBM47 (RNA binding 
motif protein 47) was used 
as the out-group
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The two eel Nanos2 sequences form a group 
branching at the base of the teleost clade, in agree-
ment with the phylogenetical basal position among 
teleost species (Fig. 2). Similarly, the Dnd1 sequence 
of the non-teleost actinopterygian, a holostean, the 

spotted gar, branched at the basis of the actinoptery-
gian clade. Both Japanese and European eel Dnd1 
sequences diverged at the base of the other teleost 
sequences, in agreement with the phylogenetical basal 
position of elopomorpha among teleosts (Fig. 3).

Fig. 4  Spermatogonial 
cells observed under 
light optical microscope. 
Spermatogonia are large 
spherical cells with large 
nuclei, distinguished from 
lipids and debris, identified 
with arrowheads. Scale bar, 
25 µm

Fig. 5  Expression of vasa1, 
vasa2, dnd1, and nanos2 
mRNA in the muscle, 
testis, and spermatogonia 
of immature male European 
eels, measured by quantita-
tive PCR (qPCR). Data are 
normalized to eel acidic 
ribosomal phosphoprotein 
P0 (ARP), and results are 
shown as means ± SEM 
(n = 23 for muscle; n = 39 
for testis; n = 13 for sper-
matogonia). Different letters 
indicate significant differ-
ences (Kruskal–Wallis test; 
P < 0.05)
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Gene expression of potential biomarkers in 
spermatogonia, testis, and muscle

Isolation of spermatogonia

To measure by qPCR the mRNA expression of 4 
different genes, vasa1, vasa2, nanos2, and dnd1, in 
spermatogonia cell population, we previously iso-
lated the spermatogonia cells from the whole testis 
(Fig. 4). The eels did not receive any treatment that 
enhances sexual maturation and were therefore in 
a very immature stage of development. Enzymatic 
digestion of the testicular tissue resulted in a hetero-
geneous cell suspension composed of germ cells at 
early developmental stage and somatic cells (mainly 
blood cells), but the use of Percoll gradient enriched 
the spermatogonia cell population. In this sense, 
the Percoll gradient centrifugation positioned the 
spermatogonial cells in the middle layer, whereas 
lipids were in the upper layer and somatic cells pel-
leted down at the bottom of the tube. Many somatic 
cells were removed from the spermatogonial cell 
suspension, but the complete removal could not be 
achieved. The viability test revealed that 93.5 ± 1.7% 
of isolated spermatogonia survived the process.

mRNA expression

Intra-assay coefficient of variation (CV, %) for each 
gene (vasa1, vasa2, nanos2, dnd1) and tissue (mus-
cle, testis, and spermatogonia fraction) was calcu-
lated. The mean % CV for each gene was 0.98% 
(vasa1), 2.99% (vasa2), 0.70% (dnd1), and 1.80% 
(nanos2).

The expression of vasa1, vasa2, dnd1, and nanos2 
genes was detected in testes, enriched spermatogonia 
fraction, and muscle, with a significantly lower gene 

Fig. 6  A, A′ Photographs taken with a phase-contrast micro-
scope of histological sections of immature European eel testis, 
stained with hematoxylin and eosin. Spermatogonia are identi-
fied with arrows. Photographs taken with confocal microscope 
of immature European eel testis for detection of potential sper-
matogonia markers by FISH, labelled with Opal 250 (dilution 
1:750) and DAPI fluorophores. B, B′ ß-actin (positive control); 
C, C′ vasa1; D, D′ vasa2; E, E′ dnd1; F, F′ nanos2. Scale bars 
A, B, C, D, E, and F—25 µm; A′, B′, C′, D′, E′, and F′—10 µm
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expression in the muscle (Fig.  5). Vasa1, nanos2, 
and dnd1 showed the same expression pattern, with 
a higher gene expression in the gonad than in the iso-
lated spermatogonia (2.7, 4.5, and 4.8-fold higher, 
respectively). In contrast, the vasa2 mRNA transcript 
did not show significant differences between the 
gonad and the isolated spermatogonia.

Gene location of potential biomarkers in testis by 
FISH

A preliminary examination of the testis sections was con-
ducted to determine the maturation stage (Fig. 6A, A′), 
confirming that most contained cells were SPGA. ß-actin 
signal (positive control) was distributed evenly through-
out the tissue without cell-specificity (Fig.  6B, B′). 
Moreover, the signals of vasa1 (Fig. 6C, C′) and vasa2 
(Fig. 6D, D′) were detected only in SPGA, characterized 
by their large round shape and pronounced nucleus. Both 
vasa1 and vasa2 signal spots were primarily accumulated 
in clusters, but vasa1 signaling spots were more widely 
distributed than vasa2 ones. The distribution of dnd1 
(Fig. 6E, E′) and nanos2 (Fig. 6F, F′) transcripts was also 
limited to SPGA, but the signal was more dispersed and 
weaker than those of both vasa genes.

The highest number of spots was found for ß-actin 
(positive control, Fig.  6B, B′) which is distributed 
in the cytoplasm of all cell types, while the negative 
control did not show fluorescent dots (not shown). 

The mean number of estimated spots per cell showed 
significant differences among the potential spermat-
ogonial markers, where the vasa1, as well as vasa2 
transcripts displayed a significantly higher number of 
estimated spots than dnd1 and nanos2 (Fig. 7).

Localization of the potential markers by 
immunohistochemistry

Immunohistochemistry localization of Vasa, Nanos2, 
and Dnd1 proteins in the immature European eel 
testicular tissue conducted through the immunoper-
oxidase visualization method displayed that all three 
investigated markers were localized specifically in 
the germline cells (Fig. 8). As the only germline cells 
in the immature European eel testicular tissue are 
SPGA, the three markers were localized within these 
cells. However, the intensity varied significantly; 
while the signals for Vasa and Nanos2 were strong, 
the signal for Dnd, even at a 1:10 dilution ratio, was 
very weak. As the dilution ratio for the anti-vasa 
antibody was the highest but still resulted in a strong 
signal, this protein was the most favorable among 
the tested ones. Even though the antibodies used in 
this study were developed against mammalian anti-
gens, their labelling pattern was in accordance with 
FISH results thus further confirming their specificity 
to European eel antigens as well. Background DAB 
staining was noticed in the connective tissue of all 

Fig. 7  Expression 
quantification by QuPath 
software for β-actin 
(positive control), negative 
control, vasa1, vasa2, dnd1, 
and nanos2, showing the 
average number of spots 
estimated per cell. Results 
are shown as means ± SEM. 
Different letters indicate 
significant differences 
(Kruskal–Wallis test, 
P < 0.05)
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samples, including the controls; however, this is a 
regular occurrence in DAB staining and is not repre-
sentative of an actual localization signal.

As Vasa was identified as the most suitable SPGA 
marker in immature European eel testicular tissues by 
FISH and immunohistochemistry, we tested the effi-
ciency of this marker to identify isolated SPGA within 
the testicular cell suspension. By immunocytochemis-
try, we could observe that the signal was detected only 
in cells with large round nuclei corresponding to the 
SPGA (Fig. 9), and not in other somatic cells.

Discussion

Duplicated vasa genes in the eel

Few studies reported phylogenetic analyses of poten-
tial spermatogonial biomarkers in teleosts, including 
the DEAD-box helicase family (Vasconcelos et  al. 
2019; Xu et al. 2005; Ye et al. 2007). To better under-
stand the evolutionary history of the DEAD-box heli-
case family, we performed phylogenetic analyses on 
vertebrate amino acid sequences of two members of 
this family, Vasa and DDX3X. Duplicated vasa and 
ddx3x genes have been retrieved from eel genomes. 
Two ddx3x paralogs were also present in other tele-
ost species, while only one vasa was retrieved in the 
other teleost non-elopomorph species. Two events of 
whole-genome duplication (WGD) (“1R” and “2R”) 
occurred in ancestral vertebrates (Nakatani et  al. 
2007), and a third WGD (“3R”) occurred in the tel-
eost linage (Henkel et  al. 2012a; Meyer and Van 
de Peer 2005; Morini et al. 2022). So, two hypothe-
ses could be considered: duplicated eel DDX3X and 
Vasa may originate either from teleost 3R or from a 
specific gene duplication that could have occurred in 
Elopomorphs or Anguillids. In the first hypothesis, 
one vasa paralog gene would have been lost early 
after the 3R in the teleost lineage.

Phylogenetic analyses were also performed to char-
acterize eel Dnd1 and Nanos2 among vertebrates. Our 
in silico analysis revealed the presence of a single dnd1 
gene in European and Japanese eels and in other ver-
tebrates. The presence of a single gene in the eels, in 
teleosts, in non-teleost actinopterygian, and sarcoptery-
gian species reveals no impact of the TWGD on tel-
eost dnd1 gene number. This suggests that one of the 
two dnd1 paralogs would have been lost early after the 

TWGD in the teleost lineage. The same hypothesis can 
arise for the nanos2 evolutive history.

European eel vasa, dnd1, and nanos2 are expressed in 
spermatogonial cells

Vasa is considered one of the essential markers for 
identifying germ cells within the animal kingdom 
(Begum et  al. 2022). A species-specific expression 

Fig. 8  Immunohistochemical detection of Vasa (A–A′), 
Nanos2 (B–B′), and Dnd1 (C–C′) antigens in the immature 
testicular tissue of European eel, as well as the secondary 
antibody control (D–D′) and the DAB control (E–E′). Each 
panel under the same letter represents a different magnifica-
tion. Scale bars A, B, C, D, and E—25 µm; A′, B′, C′, D′, and 
E′—10 µm
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pattern of vasa mRNA and protein has been observed 
in PGCs and germ cells of the ovary and testis in 
diverse fish species (Cao et  al. 2012; Duangkaew 
et al. 2019; Xu et al. 2005; Yuan et al. 2014). In Jap-
anese eel, vasa expression occurs mainly in males 
during testis differentiation but also in the devel-
oping ovary of E2-induced feminizing eels (Jeng 
et  al. 2018). However, in the rice field eel, vasa 
was expressed in oocytes at all stages of oogenesis, 
including degenerating oocytes of ovotestis and in 
spermatogonia and primary spermatocytes (Ye et al. 
2007). This observation highlights the significance of 
vasa and its potential for a better understanding of the 
reproductive biology in these organisms.

In present study, we characterized two paralogs of 
vasa in the European eel, while only one vasa gene 
has been described in vertebrates until now. Euro-
pean eel vasa1 and vasa2 showed a higher expres-
sion in the testis than in muscle. According to the 
bibliography, vasa expression is mainly restricted to 
the testis and ovary in adult teleosts, but it can also 
be expressed in other tissues, although at virtually 
undetectable levels (Blázquez et  al. 2011; Nagasawa 
et  al. 2013). Nevertheless, vasa1 showed a higher 
expression in the testis than in spermatogonia while 
no differences were found in vasa2. Moreover, FISH 
results showed that both vasa1 and vasa2 are found 
in SPGA, while immunohistochemistry and immu-
nocytochemistry confirmed that Vasa protein is also 
expressed in the SPGA. These results suggested that 
both vasa genes may be involved in the reproductive 
process (Wang et  al. 2022; Xu et  al. 2014), and the 
conservation of duplicated eel vasa may reflect evo-
lutionary processes such as neo- or sub-functional-
ization, as showed in other duplicated genes in eels 

(Jolly et al. 2016; Nakamura et al. 2017; Maugars and 
Dufour 2015). Further syntenic studies are needed to 
clarify the origin of vasa genes in teleosts. Together 
with our qPCR results, both genes could be reliable 
markers for SPGA in the European eel.

Nanos genes are expressed in germ cell lineage 
in metazoans. Three nanos gene subtypes (nanos1, 
nanos2, and nanos3) have been described in verte-
brates. In mice, nanos2 was mainly expressed in the 
male germ cells, and knock-out of nanos2 led to the 
lack of spermatogonia (Tsuda et  al. 2003, 2006). In 
fish, depending on the species, specifically the expres-
sion of nanos2 and nanos3 mRNA and protein has 
been observed in testicular and ovary germ cells (Aoki 
et  al. 2009; Beer and Draper 2013; Bellaiche et  al. 
2014; Han et  al. 2018; Nakamura et  al. 2010; Tsuda 
et  al. 2003). In the European eel, our qPCR analyses 
revealed that nanos2 was more expressed in the whole 
testis compared to the enriched spermatogonia frac-
tion, and low signal was found by the FISH technique.

While nanos2 is recognized as a marker for SPGA 
in teleosts, the role of nanos3 as a specific spermato-
gonia marker remains unclear (Bellaiche et al. 2014; 
Han et al. 2018; Lacerda et al. 2014). Despite that, the 
present study showed that the nanos2 expression in 
European eel spermatogonia is low. As a result, the 
characterization of European eel nanos3 in testis may 
be helpful to find a potential germ cell marker inside 
the nanos gene family.

Dead end (dnd) gene has been identified as a spe-
cific spermatogonial marker in some teleosts (Baloch 
et al. 2019; Duan et al. 2015; Lin et al. 2013; Yang et al. 
2015; Yazawa et al. 2013; Yoshizaki et al. 2016) which 
suggests that the dnd gene may play an important role in 
spermatogenesis. In our study, eel dnd1 was identified 

Fig. 9  Immunocytochemical detection of the Vasa-positive cells (displaying red fluorescence) in the testicular suspensions of the 
immature European eel using DAPI staining (blue fluorescence). Scale bars, 25 µm
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as orthologous to the other teleost dnd1, suggesting a 
similar function than in other species (Booncherd et al. 
2024; Wargelius et  al. 2016; Zhu et  al. 2018). In this 
sense, a higher dnd1 expression level has been revealed 
in the immature testis of the eels than in the isolated 
spermatogonia. According to our FISH results, nanos2 
and dnd1 may not be reliable molecular markers for 
identifying SPGA in the European eel, as they present 
a weak signal compared to vasa1 and vasa2. Previous 
studies in mammals have shown that the dissociation 
of human spermatogonial stem cells from their niche 
may alter their gene expression profile to a considerable 
degree, compared with spermatogonia in the in vivo sit-
uation (von Kopylow et al. 2010). Considering this, it is 
difficult to compare the gene expression between whole 
testis tissue, even it is mostly composed of spermato-
gonia, and an enriched population of spermatogonia. In 
the present study, we hypothesize that a higher expres-
sion of germ markers (vasa1, nanos2, and dnd1) in the 
whole testis compared to the enriched spermatogonia 
fraction is due to the alteration that the dissociation pro-
tocol could induce on the spermatogonia expression.

Conclusions

The expression pattern of spermatogonial markers 
studied so far appears to be dependent on the spe-
cies, the sex, and the maturing stage in teleosts. In 
the European eel, two vasa (vasa1 and vasa2), one 
nanos2, and one dnd1 genes were identified and 
characterized. All three markers were targeted at the 
testicular tissue and the enriched spermatogonia frac-
tion. In addition, it was detected some differences in 
the expression among the markers, concluding that 
European eel vasa1 and vasa2 appeared to be the 
best early-stage germ cell markers of those tested in 
immature testes.
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