
PHYSICAL REVIEW APPLIED 21, 054015 (2024)

Realizing topological edge states in graphenelike elastic metamaterials
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The study of topological states, which allow transport properties that are robust against impurities and
defects in electronic structures, has been recently extended to the realm of elasticity. This work shows that
nontrivial topological flexural edge states located on the free boundary of the elastic graphenelike meta-
material can be realized without breaking the time-reversal, mirror, or inversion symmetry of the system.
Numerical calculations and experimental studies demonstrate the robust transport of flexural waves along
the boundaries of the designed structure. The topological edge states on the free boundary are not limited
by the size of the finite structure, which can reduce the scale of the topological state system. In addition,
unlike the edge states localized on the free boundary in graphene where the group velocity is zero, the
edge states on the elastic metamaterial plate have propagation states with nonzero group velocity. We
have introduced the concept of Shannon entropy for elastic waves to assess the frequency range of the
edge states in graphenelike elastic metamaterials. This work represents a relevant advance in the study of
elastic wave topological states, providing a theoretical basis for engineering applications such as vibration
reduction and vibration isolation for mechanical structures.
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I. INTRODUCTION

Mechanical vibrations are ubiquitous in many circum-
stances related to our daily lives, such as high-speed trains,
airplanes, subways, and other means of transportation. At
low frequencies, the excited elastic waves usually pro-
duce non-negligible damage to the embedded mechanical
devices. Therefore, the design of novel structures to control
elastic wave propagation acquires paramount relevance. In
this regard, elastic metamaterials are new artificial struc-
tures that show exciting properties, including wave trans-
formation [1–3], negative refraction [4,5], focusing, and
elastic cloaking [6,7]. As a consequence, the research on
elastic metamaterials has been rapidly developed in the last
few years.

Topological states were initially studied in condensed
matter physics, since they exhibit novel properties, such
as topologically protected one-way energy propagation
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without loss and backscattering [8–15]. This property,
combined with the specific features of elastic metama-
terials, aroused the interest of researchers for extending
topological states to the realm of elasticity. Thus, the study
of topological materials for elastic waves has emerged as a
novel research topic in elasticity.

In the field of electronic structures, research on topologi-
cal states mainly focuses on the quantum Hall effect (QHE)
[8,14], the quantum spin Hall effect [10,15–18], and the
quantum valley Hall effect (QVHE) [11,12]. Among them,
the key to observing the QHE is the breaking of the time-
reversal symmetry [8,14]. In the field of elastic structures,
in order to break the time-reversal symmetry, the elastic
analogue of the QHE employs moving elements added
to the system, such as a rotating gyroscope introduced
at each site of the lattice [19,20]. However, the effects
brought about by active control systems, such as insta-
bilities and noise, are unavoidable and hinder potential
engineering applications. As a result, passive metamate-
rials are gradually being introduced into the study of topo-
logical states [21]. For example, both topological insula-
tors with pseudospin-orbit coupling and valley topological
insulators with pseudospin states rely on the passive
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properties of metamaterials without breaking the time-
reversal symmetry. For the former, spin-orbit coupling is
the key ingredient to generating a pair of conjugated topo-
logical edge states with opposite spins and protected by
time-reversal symmetry [22–29]. As for the QVHE, which
was derived from single-valley physics in the realm of
elastic waves [26], an effective strategy to open a topolog-
ically nontrivial band gap is using point group symmetry
conditions [27–33]. It should be noted that the realization
of topological states in metamaterials commonly relies on
domain walls, which serve as the essential framework for
the existence of topological states [34].

In short, the realization of topological states in elastic
wave systems requires active or passive methods to change
the time-reversal symmetry or the lattice symmetry of crys-
tals to obtain the nontrivial topological phases, which can
be quantified by topological invariants such as Chern num-
bers or (valley) spin Chern numbers. Topological edge
states typically emerge within the topological band gap
and are often localized at the interface between two dis-
tinct topological phases [26,31,35]. Therefore, achieving
topological states at the free boundaries of a system is gen-
erally challenging. To address this challenge, Wu et al.
[27] reported a three-dimensionally metal-printed bilayer
metamaterial utilizing chiral interlayer coupling to open
a topologically nontrivial band gap, realizing topological
states localized at the free boundary of a single topolog-
ical phase. In addition, previous research on topological
states of elastic waves focused on realizing topological
band gaps, such as by reducing the symmetry of the sys-
tem, changing the distribution of the eigenmode field of the
system, or producing an effective synthetic gauge flux in
the structure. In fact, topological phase transitions can also
be generated with the band gap closed, such as with the
graphene structure in an electronic system; a semi-infinite
and a gapless graphene sheet with a zigzag edge has a band
of zero-energy states localized at the edge [36–38]. The
elastic analogue was theoretically proposed in 2013 using
a simple model consisting of a honeycomb distribution of
mass-spring resonators on top of a thin plate [37]. Its real-
ization in an actual elastic plate would be of great interest
to prove the transmission through edge states in a gapless
structure.

Here, we demonstrate the feasibility of topologically
protected edge states in a graphenelike elastic metamate-
rial, without breaking the time-reversal, mirror, or inver-
sion symmetry of the system. Edge states appear at the
free borders of the system rather than on domain walls
formed by metamaterials with different topological phases,
producing a significant reduction in the system size and
holding great potential for device application. At the fre-
quency of the Dirac point in structures formed by zigzag
boundaries, we find frequency bands composed of edge
states. Then, by analogy with the electronic propagation
in graphene, we confirm that the edge states on the

bands have nontrivial topological phases by mapping them
to a one-dimensional (1D) lattice with chiral symmetry.
Numerical calculations and experimental data show that
there is a range of frequencies where edge states can be
excited in the graphenelike elastic metamaterial ribbon.
In addition, to measure the frequency range where edge
states occur in the graphenelike elastic plate, we intro-
duce the concept of elastic Shannon entropy. To the best
of our knowledge, the phenomenon of topologically pro-
tected flexural wave transport in graphenelike elastic plates
has not yet been seen.

II. TOPOLOGICAL STATES IN THE
GRAPHENELIKE METAMATERIAL PLATE

A. Topological states on the boundary

To construct acoustic or elastic topological states in
phononic crystals, it is generally necessary to first realize
different topological phase systems through band inver-
sion, and then select two phononic crystals with overlap-
ping bulk band gaps before and after the band inversion,
and the topological states are then localized on the inter-
face (domain wall) composed of the two phononic crystals
with distinct topological phases [34,39,40], as shown in
Fig. 1(a). Therefore, the realization of the topological
states at the free boundary of the nondomain wall system
is helpful to reduce the size of the topological material and
improve the utilization ratio of the material. Under the con-
dition that the system time-inversion symmetry is intact
while the space-inversion symmetry is broken, there are
two main schemes to realize topological states at the free
boundary of the elastic system. One is to fold the system
containing the domain wall along the interface so that the
topological states appear at the free boundary, as shown in
Fig. 1(b); the other is to use interlayer coupling to realize
topological states at the free boundary of the single-phase
system [27]. Among the two methods, the former is a com-
plex system containing a domain wall, while the latter is
implemented in a single-phase system that breaks space-
inversion symmetry. Therefore, further research should
be performed with new proposals allowing topologically
protected edge states on the free boundaries of simple elas-
tic systems without breaking the time- or space-inversion
symmetry of the nondomain wall system, as shown in the
lower panel of Fig. 1(b), to simultaneously reduce the size
of the structure for miniaturization purposes and improve
its integration.

B. Elastic analogue of graphene

The electronic properties of graphene, such as the inte-
ger QHE and the lossless supercurrent, have been attract-
ing intense interest. These effects are a consequence of the
electronic band structure of graphene, which consists of
two Dirac cones at the K and K′ points in the k space,
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FIG. 1. (a) Schematic pictures representing a topological non-
trivial system with domain walls. The phononic crystals on both
sides of the domain wall contain a bulk band gap with the
same or similar frequency range but different topological phases.
This band gap supports topological edge states localized on the
domain wall. (b) Sketches illustrating the topological state prop-
agation in a folded system of elastic crystals along the domain
wall and the case on the free boundary of a simple system. The
upper panel represents the folded system, while the lower panel
represents the simple nondomain wall system, where the dashed
arrows indicate the direction in which the big simple system can
be reduced to a small one.

as shown in Fig. 2. A graphite sheet behaves like a gap-
less semiconductor due to the electronic modes, which
are called edge states, localized near the zigzag edge of
graphene [38,41]. These localized electronic states corre-
spond to nonbonding molecular orbitals [42]. The edge
states could also exist near the zigzag end of a single-
wall carbon nanotube since a carbon nanotube can be
considered a graphene sheet wrapped into a cylinder [41].
Researchers have explored the zero modes of the graphene
tube and found that two perfect midgap edge states exist,
in which the particle is completely located at the boundary,
even for a tube with finite length [43,44].

The edge states in the graphene model are caused by
the chiral symmetry of the Hamiltonian and are related
to the Dirac cone [45,46]. Therefore, we can extend the
graphene edge states in electrons to elastic waves in solids
with a honeycomb lattice, based on the Dirac cones at
high-symmetry points K and K ′ in the Brillouin zone (BZ).
Dirac cones are characterized by two principal features: the
double degeneracy and linear dispersion near the degen-
erate point, which both depend on the symmetry of the
crystal lattice [47,48]. However, because of the full-vector
feature and the complicated couplings between the longitu-
dinal and transverse components of elastic waves, manip-
ulating elastic waves in solids, such as rapidly decaying
wave amplitude from a solid boundary to the interior,
is generally challenging [27]. Our work mainly consid-
ers the edge states of flexural waves in thin plates with
a triangular lattice with symmetry operations of the C3v

group, as shown in Fig. 2. In this case, we can concen-
trate the vibration of the elastic plate on the edge, and the
vibrational energy is rapidly attenuated with the distance
to the edge, as depicted schematically by the blue curve
in Fig. 2.

C. Band structure of the unit cell

Let us consider an elastic plate patterned with a peri-
odic array of hexagonal holes containing three one-beam
resonators equally distributed inside the hexagonal cavity,
as shown in Fig. 3(a). We select this unit cell since their
parameters can be adjusted to obtain specific properties
of the flexural band structure [27]. The upper and lower
panels show top and cross-sectional views of the unit cell,
respectively. The lattice constant of the cell is a. Other geo-
metric parameters include the plate thickness h, radius R
of the inscribed circle in the hexagonal hole, diameter d of
the cylindrical pillar, cylinder height t outside the plate,
width wb of the beam, and the center moment � of the
beam.

In order to study the effects of the one-beam resonators
on the band structure, we first analyze the dispersion rela-
tion of the unit cell without resonators, which is shown in
Fig. 3(b). The hexagon in Fig. 3(b) represents the first BZ,
whereas the orange region M -K-�-M represents the irre-
ducible BZ. The bottom inset depicts a scheme of the unit
cell. This work mainly analyzes the propagation behav-
ior of the flexural wave in the elastic plate. The governing
equation for the displacement of the triangular lattice plate
is [27] (λ+ μ)∇(∇ · U)+ μ∇2U = ρÜ, where λ and μ
are Lamé constants, U(x, y, z) = ui + vj + wk denotes the
displacement vector, and ρ is the material density. There-
fore, we define the out-of-plane polarization ratio DZ to
distinguish the flexural modes, which can be calculated as
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FIG. 2. Schematic diagram showing the analogy between
graphene edge states and elastic systems.
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FIG. 3. (a) Schematic diagram of the unit cell with the definition of its geometrical parameters. The upper figure shows a top view,
and the lower figure is a cross-sectional view. (b) Band structure of a unit cell without the three-beam resonators. The upper inset
depicts the first Brillouin zone, and the lower represents the cell. The blue and red dotted lines indicate the out-of-plane and the in-
plane modes, respectively. (c) Band structure of a hexagonal lattice where the unit cell contains a one-beam resonator as described
in the inset. (d) Displacement field distributions for the eigenmodes of local resonances A, B, and C in (c). The blue arrow indicates
the modes with increasing frequency. (e) The behavior of the midfrequency resonant band gap produced by the one-beam resonator
embedded in the unit cell. The inset represents the one-beam resonator, which is made equivalent to a spring-mass system. (f) Band
structure corresponding to the unit cell shown in (a).

follows [49]:

DZ = ∫Vz2dV
∫V(x2 + y2 + z2)dV

,

where x, y, and z are the components of displacement along
the x, y, and z directions, respectively. The symbol V rep-
resents the volume of the unit cell. The parameter DZ takes
values from 0 to 1. When the value DZ is close to 1, it
means that the vibration of the elastic plate is a pure flex-
ural wave. However, when DZ is close to 0, it means that
the vibrations are in the plane. See Appendix A for further
details of the numerical simulation and the convergence of
the calculated frequencies. Blue and red dotted lines rep-
resent the out-of-plane and in-plane modes, respectively,
in the band structures shown in Fig. 3. Figure 3(b) shows
that a deterministic Dirac cone arises at the corner K in
the BZ because of the C3v symmetry of the unit cell, and
there is another Dirac point at K ′ derived directly from
time-reversal symmetry [39]. However, the Dirac point P
is not at the valley of the two related bands, so an addi-
tional structure should be proposed to accomplish such a
condition.

To adjust the band structure, we use the known
properties of local resonance excited by a lattice of

one-beam resonators [50]. Figure 3(c) represents the band
structure calculated with the unit cell shown in the inset. It
is observed that the Dirac point P at the band valley still
exists, but it deviates from the corner of the BZ because
of the reduced lattice symmetry. It is worth noting that
compared with Fig. 3(b), the band structure in Fig. 3(c)
shows three additional bands caused by the lattice of one-
beam resonators, and all of them contain frequencies where
the dispersion relations are flat due to the lattice of local
resonances (see Appendix B). To study the characteristics
of these three extra bands, we study the band eigenmodes
at the positions named A, B, and C in Fig. 3(c), which are
all located at the corner K of the BZ. Figure 3(d) plots the
eigenmodes, showing that they correspond to fundamen-
tal modes of the one-beam resonators, i.e., flexural mode
(A), translational mode (B), and torsional mode (C). In
addition, Fig. 3(d) also depicts the spin mode D, which
is located at a much higher frequency (not shown in the
band structure). To decrease the frequency position of the
Dirac point, we realize that the flexural band structure can
be adjusted by just tuning the parameters defining the one-
beam resonators. For example, for the band gap (gray area)
in Fig. 3(c), a simple mass-spring-pendulum model can be
used to explain its formation mechanism, i.e., due to the
introduction of the pendulum, the resulting band structure
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of the 1D system formed by the combination of mass and
spring has two branches. Therefore, a gap appears between
the maximum frequency of the first branch at the zone
boundary and the lowest frequency of the second branch
at the � point [51]. Furthermore, the central frequency of
the resonance band gap can be obtained by modeling the
one-beam resonator as a simple spring-mass structure [as
shown in the inset in Fig. 3(e)], and the expression is

fM = 1
2π

√
Ke

Me
,

where Me and Ke represent the equivalent mass of the
spring-mass oscillator and the equivalent stiffness of the
spring, respectively. Since the beam is modeled as a spring,
the equivalent mass is the mass of the cylinder at the end of
the beam Me = πr2(t + h)ρ, where the radius of the pillar
r = d/2. The stiffness of the equivalent spring is

Ke = EI
(

1
2

L0L2 − 1
6

L3 + (L0 − L)
(

L0L − 1
2

L2
))−1

,

where E is the Young’s modulus, I represents the moment
of inertia of the rectangular cross section beam I =
wbh3/12, L is the effective length of the beam L = l − r,
and L0 represents the equivalent moment of the concen-
trated force action point L0 ∈ (l, l + r). Thus, the central
frequency fM of the band gap associated with one-beam
local resonance can be approximated by the simple model.

To guarantee the robustness of the structure to be man-
ufactured, we fix the width of the beam to the value
wb = 2 mm. Therefore, we study the dependence of fM on
the length L of the beam, the radius r of the disk, and
the height t of the cylinder added on top of the disk. The
orange curve in Fig. 3(e) indicates the dependence on the
cylinder radius when L = 4 mm and t = 1 mm. The green
curve depicts the dependence on L when r = 3 mm and
t = 1 mm, and the blue curve represents the relationship
between the extra height t of the cylinder and the inter-
mediate frequency of the band gap when r = 3 mm and
L = 4 mm. It is observed that fM decreases with increasing
L, r, and t. From the slopes of the three curves, the radius
of the disk has the greatest influence on fM , followed by the
length of the beam, and finally, the height of the cylinder
added to the disk.

To ensure that a deterministic Dirac point appears at
point K, we employ the unit cell shown in Fig. 3(a), where
three one-beam resonators are symmetrically distributed in
the unit cell, so that the lattice and the high-symmetry point
K have C3v symmetry at the same time [47]. In this case,
where three one-beam resonators are considered, the num-
ber of resonant modes is triple in comparison with the case
of lattices with only a single one-beam resonator. To have
the central frequency of the band gap fM smaller than the

frequency of the Dirac point P in Fig. 3(b), we choose a
set of parameters extracted from Fig. 3(e) (see Methods).
Figure 3(f) shows the calculated band structure, where the
Dirac point P, with frequency 2068.7 Hz, occurs at the
high-symmetry point K. The local modes introduced by
the three one-beam resonators produce three flexural flat
bands at low frequencies. A band gap occurs between the
lower two flat bands that are degenerated at the � point and
the third one. The low-frequency band gap caused by local
resonance can achieve the goal of low-frequency vibration
reduction, so the thin plate considered here can be called
an elastic metamaterial [6]. It is worth noting that there
is another Dirac point Q at corner K. In comparison with
the band structure associated with the single one-beam res-
onator case [see Fig. 3(c)], the additional Dirac point Q is
caused by the in-plane (translational) resonant mode aris-
ing from the three one-beam resonators. The underlying
physics involves the interaction of the in-plane mode and
the flexural waves propagating in the plate, which produces
a fully out-of-plane mode, defining a Dirac cone under the
protection of structural symmetry.

D. Dispersion relation of ribbons

To analyze the edge states induced by Dirac cones, we
realize that there are two types of interfaces in an infinite
elastic metamaterial slab. Figure 4(a) shows a scheme of
the sample containing the two kinds of interfaces: the arm-
chair (AM) interface and the zigzag (ZZ) interface. First,
let us study finite “ribbons” formed by the AM interfaces
as shown in the supercell depicted in Fig. 4(b). The rib-
bon is considered periodic along the y axis, with lattice
constant s = √

3a. Figure 4(c) shows the calculated dis-
persion relation of the flexural modes (blue dotted lines)
where an omnidirectional band gap of out-of-plane modes
(gray stripe) appears around the frequency of the Dirac
point. Since flexural waves with frequencies in the band
gap cannot propagate in the ribbon, the calculated flexu-
ral modes correspond to states propagating in the bulk of
the ribbon, and no edge states appear in this ribbon. Let
us point out that in-plane modes (red dotted lines) can also
propagate in the ribbon but they are of no interest to this
work.

Next, we analyze ribbons with ZZ edges, which are
obtained with the supercell shown in Fig. 4(d). The super-
cell is periodic along the x axis, with lattice period a.
Figure 4(e) shows the corresponding dispersion relation
for the flexural modes (blue dotted lines). It is observed
that, in addition to the bulk modes, there is a pair of bands
(DB1 and DB2) extending near the Dirac point, and near
kx = 1 the eigenmodes are localized on the free boundary,
which are similar to the zero-energy modes in the graphene
energy band structure [36,38,52]. We select two eigen-
modes at kx = 0.94 near the frequency of the Dirac point;
as shown in Fig. 4(f), the out-of-plane displacements field
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FIG. 4. (a) Plot of the designed metamaterial plate employed to study flexural edge states. (b) Ribbon containing armchair bound-
aries. (c) Dispersion relation of the projected bands corresponding to the ribbon described in (b). Blue dots in the band structure
indicates out-of-plane modes, while red indicates in-plane modes. (d) Ribbon containing zigzag boundaries. (e) The dispersion relation
for the ribbon (d). (f) Distribution of displacement field for the eigenmodes A and B at kx = 0.94 in (e). Color represents the out-of-plane
displacements field strengths |w|.

strengths |w| of the two modes A and B exhibit a strong
localization at the top and bottom end of the ribbon, respec-
tively, decaying rapidly into the bulk of the ribbon. These
localized modes have the features of a flexural wave [53],
as shown in the green dashed box in Fig. 4(f). In addition,
the characteristic of mode B on DB1 is that it is local-
ized at the bottom end of the ribbon, while mode A on
DB2 is localized at the top end of the ribbon. The emer-
gence of edge states is related to the chiral symmetry of
the Hamiltonian, and the choice of boundaries affects the
chiral symmetry, thereby causing changes in the frequency
band of the edge states. When there is strict chiral symme-
try, there are two degenerate flat bands near kx = 1, such as
in graphene sheets [38]; while when the chiral symmetry
is broken, the frequency band of the edge states disap-
pears, such as in elastic granular graphene structures [54].
The choice of the boundary of the supercell affects the chi-
ral symmetry of the Hamiltonian, reducing the strict chiral
symmetry to the approximate chiral symmetry. As a result,
in addition to the flat band in the frequency band of the
edge states near kx = 1, nonflat bands can also be observed.
This indicates that the edge states still exist under the pro-
tection of the approximate chiral symmetry. Next, we study
the topological properties of the edge states near the Dirac
point frequency.

E. One-dimensional model and topological phase

To check that edge states have topological protection,
the assessment method consists of calculating the topo-
logical phase in the corresponding frequency band. Typ-
ically, nontrivial topological phases of two-dimensional
(2D) periodic structures are embodied in the band gap,
and topologically protected states appear at the inter-
face formed by phononic crystals of different topological
phases [26]. Therefore, it is challenging to calculate the
topological phases of gapless structures, due to the band
degeneracy (Dirac cone) as in the case studied here. We
adopt the winding number [44], which is an integer rep-
resenting the total number of times that a closed curve
travels counterclockwise around a given point so that the
wave function remains unaltered, to discuss the topolog-
ical arguments [53]. The left panel of Fig. 5(a) demon-
strates a 2D infinite metamaterial plate. By equating the
nonequivalent center points of the triangular lattice into
lattice points [indicated by blue and yellow circles, respec-
tively, in the middle panel of Fig. 5(a)], the triangular
lattice can be converted into a honeycomb lattice [46].
The corresponding lattice vectors are b1 =

(
1/2,

√
3/2

)
a

and b2 =
(

1/2, −√
3/2

)
a, and an elastic metamaterial
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plate of the graphenelike model is obtained, which is
called an elastic graphenelike sheet, as shown in the mid-
dle panel of Fig. 5(a). We cut a finite rectangular area
with the boundary vectors Rt1 and Rt2 in the equiva-
lent elastic graphene plate. The primitive vectors of the
unit cells of the rectangular area are R1 = nb1+ mb2 and
R2 = pb1+ qb2, respectively. By arranging the unit cells
with base vectors R1 and R2 along the direction of the base
vectors, a rectangular area can be obtained. In addition,
in the honeycomb lattice, the basis vector of the primi-
tive cell satisfies |b1× b2| = |R1× R2|, from which we can
obtain the coefficient relationship mp − nq = 1. When the
boundary vector Rt1 of the rectangular area is parallel to
the x-coordinate axis, we obtain R1 = a1, R2 = a2, where
a1 and a2 are the two basis vectors of the honeycomb
lattice unit cell, which is the same as the unit cell com-
posed of b1 and b2. Then we can get R1= b2, R2= b1,
and m = p = 1, q = n = 0, satisfying the coefficient rela-
tionship between unit cell basis vectors [46]. Therefore, the
basis vectors of the rectangular area in the reciprocal space
are d1 = 2π/a

(
1, −1/

√
3
)

and d2 = 2π/a
(

1, 1/
√

3
)

, as
shown in Fig. 5(b). In the finite rectangular area, to avoid
the existence of a single-beam oscillator at the boundary
and affecting the processing accuracy of the sample, we
move the rectangular area a certain distance along the y
axis. This movement will affect the chiral symmetry of the
Hamiltonian; however, the edge states still exist under the
protection of the approximate chiral symmetry [46].

For the honeycomb lattice, the Hamiltonian can be cal-
culated based on the tight-binding model [45,52], which is
H(k) = [0, g(k); g∗(k), 0]. By considering only the rel-
ative phase to adjoining sites, the off-diagonal term of the
Hamiltonian can be expressed as g(k) = 1 + eik·(δ3−δ2) +
eik·(δ3−δ1), in which δi, i = 1, 2, 3 are the nearest-neighbor
vectors [46]. The Bloch wave vector k should be expressed
in accordance to the honeycomb lattice k = khd1 + kvd2,
k1,2 ∈ [0, 1). Substituting the expression for k into g(k)
finally gives rise to g(kh, kv). The two-by-two effective
Hamiltonian H(k) can be used to describe a 1D lattice
model when kv runs through the 1D BZ for each kh. Thus,
the winding number can be characterized by

v(kh) = 1
2π i

∫ 0

0

∂ln[g(kh, kv)]
∂kv

dkv,

where g(kh, kv) traces out a closed curve on the com-
plex plane, and v(kh) counts the number of times it winds
around the origin.

In addition, the chiral symmetry also ensures a quantized
Zak phase [46] θ(kh) = ∫ 1

0 i
〈
ψ(kv)|∇kvψ(kv)

〉
dkv, which

relates to the winding number through θ(kh) = |v(kh)|π .
In Fig. 5(b), the blue line and red dots represent the Zak
phase obtained from theoretical derivation and simula-
tion calculation using the finite-element method (FEM),

respectively (see Appendix C for details), which indicate
a nontrivial topological phase for the ZZ edge. In particu-
lar, θ(kh) = π accounts for a topologically nontrivial phase
for 1/3< kh< 2/3. The degenerated bands cover one-third
of the Brillouin zone. The borders correspond to the transi-
tion points when the 1D BZ passes through the reciprocal
lattice sites K and K′. It is observed that the edge states
between the unequal corners K and K′ have topological
protection properties.

The length of the finite ribbon does not affect the exis-
tence of edge states. Highly localized edge states exist even
in the ribbon composed of two cells (see Appendix D for
details). To demonstrate the propagation features of the
edge states in a 2D ZZ ribbon, a simulation is conducted
with the metamaterial plate described in Fig. 5(c), which
consists of 12 × 10 cells in the ribbon. To make the manu-
facturing of this structure easier, the one-beam resonators
on the left and right sides of the metamaterial boundaries
are not considered in the calculations since their contri-
bution is negligible. We use a point source located at the
position defined by the green star to excite a harmonic
flexural wave with frequency f = 2060 Hz. As shown in
Fig. 5(c), the excited wave propagates along the bound-
ary of the plate and decays almost exponentially into the
interior. The color in the figure represents the distribu-
tion of out-of-plane displacement amplitude |w|. To verify
the robust transmission of topological states along the free
boundary of the elastic plate, we design two elastic plates
with a size of 24 × 10 cells, as depicted in Figs. 5(e) and
5(f). In Fig. 5(f), a defect is introduced due to the absence
of a single-beam oscillator on the upper boundary, which
is indicated by the orange box. The localized vibration
propagation can be observed on both free boundaries of
the elastic plates. A cut line is drawn away from the point
source, as shown by the green dashed line in Figs. 5(e) and
5(f). The total energy density W in the elastic plate decays
rapidly as it moves away from the upper boundary, and the
attenuation is the same in both elastic plates as shown in
Fig. 5(d). The blue (ND) and orange (WD) dashed lines
indicate the total energy density distribution along the cut
line in the case of no defect and with defect, respectively.
From Figs. 5(d)–5(f), it can be seen that after the introduc-
tion of the defect, the vibration distribution on the elastic
plate has little impact, indicating that the transmission of
edge states is robust to defects [27,55]. According to the
previous discussion, edge states exist not only at the fre-
quency defined by the Dirac point but also in a range of
frequencies around the Dirac point.

F. Assessment of edge states by Shannon entropy

Entropy, which is the (log of the) number of microstates
or microscopic configurations, has long been a concept
in physics. In simple terms, if the particles inside a sys-
tem have many possible positions to move around, the
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FIG. 5. (a) Two-dimensional elastic metamaterial plate with triangular lattice and graphenelike model. (b) Zak phase obtained from
theoretical calculations (blue line, Theory) and simulation calculations [red dot, finite-element method (FEM)]. (c) The out-of-plate
displacement field |w| in the elastic plate. The color represents the distribution of normalized velocity amplitude, and the green star
indicates the location of the point source. (d) The total energy density distribution along the cut line. The blue and orange dashed lines
with symbols represent the variation of the total energy density on the cut lines without (ND) and with defects (WD), respectively.
(e),(f) Distribution of displacement field |w| in elastic plate without and with defects. The green pentagram represents the point source.

system has high entropy, and if they remain motionless,
then the entropy of the system is low. Therefore, from
the perspective of spatial distribution, the local and non-
local characteristics of eigenmode distribution can also
be characterized by entropy. Shannon proposed a com-
putational method to quantify informational entropy, also
known as Shannon entropy [56], which was first extended
to atomic physics as [57] Su = −∫ ρe(r)lnρa(r)dr, where
ρe(r) = |ψ(r)|2 is the probability density distribution of
a given electronic orbital, and more recently to acous-
tics [58]. Following the proposal in acoustics [58], we
introduce here the “probability density function” for our
metamaterial elastic plate: Ps(r) = V|u(r)|2/ ∫ |u(r)|2dr,
where |u(r)|2 is the square norm of the total displacement
field, which can be calculated as the dot product of the total
displacement and its complex conjugate; V is the volume of
the integration domain. The square norms of displacement
are proportional to respective field intensities. Therefore,
Ps(r) plays the same role as ρe(r) in electronic states.
Following the definition of Shannon entropy in acoustics
[58], to assess the spreading of localized elastic modes, we
introduce the Shannon entropy as Su = − ∫ Ps(r)lnPs(r)dr.

This quantity provides a measure of the spatial delocal-
ization of the modes in the system. The characteristic of
Shannon entropy is that Su increases with increasing uncer-
tainty (i.e., increased spreading of the displacement field
characterizing the eigenmode) [58].

Topological states have the characteristic of localiza-
tion, and Shannon entropy can measure the degree of
localization of the eigenmodes [58]. In graphenelike elastic
plates, the topological states caused by the chiral symmetry
of the Hamiltonian are related to the Dirac point [27,44],
and there is a transition interval in the frequency of the
edge states, so the frequency range of the edge states can
be evaluated by Shannon entropy. Let us remark that in
actual calculations, the volume in Shannon’s entropy for-
mula refers not to the total volume of the supercell, but
to the volume of a single unit cell, which is proportional to
the total volume. The two corners K and K ′ that support the
Dirac point are located at the 1/3 and 2/3 segment points
of the projected BZ, respectively. Therefore, to analyze
the characteristics of the frequency band between the two
corners K and K ′, without loss of generality, the larger
wave vector interval selected here is from kx = 0.5 to
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FIG. 6. (a) Shannon entropy of edge modes belonging to the
bands UM and DM. (b) Band structure for the bands UM and
DM. (c) Displacement fields of eigenmodes D1, T1, D2, and T2
selected in (a).

kx = 1.5. For convenience, within the range of kx from 0.5
to 1.5, the two segment bands are named UM in the band
DB2 (with the edge states located at the top end of the
ribbon), and DM in the band DB1 (with the edge states
located at the bottom end of the ribbon), respectively, as
shown in Fig. 6(a). It can be seen from the figure that for
the DM segment, in the interval between kx = 0.7 and 1.3,
which are approximately the 1/3 and 2/3 dividing points of
the 1D projection space, the frequency band is a flat band
with a zero group velocity similar to that of graphite [38].
However, in the UM segment, the edge states localized at
the top of the ribbon have a nonzero group velocity.

The Shannon entropy on the bands UM and DM is
shown in Fig. 6(b). It is observed that Shannon entropy
exhibits a symmetric distribution with respect to kx = 1. As
Shannon entropy increases, the vibrational modes extend
into the supercell. Therefore, near kx = 1, the eigenstates
are highly localized. In order to determine the frequency
range of the edge states, we assume that the displacement
field of the edge states is localized within one cell near
the end of the ribbon. In this case, when |kx − 1| ≤ 0.2,
the eigenmode displacement field of the edge states satis-
fies this assumption; therefore, the range of wave vector kx
for the edge states is [0.8, 1.2]. Figure 6(c) shows the dis-
placement fields of D1 and T1 at kx = 0.8, and D2 and T2 at
kx = 1. From the distribution of the four modes, the vibra-
tional energy is mainly localized in one cell at the upper
or lower ends of the ribbon (the ribbon rotates counter-
clockwise by 90° in the figure). According to the Fig. 6(b),
D1 and D2 are located in the band with nonzero group
velocity, while the group velocity of T1 or T2 is close to
zero, indicating that the frequencies of D1 and D2 can
be used for signal propagation. Therefore, for the case
of vibrational propagation, we consider these edge states
with nonzero group velocity. It can be inferred that the
frequency range of the edge states lies between D1 and

FIG. 7. Experimental setup employed to characterize the flex-
ural edge states propagating in the metamaterial plate under
study, where LDV is a laser Doppler vibrometer and PZT is a
piezoelectric transducer.

D2, [2034.3, 2097.8 Hz], as shown in the shaded area in
Fig. 6(a). Interestingly, the frequency of the Dirac point is
located near the center of the range. It is worth noting that,
according to the assumption, the starting point of the edge
state is D1, and the Shannon entropy of the displacement
field of mode D1 is the same as that of T1. Therefore, it can
be concluded that the dashed line, as shown in Fig. 6(a),
defines the wave vector range of the edge states. Under
this criterion, the frequency range of the edge states for the
gapless elastic plate can be determined. Additionally, the
frequency of the edge states is influenced by the bulk state,
so the actual frequency range of the propagating wave
along the boundary may slightly differ from the predicted
values.

III. EXPERIMENTAL OBSERVATION OF EDGE
STATES

To verify the theoretical predictions regarding the prop-
agation of flexural waves along the boundaries of the meta-
material plate under study, we use the experimental setup
described in Fig. 7. In brief, we employ a Polytec PSV-
500 scanning laser Doppler vibrometer (LDV) located 0.8
m away from the metamaterial sample. The sample plate
shown in Fig. 7 had dimensions of about 480 × 350 mm2

and was manufactured by laser-cutting using aluminum
(Al-5745) with the same parameters (Young modulus and
mass density) as those employed in the simulations. The
accuracy of the laser-cutting technique used in manufac-
turing is about 0.1 mm [59]. The prototype was obtained
from two aluminum sheets with a thickness of 1 and 4 mm,
respectively; the designed metamaterial was cut from the
former, and 4-mm-thick cylindrical pillars were obtained
from the latter. Afterward, the pillars were attached with
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FIG. 8. Distribution of velocity field. Color represents the distribution of velocity amplitude |v| in an elastic plate. (b) The velocity
profile along the cut line. The lines with symbols represent the velocity amplitude along the cut line when the point source frequency
is 1990, 2000, 2010, 2020, 2030, 2040, and 2050 Hz, respectively.

cyanoacrylate to their positions in the 1-mm-thick plate.
The sample was installed vertically, hanging from two thin
wires. In addition, mastic tape was added to the lateral
boundaries to avoid possible wave reflections, thus mim-
icking the absorbing boundary condition employed in the
numerical simulations.

Measurements are performed on the flat regions of the
metamaterial sample plate (avoiding the cylindrical pil-
lars), which have been discretized in roughly 1250 points.
A computer audio card is employed to synthesize a sinu-
soidal signal, which is amplified with a 200-W Samson sig-
nal amplifier. The amplified electrical signal feeds a TDK
PS1550L40N piezoelectric transducer with a diameter of
15 mm and a thickness of 1.6 mm, located as shown in

Fig. 7. The transducer excites flexural waves in the sam-
ple plate with the desired frequency. The measurements at
each position of the grid are performed at a sampling rate
of 16 kHz for 500 ms, repeated 3 times per sampling point
in order to get an averaged result. The LDV system cap-
tures the propagation of excited flexural waves within the
frequency range from 0 to 6.4 kHz, which, using 3200 fast
Fourier transform lines, results in a frequency resolution of
2 Hz. Moreover, a passband filter is applied to the captured
signal to filter out any unwanted interfering signal.

Figure 8 depicts the distribution of out-of-plane veloc-
ity fields when the excitation source frequency varies
from 1990 to 2060 Hz in increments of 10 Hz. The
figure illustrates that when the excitation frequency is
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at 1990 and 2060 Hz, the flexural vibration can extend
throughout the entire metamaterial plate. However, when
the excitation source frequency is approximately in the
range of 2010 to 2050 Hz (with a frequency interval of
40 Hz), the flexural waves primarily propagate locally at
the free boundary. To distinguish the edge states from
the bulk states in the experiment, we make a cut line
on the elastic plate, which is represented by the green
dashed line in Fig. 8(a). Figure 8(b) shows the vari-
ation curve of the velocity on the cut line, indicating
that within the frequency range of 2010–2050 Hz, the
vibration in the elastic plate is mainly localized near
the boundary, and the vibration decays rapidly as it
moves away from the boundary, showing the characteris-
tics of the edge states. The experimental data demonstrate
well that the topologically protected flexural edge states
can propagate along the free boundaries of metamaterial
plates [46].

The experimental test results in Fig. 8, when compared
with the results obtained from finite-element calculations
(see Appendix E for details), reveal that although the band-
width of the topological edge states is roughly the same,
the frequency of the edge states shifts down. There are
three main reasons for this phenomenon. Firstly, the added
glue increases the mass of the equivalent spring-mass
model. Secondly, slight differences might exist between
the parameters of the aluminum used in the simulations
and the ones of actual aluminum employed in experiments.
Finally, the number of finite elements used in the simu-
lations just gives an approximation of the converged fre-
quency. In addition, the simulations use the low-reflection
condition (without mass) at the lateral sides of the plate.
However, the experimental setup employs an absorbing
material (with mass), which also produces a decrease of
the measured frequencies.

IV. SUMMARY

We have demonstrated both theoretically and exper-
imentally the existence of topologically protected edge
states at the free borders of a graphenelike metamaterial
plate, without breaking the time-reversal and inversion
symmetry of the system. The topological edge states on the
free boundary are not limited by the size of the finite struc-
ture, which can reduce the scale of the topological state
system. In addition, the range of the topological edge states
has been assessed using the elastic Shannon entropy. Our
work can be extended to other elastic waves, such as shear
waves, surface waves, etc. The results shown here foresee
interesting engineering applications such as nondestruc-
tive testing and vibration isolation and open up alternative
avenues for the study of topologically protected edge
states in other classical waves such as electromagnetic
waves.

V. METHODS

A. Numerical simulations and structure parameters

The numerical results presented in our work are
performed in the framework of the fine-element method,
using the commercial software, COMSOL Multiphysics.
In addition, we employ the “Structural Mechanics mod-
ule” to visualize the modal characteristics and propagat-
ing features of elastic waves. The material of the elastic
plate is aluminum with the following physical parameters:
Young’s modulus E = 70 GPa, Poisson’s ratio ν= 0.33,
and mass density ρ= 2700 kg/m3. In the calculations
of band structure, Floquet periodic boundary conditions
are imposed on the periodic boundaries of the unit cell
and the supercell. In the simulation of vibration propaga-
tion in the ribbon, low-reflection boundary conditions are
imposed on the left and right boundaries of the ribbon,
and the top and bottom boundaries are free. To calculate
the Zak phase, the displacement field of the eigenstates at
specific wave vectors is extracted from the numerical sim-
ulation of their eigenvalues. The parameters for Fig. 3(b)
are a = 40 mm, R = 0.35a, and h = 1 mm. In Fig. 3(c),
the parameters defining the resonator are wb = 2 mm,
�= 10 mm, t = 1 mm, and d = 8 mm. Figure 3(f) is cal-
culated by the following structural parameters: R = 0.75,
r = 3.6, and L = 3.6.
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APPENDIX A: FLEXURAL WAVE VELOCITY AND
FINITE-ELEMENT MESH

Considering only linearly elastic displacements, away
from the source, the propagating waves in an elastic plate
are governed by Lamb’s homogeneous equation, whose
solutions are called Lamb waves. When the wavelength
is much larger than the plate thickness, a simpler set of
governing equations derived from classical plate theory
can be used to understand the motion. For thin plates, the
waves have two modes of propagation. One is called the
extensional and the other the flexural mode. Both have
in-plane and out-of-plane components due to the Poisson
effect. For the extensional mode, the larger component of
its two displacement components is in the plane, while the
larger component in the flexural mode is perpendicular to
the plane of the plate [53].

For an isotropic plate, the extensional mode is analogous
to the extensional wave in a rod, and just as in the case
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of the rod, it is dispersionless. The (velocity) dispersion
equation is

ce = [E/(1 − ν2)ρ]1/2, (A1)

where E is Young’s modulus, ν is Poisson’s ratio, and ρ is
the density.

The flexural wave dispersion equation for the plate is
analogous to flexural waves in an Euler beam and the
velocity shows a similar dependence on the frequency.
That is,

cf = (D/ρh)1/4ω1/2, (A2)

where D = Eh3/12(1 − ν2), ω is the circular frequency,
and h is the plate thickness. Note that the velocity cf of
flexural (bending) waves depends on frequency. In addi-
tion, since the theoretically obtained bending wave veloc-
ity does not consider the inertial effect and the shearing
effect, there is a large deviation between the experimen-
tally obtained bending wave velocity and the theoretical
value [53].

For the flexural wave modes, the dispersion relation still
varies as the square root of the frequency. Here, when
referring to waves, the term flexural means displacement
out of plane.

It is important to point out that the wave speeds are dif-
ferent for the types of modes propagating in the plate. For
the in-plane modes, the wave speed in an aluminum plate is
about twice as fast as the flexural mode at the highest flex-
ural frequency measured, and, in the composite laminate,
it is about 5 times as fast as the flexural mode. Combined
with the nondispersive nature of the extensional mode, this
enables the modes to be identified quite easily.

Considering the uncertainty of the vibration propaga-
tion speed in the plate, especially the bending wave speed,
to obtain a converged solution, we select the ultrafine
mesh (tetrahedral elements) to perform simulation calcu-
lations when using finite-element software to visualize the
vibration situation in the periodic plate.

The convergence solution is obtained by reducing the
maximum element size. The remaining grid size parame-
ters include a minimum element size of 0.01 mm, maxi-
mum element growth rate of 1.3, curvature factor of 0.2,
and narrow area resolution of 1. The convergence of the
solution is introduced in Fig. 9. As the maximum unit
size gradually decreases from 1.5 mm, in the triangu-
lar lattice unit cell, the slope of the relationship curve
between Dirac point frequency and maximum unit size
(blue line) gradually decreases, which means that the cal-
culation results gradually converge, and the corresponding
convergence frequency value is about 2.06 kHz. The green
and orange lines respectively represent the degree of free-
dom of the solution and the time taken to solve a single
frequency point. It is observed that when the maximum

FIG. 9. The behavior of magnitudes of interest as a function
of the maximum element size (in millimeters) employed in the
finite-element calculations.

element size is less than 1 mm, the degree of freedom of
the solution and the time for solving a single frequency
point increase rapidly. Considering that when the maxi-
mum unit size is 0.8 mm, the Dirac point frequency is
2.066 kHz, which is very close to the convergence solu-
tion of 2.06 kHz, the maximum element size is 0.8 mm is
used in the calculations described in the paper.

APPENDIX B: LOCAL RESONANT MODES
INDUCED BY ONE-BEAM RESONATORS

It has been demonstrated that in resonant cavities con-
taining one-beam resonators, the rectangular beam acts
like a spring [50]. Therefore, the changes in the band struc-
ture introduced by the one-beam resonators can be easily
explained by using a simple spring-mass model, where the
beam attaching the disk to the plate plays the role of the
spring, as shown in Fig. 10(a). The model developed here
is similar to that applied by Goffaux and Sánchez-Dehesa
[51] to explain the dispersion relation caused by a lattice of
local resonators in 2D phononic materials. The model con-
siders a lattice of masses connected by springs. Attached
to each mass M, there exists a light pendulum (with mass
m and length �), which represents the localized mode asso-
ciated with the one-beam resonator. This 1D mechanical
system has an analytical solution and provides physical
insight into the changes in the dispersion relations for both
in-plane modes and out-of-plane modes produced by the
hexagonal lattice of unit cells described in Fig. 10(a).
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FIG. 10. (a) Schematic diagram of the unit cell containing a single one-beam resonator, enclosed by the red dashed circle. The
resonator can be modeled by a spring-mass system with effective mass Me and effective spring stiffness Ke. (b) The corresponding
dispersion relations for the in-plane (red dotted lines) and out-of-plane (blue lines) modes.

Figure 10(b) shows the dispersion relation of the out-
of-plane modes (blue dotted lines) and the in-plane modes
(red dotted lines) along the high-symmetry directions in the
BZ of the hexagonal lattice. Let us first analyze the case of
flexural (out-of-plane) modes. The band with an almost flat
dispersion relation represents the band associated with the
lattice of flexural local modes introduced by the one-beam
resonator [see A in Fig. 3(d) in the main text]. Note that a
band gap (gray region) occurs between the maximum fre-
quency of the lower band f b (located at the M point of
the BZ), and the lowest frequency of the second band f u
(located at the � point of the BZ). The bandwidth f u − f b
gives an estimation of the interaction strength between the
local resonant mode provided by the one-beam resonator
and the continuum of flexural modes in the thin plate.
Moreover, the interaction strength increases with the mass
of the one-beam resonator [51], also producing a decrease
in the mid-band-gap frequency [50].

The same analysis can be extended to understand the
dispersion relations represented as red dotted lines, where
the flat band is associated with the lattice of translational
in-plane modes f tr excited in the one-beam resonators [see
Fig. 3(b) in the main text]. For these eigenmodes, the in-
plane displacements of the one-beam resonators are much
larger than that of the background plate. As for the case of
flexural modes, a band gap (gray region) appears because
of the interaction between the local resonance and the in-
plane waves propagating in the plate.

Regarding the other types of local resonances produced
by the one-beam resonator, like the torsional modes (f to)
and rotational modes (f ro), their dispersion relations can be
calculated, but they are located at much higher frequencies
[50], and they are of no interest in this work.

APPENDIX C: EDGE STATES IN ZIGZAG
RIBBONS

The intersection points between unit cells in the triangu-
lar lattice are abstracted as lattice points in a honeycomb

lattice, as shown in Fig. 11(a), where b1 =
(

1/2,
√

3/2
)

a

and b2 =
(

1/2, −√
3/2

)
a represent the two basis vec-

tors of the new honeycomb lattice. In addition, δi (i = 1,
2, 3) denotes the vector between two inequivalent lat-
tice points in the honeycomb lattice. The reciprocal lattice
vectors of the honeycomb lattice are denoted as d1 =
2π/a

(
1, 1/

√
3
)

and d2 = 2π/a
(

1, −1/
√

3
)

, as shown in
Fig. 11(b). The Bloch wave vector k in the first Brillouin
zone can be expressed as follows:

k = khd1 + kvd2, kh, kv ∈ [0, 1). (C1)

Next, we investigate the effective Hamiltonian of
graphenelike elastic plates H(k) [45],

H(k) = [0, g(k); g∗(k), 0]. (C2)

(a) (b)

b

d

d
b

FIG. 11. (a) The unit cell of the equivalent honeycomb lattice
in the super unit cell of the triangular lattice. The orange color
in the figure represents the triangular lattice, and the rhomboid
green area represents the unit cell of the honeycomb lattice with
b1 and b2 as basis vectors; the vectors connecting the adjacent
nonequivalent lattice points in the honeycomb lattice are rep-
resented by δi (i = 1, 2, 3). (b) The reciprocal lattice and the
first Brillouin zone of the honeycomb lattice. The blue shading
represents the first Brillouin zone with d1 and d2 as basis vectors.
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FIG. 12. (a)–(d) Band structure and out-of-plane displacement fields of edge states at kx = 0.9 calculated for ribbons composed of
two, three, four, and five cells, respectively. The color in the band structure represents the out-of-plane mode polarizability, and the
color in the modal distribution represents the displacement amplitude distribution.

Considering the relative phase of adjacent lattice points
in a honeycomb lattice, the off-diagonal term g(k) can be
expressed as follows [45]:

g(k) = 1 + eik·(δ3−δ2) + eik·(δ3−δ1). (C3)

Substituting Eq. (A1) into Eq. (C1),

g(kh, kv) = 1 + e−2π ikh + e2π ikv . (C4)

For an elastic graphenelike plate, kh can take arbitrary
values ranging from 0 to 1, and the two-by-two effective
Hamiltonian H (k) can describe a 1D lattice model H (kh),
when kv runs through the 1D Brillouin zone for each kh.
Therefore, the winding number can be defined as follows
[46]:

v(kh) = 1
2π i

∫ 1

0

∂ln[g(kh, kv)]
∂kv

dkv, (C5)

where g(kh, kv) traces a closed curve in the complex plane
and v(kh) represents the number of times it winds around
the origin. Additionally, chiral symmetry also ensures the

quantized Zak phase [60],

θ(kh) =
∫ 1

0
i
〈
ψ(kv)|∇kvψ(kv)

〉
dkv, (C6)

which relates to the winding number through the relation
[5]

θ(kh) = |v(kh)|π . (C7)

The theoretically calculated Zak phase, as shown by the
blue line in Fig. 5(c), reveals that in the interval of
1/3< kh< 2/3, the Zak phase of the elastic plate with
zigzag boundaries is π , which implies that the system
is topologically nontrivial. In the simulation calculations,
normalized displacements are used as eigenstates 〈ψ(k)|
and the Wilson-loop method is employed to compute the
Zak phase of the system. Then d1 and d2 are discretized
into N 1 and N 2 equal segments to satisfy the relations

kh,n = n
N1

kv,m = m
N2

, n ∈ [0, 1, N1 − 1), m ∈ [0, 1, N2 − 1).

(C8)

For each kh,n, the Zak phase is the sum of the Berry
phases in all small segments (from kv,m to kv,m+1) in the
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�ν� (arb. units)

FIG. 13. The distribution of velocity fields for different excitation frequencies of the point source. The green dot indicates the
position of the point source.

d2 direction, which can be expressed as follows:

e−iθkh =
N2−1∏
m=0

e−iθkv,m =
N2−1∏
m=0

〈
ψ(kv,m)|ψ(kv,m+1)

〉
. (C9)

By calculating the Zak phase of the Bloch wave function
represented by displacement on the compressed 1D space,
as shown by the red dots in Fig. 5(c), we can see the
distribution of the Zak phase on the fourth band (located
near the Dirac point) is the same as the theoretically cal-
culated value; i.e., in the interval of 1/3< kh< 2/3, the
system has a nontrivial phase and supports topological
edge states. In fact, within the interval of kh, the transition
point between the topological trivial phase and topologi-
cal nontrivial phase corresponds to the corner points K and
K′ in the first Brillouin zone. Therefore, in the projected
band structure, the edge states located between K and K′
are topologically protected.

To avoid the existence of a single-beam oscillator at
the boundary and affecting the processing accuracy of
the sample, in the finite structure we move the rectan-
gular area in the model a certain distance along the y

axis. This movement will affect the chiral symmetry of the
Hamiltonian; however, the edge states still exist under the
protection of the approximate chiral symmetry [46].

APPENDIX D: EDGE STATES IN ZIGZAG
RIBBONS MADE OF N CELLS

A double degenerate band occurs at the frequency of the
Dirac point, and the edge states on this band are topolog-
ically protected. Figure 12 shows numerical simulations
demonstrating that the edge states contained in the band
structure of ribbons are independent of the number N of
cells contained in the 1D ribbon.

The left panels in Figs. 12(a)–(d) show the band struc-
ture obtained with a supercell composed of two, three,
four, and five cells, respectively. The right panels repre-
sent the corresponding out-of-plane displacement fields of
the eigenmodes with frequencies belonging to the up and
down bands containing edge states at kx = 0.9. The dis-
placement in Fig. 12 shows that the out-of-plane displace-
ments are always localized at the top or bottom boundaries
of the ribbon, although this ribbon is composed of just
two cells. The fact that ribbons with smaller dimensions
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can generate edge states provides a feasible solution for
greatly reducing the sample size and realizing functional
integration design and other engineering applications.

APPENDIX E: PROPAGATION IN A
METAMATERIAL PLATE

To analyze the propagation of flexural waves in a meta-
material plate, a thin plate consisting of 12 supercells
containing five cells is selected as shown in Fig. 13. A
low reflection boundary condition is applied to the left and
right boundary of the metamaterial plate, and the upper and
lower boundary remain free.

We apply harmonic vibration excitation at the upper part
of the plate, represented by the green circles in the illus-
tration. Figure 13 displays the distribution of out-of-plane
velocity fields for excitation source frequencies of 2020,
2040, 2050, 2060, 2070, 2080, 2090, 2100, and 2200 Hz.
This figure shows that when the excitation source fre-
quency is below 2050 Hz or above 2090 Hz, the vibration
can extend throughout the entire metamaterial plate. When
the frequency is between 2050 and 2090 Hz (with a band-
width of approximately 40 Hz), flexural wave vibrations
propagate along the free boundary of the metamaterial
plate, demonstrating robustness in transmission. In addi-
tion, the vibration excited by the point source with a
frequency of 2070 Hz can propagate along the top bound-
ary of the plate, and at the bottom boundary of the plate,
there is a local mode vibration. This is because the eigen-
modes (near the Dirac point) at the frequency of 2070 Hz
exhibit a strong local resonance pattern at the bottom end
of the ribbon, as shown in Fig. 4(e). Therefore, the weak
vibration propagating to the bottom boundary is strength-
ened. When the frequency is near the Dirac point, such as
at 2070 Hz, once the excitation is applied to the top end
of the metamaterial plate, there will also be weak local
vibration at the bottom end of the metamaterial plate. This
phenomenon can be used to judge the Dirac point fre-
quency of the system in practical applications and is useful
to estimate the range of edge states.
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