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ABSTRACT Sonic crystal noise barriers (SCNB) have emerged as a promising solution for mitigating
traffic noise pollution. These barriers utilize periodic structures to selectively reflect acoustic waves at
specific target frequencies, offering the advantage of being permeable to light and wind. However, their
installation and maintenance costs have hindered widespread adoption. In contrast, active noise control
(ANC) systems leverage speakers and microphones to generate opposing sound waves that cancel out
incoming noise, presenting a potentially cost-effective alternative. The efficacy of ANC, however, hinges on
the precision of noise prediction models and control algorithms. Reinforcement Learning (RL) technique,
an interdisciplinary area of machine learning, has shown promise in enhancing ANC systems by enabling
them to adapt to changing noise conditions and achieve superior noise reduction, particularly in enclosed
spaces. Despite these advancements, several challenges remain in applying RL to ANC systems for SCNB.
This paper explores these challenges and proposes an RL-based solution for autonomous ANC systems
within the context of SCNB, utilizing a Finite Difference Time Domain (FDTD) simulation environment to
address low-frequency, moving sources, and outdoor propagation noise scenarios.

INDEX TERMS Reinforcement learning, noise barriers, finite-difference time-domain, sonic crystals.

I. INTRODUCTION
The use of metamaterials in industrial applications has been
promising during the last decade [1], [2], [3]. In the field of
noise barriers, Sonic Crystal Noise Barriers (SCNB) repre-
sent an innovative approach to mitigate the pervasive issue
of traffic noise pollution. These barriers are designed to
selectively target and attenuate sound waves at specific fre-
quencies through the use of periodic structures, a concept
rooted in the science of sonic crystals (SC) [4]. By carefully
designing the topology of scatterers or adjusting the lattice
constant between them, engineers can create SCNB suitable
to reduce noise pollution effectively. The SCNB have the

The associate editor coordinating the review of this manuscript and

approving it for publication was Qingchun Chen .

property of allowing the passage of wind and light [5], [6].
This advantage makes them more aesthetically pleasing and
environmentally friendly than traditional noise barriers, usu-
ally built using solid structures made with opaque materials
such as concrete or wooden planks [5], [6]. However, the sub-
stantial costs associated with the installation andmaintenance
of SCNB have limited their widespread implementation [7].

Contrary to that, Active Noise Control (ANC) systems
offer a potentially cost-effective approach to noise reduction.
These systems operate by using strategically placed micro-
phones to capture incoming noise and speakers to emit sound
waves that are precisely out of phase with the noise, leading
to cancellation [8]. ANC has been successfully applied in
various domains, such as automotive [9], [10] and industrial
settings [11], where reducing noise is crucial. However, the
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effectiveness of ANC systems relies heavily on the accu-
racy of noise prediction models and the sophistication of
the control algorithms used to generate the anti-phase sound
waves [12].

The idea of improving the insulation of noise barriers
employing ANC systems has been applied to traditional bar-
riers since several decades [13]. Some of the studies are
applied to real cases [14], other ones have developed their
own experimental validations in anechoic chambers [15] and
exploiting unidirectional sources [16].

Control algorithms play a pivotal role in ANC systems,
and one approach that has gained prominence in recent
years is Reinforcement Learning (RL) [17]. RL is a sub-
field of Machine Learning (ML) that focuses on developing
algorithms capable of learning optimal actions through inter-
action with an environment and feedback in the form of
rewards [18]. There is a wide scope of applications that have
demonstrated its efficiency optimizing its processes such as
Blockchain [19] or additive manufacturing processes [20].
Deep Q-learning and actor-critic methods, two prominent

branches of RL, have been applied successfully to ANC
systems [21], enabling them to adapt dynamically to changing
noise conditions and improve noise reduction performance,
especially in enclosed spaces or noise signals without sim-
ulations [22]. In Table 1, some of the most representative
works concerning the principal components of this study are
presented. More precisely, Table 1 compares works involving
noise barriers (NB), with or without SC, as well as ANC
works categorized as either RL based or non-RL-based.

Before delving into the proposed RL-based solution for
integrating ANC with SCNB, it is essential to recognize
the important challenges and considerations that arise when
combining these two technologies.

The SCNB challenges are the following:

• Low-Frequency Performance: SCNB, despite their
effectiveness at certain frequencies, often struggle to
attenuate low-frequency noise effectively. This limita-
tion is particularly relevant in cases where the width of
the barrier should not exceed a certain value [23].

• Normal Incidence Insulation: Many SCNB studies
focus on noise reduction at normal incidence, neglect-
ing the real-world scenario of random incidence noise
sources. This limited normal incidence approach can
differ from the noise reduction performance when the
noise source is not aligned with the barrier [24].

• Plane Wave Excitation: SCNB designs frequently
relies on the assumption of an incident plane wave as the
primary noise source [25]. That means that the source is
located far enough away, but that condition is usually not
satisfied.

In addition, the ANC challenges are the following:

• Fixed Primary Noise Sources: Traditional ANC sys-
tems are primarily designed for scenarios where the
primary noise source is fixed and known. In contrast,
outdoor environments with varying noise sources pose

TABLE 1. Noise mitigation solutions review.

unique challenges, as identifying and tracking these
sources in real-time is complex.

• Enclosed Spaces: Most existing ANC applications tar-
get enclosed spaces [26], such as closed rooms, or ducts.
The extension of ANC to outdoor environments with
open boundaries and complex propagation conditions
needs a different approach.

To overcome these challenges and bridge the gap between
SCNB and ANC, this research proposes the development of
an RL-based procedure for constructing SCNB that enhance
their insulation performance by integrating an ANC system
utilizing microphones and speakers. This approach leverages
a Finite Difference Time Domain (FDTD) simulation envi-
ronment handling low-frequency noise and dynamic outdoor
noise propagation.

The FDTD method, initially introduced by Yee in 1966
[27] for investigating the scattering of electromagnetic waves,
has found applications in various acoustic domains. A par-
allel approach suitable for acoustic purposes has emerged
with success in different applications. These applications
encompass but are not limited to sound diffusers [22], [23],
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absorbing panels [30] and sonic crystal waveguides [31] and
SCNB [32].

The FDTD modelling has proven beneficial in scenar-
ios where spatial constraints and low-frequency bandwidth
extension are critical considerations, and the FDTD simu-
lation has also demonstrated its effectiveness in generating
successful RL optimizations [33].

This approach offers several advantages:
• Adaptation to Changing Conditions: By continually
learning and adjusting its control strategy, the RL-based
ANC system can respond to varying noise sources, fre-
quencies, and incidence angles, overcoming some of the
limitations associated with traditional ANC.

• Improved Low-Frequency Performance: RL algo-
rithms can learn sophisticated control strategies to tackle
low-frequency noise, a known weakness of SCNB,
by optimizing the placement and operation of ANC
speakers.

• Outdoor Noise Propagation Modelling: The integra-
tion of a FDTD simulation environment allows for the
more realistic modelling of outdoor noise propagation,
to evaluate ANC effectiveness in open environments.

The paper is organized as follows. Section II presents the
employed methodology to create the FDTD simulations and
the set-up of the RL problem, Section III specifies the case
study of RL applied to a SCNBwith ANC system. Section IV
presents the results of the training and deployment of the RL
process and the acoustic analysis, and Section V encapsulates
the conclusions and the future works.

II. METHODOLOGY
The tools and procedures to improve the SCNBwith the ANC
system are presented in this section. First, the steps followed
for the implementation of the FDTD simulation method [47].
are described. Secondly, we explain the RL chosen agent
procedure.

A. FINITE DIFFERENCE TIME DOMAIN SIMULATION
TECHNIQUE
1) BASICS
The equations for momentum conservation and continuity
provide the basis for an acoustic FDTD model without any
sound sources. These models may be expressed as follows in
a homogeneous medium with no losses:

∂ p
∂ t
+ k∇⃗ · u⃗ = 0, (1)

∇⃗p+ ρ0
∂ u⃗
∂ t
= 0, (2)

where u⃗ = (ux , uy) is the vector denoting the particle velocity
field, p represents the pressure field , ρ0 stands for the mass
density of the medium and k = ρ0c2 is the compressibility of
the medium. The central finite difference technique is used to
approximate the spatial and temporal derivatives of pressure
and particle velocity. For instance, we can use this method
to estimate the derivative of sound pressure with respect to

the x-coordinate, which can be expressed by the following
equation:

∂ p
∂ x

∣∣∣∣
x=x0

≈
p
(
x0 + 1x

2

)
− p

(
x0 − 1x

2

)
1x

. (3)

In particular, the spatial interval denoted by 1x represents
the distance between closely-spaced points along the x-axis.
In two dimensions, we must define three grids: one for
pressure and two for the different components of particle
velocity. To minimize the influence of higher-order terms in
equations (4), (5) and (6), these grids are ‘staggered’. For
instance, the mesh for the x component of particle velocity
is shifted by 1x/2 relative to the pressure mesh. The same
principle applies to the time intervals; the particle velocity
meshes are shifted by 1t/2 in time compared to the pressure
mesh. By adopting this approach, we can derive a set of
updated equations that allow us to determine the values of
pressure and particle velocity after iterating for a specified
number of steps. These equations are the following:

pn+1/2i,j = pn−1/2i,j − k 1t

(
uxni+1/2,j − ux

n
i−1/2,j

1x

+
uyni,j+1/2 − uy

n
i,j−1/2

1y

)
(4)

uxn+1i+1/2,j = uxni+1/2,j −
1t
ρ

(
pn+1/2i+1,j − p

n+1/2
i,j

1x

)
(5)

uyn+1i,j+1/2 = uyni,j+1/2 −
1t
ρ

(
pn+1/2i,j+1 − p

n+1/2
i,j

1y

)
. (6)

The superscripts denote the time index, and the subscripts
denote the spatial indices as follows:

pn+1/2i,j = p(i 1x, j 1y, (n+ 1/2 ) 1t) (7)

uxni+1/2,j = ux((i+ 1/2 ) 1x, j 1y, n 1t) (8)

uyni,j+1/2 = uy(i 1x, (j+ 1/2 ) 1y, n 1t). (9)

To have a better understanding of the update equations,
Fig. 1 represents the FDTD scheme.

With the aim of guaranteeing the numerical convergence,
it is important that the time step is sufficiently small to
accurately simulate wave propagation.

This relationship between the spatial steps and the time
step is determined by the Courant number s, which can be
defined as follows in two dimensions:

s = c1t

√(
1

1x

)2

+

(
1

1y

)2

≤ 1. (10)

Another limitation of the FDTD method, which is shared
with other numerical techniques, arises from the dependence
of the maximum element size in discretization on the fre-
quency. The standard criterion suggests using at least four
elements per wavelength: in the related literature [48] it is
shown that a high level of accuracy necessitates a mini-
mum of 10 elements per wavelength. Consequently, at high

77990 VOLUME 12, 2024



D. Ramírez-Solana et al.: Improving Insertion Loss of Sonic Crystal Active Noise Barrier

FIGURE 1. FDTD scheme of pressure and particle velocity fields.

frequencies, solving the numerical problem becomes compu-
tationally intensive. In this paper, we will employ a spatial
step small enough to ensure accurate results up to 2kHz.

2) ABSORBING BOUNDARY CONDITIONS
In this study, to remove unwanted reflections from the bound-
aries of the computational domain, an absorbing boundary
condition is used. The technique, known as ‘‘Perfectly
Matched Layers’’ (PML) [49], [50], [51], [52], is chosen.
PML introduces a lossy medium near the boundaries, requir-
ing modifications to equations (1) and (2) to incorporate
attenuation factors for each dimension considered (denoted
as γx and γy in two dimensions). This adjustment is expressed
as follows:

∂ px
∂ t
+ γxpx + k

(
∂ ux
∂ x

)
= 0 (11)

∂ py
∂ t
+ γypy + k

(
∂ uy
∂ y

)
= 0 (12)

∂ p
∂ x
+ ρ

(
∂ ux
∂ t
+ γxux

)
= 0 (13)

∂ p
∂ y
+ ρ

(
∂ uy
∂ t
+ γyuy

)
= 0. (14)

In equations (11)-(14) the sound pressure p is divided into
two separate components px and py. These components do
not have any physical significance and are defined merely for
the purpose of optimizing the absorption performance. The
attenuation factors are set to zero within the integration area
but are heightened in regions near the boundaries.

B. REINFORCEMENT LEARNING
The RL technique is an interdisciplinary area of ML dedi-
cated to the domain of sequential decision-making. It revolves
around artificial agents that, akin to their biological coun-
terparts, refine their capabilities through interactions with
the surrounding environment. Leveraging experiential knowl-
edge (States), the artificial agents strive to accomplish defined
objectives, presented in the form of cumulative rewards as it

is illustrated in Fig. 2. The essence of RL lies in the agent’s
capacity to assimilate suitable actions, progressively adapt,
acquire new skills, and engage in trial-and-error experiences.
Noteworthy components of RL include the agent’s adeptness
at interacting with the environment and information gath-
ering, without necessitating an exhaustive understanding or
control over the environment [18].

FIGURE 2. Main block diagram of the process of a generic RL system.

1) TRAINING ALGORITHM
The RL structure is framed as a discrete-time stochastic
control process. This process involves an agent engaging with
its environment within the context of a discrete-time Markov
Decision Process (MDP).

Specifically, a discrete-time MDP is described by the tuple
(S, A, p, R) where S is the environment state set, A is the
system action set, p is the state transition probability and
R is the reward function. More precisely, the state transition
probability (p) is the probability of transition from the current
state st ∈ S at time t to state st+1 ∈ S at time t+1 under action
a ∈ A:

p : S × A× S → [0, 1]. (15)

Moreover, the reward function R gives the reward after
transition from st to st+1 with action a:

R : S × A→ [rmin, rmax]. (16)

The objective in RL is that the agent obtains an optimal
policy π (s) (conditioning the action to be chosen in state s)
that maximizes the reward function. The RL can directly
calculate the optimal strategy without model knowledge and
using a Q-function (Q-learning algorithm).

The Q-function, denoted as Q(s,a) is a function that maps
a state-action pair (s,a) to a value, representing the expected
cumulative reward obtained by taking action a from state s
and then following a certain policy. In this work, the selected
agent is the Deep Deterministic Policy Gradient (DDPG)
algorithm, a Q-learning actor-critic approach that consists of
two parts: the actors that refers to a policy and the critic that
estimates the Q-function. In the DDPG algorithm, both the
actor and the Q-function (the critic) are approximated using
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neural networks. These kind of agents are specially suitable
for large continuous action spaces [53]. The used procedure
is based on the steps described in the following.

1. Initialize the critic Q(s,a) and target critic Qt (s,a) with
the same random values of parameters (φ, φt ).

2. Initialize the actor π (s;θ) and the target actor πt(s;θ )
with same random parameters ( θ , θt ).

3. For each episode:
3.1 For the current state (s) of the episode select an

action according to the policy π (s;θ ) + N , where
N is configured as an exploration stochastic noise.

3.2 Execute action (a) and observe the reward (r) and
the next state (s′).

3.3 Store the experiences (si, ai, ri, si’) in the experi-
ence buffer along a mini-batch of size M experi-
ences.

3.4 At each step of the training process, the parameters
of the critic (φ) are updated. The update is made by
minimizing the loss Lcritic across sampled experi-
ences of the mini-batch.

Lcritic =
1
2M

M∑
i=1

(yi − Q(si,ai;φ)2, (17)

where ai is the bounded action derived from the
policy unbounded output from the actor π (si; θ ).
If si is a terminal state (final of the episode), the
value function target (yi) is exactly the experience
reward ri. If is not a terminal state, the value func-
tion target is the sum of ri, and the discounted future
reward (r ′) from the target critics considering the
noise added by the agent.

yi = ri + γ ∗ Qt
(
s′i, πt

(
s′i; θt

)
;φt

)
, (18)

where the discount factor (γ ) is an hyperparame-
ter that represents how important are the nearest
rewards over future rewards in perspective. To cal-
culate the cumulative reward, the agent initiates the
computation by determining the subsequent action.
This is achieved by forwarding the next observa-
tion, s′i, obtained from the sampled experience to
the target actor.
Depending on every time steps defined on
the ‘‘Policy frequency update’’ hyperparameter, the
parameters of the actor (θ) are updated by the
policy gradient function searching to maximize
the reward :

∇θJactor

≈
1
M

M∑
i=1

[∇AQ (si, ai;φ) ∗ ∇θπ (si; θ)]

(19)

where the first term of the product is the gradient
of the output of the critic according to the action
computed by the actor, and the second term is the

gradient of output of the actor with respect to the
actor parameters.

3.5 Update the target critic (Qt ) parameters (φt ) and the
target actor parameters (θt ) with the hyperparame-
ter called ‘‘smooth factor’’ (τ ) following:

φt = τφ + (1− τ) φt (20)

θt = τθ + (1− τ) θt . (21)

The training algorithm is expressed in pseudocode in
Algorithm 1.

Algorithm 1 DDPG Training Process

Input: φ, θ and M •Initial parameters
φt,← φ •Initialize target

critic parameters
with the critic
parameters

M← ∅ •Initialize the empty
mini-batch M of
buffer experiences

for each episode do
for each environment step do
ai ∼ π (s;θ) + N •Sample action from

the policy adding
exploration noise

s′i ∼ p(s
′
i|si, ai|) •Sample state from

the environment
M←∪

{(
si, a′i, ri, s

′
i

)}
•Store the state in
the mini-batch of
buffer experiences

φ← φ -Lcritic equation (17) •Update the Q-
function (critic)
parameters

end for
for each policy update step do

θ ← θ -∇θJactor
equation (19)

•Update the policy
parameters (actor)

φ← φ – τφ + (1− τ) φt •Update target critic
parameters

θt ← θt –- τθ + (1− τ) θt •Update target actor
parameters

end for
end for end of the episode
Output: φ, φt, θ •Optimized parame-

ters

III. CASE STUDY: SCNB WITH ANC SYSTEM
A. FINITE DIFFERENCE TIME DOMAIN ENVIRONMENT
The FDTD environment follows the process outlined in
Fig. 2. By utilizing time-domain simulation techniques like
FDTD, RL can interact in real-time throughout the opti-
mization process, enabling adjustments to be made at each
time step. On the contrary, the standard frequency-domain
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simulation techniques only allow optimization after the pro-
cess has finished and the stationary study returns the results.

Fig. 3 provides an overview of the simulation environ-
ment. The primary noise source is a moving car that emits
a sinusoidal pure tone. The car travels from the lower to the
upper boundary of the environment at a speed of 100 km/h.
Each time the car passes through, it varies the frequency
of the emitted tone, selecting a different random frequency
ranging from 100 to 500 Hz. These frequencies represent the
low range of the traffic noise spectrum, where the SCNB
is almost transparent. The noise produced by the passing
vehicle is measured at a reference point. The recorded signal
is then processed and broadcasted from a secondary source to
enhance noise mitigation at the evaluation point, combining
the properties of the SCNB and the Active Noise Control
(ANC) system. During the assessment phase, the cancellation
signal from the loudspeaker and the car noise are evaluated to
achieve noise cancellation following the principles of ANC.
The FDTD simulation is conducted within a distinct function
that the agent activates whenever it intends to interact with the
environment. Consequently, this environment accepts inputs
such as agent actions to be taken during the duration of time
steps and provides outputs in the form of states or obser-
vations. Absorbing boundary conditions are implemented at
the model’s boundaries to mimic an open-field situation,
following the form of Perfectly Matched Layers (PMLs)
[49]. The code of the FDTD simulations has been developed
entirely by the authors of this paper following the equations
of section II-A. We wrote it with MATLAB, but FDTD is
not a method native to that language, so that means that it
would be possible to implement it with a variety of different
programming languages.

FIGURE 3. The FDTD Environment of the SCNB with the ANC system.

B. STATES
The primary objective of the RL architecture is to enhance
the efficiency of the SCNB when coupled with the

ANC system. Initially, the acoustic insulation provided solely
by the barrier is considered as the baseline for reducing the
acoustic pressure level. This serves as the initial observa-
tion in the process, i.e., the reset function of each episode.
Following the execution of actions, a secondary pressure
level is recorded, and subsequently, the Insertion Loss of the
ANC system (ILANC ) is computed according to the following
formulation:

ILANC = 20× log10

( ∑tmaxStep
t p (t)b∑tmaxStep

t p (t)ANC

)
, (22)

where numerator comes from the reset function of each fre-
quency when the ANC system is off, being p (t)b the pressure
measured only having the SCNB without the ANC working.
The denominator is the result of each step function when the
ANC system is working. That implies that at each step of the
episode, the state is measured as p (t)ANC at the evaluation
point. The whole episode of a car passing is equally divided
in 5 steps, with tmaxStep ∼= 30 ms. ILANC is calculated at each
step of the episode, having the summatory in the first step
only one value, and at the end of the episode 5 values.

C. ACTIONS
The actions space is continuous, and it has two different
actions that can be explored in the RL system to modify
the signal emitted by the secondary source. Both actions
aim to generate an optimal signal capable of canceling the
noise emanating from the noise source (car). But when the
reference microphone (reference point) registers a pressure
with the auditability threshold (2·10−5 Pa), the secondary
source filters the sinusoidal signal from the car and starts
emitting from the secondary source. The first action (action 1)
determines the amplitude level of the signal emitted by the
source, while the second action (action 2) determines the
phase of the signal. The range of Action1 is from 0 to 0.5 Pa,
and Action2 has a range of variation between 0 and 2 π .
When the phases of the signals are in opposition, the acous-

tic wave is canceled, creating a ‘sweet point’ in accordance
with the main principle of ANC. The signal of the secondary
source (S2) is described by the following equation:

S2 = −Action1 × sin (2π ft + Action2) , (23)

with f being the random frequency from the car settled
in the reset function and measured at the reference point.
As previously explained, an episode is defined when the car
is passing through the whole environment, and 5 actions pairs
are applied to every episode as there are 5 times steps and two
actions in the action set to cancel the noise from the car.

D. REWARD
The agent executes its behavior during each invocation of
the step function, defined at intervals of tmaxStep ∼= 30 ms,
and receives rewards based on how these actions influence
the environment according to the states observed. The reward
serves as feedback from the environment, indicating the suc-
cess or failure of the agent’s activities. The agent is tasked
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with adjusting certain parameters of the signal emitted from
the secondary source to optimize noise cancellation at the
evaluation point. Building upon the observations previously
detailed, the Reward function (R) evaluates the Insertion Loss
of the ANC system (ILANC ) and assigns its value proportion-
ally based on the extent to which the insulation is improved:

R =

{
ILANC, ILANC > 0
0, ILANC < 0.

(24)

IV. RESULTS
This section presents the results obtained from the ANC
system in the SCNB. More specifically, first the training
process of the SAC agent is presented, then the validation
with the trained agent is proposed and finally the analysis of
the acoustic performance of the system is discussed.

A. TRAINING
During the process up to having a trained agent, the hyper-
parameters condition the process, and Table 2 shows all the
values for the different parts of the RL system, the Critical
and Actor networks.

TABLE 2. Hyperparameters DDPG.

The hyperparameters were tuned after observing different
training processes. In the following Fig. 4 the training process
is presented.

The black dots shown in Fig. 4 a) represents the different
random frequencies between 100 and 500Hz during the train-
ing process. The total accumulated rewards throughout the
training phase can be observed in Fig. 4 b). The cumulative
reward for each episode is depicted in blue, while the overall
average reward is highlighted in red. Even if the average
reward is not very high compared to the single one obtained
at some frequencies, it is still an improvement compared with
the no ANC system case. Since the reward function was
chosen to only be positive if the ILANC is better than the
Insertion Loss produced with the SCNB and without ANC
system (IL).

FIGURE 4. Training results of the DDPG agent. random frequencies of
each episode a). Episode rewards (blue) and the cumulative average
reward of all episodes(red) b).

At some frequencies, the system improved the insulation
up to 40 dB according to equation 22. That value represents
the cumulative reward so it can be deduced that, taking into
account that there are 5 steps, about 5 dB in average is
obtained with ANC SCNB while the vehicle is passing by.

B. DEPLOYMENT
Following the completion of training, the agent was consid-
ered for testing in the ANC procedure, aimed at assessing its
capacity to respond to various frequencies, to be contrasted
with the non-trained configuration. Additionally, the agent
underwent testing to evaluate its performance against dif-
ferent car velocities, accounting for adjustments due to the
Doppler effect. Differing from its training conditions, when
only a velocity of 100 km/h was considered.

Despite being trained with random frequencies ranging
from 100 to 500 Hz with the car (acting as a mov-
ing source) passing at 100 km/h, the agent demonstrated
slightly diminished rewards when modifying the car velocity.
Fig. 5 illustrates 21 distinct deployment episodes within the
low-frequency range of interest (100-500 Hz) with a fre-
quency step size of 20 Hz. Three velocities were examined:
100 km/h, which was utilized during the training phase, and
110 km/h and 120 km/h as additional velocities and new
deployment scenarios.

In deployment scenarios, the agent faces additional
real-world conditions beyond its training environment, such
as varying car velocities. This testing phase is crucial for eval-
uating the agent’s adaptability and generalization capabilities.

It is noted that the non-trained agent (see Fig. 5a) achieved
approximately 1 or 2 dB of improvement in certain instances,
particularly within the lower frequency range (100-220 Hz).
This improvement can be attributed to the agent’s ability to
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FIGURE 5. Comparison between DDPG agent deployment performance
along 21 episodes (100-500 Hz range) with different car velocities before
training the agent (a) and after training it (b).

take four additional actions during each frequency episode as
per the initial step, aimed at enhancing performance. How-
ever, despite these efforts, the improvement obtained remains
modest compared to the SCNB without ANC.

In contrast to that, the trained agent (see Fig. 5 ILb)
obtains a remarkable improvement in the low frequencies
and decreases with the frequency. Moreover, in the high
frequency cases, the trained agent does not obtain an improve-
ment compared to the SCNB without ANC. Hence, the lower
the frequency is, the better performance of the cancellation
principle of ANC works. The limit of the interest range of
improvement is about 480 Hz, and even the agent has passed
the training process, it was not possible to improve the SCNB
with the ANC system.

The levels plotted are the average of the 5 steps of each
episode, since each step was making a cumulative reward
of all steps, bigger than the overall time calculation (about
40 dB) and the global vision of the insulation in dB is repre-
sented (around 4-5 dB in some cases).

The deployment scenarios highlight the challenges of
real-world applications, where factors like varying car veloc-
ities can significantly impact the performance of the agent.
Despite training in a controlled environment, the agent’s
effectiveness may vary when faced with these real-world
complexities. Therefore, comprehensive testing under diverse
conditions is essential to assess the agent’s robustness and
effectiveness in practical settings.

The insulation analysis with a global view depending on
frequency spectrum is explained in the next section, together
with the FDTD simulations results and the global acoustic
performance.

C. ANALYSIS
Considering that noise at higher frequencies can be mitigated
with absorbent materials or other complementary solutions
to the SCNB mechanisms, the IL analysis is plotted only

showing until 2 kHz. The SCNB has 3 rows and 27 columns,
and the main insulation mechanism is designed to mainly
mitigate at 1 kHz, considering the peak of traffic noise spec-
trum [37]. In Fig. 6 the Insertion Loss (IL) of the barrier
is plotted without the ANC considering that the noise inci-
dence is not normal, neither diffuse. The car is moving at
100, 110 and 120 km/h, which produces different angles of
incidence of the sound during the time it travels through
the FDTD domain. Usually, SCNB are studied at normal
incidence as enlightened in introduction, some studies have
also considered the diffuse incidence [46], but this approach
looks for more realistic noise barrier case which is the
moving source incidence. In blue, the insulation provided
without the ANC is plotted until 2 kHz, to mainly observe
where the SCNB produces bigger values due to its noise
control phenomena [38]. For the three deployment scenarios
under consideration (100, 110, and 120 km/h), represented
by blue diamonds, red stars, and green stars respectively, the
rewards obtained for each frequency with the trained agent
(as depicted in Fig. 5b) are added to the original IL. In the
low frequency range (100-500 Hz), the significant insula-
tion improvement can be seen, and this is obtained without
modifying the barrier. The IL shows in dB the difference
between having the barrier or not and the noise reduction.
At some frequencies, it has been seen that the ANC system is
capable to produces bigger improvements (8 and 6 dB in the
peaks), but the Fabry-Perot resonances are still present in the
IL spectrum.

FIGURE 6. Insertion Loss of a SCNB of 3 rows with a moving source of
100, 110 and 120 Km/h incidence, with and without the ANC system
working.

Finally, an instantaneous representation of the FDTD envi-
ronment is showed in Fig. 7, where the ANC system is
switched off in Fig. 7 a) and a small modulation of the 200 Hz
noise wave is observed close to the reference microphone due
to the SCNB. Fig. 7 b) shows the ANC working and pro-
ducing interferences to mitigate the sound in the evaluation
point. Considering that t = 0 ms is when the car is starting
to move from the top at 100 Km/h, Fig. 7 represents the
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FIGURE 7. FDTD SPL maps at t = 30 ms with the car emitting noise at a
frequency of 200 Hz. a) the ANC system switched off; b) the ANC system
switched on.

instant of t = 30 ms, which is the moment after the first step
function is executed and the first state is observed from the
FDTD environment. The Sound Pressure Level (SPL) maps
represent in dB the acoustic pressure distribution in the whole
environment at that specific instant. The PMLs are working
perfectly preventing reflections as in the deep blue color the
0 dB is obtained at the boundaries.

V. CONCLUSION
This work has presented a complete framework to smartly
approach the issue of low frequency insulation on SCNB.
Without modifying the geometry of the barrier or increas-
ing the width, the placement of an ANC system improves
the insulation in the lower frequency range of traffic noise
spectrum (100-500 Hz) [54]. The use of FDTD numerical
simulations extendedly validated in other works previously
mentioned, allows the fast calculation of RL steps, and the
quickmodification of the cancelling secondary source param-
eters. The case of road traffic noise produced by a mobile
source is analyzed. This approach is more realistic than the
assumption of normal or diffuse incidence. Since SCNB are
designed to insulate specific target frequencies, the ability to
address random noise frequencies with the RL system is one

of the biggest milestones. Further analysis of doppler effects
of the moving source and different locations of the secondary
cancelling source will be forthcoming studies. In the future
research lines, the search of very low latency systems will
be performed to quickly modify the loudspeaker emission
parameters and to properly mitigate the noise in an experi-
mental validation. Also, the implementation of speakers in
the last row of the scatterers of the SCNB will be consider,
for the purpose to have a more compact system.
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