

The impact of using formative assessment in introductory

programming on teaching and learning

Jagadeeswaran Thangaraj1 , Monica Ward1 , Fiona O’Riordan2

1School of Computing, Dublin City University, Ireland, 2CCT College, Dublin, Ireland.

How to cite: Thangaraj, J.; Ward M.; O’Riordan F. 2024. The impact of using formative assessment in

introductory programming on teaching and learning. In: 10th International Conference on Higher

Education Advances (HEAd’24). Valencia, 18-21 June 2024.

Abstract

This study offers an efficient formative assessment strategy that may be used to

encourage learning and improve students programming comprehension. In addition to

traditional teaching sessions, the strategy offers a series of formative assessment quizzes

on fundamental programming, utilising an adaptive model for program comprehension

as a learning technique. A non-adaptive and an adaptive assessment, both based on

multiple-choice questions, are provided to students enrolled in the 2023 introductory

programming course. This study investigated how effectively these assessments assisted

students in understanding, learning, and developing a sense of their proficiency in

computer programming by introducing common programming errors. We gathered data

from a survey that 218 students completed at the end of each quiz. Findings from student

surveys and observational techniques show that employing adaptive technique was more

likely to motivate students and increase their self-confidence. The results also show that

formative assessment can be used to support learning programming in addition to

classroom instruction to help students grasp key concepts.

Keywords: Assessment and feedback; Computer programming; Formative assessment;

Introductory programming; Learning method; Novice students.

1. Introduction

A crucial component of learning is assessment, and a good assessment can make sure that

students profit from and like taking tests. A programming assessment will, from the viewpoint

of the instructor, promote the acquisition and implementation of all required programming

skills. However, some students may view the same assignment as requiring them to write code

that provides the "correct" response. Students must simultaneously learn more frequent errors

and approaches to solve them. Formative assessment is a useful methodology for enhancing

learning outcomes and providing learning motivation (Louhab et al., 2018). The student’s

program submissions are evaluated and delivered immediate feedback by an automated

10th International Conference on Higher Education Advances (HEAd’24)
Universitat Politècnica de València, València, 2024
DOI: https://doi.org/10.4995/HEAd24.2024.17104HEAd

This work is licensed under a Creative Commons License CC BY-NC-SA 4.0
Editorial Universitat Politècnica de València 1029

https://orcid.org/0000-0002-2721-0898
https://orcid.org/0000-0001-7327-1395
https://orcid.org/0000-0002-0139-5169

The impact of using formative assessment in introductory programming on teaching and learning

formative assessment system or manual assessor. Two characteristics were deemed crucial

while intending to develop formative assessments. For error messages can be properly

understood, feedback needs to be quick and detailed (Louhab et al., 2018) . Second, students

must be given the chance to discover their mistakes after making several attempts on different

questions. Due to the nature of these elements, it is necessary to create a quiz large enough so

that students may repeat assessments without encountering the same questions twice. This study

presents how effectively these assessments assisted students in understanding, learning, and

developing a sense of their proficiency in computer programming.

This study investigates the formative assessment for introductory programming in higher

education and proposes a framework for its customization and enhancement to fulfill this

purpose. Our goal with this framework is to help novices who want to develop a variety of

advanced applied programming skills by offering them helpful feedback and resources. While

considering the limitations of automatic assessment, this framework emphasizes the importance

of achieving comparable difficulty for questions and maximizes the potential for randomization

for exercise tasks. This helps to create meaningful feedback for students and supports their

learning process.

2. Development of formative assessment for introductory programming

A formative assessment tool might help students feel less anxious about giving incorrect

answers by providing feedback on how to improve their work. An answer key and a few choices

make up the two components of a multiple-choice question (MCQ) (Henriques Abreu et al.,

2018). A query or a remark is typically made by the stem. A stem states the questions with a

few potential solutions, including a key that provides the best response, and a few distractions

that offer logical but incorrect responses. To proceed with the stem, the learner must choose the

best or most accurate option. MCQs are insufficient for evaluating a student’s coding

proficiency in programming modules since they do not encourage learners to write their own

code, even when they are at an advanced level. The ability to retain programming concepts and

increase engagement, however, can be useful. This study has led us to create MCQ quizzes that

are an excellent method to increase student engagement and help them remember the

programming content (Ross et al., 2018). We have created formative assessment quizzes to

introduce common programming errors. We have a list of questions with various answers in

these quizzes. As they offer feedback for each selection, these quizzes assist in fostering their

learning. While the wrong answer feedback helps them locate the appropriate response, the right

answer feedback acknowledges their responses. Students can learn from their incorrect

responses and determine the correct response. As a result, it is a system that progresses and aids

in their ability to learn from mistakes. This study examines if the formative assessment increases

participants’ confidence in their capacity to understand the fundamental ideas behind

1030

The impact of using formative assessment in introductory programming on teaching and learning

programming. They assist students in comprehending the common code errors they make as

well as compiler error messages.

2.1. Quiz implementation

 ‘Google Forms’ is utilized to implement the quizzes as it can be an effective tool for formative

assessment and for promoting active learning (Djenno et al., 2015). Each quiz aims to educate

students about common code errors they made when studying the assigned topics (Ahadi et al.,

2018). Feedback will be given to students for each potential response, which will help them

better comprehend the errors and help them to understand easily. Feedback is customized

messages that are like enhanced error messages (Becker et al., 2016). Every incorrect reaction

offers advice on how to respond. Students can make the best alternative based on the feedback.

These assessments are presently being examined in two distinct models: non-adaptive and

adaptive.

2.1.1. Non-adaptive model

In a non-adaptive model, students receive feedback for each response regardless of whether it

is correct or incorrect. This feedback allows students to learn from their mistakes and help them

comprehend what the correct response is. However, they cannot return to correctly answering

the same or similar questions.

2.1.2. Adaptive model

With adaptive model, the questions are redirected to match the student's present proficiency

level and ongoing advancement (Ross et al., 2018). Repetition of questions until the answer is

correct or the level of knowledge is reached is known as adaptive assessment. The knowledge

level of the learners increased by varying the order of the assessment questions in adaptive

approach (Heitmann et al., 2018). Difficulty levels have been added to learning objects in the

next model. These things could be topics, questions, and a variety of errors. The goals relate to

questions with varying degrees of difficulty. Difficulties in programming are classified as

Bloom’s taxonomy of programming (Thompson et al., 2008). In this model, we classified a list

of questions in three cognitive levels based on the complexity (like easy, moderate, and difficult)

(Louhab et al., 2018). Here easy questions assess the basic concepts, moderate questions assess

comprehensive knowledge and difficult questions do the applications of the knowledge (Vie et

al., 2017). If a student successfully responds to a moderate question on this assessment, the

subsequent question is hard. If not, the easy questions will be. It goes on until the system

forecasts the competency level of the students (Simon-Campbell & Phelan, 2018). A sample

classification of a question is described as Table 1.

1031

The impact of using formative assessment in introductory programming on teaching and learning

Table 1. Summary of ‘print’ statement question in adaptive model

Difficulty

low

Difficulty

moderate

Difficulty

high

Summary

var = ’Amazon’

print(var[4])

var = ’computer’

print(var[5 :: 1])

var = ’Ireland’

print(var[4 :: -1])

var = ’James Bond’

print(var)

print(var[3])

print(var[5 :: 1])

print(var[5 :: -1])

2.2. Research questions

Using the formative assessment quizzes, this study will particularly investigate the following

research questions.

RQ-1: Does formative assessment help to build self-confidence in novice programmers

in learning basic concepts of programming?

RQ-2: Does formative assessment support the ability of novices to understand and

correct errors and encourage them to improve their programming skills?

RQ-3: Does formative assessment help novices effectively learn the modular parts of

programming concepts?

3. Research method and data collection

3.1. Methodological paradigm

This research is using a mixed method approach (Mertens, 2019). An online survey was used in

this study to gather data that was both quantitative and qualitative. This approach works well

with a combination of qualitative and quantitative techniques. In this study, we use quantitative

intervention to evaluate validity and reliability of formative assessment quizzes. A brief,

optional, anonymous survey was employed to gain more insight into how students perceived

and experienced formative self-assessment. It also includes qualitative elements and makes use

of a range of data sources and data collection methods.

3.2. Research design

To answer the research questions, this research developed a set of quizzes for basic topics of

introduction to programming. Due to its convenience and syntactical simplicity, Python is a

popular programming language used in introductory programming classes (Johnson et al.,

2020). Python is the language used for instruction, and topics covered include variables,

operators, conditionals, loops, and a few concepts related to functions. We conducted these

1032

The impact of using formative assessment in introductory programming on teaching and learning

quizzes periodically during teaching sessions to build novice’s confidence as well as to capture

their barriers in programming. At the end of each quiz, we conducted a survey about how it

effectively helped them to learn programming. The respondents were questioned about how they

felt about formative assessment quizzes of each programming topic. Open-ended questions for

qualitative data and closed-ended ’Likert’ scale questions for quantitative data were both used

in the survey form.

3.3. Data collection strategies

Data collection is the methodical process of gathering information from relevant sources in order

to address research questions, test hypotheses, and achieve the project’s objectives (Kabir,

2016). Regular quizzes were offered during the study periods as an option. This facilitated

students considering what they learned through taking the quizzes. The data includes 218

students’ programming quiz attempts that they turned in at the end of each quiz session. In

proportion to the number of quiz attempts, some students attempted numerous surveys. The data

presented here is both quantitative and qualitative in traits, covering a two-semester span (2022–

2023) (n=115, n=103) from each model. Student surveys provide quantitative data. The student

questionnaires and their reflective writing assignments provide qualitative data. Every piece of

qualitative data is anonymous.

4. Results

4.1. RQ1 – Increasing self-confidence.

This study asked, "Does this quiz increase your self-confidence in learning programming?", at

the end of the quizzes to answer RQ-1. The responses ranged from ’Strongly disagree’ to

’Strongly agree’. Figure 1 offers a thorough understanding of the students’ feelings regarding

their level of self-confidence in handling these quizzes. Responses for ’Strongly agree’ and

’Agree’ were higher than ’Disagree’. Consequently, this study discovered that these formative

assessment quizzes helped them increase their self-confidence.

1033

The impact of using formative assessment in introductory programming on teaching and learning

Figure 1. Students’ feedback on self-confidence

4.2. RQ2 – Understand and correct the errors.

To answer the RQ-2, it included another ’Likert’ question, "Do these quizzes help to understand

and correct the errors?". The responses ranged from ’Strongly disagree’ to ’Strongly agree’.

Using a chart, the outcome is shown in Figure 2. High responses were submitted as ’Strongly

agree’ and ’Agree’. It highlights how these quizzes make it easier to learn common

programming errors. These outcomes show that the self-assessment quizzes aided in their

understanding of the frequent errors of programming.

Figure 2. Students’ feedback on understanding errors

1034

The impact of using formative assessment in introductory programming on teaching and learning

4.3. RQ3 – Learning tool

To answer the RQ-3, it included another ’Likert’ question, "Do these questions help to

understand basic concepts of Python language?", at the end of the quizzes. The responses were

’Yes’, ’May be’ and ’No’. Figure 3 offers a thorough understanding of the students’ feelings

regarding these quizzes, help in understanding basic concepts. Overall, there were more

responses for ’Yes’ than ’No’. Quantitative data alone does not provide the full picture of the

learning experience. Finding out what students think and feel about formative assessment as a

computer programming learning activity is critical. They delighted in gaining knowledge by

taking quizzes in various models. As stated in the comments below, they also valued these

quizzes as a learning tool for various reasons.

...It helped to recall...introduced me to new elements of python...made me realize what

I didn’t know...was good to refresh my brain...very helpful exercises...I think they are

much better than the way the lectures are being taught...Maybe do the quizzes in the

lectures to fully understand what is being taught…

Figure 3. Students’ responses on learning the Python basics.

5. Discussion

We plot the outcome charts in Figure 1, 2 & 3 that indicate the influence on self-confidence,

comprehension of errors and supporting learning to analyze the impact of the adaptive

technique. Based on the surveys’ responses, it demonstrates that the students firmly believe the

quizzes assisted in grasping fundamental programming principles. Figure 1 depicts a

comparison of levels of self-confidence. Students’ confidence in learning programming is

reportedly much increased by the adaptive model quizzes. The adaptive model was far more

helpful than the others as shown in Figure 2. It also demonstrates that adaptive assessments

1035

The impact of using formative assessment in introductory programming on teaching and learning

helped them understand and correct errors better than non-adaptive ones. Additionally, students

firmly felt that adaptive assessments increased their confidence relative to non-adaptive.

Adaptive model maintains its lead in each quiz. In a conclusion, we argue that formative

assessment quizzes motivate students to evaluate and learn from their mistakes, which in turn

encourages them to learn computer programming. As they can effectively aid in the learning of

programming, as a result, learning opportunities have expanded, increasing students’

confidence, and understanding the frequent errors. This research demonstrates that adaptive

quizzes help engage and motivate novice programming students, thus improving their

programming comprehension. Future work involves a further iteration of adaptive model quiz

to include closer alignment with the curriculum teaching. We will also concentrate efforts on

deeper analysis of qualitative data.

References

Ahadi, A., Lister, R., Lal, S., & Hellas, A. (2018). Learning programming, syntax errors and

institution-specific factors. https://doi.org/10.1145/3160489.3160490

Becker, B., Glanville, G., Iwashima, R., McDonnell, C., Goslin, K., & Mooney, C. (2016).

Effective compiler error message enhancement for novice programming students. Computer

Science Education, 1-28. https://doi.org/10.1080/08993408.2016.1225464

Djenno, M., Insua, G., & Pho, A. (2015). From paper to pixels: Using Google Forms for

collaboration and assessment. Library Hi Tech News, 32, 9-13.

https://doi.org/10.1108/LHTN-12-2014-0105

Heitmann, S., Grund, A., Berthold, K., Fries, S., & Roelle, J. (2018). Testing Is More Desirable

When It Is Adaptive and Still Desirable When Compared to Note-Taking. Frontiers in

Psychology, 9.

Henriques Abreu, P., Silva, D., & Gomes, A. (2018). Multiple-Choice Questions in

Programming Courses: Can We Use Them and Are Students Motivated by Them? ACM

Transactions on Computing Education, 19, 1-16. https://doi.org/10.1145/3243137

Johnson, F., McQuistin, S., & O'Donnell, J. (2020). Analysis of Student Misconceptions using

Python as an Introductory Programming Language.

https://doi.org/10.1145/3372356.3372360

Kabir, S. M. (2016). Methods of data collection. In (pp. 201-275).

Louhab, F. E., Bahnasse, A., & Talea, M. (2018). Towards an Adaptive Formative Assessment

in Context-Aware Mobile Learning. Procedia Computer Science, 135, 441-448.

https://doi.org/10.1016/j.procs.2018.08.195

Mertens, D. (2019). Research and Evaluation in Education and Psychology: Integrating

Diversity with Quantitative, Qualitative, and Mixed Methods 5th edition.

1036

https://doi.org/10.1145/3160489.3160490
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1108/LHTN-12-2014-0105
https://doi.org/10.1145/3243137
https://doi.org/10.1145/3372356.3372360
https://doi.org/10.1016/j.procs.2018.08.195

The impact of using formative assessment in introductory programming on teaching and learning

Ross, B., Chase, A.-M., Robbie, D., Oates, G., & Absalom, Y. (2018). Adaptive quizzes to

increase motivation, engagement and learning outcomes in a first year accounting unit.

International Journal of Educational Technology in Higher Education, 15.

https://doi.org/10.1186/s41239-018-0113-2

Simon-Campbell, E. l., & Phelan, J. (2018). Effectiveness of an Adaptive Quizzing System as

a Self-Regulated Study Tool to Improve Nursing Students' Learning. International Journal

of Nursing & Clinical Practices, 5. https://doi.org/10.15344/2394-4978/2018/290

Thompson, E., Luxton-Reilly, A., Whalley, J., Hu, M., & Robbins, P. (2008). Bloom's taxonomy

for CS assessment. 78, 155-161.

Vie, J.-J., Popineau, F., Bruillard, É., & Bourda, Y. (2017). A Review of Recent Advances in

Adaptive Assessment. In (Vol. 94, pp. 113-142). https://doi.org/10.1007/978-3-319-52977-

6_4

1037

https://doi.org/10.1186/s41239-018-0113-2
https://doi.org/10.15344/2394-4978/2018/290
https://doi.org/10.1007/978-3-319-52977-6_4
https://doi.org/10.1007/978-3-319-52977-6_4

