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Abstract 

Real-Time Early Warning Systems are a critical approach implemented for monitoring geo-hazard 

disasters such as earthquakes, tsunamis, volcanic activities, and land subsidence. The Earth's 

population has experienced a substantial increasement, consequently exposing a growing number 

of people to the effects of various geo-hazard disasters. These influences could impact citizens and 

countries at different severity levels, reaching high costs in terms of human beings and economic 

losses. However, the early warning system's ability to initiate proper and reliable warnings 

significantly impacts in disaster cost reductions in terms of saving lives, reducing home and 

infrastructure damages, and mitigating economic losses. 

Real-Time Precise Point Positioning (RT-PPP) plays a significant role as part of the Early Warning 

Systems, due to its potential to provide real-time tracking and global coverage and its reliance on 

precise real-time measurements acquired from only one receiver. However, the RT-PPP approach 

applies State Space Representation (SSR) products that are highly sensitive to several GNSS error 

sources. As a result, the warning system's availability and reliability are negatively impacted. It 

may even be triggered to issue false warnings by factors such as long initialization times, 

convergence losses, due to poor quality of orbital and clock corrections, ambiguity resolutions, 

or/and multipath error. Furthermore, poor satellite geometry and the latency of SSR products 

severely affect the performance of real-time PPP positioning. 

In this research, we investigated the effect and mitigation of latency on real-time correction 

products. The International GNSS Services (IGS) provides official real-time products for RT-PPP; 

these products contain clock and orbit corrections, among others, and they are the main research 

concerns as the combination process increases the latency impact on both RT-PPP results and 

influences the early warning systems performance based on this positioning technique. In this 

research, investigations into the potentiality of using machine learning approaches to overcome 

latency problems were carried out. The research examines the Support Vector Regression (SVR) 

and Autoregressive Integrated Moving Average (ARIMA) machine learning models to predict the 

corrections broadcasted in SSR products that have a big capability in order to be used instead of 

the corrections impacted with latency.  
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The prediction process requires the implementation of rolling sliding windows for training and 

parametrization of the research machine learning models. Next, the research has investigated the 

establishment of RT-PPP early warning systems with the aid of machine learning. The deformation 

simulation engine was created during the research, which was then utilized through a series of 

experiments to obtain an adequate RT-PPP scenario for research database creation. The created 

database is consequently used to train and test several machine learning models and their 

influences on the early warning system performance.   

The research results regarding latency showed that the SVR and ARIMA models could mitigate 

the latency influences for the primary navigation satellite systems GPS and GLONASS by around 

twenty percent. The SVR model showed a tendency to predict outliers; however, the execution 

time for the SVR is significantly faster than the ARIMA model processing time. 

Regarding the performance of the RT-PPP early warning system, the research statistically evaluates 

several machine learning models, including decision tree, random forest, support vector classifier, 

K nearest neighbors, logistic regression, and extreme gradient boosting models as machine 

learning approaches for establishing an early warning system. The extreme gradient boosting and 

random forest models were more accurate than the other utilized models, with 97 and 99 percent 

overall accuracy. At the same time, the extreme gradient boosting showed less tendency to initiate 

false alarms, with 2.48 percent compared to 16.28 percent for the random forest model.    

From the research findings, we derived a set of statistical assessments to evaluate the performance 

of the established early warning systems. These statistical assessments can evaluate the ability of 

the utilized machine learning models regarding deformation detections and the model's tendency 

to initiate false warnings. The study's results confirmed that extreme gradient boosting is the most 

effective machine learning technique for creating an early warning system. The research 

contributions can benefit citizens, businesses, stakeholders, and government agencies.  

Landslides, land uplifting, volcanic activity, earthquakes, and tsunamis are only some of the geo-

natural hazards where the aid of the RT-PPP early warning system can be established. This thesis' 

findings can also aid emergency planners and managers by providing them with more accurate 

descriptions of real-time warnings, enhancing the understanding of the likely extent of 

deformations extents and their impacts. 
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Resumen 

Los sistemas de alerta temprana en tiempo real son instrumentos claves para vigilar posibles 

desastres geológicos como terremotos, tsunamis, actividades volcánicas, hundimiento del terreno 

o deslizamientos de ladera. Durante las últimas décadas, el número de personas afectadas por los 

diversos desastres geológicos ha aumentado de forma sustancial. Las consecuencias negativas de 

estos desastres afectan a la población y a las infraestructuras con diferentes niveles de gravedad, 

pudiendo llegar a tener un impacto elevado en pérdidas humanas y económicas.  Sin embargo, los 

sistemas de alerta temprana tienen la capacidad de proporcionar avisos adecuados y confiables, lo 

que puede llevar a minimizar las pérdidas humanas y económicas.  

El método de Posicionamiento Puntual Preciso en tiempo real (RT-PPP) desempeña un papel 

importante como parte de los sistemas de alerta temprana; debido a su capacidad para proporcionar 

seguimiento en tiempo real, cobertura global y su capacidad de obtención de mediciones precisas 

en tiempo real adquiridas por un solo receptor. A pesar de esto, el método (RT-PPP) utiliza 

productos para la corrección de la órbita y los relojes de los satélites (productos SSR) que son 

sensibles de los errores de la tecnología GNSS. Como consecuencia, estos errores pueden afectar 

la disponibilidad y fiabilidad de los sistemas de alerta temprana basados en la técnica RT-PPP. 

Debido a estos errores, se pueden llegar a generar avisos falsos, algunos de estos errores son: largos 

tiempos de inicialización, falta de continuidad y exactitud en los resultados, mala calidad de 

corrección de órbita y reloj de los satélites, mala resolución de la ambigüedad, etc.  Además, la 

mala geometría de los satélites y la latencia de los productos SSR afectan gravemente el 

rendimiento del posicionamiento PPP en tiempo real. 

Este trabajo de investigación, se enfoca, en una primera parte, en el análisis de los efectos y los 

métodos de mitigación de la latencia de los productos de corrección en tiempo real.  El 

International GNSS Service (IGS) proporciona productos oficiales para materializar la técnica de 

PPP en tiempo real, estos productos contienen correcciones para las órbitas y los relojes de los 

satélites que se generan como combinación de los calculados en los diferentes centros de cálculo 

repartidos por el mundo. Este proceso de combinación aumenta  la latencia y, por tanto, su impacto 

en la solución RT-PPP, afectando el desempeño de cualquier sistema de alerta temprana basada en 

RT-PPP. Así, en esta tesis, se usará el enfoque de Aprendizaje Automático para resolver el problema 
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de la latencia, intentando predecir los valores de las correcciones en los productos SSR para el 

tiempo de la latencia. Se han utilizado los modelos de Support Vector Regression (SVR) y de 

media móvil integrada autorregresiva (ARIMA) para la predicción, necesitando, en el proceso, la 

implantación de ventanas deslizantes para entrenar y parametrizar los modelos de aprendizaje 

automático.  

En segundo lugar, la investigación se enfoca en el desarrollo de un sistema de alerta temprana que 

combina el método RT-PPP con los modelos de aprendizaje automático. Para ello, se ha 

desarrollado un motor de simulación de deformación que se ha utilizado, mediante una serie de 

experimentos, para obtener el escenario RT-PPP más coherente con el objetivo de generar una base 

de datos. Más tarde, se utiliza la base de datos para entrenar y verificar diferentes modelos de 

aprendizaje automático y su influencia en el desempeño de los sistemas de alerta temprana.  

Los resultados de la investigación de la parte de la latencia han indicado que los modelos SVR y 

ARIMA podrán mitigar la influencia de la latencia para los principales sistemas de navegación por 

satélite (GPS y GLONASS) en alrededor de un veinte por ciento. El modelo SVR mostró una 

tendencia a predecir valores atípicos; sin embargo, el tiempo de ejecución del SVR es 

significativamente menor que el tiempo de procesamiento del modelo ARIMA. 

En cuanto al desempeño del sistema RT-PPP de alerta temprana, este trabajo de investigación ha 

evaluado, estadísticamente, varios modelos de aprendizaje automático, entre ellos los métodos de 

Árbol de decisión, Random Forest, Máquina de vectores de soporte (SVM), K vecinos más 

cercanos, Regresión logística, y el modelo de boosting extremo por gradientes (XGB). El análisis 

de los resultados indica que los modelo de XGB y Random Forest muestran los resultados más 

coherentes y precisos con 97 y 99 porciento de precisión. Asimismo, el modelo XGB muestra 

menos tendencia a iniciar falsas alarmas con un 2,48 por ciento en comparación con el 16,28 por 

ciento del modelo Random Forest. 

A partir de los resultados de la investigación, se derivan un conjunto de pruebas estadísticas para 

evaluar el desempeño de los sistemas de alerta temprana establecidos. Estas pruebas estadísticas 

pueden evaluar la capacidad de los modelos de aprendizaje automático utilizados con respecto a 

la detección de deformaciones y la tendencia del modelo a iniciar falsos avisos. Los resultados 

confirman que el modelo de XGB es la técnica de aprendizaje automático más eficaz para crear un 
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sistema de alerta temprana en estas condiciones. Los resultados de esta investigación pueden 

beneficiar a ciudadanos, empresas y agencias gubernamentales. 

Deslizamientos de tierra, levantamientos de tierras, actividad volcánica, terremotos y tsunamis son 

algunos de los peligros geológicos en los que se puede necesitar la ayuda de sistema de alerta 

temprana basado en la técnica RT-PPP. Los resultados de esta tesis pueden también ayudar a los 

planificadores y gestores de emergencias proporcionándoles descripciones más precisas de las 

advertencias en tiempo real, mejorando la comprensión de los posibles alcances de la deformación 

y sus impactos. 
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Resum 

Els sistemes d'alerta primerenca en temps real són instruments claus per vigilar possibles desastres 

geològics com ara terratrèmols, tsunamis, activitats volcàniques, enfonsament del terreny o 

lliscaments de vessant. Durant les darreres dècades, el nombre de persones afectades pels diversos 

desastres geològics ha augmentat de manera substancial. Les conseqüències negatives d'aquests 

desastres afecten la població i les infraestructures amb diferents nivells de gravetat i poden arribar 

a tenir un impacte elevat en pèrdues humanes i econòmiques. Tot i això, els sistemes d'alerta 

primerenca tenen la capacitat de proporcionar avisos adequats i fiables, la qual cosa pot portar a 

minimitzar les pèrdues humanes i econòmiques. 

El mètode de Posicionament Puntual Precís en temps real (RT-PPP) té un paper important com a 

part dels sistemes d'alerta primerenca; a causa de la seva capacitat per proporcionar seguiment en 

temps real, cobertura global i la seva capacitat d'obtenció de mesuraments precisos en temps real 

adquirits per un sol receptor. Tot i això, el mètode RT-PPP utilitza productes per a la correcció de 

l'òrbita i els rellotges dels satèl·lits (productes SSR) que són sensibles als errors de la tecnologia 

GNSS. Com a conseqüència, aquests errors poden afectar la disponibilitat i la fiabilitat dels 

sistemes d'alerta primerenca basats en la tècnica RT-PPP. A causa d'aquests errors, es poden arribar 

a generar avisos falsos, alguns d'aquests errors són: llargs temps d'inicialització, manca de 

continuïtat i exactitud als resultats, mala qualitat de correcció d'òrbita i rellotge dels satèl·lits, mala 

resolució de l'ambigüitat, etc. A més, la mala geometria dels satèl·lits i la latència dels productes 

SSR afecten greument el rendiment del posicionament PPP en temps real. 

Aquest treball de recerca s'enfoca, en una primera part, a l'anàlisi dels efectes i els mètodes de 

mitigació de la latència dels productes de correcció en temps real. L'International GNSS Service 

(IGS) proporciona productes oficials per materialitzar la tècnica de PPP en temps real, aquests 

productes contenen correccions per a les òrbites i els rellotges dels satèl·lits que es generen com a 

combinació dels calculats als diferents centres de càlcul repartits pel món. Aquest procés de 

combinació augmenta la latència i, per tant, el seu impacte en la solució RT-PPP, afectant l'exercici 

de qualsevol sistema d'alerta primerenca basada en RT-PPP. Així, en aquesta tesi, s'usarà 

l'enfocament d'aprenentatge automàtic (Machine Learning) per resoldre el problema de la latència, 

intentant predir els valors de les correccions en els productes SSR per al temps de la latència. S'han 
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utilitzat els models de Support Vector Regression (SVR) i de mitjana mòbil integrada 

autoregressiva (ARIMA) per a la predicció, necessitant, en el procés, la implantació de finestres 

lliscants per entrenar i parametritzar els models d'aprenentatge automàtic. 

En segon lloc, la recerca s'enfoca en el desenvolupament d'un primer sistema d'alerta que combina 

el mètode RT-PPP amb els models d'aprenentatge automàtic. Per fer-ho, s'ha desenvolupat un 

motor de simulació de deformació que s'ha utilitzat mitjançant una sèrie d'experiments per obtenir 

l'escenari RT-PPP més coherent amb l'objectiu de generar una base de dades. Més tard, s'utilitza la 

base de dades per entrenar i verificar diferents models d'aprenentatge automàtic i la seva influència 

en l'exercici dels primers sistemes d'alerta. 

Els resultats de la investigació de la part de la latència han indicat que els models SVR i ARIMA 

podran mitigar la influència de la latència per als principals sistemes de navegació per satèl·lit 

(GPS i GLONASS) al voltant d'un vint per cent. El model SVR va mostrar una lleugera tendència 

a predir valors atípics; tot i això, el temps d'execució del SVR és significativament menor que el 

temps de processament del model ARIMA. 

Pel que fa a desenvolupament del sistema RT-PPP d'alerta primerenca, aquest treball de recerca ha 

avaluat, estadísticament, diversos models d'aprenentatge automàtic, entre ells els mètodes d'Arbre 

de Decisió, Random Forest, Màquina de Vectors de Suport (SVM), K veïns més propers, Regressió 

Logística, i el model de Boosting Extrem per gradients (XGB). L'anàlisi dels resultats indica que 

els models de XGB i Random Forest mostren els resultats més coherents i precisos amb 97 i 99 

porcent de precisió respectivament. Així mateix, el model XGB mostra menys tendència a iniciar 

falses alarmes amb un 2,48% en comparació del 16,28% del model Random Forest. 

A partir dels resultats de la recerca, es deriven un conjunt de proves estadístiques per avaluar 

l'exercici dels sistemes d'alerta primerenca establerts. Aquestes proves estadístiques poden avaluar 

la capacitat dels models d’aprenentatge automàtic utilitzats pel que fa a la detecció de 

deformacions i la tendència del model a iniciar falsos avisos. Els resultats confirmen que el model 

XGB és la tècnica d'aprenentatge automàtic més eficaç per crear un primer sistema d'alerta en 

aquestes condicions. Els resultats d'aquesta recerca poden beneficiar ciutadans, empreses i 

agències governamentals. 
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Lliscaments de terra, aixecaments de terres, activitat volcànica, terratrèmols i tsunamis són alguns 

dels perills geològics en els quals es pot necessitar l'ajuda de sistema d'alerta primerenca basat en 

la tècnica RT-PPP. Els resultats d'aquesta tesi també poden ajudar els planificadors i els gestors 

d'emergències proporcionant-los descripcions més precises de les advertències en temps real, 

millorant la comprensió dels possibles abasts de la deformació i els seus impactes. 
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Chapter 1 Thesis Introduction 

1.1 Introduction 

The global population surge has led to unregulated urbanization, resulting in slum growth and 

inadequate urban planning, particularly in developing nations, causing disorderly clustering of 

individuals in makeshift dwellings. 

Moreover, this expansion of unregulated urbanization brings forth the potential for individuals to 

settle in nearby regions that are susceptible to geo-hazards, such as earthquakes, tsunamis, 

landslides, or volcanic eruptions. The absence of proper planning and regulations further 

exacerbates the vulnerability of these areas to geological and natural calamities. 

As urban populations grow, the demand for massive structures increases, necessitating resilient 

infrastructure like dams, bridges, tunnels, and transportation networks to support these urban 

centers. Moreover, there has been a significant rise in the demand for various forms of power 

generation; this includes expanding nuclear power plants, electrical power infrastructure, water 

treatment and water supply units, and offshore energy projects.  

Global warming and climate change pose significant challenges to metropolitan areas, including 

increased sea levels, heavy rainfall, and unmanaged groundwater extraction, exposing them to geo-

hazards. Slum areas, residential structures, and associated infrastructures are vulnerable to various 

environmental conditions such as wind loads, landslides, ground subsidence, earthquakes, and 

tsunamis (Capilla, Berné, Martín, & Rodrigo, 2016; Cina & Piras, 2015; Şanlıoğlu, Zeybek, & 

Özer Yiğit, 2016). These hazards can cause extensive destruction, leading to structural failures, 

loss of life, injuries, and significant infrastructure damage. For the mitigation of these risks, it is 

crucial to prioritize measures that enhance the constructions and associated infrastructures, such 

as implementing robust construction practices, improving structural integrity, and establishing 

early warning systems and evacuation plans (Beskhyroun, Wegner, & Sparling, 2011; Hristopulos, 

Mertikas, Arhontakis, & Brownjohn, 2007; Kaloop, Elbeltagi, Hu, & Elrefai, 2017; Khoo, Tor, & 

Ong, 2010; Rizos & Cranenbroeck, 2010). 
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The International Emergency Events Database (EM-DAT) is considered a global disaster database. 

The database contains information regarding disaster events, including the impact of a disaster in 

social and economic terms, geo-locations, number of affected people, and total deaths, among 

others. The database categorized the disasters into two main categories: natural and technological 

groups. The natural class contains several subclasses of geophysical phenomena (earthquakes, 

volcanic, and dry mass movements), and the meteorological subclass contains disasters such as 

(storms, heat and cold waves, or other severe weather conditions). In addition, floods and 

landslides belong to the hydrological subclass. The remaining sub-classes are climatological, 

biological, and extra-terrestrial (The International Disaster Database, 2022). 

The United Nations for Disaster Risk Reduction (UNDRR) reported the human cost of disasters, 

including an overview of the disaster's impact between 1980-2019. The report revealed that natural 

hazards cost around one million and a quarter of deaths and nearly three trillion US dollars in 

economic losses between 2000-2019. Additionally, the report compared the number of natural 

hazard occurrences between 1980-2019 (Yaghmaei, 2020). Accordingly, a remarkable increase in 

the related meteorological hazards, including extreme temperature, floods, storms, and landslide 

events, was found. The research summarizes the natural hazards related to geo-hazards. 

Consequently, Figure 1.1 compares the number of geo-hazards between 1980-2019 in terms of the 

number of occurrences with respect to several geo-hazard types, such as earthquakes, landslides, 

mass movements, and volcanic activities. The investigations show that earthquake events 

increased by around 21 percent in 2000-2019 compared to 1980-2000. However, the number of 

landslide events increased by 48 percent during the same period (Reduction, 1901; Vereinte 

Nationen Office for Disaster Risk Reduction,2022.; Yaghmaei, 2020a, 2020b). 
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Figure 1.1 Geo-hazard events occurrences comparison between 1980-1999 and 200-2019. 

(Prepared by the author). 

In order to investigate the impact of natural geo-hazard disasters, the research explored the EM-

DAT between 2000 and the nineteenth of July 2023 and filtered the database regarding the 

research-related disasters, including earthquakes, tsunamis, landslides, dry mass movements, and 

volcanic activities. The investigation was carried out to demonstrate the number of recorded 

disasters and the impact of disasters at a national scale with respect to total deaths, the number of 

affected people, and economic losses. EM-DAT recorded around thirty-five thousand two hundred 

ninety-five geo-hazard events globally during this period. Figure 1.2 shows the distribution of the 

recorded geo-hazard events. The figure shows that countries like Japan, India, Pakistan, Iran, 

Mexico, And Peru have more than twenty recorded geo-hazard events in the last twenty-three 

years. For instance, China and Indonesia recorded 168 and 154 geo-hazard events, respectively. It 

could be justified that the pre-mentioning countries located within the zone have high seismic 

activities.  
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Figure 1.2 Geo-hazard events distribution. 

(Prepared by the author). 

In terms of the research investigation regarding human losses, the thirty-five thousand two hundred 

ninety-five geo-hazard events claim more than eight hundred thousand death tolls. Figure 1.3 

shows that countries Pakistan, China, and Indonesia recorded around 75, 96, and 183 thousand 

death tolls in the last twenty-three years. Earthquakes and tsunamis are considered the most 

important causes of death due to geo-hazard disasters.  



5 

 

 

Figure 1.3 Geo-hazard events human cost. 

(Prepared by the author). 

In the context of the research inquiry about the quantification of affected individuals, it was 

observed that 35,295 geo-hazard disasters substantially impacted a global scale, affecting a 

staggering populace exceeding one hundred forty-two million. Figure 1.4 denotes the count of 

individuals affected by various factors, including structural damage to residences, displacement 

from disaster-stricken areas, and the deficiency of essential utilities such as electricity and water 

supplies. Figure 1.4 also shows that countries Turkey, China, and Indonesia recorded around 17, 

66, and 14 million impacted persons in the last twenty-three years.  
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Figure 1.4 The impact of Geo-Hazards disasters at the human scale. 

(Prepared by the author). 

In the context of the research inquiry about the quantification of economic losses, it was observed 

that the economic losses due to geo-hazard disasters cost more than eight hundred twenty-six 

million United States (US) dollars in the past twenty-three years. Figure 1.5 shows the impact of 

Geo-Hazards disasters at the national economic scale. For example, countries like Japan recorded 

around 434 million US dollars during the last twenty-three years. At the same time, around 147 

million US dollars have been recorded in China.  
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Figure 1.5 The impact of Geo-Hazards disasters at the economic scale. 

(Prepared by the author). 

The UNDRR prominently distributed and transmitted authoritative, timely, accurate, and 

actionable warnings during the second International Early Warning Conference 2003. The 

likelihood and severity of potential threats can be better understood with the help of these alerts. 

A key takeaway from the meeting was the need for widespread preparation in response to the 

warnings. 
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UNDRR has grouped early warning systems targeting distinct types of natural disasters. These 

systems include hydrology threats, biological and health hazards, crop and livestock illnesses, and 

geological hazards like tsunamis, earthquakes, volcanic eruptions, and landslides. 

On the contrary, the multi-hazard early warning systems have recently received increasing 

attention on a global scale. These systems are designed to deal with the difficulties posed by a wide 

variety of hazards and the effects they can have, whether they happen singly, together, in a chain 

reaction, or gradually over time. They are aware of the potential ties and interdependencies 

between various hazards and the combined consequences of these hazards. 

Early Warning Systems (EWSs) are specialized and established to accommodate a single geo-

natural hazard type, such as earthquakes, tsunamis, volcanic, and landslide risks. Accordingly, 

various tools and methods are integrated into establishing accommodated EWS. Consequently, the 

distinguishing characteristics of these EWSs could be addressed as implementing complex 

systems, high establishing costs, various response times regarding warning dissemination, and 

limitations in converging areas. 

Alternatively, establishing a Real-Time Precise Point Positioning Early Warning System (RT-PPP 

EWS), based on RT-PPP measurements has the capability to reduce the EWS establishing costs as 

a consequence of using a single Global Navigation Satellite System (GNSS) receiver operating 

with the aid of a global GNSS network of permanent stations. In addition, the solution provided 

by this method overcomes coverage area limitations issues that could arise if the EWS relies on 

traditional GNSS solutions. Another concerning issue regarding utilizing a traditional GNSS is the 

impact on deformation results as both GNSS receivers, even the whole GNSS network, are all 

subjected to deformations during natural hazard events; this resulted in the widespread use of 

Precise Point Positioning (PPP) in many areas and applications. Several studies have examined the 

appropriateness of the Precise Point Positioning (PPP) approach for remote areas with inadequate 

infrastructure. This approach can overcome the coverage constraints of adjacent base GNSS 

stations or the expensive implementation and maintenance of GNSS network solutions. Barker et 

al. (2002) and Bezicoglue et al. (2019) explored the potential of this approach in offshore, antarctic, 

and marine environments. 
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Multiple government-level international documents stress the significance of early warning 

systems. The Sendai Framework for Catastrophe Risk Reduction, adopted by the United Nations 

in 2015, recognizes early warning systems as essential for reducing and preventing disaster risk. 

This framework also emphasizes the importance of early warning systems, which must be 

significantly improved by 2030 to contribute to better Disaster Risk Reduction. The Hyogo 

Framework for Action (2005-2015): Developing the Resilience of Nations and Communities to 

Disasters also emphasized early warnings, ranking it as the second of five priorities for action. In 

recent years, there has been a massive influx of people into geo-natural hazards in metropolitan 

regions. The ability to take preventative measures on time before the onset of disasters is a crucial 

feature of early warning systems. These solutions could save many lives by minimizing the 

likelihood of accidents and property loss and reinforcing public and private sector business 

continuity efforts. 

Therefore, this thesis has the potential for substantial societal, economic, and knowledge 

contributions. 

Concerning the impact on society, the results of this thesis may be helpful for local communities, 

stakeholders, and the public sector. The developed RT-PPP EWS can aid in improving emergency 

preparedness towards geo-natural hazards such as landslides, land uplifting, volcanic, earthquakes, 

and tsunami land deformations. Findings from this thesis can also provide emergency planners or 

managers with better capability and insight for planning emergency rescue actions based on 

reliably described real-time scenarios and expected damages.  

Regarding the impact on the economy, findings from the thesis provide opportunities for 

companies, the public, and the private sector to design and implement business continuity of an 

EWS, as well as engineering applications of RT-PPP EWS. As the system can initiate early 

warnings of the expected deformations at a given location, in-advance planning can be developed 

to produce decision models for actions to take during warnings, with the primary goal of reducing 

geo-natural hazard consequences. However, utilizing the RT-PPP EWS could be an affordable 

solution, especially for developing countries (slum areas) or remote places were establishing 

traditional EWS could not be economically feasible. 

The following could be considered regarding the knowledge contributions: 
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• Confirming the impact of latency on the RT-PPP performance and coordinates accuracy 

and precision.  

• Improving the RT-PPP solutions using machine learning models to overcome the latency 

impact. Latency is treated as a time series variable so that ML models can be used for 

prediction. 

• Establishing a global and affordable EWS as a monitoring solution, especially for remote 

and vulnerable regions. 

• Confirming the correlation between the research features, such as error sources, with the 

RT-PPP EWS performance. 

• Establishing RT-PPP EWS with prior known probabilities regards the ability of initiation 

true /false /out-of-service early warnings.  

• Presenting a new approach with the ability to accommodate the establishment of the RT-

PPP EWS concerning various deformation types. 

• Creating and designing the deformation simulation engine as a data generation tool to train 

the RT-PPP EWS machine learning models. 

• The ability to establish an integrated RT-PPP EWS with other complementary data, such 

as geotechnical methods, remote sensing data, geophones, seismometers, and metrological 

means this could be utilized by expanding feature space and re-training the machine 

learning models. 
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1.2 Research aim, objectives, and research hypothesis  

This dissertation aims to develop a reliable, integrated, and precise RT-PPP EWS by integrating 

machine-learning classification models with RT-PPP measurements. For the sake of achieving the 

dissertation aim, the following objectives have been created: 

1. Literature review: To ensure the innovation and foundation of the research, a literature 

review was conducted, identifying and analysing existing studies on machine learning 

approaches, early warning systems, and precise point positioning relevant to deformation 

monitoring.  

2. Latency reduction: Examine how Real-Time State Space Representation (RT-SSR) 

products in the RT-PPP EWS can affect latency and how machine learning methods can be 

used to predict and possibly mitigate this impact.  

3. Data Preparation and Analysis:  

a. Collect relevant RT-PPP positional information.  

b. Pre-process the data to ensure its consistency, accuracy, and compatibility with 

machine learning algorithms. 

c. Analyze the relationship between various research variables and RT-PPP coordinate 

accuracy. 

4. Establishing the RT-PPP EWS machine learning model development:  

a. Identify and select informative features from the pre-processed data that can 

improve the accuracy and robustness of the RT-PPP EWS. 

b. Develop and train machine learning models using the research experiments and 

chosen features, and create and train machine learning models emphasizing 

methods like support vector machines, decision trees, logistic regression, extreme 

gradient boosting, nearest neighbouring, and random forests. 

5. System integration and evaluation:  

a. Integrate the trained machine learning models into the RT-PPP EWS framework. 

This will enable real-time processing and evaluation of positioning data. 
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b. Evaluate the performance of the proposed system in terms of accuracy, precision, 

robustness, and timeliness. Consider various scenarios and the probabilities of 

correctly detecting or not detecting true motions and potential errors. 

The following hypotheses were formulated and tested to facilitate the investigation of the objective 

as mentioned above. 

A. The latency value in International GNSS Service (IGS) clock correction products may 

impact the RT-PPP results. 

B. The machine learning models, for instance, the Support Vector Regression (SVR) and 

Autoregressive Integrated Moving Average (ARIMA), can overcome the latency problem; 

those methods are selected because GNSS clock corrections can be considered stationary 

time series signals that have no trends, seasonality or cyclical patterns.  

C. There is an improvement in the obtained RT-PPP results using the Machine Learning (ML) 

models. 

D. In the context of RT-PPP EWs research, the investigations propose the existence of 

relationships among the research variables, displacement values, deformation types, 

correction stream selection, orbital and clock corrections, quality indicators, and east, 

north, and up displacements. Furthermore, it is hypothesized that these relationships 

extended to RT-PPP results and RT-PPP EWS performance. 

E. Machine learning models and the variables used during the training phase impact the RT-

PPP Early Warning System (EWS) performance. 

F. Different RT-PPP Early Warning Systems (EWS) can be established to accommodate 

various deformation types. 

G. The performance of RT-PPP EWS is influenced by using the machine learning models.  

1.3  Thesis organization 

This section provides a complete overview of the thesis dissertation organization. The dissertation 

is composed of eight chapters and three Appendices. 

Chapter 1 introduces the thesis aim and the primary objectives. The thesis organization part also 

provides an overview of the study motivations. 
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Chapter 2 includes an overview of the satellite navigation systems, their signal spectrum, 

reference systems, and terrestrial reference frames. This chapter contains the primary error sources 

in GNSS that generally affect the GNSS measurements. Additionally, Chapter Two covers different 

GNSS organizations and analysis centers that focus on the dissemination of GNSS data, services, 

and correction products.   

Chapter 3 includes an overview of the PPP from different perspectives, such as the PPP scientific 

notation and background, the main advantages and the disadvantages of the technique, the State 

Space presentation (SSR), products to perform in RT-PPP, different SSR products, and a summary 

of the current products provided by the IGS and other ACs. Additionally, Chapter Three covers 

different software tools used in the field of RT-PPP.   

Chapter 4 includes a review of the Early Warning Systems (EWSs), their necessity, and a brief 

background in natural hazards related to earth crust deformations such as earthquakes, tsunamis, 

volcanic activities, and landslides. In addition, some examples of uses are DGNSS, PPP, and RT-

PPP-based EWS projects and studies. 

Chapter 5 briefly reviews Machine Learning (ML), including classification and regression 

algorithms. The chapter includes ML performance evaluation through different assessment 

matrices. Eventually, the chapter concluded with some GNSS and ML applications. 

Chapter 6 of this thesis expounds upon the research methodology, consisting of two primary 

components. The first component elucidates the research methodology adopted to enhance the RT-

PPP quality via a comprehensive investigation of various ML algorithms in order to reduce the 

latency. The research predominantly centers on the application of SSR products that contain 

corrections such as satellite clock and orbital corrections, code, and phase biases, among others 

explained in the previous chapter. All of them are particularly susceptible to latency effects. The 

second component of this chapter entails the illustrations of the ML algorithms utilized to build 

the early warning system provided with the proposed methodology investigation results. The 

chapter also contains a detailed account of the proposed engine designed to simulate earth 

deformation events, including the experiments' parameters and the system's limitations. 
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Chapter 7 describes the research findings, which are discussed in detail in Chapter 7. The first 

section of this chapter clarifies the studies' findings with respect to the prediction of RT-PPP 

corrections to eliminate the latency effect. Latency affects RT-PPP performance; thus, they are 

particularly interested in this study's focus area: clock and orbit corrections and the rest of the 

components of the SSR products. In addition, it affects the performance of EWS. The following 

sections of this chapter focus on the foundational and central research results carried out to launch 

the RT-PPP early warning system, with illustrations that summarize the ML techniques' results for 

tracking deformation in multiple directions.  

Chapter 8 concludes the research findings regarding the RT-PPP EWS, study challenges, future 

works, and the research recommendations. It also concludes the research's preliminary results 

concerning latency and RT-PPP EWS. 

Appendix A contains the main Ph.D. activities. 

Appendix B contains the research's comprehensive findings regarding the latency investigations. 

This section provides the rest of the figures and table regarding the range and standard deviation 

comparison to the research study year 2021. 

Appendix C holds the preliminary research results with respect to the establishment of RT-PPP 

EWS. The section includes the 48 research experiments' results, such as the scatter plots and the 

Horizontal Dilution of Precision (HDOP). 

 

 

 



15 

 

Chapter 2 GNSS Background 

2.1 Satellite navigation systems and signal spectrum 

2.1.1 Global Positioning System  

The Navy Navigation Satellite System, known as TRANSIT, is the original satellite navigation 

system. However, the initial system was replaced with the Global Positioning System (GPS) due 

to long periods of unavailability and low accuracy (Hofmann-Wellenhof et al., 2012).  

The first GPS satellites were launched in 1978. Those satellites were deployed for system 

validation and testing (National Aeronautics and Space Administration, 2022).  

Since 1978, the GPS has evolved with different satellites that have been launched in several 

satellite blocks. The number of operational GPS satellites is nearly 31, distributed in different 

blocks.  Block I, Blocks II and IIA, Block III, Block IIR, Block IIR-M, Block IIF, and Block IIIF. 

Table 2.1 shows that the number of operational satellites is 6, 7, 12, and 6 in Blocks IIR, IIR-M, 

IIF, and III, respectively (National Coordination Office for Space-Based Positioning, 2021). The 

GPS constellation status mentioned above corresponds to the last update on July 14, 2023. Figure 

2.1 shows GPS satellites in different blocks. 
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Block IIF Block III/IIIF 

Figure 2.1 GPS satellite blocks. 

(Source: www.gps.gov). 

It took the United States of America (USA) Department of Defence around 14 years to reach the 

full operation level (Hein, 2020). Unlike other navigation satellite systems, GPS satellites are 

distributed among six orbital plans tilted with an angle equal to 55 degrees concerning the equator 

plan (Hofmann-Wellenhof et al., 2012). The GPS was designed to provide the availability of using 

five to eight satellites globally. Three GPS signal carriers, L1, L2, and L5, are deployed, with 

1575.42 MHz, 1227.60 MHz, and 1176.45 MHz frequencies. Accordingly, the number of available 

GPS satellites and their signals are sufficient for positioning determination. Discrimination for 

different satellites, those signals are transmitted with Code Division Multiple Access (CDMA) 

with different Pseudo-Random Codes (PRNs). The GPS receiver on the earth's surface or onboard 

low-orbit satellites generates local replicas with different PRNs to distinguish and track different 

GPS satellites. Those signals are mainly dedicated to military usage through the Precise 

Positioning Services (PPS); however, the Standard Positioning Services (SPS) could be used by 

both civilian and authorized users. Nevertheless, the GPS modernization program currently 

http://www.gps.gov/
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focuses on deploying the third civilian signals, L2C, L5, and L1C; those signals will be mainly 

used for civilian commercial and safety of life applications (Hein, 2020; National Coordination 

Office for Space-Based Positioning, 2020). 

Improved compatibility with Galileo E signals is a goal of the new generation of Block III 

satellites; Block III satellites can transmit the new (L1C) civil signals. The current satellites are 

deployed with a Laser Reflectors Array (LRA) and Search and Rescue (SAR) payload (National 

Coordination Office for Space-Based Positioning, 2020). 

It was scheduled to start the launch of the Block III satellites in 2016; this date was delayed two 

years. From 2018 till the time of writing this thesis, Block III contained four satellites, and this 

number is projected to increase to ten satellites by the end of 2023. This number of satellites in the 

current block will improve compatibility and civil applications. Table 2.1 shows the GPS 

constellation status through different years and the signal segment characteristics for different 

blocks. 

Table 2.1 GPS constellation space and signal block characteristics (source: www.gps.gov). 

Block Lunch period Number of launched satellites L1 L2 L2C L5 L1C 

I 1978-1985 11 × ×    

II 1989-1990 9 × ×    

IIA 1990-1997 19 × ×    

IIR 1997-2004 13 × ×    

IIR-M 2005-2009 8 × × ×   

IIF 2010-2016 12 × × × ×  

III 2018- 2023 10 × × × × × 

In many scientific applications, the GPS has been involved, such as earth dynamics (Hu et al., 

2018; Mével et al., 2015; Miura et al., 2004), landslides monitoring (Calcaterra et al., 2012; Komac 

et al., 2015), deformation monitoring (Hristopulos et al., 2007; Khoo et al., 2010; Tang et al., 2017) 

the realization of International Terrestrial Reference Frame (ITRF) (Collilieux et al., 2011), Very 

Large Baseline Interferometry (VLBI) (Balidakis et al., 2018), soil moisture estimation and remote 

sensing (Martín, Ibáñez, et al., 2020; Martín, Luján, et al., 2020), radio occultation, and self-

driving vehicles (Li et al., 2017; Wickert et al., 2001).  
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2.1.2 GLONASS 

The GLONASS navigation system was created in the Soviet Union in the early 1970s 

(GLObalnaya NAvigatsionnaya Sputnikovaya Sistema). Since the collapse of the Soviet Union, 

the Russian Federation has been responsible for maintaining and developing the system.  

The first GLONASS satellites were launched in the early 1980s. The number of GLONASS 

satellites dropped during the Soviet Union collapse period. The GLONASS satellites are 

distributed in different blocks. Block I, Block IIa, and Block IIb, Blocks IIV, Block III, Block M, 

Block K. Currently, the number of operational satellites is 22 in Block M and 2 in Block K 

(Zaminpardaz et al., 2021). Table 2.2 shows the GLONASS constellation evolution; the table also 

includes the distribution of the GLONASS signal among different blocks. Figure 2.2 shows 

GLONASS satellites in both blocks (Anatoly Zak, 2021). 

  

GLONASS M GLONASS K 

 

Figure 2.2 GLONASS satellites blocks. 

(Source: www. RussianSpaceWeb.com). 

The GLONASS satellites were distributed among 3 Medium Earth Orbital (MEO) plans with a 

nominal altitude reaching 19100 km. The inclination angle concerning the equator plan is around 

65 degrees (Hofmann-Wellenhof et al., 2012). The GLONASS was designed to provide 

availability, especially at higher altitudes regions (Weber & Springer, 2001). The system currently 
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contains nearly 24 satellites in full operational mode; however, due to its short lifespan, this 

number has fluctuated since the 1890s.  

GLONASS broadcasts two levels of service: high and standard precision carried on GLONASS 

signals. GLONASS central frequencies are 1602 MHz and 1246 MHz. The system implemented 

the Frequency Division Multiple Access (FDMA) in order to distinguish GLONASS signals, 

allowing the system to transmit signals with central frequency shifted with small offsets.  

Equations 2.1 and 2.2 represent the frequency distribution in the L1 and L2 bands, respectively. 

𝑓1(𝑛) = 1602 + 0.5625 × 𝑛             (2.1) 

𝑓2(𝑛) = 1246 + 0.4375 × 𝑛            (2.2) 

Where: 

𝑓1 and 𝑓2: carrier frequencies in MHz. 

n: channel numbers whose integer value varies between -7 to 6. 

The FDMA allows GLONASS satellites to share frequencies with GLONASS antipodal satellites. 

The modernization program includes deploying more stable clocks onboard satellites. The current 

and future GLONASS Block K satellites are capable of broadcasting both FDMA and CDMA 

(Прикладной потребительский центр Госкорпорации “Роскосмос,” 2020) (Hein, 2020; 

Zaminpardaz et al., 2021). The GLONASS modernization includes improving the lifespan and 

implementing the SAR payload (Anatoly Zak, 2021; Urlichich et al., 2011; Zaminpardaz et al., 

2021). The last two GLONASS satellites were launched in October and November 2022. Using 

GPS/GLONASS enhances positioning determination's quality, integrity, and availability. Both 

systems have been used in several scientific applications (Afraimovich et al., 2013; Milyukov et 

al., 2010; Scaioni et al., 2018; Tronin, 2010). 
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Table 2.2 GLONASS constellation space and signal block characteristics (source: 

https://www.glonass-iac.ru/en/sostavOG/). 

Block Lunch period 
Number of launched 

satellites 

FDMA CDMA 

L1 L2 L3 

L1OF L1SF L2SF L2OF L3OC 

Block I 1982-1985 10 × × ×   

Block IIA 1985-1989 9 × × ×   

Block IIb 1987-1988 12 × × ×   

Block IIV 1988-2005 56 × × ×   

Block III 2001 1 × × ×   

Block M 2003-2020 50 × × × ×  

Block K 2011- 2023 8 × × × × × 

 

2.1.3 Galileo 

Galileo, the first European navigation satellite system, was born in the 1990s due to cooperation 

between the European Space Agency (ESA) and the European Commission (Steigenberger & 

Montenbruck, 2017). The first two Galileo satellites were launched in the period between 2005 to 

2008. They were named GIOVE-A and GIOVE-B; both satellites were launched to preserve the 

allocated frequency for the Galileo system by the International Telecommunication Union (ITU) 

(Gao et al., 2008; Taylor et al., 2007). Consequently, both involve orbital validation, system 

verifications, and signal testing. The Galileo satellites are distributed among different blocks. 

Block GIOVE contains two retired satellites, Block IOV contains four satellites, and it will have 

22 satellites. It is projected that the Galileo system will reach Full Operational Capability (FOC) 

by 2025 (NovAtel Inc, 2015; Sanz Subirana, 2013).  Figure 2.3 shows Galileo satellites in IOV, 

FOC, and GIOVE blocks. Table 2.3 shows the evolution of the Galileo constellation; the table also 

includes the distribution of the Galileo signal amongst different blocks. 

 

https://www.glonass-iac.ru/en/sostavOG/
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Galileo IOV Galileo GIOVE B 

  

Galileo GIOVE A Galileo FOC 

Figure 2.3 Galileo satellite blocks. 

(Source: www.space.skyrocket.de). 

Currently, the system has nearly 23 operational satellites and five auxiliary satellites for orbital 

replacements. Those satellites are distributed in three equally spaced MEO plans with altitudes 

around 23 222 km. The MEO plans are inclined concerning the equator plan with a 56-degree 

angle (European Union Agency for Space Program, 2022). 

 The system broadcasts signals through different L bands, specifically E1, E6, and E5. The higher 

bandwidth and the implementations of Alternate Binary Offset Carrier (AltBOC), Composite 

Binary Offset Carrier (CBOC), and Binary Offset Carrier (BOC) allow for avoiding radio jamming 

and interference, enhancing the signal-to-noise ratio, degrading the multipath effect and most 

importantly, increasing the interoperability with another GNSS system (Banville et al., 2008; Sanz 

Subirana, 2013).  

Galileo implements various services carrying transmitted signals. Those services are divided into 

three categories: free-of-charge services such as Open Service (OS) and Open Service Navigation 

Message Authentication (OSNMA), which contains information that allows GNSS receivers to 

http://www.space.skyrocket.de/
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guarantee that the receiver received correct navigation messages. Furthermore, High Accuracy 

Service (HAS) achieves a sub-meter accuracy level. The HAS is considered an open high-accuracy 

service based on broadcasting PPP corrections utilizing the Galileo E6 signals. This level of 

accuracy could be beneficial for several types of applications, including surveying, mapping, 

precision agriculture, and scientific communities (Hernandez et al., 2018). This second category 

contains paid services or required authentications like Public Regulated Services (PRS) and 

Commercial Authentication Services (CAS). The third service is dedicated to safety and life 

applications, called SAR (European Union Agency for Space Program, 2022).   

Table 2.3 Galileo constellation space and signal characteristics (source: https://www.gsc-

europa.eu/system-service-status/constellation-information) 

phases Lunch period 
Number of launched 

satellites 

E5 
E6 E1 E5 

E5a E5b 

GIOVE 2005-2008 2 × ×    

IOV 2011-2012 4 × × × × × 

FOC 2014-2024 22 × × × × × 

The Galileo navigation system has been involved in many scientific activities and attracted 

scholars' attention, including the Multi-GNSS Experiment (MGEX) (Afraimovich et al., 2013; 

Hadas & Hobiger, 2021; Paziewski et al., 2020; The Multi-GNSS Experiment and Pilot Project 

(MGEX), 2016; Zedek et al., 2021; European Parliamentary Research Service, 2018). 

2.1.4 BeiDou Navigation Satellite System 

The 1980s of the previous century saw the conception of the Chinese navigation system. The 

navigation system is named BeiDou, which means the great Bear stars constellations as both 

satellites and stars constellations used for navigation (Test and Assessment Research Center of 

China Satellite Navigation Office, 2022b).  

The first BeiDou satellite was launched in 2000 and was of the type BeiDou-1. Over time, new 

types emerged, such as BeiDou-2 and BeiDou-3.  The BeiDou satellites are distributed in three 

distinct types of orbital plans: Geostationary (GEO), Inclined Geostationary (IGEO), and MEO 

(NovAtel Inc, 2015). The first FOC level of service consists of 30 satellites. It comprises six 

satellites distributed equally among GEO and IGEO, and the rest in MEO (Test and Assessment 
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Research Center of China Satellite Navigation Office, 2022b). According to (Suya et al., 2022), 

the constellation composites of 15 BeiDou-2 satellites and 29 of the type BeiDou-3. More 

information regards the updated constellation status can be found on the official website of the 

Test and Assessment Research Center of China Satellite Navigation Office (Test and Assessment 

Research Center of China Satellite Navigation Office, 2022a). Figure 2.4 shows BeiDou satellites 

in Blocks 1, 2, and 3. Table 2.4 shows the BeiDou constellation development; the table also 

includes the spreading of the BeiDou signals amongst different blocks. 

  

BeiDou GEO BeiDou MEO 

 

 

BeiDou IGSO 

Figure 2.4 BeiDou satellite blocks. 

(Source: http://www.csno-tarc.cn/en/system/introduction(. 

The Chinese system offers several services, including Short Message Communication Service 

(SMCS), Satellite-Based Augmentation Service (SBAS), OS, SAR, and Precise Point Positioning 

(PPP) service. The middle band frequencies are 1176.45, 1207.14, 1268.52, 1561.098, and 1575.42 

MHz; those services are transmitted on various L band signals B2a and B2b, B3l, B1l, and B1C 

(Chong, 2009; Suya et al., 2022). As a result, the BeiDou data is considered in numerous scientific 

applications, such as the research of the International GNSS Monitoring and Assessment System, 

http://www.csno-tarc.cn/en/system/introduction
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China Aerospace (China Aerospace Corporation, 2018), and the MGEX project (The Multi-GNSS 

Experiment and Pilot Project (MGEX)), particularly in the Asia and China Regions. However, 

BeiDou faces numerous difficulties with satellite stability and low-performance precision, 

particularly at higher latitudes (Chong, 2009; Suya et al., 2022). 

Table 2.4 BeiDou constellation space and signals characteristics (source: http://www.csno-

tarc.cn/en/system/constellation). 

Block Lunch period 
Number of launched 

satellites 
B1 B2 B3 

Block BDS-1 2000-2006 4 × ×  

Block BDS-2 2007-2019 20 × × × 

Block BDS-3 2015-2022 35 × × × 

2.1.5 Regional Navigation Satellites Systems (RNSS) 

Besides the primary global navigation satellite system, new navigation systems were set up. 

However, those regional navigation systems mainly incorporate global navigation satellite 

systems. The RNSS's most beneficial is that it can assist GNSS observations regarding continuity, 

integrity, accuracy, and availability.  

2.1.5.1 Navigation with Indian Constellation (NavIC) 

NavIC just took the place of the previous term, the Indian Regional Navigation Satellite System. 

The primary goal of establishing NavIC is to offer navigation services to the Indian part of the 

Asia continent. SPS and Restricted Service (RS) are two services that NavIC offers. Currently, 

eight active satellites are divided among the system's GEO and IGSO orbits. Those satellites 

transmit their signals through 1176.45 MHz in the L band and 2492.02 MHz in the S-band 

(Department of Space, 2022; Hein, 2020). 

2.1.5.2 Quasi-Zenith Satellite System (QZSS) 

QZSS is integral to GPS for positioning enhancement.  However, this system was planned to assist 

only navigation users over the Japanese islands. The first QZSS satellite was launched in 2010.  

The system contains four operational satellites that transmit GPS-like signals, and three more 

satellites will launch sooner; the QZSS plan will include nearly eleven operational satellites. The 

primary benefit of employing QZSS is to improve positioning quality in contemporary cities and 

http://www.csno-tarc.cn/en/system/constellation
http://www.csno-tarc.cn/en/system/constellation
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urban canyons. To some extent, the satellites maintain to stay above the sky of the GNSS users 

(Cabinet Office, 2022; Hein, 2020; Kogure et al., 2006). 

2.1.6 Augmentation system 

Besides various navigation systems, augmentation systems are vital, especially in safety and life 

applications. Flight operations include landing, taking off, flight manoeuvres, and maritime 

operations like harbour traffic management. Consequently, the augmentation systems capabilities 

extended to deliver improved positioning performance.  Enhancing navigation regarding achieved 

accuracy, availability, reliability, and integrity (Bernhard Hofmann-Wellenhof, 2008).  

It is possible to think of an augmentation system in the same way as a differential system but with 

the added ability to offer integrity information. From the GNSS user's side, is it possible to deliver 

that information using SBAS or Ground-Based Augmentation Systems (GBAS). Both systems 

track GNSS measurements to analyse and generate corrections, then disseminate them to the 

desired users.  Different systems work under SBAS, such as Wide Area Augmentation System 

(WASS), European Geostationary Navigation Overlay Service (EGNOS), Multi-functional 

Satellite Augmentation System (MSAS), GPS Aided GEO Augmented Navigation (GAGAN), 

(System of Differential Correction and Monitoring) (SNAS), and System for Differential 

Correction and Monitoring (SDCM). The broadcasted information from the above system is 

transmitted through the geostationary satellites system, which makes them available specifically 

for a wide area. Figure 2.5 shows the SBAS system coverage regions (Bernhard Hofmann-

Wellenhof, 2008; Grewal et al., 2020).  



26 

 

 

Figure 2.5 SBAS coverage area. 

(Source: (Grewal et al., 2020)). 

Similarly to the SBAS system, the GBAS meets more restrictions requirements, especially for 

aviation. The GBAS broadcasted information could be transmitted to nearby users through ground 

communications. GBAS can be categorized as a Ground-Based Regional Augmentation System 

(GRAS), Local-Area Augmentation System (LAAS), and Pseudolites (Grewal et al., 2020).  
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2.1.7 Summary of GNSS systems  

The number of navigational satellites has been increasing recently. Currently, more than 150 

satellites are orbiting the Earth and providing various navigation signals. Those signals are 

distributed in L and S bands. The ability of the new satellite’s family, besides SBAS and GBAS, 

to transmit multiple singles across multiple frequency bands will allow researchers in this field to 

test out novel concepts like Real-Time Precise Point Positioning (RT-PPP) applications (Teunissen 

& Khodabandeh, 2015) auto vehicles (Darwish & Abu Bakar, 2018), and Unmanned Aerial 

Vehicles (UAVs) (Grayson et al., 2018). More than 17 signals provide OS for GNSS users; 

however, this number increases notably for Authentication users (Bernhard Hofmann-Wellenhof, 

2008; El-Rabbany, 2002; Kubo, 2008; Sanz Subirana, 2013). GNSS is encountering several 

challenges, such as improving the compatibility between different systems and reducing the 

frequency interferences; presently, L-band and S-band are saturated with different GNSS signals 

from various systems. Therefore, it is required to implement new technologies and novel ideas to 

implement a new generation of navigation signals, such as CBOC and AltBOC (Banville et al., 

2008). Accordingly, as many modern civilian applications rely on navigation signals, a complete 

agreement is necessary to safeguard all GNSS civilians against interferences, particularly during 

times of war. The distribution of GNSS satellites among various systems is depicted in Figure 2.6. 

The Y-axis displays the number of active satellites, and the X-axis displays the name of the active 

system. 
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Figure 2.6 Number of GNSS constellations operational satellites. 

(Prepared by the author). 

The distribution of the GNSS and RNSS signal spectra in the L and S bands is depicted in Figure 

2.7. The central frequency, the names of the signals, the type of modulation, and the signal's 

frequency domain spectrum are all included in the figure. 
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Figure 2.7 GNSS signals spectrum. 

(Source: https://gssc.esa.int/navipedia/images/c/cf/GNSS_All_Signals.png). 

 

 

https://gssc.esa.int/navipedia/images/c/cf/GNSS_All_Signals.png
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2.2 Geodetic reference systems and frames  

Using GNSS without geodesy and specifying the geodetic systems and frames is impossible 

(Deng, 2015). Consequently, it is crucial to understand the background and the characteristics of 

the different geodetic systems as the consequence of using different reference frames in the GNSS 

systems. According to the way of defining the reference system parameters, such as the directions 

of the axes, the system origin, whether or not it corresponds to the earth's center of mass, or whether 

the predefined axes are fixed or rotate with the earth. Accordingly, two of the primary reference 

systems have been used in navigation. The Conventional Celestial Reference System (CCRS) 

(Capitaine et al., 2000) and The Conventional Terrestrial Reference System (CTRS)  (Sillard & 

Boucher, 2001). Noting that the reference system and frame are distinct. The conventional 

reference system defines the three orthogonal axes in terms of the center of the system and axis 

direction and contains mathematical models and standards. In contrast, the frame implements that 

theoretical concept through observations and establishes the reference coordinates of reference 

points, which materialize the conventional reference system (SanzSubirana, 2013). 

2.2.1 Conventional celestial reference system  

The geo-mass and the system’s genesis are the same in this right-handed system. The Y-axis is 

established orthogonally to define the right-handed system, and the Z-axis is orthogonal to the 

equatorial plane. The X-axis points towards the Vernal equinox, and the Z-axis to the Celestial 

Pole (ICRS pole considering precession and nutation movements). CCRS is an inertial reference 

system that does not rotate with the Earth. (Bernhard Hofmann-Wellenhof, 2008; Sanz Subirana, 

2013). 

2.2.2 International earth rotation and reference systems service  

The Federation of Astronomical and Geophysical Data Analysis Services (FAGS) was created in 

1987 by the International Astronomical Union and the International Union of Geodesy and 

Geophysics.  

IERS (International Earth Rotation and Reference Systems Service), is the organization in charge 

of upholding international time and reference frame guidelines. Its main office is in Paris, (France); 

https://en.wikipedia.org/wiki/International_Earth_Rotation_and_Reference_Systems_Service
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several IERS components are spread across the US, Europe, and Australia. IERS aims to maintain 

and realize the international celestial reference system and frame and the international terrestrial 

reference system and frame, update earth orientation parameters, and interpret time and space 

variations for both systems (Federal Agency for Cartography and Geodesy, 2013). 

2.2.3 Conventional terrestrial reference system  

Earth Center Earth Fixed is the name of this system (ECEF). The X-axis points in the direction 

needed to produce a 90° angle concerning the Z-direction and connect with the earth's equatorial 

plane. The X-axis is directed towards the Greenwich zero meridian. The Z-axis aligns with the 

center of the polar motion circles of the Earth's rotation. Additionally, the Z and X directions are 

orthogonal to the Y axis. The practical implementation of CTRS is called the Terrestrial Reference 

Frame (TRF). IERS publishes International TRF under the name ITRFyy, where yy represents the 

year of publishing the ITRF. However, the main GNSS system implements a different TRF, which 

is aligned with the correct ITRFyy frame computing the transformation through selected station 

coordinates. Consequently, it is required to convert the measured observations from each scheme 

to the desired TRF, getting the coordinates instantaneously in any of the TRF systems or events in 

the local or country coordinate system (Bernhard Hofmann-Wellenhof, 2008; Sanz Subirana, 

2013). 

2.2.4 Reference system and international terrestrial reference frame 

The earth's crust has continuously formed and deformed for millions of years. Diverse phenomena 

shaping our planet's surfaces result in a relative displacement of points on the earth's crust. These 

phenomena include changes in ice cap coverage, earth fluids, earthquake activity, and plate 

tectonics movement (Altamimi et al., 2016). The plate tectonics theory was formalized in the 

1960s. The earth's rigid rocks exist in the crust and lithospheric layers. Those two layers float 

above the soft substratum where movements occur (Falvey, 1974). Millions of years ago, all 

current continents were tied together and formed Pangea. Due to the earth's crust motions, the 

number of tectonic plates and their margin vary over time.  Based on the above clarifications, 

realizing different reference frames adopting the earth's crust variations is mandatory. The 

International Terrestrial Reference System (ITRS) defines the procedures required for reference 
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frame creation. These procedures determine the coordinates and velocities of a series of stations 

distributed worldwide. Therefore, the obtained observations define the TRFyy (Altamimi et al., 

2002). GNSS, VLBI, Satellite Laser Ranging (SLR), Doppler Orbitography, and Radio Positioning 

Integrated by Satellite (DORIS) are the observation methods used to implement the ITRF 

(International Terrestrial Frame, 2020a). Realization of the ITRF is a composite of different tasks 

that increase the frame complexity. When merging the measurements from the previous 

observation methods, it is also necessary to consider the terrestrial tide, atmospheric and oceanic 

stresses, plate tectonics, and other seismic movements. The non-linear model was employed in the 

ITRF 2014 generation (Altamimi et al., 2016). However, the ITRF 2020 is an augmented 

parametric frame. 

The number of stations used for ITRF realization has increased, and this includes also performing 

TRF realization with more advanced technologies, leading to an increase in the ITRF’s accuracies. 

Around 1,200 sites operating with different positioning techniques are involved in the ITRF 2020 

realization. The available ITRF solution includes input data, computation approach, and frame 

definitions, which are available on the ITRF solutions web page (International Terrestrial Frame, 

2020).  

ITRF 2020 is currently under development. More than 1200 stations are involved in Frame 

generation. The accuracy of the 2020 frame is projected to be an improvement of the previous 

2014 frame. The number of co-location stations where the observation methods are combined is 

increased. Thanks to IGS products, which led to the densification of the ITRF stations. Three 

innovations in current realization: firstly, time series analysis of the co-location stations; secondly, 

yearly and half-yearly estimation for co-location station; and finally, fitting the GNSS observation 

in the Post Seismic Deformation (PSD) model. Equation 2.3 describes the PSD model. Figure 2.8 

shows the station networks involved in the last ITRF realization (ITRF 2020). 

𝑋(𝑡) = 𝑋(𝑡0) + 𝑋̇(𝑡 − 𝑡0) + 𝛿𝑋𝑃𝑆𝐷(𝑡) + 𝛿𝑋𝑓(𝑡)
̇           (2.3) 

Where: 

𝑋(𝑡): denotes the station position at epoch equal t. 

𝑋(𝑡0): represents the station position at epoch equal to t0. 
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𝑋̇(𝑡 − 𝑡0): denotes the station velocity vector. 

𝛿𝑋𝑃𝑆𝐷(𝑡): represents the whole sum of the post-seismic distortion modifications at the t epoch. 

𝛿𝑋𝑓(𝑡): denotes the annual and semi-annual frequencies. 

 

Figure 2.8 ITRF 2020 network. 

(Source: Zuheir Altamimi). 
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2.3 GNSS Reference Frames 

2.3.1 GPS Reference Frame WGS-84 

The GPS used the World Geodetic System 1984 (WGS-84). The USA Department of Defence is 

responsible for establishing and then updating the reference frame for both the USA and globally. 

Previous references were WGS-60, WGS-66, and WGS72. The last updated version, WGS-84, 

was agreed to ITRF2000, thanks to Horizontal Time-Dependent Positioning (HTDP) measuring 

the shifting between ITRF 2000 and current measurements. Consequently, the GPS satellites 

broadcast their location in WGS-84. Subsequently, the GPS users reveal their coordinates in the 

same reference frame (Bernhard Hofmann-Wellenhof, 2008; KUMAR, 1988; Sanz Subirana, 

2013). 

GPS users express their coordinate location in X, Y, and Z Cartesian coordinate systems. If 

geodetic coordinates are needed in terms of latitude, longitude, and height above a reference 

ellipsoid, the GRS80 (Geodetic Reference System) ellipsoid can be used. These coordinates are 

taken from a predetermined ellipsoid that originates in the Geo-mass and has semi-major axes of 

a=6,378,137 m and b=6,356,752.3. However, the ellipsoidal heights could be converted to 

orthometric heights utilizing the Earth Gravitational Model 2008 or 2020 (EGM08, EGM20) 

(Nikolaos et al., 2015; Barnes and Daniel, 2019). 

2.3.2 GLONASS Reference Frame PZ-90 

The GLONASS satellites transmit their locations in Parametry Zemli-90 (PZ-90). This geocentric 

system was realized by specifying the Z-axis direction concerning the north pole. The X-axis is 

formed by the union of the equatorial plane and the prime meridian, while the Y-axis is orthogonal 

to both X and Z. The directions depend on the IERS and the International Time Bureau (BIH). The 

reference frame was established from different observations, including gravitational 

measurements, Doppler, laser ranging, and altimetry, and those measurements are coincidental 

with the ITRF2000. The International GLONASS Experiment (IGEX-98) defined the conversion 

parameters between WGS-84 and PZ-90. Consequently, GNSS users can use GPS and GLONASS 

in either WGS-84 or PZ-90 frames(Bazlov et al., 1999; Bernhard Hofmann-Wellenhof, 2008; 

Boucher & Altamimi, 2001; Sanz Subirana, 2013). 
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2.3.3 Galileo Reference Frame (GTRF) 

The Galileo Geodetic Service Provider (GGSP) has been responsible for establishing and updating 

the GTRF. Unlike the GPS and GLONASS, the GGSP decided to keep the GTRF within 3 

centimetres of consistency, so it was required from the GGSP side to continuously maintain the 

GTRF with the last ITRF-released version. Maintaining such accuracy is essential to increasing 

the density of Galileo Sensor Stations (GSS) (Bernhard Hofmann-Wellenhof, 2008; Sanz Subirana, 

2013; Team et al., 2011).  

2.3.4 BeiDou reference frame 

The China Geodetic Coordinate System 2000 (CGCS2000) is associated with global ellipsoids and 

has the subsequent attributes of a semi-major axis a=6378137.0 m and semi-minor axis b= 

6356752.31414. The CGCS was established as a replacement for the old Beijing and Xi'an 

geodetic coordinate systems to establish a robust conversion. A dense network has been used 

consisting of 2000 stations. The CGCS2000 refers to the ITRF97 (Bernhard Hofmann-Wellenhof, 

2008; Prepared et al., 2009; Sanz Subirana, 2013).   

2.4 GNSS error sources 

The GNSS measurements are affected by many types of errors that mislead the ranging values 

between satellites and the GNSS receiver; those errors are caused mainly by atmospheric 

propagation delays, including the Ionospheric and tropospheric layers. Biases, clock stability, 

among others, and the environmental site conditions with the multipath, and interferences cause 

other error sources. 

2.4.1 Satellite clock errors 

The positioning solution mainly depends on the ranges of the distances between GNSS satellites 

and GNSS receivers. Both satellites and the receivers stamp the coming and transmitted signals 

and the locally generated signals with transmitting and receiving time. Therefore, small biases in 

calculating travelling time can lead to a remarkable amount; for example, ten nanoseconds of 

differences result in a ranging error with an amount of around three meters (El-Rabbany, 2002). 

Numerous clocks, mostly rubidium atomic oscillators, Cesium, and passive hydrogen maser 
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clocks, are installed onboard GNSS satellites. Frequent drift and offsets affect these clock 

oscillators (Wells, 1999). The GNSS satellite owns its time reference called satellite time; 

However, it requires the receiver side to measure the time concerning more common times to 

establish a position solution. The ground Master Control Stations (MCSs) are responsible for 

disseminating GNSS common time by calculating the satellite's clock perturbations concerning 

the common reference time for instant GPS time (Kaplan & Hegra, 2006). Next, it is required to 

upload these corrections to satellites and transmit them to the GNSS users. The polynomial 

equation 2.4 shows corrections applied to the satellite's clocks (Grewal et al., 2020). 

∆𝑡𝑠𝑣
𝑖 = 𝑎𝑓0 + 𝑎𝑓1(𝑡𝑠𝑣

𝑖 − 𝑡𝑜𝑐
𝑖 ) + 𝑎𝑓2(𝑡𝑠𝑣

𝑖 − 𝑡𝑜𝑐
𝑖 )

2
+ ∆𝑡𝑟

𝑖          (2.4) 

Where: 

as: are the clock corrections coefficients. 

𝑡𝑠𝑣
𝑖 : is the corresponding time to the ith satellite.  

∆𝑡𝑟
𝑖 : relativistic clock correction corresponding to the ith. 

𝑡𝑜𝑐
𝑖 : the clock data reference time. 

2.4.2 Receiver clock errors 

Unlike clocks deployed onboard GNSS satellites, the quartz crystal oscillators inside the receiver 

clocks are less accurate than rubidium, Cesium, and Hydrogen maser. In addition, from a 

mathematical perspective, the position solution unknowns include the receiver clock biases 

concerning the GNSS reference common time. This bias contains corrections for frequency drift 

and shifts inside the GNSS receiver clocks. From an economic point of view, deploying very 

expensive clocks for GNSS receivers is not feasible.        

2.4.3 Satellites orbital errors 

This type of error can be illustrated by the differences between the broadcast and the actual 

satellite's locations. The GNSS MCSs are in charge of determining and predicting the satellite's 

locations from the series of ground control points and antennas. Nevertheless, the higher 
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atmospheric conditions, solar wind, and variation in the gravitational field for the moon, sun, earth, 

and other celestial objects lead to differences between the predicted location and actual locations 

of the GNSS satellites; these differences classify into the three main categories: 

Class 1: Satellites radial errors. 

Class 2: Satellites along-track errors. 

Class 3: Satellites cross-track errors.             

These three error classes are corrected in terms of components and correction rates. Figure 2.9 

shows the direction of the orbital error components. 

 

Figure 2.9 Satellite orbital error components. 

(Prepared by the author). 
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2.4.4 Satellites wind-up error 

This type of error affects the phase measurements. The GNSS satellites must maintain their solar 

panels toward the sun's direction. Consequently, the GNSS MCSs exerted small manoeuvrers to 

preserve the satellite's directions. Therefore, the magnitude of counting wave cycles could be 

affected. Various GNSS methods and software can deal with wind-up (Kouba & Héroux, 2001; 

Wu et al., 1992). Wind-up mitigation is highly recommended for accurate applications (Sanz 

Subirana, 2013).  

2.4.5 Satellites antenna phase center error 

The mitigation of this type of error is required for precise applications. This mitigation is not 

required for the GNSS users who rely on the satellite's ephemeris data. The satellite coordinates in 

the navigation message itself, referring to the Antenna Phase Center (APC) for ECEF. The precise 

orbital corrections are produced through different analysis centers as well from the IGS 

organization (Sanz Subirana, 2013; The International GNSS Service, 2022). Concerning the 

Satellite Mass Center (MC), these corrections are computed. Accordingly, the offset between the 

APC and MC is required (Kouba & Héroux, 2001). Figure 2.10 illustrates the offsets between the 

APC and MC.  

 

Figure 2.10 Satellite mass and phase center. 

(Prepared by the author). 
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The variation between the APC and MC are provided through ANTEX files. Consequently, the 

different GNSS software, such as RKLIP and BKG Ntrip Client (BNC) software, uses a range of 

these offset values in order to approximately correct the GNSS satellite’s location with respect to 

the MC (Georg Weber, Leoš Mervart, Andrea Stürze, Axel Rülke & Stöcker, 2016; Takasu, 2009). 

2.4.6 Receiver antenna phase center error 

GNSS receivers, during the positioning  period, track different incoming signals. The points where 

the incoming signals have been received are known as the receiver antenna phase center. Due to 

the variations in the GNSS signal strength, satellite elevation angles, and antenna types, this center 

does not agree with the geometrical center. In the same way, most of the GNSS receiver's providers 

indicate these offsets in the ANTEX files (Schmid et al., 2007). Alternatively, this error could be 

mitigated using the differential GNSS method, especially for short baselines. Figure 2.11, which 

depicts the configuration of the wide-use Dorne Margolin T GNSS ring antenna.  L2 and L1 APCs 

are used to denote the antenna phase center for the GPS L1 and L2 signals. However, the ARP 

indicates the actual antenna reference point (Sanz Subirana, 2013).  

 

Figure 2.11  Dorne Margolin T GNSS receiver Antenna. 

(Source: (Sanz Subirana, 2013)). 
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2.4.7 Multipath error 

The ranging measurements must rely on the time difference between the transmitting signals from 

GNSS satellites and the receiving time measured by the GNSS receiver. That means the 

measurements must be carried from point to point or, in other words, from satellites to the receiver; 

however, it is possible that some signals could be reflected mainly from reflective surfaces such 

as water bodies, skyscrapers, or any glassy objects. The multipath error severely influences the 

GNSS measurements and could reach a level of 450 m (Sanz Subirana, 2013). Unlike other GNSS 

error sources, this type of error cannot be mitigated using differential GNSS methods, and even 

more, it is difficult to model (Grewal et al., 2020). This error source could be reduced in different 

ways, for instance, by careful site selection for the GNSS receiver station's location and by 

increasing the receiver antenna height over the ground level. Other methods could be employed, 

including time domain processing, the directed antenna array, long-term signal monitoring, and 

correlator technology (Grewal et al., 2020). For high-precision GNSS receivers, the GNSS 

manufacturing companies add protective layers that enhance the multipath mitigations. Figure 2.12 

shows the two paths of the incoming GNSS signal. 
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Figure 2.12 Multi-path error. 

(Prepared by the author). 

2.4.8 Atmospheric delay 

The incoming GNSS satellite signals interact with the atmosphere. The atmosphere itself is 

composed of different layers.  Those layers contain different gases and vary with temperature; the 

borders between layers are constructed according to the temperature variation (Noël, 2012). The 

GNSS signals consequently react differently as they pass through several levels. The signal 

travelling speed and the bending of the signal path are considered significant effects of the 

atmosphere (Dodson, 1986; Sanz Subirana, 2013). The tropospheric and ionospheric layers 

remarkably impact the measured ranges (Grewal et al., 2020).  

The Atmosphere affects the satellite signals by fluctuating signal speeds and directions.  The 

refractive index investigates the atmospheric effect on signal propagation (Enge, 1994). Equation 

2.5 shows that the medium with a refractive index of more than one means the signal experiences 
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a delay in that medium; on the contrary, if the n value is less than one, this medium speeds-up the 

upcoming signals.   

𝑛 = 𝑐/𝑣                      (2.5) 

n: refractive index. 

c: signal speed in a vacuum. 

v: denotes the speed of the signals in the travelling medium.  

Based on the relationship between the frequencies of the signals and the refractive index. The 

medium can be dispersive if the n value depends on the frequency values.  Alternatively, it cannot 

be a dispersive medium if the n values are free of the dependency of signal frequencies (Bernhard 

Hofmann-Wellenhof, 2008). To correct the GNSS data, the atmospheric inaccuracies are broken 

down into tropospheric and ionospheric errors. 

2.4.8.1 Tropospheric delay 

The tropospheric layer is close to the surface of the earth.  Both the troposphere and stratosphere 

layers affect the GNSS signals.  Those layers cover an altitude of around 50 Km above ground 

level (El-Rabbany, 2002). The GNSS signal traveling through the tropospheric layer encounters 

delay; accordingly, the range measurements will be longer than the actual geometric ranges. The 

tropospheric layer is a non-dispersive medium at the level of L band frequencies (Sanz Subirana, 

2013). 

Consequently, the troposphere disturbs code and phase observations with different frequencies 

with the same amount of propagation delay.  The tropospheric error has two components: dry and 

wet. The dry components occur due to Nitrogen and Oxygen, while water vapor, rain, and ice 

droplets may be responsible for the wet component (Enge & Misra, 2011). The wet and dry 

components cause the GNSS ranging measurements to have an extra time delay; consequently, the 

ranging measurement encounters 2-2.5 meters additional length with respect to the actual 

geometrical distance between GNSS satellites and GNSS users (Enge & Misra, 2011; Sanz 

Subirana, 2013). This error can be mitigated using differential GNSS methods, especially for short 

baselines where the climatological conditions are more or less the same between the GNSS pair 
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receivers (RTCM Special Committee, 2016). The stand-alone GNSS users can use different models 

to correct atmospheric errors. Most models have required the satellite's elevation angles, the user's 

geographical location, and the altitude above the mean sea level.  

Equation 2.6 shows the tropospheric estimation in meters (Grewal et al., 2020). 

∆𝑇𝑟= 10−6 ∫ 𝑁
𝑏

𝑎
𝑑𝑠                                                            (2.6) 

Where:  

∆𝑇𝑟 : the estimated tropospheric delay in meters. 

𝑑𝑠: denotes the GNSS signal path between the GNSS user and satellites. 

𝑎, 𝑏: The integral limits representing the upper and lower tropospheric boundaries. 

𝑁: The atmospheric refractivity, including the wet and dry elements.  

The 90% of the delay is attributable mainly to the dry component, which is also known as the 

Zenith Hydrostatic Delay (ZHD). The dry tropospheric gases, in particular Oxygen and Nitrogen, 

are a significant factor in the ZHD. On the other hand, the wet tropospheric delay is caused mainly 

by the presence of water vapor, rain, and humidity, which is also known as the Zenith Wet Delay 

(ZWD). Comparatively speaking, it is easier to anticipate the dry tropospheric delay. However, the 

complex modelling needed for the tropospheric wet components makes it impossible to estimate 

the wet tropospheric delay with high accuracy. 

𝑁 = 𝑁𝑑 + 𝑁𝑤                                                (2.7) 

Equation 2.7 shows the atmospheric refractivity, including the two parts. Misra and Enge (2012) 

provide a mathematical approach to estimating the atmospheric refractivity parts. 

𝑁𝑑 = 77.64 
𝑃

𝑇
                                                (2.8) 

𝑁𝑤 = 3.73 𝑋 105  
𝑒

𝑇2                                                (2.9) 

P and e in Equations 2.8 and 2.9 signify the total pressure and water vapor in millibars, respectively, 

and T denotes the temperature in Kelvin.  
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It is worth highlighting several terms utilized to describe the tropospheric delay, including the 

Zenith Total Delay (ZTD). It is the total amount of time that the troposphere adds to a GNSS signal 

as it travels from the GNSS satellites to the users as it is projected in the zenith direction. Usually, 

the tropospheric delay is estimated utilizing the Zenith Path Delay (ZPD) and mapping function. 

Additionally, the ZPD is the total amount of time the troposphere adds to a GNSS signal as it 

travels from the GNSS satellites to the users. Equations 2.10 and 2.11 show simple mathematical 

formulas utilizing satellite elevation angles to extract the dray and wet delays ( Enge & Misra, 

2011). 

𝑚𝑑(el) =
1

sin( 𝑒𝑙) +
0.00143

tan(𝑒𝑙) + 0.0445

 

 

(2.10) 

𝑚𝑑(el) =
1

sin( 𝑒𝑙) +
0.00143

tan( 𝑒𝑙) + 0.0445

 

 

(2.11) 

However, several models implement different mathematical approaches for determining both 

atmospheric components. Mapping of Niell, Saastamoinen, and Hopfield examples of models for 

reducing tropospheric error (Hofmann-Wellenhof et al., 2012; Niell, 1996; Sanz Subirana, 2013). 

Modelling tropospheric error attracts the attention of many scholars (Balidakis et al., 2018; Dong 

et al., 2018; Yao et al., 2017).  

2.4.8.2 Ionosphere delay 

The ionosphere layer formulates due to the interactions between the X-ray and ultraviolet energy 

with gas particles and atoms; consequently, these interactions lead to gas ionization (El-Rabbany, 

2002). The ionospheric layer stretches and covers 1000 km above the troposphere (Grewal et al., 

2020). The influence of the ionization reaction releases free electrons. Total Electron Content 

(TEC) is the sum of total free electron charges between the GNSS satellites and the GNSS receiver 
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(Hofmann-Wellenhof et al., 2012). Equation 2.12 shows the formula used to calculate the TEC for 

a particular GNSS satellite (Enge & Misra, 2011).  

𝑇𝐸𝐶 = ∫ 𝑛𝑒(𝑙)𝑑𝑙
𝑅𝑒𝑠

𝑠𝑎𝑡
               (2.12) 

Where: 

𝑇𝐸𝐶: is the total electron content. 

𝑛𝑒(𝑙): signifies the electron density from the satellites to the receiver. 

GNSS signal suffers a slowing down in its propagation rate and a deviation in its direction of 

travel. Unlike the troposphere, the ionosphere is a dispersive medium. Accordingly, the phase 

refractive and group indices in meter values depend on the frequency of incoming signals. 

Equations 2.13 and 2.14 show the indices calculations (Enge & Misra, 2011). 

𝑛𝑝ℎ = 1 −
40.3

𝑓2  *Ne                                  (2.13) 

𝑛𝑔𝑟 = 1 +
40.3

𝑓2  *Ne                       (2.14) 

Ne signifies the density of electrons, and f represents the frequency of the satellite's signals. 

The ionospheric delay is a dominating error source in GNSS measurements, and its value could 

vary from several meters to hundreds of meters in ranging measurements (Wells, 1999). The 

receiver's geographic location is one of several ionospheric delay magnitude variables. Polar and 

equatorial regions are experiencing more ionospheric activities rather than mid-altitude. Satellite 

elevation angle and measurement time also affect the GNSS measurements; day measurements 

practice more ionospheric delay than night measurements. Solar storms also severely influence the 

GNSS measurements (NovAtel Inc, 2015). 

Differential GNSS (the recommended baseline length does not exceed 20 km) (El-Rabbany, 2002). 

Nevertheless, the single-frequency stand-alone GNSS receiver could benefit from predefined 

models such as Klobucher and NeQuik (ESA, 2017; Klobuchar, 1987). 

 𝜑𝐼𝑜𝑛𝑜−𝑓𝑟𝑒𝑒 =
𝑓12∗𝜑1−𝑓22∗𝜑2

𝑓12−𝑓22
                      (2.15) 
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𝑅𝐼𝑜𝑛𝑜−𝑓𝑟𝑒𝑒 =
𝑓12∗𝑅1−𝑓22∗𝑅2

𝑓12−𝑓22
                      (2.16) 

Where 𝜑𝐼𝑜𝑛𝑜−𝑓𝑟𝑒𝑒 signifies the phase measurements free from the ionospheric delay, while 𝑅 

represents the measurements of code free from the ionosphere's effect, and 𝑓 represents the GNSS 

signal frequency.  

This dominant error can be mitigated in different ways.  Firstly, a stand-alone GNSS receiver 

capable of tracking multifrequency signals can use the Ione-free model shown in equations 2.15 

and 2.16 (Wells, 1999). However, for the same GNSS revivers operating in differential mode, when 

two receivers operate simultaneously in the same area, the inaccuracy can be removed using 

differential GNSS (the recommended baseline length does not exceed 20 km) (El-Rabbany, 2002). 

Nevertheless, the single-frequency stand-alone GNSS receiver could benefit from predefined 

models such as Klobucher and NeQuik(ESA, 2017; Klobuchar, 1987). 

The fluctuation in the GNSS signal route is minimal for satellites with an elevation angle of at 

least five degrees (El-Rabbany, 2002). However, it is necessary to consider the Vertical Total 

Electron Vertical Content (VTEC). The mapping function between the ionospheric delay related 

to VTEC and zenith angle z is shown in equation 2.17. (Hoffmann-Wellenhof & H. Lichtenegg, 

2001). 

∆𝐼𝑜𝑛𝑜= ±
1

cos(z՝)

40.3

𝑓2 ∗ 𝑇𝐸𝑉𝐶                                  (2.17) 

Numerous studies are being developed regarding ionospheric delay estimation and modelling, 

particularly in ionospheric scintillation.  This phenomenon refers to TEC's sudden and unexpected 

values(Crane, 1977; Kintner et al., 2007, 2009). 

2.4.9 Cycle slip 

The incidence of cycle slip is one of the flaws in phase carrier measurement. The GNSS receiver 

must continue to count the proportion of the carrier cycle during the tracking time. One cycle will 

be added to the starting cycle counts if the fractional phase changes from 360 to 0 degrees 

(Hoffmann-Wellenhof & Lichtenegg, 2001; Grewal et al., 2020). (NovAtel, 2015) define a cycle 

slip as "a jump in the number of integer cycles," These jumps may happen depending on the local 
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environment, such as nearby structures, power lines, and tree leaves. Cycle slip could be caused 

by receiver hardware manufacturing quality as well as software capabilities (Hoffmann-Wellenhof 

& Lichtenegg, 2001; Grewal et al., 2020). 

2.4.10 Relativistic effect 

The relativistic effect may only be necessary for precise positioning. The overall impact range 

calculation is less than 2 cm; therefore, it may be disregarded for most applications. The relativistic 

error was mainly caused by the gravitational field variation, which is known as general relativity, 

and special relativity related to the satellite velocity  fluctuations, both causing satellite clock 

drifting.  

The influence of general relativity causes clocks onboard satellites to run quicker as the satellites' 

altitude rises. The total impact reaches about 45 microseconds each day. Conversely, special 

relativity specifies that satellite clocks operate slower when the satellites travel with higher 

velocities and will operate faster while the satellites travel with slower velocities. This effect 

required additional correction of around 7 microseconds each day. The satellite's clocks are attuned 

to a slightly transmitted lower frequency of nominal frequencies on the ground before launching 

the satellites to ensure the satellite-transmitted nominal frequencies. It is important to note that the 

influence of relativistic effect varies slightly among different satellites, as it accounts for minor 

changes in the clock's rate with respect to changes in orbital eccentricity value. 

This phenomenon is not only impacting the onboard satellite clock, but it is also affecting the 

GNSS signals. At the same time, it interacts with the earth's gravitational field, leading to a 

propagation delay known as the Shapiro signal delay, which signifies the amount of delay that 

electromagnetic signals experience as they pass through the earth’s gravitational fields. 

Accordingly, the relativistic corrections of the geometric range can be applied to the distorted 

Euclidean distance range caused by the gravitational field effects on space-time (Ashby, 2003). 

 

 

 



48 

 

 

2.4.11 Instrumental delay 

The instrumental delays are caused by the GNSS signals generation process inside the satellites 

and simultaneously at the receiver side during tracking and receiving the signals. The GNSS 

signals pass through several devices, such as antennas, filters, frequency amplifiers, and cables.  

It is worth highlighting that the receiver's instrumental delay is included in the receiver clock 

estimate. On the other hand, the satellite instrumental delay can be cancelled by utilizing the Iono-

free combination or mitigated by using the related information in the broadcasted navigation 

message (Enge & Misra, 2011; Sanz Subirana, 2013). 

2.4.12 Receiver clock jumps 

Unlike expensive and accurate clocks used onboard GNSS satellites, the inexpensive clock is 

deployed in GNSS receivers. In order to mitigate the substantial clock, offset drifts encountered in 

GNSS receivers, a common strategy employed involves the periodic introduction of clock jumps.  

These clock adjustments manifest as integral multiples of milliseconds and uniformly impact all 

observable data. Consequently, they remain unnoticeable through the examination of geometry-

free linear combinations. However, they are evident as visible cycle slips within carrier 

observations. In positioning methodologies reliant on undifferenced data, the impacts of receiver 

clock offsets do not cancel out, necessitating the obligatory correction of all clock events (Kim & 

Lee, 2012). 

2.4.13 Satellites eclipse periods 

In order to operate the GNSS satellites effectively, the orientation of satellite solar panels must 

remain perpendicular to the sun's direction to receive the required operational energy. At the same 

time, the satellite antenna must be directed toward the earth’s center mass. However, the GNSS 

satellites encounter eclipse periods when the earth, sun, and the satellite are at the same line. 

Accordingly, during this period, the earth's shadow impacted the satellite, leading to the orientation 

problem of both satellites’ solar panels and antennae. However, after the eclipse, the satellite 

implements small manoeuvres to well-orient solar panels and satellite antenna. 
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Consequently, a sudden variation of wind-up occurs. The eclipse duration and the amount of the 

phase wind-up error are varied and related to the satellite’s orbital characteristics. For instance, 

GPS block II/IIA encountering eclipse period lasts 45-30 minutes, resulting in a 10 cm phase wind-

up. High-accurate GNSS positioning approaches must be omitted from positioning calculations 

(Kuba, 2009). Figure 2.13 illustrates the satellite eclipse period.  

 

Figure 2.13 Satellite eclipse periods.  

(Source: Liu et al., 2022). 

2.4.14 Satellite problems 

The GNSS broadcasting navigation messages contain satellite health indicators, which are used to 

eliminate unhealthy satellites from positioning calculations. Rarely few GNSS satellites encounter 

unrecorded manoeuvring or failure problems, which is not indicated in the navigation message. 

Consequently, the Center for Orbit Determination in Europe (CODE) is updated daily on the 

SAT_yyyy.CRX files recorded unusual satellite behaviours (Dach et al., 2015).  

2.4.15 Additional GNSS error sources  

The pre-mentioned GNSS error sources impact the GNSS positioning accuracy; this impact could 

vary from several centimetres up to tenths of meters during pseudorange and carrier range 

calculations. In addition to section two, error sources, it is worth highlighting that GNSS signals 

encountering additional errors such as radio interference, selective availability, signal spoofing, 
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and hacking could also be considered intentional error sources that impact the GNSS system's 

performance. Eventually, Table 2.5 summarizes the magnitude of several GNSS error sources.  

Table 2.5 Magnitude of the different errors on GNSS ranges. 

Error source Magnitude (meter) 

Orbit eccentricity About 15 

Space curvature Less than 0.018 

Shapiro delay Less than 0.02 

Phase wind-up Less than 0.12 

Ionospheric delay Less than 100 

Tropospheric delay About 2.23 

Troposphere curvature Less than 0.03 

GNSS satellite phase center offset Less than 2.7 

GNSS satellite phase center variation Less than 0.01 

GNSS receiver phase center offset Less than 0.12 

GNSS receiver phase center variation Less than 0.02 

GNSS satellite differential code bias Less than 14 

GNSS receiver differential code bias Less than 2 

 

2.5 International GNSS Services (IGS) 

In 1992, the International GPS Services IGS began with a trial run. It officially started in 1994 

(Beutler et al., 1999). In 2005, the IGS was renamed International GNSS Services. The IGS 

comprises around 512 GNSS stations and 350 worldwide agencies such as institutes, universities, 

and research centers from 118 different regions and countries. Figure 2.14 shows a map that 

describes how the IGS stations are distributed globally.  
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Figure 2.14 IGS Networks 2023 stations in 2023. 

(Source: https://igs.org/network/#station-map-list). 

IGS is in charge of offering top-notch GNSS information, products, and facilities, mainly to 

academic and non-commercial users. It provides different products for the navigation community, 

for instance, GNSS orbital and clock corrections, earth rotation corrections, and atmospheric data. 

Those products are vital for monitoring earthquakes and volcanic and crustal deformations. The 

organization is also involved with tropospheric and ionospheric mapping activities. The IGS, with 

predicted and final products and services, aids the realizations and the extensions of the 

International Terrestrial Frames (ITRFs).  

The international service consists of different components: associate members, a governing board, 

a central bureau, data centers, analysis centers, an analysis center coordinator, associate analysis 

centers, working groups, an infrastructure committee, station-operating agencies, and contributing 

organizations.  Figure 2.15 shows the structures of the IGS entities.   

https://igs.org/network/#station-map-list
https://igs.org/governance-management/#governing-board
https://igs.org/governance-management/#central-bureau
https://igs.org/data-access/#data-centers
https://igs.org/acc
https://igs.org/acc
https://igs.org/acc
https://igs.org/acc
https://igs.org/working-groups-pilot-projects
https://igs.org/committees/infrastructure
https://igs.org/governance-management/#associate-members
https://igs.org/contributing
https://igs.org/contributing
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Figure 2.15 IGS structures. 

(Source: https://igs.org/organization). 

https://igs.org/organization
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File access services allow users to download different navigation, observations, corrections, and 

precise satellite coordinates. The Real-Time Service (RTS) was officially launched in 2013; the 

RTS's main target is maintaining the global navigation GNSS permanent stations and 

disseminating real-time products (Caissy & Agrotis, 2011). Currently, various Analysis centers are 

involved in RTS (IGS, 2020). IGS provides various products like real-time clock products, orbital 

bias corrections, and ionospheric and tropospheric corrections in various latency periods. The main 

clock products that are offered on the IGS platform are shown in Table 2.6. 

Table 2.6 Products from IGS Clock (IGS, 2020b). 

Type Accuracy(nanoseconds) Latency Updates Sample Interval 

Broadcast 
~5     RMS 

real-time -- Daily 
~2.5  SDev 

Ultra-Rapid 

(predicted half) 

~3    RMS 
real-time at 03, 09, 15, 21 UTC 15 min 

~1.5 SDev 

Ultra-Rapid 

(observed half) 

~150 ps RMS 
3 - 9 hours at 03, 09, 15, 21 UTC 15 min 

~50 ps SDev 

Rapid 
~75 ps RMS 

17 - 41 hours at 17 UTC daily 5 min 

~25 ps SDev 

Final 
~75 ps RMS 

12 - 18 days every Thursday 

15 min 

Sat.: 30s 

~20 ps SDev Stn.: 5 min 

The IGS provides orbital products as radial, cross, and long-track correction parameters. IGS also 

provides these products with the same latencies as clock products.  Table 2.7 demonstrates those 

products regarding accuracy, latency, updating rates, and sampling intervals. 

Table 2.7 IGS Orbit products (IGS, 2020b). 

Type 
Accuracy 

(cm) 
Product Latency Updating Time 

Sample Interval 

(min) 

Broadcast Around 100 real-time -- Daily 

Ultra-Rapid 

(predicted half) 
Around 5 real-time 03, 09, 15, 21 UTC 15 

Ultra-Rapid 

(observed half) 
Around 3 3 - 9 hours 03, 09, 15, 21 UTC 15 

Rapid Around 2.5 17 - 41 hours 17 UTC daily 15 

Final Around 2.5 12 - 18 days every Thursday 15 
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IGS broadcasts real-time products over the Internet using Networked Transport of RTCM via 

Internet Protocol (NTRIP). The IGS analysis center combines corrections from diverse analysis 

centers. These products are disseminated using different streams. Currently, the IGS is replacing 

the old stream names. Table 2.8 shows the names of the current and previous streams. Additionally, 

the IGS broadcasts a real-time Global Ionospheric model through the IONO00IGS1 stream. 

Table 2.8 IGS streams (The International GNSS Service, 2022). 

Old stream name Current stream name 

IGS01/IGC01 SSRA01IGS1/SSRC01IGS1 

IGS02/IGC02 SSRA02IGS1/SSRC02IGS1 

IGS03/IGC03 SSRA03IGS1/SSRC03IGS1 

 

2.5.1 IGS working groups 

IGS has initiated several working groups to manage and complete its mission. These groups work 

in GNSS antennas, biases, GNSS receivers, satellite calibration, clock products improvement, 

ionospheric and tropospheric mitigations, GNSS monitoring, multi-GNSS experiments, PPP, 

reference frames, Rinex, vehicle orbit dynamic, and the tide gauge (IGS, 2022). 

2.5.2 Main international GNSS Services analysis centers  

2.5.2.1 IGS data center Wuhan University 

The GNSS Research Center (GRC), founded in January 1998 at Wuhan University, is dedicated to 

a vital satellite location and navigating studies, cutting-edge technical applications, and further 

development. In order to address the demand for the establishment and applications of the BeiDou 

system, the benefits of well-built GNSS disciplines, personnel development, and international 

partnership at Wuhan University (WHU) present a substantial chance for GRC growth. 

Meanwhile, GRC will serve as a platform for examining and evolving novel GNSS system 

knowledge, practices, applications, and training capable individuals in this area. The goal of GRC 

is to become a pioneer center for GNSS research and innovation. Various centers, including the 

National Engineering Research Center for Satellite Navigation and Positioning, the Satellite 
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Navigation and Positioning Laboratory, the Lab for Navigation and Location-based Services, the 

Research Center for BeiDou, the Research Center for General Technology, the Center for Crust 

Movement Observation, and the analysis center of the IGS, are currently associates with GRC 

(Guo et al., 2016; Wuhan University, 2015). 

2.5.2.2 Geodetic Observatory Pecny (GOP) 

In the fields of earth's gravity observation, modelling, theoretical research, mathematical 

formulation of prospective theories, satellite altimetry, DORIS analyses (Štěpánek et al., 2017), 

GNSS observation, data administration, and analysis, GOP is an active IGS contributor supports 

several worldwide scientific services. These services include gravity and the international center 

of earth tides. It also participates in many national and international projects (Research Institute of 

Geodesy, 2012b). 

GOP contributes to a range of GNSS in several fields, gathering and distributing accurate stations 

with high-accuracy GNSS data, creating plans and tools for accurate GNSS assessments, and 

creating software instruments for accurate GNSS data processing, quality control, and distribution 

(Dousa, 2010; Research Institute of Geodesy, 2012a). 

2.5.2.3 Centre National d’Etudes Spatiales center  

CNES/CLS are the abbreviations of Centre National d’Etudes Spatiales (CNES) and Collecte 

Localisation Satellites (CLS). In 2007, CNES/CLS began operating as a GNSS analysis center. 

Since then, groups from CNES and CLS have routinely processed GPS and GNSS data from a 

network of stations worldwide (Centre National d'Etudes Spatiales, 2017). 

They calculate accurate GNSS orbits at the sub-centimeter level along with Earth rotation 

parameters and station locations. By May 20, 2010, CNES was formally admitted to the Europe's 

space agency. This is for the sake of expanding the influence of Europe's space abilities and 

guaranteeing that space investments continue to benefit both global and European populations. As 

a result, this technique raises the quality of CNES products (Centre National d’Etudes Spatiales, 

2017; Katsigianni et al., 2019; Loyer et al., 2012). 
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2.5.2.4 European space agency 

ESA was established as the European intergovernmental organization in 1975 with the signing of 

the ESA Accord. It had ten original member states. These ratified the ESA Convention by 

depositing their ratification instruments by 1980 after signing it in 1975. In 1975, ESA launched 

Cos-B, a space probe designed to track cosmic emissions (ESA, 1975)  

ESA's goal is to influence the growth of Europe's space capabilities and ensure that the mass of 

European citizens continues to have an advantage from investments in space, in addition to 

developing several spatial projects for Europe. Currently, ESA has 22 members not only from 

Europe, but it also has cooperation agreements with other countries (Bonnet & Manno, 1994).   

The European Space Operations Center (ESOC) is one of the most significant departments within 

the ESA, and it is situated in the German city of Darmstadt. ESOC handles activities involving 

satellites. European satellites are launched, tracked, communicated with, and maneuverer, among 

other things. 

The ESA runs numerous European activities in satellite navigation, earth observation, 

telecommunication, space science, and transportation. ESA leads numerous European navigation 

programs. The European GNSS Evolution Program (EGEP), the European Geostationary 

Navigation Overlay Service (EGNOS), Galileo, and ESA's Navigation Innovation and Support 

Program are all Navigation-Related Research and Technology Initiatives (NAVISP) (Sanchez et 

al., 2008). 

2.5.2.5 GNSS Science Support Centre (GSSC) 

The GNSS Science Support Center aims to make the GNSS research activities available in Europe 

to improve GNSS implementations in the European infrastructure.  

The main activities of the GSSC focus on the GNSS datasets and improve the scientific application 

by implementing the GNSS with Machine Learning, Big Data, and the Internet-of-thing (Navarro 

et al., 2019).GSSC is considered a pioneer center by establishing the ongoing GNSS IF Recording 

Station (GIFRES), which provides one petabyte daily for the GIFRES stations. Such a considerable 

amount of data could be considered a robust floor for establishing many Artificial Intelligence (AI) 
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and ML applications.   In addition, GSSC is involved with many scientific domain disciplines such 

as earth science, Space science, Physics, and Metrology (ESA, 2022). GSSC cooperates with many 

organizations, including European Space Agency (ESA), International GNSS Service (IGS), 

Instituto Geográfico Nacional (IGN), Bundesamt für Kartographie und Geodäsie (BKG), 

International Laser Ranging Service (ILRS), Norwegian Mapping Authority (NMA), and Crustal 

Dynamics Data Information System (CDDIS). GSSC Thematic Exploitation Platform (GTEP) is 

considered one of the essential pillar services the GSSC provides. GTEP delivers online services, 

analysis, GNSS data uploading, and downloading.   

2.5.2.6 German Research Centre for Geosciences (GFZ) 

The Prussian Academy of Sciences was the source of inspiration for creating the National Research 

Institute for Earth Sciences (GFZ). The current GFZ form was introduced around the start of the 

1990s in the previous Century. The research efforts of the GFZ are supported by the German 

Ministries of Education and Sciences (German Research Centre for Geosciences, 2020a). 

In addition to the engineering sciences disciplines of rock mechanics, engineering hydrology, and 

seismology, which are closely coordinated within the center, GFZ is involved in numerous research 

scientific fields such as physics, mathematics, chemistry, and biology (German Research Centre 

for Geosciences, 2020a). 

For example, Geodesy, Geophysics, Geochemistry, Geosystems, and Geoinformation all have 

numerous geo-departments inside GFZ. The GFZ goal  title, "The future can only be guaranteed 

by people who comprehend the System Earth and its interactions with Man," inspired the 

establishment of all the departments above (German Research Centre for Geosciences, 2020b). 

Due to its strong computing capabilities and high-quality output, the GFZ is regarded as one of the 

most significant IGS centers from the perspective of space navigation (Männel et al., 2020a, 

2020b; Springer & Hugentobler, 2001). Similar to CNES, multiple ambiguity-fixing techniques 

are applied during the computational process (Uhlemann et al., 2010). 
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2.5.2.7 Center for Orbit Determination in Europe 

The scientific faculty have created numerous research institutions at Bern University in 

Switzerland. By 1992, the Bern Astronomical Institute established the Center for Orbit 

Determination in Europe (CODE). The CODE was founded as a collaboration between the BKG, 

the Munich Institute of Astronomy and Geodesy, and the Swiss Federal Office of Topography 

(University of Bern, 2022). 

CODE involves many research activities such as IGS MGEX, Regional Reference Frame Sub-

Commission for Europe (EUREF) (Prange et al., 2015; Springer et al., 1997), permeant network, 

and data monitoring. In addition, CODE performs comparative analysis for GNSS and SLR data 

(Springer et al., 1997; Urschl et al., 2005).  

Like other analysis centers, CODE offers and supports a variety of GNSS solutions. With the 

following topic in mind, many other products are produced on a regular basis, including orbits, 

earth rotation parameters, satellite and receiver clock corrections, station coordinates, troposphere, 

and ionosphere models. Like other analysis centers, CODE offers and supports a variety of GNSS 

solutions. With the following topic in mind, a variety of different products, including earth and 

orbital parameters, are regularly produced (Schaer, 1997; Schaer et al., 1996). 

2.5.2.8 Jet propulsion laboratory 

The Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA) 

field center, and research and development facility supported by the federal government is located 

in California, USA. JPL was established in the 1930s and is owned by NASA and run by the 

adjacent California Institute of Technology (Westwick, 2008). Although it also performs 

astronomy and Earth-orbit missions, the laboratory's primary duties are developing and managing 

planetary spacecraft. Moreover, it manages the Deep Space Network (Conway, 2015; Jet 

Propulsion Laboratory, 2020). 

In addition, JPL conducts numerous earth science-related studies, including those on the 

atmosphere, the biosphere, wildfires, and natural disasters. JPL is also in charge of much research 

related to planetary sciences (Edberg et al., 2016; Jet Propulsion Laboratory, 2020). 

https://www.jpl.nasa.gov/


59 

 

2.5.2.9 Massachusetts institute of technology 

The Department of Earth, Atmospheric, and Planetary Sciences at the Massachusetts Institute of 

Technology (MIT) supports researchers. Efforts include improving the capability, reliability, and 

programs for analysing GPS measurements primarily to study crustal deformation. MIT is 

currently constructing an IGS analysis center (Massachusetts Institute of Technology, 2022). More 

information regarding MIT IGS activities can be found on the website http://geoweb.mit.edu. 

2.5.2.10 NOAA/National Geodetic Survey 

The National Geodetic Survey (NGS) was established as the Survey of the Coast in 1807. NGS is 

part of the National Oceanic and Atmospheric Administration (NOAA). 

In order to provide a uniform coordinate system that defines definitions of USA areas, NGS 

maintains and provides access to national reference systems. NGS is committed to working on 

various earth science-related topics, such as GNSS, geodesy, datum and transformation, remote 

sensing, and land surveying. Through Online Position User Services (OPUS), NGS enables highly 

accurate GNSS services (US Department of Commerce, 2022). In addition, it is involved in 

antenna calibration and Continuously Operating Reference Stations (CORS) (US Department of 

Commerce, 2019). 

The CORS network, which NOAA runs, provides GNSS data to assist geophysical, 

meteorological, and three-dimensional locating applications nationwide. 

The CORS network unites the efforts of hundreds of governmental, academic, and corporate 

institutions in a multi-purpose, multi-agency cooperative project. The radio stations are privately 

owned and run. Each agency provides NGS with its GNSS/GPS carrier phase, code range, and 

station metadata, which are examined and freely available.  

NGS offers a variety of solutions to help various GNSS users and industries, including horizontal 

and vertical coordinate conversion (U.S. National Geodetic Survey, 2022), geodetic and GPS 

plugins and software distribution, level correction services, and horizontal time-dependent 

positioning (Roman et al., 2010). 

http://geoweb.mit.edu/gg/
http://geoweb.mit.edu./
http://geoweb.mit.edu./
https://www.ngs.noaa.gov/orbits/
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2.5.2.11 Scripps Institution of Oceanography's Orbit and Permanent Array Center (SOPAC) 

Since its inception in 1991, Services from SOPAC have been made available to a large client base, 

focusing on the analysis and archiving of precise GPS data/metadata and data products. The term 

SOPAC is now used to describe our research group, which employs geodetic and seismic data for 

various engineering, surveying, geodesy, and geophysics projects (Scripps Orbit and Permanent 

Array Center / California Spatial Reference Center, 2019). 

In order to support ongoing research issues, SOPAC concentrates on evaluating high-accuracy 

GNSS, geodetic, and seismic observations. Monitoring crustal deformation, structural monitoring, 

and developing early warning systems for earthquake and tsunami events are the core study areas 

of SOPAC (Bock & Wdowinski, 2020; Golriz et al., 2021; Ruhl et al., 2019; Scripps Orbit and 

Permanent Array Center / California Spatial Reference Center; Watanabe et al., 2018). 

Like NGS, SOPAC provides GNSS users with different service options such as coordinate 

transformation, GNSS standards, and monitoring tools like daily and weekly displacement time 

series analysis. 

2.5.2.12 United States Naval Observatory (USNO) 

USNO is considered one of the oldest scientific and military agencies in the US; its establishment 

goes back to 1830. UNSO produces many products related to the earth, astronomy, and timing. 

USNO, the prediction center, through rapid services, produces daily and weekly earth orientation 

parameters (United States Naval Observatory, 2020). In addition, USNO is responsible for 

announcing and introducing the leap second and Delta T. Accordingly; it maintains International 

Atomic Time (TAI) and Coordinated Universal Time (UTC) (Dick, 2011; Nelson et al., 2001).   

2.5.2.13 Nevada Geodetic Laboratory (NGL) 

NGL is a space geodesy research organization that uses GNSS to monitor Nevada's tectonic and 

geothermal activities, study global surface mass loading patterns, and address scientific concerns 

(The Nevada Geodetic Laboratory, 2022). 
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NGL is responsible for maintaining and producing GNSS products through the MAGNET GNSS 

Network. NGL supports different research areas in many fields, and from a geoscience point of 

view, they focus on land subsidence and uplifting, reference frames, and tectonic displacements 

(Kreemer et al., 2014; Overacker et al., 2022).   

NGL initiates the mission of the Global Strain Rate Map (GSRM) project, which is to determine a 

globally self-consistent strain rate and velocity field model. This model provides essential input 

for seismic hazards at a global and regional scale (Nevada Geodetic Laboratory, 2017). 

2.5.2.14 The Crustal Dynamics Data Information System (CDDIS)  

Initially, CDDIS was intended to act as a central data archive for NASA's program. As a component 

of the larger NASA earth science creativity projects and for the space geodesy developments, its 

function has grown to provide continuous support to the community of space geodesy and 

geodynamics. With its foundation in 1982, It became a specialized data repository created 

exclusively for preserving and sharing datasets essential to space geodesy. 

The CDDIS now primarily stores and shares data relating to GNSS systems, including GPS and 

GLONASS and other navigation systems, laser ranging, very long baseline interferometry and 

Doppler orbitography, and radio-positioning integrated by satellite (Noll, 2010). 

2.5.3 The Multi-GNSS Experiment (MGEX) 

IGS created MGEX to track, compile, and examine GNSS signals. BeiDou, Galileo, QZSS, and 

Navigation with Indian Constellation (NAVIC) are involved in MGEX activities besides adapting 

the GPS and GLONASS modernization. Analysis centers describe new satellites and signals, 

evaluate the efficiency of various pieces of equipment, and create GNSS processing software 

(International GNSS Services, 2022; Montenbruck et al., 2014). IGS will keep adding exact 

ephemeris data and biased information for all constellations. A global network of multi-GNSS 

stations was built and connected with pre-established reference stations operating on GPS and 

GLONASS systems. Orbit and clock products for most new constellations are routinely generated. 

MGEX networks are involved in many activities and improving the correction products; 

consequently, the network is involved in determining earth rotation and orbital parameters for 
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instance. Additionally, the MGEX network provides real-time/ post-processed products used in 

PPP (Guo et al., 2017; Lou et al., 2014; Xue et al., 2021). 

 

Figure 2.16 MGEX stations. 

(Source:(Xue et al., 2021)). 

2.6 Other regional and continental projects  

2.6.1 The EUREF 

The EUREF Permanent Network (EPN) is a continuously operating GNSS network in Europe. 

The EPN performs the daily EPN coordination to estimate positions and velocities for the GNSS 

stations. The alignment between the ETRF and ITRF is required to maintain the mm level of 

accuracy (Kenyeres et al., 2019) and to correct the definition of both regional and international 

frames. More information related to the ETRF and ITRF can be found in Chapter 2.2, Geodetic 

Reference Systems and Frames. 

The EPN contains permanent GNSS stations working in different GNSS systems. EPN Data 

section and analysis center provides access to and analysis of the GNSS data. It provides post-

processed and real-time GNSS products, products, and services related to the reference frame 
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(Royal Observatory of Belgium, 2021). Figure 2.17 shows the distribution of EPN; it is worth 

mentioning that some stations are located outside Europe.  

 

Figure 2.17 EUREF stations. 

(Source:(Bruyninx et al., 2019)). 

2.6.2 European Plate Observing System (EPOS) 

The EPOS is a diverse, dispersed research structure that allows the coordinated use of data, data 

tools, and facilities contributed by members of Europe's solid Earth science community. In order 

to develop new concepts and tools for precise, long-lasting, and sustainable answers to societal 

questions about geo-hazards and those geodynamic phenomena (including geo-resources) relevant 

to the environment and human welfare, EPOS brings together Earth researchers, national research 

infrastructures, technology experts, decision-makers, and the public. EPOS is involved in many 

research projects, especially for geo-hazard and earth source management. EPOS provides 

comprehensive services like seismology, GNSS services, geological modelling, and monitoring 

volcanic and Tsunami activities (European Plate Observing System, 2021).  

2.6.3 Sirgas 

The geodetic reference system for the Americas is called SIRGAS. Its realization in the Americas 

involves regional densification of the ITRF. In addition to the geometrical reference system, 

SIRGAS defines and implements a vertical reference system based on the geopotential field. 
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All scientific and practical efforts linked to accurate geo-referencing and navigation, Earth 

sciences studies, and multidisciplinary applications have been developed and combined with the 

appropriate backing from SIRGAS. In particular, SIRGAS provides the region's geospatial data 

infrastructure with its essential layer.  

2.6.4 Asia-Pacific Reference Frame (APREF) 

In sectors including mining, agriculture, and building, positioning technologies are being used 

more and more frequently. Additionally, there has been significant potential from asset managers, 

hazard modelers, and emergency services recently. These users' applications call for centimeter-

level or superior geodetic infrastructure. The Asia-Pacific area needs a constant, continuously 

improved, and freely obtainable reference frame to deliver this. APREF provides many GNSS 

services like Australia Geoscience Online GNSS Processing Service (AUSPOS) with analyses of 

around 596 stations from different contributors. It is also involved in the geoscience antenna 

calibration group. Different agencies contribute to the APREF (Asia-Pacific Reference Frame, 

2021). 

2.6.5 The African Geodetic Reference Frame (AGRF) 

The AGRF has been developed to offer accurate and reliable geospatial reference data for the 

African continent. It is a reference system for various geodetic and cartographic applications, such 

as land surveying, mapping, and navigation. The AGRF seeks to further knowledge of the 

morphology of the Earth, exact coordinate determination, and observation of continental crust 

motion and tectonic activity in Africa. A shared reference frame facilitates cross-national and 

intranational coordination of planning and development initiatives. The creation of the African 

Geodetic Reference Frame represents a substantial advancement in the precision and dependability 

of geospatial data throughout Africa. It is essential for advancing scientific research, infrastructural 

planning, and sustainable development on the African continent. It also improves Africa's capacity 

to participate in international geospatial projects and partnerships (Combrinck, 2008, 2010). 
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2.6.6 The North American Reference Frame (NAREF) 

A geocentric reference system anchored to the stable region of the North American tectonic plate. 

Its main goal is to estimate positional coordinates and motion vectors for places located within the 

boundaries of the North American continent. Many applications, including geodesy, topographic 

surveying, navigational systems, and cartography, find widespread use for NAREF. 

The public can freely use NAREF's dynamic solution through the IGS Service. NAREF is used by 

various organizations, including governmental organizations, academic institutions, and private 

businesses, to meet their unique geographic demands.  

NAREF has essential improvements over earlier reference frames, particularly NAD83. Precision, 

stability, and broader worldwide applicability are areas where NAREF has advantages. 

Additionally, because the public has open access to data from Continuously Operating Reference 

Stations (CORS) within the framework, NAREF stands out as a more inclusive and accessible 

resource (Craymer et al., 2007; North American Reference Frame Densification, 2021). 

2.6.7 Japanese Geodetic Datum 2011 (JGD2011) 

The Japanese Geodetic Datum 2011 is Japan's current geodetic reference system. This geocentric 

reference system is aligned to the International Terrestrial Reference Frame. The crucial task of 

defining the positional coordinates and dynamic velocities of geographic points distributed across 

the breadth of the Japanese archipelago is taken up by JGD 2011. Its uses include geodesy, 

topographic surveying, navigational systems, and cartography, among many other disciplines. 

The Geographical Survey Institute of Japan (GSI) is responsible for the creation of JGD2011, 

which was inspired by the seismic events of the 2011 Pacific Coast Tohoku Earthquake, which 

caused significant crustal deformation in Japan. JGD2011 was carefully developed to exceed the 

stability and accuracy standards set by Japan's previous geodetic reference systems. It was also 

planned to harmonize with other international reference frames (Geospatial Information Authority 

of Japan, 2021). 

. 



66 

 

A comprehensive network of strategically placed CORS is essential to the operational definition 

of JGD2011. These stations' data are processed methodically to produce weekly coordinate 

solutions combined into a single JGD2011 solution. 

Weekly changes are made to the JGD2011 framework, which is easily accessible to the general 

public on the GSI website. It is helpful for various businesses, including public and private sector 

firms and academic and research institutes. 

Compared to earlier geodetic reference systems in Japan, such as the Tokyo Datum, JGD2011 has 

several benefits, including precision, stability, and seamless integration with international 

reference frames. Additionally, JGD2011 is a more inclusive resource due to the public's generous 

access to data from CORS stations (Geospatial Information Authority of Japan, 2021). 
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Chapter 3 Precise Point Positioning Technique 

3.1 Introduction 

Several ways of positioning and time synchronization have been used in GNSS positioning. Those 

methods vary in cost, complexity, and coverage area to provide accurate results both in post-

process or RT solutions. Measurements can diverge with respect to achieved accuracy, integrity, 

continuity, and availability. Achieving affordable worldwide coverage and accurate RT positioning 

is a continuously demandable goal.  

Single Point Positioning (SPP) is the autonomous GNSS positioning method. Due to the low 

accuracy of the broadcasted navigation information with respect to satellite ephemerids, satellite 

clock offsets, and other essential bias corrections, the accuracy achieved with SPP positioning is 

insufficient. In addition, utilizing the broadcasted ionospheric model is insufficient to mitigate the 

ionospheric error. Accordingly, SPP measurements could reach five meters as an accuracy level if 

the code has been used or around one meter if the carrier and/or pseudo-distance measurements 

are utilized (Pan et al., 2019). Such a level of accuracy could not meet the desired specifications 

for aviation, geodetics, or other high-accurate applications. Using a couple or a network of high-

cost GNSS receivers in the relative positioning method could be a solution to reach a centimeter 

level of accuracy or more. Relative positioning could be implemented in several ways (Waldhauser 

& Ellsworth, 2000; Zhao et al., 2015; Zhong et al., 2010). Firstly, single differences where both 

carrier measurements from GNSS pairs are differentiated, resulting in eliminating satellite clocks 

biases and mitigating the rest of the common errors. Secondly, with the double differencing 

techniques, the clock bias for both receivers is eliminated, and mitigation for the rest of the errors. 

Finally, performing the triple differences requires observations from two different epochs, which 

means this technique cannot work in RT. The main advantage of triple differences is its ability to 

remove ambiguities; conversely, the main disadvantages are not RT and its sufferers from highly 

noisy correlated measurements (Zhao et al., 2015). 

Three relative positioning methods are the most commonly used: RT positioning, Differential 

GNSS (DGNSS), Real-Time Kinematic (RTK), and Network RTK. DGNSS operates one of the 

couple receivers over a well-known (master) coordinates station. Consequently, the GNSS receiver 
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computes the biases and offsets which affect the master receiver. Those biases and offset 

corrections can drive the measurements at the rover side and correct its location.       

These corrections can be used in different latency modes: the post-processing mode, where the 

measurements are stored and processed, or in RT, where the corrections are transmitted through 

Radio Technical Commission Maritime Service (RTCM) format to the rover through a radio link 

or over the mobile network. This last one is the RT Kinematic operational mode. The main 

weakness of using RTK is that positioning quality could be degraded remarkably if both receivers 

need to be operated within 20 km or more. Consequently, deploying more receivers is necessary 

to maintain a good quality of the corrections. Subsequently, covering vast areas required 

establishing a Network RTK (NRTK) of GNSS reference stations. NRTK can be implemented 

through many concepts such as Virtual Reference Station (VRS), Multi Reference Station (MRS), 

and Master Auxiliary Concept (MAC) (Brown et al., 2005; Fotopoulos & Cannon, 2001; Landau 

et al., 2002). More information regarding the concepts and the main differences between the 

aforementioned concepts can be found in (Janssen, 2009). 

DGNSS dominated positioning until the late 1990s when NASA's JPL showed that PPP's precision 

might be similar to relative positioning (Zumberge et al., 1997) with the advantage that no 

reference stations at the user side are needed. Eventually, improving PPP could lead to considering 

it as an optimal positioning approach. 

3.2 Precise point positioning  

The PPP concept was presented by Zumberge et al. (1997), followed by Kouba and Héroux, 

(2001b), with a proposal of utilizing both IGS products and the undifferenced coding or pseudo 

distances and carrier phase measurements from dual frequency GNSS receivers. PPP uses external 

correction products and models for the error sources rather than relying on relative measurements 

between receivers. 

Several considerations must be taken into account while using the PPP approach. The GNSS users 

must receive high-quality orbital and clock corrections products. Different ACs and IGS monitor 

and track a vast network of globally distributed GNSS receivers located on permanent stations to 

produce such products. Global GNSS networks use Networked Transport of RTCM through 
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Internet Protocol to calculate and distribute those adjustments (Weber et al., 2005). The first part 

of atmospheric error, which is a tropospheric error, could be mitigated using server models, for 

instance, the Mapping of Niell, Saastamoinen, and Hopfield (Niell, 1996; Sanz Subirana, 2013). 

Using ionosphere-free linear combinations of the code and phase observables is sufficient to 

eliminate 99% of the ionospheric error and to get a centimetre’s level of accuracy (Zumberge et 

al., 1997). Corrections such as solid earth tides, satellite phase wind-up, GNSS receiver antenna 

center variation and offset polar motion, ocean and atmospheric loads are needed to improve PPP 

accuracy (Stürze et al.,2012 and 2016) 

The real benefit of the PPP approach is that it does not require a local reference receiver or network 

of connected receivers. The PPP allows users to position themselves with a centimeter to decimetre 

accuracy in places impractical to utilize standard RTK and NRTK methods. The PPP method is 

independent of GNSS master or network stations;  therefore, it can be considered an absolute 

positioning approach that can determine precise positioning and navigation in the ITRF, which 

makes it an ideal technique for deformation monitoring and EWS. 

As part of an analysis of the current state of PPP accuracy, Gao and Shen, (2002), utilized GPS-

PPP in kinematic mode, reaching a decimetre level of accuracy within two hours of convergence 

time. Similarly, Chen et al., (2004), showed that it was possible to determine the position of Bouy 

with a decimetre accuracy level. Bisnat, (2004), showed that GPS-PPP could enhance location 

determinations with a decimetre accuracy, aiding precise orbit determination operations. Jiang et 

al. (2015) proposed a simulated process for carrier phase observations to avoid cycle slip; the 

research showed that the accuracy of the GPS-PPP coordinates could achieve a centimeter 

accuracy level. Similarly, accurate results were achieved by the research done by Almeida et al., 

(2016). and Odijk et al., (2015), indicated that a few decimetres of coordinate accuracy are 

achievable after one hour. The same authors' work investigated the GPS-PPP performance in the 

Asian Pacific region (Bisnath, 2004; Chen et al., 2004; de Almeida et al., 2016; Jiang et al., 2015; 

Odijk et al., 2015; Shen & Gao, 2002).  

A suggestion of adding more measurements and improving the positioning accuracy and 

convergence time of the PPP technique could be possible by merging various navigation systems 

(Bisnath & Gao, 2009a). Many GNSS approaches rely on GPS first positioning determination, and 
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the observations matrix can be improved by adding observations from other navigation systems. 

Accordingly, the research conducted by Nik and Petovello, (2010), demonstrates that the 

GLONASS constellation can be utilized as an augmented system to GPS in order to produce 

navigational solutions that are more dependable and accurate. Jokinen et al., (2011), showed that 

using GLONASS and GPS improves the station coordinates accuracy; a different study showed 

GLONASS with GPS decreased 3D errors by around 11% (Jokinen et al., 2013). Another study 

indicated that using multiple constellations is preferable in terms of improving the positioning 

performance and reducing the solution converging time rather than using a single constellation 

containing the same number of satellites (Miaoyan et al., 2008). 

Compared to results produced using PPP GPS or GLONASS, Cai and Gao, (2013b), claimed that 

PPP GLONASS and GPS would greatly reduce the station coordinate error in each of the three 

components. The smaller number of GLONASS satellites, the poorer satellite geometry, the lower 

accuracy of GLONASS precise products, and the difficulty of resolving GLONASS ambiguities 

are cited as why the station coordinates error using PPP GLONASS is greater than the error using 

PPP GPS. The use of PPP GLONASS was also tested on 15 globally dispersed stations over the 

first three days in November 2011; Cai and Gao, (2013a), study revealed that PPP GLONASS 

could achieve an average accuracy of around 0.05 m in all coordinate components. However, their 

findings can be deemed inaccurate for PPP GPS and PPP GLONASS since they assumed that the 

receiver clock offset differed between GPS and GLONASS when it should have the same variation 

for the same receiver but with an offset concerning both constellations. Different studies showed 

that GLONASS would improve the geometry of the satellites above the GNSS user's sky. Jokinen 

et al. (2013) showed that GLONASS and GPS PPP combinations achieved a 32% average error 

reduction. So, combining GPS and GLONASS improved the station's accuracy (Anquela Julián et 

al., 2013; Cai et al., 2013). 

Anquela Julián et al., (2013),  asset combining GPS and GLONASS PPP observations with ESA 

orbital and clock products. They concluded that the accuracy of 3 mm, 5 mm, and 14 mm for the 

east, north, and up repetitively are available with 24-hour static positioning. However, a decimetre 

accuracy could be reachable after 1 hour. More fine accuracy resolution is achieved after 2 hours 

to reach 5 cm accuracy. These results are done for 2D positioning; for 3D positioning, the 
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convergence time reaches five hours to get a 5 cm accuracy. Zheng et al., (2022), Comparing 

GLONASS and GPS's performance, the GLONASS system shows good accuracy in higher 

latitude regions. The study provides this value because the GLONASS has a higher orbital 

inclination angle (Cai & Gao, 2013a; Zheng et al., 2022). 

In 2012, it was a challenge to evaluate the GALILEO positioning performance with the availability 

limitations of the presence of 4 GALILEO satellites above the user sky. However, Langley et al. 

(2012) demonstrated that it is possible to achieve several decimetres of accuracy using PPP- 

GALILEO (Langley et al., 2012). A study of the availability to use RT-PPP with only the 

GALILEO system can be found (Tobías & Navarro, 2015). The study presented a 50 cm difference 

between computed and calibrated receiver positions (Tobías & Navarro, 2015).  

PPP-GALILEO can reach a centimeter to decimetre accuracy level after the convergence period; 

the contribution of GALILEO can improve the average positioning accuracy by 27.70% for GPS+ 

GALILEO kinematic PPP compared with the GPS-only solution. 10.90% in all components for 

GPS + GLONASS + GALILEO PPP compared to GPS + GLONASS PPP. Adding GALILEO 

observations shortens the average convergence time for Multi-GNSS PPP solutions. (Xia et al., 

2019).  

The current number of GALILEO satellites is around 24, and the system is near reaching full 

operational capability (European Space Agency, 2022); around 5 to 6 are available for most 

locations covering the globe. It makes global positioning and time determination accurate (Kiliszek 

& Kroszczyński, 2020).  

Lizhong et al., (2013), results showed that BeiDou static and kinematic PPP have centimeter-level 

precision. In static mode, BeiDou accuracy is greater than 1 cm horizontally and 3 cm vertically; 

in kinematic mode, it is 1 to 2 cm horizontally and 4–7 cm vertically. PPP BeiDou kinematics is 

better than PPP GPS for the chosen location (Zhao et al., 2013). Additionally, they found that PPP 

GPS and BeiDou have RMS values smaller than 1 cm horizontally and 3 to 4 cm vertically. Odijk 

et al., (2015), showed that PPP- BeiDou reached a few decimetres of coordinate accuracy after 

more than an hour; Odijk justified this long initialization time due to the poor geometry of BeiDou 

satellites in the study area. However, the study mentioned that reduced the initialization time to a 

half hour if both GPS and BeiDou are utilized in PPP acquisition (Odijk et al., 2015).  Cheng et al. 
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(2020) investigated the BeiDou-PPP services in China, where the PPP- BeiDou reached 15 and 30 

centimetric levels of accuracy with around 13 minutes of converging time. However, the study 

lacked a proper investigation or comparison regarding the initialization time improvement.  

Regarding BeiDou-PPP, Luo et al., (2018), demonstrated that the accuracy of BeiDou-PPP under 

high ionospheric irregulating could reach around 1.80 meters. However, during normal ionospheric 

conditions, the study result showed that the BeiDou-PPP could reach around 15 centimetres (Luo 

et al., 2018). Similar findings were reported by the BeiDou performance comparison study among 

BeiDou-PPP, BeiDou-RTK, and with/without the aid of an inertial navigation system (Gao et al., 

2017).  A recent study investigated the performance of BeiDou-PPP with the advent of the third 

BeiDou satellite generation (Xu et al., 2022). Xu et al., (2022), demonstrate that the arrival of new 

BeiDou signals allows the implementation of PPP with triple and quadratic ionospheric 

combinations. Consequently, Xu et al., (2022), demonstrated that BeiDou's innovative 

combination accuracy outperforms regards the conventional Iono-free combination by 25% when 

applying the quadratic ionospheric combination, in addition to a 7% enhancement of accuracy 

performance when the triple ionospheric combination is utilized. 

Initially, Tegedor et al., (2014), conducted a comprehensive PPP study and used MGEX data sets 

to analyse the accuracy and availability of quadratic constellations PPP solutions. They discovered 

that using GALILEO, GLONASS, BeiDou, and GPS satellite systems simultaneously improves 

the accuracy of PPP kinematic results. Under open sky situations, the accuracy improvement is 

relatively small compared to the PPP GLONASS and GPS; however, the benefit only became more 

noticeable under circumstances of reduced sky visibility. However, this study did not include any 

investigations regarding initialization time improvements utilizing quadratic constellations PPP 

solutions. 

Li et al., (2015), analysed Multi-GNSS PPP improvements in satellite visibility, satellite geometry, 

position dilution of precision, converging time, accuracy, continuity, and dependability in 

restricted situations using 100 days of MGEX and BeiDou Experimental Tracking Network data 

(BETN). PPP GPS can approach millimetre precision after many hours of convergence, whereas 

PPP GLONASS is inferior, notably in the Up component. PPP GLONASS, GALILEO, GPS, and 

BeiDou improve station coordinates with average accuracy by roughly 31% compared to PPP GPS. 
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The same study employed similar PPP combination experiments, but this time in RT mode. They 

analysed around 120 stations using PPP GLONASS, GALILEO, GPS, and BeiDou and observed 

a 25% enhancement in station coordinate accuracy compared to PPP GPS. Wang et al., (2018), 

validated one month of Multi-GNSS RT-PPP data and concluded that the achieved 3D accuracy 

was 5 to 7 cm.  

Liu et al., (2017), proposed a combined inter-system bias and GLONASS code inter-frequency 

biases model for Multi-GNSS PPP. A total of 32 stations of data from a single month in April 2015 

were utilized to validate the combined proposed model. 

Based on data from 90 MGEX tracking stations, we can determine how elevation masks affect the 

performance of Multi-GNSS kinematic PPP. Increasing the horizontal and vertical components' 

position accuracy during the first 10 minutes has little impact when the elevation mask is below 

25 degrees. Nevertheless, after 15 minutes, the impact on the vertical component is visible. When 

the elevation mask is lower than 25 degrees, the PPP float solution can approach 5 cm and 10 cm 

for the horizontal or vertical components after convergence. The outcomes demonstrate that the 

Position Dilution of Precision (PDOP) rises as the elevation mask rises. In general, if the mask 

elevation for the PPP float solution is increased, the positioning accuracy and convergence speed 

will decrease (Wu et al., 2021). 

According to Alcay and Turgut., (2021), evaluation of the RT-PPP method, the accuracy is better 

than 5 cm and 10 cm in both the horizontal and vertical directions. The reference coordinates 

acquired from 24 hours of static PPPs were compared with the calculated RT-PPP coordinates as 

an accuracy reference. A decimetre accuracy was achievable within a few minutes if the Multi-

GNSS PPP is utilized with the aid of corrected Global Ionospheric Maps (GIMS) and tropospheric 

zenith delay information (Aggrey & Bisnath, 2019a). Li et al., (2021), have looked at the accuracy 

and convergence period of PPP. They discovered that the positioning accuracy for the horizontal 

and vertical components could exceed 20 cm after 30 min of convergence. Be more accurate than 

10 cm for the horizontal component and 15 cm for the vertical component after 60 minutes, 

respectively Li et al. (2021).  

With respect to achieved accuracy, Zhang et al., (2018a), obtained RMSE results of orbits for 

various RTS products, with a range variation from 3.8 cm to 7.5 cm. Clocks' average STDEs range 
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from 1.9 cm to 5.6 cm. It is worth mentioning that the pre-mentioned study did not investigate the 

nine RT streams concerning the Multi-GNSS. It focuses on GPS as not all streams support Multi-

GNSS RT. Ogutcu et al., (2021), concluded that using the full operational capability of the BeiDou 

system enhanced the Multi-GNSS positioning with around 10% as an average for all coordinates 

components. Lv et al., (2022), investigated the RT-PPP accuracy level utilizing different 

frequencies and combinations from different BeiDou generations with the aid of GPS signals. The 

study findings demonstrated that a decimetre-level accuracy is achievable from different 

combinations; however, the best accuracy results were obtained with the third BeiDou satellite 

generation (Lv et al., 2022). 

3.2.1 RT double differences approach versus RT-PPP approach 

Bisnath and Gao., (2009), study is one of the first studies investigating the PPP techniques as an 

alternative to relative positioning through double differences.  The study showed that both 

techniques could achieve decimetre accuracy in RT applications, where the accuracy of re-

processed measurements could achieve a centimeter level or more (Bisnath & Gao, 2009b). The 

main advantage of double differences is that the prementioned accuracy can be achieved instantly 

when the ambiguity is resolved. However, fast converging time and maintaining accuracy are 

spatially correlated with the distance between the rover and the base receiver. Consequently, to 

maintain the double differences measurements and quality, operating in areas within 10-20 Km 

from the base or establishing GNSS networks is required. Accordingly, it raises both operational 

and establishment costs. 

Tang et al., (2017), used a monitoring application's RT-PPP and double differences methods. 

According to the study's findings, frequency domain analysis for RT-PPP time series and double 

differences all showed similar results. The investigation revealed that for the RT-PPP and double 

differences coordinates evaluations, the RMS reached approximately 8 centimetres within five 

hours of observations (Tang et al., 2017). 

Theoretically, PPP solutions could eliminate measurement biases and errors without differences in 

the measurements as they rely on precise correction products. This allows the use of the PPP 
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approach worldwide with the same accuracy as the double differences. However, the main 

disadvantages and limitations of PPP are described in section 3.5. 

3.2.2 Linear observation model and mathematical model for precise point positioning 

The dual frequency pseudo-range and carrier-phase observables are essential for this approach. 

The PPP model is a point positioning technique that needs precise satellite products and 

atmospheric models, among others. 

PPP aims to determine the exact receiver coordinates (or as exact as possible), receiver clock, ZTD, 

and initial phase ambiguities for each GNSS satellite. 

One of the most crucial elements determining the effectiveness of the PPP algorithm is the 

precision of the satellite clocks and orbits. The quantity and qualities of the measurements are 

another essential part that influences PPP outcomes.  

The PPP linear observation relies on both code (or pseudoranges) and carrier observations, and it 

is required to construct the ionosphere-free combination for both measurements. Consequently, the 

ionospheric delay is mitigated. Equation 3.1 and 3.2 represents the carrier and code combinations 

(Gao et al., 2019; Liu et al., 2012; Wang & Rothacher, 2013). 

𝒫  𝑅
 𝑆 = 𝜌𝑅

𝑆 + 𝑐 ∗ (𝑑𝑡𝑅 − 𝑑𝑡𝑆) + 𝑇𝑟𝑜𝑝𝑜𝑅
𝑆 + ℳ𝑃𝑐 + 𝜀𝑃𝑐                               (3.1) 

𝜑 𝑅
 𝑆 = 𝜌𝑅

𝑆 + 𝑐 ∗ (𝑑𝑡𝑅 − 𝑑𝑡𝑆) + 𝑇𝑟𝑜𝑝𝑜𝑅
𝑆 + 𝜆𝑁 ∗ 𝜔𝑅

𝑆 + 𝐵𝑅
𝑆 + 𝓂𝜑𝑐 + 𝜀𝜑𝑐                                  (3.2)  

Where:  

𝒫  𝑅
 𝑆 : Indicates the combined unsmoothed code measurement between the GNSS satellite and 

receiver. 

𝜑 𝑅
 𝑆 : Denotes the combined unsmoothed carrier measurement between the GNSS satellite and 

receiver. 

𝜌𝑅𝑒𝑐
𝑆𝑎𝑡: Indicates the geometrical distance between the satellite antenna phase center and the GNSS 

receiver. 

c: represents the speed of light. 
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𝑑𝑡𝑅 𝑎𝑛𝑑 𝑑𝑡𝑆: Denote the receiver and satellite clock offsets to the standard GNSS time. 

𝑇𝑟𝑜𝑝𝑜𝑅
𝑆: Is the tropospheric delay caused by passing the GNSS signal through tropospheric layers. 

ℳ𝑃𝑐: Represents the multipath error that affects the code measurements. 

𝓂𝜑𝑐: Is the multipath error affecting the carrier measurements. 

𝜆𝑁 ∗ 𝜔𝑅
𝑆 : represents the wind-up effect of circular polarization of the GNSS signals. The relative 

orientation of the satellite and reception antennas, as well as the orientation of the line of sight, 

determine the Wind-up impact on phase measurements. 

𝐵𝑅
𝑆: is the floated ionospheric-free ambiguity. 

𝜀𝑃𝑐 𝑎𝑛𝑑 𝜀𝜑𝑐: represent the remaining error involving the combined ionospheric combinations for 

code and carrier measurements. 

Solving the previous equations is possible through linearization of them for the initial receiver 

location (𝑥𝑅,𝑖𝑛𝑡𝑖𝑎𝑙 , 𝑦𝑅,𝑖𝑛𝑡𝑖𝑎𝑙 , 𝑧𝑅,𝑖𝑛𝑡𝑖𝑎𝑙) 

𝒫  𝑅
 𝑆 = 𝜌𝑅

𝑆 +
𝑥𝑅,𝑖−𝓍𝑆

𝜌𝑅
𝑆 ∗ ∆𝓍𝑅 +

𝑦𝑅,𝑖−𝑦𝑆

𝜌𝑅
𝑆 ∗ ∆𝓎𝑅 +

𝑧𝑅,𝑖−𝑧𝑆

𝜌𝑅
𝑆 ∗ ∆𝓏𝑅 + 𝑐 ∗ (𝑑𝑡𝑅 − 𝑑𝑡𝑆) + 𝑇𝑟𝑜𝑝𝑜𝑅

𝑆 +

ℳ𝑃𝑐 + 𝜀𝑃𝑐                                                           (3.3) 

Where ∆𝑥𝑅,∆𝑦𝑅 ,∆𝑧𝑅 Represent the differences between the receiver's initial and actual locations. 

Additionally,  𝑇𝑟𝑜𝑝𝑜𝑅
𝑆 can be splitted in: 

𝑇𝑟𝑜𝑝𝑜𝑅
𝑆 = 𝑇𝑟𝑜𝑝𝑜𝑅,𝑖

𝑆 + 𝑀𝑊𝑒𝑡,𝑅∗
𝑆 ∆𝑇𝑟𝑍,𝑤𝑒𝑡                     (3.4) 

Where: 

𝑇𝑟𝑜𝑝𝑜𝑅,𝑖
𝑆 : is the troposphere nominal term containing dry and wet tropospheric components. 

𝑀𝑊𝑒𝑡,𝑅
𝑆 : is the tropospheric mapping factor. 

∆𝑇𝑟𝑍,𝑤𝑒𝑡: is a component parameter vector of the wet component. 

The tropospheric effect is divided into dry and wet components, and several mapping functions 

are utilized to determine both magnitudes. However, the dry component can be well defined 



77 

 

theoretically, contrary to the wet components, where several parameters are utilized to determine 

its magnitude. 

𝒫  𝑅
 𝑆 − 𝜌𝑅

𝑆 + 𝑐𝑑𝑡𝑆 − 𝑇𝑟𝑜𝑝𝑜𝑅,𝑖
𝑆 =

𝑥𝑅,𝑖−𝑥𝑆

𝜌𝑅
𝑆 ∗ ∆𝑥𝑅 +

𝑦𝑅,𝑖−𝑦𝑆

𝜌𝑅
𝑆 ∗ ∆𝑦𝑅𝑒𝑐 +

𝑧𝑅,𝑖−𝑧𝑆

𝜌𝑅
𝑆 ∗ ∆𝑧𝑅 + 𝑐𝑑𝑡𝑅 +

𝑀𝑊𝑒𝑡,𝑅
𝑆 ∆𝑇𝑟𝑍,𝑤𝑒𝑡                                   (3.5) 

The last equation can be constructed for the carrier measurements similarly. Additionally, the terms 

before on the right side of the equation are called Prefit-residuals. Accordingly, the Prefit-residuals 

equations can be constructed for all the tracked GNSS satellites as follows: 

𝒫  𝑅
 𝑆1 

− 𝜌𝑅
𝑆1 + 𝑐𝑑𝑡𝑆1 − 𝑇𝑟𝑜𝑝𝑜𝑅,𝑖

𝑆1 =
𝑥𝑅,𝑖−𝓍𝑥𝑆1

𝜌𝑅
𝑆1 ∗ ∆𝑥𝑅𝑒𝑐 +

𝑦𝑅,𝑖−𝑦𝑆1

𝜌𝑅
𝑆1

∗ ∆𝑦𝑅 +
𝑧𝑅,𝑖−𝑧𝑆1

𝜌𝑅
𝑆1 ∗ ∆𝓏𝑅+𝑐𝑑𝑡𝑅 +

𝑀𝑊𝑒𝑡,𝑅𝑒𝑐
𝑆1 ∆𝑇𝑟𝑍,𝑤𝑒𝑡                                                                    (3.6) 

𝜑 𝑅
 𝑆1 − 𝜌𝑅

𝑆1 + 𝑐𝑑𝑡𝑆1 − 𝑇𝑟𝑜𝑝𝑜𝑅,𝑖
𝑆1 − 𝜆𝑁𝜔𝑅

𝑆1 =
𝑥𝑅𝑒𝑐,𝑖−𝑥𝑆1

𝜌𝑅
𝑆1

∗ ∆𝑥𝑅 +
𝑦𝑅,𝑖−𝑦𝑆1

𝜌𝑅
𝑆1

∗ ∆𝑦𝑅 +
𝑧𝑅𝑖−𝑧𝑆1

𝜌𝑅
𝑆1

∗

∆𝑧𝑅+𝑐𝑑𝑡𝑅 + 𝑀𝑊𝑒𝑡,𝑅
𝑆1 ∆𝑇𝑟𝑍,𝑤𝑒𝑡 + 𝐵𝑅

𝑆1                                                                                        (3.7) 

Suppose 1 to k satellites above the sky of the GNSS user for one epoch. Then, the representation 

of the design matrix is defined in this way: 

|

|

|

  𝑃𝑟𝑒𝑓𝑖𝑡(𝒫𝑆1) 

𝑃𝑟𝑒𝑓𝑖𝑡(𝜑𝑆1)
⋮
⋮
⋮
⋮
⋮
⋮

𝑃𝑟𝑒𝑓𝑖𝑡(𝒫𝑆𝑘)

𝑃𝑟𝑒𝑓𝑖𝑡(𝜑𝑆𝑘)

|

|

|

=  

|

|

|

𝑥𝑅,𝑖 − 𝑥𝑆1

𝜌𝑅
𝑆1

𝑦𝑅,𝑖 − 𝑦𝑆1

𝜌𝑅
𝑆1

𝑧𝑅,𝑖 − 𝑧𝑆1

𝜌𝑅
𝑆1 1 𝑀𝑊𝑒𝑡,𝑅

𝑆1 0 … 0

𝑥𝑅,𝑖 − 𝑥𝑆1

𝜌𝑅
𝑆1

𝑦𝑅,𝑖 − 𝑦𝑆1

𝜌𝑅
𝑆1

𝑧𝑅,𝑖 − 𝑧𝑆1

𝜌𝑅
𝑆1 1 𝑀𝑊𝑒𝑡,𝑅

𝑆1 1 … 0

⋮ … … … … … ⋯ ⋮
⋮ … … … … … ⋯ ⋮

𝑥𝑅,𝑖 − 𝑥𝑆𝑘

𝜌𝑅
𝑆𝑘

𝑦𝑅,𝑖 − 𝑦𝑆𝑘

𝜌𝑅
𝑆𝑘

𝑦𝑅,𝑖 − 𝑦𝑆𝑘

𝜌𝑅
𝑆𝑘 1 𝑀𝑊𝑒𝑡,𝑅

𝑆𝑘 0 … 0

𝑥𝑅,𝑖 − 𝑥𝑆𝑘

𝜌𝑅
𝑆𝑘

𝑦𝑅,𝑖 − 𝑦𝑆𝑘

𝜌𝑅
𝑆𝑘

𝓏𝑅,𝑖 − 𝑧𝑆𝑘

𝜌𝑅
𝑆𝑘 1 𝑀𝑊𝑒𝑡,𝑅

𝑆𝑘 0 … 1
|

|

|

|

|

|

∆𝑥𝑅

∆𝑦𝑅

∆𝑧𝑅

𝑐𝑑𝑡𝑅
∆𝑇𝑟𝑍,𝑤𝑒𝑡

⋮
⋮

𝐵𝑅
𝑆1

⋮
𝐵𝑅

𝑆𝑘

|

|

|

 

The last unknowns in the above matrices can be solved using least squares techniques. 

Consequently, the initial approximations of the GNSS receiver location can be improved through 

multiple iterations until sufficient accuracy is reached. The following equation describes how the 

GNSS location state can improve. 
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(𝑥𝑅 , 𝑦𝑅 , 𝑧𝑅) = (𝑥𝑅,𝑖𝑛𝑡𝑖𝑎𝑙, 𝑦𝑅,𝑖𝑛𝑡𝑖𝑎𝑙, 𝑧𝑅,𝑖𝑛𝑡𝑖𝑎𝑙) + (∆𝑥𝑅 , ∆𝑦𝑅 , ∆𝑧𝑅)                                         (3.8) 

The Kalman filter resolves the PPP linear model (Sanz Subirana, 2013). The following 

consideration must be taken into account by utilizing the Kalman filter: 

 

• When a cycle slips, carrier phase ambiguities (BC) are treated as fixed throughout 

continuous phase arcs and as white noise. 

• Wet tropospheric delay (Trz; wet) is assumed to be a random walk process. 

• The receiver clock (cdt) is considered to be a white-noise method. 

• GNSS receiver coordinates  

❖ The coordinates values are treated as constants for static measuring. 

❖ The coordinates values are taken as white noise or a random walk process for kinematic 

measuring. 

Like any other GNSS positioning method, satellite visibility has a vital constraint impact on PPP 

performance. Even the most accurate orbit and timing data are meaningless if the user cannot track 

satellite signals. The bias estimations of the floated ionospheric-free ambiguity 𝐵𝐶̂
̇  needs a 

transition period to fix the ambiguity; this is influenced by the satellite's geometry, model quality, 

and data noise until it reaches a converging solution. Using the comprehensive set of satellites 

from all the various systems will provide the greatest service possible. Accordingly, using the 

Multi-GNSS PPP will yield the best results. 

The written linear equations for the PPP models in this section are well described in Kouba & 

Héroux, (2001b), Sanz Subirana, (2013), and Wang et al., (2018), for example.  

3.2.3 Precise point positioning modelling components 

In order to achieve sufficient PPP accuracy, it is required to improve the pre-mentioned linear 

model with extra modelling parameters, including parameters required to correct the satellite 

antenna phase center; similar parameters need correct the GNSS receiver with respect to the 

antenna reference point, phase wind-up, atmospheric parameters, and earth deformation effects.  
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3.2.3.1 Satellite antenna phase center 

The broadcasted ephemeris information disseminated by the GNSS satellites refers to the APC; 

however, the precise orbit information transmitted through IGS and some ACs referred to the 

satellite MC. Consequently, the conversion between APC and MC is required. Subsequently, the 

eccentricity vector is used in the conversion process. The values of these vectors vary for satellite 

types and blocks. The IGS ANTEX files contain eccentricity vectors needed to perform such 

corrections. More illustrations regarding this type of error can be found in section 2.4.5 (Enge, 

1994; Hofmann-Wellenhof et al., 2012; Kouba & Héroux, 2001b).  

3.2.3.2 Receiver antenna phase center 

This type of error is described in section 2.4.6. The GNSS receiver manufacturing provides users 

with precise values needed to correct the receiver APC. The APC varies with different frequency 

values; additionally, the satellite elevation angle plays a role in this variation. Consequently, the 

receiver's manufacturing industries and IGS ANTEX files offer different values to different GNSS 

signals (Enge, 1994; Hofmann-Wellenhof et al., 2012; Kouba & Héroux, 2001b).   

3.2.3.3 Satellites wind-up effect 

For accurate positioning, the wind-up error needed to be mitigated; this error is caused by satellite 

manoeuvrers that are performed to keep the solar panel in the direction of the sun—accordingly, 

this affects the carrier phase measurements. The wind-up affects all coordinate components (Enge, 

1994; Hofmann-Wellenhof et al., 2012; Kouba & Héroux, 2001b).  

3.2.3.4 Satellites and receiver delay 

Such as several electronic devices, the GNSS receivers, and satellites showed instrumental delay. 

Antennas, cables, as well as the various implemented filters used in GNSS receivers or satellites 

are potential reasons for these delays. These lags also impact code and carrier observations. The 

receiver delay is absorbed with receiver clock bias; however, the PPP measurements implemented 

with an Iono-free combination eliminate the effect of the satellite delay. On the contrary, for a 

single-frequency receiver, the broadcasted navigation message contains the value of the total group 

delay (Subirana et al., 2011).     
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3.2.3.5 Cycle slip 

The incidence of cycle slip is one of the faults in phase carrier measurement. The GNSS receiver 

must continue to count the proportion of the carrier cycle during the tracking time. When the 

fractional phase changes between 360 and 0 degrees, one cycle will be added to the initial cycle 

counts on each occasion (Wellenhof & Lichtenegg, 2001). The definition of a cycle slip is "a jump 

in the number of integer cycles" (NovAtel Inc, 2015). 

These changes may happen depending on the local surroundings, such as nearby structures, electric 

lines, and leaves and branches. Cycle slip could be influenced by the receiver's physical 

manufacturing quality and software design (Wellenhof & Lichtenegg, 2001). If a satellite's cycle 

slip is detected in PPP observations, it is not resolved during computation; instead, a new column 

for this satellite is added to the system equations. 

3.2.3.6 Earth deformation effects  

Solid tides are caused by the shifting of the earth's surface and, as a result, by changes in 

the location of the coordinates brought on by the gravitational pull of other bodies, primarily the 

Sun and Moon. The spherical harmonics expansion can be used to express 2D displacements that 

are produced by solid tides (Krásná et al., 2013). The ocean loading and pole tides are two 

additional tides that might impact GNSS measurements; however, their negligible effect might be 

disregarded (Kouba & Héroux, 2001b).  

3.3 Real-time precise satellite clock and orbital products and formats 

3.3.1 Real-time precise satellite orbits and clocks 

The orbital and clocks corrections are divided into three categories—the first concerns the number 

of radial, along-track, and cross-track corrections for the satellite’s locations. The second 

correction category concerns the rate of correction for radial, along-track, and cross-track. The last 

category is used to solve the satellite clock biases. Those corrections can be expressed in the 

RTCM-SSR format as: 

∆𝑆𝑆𝑅(𝑡0, 𝐼𝑂𝐷𝐸) = (𝛿𝒪𝓇 , 𝛿𝒪𝒶 , 𝛿𝒪𝒸, 𝛿𝒪̇𝓇 , 𝛿𝒪̇𝒶 , 𝛿𝒪̇𝒸, 𝒞0, 𝒞1, 𝒞2)        (3.9) 
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Where: 

∆𝑆𝑆𝑅: represents the state space representation for correcting the orbital positions of satellites and 

clocks. 

(𝑡0, 𝐼𝑂𝐷𝐸): indicate the relevant broadcast ephemeris that was used to determine the current 

orbital and clock corrections, which is, 𝑡0. However, the IODE signifies the issue of data 

ephemeris. 

(𝛿𝒪𝓇 , 𝛿𝒪𝒶 , 𝛿𝒪𝒸): are the radial, along-track, and cross-track adjustment components. 

(𝛿𝒪̇𝓇 , 𝛿𝒪̇𝒶 , 𝛿𝒪̇𝒸): are the radial, along-track, and cross-track correction rates. 

(𝒞0, 𝒞1, 𝒞2):   are the coefficients terms of the RT satellite clock adjustments. 

The first step is to combine radial, along-track, and cross-track adjustment and rate components 

with respect to 𝑡. 

𝛿𝒪𝑡 = |

𝛿𝒪𝓇

𝛿𝒪𝒶

𝛿𝒪𝒸

|

𝑡

= |

𝛿𝒪𝓇

𝛿𝒪𝒶

𝛿𝒪𝒸

|

𝑡0

+ [

𝛿𝒪̇𝓇

𝛿𝒪̇𝒶

𝛿𝒪̇𝒸

] (𝑡 − 𝑡0)         (3.10) 

The second required step is to use the R matrix to compute the satellite’s location corrections. 

𝛿𝑋𝑡 ≡ |
𝛿𝑥

  𝛿𝑦  
𝛿𝑧

| = 𝑅 ⋅  |
𝛿𝑂𝑟
 𝛿𝑂𝑎
𝛿𝑂𝑐

|           (3.11) 

Where the R=[𝑒𝑟𝑎𝑑𝑖𝑎𝑙 𝑒𝑎𝑙𝑜𝑛𝑔 𝑒𝑐𝑟𝑜𝑠𝑠], the orbital corrections by: 

𝑒𝑟𝑎𝑑𝑖𝑎𝑙 =
𝑟̇

|𝑟̇|
,𝑒𝑎𝑙𝑜𝑛𝑔 =

𝑟×𝑟̇

|𝑟×𝑟̇|
 , and 𝑒𝑐𝑟𝑜𝑠𝑠 = 𝑒𝑟𝑎𝑑𝑖𝑎𝑙 × 𝑒𝑎𝑙𝑜𝑛𝑔. 

Where: 

𝑒𝑖: represents the radial, longitudinal, and cross components. 

r: is the position vector as determined by the satellite's broadcast parameters.  

𝑟̇ : is derived from the broadcast satellite's characteristics as the velocity vector. 
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RTCM Committee, (2016), provides the transformation matrix R required to transform the pre-

mentioned corrections to ECEF format. 

The third required step is to adjust the broadcasted satellite locations as mentioned below: 

[
𝑋𝑃

𝑌𝑃

𝑍𝑃

]

𝑡

= |
𝑋𝑏

𝑌𝑏

𝑍𝑏 
|

𝑡

− |
𝛿𝑥
 𝛿𝑦  
𝛿𝑧

|

𝑡

           (3.12) 

Where: (𝑋𝑃, 𝑌𝑃, 𝑍𝑃) indicates the precise corrected satellite coordinates, (𝑋𝑏, 𝑌𝑏 , 𝑍𝑏) represents the 

broadcasted satellite locations and (𝛿𝑥, 𝛿𝑦, 𝛿𝑧) denotes the ECEF corrections.  

The fourth step is a concern to correct the onboard satellite clock. Equation number 3.13 shows 

the required steps to implement the SSR corrections.  

𝛿𝒞 = 𝒞0 + 𝒞1(𝑡 − 𝑡0) + 𝒞2(𝑡 − 𝑡0)
2          (3.13) 

𝑡𝑝
𝑆𝑎𝑡 = 𝑡𝑏

𝑆𝑎𝑡 +
𝛿𝒞

𝑐
            (3.14) 

The (𝒞0, 𝒞1, 𝒞2) coefficients terms are transmitted with SSR messages for each satellite, 𝑡𝑝
𝑆𝑎𝑡  

indicates the precise corrected time, and 𝑡𝑏
𝑆𝑎𝑡 is the satellite broadcast time.  

3.3.2 State Space Representation (SSR) 

The Radio Technical Commission for Maritime Services (RTCM) Special Committee (SC) is a 

worldwide non-profit organization dedicated to science, profession, and education. 

The SSR represents the GNSS error as a state vector. The main aim of the SSR is to develop an 

applicable format to transform the GNSS corrections and products for GNSS precise point 

positioning. Three milestones have been constructed, including developing the orbital and clock 

satellites' error and code biases, secondly, including the vertical ionospheric parameters, and the 

adaptation of the satellite's phase biases. Thirdly, it can provide tropospheric and slant ionospheric 

information (Wübbena, 2012). Both vertical ionospheric and phase biases are not included in the 

initial SSR messages.  

Since 1994, IGS has ensured that high-quality, accessible GNSS data solutions are always 

available. These technologies enable applications in science, education, and the marketplace to use 
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them in a global reference frame. The IGS expands its capacity to provide a service for applications 

needing RT access to IGS solutions through RTS (IGS, 2020a). 

Multi-GNSS items have been included since 1994; IGS has worked to ensure that there is always 

access to GNSS data products of the highest accessing rate. The IGS actually manages the Real-

Time Service (RTS) as a public utility. Users are provided with complimentary or open access 

through membership. 

Initially, the RTCM specification for RTCM-SSR was used to construct RTS correction streams 

(IGS, 2020b; Wübbena, 2012). The items are now made accessible in the IGS-SSR format 

regarding long lags in establishing this standard to meet the requirements beyond GPS and 

GLONASS. The items are distributed using the NTRIP protocol. RTS-corrected orbits are 

expressed in the ITRF 2014 reference frame. The most recent standards include quality indicators, 

correction messages for clocks, biases for transmitted code and phase, multi-GNSS orbits, and 

global ionospheric information. Soon, extensions will be planned to include satellite attitudes, 

phase center deviations, and shifts. Additionally, it is projected to enhance the current ionospheric 

models (IGS, 2020c, 2020b).  

The last IGS SSR V1.0 format was released in October 2020 and is designed to support Multi-

GNSS RT positioning. The primary message's ID is 4076, which includes several sub-messages. 

The table below shows the most recent sub-message version (Federal Agency for Cartography and 

Geodesy, 2022; IGS, 2020b). 

Table 3.1 RT sub-messages including 4076 primary messages (Source: (IGS, 2020b)). 

Sub Messages GNSS IGM Type Name 

IM021 GPS Orbit Correction 

IM022 GPS Clock Correction 

IM023 GPS Combined Orbit and Clock Correction 

IM024 GPS High-Rate Clock Correction 

IM025 GPS Code Bias 

IM026 GPS Phase Bias 

IM027 GPS URA 

IM041 GLONASS Orbit Correction 

IM042 GLONASS Clock Correction 

IM043 GLONASS Combined Orbit and Clock Correction 

IM044 GLONASS High-Rate Clock Correction 
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IM045 GLONASS Code Bias 

IM046 GLONASS Phase Bias 

IM047 GLONASS URA 

IM061 GALILEO Orbit Correction 

IM062 GALILEO Clock Correction 

IM063 GALILEO Combined Orbit and Clock Correction 

IM064 GALILEO High-Rate Clock Correction 

IM065 GALILEO Code Bias 

IM066 GALILEO Phase Bias 

IM067 GALILEO URA 

IM081 QZSS Orbit Correction 

IM082 QZSS Clock Correction 

IM083 QZSS Combined Orbit and Clock Correction 

IM084 QZSS High-Rate Clock Correction 

IM085 QZSS Code Bias 

IM086 QZSS Phase Bias 

IM087 QZSS URA 

IM101 BDS Orbit Correction 

IM102 BDS Clock Correction 

IM103 BDS Combined Orbit and Clock Correction 

IM104 BDS High-Rate Clock Correction 

IM105 BDS Code Bias 

IM106 BDS Phase Bias 

IM107 BDS URA 

IM121 SBAS Orbit Correction 

IM122 SBAS Clock Correction 

IM123 SBAS Combined Orbit and Clock Correction 

IM124 SBAS High-Rate Clock Correction 

IM125 SBAS Code Bias 

IM126 SBAS Phase Bias 

IM127 SBAS URA 

IM201 GNSS SSR Ionosphere VTEC Spherical Harmonics 

 Note: The URA indicates the User Range Accuracy. 

 



85 

 

3.3.3 Current real-time state space representation products at IGS and analysis centers 

Different SSR streams are produced by IGS and other Analysis Centers (ACs); the following table, 

(as of October 2023), shows some RT streams (Federal Agency for Cartography and Geodesy, 

2022; IGS, 2020b).  

Table 3.2 SSR streams 

SSR Stream Identifier Supported System Format Software generator 

BCEP00BKG0 Assisted-GNSS 
GPS+GLO+GAL+BDS+

QZS+SBAS 

RTCM 3.3 BNC 

BCEP00GMV0 Assisted-GNSS 
GPS+GLO+GAL+BDS+

QZS 

RTCM 3.3 magicGNSS 

BCEP01BKG0 Assisted-GNSS GPS RTCM 3.1 BNC 

BCEP02BKG0 Assisted-GNSS GLO RTCM 3.1 BNC 

BCEP03BKG0 Assisted-GNSS GAL RTCM 3.3 BNC 

BCEP04BKG0 Assisted-GNSS SBAS RTCM 0.0 BNC 

BCEP05BKG0 Assisted-GNSS SBAS RTCM 0.0 BNC 

BCEP06BKG0 Assisted-GNSS IRS RTCM 0.0 BNC 

BCEP07BKG0 Assisted-GNSS SBAS RTCM 0.0 BNC 

IGC01 RTCM-SSR CoM 
GPS RTCM 3.1 RETINA 

IGS01 RTCM-SSR APC 
GPS RTCM 3.1 RETINA 

IGS02 BRDC_APC_ITRF GPS+GLO+GAL RTCM 3.1 BNC 

IGS03 BRDC_APC_ITRF GPS+GLO+GAL+BDS RTCM 3.1 BNC 

IONO00CAS1 IGS-SSR GPS+GLO+GAL+BDS RTCM 3.3 GPSNet 

IONO00CNE1 IGS-SSR GPS+GLO+GAL+BDS RTCM 3.3 PPP-WIZARD 

IONO00IGS1 IGS-SSR   RTCM 3.1 UPC-Software 

IONO00UPC1 IGS-SSR   RTCM 3.1 UPC-Software 

IONO01IGS0 RTCM-SSR   RTCM 0.0 BDSMART-IONO 

IONO01IGS1 IGS-SSR   RTCM 3.1 BDSMART-IONO 

OSBC00WHU0 RTCM-SSR CoM GPS+GLO+GAL+BDS RTCM 3.1 PANDA 

OSBC00WHU1 IGS-SSR CoM GPS+GAL+BDS RTCM 3.1 PANDA 
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SIRGAS200001 
RTCM-SSR APC 

SIRGAS2000 

GPS+GLO+GAL RTCM 3.1 BNC 

SIRGAS200002 
RTCM-SSR APC 

SIRGAS2000 

GPS+GLO+GAL+BDS RTCM 3.1 BNC 

SSRA00BKG0 RTCM-SSR APC GPS+GLO+GAL RTCM 3.1 RETICLE 

SSRA00BKG1 IGS-SSR APC 
GPS+GLO+GAL RTCM 3.1 RETICLE 

SSRA00BKG1_DR

EF91 
BRDC_APC_ITRF 

GPS+GLO+GAL RTCM 3.1 RETICLE 

SSRA00CAS0 RTCM-SSR APC 
GPS+GLO+GAL+BDS RTCM 3.1 GPSNet 

SSRA00CAS1 IGS-SSR APC 
GPS+GLO+GAL+BDS+

QZS 

RTCM 3.1 GPSNet 

SSRA00CNE0 RTCM-SSR APC 
GPS+GLO+GAL+BDS RTCM 3.1 PPP-WIZARD 

SSRA00CNE1 IGS-SSR APC GPS+GLO+GAL+BDS RTCM 3.1 PPP-WIZARD 

SSRA00ESA0 RTCM-SSR APC 
GPS RTCM 3.1 RETINA 

SSRA00ESA1 IGS-SSR APC GPS RTCM 3.1 RETINA 

SSRA00GFZ0 RTCM-SSR APC 
GPS+GLO+GAL+BDS RTCM 3.1 EPOS-RT 

SSRA00GFZ1 IGS-SSR APC 
GPS+GLO+GAL+BDS RTCM 3.1 EPOS-RT 

SSRA00GMV0 RTCM-SSR APC 
GPS+GLO+GAL+BDS RTCM 3.1 magicGNSS 

SSRA00GMV1 IGS-SSR APC 
GPS+GLO+GAL+BDS RTCM 3.1 magicGNSS 

SSRA00NRC0 RTCM-SSR APC GPS RTCM 3.1 HPGNSSC 

SSRA00SHA1 IGS-SSR APC GPS+GLO+GAL RTCM 3.1 none 

SSRA00WHU0 RTCM-SSR APC 
GPS+GLO+GAL+BDS RTCM 3.1 PANDA 

SSRA00WHU1 IGS-SSR APC 
GPS+GLO+GAL+BDS RTCM 3.1 PANDA 

SSRA01CNE0 RTCM-SSR APC 
GPS+GLO+GAL+BDS RTCM 3.1 PPP-WIZARD 

SSRA01ESA0 RTCM-SSR APC GPS RTCM 3.1 RETINA 

SSRA01ESA1 IGS-SSR APC GPS RTCM 3.1 RETINA 

SSRA01GFZ0 RTCM-SSR APC 
GPS+GLO+GAL+BDS RTCM 3.1 EPOS-RT 

SSRA01GFZ1 IGS-SSR APC GPS+GLO+GAL+BDS RTCM 3.1 EPOS-RT 
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SSRA01IGS0 RTCM-SSR APC GPS RTCM 3.1 RETINA 

SSRA01IGS1 IGS-SSR APC GPS RTCM 3.1 RETINA 

SSRA02IGS0 RTCM-SSR APC 
GPS+GLO+GAL RTCM 3.1 BNC 

SSRA02IGS1 IGS-SSR APC 
GPS+GLO+GAL RTCM 3.1 BNC 

SSRA03IGS0 RTCM-SSR APC 
GPS+GLO+GAL+BDS RTCM 3.1 BNC 

SSRA03IGS1 IGS-SSR APC 
GPS+GLO+GAL+BDS RTCM 3.1 BNC 

SSRA11IGS0 RTCM-SSR APC GPS RTCM 3.1 RETINA 

SSRA21IGS0 RTCM-SSR APC GPS RTCM 3.1 RETINA 

SSRC00BKG0 RTCM-SSR CoM GPS+GLO+GAL RTCM 3.1 RETICLE 

SSRC00BKG1 IGS-SSR CoM GPS+GLO+GAL RTCM 3.1 RETICLE 

SSRC00CAS0 RTCM-SSR CoM 
GPS+GLO+GAL+BDS+

QZS 

RTCM 3.1 GPSNet 

SSRC00CAS1 IGS-SSR CoM 
GPS+GLO+GAL+BDS+

QZS 

RTCM 3.1 GPSNet 

SSRC00CNE0 RTCM-SSR CoM 
GPS+GLO+GAL+BDS RTCM 3.1 PPP-WIZARD 

SSRC00CNE1 IGS-SSR CoM GPS+GLO+GAL+BDS RTCM 3.1 PPP-WIZARD 

SSRC00ESA0 RTCM-SSR CoM GPS RTCM 3.1 RETINA 

SSRC00ESA1 IGS-SSR CoM GPS RTCM 3.1 RETINA 

SSRC00GFZ0 RTCM-SSR CoM GPS+GLO+GAL+BDS RTCM 3.1 EPOS-RT 

SSRC00GFZ1 IGS-SSR CoM 
GPS+GLO+GAL+BDS RTCM 3.1 EPOS-RT 

SSRC00GMV0 RTCM-SSR CoM 
GPS+GLO+GAL+BDS RTCM 3.1 magicGNSS 

SSRC00GMV1 IGS-SSR CoM GPS+GLO+GAL+BDS RTCM 3.1 magicGNSS 

SSRC00SHA1 IGS-SSR CoM 
GPS+GLO+GAL RTCM 3.1 none 

SSRC00WHU0 RTCM-SSR CoM GPS+GLO+GAL+BDS RTCM 3.1 PANDA 

SSRC00WHU1 IGS-SSR CoM GPS+GLO+GAL+BDS RTCM 3.1 PANDA 

SSRC00WHU2 IGS-SSR CoM 
GPS+GLO+GAL+BDS RTCM 3.1 PANDA 

SSRC01CNE0 RTCM-SSR CoM 
GPS+GLO+GAL+BDS RTCM 3.1 PPP-WIZARD 

SSRC01ESA0 RTCM-SSR CoM GPS RTCM 3.1 RETINA 

SSRC01ESA1 IGS-SSR CoM GPS RTCM 3.1 RETINA 
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SSRC01GFZ0 RTCM-SSR CoM 
GPS+GLO+GAL+BDS RTCM 3.1 EPOS-RT 

SSRC01GFZ1 IGS-SSR CoM GPS+GLO+GAL+BDS RTCM 3.1 EPOS-RT 

SSRC01IGS0 RTCM-SSR CoM GPS RTCM 3.1 RETINA 

SSRC01IGS1 IGS-SSR CoM GPS RTCM 3.1 RETINA 

SSRC01WHU0 RTCM-SSR CoM GPS RTCM 3.1 PANDA 

SSRC02IGS0 RTCM-SSR CoM GPS+GLO+GAL RTCM 3.1 BNC 

SSRC02IGS1 IGS-SSR CoM GPS+GLO+GAL RTCM 3.1 BNC 

SSRC03IGS0 RTCM-SSR CoM GPS+GLO+GAL+BDS RTCM 3.1 BNC 

SSRC03IGS1 IGS-SSR CoM GPS+GLO+GAL+BDS RTCM 3.1 BNC 

SSRC11IGS0 RTCM-SSR CoM GPS RTCM 3.1 RETINA 

SSRC21IGS0 RTCM-SSR CoM GPS RTCM 3.1 RETINA 

 

All SSR streams have the prefix SSRC or SSRA for CoM orbits and APC orbits, respectively. The 

GPS, GLO, GAL, BDS, and QZS denote the Global Positioning System, GLONASS, GALILEO, 

BeiDou, and Quasi-Zenith Satellite System. 

Several academic universities and centers are involved as stream producers, such as Shanghai 

Astronomical Observatory (SHAO), Bundesamt für Kartographie und Geodäsie (BKG), and 

European Space Agency’s Space Operations Centre (ESA/ESOC)—the Chinese Academy of 

Sciences (CAS), Wuhan University. Finally, National Research Canada (NRCan), GFZ, GMV, and 

CNES are the Natural Resources Canada, Deutsches GeoForschungs Zentrum, Aerospace and 

Defence, and Centre National d’Etudes Spatiales, besides the official corrections produced by the 

international GNSS services (IGS).  

Three IGS official RT orbital and clock corrections, IGS1, IGS2, and IGS3, were recently renamed 

to SSRA01IGS1, SSRA02IGS1, and SSRA03IGS1, respectively. The software used to construct 

the SSRA01IGS1 Single-epoch combination solution was created by ESA/ESOC. This product's 

solution epochs are totally autonomous, allowing IGS to reach the total accuracy available at the 

outset of product development. Each AC solution's clocks are aligned by subtracting a standard 

offset calculated by processing CNES from all satellite clocks at each epoch. IGS provides two 

https://en.wikipedia.org/wiki/Quasi-Zenith_Satellite_System
https://en.wikipedia.org/wiki/Quasi-Zenith_Satellite_System
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forms of SSRA01IGS1 solution to accommodate the satellite mass and antenna phase center 

calculations. It is worth mentioning that this solution provides corrections to the GPS only. 

SSRA02IGS1 is a Kalman filter composite generated by BKG's BNC program. Unlike 

SSRA01IGS1, this solution required several minutes to converge to the suitable accuracy. One of 

the arriving AC solutions is parsed for orbit data. ACs estimates of satellite clocks are utilized as 

pseudo-observations in the Kalman Filter correction method. Currently, the SSRA02IGS1 

provides corrections for GPS, GLONASS, and Galileo satellites.  

SSRA03IGS1 This is the same product that was initially known as IGS03/IGC03, an experimental 

combination product that used BKG's BNC software to calculate a Kalman filter combination of 

GPS and GLONASS corrections. Currently, this stream provides corrections to BeiDou and 

Galileo besides GPS and GLONASS. 

Contrary to free PPP services, for instance, IGS or primary ACs, there are commercial PPP service 

providers, for example, Leica Geosystem, VERIPOS, Trimble RTX, TerraStar, StarFire, and 

OmniSTAR (Hexagon, 2022; Leica Geosystems, 2022; OmniSTAR services, 2022; TerraStar 

Correction Services, 2022; Trimble Positioning Services, 2022; VERIPOS, 2022). The PPP service 

providers use a system of ground reference stations to gather correction information for each 

satellite's various signals. Geostationary satellites transmit the adjustments computed using this 

data to the receivers of paying customers. Alternatively, it can be delivered to GNSS users through 

internet communications. 

3.4 Current tools for real-time precise point positioning 

Many GNSS commercial, scientific, and educational GNSS software packages are currently 

available. They provide many coordinates solutions through RTK, NRTK, VRS, and other 

services. However, limited software is capable of dealing with PPP and RT-PPP.  

Different research centers and some universities provide open-access PPP and RT-PPP tools, some 

of which encounter maintenance and updating problems. This section provides a literature review 

regarding the RT-PPP tools.  The performance of those tools is varied in accuracy and converging 

time terms (Alcay & Atiz, 2021; Atiz et al., 2021). 
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3.4.1 BNC 

An open-source program called the BKG Ntrip Client (BNC) was created for several real-time 

GNSS applications. BNC also manages HTTP communication and transmits incoming GNSS 

output to a serial or Internet Protocol (IP) port. The BNC is distinguished from other software as 

it is executable with different operating systems. Additionally, the possibility of using operating 

systems such as Debian and Raspbian permits outdoor applications (Bundesamt für Kartographie 

und Geodäsie, 2022).  

The BNC software performs many tasks such as navigation and observation conversions with 

formats such as Radio Technical Commission Maritime Service /Receiver Independent Exchange 

Format (RTCM/RINEX), storing correction SSR streams, RINEX editing, including splitting and 

concatenating for traditional RTK, and providing corrections from a close reference base station 

to a serially connected receiver. For PPP measurements, it is possible to work with both RT and 

post-processing modes within the software. Additionally, it is possible to evaluate different coming 

streams. Regarding the correction stream, the BNC combines broadcasted SSR corrections from 

many different ACs(Bundesamt für Kartographie und Geodäsie, 2022; Federal Agency for 

Cartography and Geodesy, 2022).   
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Figure 3.1 BNC interface. 

(Source: (Bundesamt für Kartographie und Geodäsie, 2022)). 

Many GNSS researchers have used the BNC software. It is involved in many applications, such as 

precise kinematic positioning, RT corrections evaluations, and monitoring applications (Alcay & 

Atiz, 2021; Charoenphon & Satirapod, 2022; Galera Monico et al., 2019; Qafisheh et al., 2022)    

3.4.2 RTKLIB 

The first RTKLIB release was created in 2006. It was initially formed by the Tokyo University of 

Marine Science and Technology mainly for educational purposes as open-source software. 

RTKLIB supports various GNSS features such as Multi-GNSS standard and precise positioning, 

RT-PPP, and post-process PPP. Additionally, it supports Hypertext Transfer Protocol /File Transfer 

Protocol (HTTP/FTP), local log files, serial, Internet Protocol/Transmission Control Protocol 

(IP/TCP), and NTRIP for external communication. Many GNSS investigators widely use the 

RTKLIB software. It is elaborate in many applications such as Driving simulations, smartphones, 

the safety of life, RTK, UAV, and RT corrections evaluations and monitoring applications 
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(Angrisano et al., 2020; Kaleev et al., 2021; Kaleev & Saburova, 2018; Lim et al., 2021; Takács et 

al., 2017). 

 

Figure 3.2 RTKLIB interface. 

(Source: https://www.rtklib.com/rtklib.htm). 

3.4.3 PPP-WIZARD 

Unlike BNC and RTKLIB, the PPP-wizard is available to download on request. The CNES has 

created the software. The specific preference for using PPP-WIZARD over other software is the 

ability to perform the ambiguity resolution technique with zero differences. The benefits of this 

approach are that compared to the conventional PPP approaches, the precision is better than one 

order of magnitude. It is not specifically a local augmentation method, does not predict 

atmospheric variables, and requires a sparse station network. It is equivalent to that used for the 

GALILEO Commercial Service or that used in SBAS systems (Centre national d’études spatiales, 

2022).  The software involves many research activities, especially for solving ambiguities (Jokinen 

et al., 2013; Li et al., 2019).   

https://www.rtklib.com/rtklib.htm
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3.4.4  gLAB 

A software package called gLAB was created by the experts in astronomy and geomatics (gAGE) 

at the Universitat Politècnica de Catalunya (UPC). Additionally, the capability for various 

navigation constellations is incorporated, enabling the execution of some data analysis using 

Multi-GNSS data under the terms of an ESA agreement. It is a flexible, dynamic teaching tool for 

processing and analyzing GNSS data. 

The tool enables both standalone GPS location and PPP by centimeter-level accurate modelling of 

GNSS positioning. This allows for the independent assessment of each error contributor, which 

has significant educational benefits. Various standard formats, including RINEX-3.00, SP3, 

ANTEX, and SINEX files, are supported by the software. Additionally, the capability for various 

navigation constellations is incorporated, enabling the execution of some data analysis using real 

Multi-GNSS data (Universitat Politecnica de Catalunya, 2021). The gLAB supports various 

research activities (Cahuasqui et al., 2022; Teresa Alonso et al., 2021; Universitat Politecnica de 

Catalunya, 2021). 

3.4.5 GipsyX 

As in the case of PPP-WIZARD, the GipsyX is available to download on request and uses the PPP 

processing technique. The earth tracking application groups at the JPL create and operate GipsyX. 

It replaces the old version of software GNSS-Inferred Positioning System and Orbit Analysis 

Simulation Software (GIPSY-OASIS); this software provides many solutions, such as Analysis of 

GNSS data, centimeter-level, accurate timing, and positioning using GNSS. This software is 

distinguished as it utilizes JPL's GPS orbit and clock components for single-receiver ambiguity 

resolution. It is involved in many applications and research activities. Unlike BNC, the GipsyX 

implements different composite models such as high-order earth gravity corrections, atmospheric 

drag, solid and ocean tide gravity fields, the third body effects from the Moon, Sun, and other 

planets, and solar radiation pressure (Bertiger et al., 2020; Jet Propulsion Laboratory, 2021). 

https://gage.upc.edu/en/learning-materials/software-tools/glab-tool-suite/glab-tutorials
https://doi.org/10.1016/j.asr.2020.04.015
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3.4.6 GMV MAGIC-PPP 

MAGIC-PPP is a global system that enables users of GNSS to identify their location or trajectory 

to within centimetres. It uses the latest version of GMV's PPP models, which are based on GNSS 

corrections, supports rapid convergence, and employs hybridization strategies with outside sensors 

for increased location consistency. The MAGIC-PPP provides many PPP services, which can be 

implemented by post-processing, web service, and PPP mail. The MAGIC-FAST feature is 

distinguishing as it significantly improves the converging time. Unlike BNC and RTKLIB, the 

MAGIC-PPP services are available to registered users (GMV Innovating Solutions S.L., 2022).  

The MAGIC-PPP corrections streams and the solution services have been widely used in many 

scientific applications (Guo, 2015; Kirschenstein et al., 2018; Krasuski, 2017; Krasuski et al., 

2018).   

3.4.7 G-Nut/Geb 

The main goal of the G-Nut software is to emphasize and encourage interdisciplinary exploitation 

of GNSS observations, which serve as the cornerstone of the G-Nut library and specialized user 

applications. According to its evaluations, the G-Nut project is currently in the testing phase. The 

fundamental data members and library functions have been put into place with the initial 

applications. Processing that can be done both offline and in RT has shown to have robust 

functionality. The software is a part of the project and has been operated by the Research Institute 

of Geodesy and Topography and Cartography and the Pecny Observatory in the Czech Republic 

(Geodetic Observatory Pecny, 2012; Research Institute of Geodesy, 2020).  The G-Nut library is 

an open-source library that contributes to many research activities (Dousa & Vaclavovic, 2014; 

Vaclavovic et al., 2013). The software is distinguished as it provides several PPP approaches that 

can operate in real-time and post-processing modes.  
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3.4.8 Bernese tool 

The Astronomical Institute at the University of Bern (AIUB) developed the scientific, high-

precision, Multi-GNSS data processing package recognized as the Bernese GNSS Software. For 

its IGS and European (EUREF/EPN) actions, CODE uses it as an example. The software is 

continuously being developed and improved. The software package is operable in different 

operating systems (Bernese GNSS Software, 2022; Rolf Dach et al., 2015). 

3.4.9 Other tools 

Besides the pre-mentioned open-source software, packages, and libraries, some commercial 

software is involved in RT-PPP, such as RTNet and Trimble Business Center (TBC). Additionally, 

for post-process PPP measurement, there are available online position services like AUSPOS, 

OPUS, and CSRS-PPP (GPS Solutions, 2022; Jet Propulsion Laboratory, 2022; NGS, 2022; NRC, 

2022; Trimble, 2022).  

3.5 Current limitations of precise point positioning and real-time precise point positioning 

3.5.1 Ambiguity resolutions 

The described PPP model in section 3.2.2 includes 𝐵𝐶̂
̇  term, which describes the approximation of 

ambiguity bias. Due to the problem of ambiguity fixing in PPP, this approximation needs more 

time to converge to the right solution. The converging time depends on the quality of the PPP 

model, satellite geometry, and observational noises. The ambiguities in section 3.2.2 are treated as 

not integer numbers. This solution is called float ambiguity. Alternatively, it is possible to fix the 

ambiguity with some techniques. The number of wave cycles between the satellite and receiver 

could be treated as an integer value representing the integer number of the cycles in the 

transmission path; additionally, to the integer number, it is also possible to measure the cycle 

fractions. The high-quality GNSS receivers implemented with the phase carrier tracking units 

allow the receiver to count the cycle fractions. 

𝐵1,𝑅𝐸𝐶
𝑆𝑎𝑡 = 𝜆1𝑁𝑅𝑒𝑐,1

𝑆𝑎𝑡 + 𝑏1,𝑅𝐸𝐶 + 𝑏1
𝑆𝑎𝑡                     (3.14) 
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 𝑁𝑅𝑒𝑐,1
𝑆𝑎𝑡 : represents the integer number of cycles between the GNSS satellite and receiver 

corresponding to the signal L1; for instance, similarly, it is possible to write equations to other 

signals transmitted from the satellite, 𝜆1 represent the wavelength (𝑏1,𝑅𝐸𝐶 , 𝑏1
𝑆𝑎𝑡) represent the cycle 

fraction in the receiver and satellite sides. The ambiguity-fixing procedures use the ambiguities in 

the integer structure to fix them correctly, speeding up convergence and resulting in excellent 

accuracy. 

The fixing approach can be implemented in relative positioning through double differences in the 

measurements. The differences allow for eliminating the satellite and receiver cycle fractions. The 

zero differences are an absolute ambiguity fixing approach used in PPP-AR (PPP with ambiguity 

resolution).  

Integer least-squares and integer bootstrapping are two popular methods for resolving integer 

ambiguities (Blewitt, 1989; Teunissen, 2001). The integer bootstrapping uses least-squares 

ambiguity cross-correlation adjustment, which is optimum in the sense of increasing the likelihood 

of proper ambiguity resolution and provides an exceptionally smooth execution of this approach 

(Teunissen, 2001). In any event, the case where the integer ambiguity resolution process fails must 

be taken into account since the incorrectly corrected ambiguities may result in significant 

distortions in the actual values. Because of this, ambiguity verification is a significant problem. 

Many tests might be applied to determine whether or not to adopt the integer solution (Brack, 

2017; Wang et al., 2022; Yue et al., 2022). 

Strategies for integer ambiguity correcting in PPP have been the topic of extensive research. They 

have greatly improved in recent years as the precision of satellite orbital and clock corrections 

enhanced to allow the use of PPP. These strategies include applying wide-lane and narrow-lane 

combinations. Additionally, some corrections streams currently contain satellite carrier phase 

biases (Geng et al., 2022).  

The determination of the fractional cycle bias (FCB) and Integer Recovery Clock (IRC) enhances 

ambiguity-fixed. FCB and IRC are proposed by (Collins et al., 2010; Ge et al., 2008; Laurichesse 

et al., 2008). They highlighted that because a particular satellite pair's single-difference ambiguities 

originate from double-difference ambiguities that are close to integers, they must have an equal 
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fractional portion. Additionally, they demonstrated how FCBs could be predicted using single-

difference observations from a network of reference stations and how the calculated FCBs could 

be utilized to completely eliminate the satellite FCBs in a PPP approach.  

The evaluation of how Multi-GNSS affects GNSS PPP ambiguity can be found in Li et al. (2019), 

who have utilized the multi-frequency signals to allow a variety of combinations on different 

frequencies, which can improve the PPP performance in terms of ambiguity resolution. That study 

shows it can improve PPP accuracy and converging time of simulated GALILEO PPP data utilizing 

GPS + GALILEO + BeiDou constellations.  This study supported the concept that employing the 

three systems together rather than individually would provide the best performance to resolve 

ambiguities (Nadarajah & Teunissen, 2013). Capilla et al. (2016) and Pan et al. (2017) showed that 

using Multi-GNSS PPP improves the PPP converging time. 

3.5.2 Initialization period and noise of ionosphere-free combination 

As part of an analysis of the current state of PPP converging time, different researchers applied 

various approaches to estimate PPP converging time. For instance, Martín et al., (2011), define it 

as the time required to reach centimeter accuracy; however, a level of decimetre was applied by 

(Bisnath & Gao, 2009a), and other researchers predefine the converging time (Zumberge et al., 

1997). Kouba and Héroux, (2001), showed that two to three hours were required to reach 

centimeter accuracy. Reaching a sub-decimetre level of accuracy was achievable for kinematic 

PPP (Colombo et al., 2004) within 30 minutes or more. More or less, the same results were found 

(Héroux et al., 2004; Landau et al., 2009) with 90 minutes for converging time. Martín et al., 

(2011), deduced that there is no significant reduction in the converging time by using GLONASS 

and GPS with two two-hour converging periods to reach a centimeter level of accuracy. Martín et 

al., (2011), compared PPP results using GPS and GLONASS in combination with GPS-only 

observations. They concluded that there is no significant impact in reducing the convergence time. 

However, they recommended further investigation to examine the PPP performance, especially 

since the number of operational satellites will increase soon (Martín et al., (2011)). Xu et al., 

(2017), showed that combining BeiDou + GPS improved the converging time by 18.5% 

concerning only BeiDou-PPP. Additionally, the research showed significant improvement in the 

coordinate accuracy obtained by combining the pre-mentioned constellations (Xu et al., 2017).   
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Using Multi-GNSS PPP approaches can help to reduce convergence time. Afifi and El_Rabbany, 

(2016), investigated the effect of utilizing Multi-GNSS PPP on the initialization period. The study 

concluded by using combinations of BeiDou +GALILEO + GPS observation, enhancing the RT-

PPP converging time by 25% (Afifi & El-Rabbany, 2016).  Nadarajah et al., (2018), conclude that 

the converging time could be reduced to around half the period if the PPP was performed using 

GLONASS, GPS, and GALILEO instead of using GPS alone. Lou et al. (2016) found that the 

Multi-GNSS PPP enhanced the converging time by 60%. Similar results were confirmed using 

Multi-GNSS PPP AR (Aggrey & Bisnath, 2019b). A recent study shows that the improvement of 

converging time is possible using Multi navigation constellations; this research studies the effect 

of changing elevation angles with respect to Multi and alone navigation constellations ( Zhao et 

al., 2020). Another Multi-GNSS PPP study showed that BeiDou with GPS + GLONASS 

significantly improved PPP performance in converging time and accuracy (Huang et al., 2016). 

Ogutcu et al., (2021), showed that BeiDou enhances the PPP converging period for GALILEO 

with 6%, GPS with 13%, and 10% for GLONASS. The study also examined the PPP initialization 

time concerning several cut-off angels (Ogutcu et al., 2021) 

Hesselbarth and Wanninger, (2008), showed that a high-rate clock product could significantly 

reduce the converging time. Finally, the enhancement of the PPP converging time could be 

achieved by using precise ionospheric and tropospheric products (Li et al., 2016; Li et al., 2019; 

Shi & Gao, 2014; Zhao et al., 2020) 

According to Su and Jin, (2018), the PPP method's average convergence time for the BeiDou, GPS, 

GLONASS, BDS+GPS, and Multi GNSS is 55.89 minutes, 25.88 minutes, 33.30 minutes, 20.50 

minutes, and 15.71 minutes, respectively. Li and Pan, (2021), recently investigated PPP Multi-

GNSS different product's performance and found in terms of RT-PPP converging time 8.7, 5.2, and 

11.2 minutes for the components of the prementioned directions.  

Zheng et al., (2022), confirmed that using GLONASS and GPS improves the converging time and 

the accuracy of estimation ZTD. Xia et al., (2022), proposed an RT model for ZTD that indicates 

a significant reduction in converging time, especially for up components.  
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3.5.3 Latency  

The user uses the orbit and clock products at various latencies. The latency time can be defined as 

the delay produced in transmitting the products in the IGS or ACs. NTRIP is the protocol for 

integrating these solutions for IGS RTS Service and disseminating them online with RTCM SSR 

correction format. The amount of time needed for the computer system running the RT-PPP 

solution (Johnston et al., 2017), can also produce a delay component. 

Hadas and Bosy, (2014), raised problems like latency or the switch from global to individual AC 

products that must be considered. The same authors demonstrated that combining official IGS 

products affected the latency values. Accordingly, the coordinate's availability and accuracy 

degraded (Martín et al., 2013; Qafisheh, 2020). Zhang et al. (2018a) showed that the latency is 

noticeable for RT products and is considered part of this research's availability. Pelc-Mieczkowska 

& Tomaszewski, (2020), evaluate the SSR corrections concerning the latency impact on the radial, 

along, and cross-track components. The researchers investigated the product's latency and found 

that for every three minutes, latency impacted orbital correction with 5 centimetres error for each 

component. However, the situation is worse for the latency in clock corrections; the same amount 

of error corresponds to one-minute latency. The research shows that all research stations' mean 

absolute coordinate residual error reaches 2.87m, 3.07m, and 5.75m for the north, east, and 

vertical. The low prices accuracy can be justified by the fact that Pelc-Mieczkowska & 

Tomaszewski, (2020), studied the latency impact for Single Point Position.  On the contrary, Martín 

et al., (2013), found that the PPP positioning accuracy could be affected by 15 to 30 centimetres if 

the latency values were between 30 to 40 seconds.  

Zhang et al., (2018), mentioned that the IGS combination products show 28 to 26 seconds of 

latency. On the other hand, the latency for individual AC products for instant CLK22 was 3 

seconds. The research confirmed that the latency value affects both the availability and the 

accuracy of PPP measurements. 

The same authors evaluated various RT products from IGS and other ACS. The study found the 

latency values for IGS01, IGS03, CLK22, CLK52, and CLK90 streams are 24-28, around 27, 

around 3, less than 10, and around 8 seconds, respectively. Similar results were found (Pelc-
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Mieczkowska & Tomaszewski, 2020) with 8 seconds for CLK90 and IGS01 above 24 seconds. 

The latency values are not constant and vary concerning correction stream type and 

communication quality. The mean latency value of the IGS03 SSR is around 32 seconds (Qafisheh 

et al., 2020). 

3.5.4 Availability and the quality of state space representation corrections 

Another part of an analysis of the current state of PPP regards the quality and the availability of 

correction products. PPP service providers disseminate RTS, which provides access to precise real-

time products used for RT applications. The quality and availability of those products can be found 

in Hadas and Bosy (2014). The analysis revealed that the GPS and GLONASS satellite systems 

have data availability rates above 92%. Additionally, it compared actual orbits and a clock to IGS 

final products. The investigation concluded that the 3D orbital precision of GPS and GLONASS 

is 48 mm and 84 mm, respectively, while the clock accuracy is 0.28 ns for GPS and 0.82 for 

GLONASS. However, research on products and standardization is still needed. 

A more comprehensive and recent study related to the assessment of Muti-GNSS correction 

products was done by (Kazmierski et al., 2020). This study investigates CNES RT orbital and clock 

corrections. The most precise orbital products are available for GPS, according to studies. 

However, accurate atomic clock correction products recover systematic inaccuracies in 

GALILEO's orbits. Despite having high-quality orbits, the GLONASS satellites have inadequate 

clocks, which is the same as the Chinese BeiDou system. A similar evaluation for the same CNES 

product was investigated by (Kazmierski et al., 2018); the research comparison between CODE/ 

CNES products during one one-month, the 3D orbital RMS between the CODE and CNES for 

GPS, GLONASS, GALILEO, BeiDou MEO, and BeiDou IGSO was 5, 10, 18, 18, and 36 cm, 

correspondingly. BeiDou geostationary orbital errors are higher than one meter. 

Guo et al., (2017), assessed and compared the quality of the precise products between different 

ACs. According to the findings, orbit evaluations for GALILEO, BeiDou MEOs, BeiDou IGSOs, 

and QZSS show similarities of roughly 0.1-0.25 m, 0.1-0.2 m, and 0.2-0.4 m, respectively. 

However, the BeiDou GEO orbits have the weakest alignments, with only a few meters of 

agreement. For clock evaluations, the results show that BeiDou IGSOs and MEOs have 0.15–0.8 
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ns, and QZSS from 0.4-0.8 ns, clock assessments of individual ACs have uniformity of 0.2–0.4 ns 

for GALILEO. 

The findings demonstrate that the CNES and WHU analysis centers offer the most comprehensive 

and high-quality solutions. Qafisheh et al. (2022) investigated the assessments of Multi GNSSs' 

RT products, showing that, in general, they have better than 5 cm and 0.15 ns, respectively. GPS 

seems to have the highest orbit and clock accuracy. GALILEO, BeiDou-3, GLONASS, and 

BeiDou-2 are next in order (Li et al., 2022). 

Additional recent research showed that the satellite orbit quality of CLK93 solutions is 4, 5, 12, 

and 16 cm used for GPS, GALILEO, GLONASS, and BDS, respectively, compared to the final 

accurate products of GFZ Multi-GNSS products. The RMS accuracy of GPS, GALILEO, 

GLONASS, and BeiDou, according to the CLK93 satellite clock, is 0.3, 0.4, 2.5, and 1.8 ns, 

respectively (Wang et al., 2020). 

Regarding accuracy and availability, Zhang et al., (2018), have investigated nine RT products and 

found that the average availability is more than 99.3% for all RTS products except CLK70. 

Comparison performance between ultra-rapid and RT correction products was investigated by 

Elsobeiey and Al-Harbi, (2016); the research showed a significant improvement in using RT 

correction products concerning ultra-rapid products.  

Bahadur and Nohutcu, (2019), investigated the availability of orbital and clock correction 

products, and the orbital correction products availability is around 99.8%, 89%, 92%, and 87% for 

GPS, GLONASS, GALILEO, and BeiDou, respectively on the other hand, the availability of clock 

products is achieved roughly of 99.8%, 87%, 91% and 86% for GPS, GLONASS, GALILEO, and 

BeiDou respectively. 

The elevation angle also influences the availability of PPP solutions, in other meaning. Wu et al. 

(2021) found that the best availability of PPP solution can exist if the elevation angle of satellites 

covers nearly 20 degrees, with 98% of PPP solution availability.  
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The solution continuity and availability are related to the availability of both clocks and orbital 

corrections. Qafisheh et al., (2022), investigated the availability of GPS and GLONASS clock 

correction through the years 2013,2014, 2015,2019, and 2021. They found that GPS clock products 

are more available rather than GLONASS. 

3.5.5 The effect of tropospheric and ionospheric layers on the precise point positioning 

performance  

The last part of the current state of PPP construction concerns atmospheric studies. The 

investigation’s first component examines tropospheric research to comprehend its influence better. 

The Zenith Wet Delay (ZWD) and the Integrated Water Vapor (IWV) approximations are required. 

The Saastamoinen model instantly utilizes the station’s altitude, latitude, and pressure data 

(Saastamoinen, 1972). With the aid of the temperature data, the ZWD was converted to IWV 

(Bevis et al., 1992). Hobiger et al., (2008), illustrated that improving the numerical weather model 

can enhance PPP accuracy. For example, Hadas et al., (2013), proved that utilizing the 

Saastamoinen model is insufficient for PPP applications, so they proposed using the regional 

tropospheric model.   

Aggrey and Bisnath, (2019a), presented that GIMS and tropospheric zenith delay corrections 

significantly affect both convergence time and station accuracy. The research mentioned that the 

tropospheric delay highly influences the converging time in PPP. They investigated the impact of 

several tropospheric models and parameters; some showed that station accuracy could vary with 

values between 20% and 30% concerning weather conditions.   

The positioning performance assessment study investigates tropospheric delay retrieval over a 

single day of observation. The observations are based on single-system PPP solutions using precise 

products from several IGS and MGEX ACs. The positioning results were evaluated using static 

and RT-PPP modes, while tropospheric delays were obtained using static PPP mode. This research 

evaluates positioning quality and tropospheric delay retrieval in a single day of observations using 

only one PPP solution and accurate products from several IGS and MGEX ACs. Whereas the 

tropospheric delays were acquired using the coordinate-fixed PPP method, the positioning 
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performance is analysed using the coordinate-static and coordinate-kinematic PPP modes (Zhou 

et al., 2019). 

The online positioning services (Astudillo et al., 2018) showed good agreement in the estimation 

of ZTD between several PPP online processing providers.  

The tropospheric corrections typically included the ZTD and the horizontal gradients calculated 

from relative positioning or PPP. The carrier phase residuals, however, can partially absorb the 

anticipated tropospheric delays. Consequently, reconstructing Slant Tropospheric Delay (STD) is 

necessary. Based on the repetitive investigations of Xiong et al. (2019), the proposed STD model 

could improve the 3D accuracy to 0.5 cm,1 cm, and 1.2 cm in the south, north, and up components 

(Xiong et al., 2019).  

According to Su and Jin, (2018), Zenith Hydrostatic Delay (ZHD) is responsible for 90% of the 

overall delay Regarding the PPP solution. The study looked at how ZHD estimation could be 

improved by utilizing tropospheric models and actual meteorological data (Su & Jin, 2018). The 

findings indicate that by employing meteorological data for ZHD correction, various GNSS PPP 

solutions can attain positioning accuracy levels of several millimetres. Zheng et al. (2022) 

confirmed that using GLONASS and GPS improves the estimation accuracy of ZTD. The RT 

model for ZTD 

 has been established by (Xia et al., 2022). The established model showed better accuracy 

concerning the GNSS re-proceed solution with 1.44 centimetres.  The wet delay, which results 

from rain, snow, or fog, could count for more than half of the delay, which the troposphere 

contributes to (Lehtola et al., 2022).  

The accuracy of the hydrostatic and wet delays at an elevation angle of 4 degrees was significantly 

enhanced by adopting the second horizontal gradient order, compared to the traditional method, 

by almost 60% (Zhou et al., 2022). 

Regarding the impact of the Ionosphere, the final section of the investigation into the state of PPP 

is concerned. The Ionospheric delay could be reduced using an Iono-free combination; however, 

doing so increases both observational noise and convergence time. The Iono-free combination is a 

restricted approach and could be utilized only for those receivers capable of tracking more than 
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one single frequency. Single-frequency users employ other elimination approaches, such as 

ionospheric models or worldwide ionospheric maps. The benefits of using the prementioned 

models on PPP single frequency measurements were investigated by (Cai et al., 2017; Gao et al., 

2017; Ning et al., 2018). Creating regional Ionospheric models can shorten the PPP convergence 

period (Yao et al., 2013). The regional and global Ionospheric models can significantly reduce the 

convergence time and improve the coordinate accuracy. The constrained model showed that the 

accuracy with the first epoch could reach 40 and 20 centimetres, respectively, concerning the use 

of the global or regional Ionospheric model (Xiang et al., 2020). The same researchers confirmed 

a significant reduction to 7.5 minutes for the converging time. For these models, it is required to 

estimate the Total Electron Content (TEC), the overall quantity of electrons included on a radio 

signal's path between GNSS satellites and receivers. The forecasting of the TEC quantities could 

enhance the mapping of ionospheric models. Consequently, it could improve PPP measurements 

and GNSS observations in general (Maglambayan & Macalalad, 2022; Meyer et al., 2006; Muafiry 

et al., 2022; Rukundo, 2022).  

Many researchers confirmed that the second-order Ionospheric models (Elsobeiey & El-Rabbany, 

2011, 2012) as well as utilizing the Multi-GNSS PPP (Gao et al., 2017; Ning et al., 2018) could 

enhance PPP accuracy and converging time for GNSS users (Xiang et al., 2020).  

Rapid Ionospheric oscillations, called scintillation, occur in different regions of our atmosphere. 

Consequently, it affects the TEC, which consequently affects the PPP measurements with respect 

to achieved accuracy, reliability, availability, and converging time. Zhang et al., (2014), minimize 

positioning errors as there are ionospheric perturbations. The findings demonstrate that the 

enhanced method may avoid needless refusal or re-initialization and can reduce the utilization of 

phase ambiguities without compromising the precision and dependability of the PPP solution. 

Numerous researchers looked into how ionosphere scintillations impacted GPS measurement 

(Dal’Cól et al., 2022; Doherty et al., 2003; Gwal et al., 2022; van Dierendonck & Hua, 2001; 

Zhang et al., 2014). This research also extended to cover the scintillations on other navigation 

satellites systems (Dal’Cól et al., 2022; de Oliveira Moraes et al., 2018; de Souza et al., 2022; C. 

Li et al., 2022; Luo et al., 2018; Vasylyev et al., 2022; Yang & Morton, 2020). 
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Liu et al., (2021), examined the effectiveness of the worldwide Vertical Total Electron Content 

(VTEC) provided by the entire Real-Time Global Ionospheric Map (RT-GIM). The study 

concluded that the RT-GIM model from UPC has similar accuracy to post-processed GIM. The 

IGS RT-GIMs show evident applications for RT services, such as transmission error adjustment 

parameters for radio signals, space weather monitoring, and global natural hazard detection.  
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Chapter 4 Early Warning System 

4.1 Introduction 

The global population is significantly increasing, which leads to substantial urban expansion, 

including high demand for building skyscrapers, dams, megastructures, cities, and offshores. In 

certain areas, those structures are exposed to environmental conditions such as wind load, 

landslides, ground subsidence, earthquakes, and tsunamis in certain areas. Therefore, such 

hazardous events could lead to massive destruction, which leads to structural failures, death tolls, 

injuries, and infrastructure loss.  

Saving lives, avoiding economic losses, and preventing structural failures are possible by 

monitoring these hazardous phenomena through the ground or spatial movement. EWSs are 

essential to prevent economic and human losses. An EWS is defined as "an integrated system of 

hazard monitoring, forecasting and prediction, disaster risk assessment, communication and 

preparedness activities systems, and processes that enable individuals, communities, governments, 

businesses, and others to take timely action to reduce disaster risks in advance of hazardous events" 

(United Nations & UN-SPIDER Knowledge Portal, 2021). 

According to the United Nations Office for Disaster Risk Reduction (UNDRR) (United Nations & 

UN-SPIDER Knowledge Portal, 2021), EWSs could be categorized according to the hazard type. 

Consequently, EWSs realized geological risks like landslides, earthquakes, volcanoes, and 

tsunamis, including extreme weather events, such as flash floods, droughts, hurricanes, extreme 

heat and cold weather waves, wildfires, health and biological hazards, and crop and livestock 

illnesses. Accordingly, the UNDRR and the World Metrological Organization founded in 2015 the 

International Network for Multi-Hazard Early Warning Systems (IN-MHEWS), (World 

Metrological Organization, 2018). 

 

 



107 

 

4.2 The changing shape of the earth: natural land deformation 

A variety of natural events, such as earthquakes, landslides, volcanic and glacial movements, and 

tectonic plate movements, cause land deformations. Natural land deformations can potentially 

have far-reaching consequences on the environment and the earth's inhabitants. The consequences 

arising from natural land deformation encompass both human casualties and economic 

repercussions. Understanding Earth's long-term changes and anticipating potential threats, both of 

which can be aided by research into natural land deformation, is of paramount importance. Several 

techniques like surveying, remote sensing, navigation, and geodesy could be used to investigate 

natural ground deformation patterns. These techniques enable gathering and examining vital 

information that improves our knowledge of the Earth's dynamic processes and allows us to predict 

potential geological dangers. The subsequent section of this chapter provides a concise overview 

of the prominent natural land deformation occurrences of utmost significance. 

4.2.1 Earthquakes activities 

Our planet Earth's structures contain various layers; mechanical, physical, and chemical properties 

vary concerning each layer. The seismic wave is used to define layer boundaries. The earth's layers 

differ by density, temperature, and seismic wave speeds. A Low-Velocity Zone (LVZ) is formed 

when a seismic wave experiences more impedance when interacting with the rocky melting 

materials, which decreases its traveling speed. Understanding the asthenosphere is crucial for 

scientists as it acts as a soft substratum on which the rigid lithosphere floats. The lithospheric plates 

are subjected to heat conventions, which result in the movements of tectonic plates. The movement 

directions lead to constructing converging or diverging margins.  The plate tectonic theory was 

introduced by Alfred Wegener (Coltice et al., 2019; Hallam, 1975). Alfred introduces the thermal 

convection current mechanism.  

Figure 4.1 illustrates the movement directions of adjacent plates due to convection currents. The 

thermal convection mechanism led to the form of a subduction zone where adjacent plates 

converge. On the contrary, the Mid-oceanic ridge formed due to the divergent movements. Figure 

4.1 A right and left strike-slip are presented in A and B, and C presents an oblique-slip case. 

However, S and E show a Dip-slip situation.   
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Figure 4.1 Faulting mechanism types. 

(Prepared by the author). 

The earthquake hypo-center is located at the weakest point along the tectonic plate boundary. Plate 

tectonics collisions are responsible for forming deformation activities such as earthquakes, 

volcanic eruptions, and tsunamis (Gunawardana, 2016; Sucuoğlu et al., 2014). This action released 

energy from the earthquake hypo-center, forming seismic waves. 

Regarding traveling speed, magnitude, and direction, seismic waves are classified into four types: 

Primary wave (P-wave), Surface wave (S-wave), Love wave, and Rayleigh wave. The seismic 

wave speed variations are related to the density of rock materials (Er et al., 2010). In order to 

explain how the surface interacts with seismic waves, the terms Peak Ground Velocity (PGV), 

Peak Ground Acceleration (PGA), and Peak Ground Displacements (PGD) have been utilized. 

PGV displays the velocity of an earthquake's shaking at a specific location on the ground. The 

peak ground velocity is the maximum rate of shaking ever observed at a particular location during 
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an earthquake. However, PGA is the change in acceleration or velocity for a unit of time. The PGD 

also demonstrates the peak extent to which the earthquake altered the locations of surface points 

(EBI Consulting, 2022; Masi et al., 2011; Sucuoğlu et al., 2014). Table 4.1 shows different 

recorded parameters regarding the well-known El Centro 1940, Northridge 1994, and Tangshan 

1976 earthquakes (Liu et al., 2016; Malhotra, 2003). 

Table 4.1 Extremes earthquakes recorded. 

Earthquake name Magnitude (Mw) PGA (m/s2) PGV (m/s) PGD (m) 

El Centro 6.9 3.417 0.373 0.403 

Northridge 6.7 0.568 0.515 0.0847 

Tangshan 7.6 1.458 0.41 0.533 

Figure 4.2 illustrates different types of seismic waves with respect to the direction of the wave and 

surface oscillations. A, B, C, and D represent earthquake P, Love, S, and Rayleigh waves, 

respectively. 

 

Figure 4.2 Seismic wave's primary types. 

(Prepared by the author). 
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The GNSS measurements are crucial in determining the peak displacements during shaking caused 

by an earthquake. The superiority of using GNSS against traditional seismic sensors is evident as 

it can determine the actual effect of the earthquakes' magnitude on the earth's surfaces (Kaftan & 

Melnikov, 2017; Urtiaga et al., 2022; Yang et al., 2020). Consequently, if the surface point 

displacement is calculated, it is possible to determine the actual magnitude and direction of the 

seismic wave. Rayleigh and S waves experience vertical movements of the surface. Accordingly, 

these vertical movement motions are more likely to trigger tsunami events. 

4.2.2 Tsunami activities 

Another type of risk brought on by the earth's activities is a tsunami. Unlike other earth risks, 

tsunami waves can subsequently start after undersea landslides, volcanic eruptions, or submarine 

earthquakes, followed by extremely fast waves that can potentially cause destruction and land 

flooding (Geoscience Australia, 2020; Goff & Chagué-Goff, 2022). Tsunami waves vary in wave 

speed and amplitude. Wave amplitude could be varied between several centimetres to hundred 

meters. The Lituya Bay tsunami initiated the most considerable recorded height of around 250 

meters (Mader & Gittings, 2002).  

Wave speed varies concerning the depth of the wave beneath sea level. The speed magnitude varies 

between 500 and 25 miles per hour (National Oceanic and Atmospheric Administration, 2018).  

4.2.3 Landslides activities 

The landslide phrase refers to the phenomena of the landform that results from the downward drift 

of soil and rock materials under the influence of gravity. Various factors, including human actions 

such as material excavations, the influence of unstable construction filling materials, reservoir 

rapid filling/withdrawal, deforestation activities, and mining operations, could cause the landslide 

event. Natural factors also play an essential role in landslide formation, including rainfall, 

snowmelt, flash flooding, earthquakes, weathering, or exposure to multiple freezes/thaw cycles. 

The landslide classification varies concerning the failure mechanism, slope characteristics, mass 

types, and layers. The failure mechanism could be as topple, slide, fall, spread, or flow forms. 

However, regarding the mass type, the slope materials can have soil, rock, or composed materials. 
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Accordingly, the amounts and the speed of drifting materials vary with the landslide types (Zeni 

et al., 2015). 

4.2.3.1 Falls  

This type of landslide commences with rocky or soil mass drifting from cliffs or steep slopes. A 

detachment of drifting material from the original slope mass releases the landslide mass. Those 

materials travel at rapid to extreme speeds. The mass volume could vary from individual rocks or 

small amounts of soil to massive blocks with more than thousands of cubic meters (Highland & 

Bobrowsky, 2008).  

4.2.3.2 Topple  

The topple landslide results from rotational forward drifting above the gravity center. This rotation 

occurs due to the exerted weight of upslope materials. The Topple landslide's mass travel velocity 

ranges from relatively rapid to extremely slow. Occasionally, speeding along the traveling path 

occurs depending on the steeping slope (Highland & Bobrowsky, 2018, 2008).  

4.2.3.3 Rotational slides  

This type of slide mainly occurs in the homogeneous filling material. Contrary to Topple forward 

rotational drifting, the rotational slides occur about the axis parallel to the direction of the slope 

contours. The movement starts exceeding the ultimate sharing strain due to the homogeneity. 

Along the rupture surface, the drifting material flows as a relatively cohesive mass with minimal 

distortion. The speed varies from 0.06 meters per year to 1.5 m monthly (Crozier, 2010; Highland 

& Bobrowsky, 2008).  

4.2.3.4 Translational landslide 

In a translational landslide, there is no rotational movement or backward tilting as the mass flows 

outward, or down and outward, along a predominantly planar terrain. In contrast to rotational 

slides, this slide form can expand if the rupture surface is sufficiently sloped. The velocity can 

differ from a range of 1.5 meters (Highland & Bobrowsky, 2008). 
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4.2.3.5 Spreads 

A cohesive soil or rock mass that has expanded along with mass subsidence above weaker 

underlying material. Spreads may be caused by the fine underlying materials liquefying or flowing. 

Block liquefaction and lateral spreading are a few different forms of landslide spreads. After 

various triggering events, like an earthquake, the travel velocity may be slow to moderate and 

occasionally quick. The landslide mass may gradually spread over time at a few millimetres to 

tens of meters per day (Highland & Bobrowsky, 2008; USGS, 2020a). 

4.2.3.6 Flow 

A flow is a continuously moving object in space with short-term, closely spaced surface shear. 

This type of landslide has a different form, such as debris flows, which are rapid material 

movements in which water, loose soil, and occasionally rock combine to form a slurry that travels 

downhill—volcanic debris flows, which is a word from Indonesia. Lahars are volcanic mudflows, 

as well. These volcanic slopes are where these flows first appear. Debris avalanches generally 

occur from an unstable slope collapsing and the shattered debris being swiftly moved away from 

the slope. They are enormous, high-speed, and frequently open-slope flows. Generally, this occurs 

from an unstable slope collapsing and the shattered debris being swiftly moved away from the 

slope. Earth-flow occurs on gentle to moderate slopes, typically in fine-grained soil, like clay or 

silt, but it can also be found in bedrock that is very weathered and clay-bearing. A slow earth-flow 

is popularly known as creep, which is the imperceptibly slow, persistent descent of slope-forming 

soil or rock. Internal shear stress, which is enough to cause deformation but not enough to cause 

failure, causes the creeping movement flows. Permafrost failures in permafrost conditions can 

happen on gentle slopes and involve the movement of fine granular materials, previously ice-rich 

soil (Geertsema & Highland, 2011; Highland & Bobrowsky, 2018, 2008). Figure 4.3 illustrates the 

pre-mentioned landslide types, the nature of landslide flow, flow materials, and landslide traveling 

speed. It is worth mentioning that the landslide traveling speeds vary from a slow speed of 1 

centimeter per year to a modest speed of around 1 kilometre per hour to a rapid and highly rapid 

speed of more than 5 kilometres per hour. The variation in traveling speed is highly related to cliff 

angle slope, landslide material type, and water content. 
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Figure 4.3 Landslide mass movements classification 

(Prepared by the author). 
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4.2.4 Volcanic activities 

The converging plate tectonics margins result in subduction zone creations. Oceanic plates subduct 

below the continental plates; this action results in melting subducted rocky materials.  On the 

contrary, at the diverging margins, the earth's crust is subjected to tension forces, resulting in 

thinning of the earth's crust.  Consequently, melting rocky materials have lower density regarding 

the surrounding rocks. Subsequently, these materials rise to upper rock layers and are possibly 

stored in the magma chamber. Over several years, the magma collects in the chamber below the 

surface. The trapped melting rocky materials and the stuck gases are responsible for the trigger of 

eruption. Before the eruption, the magma rises, resulting in deformation, tilt changing, and surface 

uplifting.  

Volcanic activity releases volcanic ash, molten rocks, and gases. Volcanic eruptions usually involve 

earthquake activities, land uplifting, and other surface deformation. The temperature of melting 

materials can vary between 700 to 1200 Celsius.  These materials are subjected to colling when 

they interact with cold air above or with sea water if the eruption occurs at seafloors. The density, 

viscosity, and temperature of volcanic materials affect the volcanic shapes—the intensity of 

volcanic eruptions related to the pressure of trapped materials (Sheets & Grayson, 2013). 

4.3 The behavior of structures under load: structural deformation 

Deformations occur in artificial structures when loads exceed their safe design limits. These 

structural deformations could be classified into three categories. The first category contains natural 

loads that impact structures, including wind and snow loads, soil instability due to freezing-thaw 

cycles, variation in soil water content due to changing groundwater table levels, and the expansions 

and contractions of structural materials due to thermal loads. The second category includes 

artificial loads that affect structural behaviors, including structural weight, called dead loads, and 

building objects, weights, and people's furniture, called live loads. The third category contains the 

impact loads such as earthquakes, landslides, and tsunamis, which are sudden loads affecting 

structures. All the above-mentioned loads and forces could lead to structural deformations, for 

example, could cause structural crakes, vibrations, inclinations, and subsidence or uplifting (Day, 

2012; Gaylord et al., 1997; Peck et al., 1991; Peng, 1992). 
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Several variables, including structure design, soil, construction materials, and the surrounding 

environment, influence the accepted range for structural subsidence. Any structure will experience 

some degree of subsidence over time depending on factors like weight, variations in soil moisture, 

and other external variables (Peng, 1992).  

However, if the structure settles too much, it can become unsafe. As a result, the expert's 

recommendations specify the maximum permissible settling of the structure, considering its 

intended use and the type of foundation system used. The structural engineering guidelines state 

that half inches of the settlements are acceptable for residential buildings; however, more 

constraints regarding commercial buildings recommend that the subsidence not exceed 0.25 

inches. There should also be no more than a 1/4 inch of settling per year. These rules are based on 

factors such as soil type, construction materials, and foundation design (Peng, 1992; Scheck & 

Bayer, 1999).  

On the other hand, the Building Code Requirements for Structural (ACI 318-14) specify that the 

allowable subsidence of beams and slabs did not exceed 1 cm corresponding to the 2.40 meters 

length (Committee, 2008).  

Investigations concerning the structural cracks. Concluded that numerous causes, including 

temperature fluctuations, shrinkage, subsciences, and dead/live loads, can cause structural cracks, 

from little surface cracks that are mainly aesthetic to larger cracks that could compromise the 

building's structural stability.  Accordingly, the cracks vary in terms of their shape and direction.   

The investigations showed that different specifications regarding the crack's dimensions and shape 

had been utilized, accommodating structural types and usage. For instance, high-constraint 

specifications and acceptable crack dimensions are required for water storage and treatment units. 

Table 4.2 shows the American Concrete Institute (ACI) acceptable crack width accommodating 

the structural surrounding environments. 
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Table 4.2 Reasonable cracks dimension ACI 318. 

Exposure condition Crack width 

in mm 

Dry air or insulation members 0.016 0.41 

Humidity conditions 0.012 0.30 

Deicing chemicals 0.007 0.18 

Seawater environments 0.006 0.15 

Water storage structure 0.004 0.10 

 ACI demonstrates that the pre-mentioned figures represent a guideline for allowable concrete 

cracks. It is worth highlighting that even though a crack in a concrete structure is within acceptable 

bounds, it should still be taken seriously. Cracks can damage the building's structural stability and 

allow water and other substances to seep through the concrete, causing more damage (Committee, 

2008).  

In terms of the impact loads caused by earthquakes and wind loads investigations. The two primary 

types of loads that impact a structure are horizontal forces, which can cause displacement of the 

entire structure or a portion of it. Structural engineering guidelines accept the minimum 

displacement value that does not impact the building's stability (Day, 2012). 

In terms of structural means, they have been employed to avoid structural failure and enhance 

structural stability. The structural subsidence could be minimized by utilizing several approaches, 

including soil replacement, soil grouting, mat foundations, settlement joints, or pile foundations.  

On the other hand, the impact loads resulting from wind and earthquakes could be prevented by 

utilizing the share walls or implementing the foundation's shock absorption mechanism.  

It is not sufficient to initiate early warnings for structural evacuations and initiate structural safety 

regulations using the PPP technique or other GNSS positioning approaches only. Due to the fact 

that even if the structure is subjected to deformations or settlements exceeding the limits of the 

aforementioned guidelines, this does not necessarily mean that the structure is not stable or going 

to collapse. Consequently, initiating evacuation warnings requires several engineering steps. 

Review the structural design, then utilize structural evaluation tools such as a Schmidt hammer, 

steel scanner device, and concrete core test—subsequently, the foundation and soil evaluations. 

With the aid of surveying and GNSS measurements, the structural engineer can evaluate the 
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building's stability and decide whether or not to initiate evacuation warnings—several high-

computation software such as E-taps, SeismoSignal, Xtract, and Sap2000 can be used to help with 

this decision (Chadwell & Imbsen, 2004; Computers and Structures, 2023; Seismosoft, 2019; 

Sekhar & Das, 2017). SeismoSignal software can instantly evaluate building behavior by 

simulating real-earthquake seismic waves (Seismosoft, 2019). Section 4.10 demonstrates several 

studies implementing the RT-PPP approach for structural monitoring.   

4.4 The necessity of an early warning system to prevent risks and natural hazards  

Numerous international agreements at different government levels have emphasized the value of 

early warnings. EWS are essential tools for preventing new disaster risks and reducing current 

disaster risks, according to the 2015 Sendai frameworks for disaster risk reduction from the United 

Nations (Zia & Wagner, 2015). This framework also emphasizes that by 2030, EWSs must have 

undergone significant evolution to increase disaster risk reduction. Zhou et al., (2014), mainly 

focused on EWSs as one of the five most important actions with the Hyogo framework for action. 

Populations in urban regions that are particularly exposed to earth crust deformations have 

dramatically increased during the past several years. EWSs can initiate timely mitigation measures 

before the advent of destruction to such regions. The EWS technologies can also improve 

community responses by decreasing damage and injuries and by strengthening operations for both 

the public and private divisions. Providing early warnings is crucial to prevent life and economic 

losses. The time before the destruction's arrival allows for performing protection arrangements.  

These arrangements include city and structure evacuations, shelter openings, automatic initiation 

of protective measures for critical infrastructure like opening firehouse doors, breaking off rapid 

transport vehicles, traffic management to prevent accidents, and stopping lifts.  

Stakeholders, emergency services, and civil defense teams depend on the response time prior to 

the arrival of destruction. EWS alerts are preferred since they give the public and crews more time 

to make essential safety preparations. This time varies according to the geo-hazard type and the 

implemented EWS.  

National Oceanic and Atmospheric Administration (NOAA) and Our World in Data provide free 

access to natural disasters, including earthquakes, tsunamis, landslides, and volcanic activities. 
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The database also provides the consequences of those hazards in terms of death numbers, amount 

of destroyed or damaged house units, and the economic losses due to the disaster events. 

Additionally, various information is provided, such as the locations of events, number of injured 

and missing people, earthquake magnitudes, speed, and height in case of using the tsunamis 

database. Table 4.3 contains different website links where more information can be found 

regarding natural hazards databases (National Centers for Environmental Information (NCEI), 

2022a, 2022b, 2022c; Our World in Data, 2022).  

Table 4.3 Natural hazards databases. 

Natural hazard type  Database website link 

Tsunamis https://www.ngdc.noaa.gov/hazard/tsu.shtml 

Earthquakes https://www.ngdc.noaa.gov/hazard/earthqk.shtml 

Volcanic https://www.ngdc.noaa.gov/hazard/volcano.shtml 

Landslides https://ourworldindata.org/natural-disasters 

Based on Table 4.3 databases, the archive data have been used to create Figures 4.4 to 4.10. Those 

Figures show the natural hazard indicators regarding the number of deaths, destroyed and damaged 

houses, and economic losses regarding earthquakes, tsunamis, volcanoes, and landslides. 

 

Figure 4.4 Deaths from earthquakes and tsunamis. 

(Prepared by the author based on data from Table 4.3 Natural hazards databases). 
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Figure 4.5 shows the economic losses due to earthquakes and tsunamis from 1900 till now. 

Additionally, Figure 4.6 shows the corresponding number of houses damaged or destroyed due to 

earthquakes and tsunamis in the same period. 

 

Figure 4.5 Economic losses of earthquakes and tsunamis. 

(Prepared by the author based on data from Table 4.3 Natural hazards databases). 

 

Figure 4.6 Number of damaged/destroyed houses by earthquakes and tsunamis. 
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(Prepared by the author based on data from Table 4.3 Natural hazards databases). 

Figure 4.7 shows the number of deaths regarding landslides and volcanic activities from 1900 till 

now; furthermore, Figure 4.8 shows the number of people left homeless due to volcanic eruptions 

or landslides. 

 

 

Figure 4.7 Volcanoes and landslides deaths. 

(Prepared by the author based on data from Table 4.3 Natural hazards databases). 
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Figure 4.8 Number of homeless people due to volcanoes and landslides 

(Prepared by the author based on data from Table 4.3 Natural hazards databases). 

Figure 4.9 and Figure 4.10 shows the economic losses due to volcanic and landslide activities. 

Figure 4.9 shows the economic losses in terms of millions of US dollars. However, Figure 4.10 

shows the economic losses as a percentage of the world's Gross Domestic Product (GDP). 

 

Figure 4.9 Economic losses due to volcanic. 

(Prepared by the author based on data from Table 4.3 Natural hazards databases). 
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Figure 4.10 Economic losses due to landslides. 

(Prepared by the author based on data from Table 4.3 Natural hazards databases). 
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population makes people more vulnerable to natural disasters. Global warming raises more issues 

related to natural hazard disasters, including glacier melting and sea level rises, which lead to more 

deformation activities, especially with land subsidence and uplifting. In addition to triggering more 
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The earthquake early warnings depend on both earthquake magnitude and hypo-center location. 

It is a challenge for earthquake alert centers to initiate warnings if the hypo-center is near urban 

areas. On the contrary, the early warning could be initiated earlier if the hypo-center is remote 

enough from urban areas. 

The speed at which seismic waves propagate from a rupturing fault during an earthquake is 

essential to implement an earthquake EWS efficiently(Sheen et al., 2014). P-waves and S-waves 

propagate through the earth's shallow layers when rupture occurs. P-waves move faster than S-
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waves, yet S-waves are more harmful than P-waves because of their great amplitude, which causes 

crust shaking. When an earthquake event occurs due to the superiority of the P-wave speed, the 

seismic stations record the arrival of P-waves and transmit the recordings to the master control 

station, where data interpretation is used to estimate the arrival of S-waves. The amount of time 

that passes between the arrival of P-waves and S-waves is called the "lead time." Studies show 

that this time could vary from a few seconds to several tens of seconds before reaching the surface 

seismic waves (Alcik et al., 2009; Cochran et al., 2018; McGuire et al., 2021; Parolai et al., 2017).  

Differently, the lead time initiated with Tsunami warning systems could vary from a few minutes 

to several minutes depending on the locations of both earthquakes and offshore cities (Alcántara-

Ayala & Oliver-Smith, 2019; Amato, 2020; K. Chen et al., 2020; Kamogawa et al., 2016; Sobolev 

et al., 2007; Srinivasa Kumar & Manneela, 2021; Tsushima & Ohta, 2014).  

The landslide's early warnings could be initiated several minutes to 24-48 hours or more before 

the landslide event (Alcántara-Ayala & Oliver-Smith, 2019; Capparelli & Tiranti, 2010; Pecoraro 

et al., 2019). This time variation could be illustrated as the landslides could be induced through 

different triggers such as rainfall, variation of the groundwater table, soil erosion, volcanic 

eruptions, earthquake activities, and artificial disturbance activities (USGS, 2020b).  

The early volcanic warnings could initiate warnings within hours, days, or even months before the 

eruptions (Alcántara-Ayala & Oliver-Smith, 2019; Sparks, 2003). The variation in leading time is 

related to various volcanic types. Different phenomena could be observed before the eruption, like 

surface inflation, volcanic slope variations, and rising temperature—increased sulphur dioxide 

levels and increased seismic activities. The leading time could vary concerning the priory observed 

signs related mainly to the volcano types.  
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Figure 4.11 Multi-geo-hazard early warning system 

(Prepared by the author). 

Figure 4.11 represents establishing a comprehensive EWS, consisting of several monitoring 

elements such as seismic, rain gauge, tilt, gas, and surface Buoy sensors, incorporation with the 

master control station, and alerting communication units. 
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4.6 Early warning system methods  

Different phenomena are associated with geo-disasters, like surface deformations, earthquakes, 

and volcanic eruption triggers. Consequently, many methods have been utilized to track pre-

mentioned phenomena. These methods could be classified into the following categories (Ewert et 

al., 2005; Pecoraro et al., 2019; Sheen et al., 2014; Zang et al., 2022):   

1. Geotechnical methods include methods such as inclinometer, borehole, embedded 

extensometers, differential monitoring stability, tiltmeter, optic fibre, crakes-meter, 

piezometer, perforated standpipe, tensiometer, and thermocouple psychrometer. 

2. Remote sensing data also monitor deformations with cameras, ground and air-based lidar, 

ground-based and interferometric-based synthetic aperture radar, ground penetrating radar, 

satellite sensors, and UAVs.  

3. Geodetic methods have also been used as an EWS means, including GNSS, total stations, 

and interferometric.  

4. Hydrological tools have been utilized in monitoring, like water level meters, hydrometers, 

and spring sampling. 

5. Geophysical methods: geophone, seismometer, and accelerometers. 

6. Metrological means: Rain gauge, weather station, particulate matter measuring device, and 

barometer.  Sulphur dioxide detectors.  

These methods could be integrated with the advanced Internet of Things, machine and deep 

learning, reliable communication systems, and artificial intelligence. These integrations enhance 

the availability, reliability, and integrity of EWS (Bilal et al., 2022; Qafisheh et al., 2021; Suwarno 

et al., 2021; Xu et al., 2020). From a geodetic point of view, the integrations between geodetic 

techniques include SAR, lidar, and GNSS. Such integrations are essential in terms of having a 

comprehensive view of deformation events in terms of deformation magnitude, event duration, 

and deformation type. It could also be a solution to combine low-accurate RT measurements with 

high-accurate observations obtained from post-process procedures or quasi-real-time methods. For 

instance, an mm accuracy could be achieved through SAR methods (post-process mode). On the 

other hand, a decimetre or sub-decimetre level of accuracy is achievable by applying the RT-PPP 
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method. In addition, some geodetic techniques are suitable for long-term monitoring, and others 

are ideal for mentoring instantaneous deformation events. 

Contrary to traditional EWSs, RT-PPP, Quasi RT-PPP, and DGNSS could initiate prior warnings 

concerning traditional EWSs. The ability to accurately position and assess the coordinate time 

series analysis and the RT nature of the data. Accordingly, some events that cause the earth's crust 

to deform may be observed before the event trigger occurs.  

4.7 Examples of current DGNSS-based early warning systems 

The ability to obtain highly accurate positioning via DGNSS technologies paves the way for it to 

be used as a major tool for surface deformation (Farzaneh et al., 2022; Gümüş & Selbesoğlu, 2019; 

Jäger et al., 2005; H. Tang & Xu, 2019; Wu et al., 2020; Yang et al., 2016). Accordingly, DGNSS 

techniques have been implemented to monitor deformations resulting from natural hazards like 

tsunamis, earthquakes, landslides, and volcanic activities (Cina et al., 2013; Cina & Piras, 2015; 

le Mével et al., 2015; Li et al., 2021; Lin et al., 2021; Miura et al., 2004; Pirotti et al., 2015; Xu et 

al., 2020; Zedek et al., 2021). Additionally, these technologies have been widely utilized for 

monitoring mega structures such as dams, bridges, and skyscrapers (Cefalo et al., 2017; Q. Chen 

et al., 2018; Roberts et al., 2019; Xi et al., 2021; Xiao et al., 2019). Consequently, the approaches 

of the DGNSS are utilized as a primary early warning systems technique for environmental 

disasters. Following are some EWS projects. 

4.7.1 Pacific Tsunami Warning and Mitigation System (PTWS)  

The PTWS is regarded as one of the fundamental pillars of the authorized tsunami early warning 

supplier’s system under the United Nations Educational, Scientific, and Cultural Organization 

(UNESCO) (NOAA, 2022). 

In order to provide a more precise and timely evaluation of the intensity and form of earthquakes 

and tsunamis, At the beginning of 2010, the prototype of the  GPS-aided Real-Time Earthquake 

and Tsunami Alert System (GREAT) project was set up. GPS data is utilized to strengthen NOAA's 

Pacific Tsunami Warning Center's (PTWC) tsunami and earthquake warnings and the United States 

Geological Survey (USGS) operational responses (Bar-Sever et al., 2009).  
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In order to provide early tsunami warnings, NOAA utilizes Deep Ocean Assessment and Reporting 

Tsunami (DART) stations. The station contains several sensors, such as water pressure, a 

thermometer, GNSS receivers, and a communication system. After the GREAT project, NASA 

initiated the GPS Aided and DART Ensured Real-Time (GADER) project (NASA, 2013). The 

DART onboard GNSS system operates differentially and uses NASA's Differential GPS (DGPS) 

network. The combination of DART RT sensing data and DART's accurate locations enhances the 

capability of initiating tsunami early warnings (Meinig et al., 2005; Titov et al., 2017). 

4.7.2 ShakeAlert earthquake early warning system for the west coast of the United States 

The ShakeAlert was founded as a result of cooperation between USGS and several US academic 

universities to implement EWS for the US West Coast. The ShakeAlert system's goals are to 

recognize and classify earthquakes shortly after they start, estimate the expected magnitude and 

the surface ground movements that will follow, and make notifications available for distribution 

to vulnerable individuals and infrastructure (Burkett et al., 2014; ShakeAlert, 2016). The 

University Navigation Signal Timing and Ranging NAVSTAR Consortium (UNAVCO) took part 

in developing and testing the ShakeAlert system for the country's west coast. It participated with 

151 GNSS sites to be integrated with the system. Those GNSS stations provide RT-GNSS data 

combined with seismic data, leading to a better understanding of earthquakes and tsunami events 

(UNAVCO, 2020). 

4.7.3 TRUAA early warning system 

TRUAA system is similar to the shake alert system in the US; TRUAA is currently in the testing 

stage, covering Israel and Palestinian territories. The Dead Sea Fault and its accompanying 

branches, including the Carmel Fault, are this region's primary causes of earthquakes. It is worth 

mentioning that the country's shape reveals a limitation in providing adequate time for warnings. 

For instance, Jerusalem is just 30 km away from the Dead Sea; this gives the TRUAA a 3-second 

lead time. The system could be enhanced with more cooperation in the eastern Mediterranean 

countries. Currently, three GNSS sites aid the EWS with RT data, which is projected to increase 

soon (Allen et al., 2012; Nof & Kurzon, 2021).  
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4.7.4 GNSS-based Upper Atmospheric RT Disaster Information and Alert Network 

(GUARDIAN) 

GUARDIAN is a near RT alert system that relies on JPL GNSS network data. Currently, JPL 

operates 78 stations in the Pacific region. Accordingly, GUARDIAN alert streams presently cover 

the premonition regions, but the system architecture could be extended to cover more regions or 

works globally.  The energy releases natural hazards; moreover, the effect of the ground shaking 

also disturbs the atmosphere. GUARDIAN uses both ionospheric disturbances and total electron 

content to track and monitor the earth's activities.  

The RT responses design is based on three symbiotic components: Creating the TEC time series is 

the first step. The second step is the collection of 1 Hz GNSS observations and processing them 

with Deep Learning (DL). The third step is determining if drifting ionospheric turbulences are 

caused by the TEC time series in RT. Finally, the inverse model ling’s final objective is to use 

ensemble modelling to extract tsunami features from the TEC data (Martire et al., 2021). The 

ionosphere responds to natural disasters with delays between 8 and 40 minutes. The size of TEC 

perturbations is frequently inversely proportional to the actual occurrences (Pathy et al., 2019).  

 

4.7.5 GNSS/LPS/LS-based online Control and Alarm System (GOCA) 

The GOCA system has been created and maintained by the Institute of Applied Research (IAF) at 

Karlsruhe University. GOCA composes various geodetic sensors such as GNSS, Local Positioning 

systems (LPS), Local Sensors (LS), online control units, and alarm systems. GOCA involves the 

DGNSS in monitoring the movements of the earth's surface. GOCA is intended for online 

monitoring and warning in the case of safety-relevant buildings and geotechnical facilities such as 

dams, in addition to its use in natural disaster prevention (GOCA Project, 2017; Jäger et al., 2006). 
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4.7.6 Japan's early warning system 

The Japan Metrological Agency provides a comprehensive EWS for natural hazards like extreme 

weather events, landslides, earthquakes, and volcanic activities (Japan Meteorological Agency, 

2022c, 2022b, 2022a). DGNSS observations aid the EWS with RT data over Japan. The Japanese 

Authority of Geospatial Information aids the EWS with 1300 CORS. These stations are considered 

pillars for crustal deformation monitoring and updating the Japanese geodetic datum. It is worth 

mentioning that some of those stations contribute to MGEX and IGS networks (Geospatial 

Information Authority of Japan, 2021, 2022).        

4.7.7 GeoNet 

Toka T Ake Earthquake Commission (EQC), the Institute of Geological and Nuclear Sciences 

(GNS Science), and Land Information New Zealand (LINZ) have developed a collaboration to 

create the GeoNet project (GeoNet, 2022a; GNS Science, 2022; Toka Tū Ake EQC |, 2022). In 

order to create and maintain a cutting-edge geological risk warning system in New Zealand, the 

GeoNet project was started in 2001. GeoNet gives the general public information on hazards, such 

as earthquake reporting and volcanic activity alerts (GeoNet, 2022b). It can also retrieve whole 

data sets, including GPS Rinex files, earthquake hypocenters, and sensor waveform data. The 

research community has free access to this data. Unlike the prementioned EWS, GeoNet does not 

provide early warning for earthquakes, tsunamis, and landslides. However, it provides various 

alerting levels for volcanic activities across the country (Becker et al., 2020; GeoNet, 2022a).   

4.7.8 Indonesia Tsunami Early Warning System (InaTEWS) 

Since 2007, the Indonesian National Tsunami Warning Center has offered to act as a tsunami watch 

provider alongside India, Australia, Malaysia, Thailand, and Iran to offer alert services to the 

prementioned member states. InaTEWS was built under the direction of UNESCO's 

intergovernmental oceanographic commission. Numerous services are offered by InaTEWS, 

including SMS and voice notifications, information about earthquakes and tsunamis, and access 

to past events (Agency for Metrological Climatology and Geophysics, 2022). 

https://www.geonet.org.nz/tsunami/how
https://www.geonet.org.nz/tsunami/how


130 

 

Rather than using traditional seismic sensors alone, a new methodology for early tsunami warning 

was implemented by the German Indonesian Tsunami Early Warning System (GITEWS) project, 

which uses more sensor systems and assigned components than previous systems. The GITEWS 

project's GNSS-based elements project enhance sea level estimation and identifies co-seismic land 

mass deformations with lower latency. Besides the traditional seismic sensors, InaTEWS deployed 

GNSS sensors on sea surface buoys, land, and tidal gauges; GNSS sensors are also used as RT 

reference stations, either independently or in conjunction with seismic sensors (Falck et al., 2010). 

4.7.9 Early-Warning and Rapid Impact Assessment with real-time GNSS in the 

Mediterranean (EWRICA) 

The EWRICA is a proposed project funded by the Federal Ministry of Education and Research in 

Germany. This project aims to establish an EWS prototype with RT GNSS observations. The EWS 

prototype is subjected to cover Europe and the Mediterranean regions. Unlike the USA, Chile, and 

Japan, only a few European countries, such as Greece and Italy, implement GNSS networks for 

robust ground displacement measurements (Maorong, 2022).  

4.7.10 Local landslides early warning systems 

Unlike earthquakes and tsunamis, landslides could be induced by many trigger events.  In order to 

initiate landslide warnings, various monitoring methods need to be implemented. The 

implementation of the DGNSS technique is crucial for warning initiation. Accordingly, 

comprehensive research by Pecoraro et al. (2019) showed that the DGNSS contributes to several 

landslide EWS.     
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4.7.11 Precise point positioning deformation studies 

Recently, RT and post-processing PPP measurements have been involved in many monitoring 

activities. These activities include monitoring many crustal deformations. Post-processed PPP 

methods could achieve more acceptable accuracies, which enhance motion detections. However, 

the post-procced PPP (static PPP) is not an RT solution. Alternatively, RT-PPP is ideal for RT 

monitoring but has more limitations than static PPP. 

Several studies investigated PPP measurements regarding earth surface deformations. Wang et al. 

(2013) applied the PPP method to a creeping landslide in Puerto Rico as a case study. The research 

used PPP in its static form, which is suitable for monitoring such types of landslides. The creeping 

landslide, also called slow flow landslide, is distinguished through the slow flow motions of a 

landslide over a long period. The landslide mass flows over a rock or solid materials lying in slope 

terrains. This type of slow motion usually results in deformation without surface rupturing. The 

study investigated two years of GPS measurements collected in the study area. After removing 

outliers and avoiding data collection during extreme weather events, the static PPP accuracy could 

achieve 2-3 mm in horizontal components. In contrast, the vertical component reaches 8 mm with 

one day of observation sessions.  

Regarding static-PPP earthquake detection studies, Zang et al. (2022) utilized Multi-GNSS 

experiments with high-rate data. The study justified the uses of the final clock and ephemeris 

products as a result of low BeiDou ephemeris accuracy; the study confirmed that the uses of Multi-

GNSS provide the highest accuracy. The research investigated the displacements of various 

stations 5 minutes prior to the earthquake events. The result showed that the best-calculated 

displacements were achieved utilizing multi-constellations with 0.22 cm, 0.25 cm, and 0.53 for 

east, north, and vertical components, respectively. 

Similarly, Zhiping (2016) investigated four IGS stations during the 2011 massive Japan 

earthquake. The study implemented static PPP to investigate earthquake deformations. The 

research results demonstrated that some IGS stations experienced deformation displacements of 

(1.61 to 1.20) meters during the earthquake (Zhiping et el., 2016). 
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Numerous researchers examined RT-PPP measurements regarding earth crust deformations.  In 

2008, GFZ initiated the GPS-SurfacE Deformations within Seconds (G-SEIS) project. The project 

design is to develop a new set of multi-parameter stations that operate independently and alone for 

extended periods. The project's final deliverable is to construct a GNSS software that deals with 

RT-GNSS observation, allowing reporting deformations within seconds of events (Helmholtz-

Zentrum Potsdam, 2008).  

Various studies presented the applicability of RT-PPP in monitoring deformations. Martín et al. 

(2015) validated RT-PPP capabilities as a possible tool to monitor deformations. This research 

conducts three types of experiments regarding RT-PPP. The study investigated the RT-PPP 

performance regarding permanent stations, kinematic situations, and simulated displacements. Ten 

IGS globally distributed permanent stations have been chosen for the first experiments. In this 

experiment, 24 hours of continuous RT-PPP observations were stored. The results showed that 

0.20-0.25 meters coordinate accuracy is achievable after a short initialization time; however, this 

accuracy could be improved after one hour. The kinematic situation showed less accurate results 

as the GNSS receiver encountered signal loss, multi-path difficulties, and increasing latency effect 

due to utilizing the mobile network and vehicle dynamic actions. The coordinates accuracy reaches 

0.15 meters and 0.25 meters for horizontal and vertical components, respectively. Martín et al. 

(2015) concluded that these results could apply to some applications, such as fleet management 

and location-based services. The distinguishing feature of this study is that it validates the ability 

to observe 0.30 meters of simulated displacements through RT-PPP measurements (Martín et al., 

2015). Chen et al. (2009) evaluated the EPOS-RT software for monitoring deformations. Similar 

to Martín et al. (2015) experiments, the research has been done with simulated motions on a 

horizontal linear table. The research implemented different types of deformation, including vertical 

vibrations and vertical and horizontal movements. The research finding was for RT and post-

processing positioning solutions based on PPP revealed mm horizontal positioning precision. The 

study demonstrated that the RT-PPP precisions are feasible for various applications. Tao et al. 

(2021) TFM-CNN, an abbreviation of Time-Frequency Mask Convolution Neural Network, to 

mitigate multi-path errors investigated the magnitude of the multi-path concerning various 

environments; the research concluded multi-path removal's effectiveness in improving 

deformations detections (Tao et al., 2021).  
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Some investigations showed the suitability of RT-PPP application in structure monitoring. Kaloop 

et al. (2017) investigated different monitoring scenarios, such as RTK, RT-PPP, and DGNSS, as a 

tool for structural health monitoring. The researchers confirmed that the very accurate coordinates 

of the monitoring stations are now efficiently measured at minimal cost using the NRTK and PPP-

GNSS technologies. 

Tang et al. (2017) utilized both RT-PPP and double differences for Severn Suspension Bridge 

monitoring in the United Kingdom. The study concluded that double differences, RT-PPP time 

series, and frequency domain analysis produced comparable outcomes.   RT-PPP results indicated 

70 centimetres of the vertical, whereas the lateral variations could reach around 34 centimetres. 

The research referred to these variations as the bridge's mass traffic flow. 

Regarding the RT-PPP and double differences coordinates assessments, the study showed that the 

RMS reached around 8 centimetres within five hours of observations (Tang et al., 2017). However, 

DGNSS or double differencing encountering inaccurate deformation results as the deformation 

affects both base or GNSS network receivers and rover in a more or less similar time. On the 

contrary, the global RT-PPP solution could overcome the prementioned problem by utilizing the 

global positioning technique. 

Many investigated the performance of RT-PPP for landslides or high steep slope stability 

monitoring. Capilla et al. (2016) utilized simulated deformation observations, and a rod sliding bar 

was used to simulate deformation in both vertical and horizontal directions. The research 

experiments emphasized that the possibility of detecting landslide monitoring is achievable using 

GPS and GLONASS RT-PPP measurements; the study also showed a remarkable accuracy 

improvement when PPP is implemented using ambiguity resolution. The research confirmed that 

the PPP methodology has a promising future and can be utilized, together with other geophysical 

tools, in RT monitoring systems to identify movements in specific locations, assisting in 

developing EWS. PPP could significantly improve catastrophe mitigation or prevention, especially 

in places without a nearby network infrastructure.   

Lian et al. (2020) used diverse RT GNSS techniques to determine high-steeps' stability. The 

monitoring system consisted of 8 implemented stations distributed in the landslide area. Those 

stations are operated with RT-GNSS data through RTK or RT-PPP. GNSS observations were used 
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to obtain relative displacements to assess the landslide stability.  According to the study's findings, 

the study implements nonlinear Kalman filtering of double-differential and three-differential 

procedures with an improved ionospheric correction model. Horizontal precision was greater than 

3 millimetres, while elevation accuracy was 5 millimetres. 

Ruhl et al. (2017) confirmed that the accuracy of the RT-GNSS observations with seismometers 

was higher than that of the stand-alone seismometer. The study implemented 1,300 tests for the 

geodetic warning system with actual time-dependent simulated earthquakes; they concluded that 

traditional seismometers underestimate the magnitude of large simulated earthquakes. Thus, the 

study emphasizes that RT-GNSS measurements are crucial in earthquake early warning systems. 

Additionally, The RT-PPP method improves the detection of actual crust movements regarding the 

global solution. 

When GNSS network solutions, virtual reference stations, or local base stations are absent or have 

insufficient coverage in a particular location, the RT-PPP may be the only monitoring option. This 

method can be used in remote places or areas with inadequate infrastructure. Moreover, Tang et al. 

(2017) research emphasizes the superiority of RT-PPP over double differences, especially if the 

monitoring sites are far away from the base receiver or GNSS network solutions. 

Desertic, arctic, antarctic, or rough terrain areas are ideal for RT-PPP and PPP operating areas 

(Bezcioglu et al., 2019). Barker et al. (2002) revealed that a different strategy must be used to 

increase accuracy in an offshore environment than on land. Creating an RTK network or adding 

nearby reference stations is not always possible. On the other hand, the vast oceans provide a 

setting that is almost perfect for RT-PPP monitoring. Buildings or tree leaves do not obstruct 

navigation signals in any way. The antenna can typically see all satellites over the horizon, and 

GNSS receivers on board a ship rarely encounter cycle slips (Barker et al., 2002). Thus, this 

method is ideal for positioning in regions such as offshores, coastal, or island areas; additionally, 

it is suitable for maritime positioning. Alkan et al. (2017) also looked into the PPP readings in both 

modes in marine areas. The study found that numerous maritime applications could be carried out 

with the RT-PPP accuracy levels. PPP could be applied to maritime implementation in accurate 

hydrographic surveying, marine geodesy, and oceanography (Alkan et al., 2017). 
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As a result of melting glaciers in both the Arctic and Antarctic regions and the rising sea levels 

consequences brought on by global warming (Bezcioglu et al., 2019), there are more significant 

problems with land subsidence and uplifting, increasing landslides events as a result of frequent 

flash floods. Thus, more regions and populations will be impacted by more natural hazards. 

Consequently, more lives and economic losses are projected to increase, especially in vulnerable 

populations. 

It also appears from these studies that the use of RT-PPP solutions is essential to the early detection 

of natural hazards. Additionally, the use of RT-PPP may be the best solution in many areas; 

however, the use of RT-PPP as a method of EWS is still in progress due to the lack of accuracy, 

long initialization time, RT correction product outages, and other limitations.   

The evolution of RT-PPP as a strategy for implementing an EWS might be regarded as one of the 

novel aspects of this thesis.  Therefore, machine learning prediction tools were used to improve the 

quality of RT corrections by solving latency (Qafisheh et al., 2022; Qafisheh, 2020). More results 

regarding solving latency problems can be found in Chapters 6 and 7. Additionally, machine-

learning classification algorithms have been utilized to establish EWS (Qafisheh et al., 2021). In 

Chapters 6 and 7, further outcomes relating to EWS can be found. In the design of this system, 

three matrices were developed, which indicate three different levels of services. This process will 

generate an early warning protocol only if the probability of deformations is very high. 

Accordingly, the RT-PPP utilizing the Multi-GNSS observations enhances the RT corrections in 

addition to the expansion of the Multi-GNSS network. Besides, it boosts the ionospheric and the 

tropospheric models or products. Integrating these with the machine or deep learning algorithms 

will increase RT-PPP reliability. 

Consequently, all will pave the road to utilizing these techniques in EWS. Through the literature 

conducted in this chapter, we can conclude that the natural hazard risks, which include earthquakes, 

landslides, volcanoes, and others, significantly affect human lives and lead to many losses at the 

human or economic levels. Implementing a well-designed EWS can break all of these losses. 
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Chapter 5 Machine Learning 

5.1 Introduction 

"ML" was first used in 1959 by the early computer scientist Arthur Samuel. In the same time frame, 

self-learning computers were also introduced (Lindsay, 1964; Samuel, 1959). However, using ML 

notions to solve various problems is not always optimal. As a rule of thumb, always finding 

solutions without using ML algorithms delivers simplicity and reduces execution time and 

ambiguity. Therefore, applying ML has several benefits and drawbacks. ML has become an 

essential component for various applications due to several advantages, including the capability of 

pattern recognition and self-learning. It is also supported by a large community and the suitability 

to deal with high-dimensional data. 

On the contrary, several disadvantages appear, such as results interpretation difficulties and the 

vulnerability to introducing high error, especially with an over-fitting or bad selection of training 

and test data from the original dataset, wrong adjustment of internal hyperparameters of a specific 

ML algorithm, or choosing the wrong ML model. Moreover, ML needs an extensive database to 

train their models well. Some applications require massive computational resources with long 

periods of training. The ML models conclude several steps essential to properly implement data 

preparation, model parametrization, and results assessments. Figure 5.1 shows the main steps in 

the ML life cycle. However, the life cycle could be extended to cover the system deployment and 

the user's feedback to represent the actual scenario.  

Numerous ML models have been created mainly by mathematicians and statisticians. Several ML 

models could be implemented either with supervised or unsupervised learning. The primary 

distinction between supervised and unsupervised learning is the nature of the data used earlier. 

Unsupervised learning uses datasets that have not been labelled, while supervised learning relies 

on such labels. When we discuss data being "labelled," we mean it has the correct answer already 

attached to it. According to data patterns, application types, and resource availability, the most 

appropriate ML model must be chosen to increase result accuracy, reduce complexity, and boost 

performance.  Consequently, the chosen ML mode could solve clustering, classification, or 

regression problems. 
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Figure 5.1 Machine learning phases 

(Prepared by the author). 

5.2 Supervised Learning 

The two types of problems for which supervised learning is applicable are prediction and 

classification. Given a labelled dataset, the purpose is to understand modelling from inputs x to 

results y. 

𝑍 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁   
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Where: Z is the dataset for training, and N is the number of giving learning samples.  

The input x is a dimensional vector containing several fragments of information called features or 

attributes. This vector might be just columns with information related to the results, a simple 

image, a sequence of sentences, an email, a graph, a molecular form, or time series. Similarly, the 

y vector is the label, which could be a nominal or categorical vector. 

𝑦𝑖 𝜖 {1, . …… , ℎ} 

Supervised learning is considered a regression problem if 𝑦𝑖 represent a continuous variable; the 

ML aims to predict the 𝑦𝑖 given a 𝑥𝑖 . On the contrary, classification problems deal with 

categorization. The ML problem is to classify 𝑦𝑖 event with a given 𝑥𝑖 . Many popular ML models, 

including linear and logistic regressors and classifiers, Support Vector Machines (SVMs), Nearest 

Neighbours (NNs), Decision Trees (DTs), Random Forests (RFs), Neural Networks (NNs), and 

Extreme Gradient Boosting (XGB), all have their roots in the supervised learning paradigm (James 

et al., 2013; Murphy, 2012). 

5.3 Unsupervised learning  

Unsupervised learning is suitable for clustering and descriptive research; it is mainly utilized to 

gain knowledge from a given dataset. The ML goals to establish or recognize existing patterns 

within a given 𝑍 = {(𝑥𝑖)}𝑖=1
𝑁  . Since the z vector does not contain the corrected answers. As a 

result, the ML could not be evaluated like supervised learning would have due to the absence of 

the truth vector. Supervised learning is the foundation of many well-known ML models, such as K 

mean and hierarchical clustering, Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN), and Principal Component Analysis (PCA) (James et al., 2013; Murphy, 2012). 

5.4 Reinforcement Learning  

In contrast to supervised and unsupervised learning, this sort of learning uses trial and error to 

identify the most effective outcomes. The fields of game design, robotics education, and 

autonomous vehicles all rely heavily on this kind of learning (Sutton & Barto, 2018). The learning 

procedures are entirely autonomous, based on the rewards or actions from each learning phase. 
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Reinforcement learning uses techniques like Monte Carlo and deep neural networks (Duda et al., 

2000; Sutton & Barto, 2018). 

5.5 ML classification and regression models  

This part briefly summarizes some of the ML algorithms utilized and investigated in this thesis. 

Most of these ML models could be used for classification or regression tasks. Chapter 6 illustrates 

the methodological research  implementations of the ML models applied through. The ML 

algorithms outcomes comparison interpretation and discussions can be found in Chapters 7 and 8.      

5.5.1 Linear model 

Linear ML is considered one of the most popular supervised ML algorithms. The linear model is 

widely implemented in several applications that solve regression or classification tasks. In the case 

of regression, the linear ML attempts to predict results following a training phase on available data. 

When it comes to classifying new events regards, utilizing ML for classification problems; 

consequently, its goal is to build the decision boundary that will be used to place them in one of 

several preexisting categories (Borovcnik et al., 1991). Equation 5.1 represents the linear equations 

that can be used for classification or regression tasks. 

𝑦(𝑥) = 𝑤𝑡𝑥+∊              (5.1) 

Where 𝑤𝑡𝑥 signifies the scalar or the inner products of the weight and the input vectors. At the 

same time, ∊ regards the classification tasks represent the classification error. Alternatively, the 

regression scenario ∊ represents the residual mistake between the linear forecasts and the actual 

response values (Murphy, 2012; Svensen & Bishop, 2009). 

5.5.2 Logistic model 

Nelder and Wedderburn suggested this approach in 1972 as a way to apply linear regression to 

situations where it would not usually be appropriate (Nelder & Wedderburn, 1972). Equation 5.2 

represents the relation between the probability outcome vector on the equation's right side, which 

always lies between zero and one. The linear input vector is on the left equation part (James et al., 

2013). 
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log (
𝒫(𝑥)

1−𝒫(𝑥)
) = 𝛽0 + 𝛽1𝑥             (5.2) 

To sum up, depending on the probability, logistic classification is a classification method used to 

determine the probability of categorical value. In contrast, logistic regression is a regression 

method used for binary classification (Bishop & Nasrabadi, 2006; Swamynathan, 2019). 

5.5.3 Polynomial model 

Polynomial functions are used in the polynomial regression or classifier model as an ML model to 

fit a curve to a data set. In this paradigm, a polynomial function represents the connection between 

the input and target variables. Input-output relationships that do not follow a linear or logistic 

model could be modeled with the polynomial algorithm. The polynomial model can predict more 

complicated patterns in the data than linear regression, allowing for non-linear correlation between 

the independent. Equations 5.3, 5.4, and 5.5 represent the model's complexity, proportional to the 

polynomial degree (Bishop & Nasrabadi, 2006; Hastie et al., 2009a). Polynomials of increasing 

degrees are used to characterize different types of models; however, they are subjected to 

overfitting (Tan et al., 2016). A linear model has a degree of 1, a quadratic model has a degree of 

2, a cubic model has a degree of 3, and the last equation represents the polynomial function with 

n degrees (Swamynathan, 2019).  

𝑍 = 𝑚1𝑋 + 𝑚2𝑥
2 + 𝑐             (5.3) 

𝑍 = 𝑚1𝑋 + 𝑚2𝑥
2 + 𝑚3𝑥

3 + 𝑐            (5.4)  

𝑍 = 𝑚1𝑋 + 𝑚2𝑥
2 + 𝑚3𝑥

3 + ⋯+ 𝑚𝑛𝑥𝑛 + 𝑐          (5.5) 

5.5.4 Decision tree 

A decision tree ML algorithm seeks to identify, at each node, the optimal data split that maximizes 

class separation or minimizes prediction error. Since decision trees are simple to read, they are 

popular  for exploring  data and demonstrating  complicated  relationships. They can also handle 

categorical and numerical data and resist outliers and null values. They, however, tend to overfit, 

particularly when the tree is permitted  to expand  excessively  profoundly, and they can be sensitive 
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to minor changes in the data. Many methods are available for overcoming these limitations., 

including pruning, ensembling, and random forests (Tan et al., 2016). 

The decision tree splitting relies upon measuring the impurity of the data, such as the Gini impurity 

or entropy, and choosing the split that reduces the impurity the most. The impurity term refers to 

heterogeneity in a set of examples or data points. In order to create homogeneous data clusters, the 

DT algorithm creates feature splitting through several tree nodes. Consequently, several 

approaches could be utilized to improve splitting efficiency or enhance homogeneity, such as the 

Gini impurity, which subtracts the squared probabilities of every dataset from 1, and the Gini 

impurity is determined. One result denotes the greatest impurity, where the data events are evenly 

distributed across all categories. 

In contrast, if the Gini calculations show a zero value that denotes absolute purity, it illustrates that 

all data events fall into the same category. However, the Entropy mathematical perspective is based 

on adding the negative logarithm of the probabilities of each data category multiplied by their 

probabilities; similar to Gini, this approach leads to zero and one results. A decision tree's gain is 

the amount of impurity it eliminates when the data is partitioned according to some criterion. 

Equations 5.6 and 5.7 represent the entropy and gain equation, respectively (Borovcnik et al., 1991; 

Buntine et al., 1992; Drummond & Holte, 2000; Duda et al., 2000; Peixeiro, 2019; Quinlan, 1986).  

𝐸(𝑠) = −∑ 𝑝𝑖 𝑙𝑜𝑔𝑘(𝑝𝑖)
𝑘
𝑖=1              (5.6) 

Where: 

E: represent the entropy. 

Pi: proportion of data of each class.  

𝐺(𝑆, 𝑄) = 𝐸(𝑠) − ∑ 𝑝𝑖
𝑘
𝑖=1 𝐸(𝑆, 𝑄𝑖)                                        

(5.7) 

Where: 

𝐺(𝑆, 𝑄): denotes the information gained in the original data set due to Q feature splitting. 

𝐸(𝑠): entropy of the original data set. 
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Pi: proportion of data of each class. 

𝐸(𝑆, 𝑄𝑖): entropy of the new split class of data. 

5.5.5 Random Forest (RF) 

Like the pre-mentioned ML algorithms, the random forest is a supervised learning model for 

regression and classification problems.  The model’s name indicates the methodological notions 

behind it. Mitigating over-fitting drawbacks regards the implementation of the decision tree model; 

the fundamental concept of random forest is to build multiple decision trees and then aggregate 

their results to obtain the final prediction with high precision that any individual decision tree that 

forms the forest. A randomly assigned sample of the training examples and a selected subset of the 

attributes are used to train each tree in the forest model. This method mitigates over-fitting, and 

the data and attributes used to create an individual tree in the model are varied (Borovcnik et al., 

1991; James et al., 2013; Swamynathan, 2019; Tan et al., 2016). Rodríguez et al. (2006) represent 

the random forest methodology divided into the training and prediction phases. 

o Phase one (training): 

Considering  

X: the training examples set's object. 

Y: is the label of the training examples. 

L: are the ensemble's total number of classifiers. 

{

𝑤1

.

.
𝑤2

: the labels classes set. 

Aimed at 𝑖 = 1………… . 𝐿 

Prepare the matrix of rotation 𝑅𝑖
𝑎 where 𝑅𝑖

𝑎is equal to 
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[
 
 
 
 
𝑎𝑖,1

1 𝑎𝑖,1
2 ……𝑎𝑖,1

𝑀1 0 … 0

0 𝑎𝑖,2
1 𝑎𝑖,2

2 ……𝑎𝑖,2
𝑀2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝑎𝑖,𝑘

1 𝑎𝑖,𝑘
2 ……𝑎𝑖,𝑘

𝑀𝑘
]
 
 
 
 

 

Feature splitting to the K subset construction 𝐹𝑖,𝐽 = 𝑓𝑜𝑟 𝑗 = 1………… .𝐾  

For the 𝑗 vector 

Consider 𝑋𝑖,𝐽 the dataset 𝑋 for the feature in 𝐹𝑖,𝐽 

Remove from 𝑋𝑖,𝐽 A random group of classes. 

Select from 𝑋𝑖,𝐽a bootstrap sample with 75 % as 𝑋𝑖,𝐽
̀ . 

Applies the principal component analysis to the previous sample. 

Arranging the 𝐶𝑖,𝐽 𝑓𝑜𝑟 𝑗 = 1………… .𝐾 in 𝑅𝑖
𝑎 Rotation matrix. 

Build the 𝐺𝑖 classifier by utilizing (𝑋𝑅𝑖
𝑎 , Y) as a training example. 

o Phase two: 

For every entity x, the RF aims to assign x to the most confident class.  

A random forest uses a collection of decision trees to produce a forecast based on the given dataset. 

After all the trees have made their predictions, the ultimate prediction is arrived at by a simple 

majority vote. Compared to other ML methods, Random Forest has many benefits. It has a high 

degree of accuracy and can process many input attributes without becoming overfitting. It also 

tolerates missing values and noisy data with ease. Compared to more straightforward models like 

linear regression, random forest training can be time-consuming, and the resulting output can be 

ambiguous (Rodríguez et al., 2006). More information regarding the algorithm's methodological 

background can be found (Rodríguez et al., 2006). 
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5.5.6 Extreme Gradient Boosting (XGB) 

The extreme gradient boosting model is considered a broadly utilized machine learning algorithm. 

The model relies on an ensemble learning approach combining several weak models to create a 

robust model. The outputs of each weak classifier or regressor are consequently aggregated, 

resulting in improving the performance of the combined model. XGB relies on boosting the 

ensemble learning approach. This includes operating by sequentially learning base models so that 

each succeeding model concentrates on the instances with which the preceding models had 

difficulty. As the models are refined iteratively, the incorrectly classified cases are given extra 

weight at each phase. The model depends on the decision tree classifier. However, instead of 

performing the training concerning the actual figures or labelling, the model performs the training 

to minimize the residual with the gradient technique. Findings into feature importance are provided 

by XGBoost, which allows one to evaluate the relative importance of input variables for prediction. 

This capacity makes it easier to choose useful features and improves comprehension of the 

underlying data patterns. Additionally, XGBoost is capable of handling missing values in datasets 

by figuring out the best way to handle blank records while building the tree, eliminating the need 

for intensive data preprocessing (Chen et al., 2015; Chen & Guestrin, 2016; xgboost developers, 

2022). 

Additionally, the method has built-in cross-validation features that let users quickly assess and 

modify modelling hyperparameters. With a wide range of optimal solutions and assessment 

measures, it demonstrates versatility by enabling both classification and regression applications. 

As a result, users can customize XGBoost to meet their unique needs (XGBoost developers, 2022).  

5.5.7 K Nearest Neighbours (KNN) 

The KNN ML model belongs to the nearest neighbour’s machine learning approach; this approach 

can be implemented in several ways, including, Nearest to the mean, K Nearest Neighbours, and 

the Naïve Bayes. These ML models could be utilized for several regression and classification tasks. 

Since this is the case, the NN ML model predicts or classes new entities to the most similar value 

in regression or the most similar category in classification tasks. As a result, KNN and the Nearest 

to the mean can improve classification and prediction accuracy. Regression decisions can be made 
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by considering the K entities most closely related to the prediction or classification boundaries. 

Alternatively, the nearest to the mean predicts or classifies entities according to the neighbouring 

mean clustering value. Various metrics, such as Euclidean and Manhattan distance, can be used to 

calculate how far away a new data point is from its closest neighbours (International Business 

Machines Corporation, 2022). The algorithm forecasts the value of a new data point in the context 

of regression by averaging the values of its k nearest neighbours (Duda et al., 2000; Hastie et al., 

2009a). 

NN group models are a simple and versatile ML algorithm utilized for non-linear and linear 

datasets. It is also efficient when the boundary of the decision is complicated and not easily 

separable employing a linear method. However, KNN can be computationally costly, especially 

when the data set is enormous. It requires computing the distance between the newest data point 

with respect to all the points in the training group (Borovcnik et al., 1991; James et al., 2013). 

Additionally, the choice of K can significantly impact the algorithms' performance, so it is vital to 

correctly choose a specified value for K. The K-nearest neighbour rule, developed by Fix and 

Hodges in 1951, is a non-parametric approach to classifying patterns. However, it is highly 

recommended to implement an odd K value for even categorizing tasks and to avoid choosing K 

values as multiple to the number of desired categories (Swamynathan, 2019).  

5.5.8 Support Vector Machine (SVM) 

Many researchers and practitioners turn to Support Vector Machine (SVM) as a robust and 

widespread ML technique for classification or regression analysis (Awad & Khanna, 2015). This 

technique falls under supervised learning, in which an ML algorithm uses training examples data 

to predict or categorize new data. An essential step in SVM's operation is constructing a 

classification boundary (hyperplane) that splits data into homogeneous groups. This method 

prefers boundary maximization by increasing the margin or the distance between the nearest data 

points in each class and the threshold. "Support Vector Machine" comes from "support vectors," 

which are the set of closest data points. The SVM approach is versatile enough to include linear 

and non-linear input by projecting it into a multidimensional space and then using a linear 

boundary to divide the data into classes (Cortes et al., 1995; Guyon et al., 2011). The kernel 

technique is used to affect this adjustment. Examples of kernels used in SVMs are linear, 
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polynomial, Radial Basis Function (RBF), and sigmoid (Mongillo, 2011; Schölkopf et al., 2002). 

SVM implementations have many parameters that must be set in addition to the premonition 

kernels (Guyon et al., 2011). SVM's capable of handling high-dimensional data and maintaining 

performance when there are multiple features in the dataset, and it is considered one of its main 

strengths (Schölkopf et al., 2002). Modifying the cost function used to improve the border can also 

deal with imbalanced datasets, in which the group is much more numerous than the others’ 

optimization-based technique, making it computationally cost-efficient, even for massive datasets 

(Murphy, 2012).  

Furthermore, SVM models are easily interpretable because they rely on the support vectors, not 

the entire dataset. Finally, SVMs are a powerful and flexible ML technique that can be applied to 

various problems in classification, regression, and anomaly detection. SVM is still a popular option 

for many applications in domains including biology, economics, and computer vision despite its 

drawbacks, such as its vulnerability to the selection of kernel function and the difficulties in 

readability for non-linear boundaries (Bishop & Nasrabadi, 2006; Hastie et al., 2009b). 

The following formulas define the SVM soft margin: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤,𝑏,𝜉 =
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑚
𝑖=1                                   (5.8) 

Subjected to 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0,      𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑚 

Where 𝑤 denotes the width of the margin, 𝑏 denotes the bias, 𝜉 indicates the slack variable that 

permits some unexpected events or mistakes to occur in the margin, and the trade-off margin width 

is shown by 𝐶 value. The gamma (γ) hyperparameter can also be used for some SVM kernels. The 

gamma hyperparameter can control the model variance (SMOLA, 2004). 

5.5.9 Autoregressive integrated moving average 

A well-known time series forecasting method that integrates moving average, differencing, and 

autoregression components is the Autoregressive Integrated Moving Average (ARIMA) model. It 

is commonly used in forecasting data with temporal dependencies, such as environmental, 

financial, and economic variables. The ARIMA model, which belongs to the linear time series 



147 

 

models category, is well known for its ability to recognize complicated data patterns (Sneeuw et 

al., 2012; Van Le & Nishio, 2019; Ye et al., 2012). 

Three parameters are involved in adjusting the model, which are p, d, and q  

The "p" represents the order of autoregression in an ARIMA (p, d, q) model, which determines the 

number of lagged data for prediction. A more complicated model that makes predictions by 

considering more past data points has a higher "p" value. The autoregressive component is 

essential for modelling serial correlations because it helps to capture the memory and inertia 

displayed by the time series. 

The time series data is differentiated as part of the integration process to make it stationary. 

Stationarity is a crucial presumption for many time series models, including ARIMA. A stationary 

time series means that the time series has a constant mean and variance value, and autocovariance 

over time makes the modelling scheme easier. The order of differencing used to achieve 

stationarity is represented by the parameter 'd', which eliminates trends or seasonality within the 

time series data. While the ‘q’ value showed how many lags of previous errors must be considered 

when determining the time series's prediction value (Box et al., 2011; Hyndman & 

Athanasopoulos, 2018). 

The following is an ARIMA (p, d, q) model's generic equation: 

𝑦𝑡
′ = 𝑔 + 𝑏1𝑦𝑡−1

′ + 𝑏2𝑦𝑡−2
′ + ⋯+ 𝑏𝑝𝑦𝑡−𝑝

′ + 𝑟1𝜀𝑡−1 + 𝑟2𝜀𝑡−2 + ⋯+ 𝑟𝑞𝜀𝑡−𝑞 + 𝜀𝑡        (5.9) 

where g is a constant, t represents the noise, and 𝑦𝑡
′ Indicates that the series is differenced to ensure 

time-series stationarity. However, the parameters b1 to bq and r1 to rq having higher q values in b 

and r terms represent that the model needs to consider more historical data within differentiates 

processes and within the weighted moving average process, respectively—higher "q" results in a 

more complex model taking more prior errors for more accurate prediction. The moving average 

component aids in modelling and incorporating randomness and noise into the data. 

The ARIMA model, which provides an adaptable framework to capture the numerous interactions 

in temporal data, is a valuable tool in time series analysis. Because it includes moving averages, 
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differencing, and autoregression components, it enables researchers and analysts to make precise 

predictions and learn essential things about the dynamics of complicated time series phenomena. 

5.6 Python ML libraries 

There is a wide variety of machine-learning Python libraries. Some libraries have open-source 

licenses, while others may require prepaid credits to implement. These libraries could be used 

across the various stages of ML, such as data preprocessing, ML system development, ML 

assessment and evaluation, and ML visualization and reporting. The examples provided in Section 

5.6 are taken from commonly used libraries (Swamynathan, 2019). 

Matplotlib is a package that allows users to create data visualizations with granular levels of 

information by utilizing a variety of low-level plotting algorithms (Matplotlib, 2023). 

Seaborn is the name of a library that offers a variety of high-level visualization technologies in 

the context of creating data visualizations that are both useful and attractive (Seaborn, 2022; 

Waskom, 2021). 

Plotly library is another visualization library that allows Python users to generate several graphs 

such as scatter and line plots, histograms, heatmaps, geo-maps, and others (Plotly, 2023).  

NumPy is a library that supports massive, multiple-hierarchical arrays and matrices and various 

mathematical operations that can be utilized while working with various data structures (NumPy, 

2023). 

Pandas is a toolkit that allows users to manipulate and analyse enormous datasets easily, providing 

high-performance data structures and data analysis techniques that are also simple (Pandas, 2023). 

Keras is a high-level Application Programming Interface (API) that appears at the top of 

TensorFlow and offers a user-friendly interface for constructing deep learning models (Keras, 

2023). 

PyTorch is a popular open package that Facebook initially designed. It offers a variety of methods 

and APIs that may be used for constructing and training deep learning architectures (Pytorch, 

2023). 
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TensorFlow is a library made by researchers and is used for constructing deep learning models 

and their training. It offers various APIs for constructing and implementing models in various 

production scenarios (TensorFlow, 2023). 

A library that offers a variety of supervised and unsupervised ML algorithms, in addition to features 

for model selection, evaluation, and the preprocessing of data, is called scikit-learn. This library 

is quiet, and the acronym for scikit-learn can be shortened to sklearn (Scikit-learn, 2023). 

The Python pickle library is a built-in module that lets Python objects be serialized and 

deserialized. Serialization turns an object into a stream of bytes that can be saved in a file or sent 

over a network. On the other hand, deserialization is putting the object back together from the 

serialized byte stream (Python, 2023). 

5.7 Metrics and models accuracy assessments  

The ML cycle contains several steps or phases. However, it is crucial to answer the questions 

regards:  

Is the applied model well-performing?  

Or does the researcher add more complexity to the model, leading to model overfitting? 

Or does the applied model extensively consume the resources? 

The pre-mentioned questions could be investigated through different metrics; the advantages of 

existing the truth values in supervised learning can ease the model performance investigations. 

Consequently, the R-squared for the goodness of model fitting, root mean squared error, and the 

mean absolute error are several ways to utilize mathematical equations to assess the supervised 

ML regression tasks (Murphy, 2012). Regarding the supervised classification problems, several 

assessment metrics like accuracy, precision, recall, F1 score, confusion matrix, sensitivity, 

specificity, misclassification error, and Area Under the Receiver Operating Characteristic Curve 

(AUC-ROC) are only a few measures that can be used to evaluate a model's performance. 

Alternatively, unsupervised ML tasks aim for data grouping utilizing feature similarity. 

Accordingly, the model performance could be assessed through several metrics, such as silhouette, 
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homogeneity, and completeness scores. Similarly, some visualization methods include principal 

component analysis. 

Overall, the task and the nature of the data used will determine the most appropriate evaluation 

strategy; the right approach must be taken to guarantee a consistent and reliable assessment of the 

ML model. Some supervised regression and classification matrices are illustrated below (Fawcett, 

2006).  

5.7.1 R2 for the goodness of fit 

R2 represents statistical measurement with values ranging from zero to one; this measurement 

assesses the separation between the scatter points and the regression line. The higher R2 values 

represent lower variances between the fitting regression line and the modeled data set. Inversely, 

small R2 values indicate higher variances between the line of regression and the modeled data 

points. Equation 5.9 represents the mathematical equation utilized for obtaining R2 values. 

𝑅2 = 1 −
∑𝑆𝑆𝑅

∑𝑆𝑆𝑇 
                 (5.9) 

Where the ∑𝑆𝑆𝑅 in the numerator indicates the total sum of square residuals and ∑𝑆𝑆𝑇 in the 

denominator refers to the summation of the squared deviations between the observed values and 

the average (mean) value (Swamynathan, 2019; Tan et al., 2016).  

5.7.2 Root Mean Squared Error (RMSE) 

The root-mean-squared error (RMSE) is a statistical metric that measures how near the prediction 

is to the actual value. The lower the RMSE, the higher the approximation of the model to the 

dataset. The average of the squared discrepancies between the observed and predicted 

observations is used to determine the RMSE. Equation 5.10 represents the mathematical equation 

utilized for obtaining RMSE values. Zero root-mean-squared error would indicate that the model 

fits the data perfectly, which is rarely the practice case. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1                                      (5.10) 
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Where the 𝑛 in indicates the total number of observations and (𝑦𝑖 − 𝑦̂𝑖)
2is the squared of the 

differences between each entity and the mean value (Murphy, 2012; Swamynathan, 2019). 

5.7.3 Mean Absolute Error (MAE) 

The MAE statistic measures the discrepancy between the values observed and those predicted by 

a model. Similarly, RMSE is typically used to assess a regression model's accuracy, but instead of 

using the square of the differences, it uses the differences' absolute values. In conclusion, MAE 

measures the average size of the mistakes in a regression model. It is a helpful method of 

comparing the effectiveness of various models or assessing the general accuracy of a model's 

forecasts. In comparison to RMSE, MAE emphasizes the magnitude of severe prediction mistakes, 

whereas RMSE emphasizes the magnitude of prediction errors that are tiny but nonzero. The MAE 

calculation equation is shown in Equation 5.11. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖                                                  (5.11) 

Where the 𝑛 in indicates the total number of observations and the term (𝑦𝑖 − 𝑦̂𝑖) is the difference 

between each entity and the mean value (Swamynathan, 2019). 

5.7.4 Prevalent employed performance indicators regarding the confusion matrix 

A confusion table is constructed by analyzing a test data set's prediction and actual class labels. 

That is commonly utilized to measure the efficacy of a binary classification model. There are four 

elements in the matrix: True Positive (TP) indicates the number of examples where the matching 

between actual and model-predicted labels is established as positive, False Positive (FP) denotes 

the sample number that the model incorrectly predicts them as positive, but the actual label is 

negative, True Negative (TN) indicates the number of entities where the model predictions and 

actual label are both have a negative label, and lastly, the  False Negative (FN) is the number of 

the samples having positive labels, and the model is incorrectly predicting them as negative 

(Fawcett, 2006). Table 5.1 illustrates the confusion matrix elements. The APL, ANL, PML, and 

NML abbreviations mean Actual Positive Label, Actual Negative Label, Positive Model label, and 

Negative Model label, respectively.  Additionally, N indicates the total number of samples with 
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positive labels, while P is the total number of samples with negative labels (Murphy, 2012; 

Swamynathan, 2019). 

Table 5.1 Confusion matrix elements. APL and ANL represent the actual positive and negative 

labels. PML and NML signify the ML model's positive and negative prediction labels. TP, TN, 

FP, and FN represent true positive, true negative, false positive, and false negative, respectively. 

P denotes the sum of positive events, while N signifies the total number of negative events. 

Confusion matrix Actual labels 

Model forecasts labels APL ANL 

PML TP FP 

NML FN TN 

Total P N 

Accordingly, several statistical measures are utilized to investigate the ML model's performance, 

similar to FP and TP rates, precision, accuracy, Recall a, and F-measure. Equations 5.12 to 5.17 

show the mathematical formulas for the pre-mentioned performance indicators.   

𝐹𝑃 𝑟𝑎𝑡𝑒 = 𝐹𝑃 ⁄ 𝑁            (5.12) 

𝑇𝑃 𝑟𝑎𝑡𝑒 = 𝑇𝑃 ⁄ 𝑃            (5.13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 ⁄ (𝑇𝑃 + 𝐹𝑃)          (5.14) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 ⁄ 𝑃            (5.15) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 ⁄ (𝑃 + 𝑁)          (5.16) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ⁄ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)      (5.17) 

Consequently, graphical indicators, such as receiver operating characteristics and area under the 

curve, can be constructed using the FP and TP rates. The FP rate represents the number of events 

the classifier misclassifies as positive events but belongs to the negative events class. In contracts, 

the TP represents the number of events that the classifier succeeds in classifying as positive events, 

and they belong to the positive class. The TP is also known as sensitivity. Additionally, the 

precision represents the ability of classifiers regarding positive predictions. The ability of 
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classifiers regarding the true positive and negative predictions, called accuracy, represents the 

classifier's overall accuracy. The F-measure is the combined metric that is considered more robust 

in terms of evaluating the model's ability regarding positive events. 

A classifier's capabilities and limitations can be understood by examining these performance 

indicators, such as the FP rate, TP rate, precision, accuracy, and F-measure. 

5.7.5 Receiver Operating Characteristics (ROC)  

ROC is a graphical metric that investigates the ML model's performance. Changes to the model's 

classification thresholds, followed by the TP rate and FP rate calculations at each threshold, 

generate the ROC curve. The curve thus obtained illustrates how the relative values of TP rate and 

FP rate are varied as a function of threshold; accordingly, evaluation of classifiers trained with ML 

model. The ROC curve nearest to the top left corner of the graph indicates a high TP rate and a 

low FP rate throughout various threshold ranges. Equations 5.12 and 5.13 illustrate the TP and FP 

rates formulas (Fawcett, 2006; Murphy, 2012; Swamynathan, 2019). 

5.7.6 Area Under Curve (AUC) 

The AUC is a graphical metric relying on the ROC curve. This metric is based on calculating the 

area under the ROC curve. The area under the ROC curve plots the TP rate on the y-axis against 

the FP rate on the x-axis. Consequently, AUC is measured. As a result, there is a direct correlation 

between the AUC and classifier performance. The maximum AUC value is one, and as much the 

ROC has an area near one, this indicates a likely highly accurate classifier. AUC values close to 

0.5 demonstrate that the classifier is no more effective than random classifiers.  

Accordingly, whenever there is an imbalanced distribution of class entities, the AUC is a helpful 

metric for assessing the performance of binary classification techniques. Since it provides a single 

score that sums up the model's overall performance, it is also a common metric for identifying the 

suitable model from a set of investigated models (Fawcett, 2006; Murphy, 2012; Swamynathan, 

2019).  

Eventually, it is worth highlighting that the above metrics' values range between one and zero. The 

optimum values for measures like false positive rate, true positive rate, precision, and accuracy in 
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machine learning techniques depend on the specific problem that research is attempting to solve, 

and there is no general "optimal" value for these metrics. The recommended values vary according 

to the nature of the data and the accuracy balance that the researcher will make.  

5.8 GNSS ML applications  

Recently, there has been an expansion in the prevalence of solutions that combine ML and GNSS. 

As a result of these solutions, GNSS models are more precise, trustworthy, and stable than ever 

before, and the use of GNSS has expanded greatly without the typical GNSS restrictions. Many 

researchers have investigated combining GNSS and ML in several domains, such as seismic 

applications, geoid modelling, indoor and outdoor applications, multipath mitigation, GNSS error 

prediction and outlier detections, location-based services, and human mobility, and widely in the 

domain of signal spoofing and antijamming techniques, and water vapor.  In recent years, 

researchers' attention has been focused on how to combine ML with GNSS. Here, we will cover 

some recent research that has integrated ML with GNSS. 

Gitis et al. (2021) analyse the GPS time series data for Japan and California regions. The study 

aims to predict earthquakes using the time series coordinates movement investigations. Gitis et al. 

(2021) associated comparison for earthquake prediction. Several models have been investigated, 

such as random forecast, spatial density, spatial-temporal GPS, and seismic data. The research 

applied methodology includes training the models with time series and earth catalogue data and 

eventually creating the spatio-temporal alarm map for earthquakes that have a magnitude greater 

than 5.5 on the Richter scale. The research was conducted to answer the following questions:  

a) Will earthquakes be reliably predicted using space geodesy data? Furthermore, b) Does adding 

spatial geodesy data to seismological data enhance earthquake forecasting? The research concludes 

that earthquakes can be reliably predicted using GPS data (Gitis et al., 2021). 

GUARDIAN is a near RT system utilized in Pacific regions for initiating Tsunami alerts. Akyol et 

al. (2020) examined using ionospheric data and ML to predict earthquakes. The study techniques 

are based on the SVM to determine if a spatial or temporal ionospheric anomaly is associated with 

a potential earthquake trigger. The applied technique provides the model with an ability of around 

80 percent for earthquake detection (Akyol et al., 2020). 
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Typical Geoid model calculation uses the least-squared, polynomial fitting, and finite element 

methods to fit a gravimetric geoid model to GPS\levelling points to improve precision and 

accuracy. Several studies implemented ML models to improve the Geoid model's accuracy. These 

researchers, for instance, applied artificial neural networks, Minimax Probability Machines 

(MPM), Gaussian Process Regressions (GPR), SVM, and multivariate adaptive regression splines. 

The studies confirmed the ability of ML models to improve the Geoid model results (Kaloop et al., 

2022; Kavzoglu & Saka, 2005; Zaletnyik et al., 2008).  

Inertial Navigation Systems (INS) have been widely used in GNSS-dependent applications. 

Accelerometers, gyroscopes, inertial measurement units, micro-controllers, and other components 

are all found within an INS system. Moving objects' position, velocity, and altitude can be better 

calculated when the INS and GNSS are combined. In recent years, numerous ML methods have 

played critical roles in enhancing positional precision in geographically ambiguous times, such as 

when GNSS is unavailable. Xu et al. (2010) investigated the least-squared SVM and Kalman filter 

as integrator methods for GPS and INS. The study found that SVM can avoid overfitting problems, 

as studied through the research study (Xu et al., 2010). 

Similarly, Wang et al. (2018) proposed a novel extreme ML that relies on fading filter and 

comparing the results with commonly used neural learning networks, including several inputs, 

hidden and outputs layers. According to the research, GPS outages reduce the navigation system's 

accuracy, but the new approach outperforms traditional neural network learning algorithms 

regarding positioning accuracy and learning speed (Wang et al., 2018). Accordingly, some 

applications could take advantage of the pre-mentioned combinations. The research regarding 

UAV flight controls demonstrated that the adaptive Kalman filter with random forest and fuzzy 

logic could classify GNSS accuracy more accurately than the others. Comparing the onboard 

solution to the overall positioning result obtained in this study showed an accuracy improvement 

of almost 50% (Zhang & Hsu, 2018). 

Some GNSS signal-domain applications have also enhanced from the recent rise of machine and 

deep learning. Several studies investigated the multiple approaches to mitigate multipath error. 

Modelling this error source is challenging since it is closely correlated to the environment and  
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fluctuates with satellite elevation angles. Because of this, several GNSS manufacturers shield their 

products from the reflected signals. Accordingly, Orabi et al. (2020) proposed a neural network 

model that relies on features such as signal time delay and power attenuation. The proposed model 

was inspected in a challenging multipath environment. The study confirmed that the proposed deep 

learning model is more accurate than traditional methods (Orabi et al., 2020). Previously, Quan et 

al. (2018) applied convolution neural networks to improve high GNSS precision applications. The 

study concluded that 80% of multipath measurements could be detected, leading to coordinates 

accuracy improvement with around 18 to 30 % (Quan et al., 2018). 

Similarly, there is a proposed approach called “Time-Frequency and Convolution Neural 

Networks.” The approach was trained in concrete roofs, grass, shrubs, water bodies, and near 

glassy buildings; the research showed that the applied approach could enhance the monitoring of 

GNSS applications (Tao et al., 2021). The SVM is similarly utilized as an ML classifier to detect 

multipath signals (Suzuki & Amano, 2021).  

Multiple machine-learning approaches and efforts have been aimed at increasing GNSS precision 

under extreme conditions. One such method was applying a bagging tree-based algorithm to adjust 

the range measurements based on a prediction of the pseudorange error derived from the signal-

to-noise ratio and the satellite elevation angles (Qin et al., 2021). Other methods include long-short 

time memory and recurrent neural network learning models in GNSS error prediction (Yang et al., 

2019). Alternatively, an artificial neural network as a map-matching model could be utilized to 

avoid the GNSS drawbacks in urban canyons (Hashemi & Karimi, 2016).  

Numerous sensors, such as gyroscopes, accelerometers, inertial measurement units, and GNSS 

sensors, are used in mobile devices nowadays. Recent advances in ML and the extraction of mobile 

sensor observations have piqued the interest of many academics and opened up a wide range of 

potential new uses for mobile device usage. Accordingly, numerous investigations have been 

carried out on utilizing ML approaches as learning methods to understand, classify, and predict 

daily human activities (Lee & Kwan, 2018; Tanaka et al., 2015; Zheng et al., 2008). Additionally, 

the GNSS and ML techniques have been examined in transportation domains; vehicles and human 

trajectory recognition, travel time forecasting, transportation classification, and traffic flow 
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predictions are examples where GNSS, smartphones, and ML could be exploited (Hofleitner et al., 

2012; Qi et al., 2014; Wang et al., 2018).      

GNSS signals face many challenges, including interference, jamming, and spoofing; still, besides 

encrypting, the GNSS signals fake signals affect the GNSS systems. These challenges could lead 

to severe problems for some applications such as automated vehicles, UAVs, the safety of life 

applications, and traffic fleet management. Consequently, ML has been utilized to predict or 

classify the hacked signals; Accordingly, the protection of the GNSS could be improved (Campos 

et al., 2020; Gallardo & Yuste, 2020; Manesh et al., 2019; Wang et al., 2021; Wang et al., 2020; 

Wei et al., 2022; Yang et al., 2022).    

5.9 Harnessing the power of machine learning in establishing robust early warning systems  

The disaster risks can be significantly reduced with the help of Early Warning Systems (EWS). 

They are crucial resources for early warning of impending danger in order to implement 

preventative measures in high-risk areas. EWS systems provide early warnings, allowing 

communities to organize efficient responses and reduce losses across the public and private sectors. 

When it comes to saving lives and limiting financial damage, early warnings take center stage. The 

time before the destruction begins is a crucial opportunity for taking precautions and stepping up 

preparations, as the research utilizes the RT-PPP measurements in establishing the EWS to detect 

the deformations and initiating early warnings through a series of experiments. The RT-PPP 

experiments enrich the research with a considerable database containing abroad features with 

entities that vary in accuracy, the direction of deformations, the number of satellites used, the 

utilized corrections streams, and other features. Machine learning provides several advantages in 

establishing the RT-PPP EWS, including improving EWS accuracy, providing different metrics to 

evaluate EWS performance, and providing the ability to handle a high feature-space database, 

automation, and feature importance analysis. 

Machine learning has many benefits overall, notably automation of decision-making, productivity, 

pattern recognition, increased accuracy, handling complexity, adaptation, customization, 

continuous improvement, scalability, and flexibility. These advantages make machine learning an 
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effective tool for many different industries and applications, fostering innovation and enhancing 

decision-making. 
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Chapter 6 Research Methodology 

6.1 Introduction 

The primary objective of this chapter is to provide a comprehensive account of the main work 

packages and stages employed in this study. All research stages were carefully planned to address 

the research questions. These main stages encompassed an inquiry into research novelty and a 

literature review, followed by an examination of the potential beneficiaries of the research. The 

investigation covered the improvement of RT satellite corrections caused by the latency as one of 

the main reasons for not accurate and precise results in the RT-PPP, and developing and exploring 

the EWS as a tool for mitigating various natural hazards. As a result, several investigations have 

been conducted, including selecting IGS combined satellite corrections and assessing the impact 

of latency on RT-PPP coordinates (IGS, 2020a).  

Subsequently, in the first section of this chapter, various ML approaches were explored to mitigate 

the latency values. The primary focus of this investigation was to evaluate the performance of these 

approaches by applying various parameters such as signal analysis, data splitting, and data 

cleaning. The model's performance was assessed using statistical tests to compare the actual clock 

corrections and IGS station coordinates with the model's predicted values and IGS station 

coordinates. 

The following section of this chapter centers on the investigations conducted to establish an EWS. 

The initial step was designed to test the performance of RT-PPP under various elevation mask 

angles and different combinations of GNSS constellations and corrections. Next, a platform was 

developed to simulate deformations, and numerous experiments were conducted to replicate 

natural deformation events. These experiments encompassed variations in deformation 

magnitudes, directions, and elevation mask angles. Daily GNSS measurements were collected with 

simulated deformations, designing and developing a platform to gather vast amounts of data for 

training ML models; this was followed by determining experiment variables, including dependent, 

independent, extraneous, and control variables. Subsequently, different phases were implemented 

to clean, repair, and prepare the stored GNSS observations, including data labelling. The accuracy 

and integrity of the applied ML approaches were then assessed. This phase extended to investigate 
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different accuracy metrics (Fawcett, 2006), including several probabilities, such as the probability 

of true, false, and out-of-service detections. In order to make the research findings more easily 

reproducible, each of the stages that were discussed previously will now be broken down into their 

respective sections. An overview of the research methodology is illustrated in Figure 6.1. 

 

Figure 6.1 Research milestones 

(Prepared by the author). 
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6.2 Research methodology concerning the reduction of latency impact of GNSS products in 

real-time precise point positioning technique 

RT-PPP is widely adopted as a positioning technique due to several advantages (Bezcioglu et al., 

2019; Odijk et al., 2015; Teunissen & Khodabandeh, 2015) that were presented in previous 

chapters. However, this method faces various challenges, including signal and correction 

interruptions, ambiguity resolutions, computational requirements, specialized software, and data 

latency. This chapter specifically focuses on the methodological perspective utilized in this 

research to overcome the latency problem (Martín et al., 2013; Qafisheh et al., 2022; Qafisheh, 

2020). In RT-PPP, the SSR products must be expeditiously transmitted from ACs or IGS to GNSS 

users. Any delay in transferring data and products may result in extending the delivery time period, 

leading to the utilization of outdated corrections and, consequently, inaccurate positioning 

coordinates. The latency impact can significantly degrade the RT-PPP corrections, initialization 

time, and final RT coordinates. 

Consequently, several studies confirmed the latency effect of coordinates accuracy and availability 

latency. Forty seconds of latency could lead to more than half a meter regarding the driven RT 

coordinates (Martín et al., 2013). Moreover, the latency also impacts the availability of RT-PPP 

solutions (Hadas & Bosy, 2014; Qafisheh et al., 2022). Furthermore, the research highlights 

significant concerns regarding the impact of latency, not only on RT-PPP measurements but also 

on the performance of RT-PPP EWS. 

The BNC software can extract and store the correction stream latency value. Therefore, it was 

considered as an ML time-series training feature. Consequently, this led the research to train the 

ML models with high and low latency correction streams with the idea of predicting the actual 

correction stream value (no latency) using previous values (values received on the user side with 

latency).  

Several ACs offer RT corrections, which consist of SSR products with necessary information such 

as satellite phase and code biases, satellite orbital and clock corrections, and ionospheric modelling 

(IGS, 2020b). However, latency affects all of the corrections, as mentioned above. In particular, 

due to the onboard satellite clock's inherent nature, it is necessary to transmit the clock corrections 
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with a high sampling rate to mitigate satellite clock instability, frequency fluctuations, and 

oscillations. Satellite phase and code biases, satellite orbital parameters, or ionospheric modelling 

are transmitted with a low sampling rate (several minutes), so the impact of latency is not as critical 

as satellite clock corrections are. Figure 6.2 summarizes the flow chart of the implemented research 

work packages and phases.  

 

Figure 6.2 Solving latency flowchart 

(Prepared by the author). 
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The following work packages and phases were implemented in this research regarding solving 

latency: 

6.2.1 Work package 1 (RT-PPP data acquisition) 

The first work package was designed to obtain RT-PPP observations. The BNC software and its 

C++ complementary library were utilized in this package. The following phases were implemented 

in RT mode.  

❖ Phase 1:     

This phase chooses the IGS/ACs correction as the official IGS/ACs correction product. In the case 

of the IGS, it delivers orbital corrections, code biases, and clock corrections at one-minute intervals 

and ten-second intervals, respectively. The four GNSS constellations (GPS, Galileo, BeiDou, and 

GLONASS) are now supported by IGS corrections. 

❖ Phase 2:     

The BNC software was implemented in RT-PPP mode in the next stage using IGS03 correction 

streams. At the same time, several IGS permanent stations were selected, namely, NYA1, HOFN, 

UNBJ, BRST, ANKR, REUN, NTUS, THU2, and KERG. Table 6.1 provides approximate 

locations, the station's name, and the station's country.  

Table 6.1 Research IGS selected stations. 

St.name φ λ Link to the station's log file Country 

BREST 48.38 -4.497 https://www.igs.org/imaps/station.php?id=BRST00FRA France 

ABMF 16.262 -61.528 https://www.igs.org/imaps/station.php?id=ABMF00GLP Guadeloupe 

REUN -21.208 55.572 https://www.igs.org/imaps/station.php?id=REUN00REU France 

ANKR 39.888 32.759 https://www.igs.org/imaps/station.php?id=ANKR00TUR Turkey 

UNBJ 45.95 -66.642 https://www.igs.org/imaps/station.php?id=UNBJ00CAN Canada 

HOFN 64.267 -15.198 https://www.igs.org/imaps/station.php?id=HOFN00ISL Iceland 

KERG -49.351 70.256 https://www.igs.org/imaps/station.php?id=KERG00ATF France 

NTUS 1.346 103.68 https://www.igs.org/imaps/station.php?id=NTUS00SGP Singapore 

NYA1 78.93 11.865 https://www.igs.org/imaps/station.php?id=NYA100NOR Norway 

THU2 76.537 -68.82 https://www.igs.org/imaps/station.php?id=THU200GRL Greenland 

 

https://www.igs.org/imaps/station.php?id=BRST00FRA
https://www.igs.org/imaps/station.php?id=ABMF00GLP
https://www.igs.org/imaps/station.php?id=REUN00REU
https://www.igs.org/imaps/station.php?id=ANKR00TUR
https://www.igs.org/imaps/station.php?id=UNBJ00CAN
https://www.igs.org/imaps/station.php?id=HOFN00ISL
https://www.igs.org/imaps/station.php?id=KERG00ATF
https://www.igs.org/imaps/station.php?id=NTUS00SGP
https://www.igs.org/imaps/station.php?id=NYA100NOR
https://www.igs.org/imaps/station.php?id=THU200GRL
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The stations listed in the previous table were selected to be globally distributed to examine the 

proposed study methodology. Figure 6.3 provides a map showing the selected IGS stations. 

❖ Phase 3: 

Several trials were conducted to acquire RT-PPP data for the research; the first pilot test began on 

13th December 2019 and lasted three days. For three days, the BRST station acquired continuous 

RT-PPP observations; simultaneously, the correction stream values and the navigation files were 

stored for the research investigations.  

The study then expanded to include more stations over an extended period to check the evolution 

of the IGS/ACs products. That explains why the research utilized archived RT-PPP for the 

prementioned IGS stations during 2013, 2014, 2015, 2019, and 2021. As a result, the suggested 

approach to solving the latency problem could be tested with multiple stations at various times. 

With this analysis, it is possible to thoroughly assess the performance of ML prediction models. 

Consequently, one day was selected from the pre-mentioned years. Table 6.2 shows the station's 

names and the data availability during the research days. The THU200GRL was eliminated from 

investigations due to data unavailability in 2019 and to provide consistency through the research 

years. The selected IGS stations and IGS03 correction stream have been added to the stream canvas 

after selecting the required streams, including IGS stations, broadcast navigation, and target 

correction streams.  

Table 6.2 Stations names and data availability. 

Station 29/10/2013 13/01/2014 25/02/2015 14/12/2019 21/05/2021 

BRST00FRA  √ √ √ √ √ 

ABMF00GLP  √ √ √ √ √ 

REUN00REU  √ √ √ √ √ 

ANKR00TUR  √ √ √ √ √ 

UNBJ00CAN  √ √ √ √ √ 

HOFN00ISL  √ √ √ √ √ 

KERG00ATF  √ √ √ √ √ 

NTUS00SGP  √ √ √ √ √ 

NYA100NOR  √ √ √ √ √ 

THU200GRL  √ √ √ X √ 

https://www.igs.org/imaps/station.php?id=BRST00FRA
https://www.igs.org/imaps/station.php?id=ABMF00GLP
https://www.igs.org/imaps/station.php?id=REUN00REU
https://www.igs.org/imaps/station.php?id=ANKR00TUR
https://www.igs.org/imaps/station.php?id=UNBJ00CAN
https://www.igs.org/imaps/station.php?id=HOFN00ISL
https://www.igs.org/imaps/station.php?id=KERG00ATF
https://www.igs.org/imaps/station.php?id=NTUS00SGP
https://www.igs.org/imaps/station.php?id=NYA100NOR
https://www.igs.org/imaps/station.php?id=THU200GRL
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Figure 6.3 The research selected IGS stations 

(Prepared by the author). 

 

6.2.2 Work package 2 (BNC configurations)  

The second work package provided the utilized software with all required parameters. The 

following details describe the current work package's steps and configurations.   

The current work package provided the BNC software with all the parameters to operate in the RT 

mode. The BNC setup folder usually contains several configuration setup examples. The 
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09_PPPNet.bnc configured example was re-configured with the prior station’s coordinates. 

Additionally, to correct the RTCM observations, the APC offsets and variations were provided to 

the BNC through the IGS ANTEX file. IGS provides access to several files, including the IGS 

antex, found at https://files.igs.org/pub/station/general/.  

Further arrangements were made regarding the GNSS constellations, which included the selection 

of codes and phase observation for GPS and GLONASS. During the implementation of the 

experiments, corrections for the GNSS constellations mentioned above were provided by the 

IGS03 product. Another aspect of the research focused on selecting an appropriate minimum 

elevation angle mask for satellites. Based on recommendations from the BNC and other 

researchers, an elevation angle of 10 degrees was selected to avoid noisy code and phase 

observations from GNSS satellites with 10 degrees or lower elevation angles (Weber & Mervart, 

2007; Wu et al., 2021) 

The later stage was designed to provide BNC with the required paths for the sake of storing 

broadcasted corrections, the RINEX station’s observation files, broadcasted navigation files, the 

latency value, and the RT-PPP station’s coordinates for further implementation (German Federal 

Agency for Cartography and Geodesy, 2022; Weber & Mervart, 2007). 

6.2.3 Work package 3 (ML training and clock correction analysis)  

The third work package includes several phases regarding the implementation of the ML models. 

The phases were distributed to cover investigations regarding choosing the appropriate machine 

learning algorithms and the suitable Rolling Sliding Window (RSW) length to train the ML 

prediction models—a selection of the suitable periodic time to update the prediction model 

parameters. Furthermore, several tasks focused on investigating the stationarity and the availability 

of the clock correction signals. 

❖ Phase 1: 

The process of choosing appropriate ML algorithms requires statistical analysis to perform a 

stationary evaluation of the temporal signal, which is usually called as time series forecasting. If 

the signal exhibits stability, i.e., the absence of trends, seasonality, or cyclical patterns, a significant 

proportion of ML algorithms, including decision trees, neural networks, and XGB, cannot be used 

https://files.igs.org/pub/station/general/
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since those methods cannot predict future values in a time series forecasting (Hyndman & 

Athanasopoulos,2018). The predicted values are indistinguishable from the most recent 

observation in such scenarios, because the best probability for the next value is simply as the 

previous observation value. Accordingly, the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) 

statistical test was applied for 8 minutes RSW for various GNSS satellite blocks (Kwiatkowski et 

al., 1992). Table 6.3 shows the percentages of the RSW with or without stationary behavior. It is 

worth mentioning that this test was investigated in the sample of the data collected from the 2019 

prementioned pilot experiment. 

Finally, the intended interpretability of the model, the amount of available data, the intricacy of 

the relationships within the data, and the dataset's features all help determine the best model to use.  

The SVM, linear regression and ARIMA models are suitable to be utilized over stationary time 

series data (Box et al., 2015; Hyndman & Athanasopoulos, 2018). So, they are used in this 

research. It is worth mentioning that the ARIMA considers enhanced linear regression as it 

considers both the error and data trend of the trained and tested data. 

Table 6.3 Clock correction and stationarity behavior. 

Satellite Block 
Percentage of periods with stationarity 

behavior 

Percentage of periods with non-

stationarity behavior 

IIF 76.99 23.01 

IIR 88.28 11.72 

IIRM 89.64 10.36 

K 62.11 37.89 

M 61.02 38.98 

❖ Phase 2: 

Further analysis in this phase was established concerning investigating the availability of satellite 

clock corrections. During this phase, the archived satellite clock corrections were investigated to 

check the availability of the clock corrections (IGS, 2020). The RT corrections experienced times 

of outages and interruptions. As a consequence, it produces an unavailability of RT-PPP solutions. 

During this phase, one day was selected for each year of the archived RT corrections to examine 

the outages of clock corrections.  
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❖ Phase 3: 

The Python script was utilized during this phase in order to examine the latency value of the stored 

broadcasted IGS03 correction. The results showed that the average latency for the IGS03 SSR 

stream is 31.6 seconds, with maximum and minimum values of 32.2 and 31.3 seconds, 

respectively. This investigation was carried out on the data obtained during three days of 

continuous RT-PPP measurements starting from 13th December 2019.    

6.2.4 Work package 4 (ML prediction/implementation)  

The fourth work package was devoted to construction solutions from the prediction models, and a 

simulation latency solution was created.  

❖ Phase 1: 

The same pilot study data set is again examined during this phase to check the suitable RSW length 

for SVR and ARIMA. Several RSWs with lengths of 1,2,4,8, and 16 minutes were examined. On 

Wednesday, 13th December 2019, the one hour of clock corrections in this experiment was 

examined. The research establishes four solutions in the current phase; thus, the simulation of the 

following scenarios was constructed: the latency-free solution, which reflects the ideal situation 

where the clock correction is delivered to the users without latency. The forced latency solution 

was the clock correction delivered to the GNSS users with a stream latency of 30 seconds for the 

combined product and 15 seconds for the ACs products. It is worth mentioning that this solution 

simulates a typical RT-PPP situation; thus, the BNC software post-processing the RT-PPP files 

where the latency value has been added artificially. On the contrary, the ARIMA and SVR solutions 

are emulating scenarios if the GNSS users consider utilizing the ML prediction models to 

overcome the latency.  

The standard deviation of the clock correction residuals derived by subtracting the forced latency 

and SVR and ARIMA forecasts with respect to the free latency have been calculated. The STDP 

denotes the standard deviation of the subtracted clock correction among the ML prediction models 

with respect to the free latency, and STDL signifies the standard deviation of the subtracted clock 

correction among the forced latency with respect to the free latency. Results show that an RSW of 
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8 minutes for the ARIMA model and 1 minute for the SVR model is a practical trade-off between 

prediction accuracy and processing time.  

As a summary, the main results of this phase (extensively founded and explained in the next 

chapter) can be found in Tables 6.4 and 6.5, where the standard deviations of the prediction models 

with the forced latency solution with free latency solutions are compared.  

Table 6.4 ARIMA prediction standard deviations in comparison with a free-latency solution. 

Satellite PRN  
RSW duration in minutes 

1 2 4 8 16 

G32/IIF 

STDP 0.015 0.016 0.016 0.009 0.012 

STDL 0.016 0.016 0.016 0.016 0.015 

 Required processing time in seconds 

 2m56s 4m35s 4m40s 5m26s 6m16s 

G05/IIRM 

STDP 0.040 0.036 0.033 0.024 0.024 

STDL 0.040 0.040 0.040 0.041 0.041 

 Required processing time in seconds 

 3m20s 6m45s 7m02s 7m46s 10m59s 

G23/IIR 

STDP 0.016 0.015 0.013 0.010 0.007 

STDL 0.017 0.017 0.017 0.017 0.017 

 Required processing time in seconds 

 3m34s 6m13s 6m52s 7m04s 8m39s 

R09/K 

STDP 0.026 0.026 0.019 0.016 0.015 

STDL 0.028 0.028 0.028 0.030 0.029 

 Required processing time in seconds 

 2m45s 4m18s 3m54s 4m13s 5m13s 

R15/M 

STDP 0.014 0.016 0.012 0.022 0.019 

STDL 0.016 0.016 0.016 0.028 0.027 

 Required processing time in seconds 

 2m41s 4m59s 5m02s 4m53s 4m58s 
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Table 6.5 SVR prediction standard deviations in comparison with a no-latency solution. 

Satellite PRN  
RSW duration in minutes 

1 2 4 8 16 

G32/IIF 

STDP 0.011 0.016 0.022 0.029 0.034 

STDL 0.016 0.016 0.016 0.016 0.015 

 Required processing time in seconds 

 20s 20s 21s 24s 26s 

G05/IIRM 

STDP 0.027 0.033 0.039 0.047 0.051 

STDL 0.040 0.040 0.040 0.041 0.041 

 Required processing time in seconds 

 20s 20s 21s 24s 25s 

G23/IIR 

STDP 0.012 0.018 0.025 0.028 0.031 

STDL 0.017 0.017 0.017 0.017 0.017 

 Required processing time in seconds 

 20s 20s 15s 23s 26s 

R09/K 

STDP 0.018 0.025 0.031 0.041 0.058 

STDL 0.028 0.028 0.028 0.030 0.029 

 Required processing time in seconds 

 20s 20s 21s 23s 25s 

R15/M 

STDP 0.010 0.015 0.023 0.041 0.051 

STDL 0.016 0.016 0.016 0.028 0.027 

 Required processing time in seconds 

 20s 23s 20s 23s 26s 

❖ Phase 2:  

This phase established prediction model parameterization updating. Based on stored data, the 

prediction model architecture should be upgraded by searching and modifying optimal 

hyperparameters. The goal is to find the optimal update frequency for the hyperparameters. 

Subsequently, the optimal values for those hyperparameters can be determined. Accordingly, this 

resulted in evaluating predictive performance with various combinations of C and gamma 

hyperparameters in the SVR model and (p, p, d) in the ARIMA model. Therefore, the research 

investigating usage-wide hyperparameter dimensionality in both models for more reliable 

forecasts (Piccolo, 1990). 

In SVR, a high C value suggests the model does not allow faults to violate the margin, reducing 

the margin; the lower it is, the more faults’ values are allowed. In order to regulate interpolation 

and extrapolation behaviour, the gamma parameter controls the Gaussian function's variance 

(Guyon et al. 1993). p regulates the number of lags needed for linear regression, d regulates the 
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level of differencing needed for signal stationarity, and q manages signal error propagation in the 

Model parameters (Clarkson et al., 2012; Drucker et al., 1997). 

As a summary of this phase, it can be concluded that choosing the optimal automatic update 

frequency for hyperparameters is a task that should follow the prediction model implementation. 

From 13th to 16th December 2019, the updating intervals of 0.25, 0.50, 1, 2, 3, 4, and 6 hours were 

evaluated. The experiments led to the choice of a one-hour refresh rate for SVR. The set of 

hyperparameters to determine in the SVR method might be quite broad to ensure that the correct 

values are chosen parameters. An hourly rate maintains a proper balance between calculation time 

and accuracy. The list of ARIMA model hyperparameters is relatively short—it ranges from 0 to 3 

for the p and d parameters and from 0 to 1 for the q parameter. Because of this, finding 

hyperparameters is a quick process, and fixing them takes eight minutes of calculation time 

(Schölkopf et al., 2002; Smola & Schölkopf, 2004). The research considers utilizing the default 

initialization parameters for both models’ unit time reaches 8 minutes in the case of utilization of 

the ARIMA model. However, the utilization of the default initialization parameters was extended 

to one hour if the GNSS user relied on the SVR model. It is worth mentioning that the research 

utilized RSW to train and update the utilized parameters for ML prediction models; this could be 

justified firstly, the RSW is suitable for clock corrections as new and relevant data are incorporated 

to improve the prediction and parameter selection accuracy, and secondly, the RSW dropped the 

outdated clock corrections. In addition, this overcomes the disadvantages if the expanding, fixed-

size, overlapping, and thumbing windows have been utilized.  

6.2.5 Work package 5 (Prediction and solution creation) 

The last work package improves the ML model's performance through several investigations 

regarding the mode of training, hyperparameter selection, and determining the updating rate of 

those parameters. The following steps in the current work package deal with predicting the clock 

corrections. By implementing SVR and ARIMA. 
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❖ Phase 1:  

The preselected RSWs were utilized for training the ML prediction models. Accordingly, the 

ARIMA and SVR models predicted the clock correction within 30 seconds to overcome the 

latency. The selected IGS station and the research day are described in Tables 6.1 and 6.2. 

❖ Phase 2:  

Three correction files were created to hold the clock corrections: ARIMA, SVR, and forced 

latency. The first two files hold the new predictions regarding the clock corrections. However, the 

last file holds the shifted values simulating the latency impact. 

❖ Phase 3:  

The last phase paves the road to statistically assessing the ML model's performance. Accordingly, 

the residuals were calculated from the ARIMA, SVR, and forced latency for the RT corrections 

without the latency impacts. Consequently, the next chapter illustrates the results in terms of 

comparisons regarding the standard deviation and the range concerning the pre-mentioned 

solutions.  

6.2.6 Work package 6 (RT-PPP coordinates assessment)  

The final work package focused on investigating the impact of the pre-mentioned solutions on RT-

PPP coordinates; thus, the BNC software was configured with stored navigation, observation, and 

four solutions stored files to operate in post-processed mode (Weber & Mervart, 2007). 

❖ Phase 1:  

The observation, navigation, and RT correction were acquired from the IGS archived data covering 

the research years and IGS stations in the current phase. The BNC is configured to implement the 

RT-PPP with post-proceed mode. Consequently, the BNC was provided with the path to store RT-

PPP coordinates. Accordingly, four coordinate solutions were created through the current phase. 

Namely, SVR and Arima's prediction coordinate solutions and forced and free latency coordinate 

solutions.  
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❖ Phase 2:  

The last phase in the current work package was designed to provide the coordinate residuals by 

subtracting the solution coordinates from the corresponding free-latency RT coordinates (ideal 

solution). Consequently, that yields to have residuals for several solutions. Chapter 7 illustrates the 

results in terms of comparisons regarding the standard deviation and the range concerning the pre-

mentioned solutions. 

6.2.7 Work package 7 (Data interpretation)  

During the earlier research stage, the emphasis was on comprehending, interpreting, and presenting 

the results. Python visualization libraries, including Pandas, Plotly, Matplotlib, and Seaborn, were 

utilized. Tableau and Excel have also been employed (Matplotlip, 2012; Microsoft, 2023b; Pandas, 

2023; Plotly, 2023; Seaborn, 2022; Tableau Software, 2023). The software mentioned above, and 

libraries were utilized to produce vital graphical representations, such as standard deviation and 

range analysis of latency and ML algorithm solutions. In addition, scatter plots were generated to 

compare the ML model prediction-driven coordinates with those derived from forced latency 

solutions. 

6.3 Research methodology regards establishing RT-PPP early warning system  

Employing GNSS information from a single receiver, RT-PPP can generate accurate location 

estimates in RT. The approach is a cost-effective and more versatile positioning option because it 

does not rely on a network or differential GNSS solutions. 

Providing RT global positioning solutions is a significant benefit of RT-PPP. This means users can 

receive accurate and reliable positional information in RT, even in remote or isolated areas. This 

capability is beneficial for monitoring natural disasters such as landslides, volcanic eruptions, 

tsunamis, and earthquakes (Capilla et al., 2016; Ewert et al., 2005; McGuire et al., 2021; Tsushima 

& Ohta, 2014; Zedek et al., 2021). 

The fact that RT-PPP uses a global infrastructure of permanent GNSS stations is an additional 

benefit. These stations are spread globally and offer continuous data essential to the accuracy and 

dependability of RT-PPP SSR products. Furthermore, RT-PPP can be used in areas far from the 
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coverage of GNSS network corrections, such as polar, desert, and rough terrain areas (Barker et 

al., 2002; Bezcioglu et al., 2019). 

Overall, the RT-PPP is a powerful and versatile tool for precise positioning in RT. Its numerous 

advantages, including global positioning, cost-effectiveness, and reliability, make it a preferred 

method for many applications. The following packages and phases were designed to establish an 

RT-PPP early warning system (Bezcioglu et al., 2019; Odijk et al., 2015; Teunissen & 

Khodabandeh, 2015). The pre-experimental research design has been carried on through work 

packages 1 to 4; however, the rest of the work packages are devoted to the true experimental 

research design. Figure 6.4 summarizes the flow chart of the main research work packages. 
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Figure 6.4 Establishing RT-PPP early warning system flowchart 

(Prepared by the author). 
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6.3.1 Work package 1 (Selecting the study reference station)  

During the investigation of the present work package, several phases were developed to establish 

the study reference station. In order to ensure practical training of the ML model, it is 

recommended to provide numerous training examples that vary in station locations, diverse data 

quality, and utilize different manufacturing GNSS receivers. Selecting multiple stations that differ 

in satellite availability, sky, and environmental conditions is also crucial (Quan et al., 2018; Tao et 

al., 2021; Wu et al., 2021). Consequently, these stations must be distributed globally to fulfil all 

the pre-mentioned requirements. However, due to the substantial number of experiments 

conducted in this research, the following phases were designed to address the challenges associated 

with station diversity. 

❖ Phase 1: 

The selection of the study reference station on the rooftop of the researcher's university building 

was based on the aim of circumventing the challenges associated with long experiment periods, 

the complexities involved in implementing global experiments, the substantial number of 

experiments required, Covid restrictions, and the size constraints of the machine platform. These 

challenges would have been dominant if multiple stations had been chosen for the study. Moreover, 

the IGS permanent stations are unsuitable for use due to the nature of station construction and the 

impossibility of performing experiments on these stations.  

❖ Phase 2:  

The second phase is devoted to acquiring the reference station coordinates; thus, two static 

observation sessions were carried out over 24 hours on 28th February 2021 and 18th March 2021, 

respectively. Consequently, the RINEX observation file was post-processed utilizing Online 

Positioning Services (US Department of Commerce, NOAA, 2020). Subsequently, Table 6.6 

shows the station post-processed coordinate in ITRF 2014 format. Figures 6.5 and 6.6 show the 

research reference station location, a BNC software plotting tool provided, and the center station 

location of the produced streams used in the experiment. 
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Table 6.6 Reference station ITRF cartesian and polar coordinates obtained during the 18th March 

2021 session.  

Coordinate Value Value σ (m) 

X 4455833.612 m 0.007 

Y 3127063.828 m 0.006 

Z 3314433.169 m 0.005 

Latitude 31° 30' 25.17194" N 0.003 

Longitude 35° 03' 38.99417" E 0.004 

Ellipsoidal height 928.314 0.009 

 

 

Figure 6.5 The research reference station 

(Prepared by the author). 
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Figure 6.6 The research map of the reference station with utilized stream locations 

(Prepared by the author). 

❖ Phase 3:  

The third phase is dedicated to ensuring the acquisition of diverse quality RT-PPP raw data. The 

number and the geometry of tracked satellites influence the RT-PPP measurement quality. RT-PPP 

is sensitive to the number of tracking satellites and the satellite’s geometry above the sky of the 

GNSS users. Consequently, this research examines using different elevation angles to emulate 

different environmental situations scenarios. This research used various elevation angles: 0, 10, 

20, 30, 40, 50, and 60 degrees (Wu et al., 2021). 

The BNC software uses quality control codes, ensuring that the GNSS users will not configure it 

with extreme parameters. Those configurations could lead to considerable errors in coordinates 

accuracy and solution availability. These quality control establishing thresholds allow the BNC 
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users to use elevation angles between zero and twenty degrees. The maximum waiting time for 

clock corrections is twenty seconds; some constraints are related to the minimum number of 

satellites required to perform the PPP. Consequently, the research configured the open-source 

codes of the BNC software. Afterward, the BNC was recompiled with newly configured codes to 

investigate the premonition elevation angle values. Figures 6.7 and 6.8 show the BNC widget with 

a new configuration that allows the research to use different elevation angles (Bundesamt für 

Kartographie und Geodäsie, 2022).  

 

Figure 6.7 Recompile BNC software with widget utilizes a 30-degree mask angle. 

(Prepared by the author). 
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Figure 6.8 Recompile BNC software with widget utilizes a 60-degree mask angle. 

(Prepared by the author). 

❖ Phase 4: 

In the final stage, the information about the RT-PPP measurements was stored. This stored 

information facilitates the research aimed at investigating the correlation between different 

variables. The correlation information is expressed as a coefficient ranging from -1 to 1, with a 

value of 1 indicating the highest positive correlation, -1 representing the highest negative 

correlation, and 0 indicating the absence of correlation (Pearson, 1920). The correlation analyses 

were conducted among variables, including tropospheric error, satellite number, latency, phase 

residuals, elevation angles, obtained coordinates, coordinate accuracy, and root mean squared 

errors.  
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6.3.2 Work package 2 (RT-PPP coordinates quality investigations)  

This WP2 included essential investigations required to perform the real-time PPP experiments 

reasonably; this led us to examine the BNC open-source software, The GNSS receiver, and the 

station environment in static form.  

❖ Phase 1: 

The RT-PPP investigations led this study to explore the use of the BNC software with different 

navigation satellite system combinations. These combinations include working with (GPS, GPS+ 

GLONASS, GPS+GLONASS+Galileo) the best accuracy was achieved using the GPS 

+GLONASS combination. Even though the experiment was carried on in different navigation 

satellite systems, these results match the research findings done by (Kiliszekn & Kroszczyński 

2020). 

❖ Phase 2: 

Various elevation angle values were used in this research, and the values of these angles were (0, 

10, 20, 30, 40, 50, and 60) degrees to assess the RT-PPP regarding the accuracy and solution 

availability. 

❖ Phase 3: 

The latencies of the correction streams also influence the quality of real-time PPP measurements. 

Thus, the correction streams have been used with different latencies (SSRA00CNE short latency 

stream and IGS03 high latency stream). 

6.3.3 Work package 3 (BNC configurations) 

The third work package provided the utilized software with all required parameters. The following 

phase details describe the steps and configurations of the current work package.   

❖ Phase 1:   

The current phase was devoted to providing the BNC software with all the parameters to operate 

in the RT mode. First, the BNC setup folder contains several configuration setup examples. The 
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10_PPPQuickStart.bnc configured example was re-configured to obtain serial streams. The 

required configuration regards the mount point's name, RINEX format, approximate latitude and 

longitude, port name, baud rate, data bit, and flow control provided (German Federal Agency for 

Cartography and Geodesy, 2022). Next, the priory coordinate file was adjusted to hold the 

coordinate value obtained from the previous work package. Additionally, to correct the RTCM 

observations, the receiver APC offsets and variations were provided to the BNC. In addition, the 

receiver height above the station marker was also provided in the same file (German Federal 

Agency for Cartography and Geodesy, 2022). 

❖ Phase 2:   

SSRA00CNE and IGS03 correction streams were added to the stream canvas to train the ML 

models with different training samples with various latency values. In this phase, further 

arrangements were made regarding the GNSS constellations. The elevation angle mask with an 

elevation angle of 10 degrees was selected to avoid noisy code and phase observations from GNSS 

satellites with 10 degrees or lower elevation angles. In addition, several elevation angles were 

utilized, including 10, 20, 30, and 35 degrees, for the sake of learning models with several 

scenarios that simulate sky conditions. Accordingly, that was followed with a selection of the 

mandatory paths to store the broadcasted corrections, the RINEX station’s observation files, 

broadcasted navigation files, the latency value, and the RT-PPP station’s coordinates for 

supplementary implementation. 

6.3.4 Work package 4 (Research variables investigation)  

The current research work package has investigated different variables to ensure accurate 

modelling for the EWS. This investigation is essential to design properly the research experiments 

to fulfil the research hypothesis; the research investigations lead to include the phases: 

❖ Phase 1: 

Phase one was to prepare the ML models with essential variables to classify deformation 

events.  First, the BNC software was configured with different configurations, saving the required 

information for establishing classification variables. Those configurations led the research to 
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access various details regarding the orbital and clock correction files, log files, PPP files, and 

National Marine Electronics Association (NMEA) files. 

Accordingly, this allows having information related to orbital and clock corrections for each 

satellite, latency information, 3D coordinates, 3D displacements of the receiver over station marker 

location, tropospheric error, Horizontal Dilution of Precision (HDOP), and satellite number. 

Secondly, this part of the research is required to provide the ML models with additional calculated 

variables. Consequently, the following components were calculated from measurements. Position 

and horizontal root mean squared error was calculated from the derived observations. Moreover, 

the average value of residuals for the code and phase observation was calculated concerning the 

ionosphere-free linear combination of code/phase. Moreover, the east-north-up displacements for 

the current observation have been compared with the last ten a priori east-north-up displacements. 

The last part deals with quality control indicators.  

Different indicators can be obtained from the BNC files. In this research, we add four indicators 

related to the speed and course of the receiver's ground over the marker location. Additionally, the 

NMEA protocol provides the GNSS users with receiver and position quality indicators and 

warnings. More information regarding those warnings and the used NMEA sentences can be found 

(NovAtel a, 2022; NovAtel b, 2022). 

❖ Phase 2: 

The second phase was regarding the variables classification to enhance the understanding of the 

research experiment's variables. Moreover, it provides other researchers with reproducibility to 

construct a comparison and further studies.   

❖ Independent Variables (IV): Those variables are independent, and the researchers assume 

that they influence the availability and quality of the real-time PPP measurements; 

consequently, they affect the EWS ML algorithm's accuracy and performance. Table 6.7 

includes the research independent variables.  

❖ Extraneous Variables (EV) are external variables that influence the IV. Some EVs could 

be controlled; consequently, controlling these variables could improve the research 
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reproducibility and reliability. The research divided these variables into two groups: 

confounding and control variables.  

o Confounding Variables (COV): represents the uncontrolled extraneous variables 

such as wind speed, temperature, pressures, and humidity. Table 6.9 includes the 

research confounding variables. 

o Control Variables (CV): represents all variables the researcher can control through 

research activities, such as satellite elevation mask angles, the receiver 

displacement values, displacement movement directions as controlled by the 

research engine, correction streams, labelling values, and measurement time. Table 

6.8 includes the research control variables. 

❖ Dependent Variables (DV): Those variables are driven by RT-PPP measurements and are 

influenced by IVs, EVs, and CVs. Some research DVs include the displacement 

components regarding topocentric frame, driven station cartesian coordinates, coordinates 

residuals, horizontal and position RMSE, course, and speed over the ground. Table 6.10 

includes the research-dependent variables. 
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Table 6.7 Research experiments independent variables. 

Variable name Type Variable description 

Sat-number IV Satellites number above the GNSS user sky. 

Tropo IV 
Tropospheric corrections were driven from the 

Saastamoinen model. 

Tropo-error IV Tropospheric error from the Saastamoinen model. 

Index IV 
The index indicates the timestamp of real-time 

measurements. 

HDOP IV Horizontal dilution of precision.  

Table 6.8 Research experiments control variables. 

Variable name Type Variable description 

Elevation angle CV 

The satellites having elevation angles less than (10,20,30 and 

35 degrees) will be discarded from tracking during several 

experiments. 

Displacements values CV 

Represents the movements exerted with the Computer 

Numerical Control CNC machine or manually through the 

roller device. The displacement values are listed in the 

experiment details table. 

Type of movements CV 
Represent the direction of movements, including vertical, 

horizontal, and 3D. 

Correction streams CV Two correction streams were used (IGS03 and SSRA00CNE). 

GNSS constellations  CV 
Denotes the utilized GNSS constellations during RT-PPP 

experiments. 

Receiver antenna height CV 
Represent the height of the GNSS receiver above the station 

marker location. 
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Table 6.9 Research experiments confounding variables. 

Variable name Type Variable description 

Wind Speed COV 
The velocity of the wind over the research 

station. 

Temperate COV The temperature during the experiment. 

Pressure COV Air pressure over the reference station. 

Humidity COV The air moisture content during experiments. 

Weather condition COV Such as rain, dry, haze, or fog. 

Satellites-Along-track 

COV 

Orbital and clock corrections.              

It is worth noting that those variables were 

stored for each tracked satellite in the research 

database. 

Satellites-clock-corr 

Satellites-Out-of-plane 

Satellites-Radial 

Satellites-Velocity of A long-track 

Satellites-Velocity of Out-of-plane 

Satellites-Velocity of Radial 

Position-fix 
COV Quality indicators. 

Receiver-warning 

Corrections stream latency COV 

Represent the amount of latency during the 

research experiments, including low latency 

correction streams such as SSRA00CNE with 

around 15 seconds and high latency correction 

streams IGS combined correction with a 

latency value of around 35 seconds. 

Multipath error COV 
Indicates the amount of error as it is affected 

by reflected GNSS signals.  
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Table 6.10 Research experiments dependent variables. 

Variable name Type Variable description 

dE-true DV 
East, North, and Up components of displacement computed on 

the local plane coordinate system 
dN-true DV 

dZ-true DV 

X DV 

Geocentric cartesian coordinates GRS80. Y DV 

Z DV 

dx DV 

Coordinates residuals. dy DV 

dz DV 

E-diff-i DV 
East displacement values concerning a priori last ten 

observations (value of i from (1 to 10)). 

N-diff-i DV 
North displacement values for a priori last ten observations 

(value of i from (1 to 10)). 

Up-diff-i DV 
Up displacement values to a priori last ten observations (value 

of i from (1 to 10)). 

Position-RMSE DV 3D Root Mean Squared Error.  

Horizontal-RMSE DV 2D Horizontal Root mean squared error.  

Course-og DV Course overground. 

Speed-og DV speed overground. 

Target DV 

The target variable includes centered, misplaced, and out-of-

service labels; the labelling function followed the type of 

movements and the coordinate residuals.  

 

6.3.5 Work package 5 (Description of proposed engines) 

The necessity for considerable amounts of data during ML training, testing, and validation stages 

is a significant challenge. These fundamental problems extended to the necessity of data cleaning 

and preparation in formats usable by ML. Consequently, the current work package investigated 

several phases designed to create a suitable proposed engine to collect the several types of 

deformation and non-deformation events. 

❖ Phase 1: 

After revisions of different ways to generate relevant data to model and test the EWS, the CNC 

laser machine was selected as a suitable machine to perform experiments, table 6.11 includes 

details of the selected machine. 
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Table 6.11 Machine frame manufacturing descriptions. 

Brand Eleks Maker. 

Model EleksLaser-A3 pro. 

Working Voltage 

Working Current 

Working Voltage: DC 12V. 

Working Current: DC 2.5A. 

Weight 4.60kg. 

Machine material Stainless Steel and Acrylic. 

Working area One squared meter. 

 Figure 6.9 shows the different machine components; Table 6.12 describes the machine parts (Xu 

& Newman, 2006). 

 

Figure 6.9 CNC Machine 

(Prepared by the author). 
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Table 6.12 Machine frame part descriptions. 

Part name Part description 

A First horizontal stepper motor. 

B Longitudinal stepper motor. 

C Machine arm. 

D Machine holder. 

E Second horizontal stepper motor. 

F The Machine microcontroller.  

❖ Phase 2: In this stage, we are working to overcome the restrictions research machines 

impose. The apparatus and its supplementary parts for the experiment, including the GNSS 

receiver, computer, monitor, cable holder, and vertical and horizontal adjustment 

accessories, were kept and carried on a portable table. Figure 6.10 and Table 6.13 show the 

machine with supplementary devices and tools utilized in horizontal experiments.  

 

Figure 6.10 Research engine (horizontal deformations) 

(Prepared by the author). 
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Table 6.13 Machine frame part descriptions. 

Device  Device explanation  

A GNSS receiver (19 cm x 10.4 cm, 1.52 kg) 

B Monitor 

C Cables hanger 

D Spirit level 

E Rod leveling bubble 

F Plumb bob 

G personal computer 

H Horizontal bar (1 meter) 

I Longitudinal bar (1 meter) 

J CNC microcontroller 

K Detachable tribrach 

L CNC stepper motor 

M Station marker 

❖ Phase 3: 

The last step of the current work package focused on fixing the vertical displacement problem. 

Thanks to its two stepper motors, the machine could move horizontally, but it was vertically in 

place. The GNSS receiver was carried on a pole; a roller was attached to the pole to extract motion 

in the vertical plane. Figure 6.11 and Table 6.14 show the research engine with supplementary 

devices and tools utilized in vertical and 3D experiments. 
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Figure 6.11 Research engine (vertical and 3D deformations) 

(Prepared by the author). 
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Table 6.14 Research engine frame part descriptions. 

Device  Device explanation  

A GNSS receiver 

B Monitor 

C Cables hanger 

D Spirit level 

E Rod leveling bubble 

F Vertical roller (0.5 meters) 

G PC 

H The horizontal bar (1 meter) 

I longitudinal bar (1 meter) 

J CNC microcontroller 

K Rod 1-4 meter 

L CNC stepper motor 

M Station marker 

 

6.3.6 Work package 6 (Ranges of deformation and subsidence, time span)  

The last packages were related to the experiment’s preparation. The research examines the ML 

models with different deformations on the sixth work package. This investigation includes the 

following phases: 

❖ Phase 1: 

This phase focused on the studies of various amounts of displacements ranging from (1 to 20cm). 

The choosing displacement range could be justified as a trade-off between RT-PPP accuracy and 

various displacement values, as represented previously in Chapter 4. Accordingly, the research 

examines three types of motions, horizontal, vertical, and 3D, to mimic different deformation 

situations, including land subsidence, land uplifting, and horizontal or 3D deformations.   

Firstly, the deformation events with values equal to d cm were exerted using the CNC machine 

with the aid of the manual roller device to exert the vertical movements. That led the research to 

prepare different x, y, and z values in the machine coordinate system to exert different 

displacements (d) to simulate the deformation events that could occur in any direction. The 

following equation shows the x, y, and z constraints used in d establishing, where x and y 

correspond to planar coordinates in the horizontal plane and z to the vertical component. 
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𝑥2 + 𝑦2 + 𝑧2 = 𝑑2                            (6.1) 

The last step led us to pick a range of x and y, which examined the ML models model with different 

d values. The following table shows the values of x, y, z, and d. 

Table 6.15 Deformation displacement components values. d is obtained precisely as a 

combination of x, y, and z components. 

X range (cm) Y range (cm) Z range (cm) d (cm) 

From  -20 to 20 -20-20 -20-20 20 

From  -15 to 15 -15-15 -15-15 15 

From  -10 to 10 -10-10 -10-10 10 

From  -5 to 5 -5-5 -5-5 5 

From  -3.75 to 3.75 -3.75-3.75 -3.75-3.75 3.75 

From  -2.5 to 2.5 -2.5-2.5 -2.5-2.5 2.5 

❖ Phase 2: 

After setting up the machine with the displacement values shown in Table 6.15, forty-eight 

experiments were conducted with the following considerations.  

o Horizontal experiments with different d values are shown in the table above. Consequently, 

to ensure randomization movements of the CNC machine, a dataset sample with 48 random 

x and y values was chosen each time. The research used the 48 different random x and y 

values with the desired amount of displacement. The 48 points allow us to do experiments 

with 24-hour lengths with 15 minutes for each round trip between the station marker and 

the displaced point's location. The 24 hours have been chosen to investigate PPP solutions 

daily and nightly with different ionospheric effects.  

o The manual roller device has been used for vertical experiments to exert movements in up 

and down directions. The movement values ranged from 1cm to 20 cm; the experiment 

periods varied between 12 and 24 hours. The GNSS receiver remained and left the station 

marker location within 1-2 hours. 

o For 3D experiments, CNC and manual roller devices have been used to exert the desired 

movements. The movement values ranged from 1cm to 20 cm; the experiment periods 



194 

 

varied between 12 and 24 hours. The GNSS receiver remained and left the station marker 

location within 1-2 hours. 

It is worth mentioning that machine coordinates components, traveling speed, and waiting time 

were all uploaded to the machine microcontroller utilizing the g-code (Gleadall, 2021; Latif et al., 

2021; Xu & Newman, 2006).  

❖ Phase 3: 

During this phase, the research prepared the labelling function. This function labels the GNSS 

measurement event according to the GNSS receiver status. Consequently, this variable label holds 

three different classes: 

1. Centered: means that the receiver occupied the station marker location. 

2. Misplaced: means that the receiver occupied points with displacement distance (ds) away 

from the station marker. 

3. Out of service means that the receiver occupied points located with ds away from the 

station marker or occupied the station marker location, but biases lead to tremendous errors. 

The ds have been chosen to be 30 cm. The justification for choosing the ds to be 30 cm 

could be illustrated as the RT-PPP measurements indicate the displacements with a 30 cm 

value greater than exerted movements (20 cm).  

The RT-PPP introduces blunders or outliers measurements. This research shows that multipath 

error, elevation angles, latency, satellite geometry, and the number of satellites led to having values 

of displacements with more than 0.5 meters in all directions. That led us to add the third level of 

class, which is out of service. So, all measurements having displacement errors equal to or more 

than 0.30 meters were labelled as out of service. The researcher considers this labelling due to 

insufficient certainty to rely on those measurements to initiate warning alerts. Additionally, NMEA 

sentences contain GNSS quality indicators, such as the health of the used satellite, the GNSS 

receiver measurements mode, the receiver, and the GNSS constellation status. Any measurements 

with invalid GNSS quality indicators were added to this class.  

The following equation shows the labelling function used during this research: 
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𝑓(𝑥) = {

0,          √𝑥2 + 𝑦2 + 𝑧2 ∈ 0 + 𝜺  

1, √𝑥2 + 𝑦2 + 𝑧2 ∈ 𝑑2 + 𝜺

              2, √𝑥2 + 𝑦2 + 𝑧2 ∈ 𝑑2 + 𝜺 + 𝑏𝑖𝑎𝑠

             (6.2) 

Where: 

x, y, z denoted the displacement in cm. 

d2 the total travel distance in cm. 

𝜺: Measurements error. 

0: denotes that the receiver occupied station marker locations 

1: represents that the receiver is Misplaced with d distance from the station marker location. 

2: denotes that the receiver experienced tremendous bias errors. 

 

6.3.7 Work package 7(Experiments implementations)  

This section provides a brief overview of the experiments; in total, there were 48 experiments 

conducted to investigate various aspects of RT-PPP measurements. The experiments were designed 

to examine different types of deformation, including 24 vertical, eight horizontal, and 16 three-

dimensional deformations. The experiments yielded a total of 4,299,510 events, which were 

distributed across 2,205,918 centered events, 645,822 out-of-service events, and 1,447,770 

misplaced events.   The event distribution percentages of the centered, out-of-service, and 

misplaced events are 51.3%, 15%, and 33.7 %, respectively. For the sake of ML, training is 

recommended to utilize an equal percentage of each class because the RT-PPP measurements do 

not converge when the system is not robust enough. Accordingly, it can be seen from the 

experiment results that the number of the collected RT-PPP observations is reversibly proportional 

to the elevation angle. Tables 6.16, 6.17, and 6.18 show that the number of collected RT-PPP 

observations for 24-hour experiments is reversibly proportional to the selected elevation angle (10, 

20, and 35 degrees). Similarly, this correlation is also valid for the utilized stream regarding 

latency. Moreover, the experiment’s randomization affects the event distributions.     
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The latency values of the correction streams used in the RT-PPP measurements were also 

investigated, with experiments conducted using both the SSRA00CNE and SSRA00IGS streams, 

with latency values of approximately 15 and 35 seconds, respectively. In addition, the experiments 

were designed to train machine learning algorithms in different station situations. This involved 

conducting 31 experiments at an evaluation angle of 10 degrees, nine experiments at an angle of 

20 degrees, four at 30 degrees, and four at 35 degrees.  

Furthermore, the BNC software was configured to neglect satellites with an elevation below a 

specified mask elevation angle. During data collection, various degrees of displacement were 

applied through the CNC machine. The experiment periods were also extended from 12 to 24 hours 

to ensure adequate data were collected during different ionospheric conditions (Andrei et al., 2009; 

Feltens & Schaer, 1998; Wang & Rothacher, 2013).  Tables 6.16, 6.17, and 6.18 show the research 

experiment, including details of manipulated variables. 

Table 6.16 Details description of the research experiments regarding horizontal movements. 

Displacement 

value (cm) 

Period 

(h) 

Movements 

periods (h) 

Date of 

Start 

End 

Date 

# Of 

events 

Elevation 

Angle 

Correction 

Stream 
Latency 

10 24 0.25 

2021-11-

10 

18:18:55 

2021-11-

11 

18:29:19 

101965 10 SSRA00CNE Low 

15 24 0.25 

2021-11-

09 

18:01:55 

2021-11-

10 

18:15:59 

102430 10 SSRA00CNE Low 

1 24 0.25 

2021-12-

11 

09:28:35 

2021-12-

12 

05:39:15 

86328 10 SSRA00CNE Low 

2.5 24 0.25 

2021-12-

03 

12:21:58 

2021-12-

04 

14:09:54 

110746 10 SSRA00CNE Low 

20 24 0.25 

2021-11-

07 

16:01:10 

2021-11-

08 

15:46:59 

99131 10 SSRA00CNE Low 

2.5 12 0.25 

2021-12-

13 

06:21:39 

2021-12-

14 

07:37:04 

32657 10 SSRA00CNE Low 

3.75 24 0.25 

2021-11-

25 

16:05:40 

2021-11-

26 

19:53:14 

118804 10 SSRA00CNE Low 

5 24 0.25 

2021-11-

22 

13:08:04 

2021-11-

23 

13:09:09 

101284 10 SSRA00CNE Low 
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Table 6.17 Details description of the research experiments regarding vertical movements. 

Displacement 

value (cm) 

Period 

(h) 

Movements 

periods (h) 

Date of 

Start 

End 

Date 

# Of 

events 

Elevation 

Angle 

Correction 

Stream 
Latency 

10 12 1 

2022-01-

08 

06:06:46 

2022-01-

08 

18:01:49 

51210 10 SSRA00CNE Low 

10 24 random 

2022-04-

10 

18:02:06 

2022-04-

11 

19:43:04 

101041 10 SSRA00CNE Low 

15 12 1 

2022-01-

11 

08:53:23 

2022-01-

11 

21:12:24 

52770 10 SSRA00CNE Low 

2.5 12 1 

2022-01-

09 

08:43:44 

2022-01-

09 

21:04:34 

52920 10 SSRA00CNE Low 

20 12 random 

2022-01-

12 

07:08:31 

2022-01-

13 

20:09:24 

158463 10 SSRA00CNE Low 

20 24 random 

2022-04-

14 

21:40:34 

2022-04-

15 

22:19:54 

105880 10 SSRA00CNE Low 

2 24 random 

2022-04-

16 

07:26:37 

2022-04-

16 

20:31:00 

99280 10 SSRA00CNE Low 

3.75 24 random 

2022-04-

08 

08:36:06 

2022-04-

09 

08:48:59 

98218 10 SSRA00CNE Low 

5 12 1 

2021-12-

18 

07:20:30 

2021-12-

18 

20:00:04 

52899 10 SSRA00CNE Low 

10 24 random 

2022-04-

22 

09:18:54 

2022-04-

23 

13:57:49 

103134 10 SSRA00IGS High 

15 24 random 

2022-04-

23 

14:00:26 

2022-04-

24 

13:29:09 

84523 10 SSRA00IGS High 

20 24 random 

2022-04-

24 

13:30:59 

2022-04-

25 

13:31:59 

85129 10 SSRA00IGS High 

2 24 random 

2022-04-

17 

23:24:56 

2022-04-

19 

00:46:24 

91290 10 SSRA00IGS High 

3.75 24 random 

2022-04-

19 

21:25:09 

2022-04-

20 

21:29:34 

86666 10 SSRA00IGS High 

5 24 random 
2022-04-

20 

2022-04-

21 
83615 10 SSRA00IGS High 
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21:32:32 20:46:04 

10 24 random 

2022-05-

28 

19:56:45 

2022-05-

29 

19:16:49 

99320 20 SSRA00CNE Low 

15 24 random 

2022-05-

29 

19:21:05 

2022-05-

30 

18:42:15 

100000 20 SSRA00CNE Low 

2.5 24 random 

2022-05-

26 

16:41:42 

2022-05-

27 

09:52:04 

73653 20 SSRA00CNE Low 

20 24 random 

2022-05-

30 

18:48:06 

2022-05-

31 

20:22:19 

109230 20 SSRA00CNE Low 

5 24 random 

2022-05-

27 

20:05:40 

2022-05-

28 

19:54:29 

71712 20 SSRA00CNE Low 

10 24 random 

2022-06-

02 

17:16:05 

2022-06-

03 

11:43:49 

78460 35 SSRA00CNE Low 

5 24 random 

2022-06-

01 

19:21:32 

2022-06-

02 

17:13:44 

64930 35 SSRA00CNE Low 

15 24 random 

2022-06-

02 

17:15:59 

2022-06-

03 

11:43:49 

78458 35 SSRA00CNE Low 

20 24 random 

2022-06-

03 

11:48:10 

2022-06-

05 

20:27:24 

129253 35 SSRA00CNE Low 

 

 

 

 

 

 

 

 

 



199 

 

Table 6.18 Details description of the research experiments regarding 3D movements.  

Displacement 

value (cm) 

Period 

(h) 

Movements 

periods (h) 

Date of 

Start 
End Date 

# Of 

events 

Elevation 

Angle 

Correction 

Stream 
Latency 

10 24 random 
2022-05-03 

15:49:38 

2022-05-

04 

14:01:09 

95158 10 SSRA00CNE Low 

15 24 random 
2022-05-04 

14:02:43 

2022-05-

05 

04:00:44 

60022 10 SSRA00CNE Low 

20 24 random 
2022-05-05 

08:57:02 

2022-05-

06 

03:03:44 

72138 10 SSRA00CNE Low 

5 24 random 
2022-05-01 

14:32:32 

2022-05-

02 

18:31:39 

119906 10 SSRA00CNE Low 

10 24 random 
2022-04-26 

14:10:14 

2022-04-

27 

14:36:29 

83652 10 SSRA00IGS High 

15 24 random 
2022-04-29 

14:04:09 

2022-04-

30 

15:13:39 

90570 10 SSRA00IGS High 

20 24 random 
2022-04-30 

15:16:37 

2022-05-

01 

11:21:59 

70359 10 SSRA00IGS High 

5 24 random 
2022-04-25 

13:34:30 

2022-04-

26 

14:07:49 

88239 10 SSRA00IGS High 

10 24 random 
2022-05-07 

13:10:23 

2022-05-

08 

13:49:49 

105560 20 SSRA00CNE Low 

15 24 random 
2022-05-08 

13:55:40 

2022-05-

09 

14:52:14 

105946 20 SSRA00CNE Low 

20 24 random 
2022-05-09 

14:55:03 

2022-05-

10 

18:00:19 

115826 20 SSRA00CNE Low 

5 24 random 
2022-05-06 

05:52:46 

2022-05-

07 

13:07:54 

133804 20 SSRA00CNE Low 

10 24 random 
2022-05-12 

08:03:55 

2022-05-

12 

22:33:06 

46614 30 SSRA00CNE Low 

15 24 random 
2022-05-14 

20:03:52 

2022-05-

15 

15:28:54 

55219 30 SSRA00CNE Low 

20 24 random 
2022-05-25 

18:54:55 

2022-05-

26 

09:17:50 

60414 30 SSRA00CNE Low 

5 24 random 
2022-05-10 

18:06:48 

2022-05-11 

15:51:03 
85678 30 SSRA00CNE Low 
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6.3.8 Work package 8 (Machine learning implantation and assessments)  

In this research, different ML models were investigated as tools for establishing an early warning 

system, including decision trees, random forest, logistic regression, K nearest neighbours, XGB, 

and support vector regression. In future studies, the researchers intended to apply deep learning 

methods such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), 

Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRUs). Accordingly, the research 

demonstrates a robust comparison between the selected ML models. Different performance 

matrices such as accuracy, precision, recall, and f1-score could be used for model performance 

investigation (Fawcett, 2006). The flowing phases were implemented in the current work package: 

❖ Phase 1: 

Phase one of the research involved data cleaning and preparation to investigate missing values in 

the entire database. Our investigations revealed that the missing values were due to different 

sampling intervals and the unavailability of SSR products in the received streams. For instance, 

the orbital corrections were sampled at 1 minute, while the clock corrections were sampled at 10 

seconds, extending to 30 seconds to sample the latency value. It is worth noting that the nature of 

the variables determines the sampling rate; for instance, it is adequate to sample the latency within 

30 seconds since the variation of the internet speed would not undergo significant changes. 

Similarly, the study showed that the clock correction required a higher sampling rate than the 

orbital correction because the clocks equipped onboard satellites have a high variation rate due to 

clock frequency instability. 

Moreover, the BNC software could not calculate coordinates during some periods due to geometry 

or the number of satellites. Additionally, corruption or communication interruptions in the 

correction products could affect the availability of coordinates. Therefore, in this step, the 

researchers had the option of eliminating rows where null values existed or using the nearest filling 

methods. In this regard, the nearest filling method was adequate to avoid losing data collection 

based on the nature of the variables. However, missing entities were dropped from the database 

where coordinate values were missing. During this phase, the research extracted variables such as 



201 

 

observation time and measuring coordinates to generate a generic model that can be applied to any 

monitoring station. 

❖ Phase 2: 

At this research stage, we reach the point that allows us to start training, validating, and testing the 

ML models. The 48 experiments will enable the ML model's investigation with adequate 

measurement events. Moreover, the CNC and manual motions were designed to lead the receiver 

to collect measurements over station marker locations with different periods and Misplaced points. 

That allows the research to train the ML models with unbiased amount measurements in quantity. 

The first step in phase 2 was dedicated to data scaling. This study utilized the standard scaler, a 

machine learning feature normalization, and a preprocessing technique to create consistent values 

for dataset variables. It is included in Python's scikit-learn toolkit and is used prior to training a 

model for machine learning.  

This procedure is used to normalize continuous numerical features to a common scale. The 

standard scaler analyses each feature separately and then aggregates the data for that feature to 

determine its mean and standard deviation. This step is essential for some ML models where the 

magnitude of variable values affects classification accuracy. Applying a standard scaler ensures 

that features have uniform scales, which benefits various machine learning algorithms sensitive to 

feature scales (such as linear regression, logistic regression, and support vector machines). 

The second step was dataset splitting. Those investigations were essential to ensure that the ML 

models used data samples from the whole data population in the three phases of training, testing, 

and validation. In this step, the research led us to divide the research database into three sub-

datasets: The 48 experiments were adequate to conduct the research using 40% of data for ML 

model training, 30% for testing ML models, and the rest of the data for models' validation. The 

default values used for training and testing usually equal 70% and 30% as a role of thump. 

However, in this study, we used the premonition data splitting percentage to ensure the model was 

trained, validated, and tested in three different data sets. Additionally, all the measurements were 

shuffled randomly before creating the three datasets to ensure the removal of time and distance 

dependency (Hastie et al., 2009; Swamynathan, 2019; Tan et al., 2016). 



202 

 

❖ Phase 3: 

This phase introduced the background for the confusion matrix and the EWS probabilities. The 

confusion matrix is a prevalent measure used while solving classification problems. It can be 

applied to binary classification as well as to multiclass classification problems. An example of a 

confusion matrix for three classification classes is shown in the table below. 

The confusion matrix consists of six essential characteristics (numbers) used to define the 

measurement metrics of the classifier. These six numbers are: 

o TP (True Positive): TP represents the number of misplaced events from the marker 

location, and ML models correctly classify them. 

o TN (True Negative): TN represents the number of events centered (no motion) above the 

marker location, and ML models correctly classify them. 

o TNE (True Neutral): TNE represents the number of events that are correctly out of service 

and correctly classified with ML models. Those events are named neutral because the 

research is not sure enough if those events are centered (no motion) or misplaced from the 

station marker location.   

o FP (False Positive): ML models classify as misplaced or out-of-service observations that 

are really centered. FP is also known as a Type I error, causing a false alarm of the EWS. 

o FN (False Negative): ML models classify as centered or out-of-service observations that 

are really misplaced. FP is also known as a Type II error. It is causing no alarm when the 

EWS should generate it. 

o FNE (False Neutral): ML models classify as centered or misplaced observations that are 

really out of service. FP is also known as a Type III error, causing, in the case of misplaced 

bad classified observations, a false alarm of the EWS. 
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Table 6.19 Confusion matrix elements. 

 

This research used the accuracy value as a performance indicator. Moreover, in this study, seven 

different probabilities have been investigated utilizing the following equations:  

The Probability of Truly Non − Motion Detection              =
TN

TN + ∑FN
%     (6.3) 

The Probability of False Non − Motion Detection               =
∑ FN

TN + ∑FN
%     (6.4) 

The  Probability of True Motion Detection                             =
TP

TP + ∑FP
%     (6.5) 

The probability of Flase Motion detections                           =
∑FP

TP + ∑FP
%     (6.6) 

The probability of Truly Out of Service Detection             =
TNE

TNE + ∑FNE
% 

    (6.7) 

 

 Predictions 

A
ct

u
al

 L
ab

el
 

#Of Events with Truly 

Non-Motion Detection 

TN 

#Of Events with False 

Non-Motion Detection 

FN 

#Of Events with False Non-

Motion Detection FN 

#Of Events with False 

Motion Detection FP 

#Of Events with Truly 

Motion Detection TP 

#Of Events with False 

Motion Detection FP 

#Of Events with False 

Out of Service 

Detection FNE 

#Of Events with False 

Out of Service 

Detection FNE 

#Of Events with Truly Out 

of Service Detection TNE 
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The probability of False Out of Service Detection             =
∑FNE

TNE + ∑FNE
% 

    (6.8) 

 

  The probability of False 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 %

= The Probability of False NonMotion Detection

+  The probability of Flase Motion detection

+ The probability of False Out of Service Detection  

 

    (6.9) 

 

ML model′s accuracy =
TN + TP + TNE

∑Events
% 

 

  (6.10) 

 

The probabilities equations above are explained in the following probabilities matrix. 

Table 6.20 EWS probability matrix elements. 

 Predictions 

A
ct

u
al

 L
ab

el
 

Probability Of Truly 

Non-Motion Detection 

Probability Of False Non-

Motion Detection 

Probability Of False Non-Motion 

Detection 

Probability Of False 

Motion Detection 

Probability Of True Motion 

Detection 

Probability Of False Motion 

Detection 

Probability Of False 

Out of Service 

Detection 

Probability Of False Out of 

Service Detection 

Probability Of Truly Out of 

Service Detection 
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❖ Phase 4: 

The ultimate stage pertained to constructing a performance comparison among different ML 

models utilizing the abovementioned metrics. The performance analysis was constructed 

separately for each type of experiment. Accordingly, the research concludes with an assessment of 

EWS performance with respect to horizontal, vertical, and 3D deformations. Consequently, this is 

followed by examining the feature importance investigation; this is essential to reduce the feature 

space dimensions, enhancing the ML model's performance and accuracy. Eventually, EWS ML 

models were exported in Python Pickle (PLK) format to ease the implementations (Python, 2023). 

The exported EWS ML models include a vertical model that emulates the uplifting and land 

subsidence, a horizontal model that simulates the horizontal deformations, and 3D models to 

mirror the generic model. It is worth mentioning that the deformation monitoring users could select 

suitable models according to their monitoring needs.  

6.3.9 Work package 9 (Data interpretation)  

In the previous research phase, the focus was on understanding, interpreting, and presenting the 

outcomes. Python visualization libraries, Pandas, Plotly, Matplotlib, and Seaborn, were employed 

for this purpose. Additionally, Tableau and Excel were used in the current phase (Matplotlip, 2012; 

Microsoft, 2023b; Pandas, 2023; Plotly, 2023; Seaborn, 2022; Tableau Software, 2023). The 

software mentioned above and libraries were used to generate critical figures, such as features 

correlation matrices, feature importance, and event distribution analysis for displacement 

movement types, and utilized correction streams and elevation angles. Furthermore, numerous 

charts and figures were produced to examine the correlation between elevation angles and 

displacement values. Subsequently, the performance of ML models With respect to  the achieved 

accuracy and true/false alarm warning probability was analysed through various charts. Notably, 

several comparison tables were generated to compare and contrast the performances of different 

ML models. 
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6.3.10 Work package 10 (Azure platform)  

The final study deliverable was expanded to deploy an external portal to validate the research 

findings. Consequently, the Microsoft Azure cloud computing platform provides solutions and 

capabilities for developing, distributing, and managing cloud-based software. Subsequently, the 

research database was stored in the platform cloud. Azure automatically generated the automatic 

ML baseline to investigate the performance of numerous ML models (Microsoft, 2023a). It is 

worth highlighting that the Azure-generating ML models can be exported; accordingly, the Python 

pickle library can be used to read the model (Python, 2023). 

Consequently, it can be utilized by incorporating the BNC software as a core of establishing EWS. 

Accordingly, the RT-PPP observations can be used as inputs for the trained Azure-generating ML 

model for initiating deformations early warnings.   
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Chapter 7 Results and Discussions  

7.1 Introduction 

Improving RT corrections enhances the RT-EWS execution. Previous discussions have highlighted 

several challenges with RT corrections, such as latencies, availability, and outliers. Since RT 

corrections rely on data transmission over the internet, they are susceptible to spoofing and cyber-

attacks. Additionally, explained error sources and the continuity of correction streams can 

influence the quality of PPP measurements. Consequently, as mentioned earlier, these issues can 

significantly impact the performance of RT-PPP and the EWS, which rely on RT-PPP 

measurements. The first part of this chapter presents research findings focused on the latency 

problem in RT corrections. The chapter contains the results obtained regarding the investigations 

on the availability of clock correction, the maximum clock correction consecutive difference value 

as it indicates leaps in clock correction values. The chapter also shows the SVR and ARIMA 

evaluation performance in terms of statistical analysis. The finding extended to cover all research 

years' mean, range, and standard deviation comparisons. This is followed by the simulated results, 

which regard the obtained prediction values and their influences on the RT-PPP coordinates 

performance. As the research extended to cover several years, the IGS RT corrections improved, 

allowing the researchers to investigate the performance of the applied ML concerning Galileo and 

BeiDou besides the primary GPS and GLONASS systems. Accordingly, this chapter includes a 

comparison analysis regards the comprehensive analysis carried out on 2021 RT correction data. 

The chapter introduces substantial results, provided by the integration of the experimental device 

with the reference station for simulating displacements; this follows with the analysis of feature 

correlation analysis and concludes with the feature correlation matrix. Tropospheric error, tracked 

satellite number, delay, phase residuals, elevation angles, acquired coordinates, coordinate 

precision, and root mean squared errors were all subjected to correlation studies. Following the 

initial phase, the research experiments were systematically manipulated by employing multiple 

elevation angles and diverse correction streams, subjecting them to various artificial deformations 

that varied in magnitude and direction. Consequently, the resulting measurements of RT-PPP 

exhibited variations in terms of their quality and accuracy. Training and testing the RT-PPP EWS 
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machine-learning models with diverse RT-PPP measurements were possible, subsequently 

enhancing the EWS performance.    

Chapter seven also contains results regarding the event distribution with respect to the latency of 

the used stream, elevation angle, and type of exerted deformations, followed by assessment results 

of RT-PPP EWS ML models; this evaluation contains several probabilities analyses, such as the 

RT-PPP EWS probabilities of initiating true warning regards motion/non-motion/out of service 

detection in addition to the RT-EWS probabilities of initiating false warning regards motion/non-

motion/out of service detections.  

7.2 Latency results 

As described earlier in the previous chapters, the investigation results regarding the stationarity of 

the clock correction time-series data is an essential primary step for choosing suitable ML 

prediction models. Consequently, the SVR and ARIMA have been utilized in this study. Chapter 

six introduced the study findings regarding the RSW investigations, which led the research to 

utilize RSW with a period of 8 and one minute to train ARIMA and SVR, respectively. 

Additionally, the RSW with a period of 8 minutes and one hour was used to update the model 

hyperparameters to the ARIMA and SVR, respectively. The third work package in chapter six 

investigated the unavailability of RT-PPP correction as the stream results were subjected to 

encounter periods of outages and interruptions. Table 7.1 shows the research findings regarding 

the availability of clock corrections during the research years, considering that the investigation 

was carried out within one day. During this period, the clock corrections encountered periods of 

outages. It can be seen from the table data that some satellite blocks encounter a period of 

interruptions. For instance, the GLONASS-K block showed 10-26 % of clock corrections 

unavailability, corresponding to 2-6 hours of interruption periods. Moreover, it encounters a 

reduction in the availability of corrections; around 24% of the reduction was found between 2013 

and 2021. These interruptions degrade the RT-PPP solution in terms of quality and availability.    
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Table 7.1 The availability of clock correction behavior. 

Date Satellite Block Clocks corrections availability (%) 

29/10/2013 

GPS-IIF 98.13 

GPS-IIR 99.97 

GPS-IIRM 99.97 

GLONASS-K 100 

GLONASS-M 96.88 

13/01/2014 

GPS-IIF 96.07 

GPS-IIR 99.90 

GPS-IIRM 99.96 

GLONASS-K 100.00 

GLONASS-M 98.00 

25/02/2015 

GPS-IIF 99.07 

GPS-IIR 99.96 

GPS-IIRM 99.93 

GLONASS-K 98.77 

GLONASS-M 99.62 

14/12/2019 

GPS-IIF 98.34 

GPS-IIR 99.97 

GPS-IIRM 100.00 

GLONASS-K 89.88 

GLONASS-M 99.16 

 

21/05/2021 

 

GPS-IIF 99.46 

GPS-IIR 91.48 

GPS-IIRM 99.89 

GLONASS-K 76.11 

GLONASS-M 96.05 

The RT-PPP pilot experiment was also analysed for data on the most remarkable clock correction 

leaps anticipating the implementation of machine learning prediction; this could be justified by the 

ML prediction models encountering performance challenges due to unexpected leaps. 

Consequently, as part of this analysis of the clock correction, the research subtracted each 

consecutive clock correction value, and the Python codes were utilized to return the maximum for 

each GNSS satellite. We then categorized the mean value of the maximums for each satellite 

cluster with respect to the clock correction leaps. The average of the highest difference between 

two consecutive clock correction values is displayed in Table 7.2. It demonstrated that the 

difference, or jump, in clock correction values for GPS block IIF satellites might approach nearly 
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twelve meters. Subsequently, those jumps in clock corrections affect the coordinate's availability, 

accuracy, and prediction performance.  

The result concludes that, for instance, the GPS-IIF showed an improvement of around 84% 

reduction with respect to 2013; in 2021, clock correction data shows that a similar improvement 

performance was achieved regarding the GPS-IIR blocks with an improvement of 92.5%. 

Additionally, the GPS-IIRM block showed an improvement in minimizing the clock correction 

jumps by around 89% between 2013 and 2021. However, the GLONASS satellite constellation 

shows minimal improvements regarding the clock correction leaps compared to the GPS. For 

instance, GLONASS block K shows an 18% improvement regarding clock correction leaps. 

On the contrary, the GLONASS-M block showed a degradation of around 53% between 2013 and 

2021. It is worth mentioning that the GLONASS-K is the newest block for the GLONASS 

constellation, and it contains two versions, K1 and K2 blocks. It is worth emphasizing that the 

onboard satellite clock's stability influences the clock correction leaps accordingly; the GPS 

constellation demonstrated better enhancement through the research years.  

The stability of satellite clocks influences the positioning performances as well as its effects on the 

ML prediction model's results. The chapter results regarding the clock corrections mean, range, 

and standard deviation assessments showed a lower enhancement regarding the clock corrections 

range analysis over the standard deviation evaluations. It is worth noting that those leaps' 

percentages are slightly small compared to the entire clock corrections population. 
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Table 7.2 The average of cock corrections maximum consecutive average. 

Year Satellite Block 
Average of Maximum consecutive differences 

(meters) 

2013 

GPS-IIF 11.68 

GPS-IIR 2.16 

GPS-IIRM 2.15 

GLONASS-K 0.50 

GLONASS-M 1.27 

2014 

GPS-IIF 0.75 

GPS-IIR 0.26 

GPS-IIRM 0.48 

GLONASS-K 1.25 

GLONASS-M 1.04 

2015 

GPS-IIF 0.27 

GPS-IIR 0.37 

GPS-IIRM 0.29 

GLONASS-K 0.49 

GLONASS-M 1.41 

2019 

GPS-IIF 0.11 

GPS-IIR 0.31 

GPS-IIRM 0.19 

GLONASS-K 0.43 

GLONASS-M 0.63 

2021 

GPS-IIF 0.16 

GPS-IIR 0.16 

GPS-IIRM 0.22 

GLONASS-K 0.41 

GLONASS-M 1.95 

 

7.2.1 ML prediction models’ assessment regards the latency issues. 

Chapter Six, work Package Five utilized the SVR and ARIMA prediction model to overcome the 

latency effect of RT-PPP products. The statistical assessment was carried out in this research by 

performing range, standard deviation, and mean comparisons regards the model’s prediction clock 

corrections.  Thus, to create a reliable comparison, the standard deviation of the clock correction 

residuals was derived by subtracting the SVR and ARIMA forecasts with respect to the free 
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latency. On the other hand, the standard deviation of the clock correction residuals was derived by 

subtracting the forced latency with respect to the free latency; that allowed the researchers to 

compare the performance of prediction models with respect to an ideal situation where the latency 

value does not impact the GNSS users from one side. On the other side, the research compared the 

RT situation where the latency impacts the GNSS users with respect to the ideal situations. The 

range and mean assessment were carried on similarly for SVR, ARIMA, and forced latency 

solutions. It is worth noting that the analysis of the mean of the residuals had been eliminated due 

to the similarity of the obtained results, which found the zero mean value of the clock correction 

subtracting from the forced latency, SVR, and ARIMA forecasts with respect to the free latency; 

this finding could be justified as a result of similarities among the four clock correction signals, 

for instance the free latency and forced latency signals are nearly similar due to the slight shifting 

of the correction values ahead with the latency value which the research utilized in order to 

simulate the latency effect (30 seconds in the case if the IGS combined products). However, the 

SVR and ARIMA constructed signals are more similar to the free latency signal due to the likeness 

between the predicted and free latency clock correction values.  Figure 7.1 delineates the graphical 

representation of research-oriented clock correction signals. The initial signal within the plot 

describes the free-latency time-series signal, thereby encapsulating clock correction values devoid 

of latency-induced influences. In contrast, the subsequent signals, ARIMA and SVR, correspond 

to predicted clock correction values inferred by the machine learning models. The forced-latency 

example is established, wherein a 30-second shifted head artificially displaced clock correction 

values to simulate latency impacts. A pronounced likeness across all the research signals is 

discernible from the graphical exposition. It is essential to recognize that the illustrated figure 

embodies the clock correction value acquired at the beginning of May 22, 2021, about the GPS 

G01 satellite. A visible similarity prevails among the research time-series signals. The figure 

illustrates that the ARIMA and SVR solutions establish higher similarities to the free-latency 

solutions more closely than the forced-latency solution. Accordingly, the pre-mentioned related 

issues justify that the research assessment of residual mean analysis was omitted due to the 

convergence of outcomes, which revealed a nearly zero mean value for the clock correction 

solution subsequent to the residual values derived by deduction of the SVR, ARIMA forecasts and 

forced-latency with respect to the free latency. 
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Figure 7.1 Temporal evolution of IGS03 clock correction solutions: Analyzing time series 

signals 

(Prepared by the author). 

After the initial data from the pilot study had been analysed, researchers could look into how well 

the applied ML worked with Galileo and BeiDou in addition to the primary GPS and GLONASS 

systems because the study lasted for multiple years, and since IGS RT corrections improved. In 

light of the exhaustive research performed on the RT correction data for 2021, this chapter provides 

a comparison results analysis. It is worth mentioning that the rest of the results regarding all the 

research years can be found in the appendices section. Figures 7.2 to 7.5 show the standard 

deviation comparison with respect to the three solutions for BeiDou, GLONASS, Galileo, and GPS 

constellations.  
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Figure 7.2 IGS03 standard deviations in meters for BeiDou satellites according to 2021 data 

(Prepared by the author). 

The study outcomes about the standard deviation improvements with respect to the BeiDou 

satellite system revealed that satellite C09 exhibited the most favourable outcomes regarding the 

performance of the SVR and ARIMA ML prediction models. Notably, the SVR model 

demonstrated a performance enhancement of 30 percent, while the ARIMA model showcased a 17 

percent improvement compared to the forced latency. Moreover, an analysis of satellite C07 

indicated a minimal 5 percent increase in SVR performance due to the latency impact. Conversely, 

findings from satellite C06 demonstrated that the employment of the ARIMA solution marginally 

elevated the latency effect by 8 percent. 
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Figure 7.3 IGS03 standard deviations in meters for GLONASS satellites according to 2021 data 

(Prepared by the author). 

The study results about the standard deviation enhancements with respect to the GLONASS 

satellite system exposed that satellite R19 exhibited the most advantageous outcomes regarding 

the performance of the ARIMA. With respect to the SVR ML prediction model, the most valuable 

outcome is dedicated to the R22. Remarkably, the SVR model established a performance 

enhancement of 34 percent, while the ARIMA model showcased a 33 percent improvement 

compared to the forced latency. Conversely, an analysis of satellite R17 indicated a slightly 

increased latency impact of 10 percent regarding the SVR performance. Moreover, findings from 

satellite R09 demonstrated that the employment of the ARIMA solution elevated the latency effect 

by 24 percent. It is worth mentioning that R17 and R09 GLONASS satellites are the only satellites 

showing degradation of the applied ML prediction models. 

The research findings addressing the influence of the prediction ML models on the Galileo satellite 

system are depicted in Figure 7.4. According to the study's findings on standard deviation 

enhancements for the Galileo satellite system, satellite E01 displayed the best results regarding 

ARIMA performance, and satellite E08 displayed the best results regarding SVR ML prediction 

models. Remarkably, the ARIMA model showed a 36 percent improvement for the E15 satellite 
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compared to the forced latency, while the SVR model showed a performance improvement of 37 

percent for the E08 satellite. Additionally, due to the latency impact, an investigation of satellite 

E24 showed a minor 5 percent improvement in SVR performance. 

On the other hand, a study of satellite E24 revealed a 10 percent increase in latency impact on the 

ARIMA performance. It is important to note that the E24 Galileo satellite is the only one that 

exhibits a decline in the ARIMA prediction model's performance. 

 

Figure 7.4 IGS03 standard deviations in meters for Galileo satellites according to 2021 data 

(Prepared by the author). 
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Figure 7.5 IGS03 standard deviations in meters for GPS satellites according to 2021 data 

(Prepared by the author). 

The research outcomes about the impact of prediction ML models on the GPS satellite system are 

graphically depicted in Figure 7.5. The investigation revealed noteworthy findings regarding the 

influence of the SVR and ARIMA ML prediction models on the clock corrections standard 

deviation enhancements. Notably, satellite G06 exhibited the most favourable results in terms of 

SVR performance, whereas satellite G31 showcased superior outcomes for the ARIMA ML 

prediction models compared to the forced latency; the ARIMA model exhibited a substantial 43 

percent improvement for the G21 satellite, whereas the SVR model demonstrated a performance 

enhancement of 37 percent for the G08 satellite. Furthermore, an examination of the latency impact 

on satellite G32 indicated a minor 5 percent improvement in SVR performance, whereas 

implementing the ARIMA model results in an 11 percent enhancement for the G09 satellites. It is 

crucial to emphasize that the SVR and ARIMA ML models can improve the standard deviation 

performance of all GPS satellites, thus mitigating the latency effect effectively. Table 7.3 shows 

the statistical assessments for the research solutions over several research years.   

Following the previous standard deviation assessment, the research analyses were extended to 

evaluate the range performance. It is important to note that the range is a sensitive statistical 
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indicator. As clock corrections encounter a period of interruptions, fluctuations, and the most 

critical effect of the clock jump period, all of the issues could affect the ML model's performance 

accordingly; if the prediction models are due to the previous issues raising or reducing the clock 

corrections expectations, that lead to degraded range enhancement. Table 7.4 shows the range of 

statistical assessments for the research solutions over several years.   

Figures 7.6 to 7.9 show a range comparison with respect to the three solutions for BeiDou, 

GLONASS, Galileo, and GPS constellations.  

 

Figure 7.6 IGS03 range differences in meters for BeiDou satellites according to 2021 data 

(Prepared by the author). 

The study outcomes about the range improvements with respect to the BeiDou satellite system 

revealed that satellite C09 exhibited the most favourable outcomes regarding the performance of 

the SVR and ARIMA ML prediction models. Notably, the SVR model demonstrated a performance 

enhancement of 7 percent, while the ARIMA model showcased a 1 percent improvement compared 

to the forced latency. Conversely, findings from satellite C07 demonstrated that the employment 

of the ARIMA and SVR solution elevated the latency effect by 85 percent and 49 percent, 

respectively. 
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Figure 7.7 IGS03 range differences in meters for GLONASS satellites according to 2021 data 

(Prepared by the author). 

The study results about the range enhancements with respect to the GLONASS satellite system 

exposed that satellite R08 exhibited the most advantageous outcomes regarding the performance 

of the SVR prediction model. Noting, the model established a performance enhancement of 40 

percent, while the ARIMA model showcased around 8 percent improvement compared to the 

forced latency to the R13 GLONASS satellite. Conversely, an analysis of satellite R09 indicated a 

slightly increased latency impact of 25 percent regarding the ARIMA performance. Moreover, 

findings from satellite R17 demonstrated that the employment of the SVR solution elevated the 

latency effect by 17 percent.  
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Figure 7.8 IGS03 range differences in meters for Galileo satellites according to 2021 data 

(Prepared by the author). 

The research findings addressing the influence of the prediction ML models on the Galileo satellite 

system are depicted in Figure 7.8. The study's findings on range enhancements for the Galileo 

satellite system show that satellite E01 displayed the best results regarding ARIMA performance, 

and satellite E31 displayed the best results regarding SVR ML prediction models. Remarkably, the 

ARIMA model showed a 38 percent improvement for the E01 satellite compared to the forced 

latency, while the SVR model showed a performance improvement of 52 percent for the E31 

satellite. Additionally, regarding the latency impact, an investigation of satellite E24 showed a 6 

percent with minor improvement in SVR performance to all Galileo satellites. Additionally, the 

E05 Galileo satellite shows a degradation of the enhancement regarding the range evaluation by 

11 percent. It is important to note that the Galileo satellite system exhibits a remarkable 

enhancement in range analysis compared to the GLONASS and BeiDou constellations. 
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The research outcomes about the impact of prediction ML models on the GPS satellite system are 

graphically depicted in Figure 7.9. The analysis revealed noteworthy findings regarding the 

influence of the SVR and ARIMA ML prediction models on the clock correction range 

improvements. Notably, satellite G06 exhibited the most favourable results in terms of SVR 

performance, whereas satellite G07 showcased superior outcomes for the ARIMA ML prediction 

models compared to the forced latency; the ARIMA model exhibited a substantial 21 percent 

improvement for the G08 satellite, whereas the SVR model demonstrated a performance 

enhancement of 61 percent for the G06 satellite. Furthermore, examining the latency impact on 

satellite G03 indicated a minor 26 percent improvement in SVR performance. Conversantly 

implementing the ARIMA model results in a 13 percent range degradation for the G29 satellites. 

It is crucial to emphasize that the SVR and ARIMA ML models notably improve the standard 

deviation and range performance for most GPS and Galileo satellites, thus mitigating the latency 

effect effectively. These results could be justified in implementing high-stability satellites in both 

systems.  

 

Figure 7.9 IGS03 range differences in meters for GPS satellites according to 2021 data 

(Prepared by the author). 
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Eventually, the previous research finding in this section summarizes the performance of the utilized 

prediction ML models through the research years. Tables 7.3 and 7.4 show the ultimate research 

finding in terms of standard deviations and the average of the range, which have been calculated 

from the residuals obtained by subtracting the clock correction values among the research solution 

with respect to the free-latency solution. Remarkably, the ARIMA model showed outstanding 

performance for the GPS-IIRM block, reaching around 33 percent in 2014 and 2019, and notably, 

the GPS-IIF block showed a reduction of standard deviation, reaching 50 percent in 2015. The 

GPS-IIR and GPS-IIRM satellite blocks show Similar results with respect to the 2021 research 

year. However, the ARIMA showed minimum model improvement concerning the GLONASS-K 

satellite block. Note that the ARIMA model shows an ability to reduce the standard deviation for 

the majority of GNSS satellite blocks. 

On the other hand, the SVR model shows a slightly similar performance. For instance, the standard 

deviation improved for the GLONASS-K satellite block by 25 percent and 14 percent in 2013 and 

2015, and it reached the same satellite block with around 31 percent enhancement concerning 

standard deviation enhancement in 2021.  

It is worth noting that the figures in the table were categorized for each satellite block. Thus, 

irregular behaviour from the individual satellite could disturb the average, driven values. 
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Table 7.3 Clock corrections standard deviations of all researched years. 

Solution Satellite Block 2013 2014 2015 2019 2021 

Forced-latency solution 

 

GPS-IIF 0.39 0.04 0.02 0.03 0.01 

GPS-IIR 0.11 0.03 0.03 0.02 0.02 

GPS-IIRM 0.12 0.03 0.03 0.03 0.02 

GLONASS-K 0.04 0.07 -- 0.14 0.04 

GLONASS-M 0.06 0.06 0.06 0.05 0.05 

ARIMA model 

 

GPS-IIF 0.34 0.03 0.01 0.02 0.01 

GPS-IIR 0.09 0.02 0.02 0.02 0.01 

GPS-IIRM 0.10 0.02 0.02 0.02 0.01 

GLONASS-K 0.04 0.07 -- 0.13 0.03 

GLONASS-M 0.05 0.05 0.05 0.04 0.04 

SVR model 

 

GPS-IIF 0.32 0.03 0.01 0.02 0.01 

GPS-IIR 0.09 0.02 0.02 0.02 0.01 

GPS-IIRM 0.11 0.02 0.02 0.02 0.01 

GLONASS-K 0.03 0.06 -- 0.09 0.03 

GLONASS-M 0.05 0.05 0.04 0.04 0.04 

 

The research findings about range assessment are demonstrated in Table 7.4, which shows the 

capacity of the ARIMA model to enhance the range results; specifically, in 2013, the ARIMA 

model was observed to improve the range accuracy by approximately five meters for the GPS-IIF 

block. In addition, the ARIMA model shows range reduction improvements to the latency solution 

by around 27 percent and 15 percent in the research years 2013 and 2019, respectively. Notable 

improvements were observed with the SVR model for different GPS satellite blocks across the 

study years. The SVR model exhibited an outstanding enhancement of approximately 19 percent 

for the GPS-IIF block, 46 percent for the GPS-IIR block, and around 57 percent for the GPS-IIRM 

block in the years 2015, 2019, and 2021, respectively. However, it is worth noting that in 2013, 

the SVR model was found to increase the latency impact by approximately 4.80 meters for the 

GPS-IIF block. The SVR model's poorest performance was identified in 2014 and 2015, 

particularly for the GLONASS K and M satellites block, where degradation in range evaluation of 

31 percent and 23 percent was observed, respectively. On the contrary, the SVR model with respect 

to the GPS-IIRM block showed the capacity to enhance the range performance with around 23, 

25, and 57 percent, with respect to the research years 2014, 2019, and 2021. 
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Table 7.4 Average of clock correction ranges of all researched years. 

Solution Satellite Block 2013 2014 2015 2019 2021 

Forced-latency solution 

 

GPS-IIF 18.79 1.54 0.51 1.06 0.38 

GPS-IIR 4.41 0.84 0.77 0.68 0.40 

GPS-IIRM 4.55 0.87 0.82 1.25 0.37 

GLONASS-K 1.11 2.57 -- 9.72 0.78 

GLONASS-M 2.49 2.54 2.14 2.52 1.99 

ARIMA model 

 

GPS-IIF 13.80 1.59 0.53 0.90 0.40 

GPS-IIR 4.03 0.84 0.74 0.71 0.41 

GPS-IIRM 4.13 0.88 0.88 1.21 0.47 

GLONASS-K 1.11 2.57 -- 9.03 0.74 

GLONASS-M 2.70 2.25 2.05 2.49 2.06 

SVR model 

 

GPS-IIF 18.59 1.81 0.43 0.92 0.23 

GPS-IIR 4.07 0.76 0.69 0.38 0.26 

GPS-IIRM 4.36 0.68 0.98 0.91 0.20 

GLONASS-K 0.82 3.95 -- 10.17 0.46 

GLONASS-M 3.03 3.04 2.74 3.07 2.46 

 

7.2.2 Coordinates assessment regarding the latency issues. 

The stored navigation, correction, and observation files were reused in post-processing mode to 

evaluate the impact of the clock correction prediction on the performance of RT-PPP coordinates. 

Consequently, the IGS03 files were recreated to hold clock correction prediction values. 

Subsequently, this idea allows the research to assess the SVR and ARIMA ML prediction models 

on the RT-PPP performance. Accordingly, the BNC software was reconfigured to perform RT-PPP 

with respect to SVR, ARIMA, and free and forced latency. Therefore, the impact of the ML 

prediction models could be assessed. It is worth mentioning that several versions of the BNC 

software were utilized in order to accommodate the evolution of GNSS files. This section also 

contains the result finding regarding coordinates availability for the ML prediction solutions. 

It should be noted that the availability of the RT-PPP has remarkably improved during the research 

study years. Figures 7.10-7.13 show ABMF coordinate scatter plots as representative examples for 

all research IGS stations, summarizing the study's findings and introducing the most recent data 

(2021), noting that ten IGS permanent stations have contributed to this evaluation and that the 
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study period has been expanded to include 2013, 2014, 2015, 2019, and 2021 years. Figure 7.10 

shows that the ARIMA and SVR coordinates solutions have more tendency to be distributed 

around the figure origin, indicating the ability of both ML models to mitigate the latency impact. 

It is worth noting that the figures represent the coordinates residuals in the local horizontal 

coordinate system. 

 

Figure 7.10 ABMF station coordinates solutions residuals according to 2021 data. 

(Prepared by the author). 

Figures 7.11 and 7.12 show that the ARIMA model improves the performance of the forced latency 

solution. Noting that the SVR solution also performs better than the forced latency solutions. 

However, similar performance regarding the Up component can be visualized in Figure 7.13, 

remarking that the Up-coordinate component witnesses notable oscillations concerning all 

research solutions. Figures 7.11 to 7.12 indicate the east, north, and up components within the local 

horizontal coordinate system.   
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Figure 7.11 ABMF station east component residuals according to 2021 data 

(Prepared by the author). 

 

Figure 7.12 ABMF station north component residuals according to 2021 data 

(Prepared by the author). 
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Figure 7.13 ABMF station Up component residuals according to 2021 data 

(Prepared by the author). 

In order to demonstrate the section results, all the researched stations through the investigation 

years were subjected to statistical assessment regarding the standard deviations, mean, and range 

analysis to the obtained coordinates from several solutions. Table 7.5 demonstrates the research 

three-dimensional coordinates findings concerning overcoming the latency, and the units of the 

figures table are in meters. All the statistical indicators have been calculated with respect to the 

coordinate residuals obtained by subtracting the coordinates solutions with respect to the free 

latency coordinates. Means, standard deviations, and ranges' averages have been calculated with 

respect to all coordinates' residuals. The research assessments show means, standard deviations, 

and ranges of average performance improvements when using the SVR and ARIMA solutions over 

the forced-latency solutions. The ARIMA and SVR model remarkably improve the mean 

coordinates value by 17 and 13 percent, respectively. In addition, the coordinate standard deviation 

improves by 13 and around 31 percent for the ARIMA and SVR solutions, respectively. However, 

the range performance shows the ability of the SVR solution to enhance the range coordinates by 

11 percent. 
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Conversely, the ARIMA model slightly increases the range average by 3 percent with respect to 

the forced-latency solution. It can be concluded that the SVR and ARIMA models can mitigate the 

latency impact on the RT-PPP coordinates. However, the SVR model shows superior performance 

with respect to the coordinate standard deviation improvement. Accordingly, a notable 

performance for the SVR and ARIMA models, regarding the coordinates mean assessment, was 

found in 2014 and 2015, with the ability to enhance the mean coordinate value by around 50 

percent. In addition, the same research years showed the enhancement of the standard deviation 

performance by 40 percent with respect to the ARIMA model and 20 percent to the SVR model. 

Regarding the coordinates range assessment, the ARIMA model shows enhancement of the range 

values with 15, 39.5, and around 1 percent with respect to the research years 2013,2015,2019, 

respectively.  

On the other hand, the SVR model notably improves the coordinate range values by 13,13.5 and 

23 percent concerning the research years 2013, 2015, and 2021, respectively. 

Table 7.5 shows 3D coordinates results from the research assessments regarding all the study 

research years, and all studied IGS stations. Where the table units are in meters; however, the 3D 

coordinates results were aggregated in order to show the performance of all the research stations.   

Table 7.5 3D coordinates results from evaluation regarding all the study research years (the table 

units are in meters). 

Statistical indicators Solution 
Average of 

all years 
2013 2014 2015 2019 2021 

Mean 

Forced-latency solution 0.23 0.04 0.07 0.51 0.40 0.14 

ARIMA model 0.19 0.04 0.04 0.22 0.42 0.21 

SVR model 0.20 0.06 0.04 0.40 0.41 0.10 

Standard deviation 

Forced-latency solution 0.84 0.60 0.47 1.26 0.76 1.11 

ARIMA model 0.73 0.66 0.44 0.75 0.70 1.12 

SVR model 0.58 0.58 0.38 1.43 0.69 0.75 

Range 

Forced-latency solution 11.52 13.74 7.74 7.79 11.01 17.33 

ARIMA model 11.90 11.68 8.92 4.71 10.94 23.27 

SVR model 10.25 11.95 8.20 6.75 11.34 13.20 
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The research latency assessments were extended to evaluate the ML prediction models regarding 

the coordinates' availabilities. Ten IGS permanent stations have been involved in the current 

assessment, and the research has been prolonged to cover the years 2013, 2014, 2015, 2019, and 

2021. Table 7.6 shows the availability assessments of all IGS research stations during the 

investigation years, where more evaluation of the stations can be found in the appendices sections.  

The table shows the availability of ML prediction models with respect to the forced latency 

solution. Noting that, for example, the ARIMA and SVR model's ability to enhance the station's 

coordinate availability by around 5 percent with respect to 2013 and 2015. It is of notable import 

to recognize that Table 7.6 figure expresses the coordinates availability within 24 hours of RT-PPP 

observations value acquired through several research years. For example, All IGS stations in 2015 

showed that the forced-latency solution led to the unavailability of RT-PPP solutions for more than 

12 hours. However, the ARIMA and the SVR solutions improve the RT-PPP coordinates 

performance, resulting in reducing the unavailability of RT-PPP solutions to around 10.5 hours, 

which corresponds to improved availability with nearly 8 hours in the case of utilizing the ARIMA 

prediction model and with about 5 hours in the case of using the SVR model. Table 7.6 shows the 

solution's performance with respect to the researched years. The percentage of coordinates 

availability had been calculated as an average for all research stations.   

Table 7.6 Availability of the RT-PPP coordinates solutions of selected research stations. 

 Percentage of coordinates availability (%) 

All research 

Stations 
Forced-latency ARIMA SVR 

2013 81.67 86.06 84.73 

2014 90.11 91.88 92.33 

2015 46.75 50 54.62 

2019 92.77 93.55 93.66 

2021 83.66 84.66 84.77 
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7.3 RT-PPP EWS results 

Using only one GNSS receiver, RT-PPP can produce reliable real-time location estimation. It does 

not require a network or differential GNSS solutions; thus, the method reduces costs and provides 

more flexibility in location. One of RT-PPP's main advantages is that it can provide real-time global 

positioning solutions; this shows that GNSS users in remote areas can still obtain precise location 

data in RT. RT-PPP EWS foundational results regard the initial work packages introduced in 

Chapter Six, third section. The first work package established the research reference station; the 

main stages utilized in station creation were demonstrated in detail in the previous chapter. Two 

sessions were conducted over 24 hours on the twenty-eighth of February 2021 and the eighteenth 

of March 2021 to obtain the reference station coordinates. Accordingly, the stored observation files 

were processed to utilize the online position services and followed by several experiments that 

utilized various elevation angles in RT-PPP mode to check the PPP's availability and performance. 

Those two sessions day were observed utilizing ten-degree mask elevation angles.  

Later, from the tenth of September through the 20th, 2021, Seven RT-PPP sessions were conducted 

over 24 hours to evaluate the RT-PPP performance utilizing 0,10,20,30,40,50 and 60 degrees of 

satellite elevation mask angle. Subsequently, the stored RT-PPP observation files were subjected 

to investigate the variable correlations. The RT-PPP measurements were stored with respect to 

different elevation angle values.   Table 7.7 presents the research outcomes regarding the seven RT-

PPP sessions, which were carried out by manipulating various elevation mask angles. The table 

showcases the range assessments of the error components in the east, north, and up directions, 

which had been calculated with respect to establishing research station coordinates. Additionally, 

the final columns of the table illustrate the availability of the RT-PPP solution across various 

satellite elevation mask angles. Notably, the most precise results were obtained when employing a 

10-degree elevation angle, aligning with the research findings and recommendations by Weber and 

Mervart (2007) and Wu et al. (2021).  Conversely, adopting a 50-degree elevation mask angle 

resulted in substantial errors across all coordinate components. Moreover, the findings indicate 

that a 60-degree elevation mask angle led to insufficient convergence of the RT-PPP solution.  
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Table 7.7 RT-PPP coordinates component error ranges. 

Elevation angle East range (m) North range (m) Up range (m) Solution availability (%) 

0 7.47 7.27 18.96 91.67 

10 0.11 0.14 0.38 99.96 

20 11.46 14.28 50.74 99.94 

30 6.23 20.24 120.36 96.63 

40 5.50 26.34 218.65 52.71 

50 16.39 70.84 263.05 7.44 

60 - - - 0.00 

The seven RT-PPP sessions investigations extended in work package one aim to explore the 

correlation association between the research variable. Coefficients ranging from -1 to 1 are used 

to denote the level of correlation; values of 1 indicate the strongest positive correlation, -1 the 

strongest negative correlation, and 0 no correlation at all (Pearson, 1920). The correlation analyses 

were conducted among the following research variables: tropospheric error, satellite number, 

latency, phase residuals, elevation angles, obtained coordinates, coordinate accuracy, and root 

mean squared errors. Figure 7.14 shows the correlation matrix among all the research variables.  

A correlation matrix was constructed to analyse the relationship between various factors using the 

recorded RT-PPP measurements obtained from the tenth of September through the 20th. A 

continuous data collection period of seven days was employed for this purpose. The correlation 

matrix revealed a strong positive correlation between the RT-PPP coordinates and the errors 

associated with coordinate determination. Conversely, a negative correlation was observed 

between the RT-PPP vertical error and tropospheric delay, as is spected. Furthermore, significant 

negative correlations were observed between the satellite's elevation mask angle and latency, the 

number of tracked satellites, and the root mean squared error of the phase measurements. 

It is essential to highlight that the horizontal and positional root mean squared error exhibited a 

positive correlation with the station coordinates and the error components of the coordinates. It is 

worth noting that the number of observations influenced the correlation results. For instance, as 

the satellite elevation angle increased, the availability of the RT-PPP solution decreased, resulting 

in weakened correlation levels. Those experiments enrich the research regarding the best-utilized 

elevation angle, the RT-PPP availability performance, and the relevant research variables for 
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establishing the early warning system. The impact of satellite geometry, the number of tracked 

satellites, and satellite elevation mask angle on the driven coordinate accuracy and availability are 

well-known. However, the study's primary concern is investigating the most relevant research 

variables. Enriching the proposed RT-PPP ML models with sufficient RT-PPP measurements 

varying for an instant in the number of GNSS used satellites, constellation geometries, and 

coordinate accuracy. Consequently, the research's primary notation is to perform the experiments 

in several site locations; these locations have various sky conditions, including performing the 

research experiments near high buildings, urban canyons, or over, for example, a mountain area 

where the station has a complete open sky environment to achieve diversity RT-PPP observations. 

The BNC open-source software allows the researchers to modify and recompile the original 

software code, allowing the research to simulate several station environment conditions. 
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Figure 7.14 Variable correlation matrix 

(Prepared by the author). 

The results regard establishing the RT-PPP EWS extended to cover the research finding obtained 

from the fourth work package, which was constructed to demonstrate the research variable, 

including orbital and clock corrections for each satellite, latency information, 3D coordinates, 3D 

displacements of the receiver over station marker location, tropospheric error, Horizontal Dilution 
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of Precision (HDOP), and the solution utilized satellite number. Subsequently, that allows the 

research to classify the experiment events obtained from the seventh work package regarding 

deformation directions, streaming latency, and elevation angles concerning centered misplaced 

classes.   

Figure 7.15 illustrates the distribution of the events concerning the type of experiments. The 

figure's vertical axis shows the centered and misplaced categories, and the pie chart in front 

represents the distribution of events observed during V, H, and 3D deformation experiments. The 

figure shows good research event distributions; for example, the misplaced research events were 

distributed as 27.15, 39.67, and 33.18 percent with respect to the horizontal, vertical, and three-

dimensional deformation simulation experiments. At the same time, the research center events 

were distributed as 17.31, 31.52, and 57.17 percent with respect to the horizontal, vertical, and 

three-dimensional deformation simulation experiments; the percentage differences among the 

categories could be justified as a result of exiting the RT-PPP outliers measurements in addition to 

carry out slightly more experiments regards vertical deformation simulation experiments to 

compensate GNSS low vertical accuracy. The out-of-service category was eliminated from the 

figure as it contains the outlier event, which holds a lower percentage concerning the primary 

research categories. In addition, the random distribution of the RT-PPP outliers among the event 

categories. It is worth mentioning that the research event term denotes individual RT-PPP 

observation.  

It is worth noting that the research cannot control the distribution of the event as it contains the 

outliers RT-PPP measurements, which are affected by poor satellite geometry (elevation mask 

angle), extreme latency, and high HDOP values, consequently leading to unequal classification 

percentages.  
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Figure 7.15 Events distribution regarding the deformation movement directions 

(Prepared by the author). 

Figure 7.16 describes the distribution of research events concerning the utilized stream. The 

figure's pie chart represents the distribution of events concerning the SSRA00CNE low latency 

stream and SSRA00IGS high latency streams. The percentage of the three-dimensional events 

observed utilizing SSRA00CNE and SSRA00IGS streams is 24.83 and 7.82 percent, respectively. 

The SSRA00CNE were utilized in vertical and horizontal experiments with 37.08 and 17.71 

percent, respectively. The SSRA00IGS stream holds 12.56 percent of the all-event population. It 

is worth mentioning that the research utilized SSRA00CNE more frequently rather than 

SSRA00IGS to reduce the latency impact and improve the RT-PPP EWS performance. 
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Figure 7.16 Events distribution regarding the utilized stream 

(Prepared by the author). 
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7.3.1 Selection of noise-free measurements with satellite elevation angle 

From the eleventh of October 2021 until the fifth of October 2022, 48 experiments were carried 

out. The research engine was utilized for simulation deformations in various directions; the RT-

PPP was stored continuously for 24 hours during these sessions. Six sessions were conducted for 

12 hours period. It is worth mentioning that the stored RT-PPP varied in stream latency and utilized 

elevation mask angles, magnitude, and direction of simulated deformations. The present 

experiments were designed to investigate the optimal satellite elevation angle to obtain noise-free 

measurements (in terms of manipulating the angle amount). Additionally, these experiments have 

significantly expanded the research data repository with a diverse range of PPP observations, 

enabling more effective training and evaluation of the researched machine learning model used for 

establishing the EWS.  

Figure 7.17 describes the research events distributions concerning the detection of noise-free 

measurements, affected by multipath local effects selecting the best elevation angle. The figure's 

pie chart represents the distribution of research events concerning 10,20,30, and 35 degrees of 

mask elevation angle. Obviously, eliminating higher elevation mask angles may be advisable due 

to the unavailability of an RT-PPP solution when employing extreme elevation angles. A series of 

seven RT-PPP sessions conducted from the tenth of September to the 20th, 2021, revealed that 

utilizing a 50-degree angle resulted in a 7.44% success rate for the RT-PPP solution. Table 7.8 

shows the availability of the RT-PPP solution with respect to utilizing various satellite elevation 

mask angles. Consequently, it is reasonable to advocate for the exclusion of elevated mask angles 

in order to circumvent these limitations and enhance the reliability and efficacy of the RT-PPP 

methodology. The figure shows that 64.41 percent of events were observed with a 10-degree 

elevation mask angle, and 21.51 percent were observed utilizing a 20-degree elevation mask angle. 

5.83 and 8.25 percent were measured utilizing a 30 and 35-degree elevation mask angle. It is shown 

from the figure that the percentage of the research events with 10 degrees elevation mask angle is 

dominant among the utilized mask angles. The result obtained from the previous investigation 

showed the expected negative correlation between the elevation mask angle and the availability of 

the RT-PPP solution. 
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Figure 7.17 Events distribution regarding the utilized elevation angles 

(Prepared by the author). 

The following illustrations show the impact of utilizing 10- and 20-degree satellite elevation mask 

angles, the effect of changing the elevation angles on the performance of RT-PPP technique, and 

the impact on the number of out-of-service events. Two sessions have been selected out of 48 

experiments for the sake of summarizing. The first session represents a 20 cm horizontal 

deformation simulation experiment held on the seventh of October 2021. At the same time, the 

second session represents a 20 cm three-dimensional simulation, noting that to reach the 20 cm 

amount of 3D simulated deformation level of displacement, it is worth mentioning that the utilized 

sampling frequency was one second during the experiments. The research randomly distributed 

the pre-mentioned displacement magnitude among the east, north, and up components. The 

experiment was held on the ninth of May, 2022. It is worth noting that the experiments encountered 

discontinuity periods due to weather conditions, electricity, and internet interruptions, forcing the 

research to repeat some experiments to conserve the experiment's consistency. Figures 7.18 to 7.26 

show the research findings regards the impact of satellite elevation mask angle on the RT-PPP 

performance. Figure 7.18 shows the scatter plot for the 20 cm experiment utilizing a 10-degree 
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angle. The plot shows a well-distributed pattern among the centered, misplaced, and out-of-service 

events. Figure 7.18 utilizes the local horizontal coordinate system to show the east and north 

displacement components of RT-PPP observations. Figure 7.19 shows the trend of the HDOP 

values during the experiments, noting that the HDOP average value during 24 hours was around 

1.3.  

 

Figure 7.18 Displacements scatter plot with 10 degrees elevation angle  

(Prepared by the author). 
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Figure 7.19 Horizontal dilution of precision with 10 degrees elevation angles 

(Prepared by the author). 

 

Figure 7.20 Experiment event distribution with 10 degrees elevation angles 

(Prepared by the author). 
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Figure 7.20 shows the count plot of event distribution during the experiment; it is worth noting 

that both centered and misplaced categories nearly have the same number of RT-PPP observations. 

However, the out-of-service category contains slightly small percentages of RT-PPP observation 

crossing the outliers threshold (30 cm). Figures 7.21 to 7.23 illustrate the histograms of the east, 

north, and up displacement components of the RT-PPP observations. The experiment is only in the 

horizontal component; however, the RT-PPP up position is compared to the fixed vertical reference 

coordinate. It can be seen from the histogram distribution that the representation of outliers near 

the 30 cm and -40 cm level of displacements according to the error magnitude exceeds the exerted 

deformation (20 cm). The normal distribution of vertical events can be seen in Figure 7.23, where 

the data tend to concentrate around zero; this could be illustrated as the experiments do not exert 

any simulation in the vertical direction.     

 

 

Figure 7.21 RT-PPP east displacements histogram with 10 degrees elevation angles 

(Prepared by the author). 
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Figure 7.22 RT-PPP north displacements histogram with 10 degrees elevation angles 

(Prepared by the author). 

 

Figure 7.23 RT-PPP up-displacements histogram with 10 degrees elevation angles 
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(Prepared by the author). 

Figures 7.24 to 7.29 show the research findings regarding the second session, which simulates a 

20 cm three-dimensional level of deformations experiment held on the ninth of May, 2022. The 

experiment was carried out utilizing a 20-degree elevation mask angle. Figure 7.24 shows the 

scatter plot for the 20 cm experiment utilizing a 20-degree angle. The plot shows an unrecognized 

distributed pattern among the centered, misplaced, and out-of-service events. Noting, the vertical 

and horizontal figure axis enlarged to around 20 meters in both directions compared to Figure 7.18, 

where the vertical and horizontal axes range around 40 centimetres. Figure 7.24 utilizes the local 

tangent plane coordinate system to show the east and north displacement components.  Figure 7.25 

shows the trend of the HDOP values during the experiments, noting that the HDOP average value 

during 24 hours was around 2.3; this value has been doubled compared to the 10-degree elevation 

mask angle experiment. This experiment can be used to simulate less valid satellites for the 

computation of the solution or a bad PDOP satellite configuration. 
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Figure 7.24 Scatter plot with 20 degrees elevation angle 

(Prepared by the author). 
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Figure 7.25 Horizontal dilution of precision with 20 degrees elevation angles 

(Prepared by the author). 

 

Figure 7.26 Experiment event distribution with 20 degrees elevation angles 

(Prepared by the author). 
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Figure 7.26 shows the count plot of events distribution during the experiment; it is worth noting 

that both centered, out-of-service, and misplaced categories have various amounts of RT-PPP 

observations; this could be justified as the RT-PPP outliers measurements are normally distributed, 

and even they impact the distribution of RT-PPP measurements in the primary centered and 

misplaced categories. However, the out-of-service category contains significant percentages of RT-

PPP compared to 10-degree experiments. Figures 7.27 to 7.29 illustrate the histograms of the east, 

north, and up RT-PPP displacement components. It can be seen from the figures that the exiting of 

significant outliers in three companies, the histogram axis enlarged in three plots with around 20 

meters, indicating the existence of RT-PPP outliers events as a result of using higher elevation 

mask angel compared with Figures 7.21 to 7.23.     

 

Figure 7.27 RT-PPP east displacements histogram with 20 degrees elevation angles 

(Prepared by the author). 
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Figure 7.28 RT-PPP north displacements histogram with 20 degrees elevation angles 

(Prepared by the author). 

 

Figure 7.29 RT-PPP up-displacements histogram with 20 degrees elevation angles. 

(Prepared by the author). 
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All the pre-mentioned illustrations highlighted the importance of utilizing proper satellite elevation 

angles. In other words, performing the RT-PPP measurement within a suitable station environment 

regarding the sky conditions is essential. Table 7.8 briefly summarizes the results regarding the 20 

and 10-degree experiments. The results obtained from the 20 experiment proves the degradation 

of RT-PPP observation. 

Table 7.8 RT-PPP coordinates component error ranges regarding 10 and 20 satellite elevation 

angles. 

Elevation angle East range (m) North range (m) Up range (m) 

10 0.71 0.44 0.28 

20 13.75 21.75 49.64 

 

7.3.2 RT-PPP early warning system assessment results 

The total number of research experiments reached 57, as mentioned in the previous section; two 

were carried out in static mode to obtain the study reference station coordinates, followed by seven 

sessions to investigate the impact of utilizing several elevation mask angles on RT-PPP besides 

exploring the RT-PPP variables correlations.  

Upcoming Forty-eight experiments were conducted between the eleventh of October 2021 and the 

fifth of October 2022. The research engine was established to simulate deformations in different 

directions, with the RT-PPP being persistently recorded for a full day. In 12 hours, only six sessions 

were held. Note that the research manipulates the simulated deformations with different amount 

of magnitudes and directions. The elevation mask angles were manipulated with the following 

values (10,20,30,35 degrees), and the RT stream latency was changed in order to obtain various 

latency values. Those configurations were saved with RT-PPP within a 1-second sampling interval. 

Forty-eight experiments were performed to probe different elements of RT-PPP measurements. 

Twenty-four vertical deformations, eight horizontal deformations, and sixteen three-dimensional 

deformations were all planned to be tested in the trials. Antecedent the training phase and testing 

of the RT-PPP EWS ML models, it is required to label RT-PPP observations to match the GNSS 

receiver locations. Three categories were established to match the GNSS receiver over the 
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reference station marker: centered, misplaced, and out-of-service. Out of a total of 4,299,510 

occurrences, 2,205,918 were considered "centered," 645,822 were considered "out of service," and 

1,447,770 were considered "misplaced" as a result of the tests. 

These experiments add to our understanding of the optimal elevation angle for early warning 

systems, the RT-PPP availability, and the essential study variables. It is well understood that factors 

such as satellite geometry, the number of tracked satellites, and the satellite elevation mask angle 

all affect the precision and availability of the driven coordinates. However, the fundamental goal 

of the study is to explore the most critical research variables. Adding more RT-PPP data to the 

suggested ML models, with data varying for instant in the number of GNSS satellites employed, 

the constellation geometry, and the precision of the coordinates, thus improving the ability of the 

proposed RT-PPP EWS detections.  

Various ML models were explored to establish an early warning system. These models included 

Decision Tree (DT), Random Forest (RF), XGBoost (XGB), Logistic Regression (LR), K Nearest 

(KN), and Support Vector Classifier (SVC). The research could be carried out with the 48 

experiments provided since 40% of the data could be used for training ML models, 30% for testing 

ML models, and the remaining data could be used for validating the models. In most cases, 70% 

and 30% are utilized as the thump levels for training and testing, respectively. The research justifies 

utilizing 40% of data for training due to the complexity of the research machine learning models 

and the enormous size of the research database. However, the research was aware of this essential 

issue. Thus, several tests were conducted to compare the model’s accuracy regarding training the 

ML model with 40 to 70 percent of the experiment data. The results show that the obtained 

accuracy is more or less within the same accuracy level despite the utilization of different 

percentages of experiment data.  The RT-PPP EWS machine learning models are subjected to two 

levels of assessment; the first level of assessment is carried out through Chapter 6's work package 

eight, where the utilized ML classification models try to classify the RT-PPP test events to their 

belonging classes. 

Consequently, the ML models could classify the event into three different categories: Centered 

class, where the measurements of the receiver were classified to be of the station marker. The 

second category, Misplaced, signifies that the receiver measurements are classified to occupied 
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points displaced from the station marker, (simulated deformation distance). The ultimate class is 

Out of service, which includes all RT-PPP measurements having displacement values more than 

30 cm, which is greater than movements caused by the research engine (20 cm) plus the nominal 

RT-PPP level of accuracy which is nearly (10 cm) which are also proved by table 7.7 assessment 

table. In other words, the out-of-service classification category is supposed to contain all the 

measurements influenced by errors, biases, and measurement noises resulting from observations 

exceeding the 10- centimetres level of accuracy. It is worth noting that the research cannot rely on 

these observations to initiate the deformation early warnings due to the impact of the error sources.       

Accordingly, the established confusion matrix contains several variables used to understand 

correctly Machine Learning classifications of the observations in comparison with the label of the 

same observations; those variables represent the assessment of the ML classification models 

performance in terms of TP (True Positive): TP is the number of events that are misplaced from 

the marker location and are correctly categorized by ML models, TN (True Negative): TN is the 

number of events that are centered (do not move) above the marker location, and ML models 

correctly classify them, TNE, which stands for "True Neutral," is the number of events that are out 

of service and correctly categorized by ML models. These events are called "neutral" because the 

researchers do not know for sure if they are centered (no movement) or displaced away from where 

the station marker is; on the contrary, the false classifications were also categorized into three 

different classes (False Positive): FP represents the number of misplaced events. ML models 

misclassify them; those events could be either out of service or centered over the station marker 

location. 

FN (False Negative): The number of centered events is shown by FN. ML models misclassify them 

as out-of-service or centered events, but they are really displaced events. FNE, or False Neutral, is 

the number of out-of-service events the ML models misclassify as mislabelled or centered events. 

The same work package was extended to calculate the probabilities of initiation early warnings; 

this allows the research to establish the second level of assessing the RT-PPP performance. Six 

types of probabilities were calculated, namely, the probability of initiating true (motions/non-

motions) detections, which indicates the ability of the RT-PPP EWS to detect whether the 

deformations occurred or not. Similarly, the probability of true (out-of-service) detections signifies 
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the ability of the RT-PPP EWS to inform the user that the obtained RT-PPP measurements are not 

robust enough to initiate proper (motions/ non-motions) detections. 

On the other side, three false probabilities were constructed, which indicates that the RT-PPP EWS 

misled the users in the cases where the system-initiated motions/ non-motions/ out-of-service 

detections, and that does not match the reality at the station ground level—the research named 

those probabilities as false non-motion (FN), false motion (FP), and false out-of-service (FNE) 

detections. Subsequently, the investigation of RT-PPP EWS performance was investigated with 

respect to the following terms: 

A. Accuracy indicates the ability of ML models to correctly classify the research events to 

their belonging category (centered, misplaced, and out-of-services). Accordingly, this 

metric had been calculated with respect to the test data. 

B. Probability Of Truly Non-Motion Detection (POTNMD) signifies the EWS's ability to 

detect no deformation events. 

C. Probability Of False Non-Motion Detection (POFNMD) indicates the EWS's tendency to 

non-initiate warnings coinciding with deformation occurrences. The reality shows that 

deformations or out-of-service occur at the station ground level; however, the EWS 

provides users with non-motion prediction -detection-. It is worth considering that the 

POFMD is a crucial aspect that must be minimized to avoid high economic and life losses. 

D. Probability Of True Motion Detection (POTMD) signifies the EWS's ability to detect 

deformation events and emit a warning. 

E. Probability Of False Motion Detection (POFMD) indicates the EWS's tendency to initiate 

false warnings. The reality shows that no deformations or out-of-service occur at the station 

ground level; however, the EWS provides users with motion prediction. 

F. The Probability Of True Out-Of-Service Detection (POTOSD) signifies the EWS's ability 

to inform users that the RT-PPP measurements are not robust enough to rely upon. 

G. The Probability Of False Out-Of-Service-Detection (POFOSD) indicates the EWS predicts 

Out-Of-Service observations, that is RT-PPP measurements are not robust enough to rely 

upon. However, the reality is that no deformation, or deformation, occurs at the station 
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ground level (this last is essential because no alarm is emitted when required in the 

deformation occurrences cases). 

H. Probability Of Initiating False Classifications (POIFC) shows the overall tendency of EWS 

to initiate false classifications. The research aggregates all the previous false probabilities 

for the sake of a better comparison of the machine learning performance. Equation 7.1 

shows the mathematical equation utilized for establishing POIFC. 

POIFC = POFNMD + POFMD + POFOSD               (7.1)  

For illustration, we analysed the per-mention probabilities associated with multiple machine 

learning (ML) models, specifically decision trees, random forest, XGB, logistic regression, K 

nearest neighbours, and support vector regression. Merely relying on model accuracy as the sole 

metric is deemed inadequate for selecting the most appropriate ML model to deploy in the 

proposed RT-PPP EWS. The research emphasizes the significance of the POTMD as a critical 

factor, as it signifies the model's capacity to detect crustal motions and initiate the necessary 

warnings, providing essential information to users and stakeholders for undertaking disaster 

precautions. Simultaneously, the POFNMD is regarded as a vital probability, representing the 

EWS's failure to activate the required warnings in timely instances when the motion really occurs. 

In summary, the selected ML model must have the highest accuracy and probability of true motion 

detection and have to reduce to nearly 0% for the false motion and out-of-services classifications 

due to the fact that the small probability of initiation of false warning or initiation of warnings 

could claim significant losses of lives and economics. 

However, the research extended the probability investigation to POIFC as the sum of all false 

probabilities.  

It is important to note that the probabilities associated with non-motion events and out-of-service 

detections are considered less significant to the EWS users than the POTMD and the POFNMD. 

In the event of generating false warnings for non-motion events, the EWS provides misleading 

information to users regarding geo-disaster occurrences that do not actually exist. Additionally, in 

the case of system out-of-service detections, it is well-established that the RT-PPP EWS lacks the 

necessary robustness to be relied upon. 
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Afterward, Chapter 6's Work Package 10 utilizes several visualization tools to ease the 

interpretations of the results. Before introducing the work package results, it is worth mentioning 

that they were broken down into four levels. 

1. The evaluations of the RT-PPP EWS in terms of vertical displacements. Twenty-four 

experiments have been involved in this assessment. Those experiments were carried out 

from the tenth of October 2022 to the third of June 2022. 

2. The evaluations of the RT-PPP EWS in terms of horizontal displacements. Note that eight 

experiments have been involved in this evaluation. Those experiments were carried out 

from the eighth of January 2021 to the twenty-second of November 2021. 

3. The evaluations of the RT-PPP EWS in terms of three-dimensional displacements. Sixteen 

experiments have been involved in this assessment. Those experiments were carried out 

from the third of May 2022 to the eleventh of May 2022.  

4. The evaluation of the RT-PPP EWS as a generic system noted that all the experimental data 

were utilized in this stage. 

7.3.3 Simulated land subsidence and land-uplifting  results 

The twenty-four vertical deformation experiments that were carried out during Chapter 6's work 

package seven, showed that out of 48, were performed to probe different elements of RT-PPP 

measurements. The results are illustrated in Figures 7.30, 7.31, and 7.32. It is worth noting that the 

researcher tries to implement several assessment indicators in the created figures to summarize 

and compare the performance of the utilized ML models. The BNC was configured through the 

research experiments series, employing various elevation mask angles. This allowed us to emulate 

both unfavourable and favourable (HDOP) configurations. Concurrently, we manipulated similar 

RT streams to generate distinct scenarios, thereby facilitating the examination of high and low 

latency effects. At the same time, different amounts of vertical deformation values were exerted to 

enrich the research database with diverse RT-PPP observations. The figure's horizontal axis 

includes the utilized ML models, and the overall model’s accuracy is presented in the vertical axis. 

Table 7.9 abbreviations were utilized, and they either represent the figures with hue or sizes to 

discriminate the ML performance well. It is worth highlighting that the forthcoming results 

correspond to the research test events.  



254 

 

Figure 7.29 colours show POTNMD details; however, the symbol sizes show details that respect 

the POFNMD. The figure shows that the XGB and RF have superior performance with 99.92% 

and 93.76% POTNMD, respectively, to detect non-motion vertical deformations, and they also 

offer less probability of initiating false non-motion detections. On the contrary, the logistic 

regression shows the worst performance with respect to the achieved accuracy, POFNMD, and 

POTNMD. It is worth mentioning that this figure represents the performance of vertical 

deformations. 

 

 

 

Figure 7.30 Vertical non-motion detections RT-PPP EWS performance 

(Prepared by the author). 

Figure 7.31 colours show POTMD details; however, the symbol sizes show details that respect the 

POFMD. The figure shows that the RF and XGB classifiers have superior performance, with 

99.89% and 97.81% of POTMD, respectively, to detect vertical deformations, and they also offer 

less probability of initiating false motion detections. On the contrary, the logistic regression shows 
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the worst performance with respect to the achieved accuracy, POFMD, and POTMD. It is worth 

mentioning that this figure represents the performance of vertical deformations. 

 

 

 

Figure 7.31 Vertical motion detections RT-PPP EWS performance 

(Prepared by the author). 

Figure 7.32 colours show POTOSD details; however, the symbol sizes show details that respect 

the POFOSD. The figure shows again that the RF and XGB have superior performance with a 

value of 99.84 % and 99.98% of the POTOSD, respectively. They also offer less probability of 

initiating false out-of-service detections. On the contrary, the logistic regression shows the worst 

performance with respect to the achieved accuracy, POTOSD, and POFOSD. It is worth 



256 

 

mentioning that this figure represents the performance of vertical deformations. Noting that the 

accuracy of all models represents good performance regarding the detection of out-of-service 

scenarios, it could be justified that the out-of-service category contains all outliers RT-PPP 

measurements. Thus, it is easy for the implementing models to detect them. 

 

 

 

Figure 7.32 Vertical out-of-service detections RT-PPP EWS performance 

(Prepared by the author). 
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7.3.4 Simulated horizontal deformation results 

Eight horizontal deformation experiments were carried out during Chapter 6's work package, and 

7 out of 48 were performed. The BNC was configured through the research experiments series, 

employing various elevation mask angles. This allowed us to emulate both unfavourable and 

favourable (HDOP) configurations. Concurrently, we manipulated similar RT streams to generate 

distinct scenarios, thereby facilitating examining high and low latency effects. At the same time, 

different amounts of horizontal deformation values were exerted to enrich the research database 

with diverse RT-PPP observations utilizing the research engine. The results are illustrated in 

Figures 7.33 to 7.35. It is worth noting that the researcher tries to implement several assessment 

indicators in the created figures to summarize and compare the performance of the utilized ML 

models. The figure's horizontal axis includes the utilized ML models, and the overall model’s 

accuracy is presented in the vertical axis. Table 7.9 abbreviations were utilized, and they either 

represent the figures with hue and sizes to discriminate the ML performance well. The figures 

below were created to compare the MLAs' performance. 

Similar to the previous section, the figures indicate that investigations have been carried out 

concerning 2D experiments. Figure 7.33 colours show POTNMD details; however, the symbol 

sizes show details that respect the POFNMD. The figure shows that the RF and XGB classifier 

performs better with 98.07% and 99.61% of POTNMD regarding horizontal deformations 

compared to the rest of the researched ML models. They also offer less probability of initiating 

false non-motion detections. On the contrary, the logistic regression shows the worst performance 

regarding accuracy, POFNMD, and POTNMD. It is worth highlighting that the forthcoming results 

correspond to the research test events.  
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Figure 7.33 Horizontal non-motion detections RT-PPP EWS performance 

(Prepared by the author). 

Figure 7.34 colours show POTMD details; however, the symbol sizes show details that respect the 

POFMD. The figure shows that the RF and XGB classifiers perform better with 97.97% and 99.50 

POTMD, respectively. Furthermore, they show the minimum probability of initiating false motion 

detections. Similar findings regarding SVC could be established. On the contrary, the logistic 

regression shows the worst performance regarding accuracy, POFMD, and POTMD. It is worth 

mentioning that this figure represents the performance of horizontal deformations. 
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Figure 7.34 Horizontal motion detections RT-PPP EWS performance 

(Prepared by the author). 

Figure 7.35 colours show POTOSD details; however, the symbol sizes show details that respect 

the POFOSD. The figure shows that the RF and XGB classifiers have superior performance with 

97.44% and 99.86 % POTOSD, and they also offer a minimum probability of initiating false out-

of-service detections. On the contrary, the logistic regression shows the worst performance 

regarding accuracy, POTOSD, and POFOSD. It is worth mentioning that this figure represents the 
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performance of horizontal deformations. The fact that the out-of-service category encompasses all 

RT-PPP outliers supports the claim that all models have high accuracy with respect to out-of-

service scenario detection; this makes their detection by the implemented models simple. 

 

 

 

Figure 7.35 Horizontal out-of-service detections RT-PPP EWS performance 

(prepared by the author). 
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7.3.5 Simulated 3D deformation monitoring results 

Similar to the previous results regarding horizontal and vertical deformations, this section 

concludes the research findings regarding sixteen three-dimensional deformation experiments 

carried out during Chapter 6's work package 7 out of 48. It is worth highlighting that the 

forthcoming results correspond to the research test events.  Figure 7.36 colours show POTNMD 

details; however, the symbol sizes show details that respect the POFNMD.  The figure shows that 

the RF and XGB classifiers have superior performance with 99% and 99.96% of POTNMD, and 

they also offer a minimum probability of initiating false non-motion detections. On the contrary, 

the LR classifier shows the worst performance with respect to the achieved accuracy, POFNMD, 

and POTNMD. It is worth mentioning that this figure represents the performance of 3D 

deformations. 
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Figure 7.36 3D non-motion detections RT-PPP EWS performance 

(Prepared by the author). 

Figure 7.37 colours show POTMD details; however, the symbol sizes show details that respect the 

POFMD.  The figure shows that the RF and XGB classifiers perform best with 99.92% and 99.99% 

of POTMD, respectively, and they show less probability of initiating false motion detections. On 

the contrary, the LR shows the worst performance regarding accuracy, POFMD, and POTMD. It 

is worth mentioning that this figure represents the performance of 3D deformations.  

 

 

 

Figure 7.37 3D motion detections RT-PPP EWS performance 
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(Prepared by the author). 

Figure 7.38 colours show POTOSD details; however, the symbol sizes show details that respect 

the POFOSD.  The figure shows that the RF and XGB classifiers have superior performance with 

99.08% and 99.99% of POTOSD, respectively, and they also offer a lower probability of initiating 

false out-of-service detections. On the contrary, the LR and the decision tree show the worst 

performance in accuracy, POTOSD, and POFOSD. It is worth mentioning that this figure 

represents the performance of 3D deformations. The notion that all models have good accuracy 

with respect to out-of-service scenario detection is bolstered by the fact that the out-of-service 

category includes all RT-PPP outliers. Because of this, it is easy for the implemented models to 

identify them. 

 

 

 

Figure 7.38 3D out-of-service detections RT-PPP EWS performance 

(Prepared by the author). 
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7.3.6 Summarizing the results 

To summarize the previous research finding results regarding vertical, horizontal, and three-

dimensional deformations, Tables 7.9, 7.10, and 7.11 contain the final probability in terms of 

percentages regarding the RT-PPP EWS probabilities, noting that the POIFC was calculated as an 

aggregated figure with respect to all false warnings. The research established three different RT-

PPP EWS adapting the situation if the users need to utilize an individual system suitable for land 

subsidence and uplifting, horizontal deformations, or three-dimensional deformations. It is worth 

highlighting that the section results correspond to the research test events.  

The research emphasizes the significance of the POTMD and POFNMD as essential factors to be 

considered. The RF and XGB models show the best performance regarding the higher POTMD 

and minimal value of POFNMD. In addition, the overall accuracy of both models is superior to 

that of other investigation models. Simulated land subsidence and land-uplifting results show that 

the RF and XGB models demonstrate the probability of 97.81% and 99.89 percent of detecting 

vertical deformations out of all the deformation events, respectively. Regarding non-motion 

detections, The RF, KNN, and XGB models show the best performance regarding the higher 

Probability Of True None Motion Detections POTNMD and minimal value of Probability Of  False 

None Motion Detections POFNMD. In addition, the models above showed accuracy performance 

with 97.10, 97.02, and 99.80 percent out of all the none-deformation events, respectively. 

Moreover, regarding the research concern regarding the initiation of false alarms, our 

investigations showed that the XGB model has the lowest value with respect to vertical POIFC, 

which reached 0.21 percent. 

Simulated horizontal deformation  results show that the RF, KNN, and XGB perform better than 

other investigation models; they can detect planer deformations, with 97.97, 97.65, and 99.50 

percent of all the deformation events, respectively. The RF, KNN, and XGB models show the best 

performance regarding the higher horizontal POTNMD with 98.07, 96.93, and 99.61 percent out 

of all the none-deformation events, respectively, and minimal value of horizontal POFNMD. SVC 

showed similar performance regarding horizontal non-motion detections. Furthermore, our studies 
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revealed that the XGB model has the lowest value with regard to horizontal POIFC, which reached 

1.03 percent out of all the out-of-services events, addressing the research worry regarding the 

commencement of false alarms. 

Simulated 3D-deformation  results show that RF, SVC, and XGB models fare well in terms of 

higher POTMD values, and POFNMD values are low. Furthermore, the total accuracy of the 

mentioned models is higher than that of investigation ML models. Regarding the 3D deformations 

compared to other inquiry models, the results demonstrate that the RF, SVC, and XGB have a 

higher detection probability for 3D deformations (99.92, 99.08., and 99.99%) concerning all the 

deformation events. For the maximum probabilities of non-motion detections and minimum 

probabilities value with respect to false non-motion detection events, the RF, SVC, and XGB 

models perform at 1, 0.96, and 0.04 percent of POFNMD with respect to all false non-motion 

detection events, respectively. Like vertical and horizontal results, the XGB model showed less 

likelihood of initiating a false warning with just 0.06 percent. 

Contrary to the pre-mentioned ML models, The LR showed the worst performance regarding 

simulated vertical, horizontal, and 3D deformation, with accuracy reaching around 92, 84, and 80 

percent, respectively. The model also showed a higher ability to initiate false warnings with respect 

to horizontal simulation results. The models showed a 34 percent probability of initiating false 

warnings. The LR classification ML model relies on classification data by creating a similar linear 

classification boundary, accordingly, due to the complex data distributions and higher dimensional 

space. Consequently, the lowest LR classification accuracy could be justified that the boundary 

established from the model above encounters challenges in separating the research events. 

Table 7.9 RT-PPP EWS performance regards the vertical deformations. 

Classifiers Accuracy POTNMD POFNMD POTMD POFMD POTOSD POFOSD POIFC 

DT 95.20 92.59 7.41 95.09 4.91 99.95 0.05 12.37 

RF 97.10 93.76 6.23 97.81 2.19 99.84 0.16 8.58 

KNN 97.02 95.44 4.55 95.95 3.04 98.89 1.11 8.70 

LR 92.15 88.47 11.53 90.17 9.82 99.35 0.65 22.00 

SVC 97.02 95.55 4.45 95.82 4.18 98.95 1.05 9.68 

XGB 99.80 99.92 0.08 99.89 0.11 99.98 0.02 0.21 
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Table 7.10 RT-PPP EWS performance regarding the horizontal deformations. 

Classifiers Accuracy POTNMD POFNMD POTMD POFMD POTOSD POFOSD POIFC 

DT 90.02 90.92 9.08 88.86 11.14 98.79 1.21 21.43 

RF 97.85 98.07 1.93 97.97 2.03 97.44 2.55 6.51 

KNN 97.15 96.93 3.07 97.65 2.35 97.91 2.09 7.51 

LR 84.10 83.63 16.37 82.87 17.13 98.69 1.31 34.81 

SVC 98.20 97.56 2.44 97.52 2.48 96.42 3.58 4.92 

XGB 99.92 99.61 0.39 99.50 0.50 99.86 0.14 1.03 

 

Table 7.11 RT-PPP EWS performance regards three-dimensional deformations. 

Classifiers Accuracy POTNMD POFNMD POTMD POFMD POTOSD POFOSD POIFC 

DT 97.02 96.00 4.00 96.63 3.37 99.51 0.49 7.86 

RF 99.15 99.00 1.00 99.92 0.08 99.08 0.92 2.00 

KNN 98.00 98.36 1.64 99.18 0.82 96.37 3.63 6.09 

LR 80.00 84.62 15.38 83.95 16.05 98.15 1.85 33.28 

SVC 98.00 99.04 0.96 99.08 0.92 96.07 3.93 5.81 

XGB 99.91 99.96 0.04 99.99 0.01 99.99 0.01 0.06 

Tables 7.9, 7.10, and 7.11 comprehensively illustrate the performance evaluation of the Real-Time 

Precise Point Positioning Early Warning System RT-PPP EWS with respect to vertical 

deformations, horizontal deformations, and three-dimensional deformations, respectively. The 

study underscores the significance of instituting an Early EWS that is tailored to address specific 

geological hazards, effectively adapting to varying types of deformations. Moreover, the research 

substantiates the rationale behind establishing an EWS calibrated for singular deformation modes, 

as this strategic approach contributes to the enhancement of EWS effectiveness and performance. 
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7.4 Generic model Azure analysis 

The research study utilized the Azure platform as an additional investigation tool in order to 

address the critical nature of establishing the RT-PPP EWS and its impact on end-users. This was 

accomplished by using the platform as an additional investigation means. The purpose of the study 

was to check and validate the research conclusions, and Azure was used to accomplish this. This 

strategy ensured the delivery of a reliable and trustable model that end-users could rely on its 

performance. The current analysis uses all the research events collected through horizontal, 

vertical, and 3D experiments. Accordingly, the generated model could applied as a generic model 

for generalized displacements. 

Microsoft Azure is a cloud computing platform that provides various services through Microsoft-

managed data centers to assist individuals and businesses in developing, deploying, and managing 

applications and services. It offers a safe and dependable hosting environment and a wide range of 

tools that simplify application development, testing, and scaling. With the Azure platform, users 

can use the cloud to deploy AI and ML solutions, store data, run virtual machines, and develop 

web and mobile apps. 

In addition to hosting virtual machines, Azure offers storage options, database management, 

networking features, and analytics applications. It is possible to build sophisticated, scalable 

applications by combining and integrating these services. Cognitive services, other Azure machine 

learning, and AI services let programmers incorporate AI capabilities into their software. The 

Azure automated machine learning utilizes several data scaling methods, including Standard 

Scaler Wrapper, which is a preprocessing method in ML that practices removing the mean and 

scaling to unit variance to make features more homogeneous. It ensures that the scales of the 

features are the same; this is important for algorithms that depend on the sizes of the features, like 

gradient descent-based methods. In addition, the preprocessing method called Max Abs Scaler 

scales features by dividing them by the maximum absolute value. This strategy preserves the sign 

and magnitude of the initial values as the data distribution is not subjected to any change. It is 

especially beneficial for sparse data when the mean and variance may not be accurate indications 

of the features of the data. However, the Sparce Normalizer is developed for sparse data, which is 

frequently found in text data or large datasets. It maintains the data's sparsity by scaling each 
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feature separately until its norm (magnitude) equals one. For methods that rely on the trigonometric 

similarity between data points, this may be helpful. Eventually, Singular Value Decomposition 

with Truncation (SVD), a dimensionality reduction approach called wrapper, is used to reduce the 

number of attributes in a dataset. The dimensions are efficiently decreased by splitting the dataset 

into three matrices and changing the lowest single values. It is frequently used to reduce noise and 

boost effectiveness in large datasets. 

On the other hand, Azure automated machine learning utilizing several data ML models. An 

ensemble learning technique called Extreme Random Trees, often called Extra Trees, creates 

numerous decision trees by randomly choosing attributes and thresholds for each split. Adding 

more randomization than conventional decision trees seeks to reduce variance and overfitting. The 

average forecast from all the trees is the foundation for the final prediction. 

Moreover, an efficient and quick gradient boosting framework is called Light GBM Light Gradient 

Boosting Machine (GBM). It employs a gradient-based method to identify the ideal splits and a 

histogram-based strategy for discarding features. Large datasets and categorical features can be 

handled with great ease by Light GBM, in addition to the pre-illustrated ML models, which are 

Logistic Regression, Random Forest, and XGBoost Classifier.  The utilization of automated 

machine-learning methodologies facilitates the systematic exploration of the performance of 

machine-learning models through multiple iterative processes (Hastie et al., 2009a, 2009b; 

Murphy, 2012; Scikit-learn, 2023; Sutton & Barto, 2018). These iterations encompass a wide array 

of scaling techniques, allowing users to attain highly precise machine-learning models. 

The research utilized one of the Azure services called automated ML. The service handles 

complicated decision-making by automatically selecting and configuring algorithms and model 

settings. In order to determine the optimal method and configuration for the data and prediction 

task, it employs state-of-the-art approaches to search for and assess candidates automatically.  

Table 7.12 concludes the Azure research findings which correspond to the research test events. It 

is worth mentioning that the research does not control the Azure automated ML process and 

settings. Thus, the platform has investigated several ML models utilizing various data scaling 

methods. The process also included several iterations where the platform manipulated the model's 

parameters automatically. Azure utilizes several parameters such as learning rate, maximum 
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utilized features, minimum number of sample leaves, maximum tree depth, and utilized solver, and 

it applies Gini or entropy approaches.    

The worst model performance with an accuracy of 50 percent was obtained utilizing the Random 

Forest with the Sparse normalizer scaling method. However, the same model showed the highest 

accuracy performance, with 99.9997 utilizing a standard scaler wrapper. The Azure research 

finding more or less matches the research investigations. For example, our study showed that the 

logistic regression had the worst performance, with accuracy achieved at 83 percent, which 

matches the Azure results with accuracy varying between 69 and 73 percent. The slight differences 

between the research and the Azure result are in reasonable range due to the implementation of 

various hypermeters and different data splitting percentages. The platform utilizes 70% for training 

and validation and 30% for ML testing. 

On the contrary, the XGB and Random Forest show an accuracy of around 99 and 93 percent, 

respectively. The same models show accuracy reaching around 99.95 utilizing Azure automated 

ML. It is worth noting that automated ML does not include implementing the decision tree, K 

nearest, and support vector classifiers. The research justified the pre-mentioned model exclusions. 

Due to the high computational cost of utilizing the support vector machine and K nearest models, 

the decision tree exclusion could result from the model overfitting issues.  The iteration column in 

Table 7.12 indicates how many platform iterations are required to return the best model accuracy 

for the chosen scaling method and the manipulated parameters.  

Table 7.12 RT-PPP EWS Generic Azure assessments performance. 

Scaling method Model name Accuracy Iteration 

Standard Scaler Wrapper Extreme Random Trees 61.792 1 

Max Abs Scaler Extreme Random Trees 66.075 2 

Max Abs Scaler Extreme Random Trees 70.256 3 

Max Abs Scaler Extreme Random Trees 76.476 4 

Standard Scaler Wrapper Extreme Random Trees 85.573 5 

Sparse Normalizer Light Gradient Boosting Machine 85.978 1 

Standard Scaler Wrapper Light Gradient Boosting Machine 89.166 2 

Max Abs Scaler Light Gradient Boosting Machine 94.477 3 

Max Abs Scaler Light Gradient Boosting Machine 95.302 4 

Standard Scaler Wrapper Light Gradient Boosting Machine 95.443 5 

Standard Scaler Wrapper Light Gradient Boosting Machine 96.994 6 
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Standard Scaler Wrapper Light Gradient Boosting Machine 97.501 7 

Max Abs Scaler Light Gradient Boosting Machine 98.33 8 

Max Abs Scaler Light Gradient Boosting Machine 98.875 9 

Max Abs Scaler Logistic Regression 69.53 1 

Max Abs Scaler Logistic Regression 71.622 2 

Standard Scaler Wrapper Logistic Regression 73.449 3 

Sparse Normalizer Random Forest 50 1 

Sparse Normalizer Random Forest 55.526 2 

Truncated SVD Wrapper Random Forest 71.432 3 

Sparse Normalizer Random Forest 73.007 4 

Max Abs Scaler Random Forest 80.378 5 

Max Abs Scaler Random Forest 90.508 6 

Standard Scaler Wrapper Random Forest 99.9997 7 

Standard Scaler Wrapper XGBoost Classifier 83.401 1 

Standard Scaler Wrapper XGBoost Classifier 86.071 2 

Sparse Normalizer XGBoost Classifier 93.583 3 

Standard Scaler Wrapper XGBoost Classifier 94.167 4 

Standard Scaler Wrapper XGBoost Classifier 94.45 5 

Standard Scaler Wrapper XGBoost Classifier 94.673 6 

Standard Scaler Wrapper XGBoost Classifier 96.598 7 

Standard Scaler Wrapper XGBoost Classifier 97.017 8 

Standard Scaler Wrapper XGBoost Classifier 97.366 9 

Sparse Normalizer XGBoost Classifier 98.329 10 

Standard Scaler Wrapper XGBoost Classifier 98.435 11 

Standard Scaler Wrapper XGBoost Classifier 99.175 12 

Standard Scaler Wrapper XGBoost Classifier 99.534 13 

Max Abs Scaler XGBoost Classifier 99.741 14 

Standard Scaler Wrapper XGBoost Classifier 99.769 15 

Standard Scaler Wrapper XGBoost Classifier 99.797 16 
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7.5 Feature importance and feature selection 

The researchers probed the significance of the EWS feature, a central notion in machine learning; 

this allowed the study to examine every EWS feature used in RT-PPP and reevaluate which ones 

were most important. 

The term "feature importance" is being used to describe the significance of individual features 

within a dataset in terms of their ability to aid the ML model forecasting or classification tasks. It 

aids in pinpointing the inputs that have the most impact on the model's performance. It is worth 

mentioning that several methods, such as correlation, feature importance metrics, premutation 

importance, and L1 Regularization, could be utilized to detect the most relevant feature. In this 

section, the research has investigated the relevancy of the data prepared to establish the RT-PPP 

EWS. Thus, the RF importance metrics method was utilized through the Azure platform. This 

method relies on the frequency with which a feature is utilized to partition the data, which is one 

metric on which algorithms like decision trees and random forests base their feature relevance 

scores. Accordingly, all experiment data were uploaded to the Azure Microsoft platform to 

investigate the feature's importance. Figure 7.39 shows the pie chart of the obtained results of the 

Azure platform. The findings clearly validate that among the variable attributes, the horizontal and 

positional Root Mean Square Error (RMSE) stand out as pivotal factors in the context of RT-PPP 

EWS. The established EWS is designed to categorize observations derived from the RT-PPP 

approach based on their disparity in relation to observations acquired at the established station 

marker location. Logically, the machine learning model would exploit the inherent advantages 

offered by the horizontal and positional RMSE values to discriminate between deformation and 

non-deformation events effectively. Furthermore, it is worth noting that the RMSE values exhibit 

substantial variations across the three distinct investigated categories, namely, misplaced, centered, 

and out-of-service categories. 

Additionally, features like displacement components, latency, and the obtained tropospheric errors 

are crucial for the established EWS. It is significant to highlight that the deformation aspects, 

encompassing the horizontal and positional Root Mean Square Error (RMSE) and the east, north, 

and vertical displacement components, collectively constitute 80% of the importance concerning 

the entire features within EWS; this is succeeded by proportions of 6% and 4% correspondingly, 
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attributed to the tropospheric error and latency features. The other category includes the rest of the 

research features, such as the number of tracked satellites, Horizontal dilution of precision, RT-

PPP coordinates residuals, elevation mask angle, and residuals of the carrier pseudoranges with 

respect to the Iono-free combination. 

It is essential to highlight that it is imperative to recognize that the feature importance outcomes 

were notably affected by the number of RT-PPP observations. This effect stemmed from the 

inherent constraints associated with acquiring RT-PPP measurements—consequently,  excessive 

HDOP value or an insubstantial number of used GNSS satellites impact the availability of RT-PPP 

observations. Hence, it becomes evident that the restricted accessibility and diminished quality of 

observations markedly influenced the relative significance ascribed to various features in the RT-

PPP analysis. 

 

Figure 7.39 Research feature importance 

(Prepared by the author). 
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Before the commencement of the research endeavour, the establishment of a comprehensive EWS 

and the related study's conclusions related to the inclusive RT-PPP EWS were presented. It is worth 

highlighting that the research dataset encompasses a total of 404 distinctive attributes involving 

approximately 1.7 million data instances. In this context, it is sensible to give attention to matters 

concerning computational complexity, the risk of overfitting, and the overall efficacy of the EWS. 

7.6 Generic model  

Selecting features as a subset based on the initial feature sets is fundamental in order to reduce 

computational complexity, prevent overfitting, and enhance model performance. Subsequently, to 

reduce the dimensional feature space and improve the execution and performance of the RT-PPP 

EWS, the notation of feature selection followed the above-mentioned results. Therefore, the RT-

PPP EWS Generic model was trained and assessed utilizing east and north up-displacements and 

their residuals, position and horizontal RMSEs, speed and course overground, stream latency, 

satellite number, and the value of elevation mask angle.  

Notably, the conducted research deliberately excluded the reference station coordinates as trained 

features to facilitate the generalization of the RT-PPP EWS for its applicability in diverse 

geographical locations (this means that the EWS required the deformations information as input, 

which was calculated concerning the station prior coordinates configured by BNC software for 

example). This approach enables the RT-PPP EWS to be more widely applicable and adaptable in 

various regions, enhancing its practical utility and accessibility across different geographic 

contexts. 

The last results of this research were done by combining all the experiment data collected in the 

experiments tables in EWS work package seven, entitled experiments implementation; this 

combination allows training, validation, and testing of the RT-PPP EWS MLASs with data 

collected from all experiments; this enhanced the model's training and testing. Accordingly, the 

exported MLASs could be more reliable with respect to the achieved accuracy and detection 

probabilities as they trained with different correction streams, different magnitudes of elevation 

angles, various deformation magnitudes, different deformation directions, and different training 
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periods additionally, which allows training, testing, and validation of the models with adequate 

events. 

Figure 7.40 colours show POTNMD details; however, the symbol sizes show details that respect 

the POFNMD. The figure shows that the SVC and XGB perform as the most accurate classifiers 

with 96.80% and 98.65% POTNMD, offering less probability of initiating false non-motion 

detections. On the contrary, the logistic regression shows the worst performance with respect to 

the achieved accuracy, POFNMD, and POTNMD. It is worth mentioning that this figure represents 

the performance of generic deformations. 

 

 

 

Figure 7.40 Non-motion detection RT-PPP EWS Generic MLAs performance 
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(Prepared by the author). 

 

Figure 7.41 colours show POTMD details; however, the symbol sizes show details that respect the 

POFMD. The figure shows that the SVC and XGB perform superiorly with 97.29% and 98.85% 

of POTMD, and they are less likely to initiate false motion detections. On the contrary, the logistic 

regression shows the worst performance regarding accuracy, POFMD, and POTMD. It is worth 

mentioning that this figure represents the performance of generic deformations. 

 

 

 

Figure 7.41 Motion detection RT-PPP EWS Generic ML models performance 

(Prepared by the author). 
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Figure 7.42 colours show POTOSD details; however, the symbol sizes show details that respect 

the POFOSD. Again, the SVC and XGB are the most accurate classifiers, with an accuracy of 97% 

and 99.21% of POTOSD, respectively. Furthermore, they also offer less probability of initiating 

false out-of-service detections. On the contrary, the logistic regression and the decision tree show 

the worst performance in accuracy, POTOSD, and POFOSD. It is worth mentioning that this figure 

represents the performance of generic deformations. 

 

 

 

Figure 7.42 Out-Of-Service detections RT-PPP EWS Generic ML models performance 

(Prepared by the author). 
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The forty-eight experiments were conducted between the eleventh of October 2021 and the fifth 

of October 2022. The research engine was established to simulate deformations in different 

directions, with the RT-PPP being persistently recorded for a full day. In 12 hours, only six sessions 

were held. Note that the simulated deformations' elevation mask angles, magnitude, and direction 

were used in the saved RT-PPP and that the stream latency changed. Accordingly, the research 

established the generic RT-PPP EWS, which has taken advantage of diverse RT-PPP collected 

through all research experiments. Noting that this step came after the research carried out regarding 

the importance of features, which concluded the research to utilize the most relevant features to 

proposed RT-PPP EWS, enhancing the system performance, reducing the computational cost, and 

avoiding data overfitting. Notably, the reference station coordinates were omitted on purpose from 

the conducted research in order to broaden the applicability of the RT-PPP EWS to a variety of 

places. The study aimed to create a method easily implemented in other locations without requiring 

precise and localized reference data. Hence, the authors omitted the coordinates of the reference 

stations. This method makes the RT-PPP EWS more portable and flexible, increasing its usability 

and availability in various geographical settings.  

The research on the RT-PPP generic EWS showed that the XGB and SVC models show the best 

performance regarding the higher POTMD and minimal value of POFNMD. In addition, the 

overall accuracy of both models is superior to that of other investigation models. Furthermore, 

remarkably, they tend to have the minimum ability to initiate false alarms.  

To summarize the previous research, Table 7.13 is presented, which contains all experiment events, 

including vertical, horizontal, and three-dimensional deformations. The table contains the final 

probability in terms of percentages regarding the RT-PPP EWS probabilities, noting that the POIFC 

was calculated as an aggregated figure with respect to all false warnings. The XGB and RF 

classifiers showed superior model accuracy compared to the other utilized models, with 97 and 99 

percent overall accuracy. At the same time, the XGB showed the ability to initiate minimal false 

alarms with 2.48 percent, and it was 7.7 percent with respect to the SVC. Similar performances for 

both models were found regarding the ability of motion detection.  
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 Table 7.13 RT-PPP EWS Generic ML models performance. 

Classifiers Accuracy POTNMD POFNMD POTMD POFMD POTOSD POFOSD POIFC 

DT 89 76.85 23.15 94.7 5.3 99.75 0.25 28.70 

RF 93 91.2 8.2 92.3 7.7 99.62 0.38 16.28 

KN 95 93.67 6.33 95.73 4.27 96.22 3.78 14.38 

LR 83 77.47 22.54 81 19 98.77 1.33 42.87 

SVC 97 96.8 3.2 97.29 2.71 98.21 1.79 7.7 

XGB 99 98.65 1.34 98.85 1.14 99.99 0.01 2.481 

7.7 Summary 

The present chapter culminates with a concise synthesis of the study's findings. Primarily, the 

performance of the RT-PPP EWS is closely associated with implementing machine learning (ML) 

models. The preceding discussions indicate that the characteristics of RT-PPP measurements 

significantly influence the performance, which can be attributed to the fact that linear regression 

(LR) consistently exhibited suboptimal performance in most cases. The LR method represents an 

enhanced version of linear regression. Consequently, given the diverse distribution of research 

events, this model faces challenges in establishing robust classification boundaries among the 

research categories. Conversely, Decision Tree (DT) classifiers encounter issues related to over-

fitting. As demonstrated by the study, the research database comprises 404 features and 

approximately 1.7 million entities, making it arduous for the DT model to handle such a substantial 

database effectively. 

In contrast, the Random Forest (RF) classification model exhibits superior performance. This 

model employs an ensemble approach by combining multiple decision trees, and the final 

predictions are derived from aggregating the outputs of these trees. Consequently, it is capable of 

generating more precise and robust predictions. Additionally, the RF model is better for handling 

non-linear data. The Support Vector Classifier (SVC) demonstrates comparable performance by 

employing a radial kernel, enhancing the model's capacity to establish non-linear classification 

boundaries. As a result, it is suitable for detecting deformations that may occur in various directions 

and magnitudes. However, the XGBoost (XGB) performs well when it assesst to the test data. On 

the contrary, the performance of this model has deteriorated when evaluated on the entire research 

database. 
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 The K-Nearest Neighbours (KNN) model performs well in certain instances. However, it is 

essential to acknowledge that the implementation costs associated with this model can be 

significant, particularly when determining the optimal value of K to be employed. Notably, the 

research findings align considerably with the results obtained from Azure, which indicate that RF 

and XGB are the most accurate models for deployment in the RT-PPP EWS. 
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Chapter 8 Conclusion, Discussions, and Future Works. 

8.1 Conclusions and discussions  

This chapter provides the essential summary and interpretations of the critical study findings. The 

research approaches the final chapter after completing multiple phases of investigations in which 

various improvements are presented throughout the thesis chapters. 

According to the performed research experiments, the IGS03  clock corrections stream showed a 

mean latency of 31 seconds. Consequently, both SVR and ARIMA forecasting methods have been 

investigated and used to predict clock corrections to mitigate the latency impact by implementing 

the explained algorithms. Because of their known rate of change relative to clock corrections, 

latency effects on orbital corrections can be easily corrected because of the well-known orbital 

parameters. Hence, the research ignored it throughout the study investigations. It is worth noting 

that the latency analysis was carried out with respect to GPS and GLONASS navigation systems 

however, the research methodology could be extended to Galileo and BeiDou. 

In the context of establishing RT-PPP EWS with the assistance of the RT-PPP technique and the 

machine learning models utilized in system creation, the system may generate very accurate real-

time estimates and trigger early warnings to detect deformations and displacements.  

It is worth mentioning that the research findings are valid with respect to the displacements having 

a magnitude equal to or less than 20 cm, which match the training displacement exerted with the 

research engine. However, for displacement values having a magnitude more than 20cm, it is 

suggested to re-training the developed ML models to adapt displacement values exceeding 20 cm; 

nevertheless, given the accuracy of the methodology developed for movements smaller than 20 

cm, the probability of success for more significant movements should be equally high. It is worth 

highlighting that the research recommends using SVC or the XGBoost models as they provide the 

highest accuracy. 

In conclusion, RT-PPP EWS is a globally deployable technology for monitoring and responding to 

geo-natural hazards. By adopting RT-PPP, the RT-PPP EWS could be utilized at a global scale, 

providing supportive RT warnings for local communities, stakeholders, and civil defence. To that 
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end, having access to such warnings far before a destructive event is crucial, as it paves the way 

for stakeholders to develop real-time protection and assessment applications and, if possible, 

evacuation procedures.  

For the sake of establishing an RT-PPP early warning system, the reference station establishment 

installation and configuration were carried out. Accordingly, several days of static sessions were 

used to ensure the quality of the reference station coordinates. Additionally, seven days of RT-PPP 

coordinates were collected utilizing different elevation masks varied from 0 to 60 degrees in order 

to find noise-free measurements and to simulate bad GDOP scenarios. The researchers found an 

elevation angle with a ten-degree value was the most suitable, leading to error ranges of 11cm, 14 

cm, and 38 cm in the east, north, and up directions, respectively. Regarding the availability of the 

RT-PPP solution, 99.96% was available utilizing a ten-degree elevation angle.  

Beforehand, the research's findings regarding the RT-PPP EWS show that it is worth paying 

attention to the research results regarding the research variable relation. The research carried out 

two levels of investigations, including RT-PPP features correlations and RT-PPP EWS feature 

importance. The study justified the investigation levels regarding the variable's relations to ensure 

the consistency of the results.  

Chapter 7 correlation matrix was created utilizing the stored RT-PPP measurements implemented 

after the station static sessions. Seven days of continuous RT-PPP measurements were invoked in 

this analysis. Accordingly, the correlation matrix shows a high positive correlation between RT-

PPP coordinates and the coordinates-driven errors. A negative relation was constructed between 

the RT-PPP vertical error and tropospheric delay. Additionally, high negative correlations were 

established intermediate between the satellite's elevation mask angle and latency, the number of 

tracked satellites, and the root mean squared error of the phase measurements. It is worth noting 

that the horizontal and positional root mean squared error positively relates to station coordinates 

and the error coordinate error components. At this point, it is essential to note that the number of 

observations affected the correlation results. 

Regarding the investigations of the importance of the RT-PPP EWS features, the Azure Microsoft 

platform was utilized to inspect the most relevant feature of the RT-PPP EWS. The platform results 

agreed with the research investigations. Figure 7.39 shows that the positional and horizontal 
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RMSEs are dominant regarding their relevancy to the RT-PPP EWS, as the EWS is planned to 

categorize observations derived from the RT-PPP procedure based on their difference concerning 

observations acquired at the established station marker location. It is fundamentally reasonable 

that the machine learning model would exploit the essential benefits offered by the horizontal and 

positional RMSE values.  

However, the research shows that the most relevant features are the positional and horizontal 

RMSE, displacement components, tropospheric error, and latency values. It is worth noting that 

the relevancy of the other features was attenuating due to the nature of RT-PPP observations. The 

number of observations with high HDOP values is much less than those with small HDOP (in 

terms of manipulating the satellite elevation angle). This conclusion is also valid with respect to 

latency and the number of tracked satellites. It is also worth noting that the diversity of latency 

value was inadequate to raise the latency relevancy due to the utilization of two correction streams 

with latency values near 15 to 30 seconds. Similarly, the variety of mask elevation angles utilized 

led to the same results.                          

The research experiments have been carried out regarding three types of deformations (horizontal, 

vertical, and three-dimensional). Accordingly, the research designed and developed an engine that 

is able to exert simulated deformations in the desired directions and chosen magnitude. These 

deformations were exerted utilizing two stepper motors and a vertical roller. The deformations 

were controlled by implementing a g-code to the engine microcontroller, which allowed the 

research to store RT-PPP measurements during deformation/no deformation periods.  

The RT-PPP EWS performance was initially assessed by the creation of the confusion matrix, 

which indicates the ability of the ML models to correctly classify the RT-PPP events with respect 

to motion/non-motion/out-of-service. Then, the research extends the RT-PPP EWS assessment 

with respect to various types of probabilities. Consequently, several types of probabilities have 

been calculated, including the probability of initiating true and false non-motion detections, the 

probability of initiating true and false motion detections, and similar probabilities with respect to 

the out-of-services. In addition, the RT-PPP EWS performance was evaluated with overall 

accuracy. However, which of the probabilities above is crucial to the RT-PPP EWS? or is the 
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overall accuracy sufficient to determine which of the utilized ML models is the most appropriate 

for RT-PPP EWS establishment?    

Accordingly, the answers to these realistic questions can be illustrated with respect to the 

importance of the RT-PPP events. The RT-PPP measurements observed during the deformation 

periods are much more relevant to the EWS and stakeholders. Subsequently, the probability of 

initiating true motion detections is the most relevant indicator of the ML model's superiority. 

Nevertheless, the overall ML model's accuracy could be a general indicator of the RT-PPP EWS 

performance.   

It is also worth highlighting that in establishing the generic EWS, the station coordinates have been 

eliminated to utilize the model without the limitations of the research reference station coordinates. 

Finally, the research recommends the use of high-rate GNSS receivers to have the advantages of 

reducing RT-PPP converging time and enriching the RT-PPP measurements in terms of the 

observation amount and, at the same time, using advanced techniques to solve the ambiguities. 

High-rated ultra-rapid products are also valuable for contrasting events detected in EWS as a 

control mechanism after events.  

8.2 Research main findings 

In this investigation, real-time data was examined, and clock corrections were predicted using 

RSW. Both models can then be utilized to deal with latency. In contrast to the real-time, which 

involves the latency impact, SVR and ARIMA models for the GPS satellite's clock corrections 

show a 28% decrease in standard deviation. Additionally, regarding GLONASS satellites, the 

ARIMA and SVR models decreased in standard deviation by 13% and 23%, respectively. A brief 

summary regarding the standard deviation improvements: The SVR model significantly enhanced 

various GPS satellite blocks over the study period. Notably, it displayed remarkable improvements 

of approximately 19 percent for GPS-IIF, 46 percent for GPS-IIR, and about 57 percent for GPS-

IIRM between 2015, 2019, and 2021. However, in 2013, the SVR model increased latency by 

roughly 4.80 meters for GPS-IIF. Its weakest performance was in 2014 and 2015, especially for 

GLONASS K and M satellites, where range evaluation degraded by 31 percent and 23 percent, 
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respectively. Conversely, the SVR model notably improved range performance by around 23, 25, 

and 57 percent for the GPS-IIRM block in 2014, 2019, and 2021, respectively.  

However, there has been a little increase in the SVR and ARIMA range discrepancies for 

GLONASS satellites, by about 2% and 16%, respectively. However, the SVR model predicts a 7 

percent increase in range discrepancies for GPS.  

In the context of research outcomes concerning 3D positioning, in contrast to real-time situations 

that include latency effects, the findings indicate a noteworthy enhancement in 3D positioning 

accuracy. Over the research period, the selected permanent GNSS stations revealed an average 

reduction in standard deviations of 13% for the ARIMA algorithm and 31% for the SVR algorithm. 

The mean value shows similar performance, with 17% for ARIMA and 13% for SVR. On the other 

hand, the range analysis showed improvement with 3% for ARIMA and 11 % for the SVR model. 

The latency impact is mitigated with both models. The calculation results reveal that the SVR 

model is eight to nine times faster at processing data than ARIMA, suggesting that it may be a 

good alternative for overcoming the latency because of its ease of use and computational speed.  If 

the GNSS receiver tracks signals from both the GPS and GLONASS constellations, it will need 

clock correction forecasts for about 55 satellites. The proposed prediction models can also predict 

clock corrections during data loss or discontinuity. Eventually, the research recommends utilizing 

the SVR model to overcome the latency due to the simplicity of implementation and execution 

speed; also, it showed more improvement relative to the ARIMA model. It is worth noting that the 

old format IGS03 streams did not include clock corrections with respect to Galileo and BeiDou; 

thus, the latency analysis was conducted concerning the GPS and GLONASS navigation systems, 

but the research approach might be extended to Galileo and BeiDou. 

Regarding the RT-PPP EWS performance with respect to vertical deformations, Table 7.9 shows 

the superiority of the XGB model, with a probability of 99.89% to detect vertical deformation 

events and 99.80% overall accuracy. On the contrary, the worst performances were shown with 

decision tree and logistic regression, with the accuracy reaching 95% and 92%, respectively. 
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Regarding the RT-PPP EWS performance with respect to horizontal deformations, Table 7.10 

shows a similar ascendancy of XGB with a probability of 99.50% to detect horizontal deformation 

events with respect to all deformation populations and 98% overall accuracy. On the contrary, the 

least optimal performances were shown with decision tree and logistic regression, with the 

accuracy reaching 90% and 84%, respectively. Regarding the RT-PPP EWS performance with 

respect to the three-dimensional, Table 7.11 shows a similar ascendancy of XGB with a probability 

of 99.99% to detect three-dimensional deformation events, with 99.91% overall accuracy. On the 

contrary, the least optimal performance was shown with the decision tree, with the accuracy 

reaching 97%. Eventually, the research evaluates the RT-PPP EWS concerning all kinds of 

deformations (Generic model). The research utilized all the research events and re-generated the 

establishment of the generic RT-PPP EWS, which can be a valuable tool for monitoring all 

deformations types. Accordingly, the evaluation of a generic RT-PPP EWS performance has been 

carried out. Table 7.13 shows the superiority of the support vector machine and XGB, with a 

probability of 97.29% and 98.85 to detect generic deformation events.  

On the contrary, the least optimal performances were shown with decision tree and logistic 

regression, with the accuracy reaching 89% and 83%, respectively. It is also worth noting that the 

logistic regression indicated the highest false warning, reaching around 43%. It is essential to 

emphasize that the XGB model showed superior performance among other ML approaches; the 

model uses a gradient boosting approach, allowing it to combine the prediction from several 

decision trees. In addition, the XGB showed more capabilities for handling missing data and more 

speed execution. 

The research verified the earlier evaluation of the RT-PPP Early Warning Systems (EWSs) on the 

test data; the research re-evaluated the XGBoost machine learning model performance during this 

stage. The research database was ranked hierarchically into four categories based on displacement 

levels: Equal to or less than 5 centimeters, 5-10 centimeters, 10-15 centimeters, and 15-20 

centimeters. Accordingly, this allowed the research to more precisely assess the pre-mention 

machine learning model across different displacement magnitudes. Consequently, the following 

table presents the resulting model performance with respect to the achieved accuracy.   
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Table 8.1 RT-PPP EWS XGBoost performance with respect to several levels of displacements. 

 level of displacements 

Classifier performance 1-5 cm 5-10 cm 10-15 cm 15-20 cm 

XGB 86% 88% 89% 89% 

While the XGBoost model performs well when trained on the total displacement dataset, its 

accuracy weakens when applied to data containing only minor displacements. This decrease is 

attributed to the inherent characteristics of RT-PPP measurements, which tend to exhibit more 

significant uncertainty at more minor displacement levels. This finding highlights the importance 

of considering the nature of the data when selecting and tuning machine learning models for Early 

Warning Systems (EWSs). Despite this challenge, the overall outcome demonstrates the potential 

of ML models to enhance EWSs' performance significantly. 

8.3 Research novelty and main contributions  

In the context of the research contributions and advancing knowledge, this study highlights the 

significance of latency's influence on RT-PPP performance, particularly concerning precision and 

accuracy. Our investigation explores the application of machine-learning models for predicting 

clock corrections in the context of IGS combination products. It is imperative to note that several 

Analysis Centers (ACs) offer distinct correction streams, but IGS products are regarded as the 

official standard, underlining their inherent reliability. The proposed machine-learning models 

exhibit substantial enhancements in the precision and availability of RT-PPP coordinates. 

This study provides a detailed investigation into establishing the early warning system utilizing 

the RT-PPP technique; this technique has gained importance since the 1990s for GNSS positioning 

due to the cost-effectiveness of the RT-PPP technique is highlighted, as it eliminates the need for 

reference station data, distinguishing it from the traditional relative positioning approach. To 

achieve the highest accuracy level, RT-PPP requires employing pseudo-range and carrier phase 

observations on multiple frequencies, along with precise orbit and satellite clock correction 

products, accurate error modeling, and advanced analysis software. It is essential to note that RTT-

PPP is highly sensitive to several error sources impacting early warning performance. Accordingly, 

the research offers the ability to utilize the ML models incorporated with the RT-PPP approach. 

One of the leading research contributions is to provide EWS users with several probability metrics. 
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Notably, these metrics are crucial for users in providing reliable information regarding deformation 

events or RT-PPP observations status.  

Regarding the research applicability, the research utilizes several free, open-source software and 

machine-learning libraries. One of the essential aspects is that the developed research models can 

be integrated with web platforms or mobile devices for early warning dissemination. The RT-PPP 

EWS offers an affordable solution, particularly in economically challenged regions like developing 

countries. The cost of establishing traditional EWS systems could be excessively high in these 

areas, making the RT-PPP EWS a more viable option. 

In the context of its societal impact, this thesis offers valuable insights that can benefit local 

communities, stakeholders, and the public sector. The development of an RT-PPP EWS carries the 

potential to significantly enhance emergency preparedness for a wide range of geo-natural hazards. 

The findings derived from this research hold the promise of equipping emergency planners and 

managers with enhanced capabilities and a deeper understanding. The findings also contribute to 

better planning and executing emergency response strategies based on reliable real-time scenarios 

and well-informed assessments of expected damage. In this way, the knowledge generated by this 

thesis has the power to make a meaningful impact in the field of emergency management and 

response. 

From an economic perspective, the insights gleaned from this thesis offer opportunities for 

businesses, the general public, and the private sector. They can leverage this knowledge to develop 

and implement strategies ensuring business continuity within an EWS. Moreover, there is potential 

for utilizing RT-PPP EWS in various engineering applications. 

One of the strengths of RT-PPP EWS is its ability to provide advanced warnings about expected 

deformations at specific locations. This advanced notice empowers the formulation of preemptive 

plans, including decision models for effective responses to these warnings. The main objective is 

to reduce the impact of economic and life losses due to geo-natural hazards. 
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8.4 Future works 

As with any investigation, some of the following issues could be considered as future works. 

Similar investigations could be established with simulations of the semi-real seismic waves, which 

results in real-surface deformations that could be implemented with a device such as a shaking 

table; this table was attached with actuators that could be utilized to exert natural seismic waves 

in terms of magnitude and direction. Regarding landslide, the simulation could be done with some 

lab for the instant coastal lab at Queen’s University. Unfortunately, these capabilities are 

considered indoor applications. However, utilizing such a tool outdoors will aid the endeavours of 

testing the RT-PPP EWS with semi-natural trigger events (Prasad et al., 2004; Scaioni et al., 2013). 

Similar investigations could be established utilizing near-RT products to improve PPP 

measurement quality, which could be a solution for some geo-hazards disasters or slow-motion 

landslide detections. Additionally, it is worth mentioning that the possibility of establishing web 

and mobile applications relies on the research RT-PPP EWS. As the research considers the 

importance of features, it is possible to implement the RT-PPP EWS with the most relevant 

features, reducing system complexity and improving performance in terms of time response.       

The researchers intend to extend the research investigations to cover deep learning methods such 

as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-

Term Memory (LSTM), and Gated Recurrent Units (GRUs). 

8.5 Challenges 

Several challenges during the research impeded the study, including internet and electricity 

interruptions. That led to re-implementing some experiments to ensure 24 or 12 hours of 

consistency among all the study experiments. In addition, some challenges impact the research 

development, including designing and developing the research engine used to simulate the 

deformations, implementing ML algorithms, and setting up the software and hardware to apply 

RT-PPP SSR products while performing the experiments. Also, another limitation overcome was 

ensuring the continuity of measurements and products during the research years.  
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Peer-reviewed journal and conference publications  

1. Qafisheh, M. and Martín, A., (2020). Support Vector Regression Machine Learning Tool 

to Predict GNSS Clock Corrections in Real-Time PPP Technique. 10th International 

Conference on Localization and GNSS. Editorial Tampere University. 

http://localhost:8080/xmlui/handle/123456789/8516 

2. Qafisheh, M., Martin, A. and Capilla, R., (2021), October. Proposed methodology for 

establishing an early GNSS warning system for real-time deformation monitoring. 

In Proceedings 3rd Congress in Geomatics Engineering (pp. 54-60). Editorial Universitat 

Politècnica de València. 

https://doi.org/10.4995/CiGeo2021.2021.12691 

3. Qafisheh, M., Martín, A., Capilla, R. and Anquela, A.B., (2022). SVR and ARIMA models 

as machine learning solutions for solving the latency problem in real-time clock 

corrections. GPS Solutions, 26(3), p.85. 

https://doi.org/10.1007/s10291-022-01270-y 

Oral presentations  

1. Qafisheh, M. (2018), Water harvesting estimation using GIS in Bani Na'im area, 

GeoMundus Conference. University of Lisbon.  

https://geomundus.org/2018/docs/papers/Mutaz.pdf 

2. Qafisheh, M., (2022), Establishing an early GNSS warning system using the random forest 

classifier, (D4G) first workshop on data science for GNSS remote sensing, Potsdam, 

Germany.https://www.d4g2022.de/assets/wajeh_qafisheh_mutaz_establishing_an_early_

gnss.pdf. 

3. Qafisheh, M. (2022), GNSS applications in deformation monitoring, scientific lecture. 

Palestine Polytechnic University.  
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Conference attendance and other activities  

1. 15th gvSIG international conference (2019), 15th gvSIG international conference. 

2. Second GATHER summer school, (2023), Delft, Netherlands, Integration of geodetic and 

imaging techniques for monitoring and modelling the Earth's surface deformations and 

seismic risk. 
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Appendix.B                                                                                 

Exploring Research Latency Results: A Compilation of Statistical 

Summaries 

Table B.1 Statistical Summary of Forced-latency and ARIMA Solutions Based on 2021 

Researched year (GPS Constellation). 

Satellite number 

Forced-latency solution ARIMA solution 

Range Mean 
Standard 

deviation 
Range Mean 

Standard 

deviation 

G01 0.2425923 0.0001085 0.006025058 0.1933353 8.61035E-05 0.005220321 

G02 0.4100198 0.0001009 0.015970713 0.3994735 -0.000201412 0.008694859 

G03 0.09445 
-2.022E-

05 
0.00540538 0.2339769 0.000121918 0.00701327 

G04 0.17607963 2.019E-05 0.006183142 0.2905434 3.61475E-05 0.007281985 

G05 0.19275459 5.749E-05 0.022245371 0.4838452 1.2976E-05 0.007301457 

G06 0.15739267 -2.57E-05 0.006024339 0.2569607 7.74965E-05 0.006884063 

G07 0.65684864 
-7.133E-

05 
0.018552802 0.5858155 -0.00016912 0.010580175 

G08 0.20251691 
-

0.0006252 
0.020996161 0.3458242 0.000110921 0.007840875 

G09 0.3622961 3.175E-05 0.00813996 0.4105502 0.00052743 0.008516305 

G10 0.13284787 
-1.535E-

05 
0.004971752 0.5475101 -0.00011141 0.010324648 

G12 0.21280906 3.859E-05 0.018061513 0.4680894 -0.000151317 0.009766211 

G13 0.72899581 0.0001882 0.017803951 0.4269649 -9.29131E-05 0.007468114 

G14 0.13625 
-3.541E-

06 
0.004742415 0.2756723 -0.000121419 0.006264828 

G15 0.188194 
-2.752E-

05 
0.014743998 0.1471 -3.62254E-05 0.005080799 

G16 0.3744491 
-6.828E-

05 
0.018838709 0.5848918 8.53975E-05 0.010915265 

G17 0.25022318 
-3.174E-

05 
0.018762047 0.2862666 1.86833E-05 0.007254048 

G18 0.1462 8.388E-06 0.005562395 0.2021954 -0.000104105 0.005785721 

G19 0.13775 9.543E-06 0.015981269 0.3023924 -0.000161902 0.007122303 

G20 0.2582425 3.355E-05 0.017494553 0.1832663 -0.000293467 0.005463953 

G21 0.22114739 -6.67E-05 0.021738338 0.5040556 -0.00019042 0.009861672 

G22 0.1719 
-9.548E-

05 
0.015932264 0.4521063 0.000126736 0.008093199 

G23 0.11095 4.245E-05 0.005035763 0.1970714 -0.000116728 0.005824991 

G24 0.33847462 7.973E-05 0.006848151 0.5590929 -8.13942E-05 0.009069015 
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G25 0.15724768 
-2.004E-

05 
0.005035397 0.4023711 8.31682E-05 0.006380366 

G26 0.1500461 3.186E-05 0.005053892 0.3096443 -0.000112667 0.006029149 

G27 0.101 1.815E-05 0.004104178 0.1826063 1.86827E-06 0.003983396 

G29 0.24109753 
-

0.0001972 
0.016329154 0.9906768 0.000163269 0.015765915 

G30 0.18514675 5.218E-05 0.004488925 0.323118 0.000150001 0.005471266 

G31 0.1481 0.000102 0.01482195 0.2098758 -5.57402E-05 0.01185754 

G32 0.10055 9.002E-05 0.004994087 0.2318894 0.000196865 0.005589092 

Table B.2 Statistical Summary of Forced-latency and ARIMA Solutions Based on 2021 

Researched year (GLONASS Constellation). 

Satellite number Forced-latency solution ARIMA solution 

Range Mean Standard deviation Range Mean Standard 

deviation 

R01 1.4392 0.0002838 0.047574884 1.4175 -0.004842391 0.035080188 

R02 3.2973 -0.0009229 0.071685933 3.2288755 -0.00269785 0.059512514 

R03 0.8228 0.0003674 0.036036223 0.8343558 -0.002466368 0.026219265 

R04 1.1752 -0.0001283 0.033143438 1.1728561 -0.001349691 0.026802764 

R05 1.4248 -1.125E-05 0.035847068 1.3881723 0.000756801 0.025219866 

R07 1.1576 0.0003233 0.041658492 1.1109375 0.00023347 0.03079878 

R08 0.7756 -0.0003261 0.042652049 0.7355641 0.000797114 0.031308183 

R09 0.786 0.0003299 0.031885044 2.7678 0.001041749 0.039696828 

R12 1.4206 0.0003253 0.036951329 1.394448 0.000357314 0.03021514 

R13 3.898 -0.000703 0.105613817 3.595 0.004146622 0.085031677 

R14 1.2947 -2.402E-05 0.041359313 1.2575154 -0.003406227 0.030776507 

R15 1.6237 6.543E-05 0.039728959 1.6091939 0.001001395 0.034638461 

R16 2.0589 0.0001197 0.055291663 2.1001518 0.002976131 0.047843114 

R17 0.8899 -0.0003097 0.04392278 0.8689604 -0.00487816 0.034685305 

R18 1.6455 -0.0006105 0.055901801 1.6586715 -0.005105813 0.046390402 

R19 6.6985 0.0010137 0.108546939 6.6629873 0.004358728 0.073193483 

R20 1.3645 -0.0001963 0.044137188 1.3706107 0.003675574 0.0341831 

R21 1.615 -2.588E-05 0.036284456 1.5879 0.001359578 0.030843932 

R22 3.9854 0.0004891 0.083309277 3.9603 0.005712884 0.074576359 

R24 1.1687 -0.0005145 0.039127911 1.2102882 0.000999694 0.029974769 
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Table B.3 Statistical Summary of Forced-latency and ARIMA Solutions Based on 2021 

Researched year (Galileo Constellation). 

Satellite number Forced-latency solution ARIMA solution 

Range Mean Standard deviation Range Mean Standard 

deviation 

E01 0.3133 2.188E-06 0.007632889 0.1933353 8.61035E-05 0.005220321 

E02 0.399 -5.438E-05 0.009973179 0.3994735 -0.000201412 0.008694859 

E03 0.2358 -4.61E-05 0.008192608 0.2339769 0.000121918 0.00701327 

E04 0.2957 5.657E-05 0.008216199 0.2905434 3.61475E-05 0.007281985 

E05 0.2308 2.847E-05 0.006822393 0.4838452 1.2976E-05 0.007301457 

E07 0.2544 -3.342E-05 0.008137304 0.2569607 7.74965E-05 0.006884063 

E08 0.6042 8.606E-06 0.011625118 0.5858155 -0.00016912 0.010580175 

E09 0.3173 -1.97E-05 0.008916212 0.3458242 0.000110921 0.007840875 

E11 0.3904 0.0001007 0.010448456 0.4105502 0.00052743 0.008516305 

E12 0.4667 -8.479E-05 0.010780535 0.5475101 -0.00011141 0.010324648 

E13 0.4812 -6.975E-05 0.011035642 0.4680894 -0.000151317 0.009766211 

E15 0.3628 -3.403E-06 0.008440842 0.4269649 -9.29131E-05 0.007468114 

E19 0.2778 -1.222E-06 0.007306295 0.2756723 -0.000121419 0.006264828 

E21 0.1368 4.36E-05 0.00616824 0.1471 -3.62254E-05 0.005080799 

E24 0.3582 -0.000123 0.008041623 0.5848918 8.53975E-05 0.010915265 

E25 0.2783 -0.0001372 0.008220023 0.2862666 1.86833E-05 0.007254048 

E26 0.2112 8.935E-05 0.007090481 0.2021954 -0.000104105 0.005785721 

E27 0.214 6.997E-05 0.007177271 0.3023924 -0.000161902 0.007122303 

E30 0.1821 -0.0001093 0.007239238 0.1832663 -0.000293467 0.005463953 

E31 0.5031 -8.965E-05 0.010371891 0.5040556 -0.00019042 0.009861672 

E33 0.4541 0.0001654 0.009449467 0.4521063 0.000126736 0.008093199 

Table B.4 Statistical Summary of Forced-latency and ARIMA Solutions Based on 2021 

Researched year (BeiDou Constellation). 

Satellite number Forced-latency solution ARIMA solution 

Range Mean Standard deviation Range Mean Standard 

deviation 

C06 3.3134 9.186E-05 0.073928112 5.1122344 -0.001141059 0.080141373 

C07 2.4017 0.000178 0.068217969 4.4549619 -0.000542798 0.065415696 

C08 2.9437 0.0003028 0.065687497 2.9491 0.000248765 0.055580478 

C09 2.9738 9.121E-05 0.075067673 2.9498635 0.00045637 0.062155475 

C12 2.9449 -0.000387 0.080760591 3.5149685 -0.000194871 0.071148331 

C13 2.9544 -0.0001571 0.080355769 3.4953962 -0.001478882 0.069792621 

C16 2.389 -0.0002788 0.055188191 2.3877918 -0.000436515 0.045661109 
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Table B.5 Statistical Summary of Forced-Latency and SVR Solutions Based on 2021 Researched 

year (GPS Constellation). 

Satellite number Forced-latency solution SVR solution 

Range Mean Standard 

deviation 

Range Mean Standard 

deviation 

G01 0.2425923 0.0001085 0.006025058 0.2425923 0.000108474 0.006025058 

G02 0.4100198 0.0001009 0.015970713 0.4100198 0.000100939 0.015970713 

G03 0.09445 -2.022E-05 0.00540538 0.09445 -2.02228E-05 0.00540538 

G04 0.17607963 2.019E-05 0.006183142 0.1760796 2.01895E-05 0.006183142 

G05 0.19275459 5.749E-05 0.022245371 0.1927546 5.74945E-05 0.022245371 

G06 0.15739267 -2.57E-05 0.006024339 0.1573927 -2.56987E-05 0.006024339 

G07 0.65684864 -7.133E-05 0.018552802 0.6568486 -7.13307E-05 0.018552802 

G08 0.20251691 -0.0006252 0.020996161 0.2025169 -0.000625247 0.020996161 

G09 0.3622961 3.175E-05 0.00813996 0.3622961 3.1746E-05 0.00813996 

G10 0.13284787 -1.535E-05 0.004971752 0.1328479 -1.53455E-05 0.004971752 

G12 0.21280906 3.859E-05 0.018061513 0.2128091 3.85881E-05 0.018061513 

G13 0.72899581 0.0001882 0.017803951 0.7289958 0.000188201 0.017803951 

G14 0.13625 -3.541E-06 0.004742415 0.13625 -3.54147E-06 0.004742415 

G15 0.188194 -2.752E-05 0.014743998 0.188194 -2.75157E-05 0.014743998 

G16 0.3744491 -6.828E-05 0.018838709 0.3744491 -6.82827E-05 0.018838709 

G17 0.25022318 -3.174E-05 0.018762047 0.2502232 -3.17416E-05 0.018762047 

G18 0.1462 8.388E-06 0.005562395 0.1462 8.3877E-06 0.005562395 

G19 0.13775 9.543E-06 0.015981269 0.13775 9.54287E-06 0.015981269 

G20 0.2582425 3.355E-05 0.017494553 0.2582425 3.35547E-05 0.017494553 

G21 0.22114739 -6.67E-05 0.021738338 0.2211474 -6.67013E-05 0.021738338 

G22 0.1719 -9.548E-05 0.015932264 0.1719 -9.54809E-05 0.015932264 

G23 0.11095 4.245E-05 0.005035763 0.11095 4.24511E-05 0.005035763 

G24 0.33847462 7.973E-05 0.006848151 0.3384746 7.97265E-05 0.006848151 

G25 0.15724768 -2.004E-05 0.005035397 0.1572477 -2.00431E-05 0.005035397 

G26 0.1500461 3.186E-05 0.005053892 0.1500461 3.18617E-05 0.005053892 

G27 0.101 1.815E-05 0.004104178 0.101 1.81497E-05 0.004104178 

G29 0.24109753 -0.0001972 0.016329154 0.2410975 -0.000197232 0.016329154 

G30 0.18514675 5.218E-05 0.004488925 0.1851467 5.21762E-05 0.004488925 

G31 0.1481 0.000102 0.01482195 0.1481 0.000102036 0.01482195 

G32 0.10055 9.002E-05 0.004994087 0.10055 9.00232E-05 0.004994087 
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Table B.6 Statistical Summary of Forced-Latency and SVR Solutions Based on 2021 Researched 

year (GLONASS Constellation). 

Satellite number 

Forced-latency solution SVR solution 

Range Mean Standard deviation Range Mean 
Standard 

deviation 

R01 1.4392 0.0002838 0.047574884 2.9074784 -0.001881633 0.043266353 

R02 3.2973 -0.0009229 0.071685933 3.7364723 -0.000633557 0.063742643 

R03 0.8228 0.0003674 0.036036223 0.6392295 -0.000512703 0.023600946 

R04 1.1752 -0.0001283 0.033143438 2.2490016 -0.000151485 0.028055707 

R05 1.4248 -1.125E-05 0.035847068 1.0696649 -1.67975E-05 0.023853336 

R07 1.1576 0.0003233 0.041658492 2.8156381 -0.000263303 0.037424024 

R08 0.7756 -0.0003261 0.042652049 0.4578783 0.000246109 0.028542634 

R09 0.786 0.0003299 0.031885044 1.2361645 -0.000205609 0.027465517 

R12 1.4206 0.0003253 0.036951329 1.1187802 -1.92381E-05 0.024609642 

R13 3.898 -0.000703 0.105613817 3.7786614 0.00326581 0.083542946 

R14 1.2947 -2.402E-05 0.041359313 1.9954199 -0.00041795 0.030829997 

R15 1.6237 6.543E-05 0.039728959 2.1968304 0.001083651 0.028893278 

R16 2.0589 0.0001197 0.055291663 2.5023811 -0.000405545 0.047261796 

R17 0.8899 -0.0003097 0.04392278 2.3935327 -0.000780305 0.048591034 

R18 1.6455 -0.0006105 0.055901801 1.8024029 -0.000658884 0.041210568 

R19 6.6985 0.0010137 0.108546939 6.069628 0.002999953 0.071895664 

R20 1.3645 -0.0001963 0.044137188 1.7125967 0.000233569 0.033612587 

R21 1.615 -2.588E-05 0.036284456 1.3485566 4.95617E-05 0.026414347 

R22 3.9854 0.0004891 0.083309277 5.5091662 0.001166272 0.055454863 

R24 1.1687 -0.0005145 0.039127911 1.7510082 0.000359553 0.028574822 
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Table B.7 Statistical Summary of Forced-latency and SVR Solutions Based on 2021 Researched 

year (Galileo Constellation). 

Satellite number Forced-latency solution SVR solution 

Range Mean Standard 

deviation 

Range Mean Standard 

deviation 

E01 0.3133 2.188E-06 0.007632889 0.1677384 -2.2761E-05 0.005041362 

E02 0.399 -5.438E-05 0.009973179 0.2108216 5.35989E-05 0.006452128 

E03 0.2358 -4.61E-05 0.008192608 0.11845 3.82295E-05 0.005421445 

E04 0.2957 5.657E-05 0.008216199 0.1573776 -3.39613E-05 0.005460063 

E05 0.2308 2.847E-05 0.006822393 0.1561 5.80756E-05 0.004902011 

E07 0.2544 -3.342E-05 0.008137304 0.1291 8.3188E-06 0.005377497 

E08 0.6042 8.606E-06 0.011625118 0.2978977 3.49324E-05 0.007372286 

E09 0.3173 -1.97E-05 0.008916212 0.1593499 1.24361E-05 0.005873336 

E11 0.3904 0.0001007 0.010448456 0.2482925 -8.41862E-05 0.007201245 

E12 0.4667 -8.479E-05 0.010780535 0.2790663 7.14513E-05 0.007102758 

E13 0.4812 -6.975E-05 0.011035642 0.2375392 -8.82961E-06 0.007066179 

E15 0.3628 -3.403E-06 0.008440842 0.1810533 1.15766E-05 0.005374827 

E19 0.2778 -1.222E-06 0.007306295 0.1405 3.96453E-05 0.004875579 

E21 0.1368 4.36E-05 0.00616824 0.07865 -4.21631E-05 0.004157578 

E24 0.3582 -0.000123 0.008041623 0.3347953 3.63686E-06 0.007637891 

E25 0.2783 -0.0001372 0.008220023 0.1489 8.43321E-05 0.005559676 

E26 0.2112 8.935E-05 0.007090481 0.1107 -7.88363E-05 0.004740231 

E27 0.214 6.997E-05 0.007177271 0.12375 -3.54981E-05 0.005184267 

E30 0.1821 -0.0001093 0.007239238 0.09325 7.67774E-05 0.00474897 

E31 0.5031 -8.965E-05 0.010371891 0.2405158 6.14339E-05 0.006813748 

E33 0.4541 0.0001654 0.009449467 0.2725491 -0.000136056 0.006188497 

Table B.8 Statistical Summary of Forced-Latency and SVR Solutions Based on 2021 Researched 

year (BeiDou Constellation). 

Satellite number Forced-latency solution SVR solution 

Range Mean Standard 

deviation 

Range Mean Standard 

deviation 

C06 3.3134 9.186E-05 0.073928112 3.3910286 -0.000143862 0.053622448 

C07 2.4017 0.000178 0.068217969 3.5790423 0.000358543 0.064240714 

C08 2.9437 0.0003028 0.065687497 3.4567693 -8.76279E-05 0.049835087 

C09 2.9738 9.121E-05 0.075067673 2.7485396 -3.10583E-05 0.052523819 

C12 2.9449 -0.000387 0.080760591 3.3196028 0.000897774 0.063779326 

C13 2.9544 -0.0001571 0.080355769 3.8976156 -0.000530694 0.0660463 

C16 2.389 -0.0002788 0.055188191 2.8526919 0.000652523 0.047680245 
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Table B.9 Statistical Summary of Forced-latency and ARIMA Solutions Based on 2019 

Researched year (GPS Constellation). 

Satellite number 

Forced-latency solution ARIMA solution 

Range Mean 
Standard 

deviation 
Range Mean 

Standard 

deviation 

G01 0.439 -3.613E-05 0.011379166 0.4339853 -4.41702E-05 0.008128426 

G02 0.6868 4.765E-05 0.025602174 0.6953653 -3.01627E-05 0.019208612 

G03 0.4646 -6.798E-06 0.009647712 0.6188958 -3.72539E-05 0.008531705 

G05 0.4297 0.0001105 0.036282182 0.4413021 -0.000366665 0.025746457 

G06 2.6457 -0.0001671 0.038067975 2.4126195 -0.000553593 0.034647734 

G07 0.466 0.0001324 0.026535446 0.4129953 -1.10131E-05 0.018498725 

G08 3.2704 0.0001911 0.054260502 3.0090318 -0.000689485 0.046273303 

G09 0.3946 5.072E-05 0.009933569 0.3871044 0.000141138 0.007593508 

G10 0.2529 0.0001554 0.007726498 0.4581284 0.00015495 0.006723995 

G11 0.41 0.0001501 0.026122454 0.3854307 -1.65461E-05 0.018124347 

G12 0.499 6.621E-05 0.029919431 0.4859991 -0.000123251 0.021316726 

G13 0.792 3.678E-05 0.023977226 0.9420543 6.44603E-05 0.017916058 

G14 0.3403 0.0001124 0.02444168 0.3998357 -2.75838E-05 0.017052249 

G15 0.9867 -8.8E-05 0.027099498 0.9944 -0.000117125 0.019116297 

G16 0.5838 0.0002217 0.02844636 0.4629398 0.000581176 0.019791897 

G17 1.8075 -0.000377 0.041137835 1.9738359 -0.000525577 0.033684771 

G19 0.6637 0.0001123 0.026641516 0.6115783 -0.000175151 0.019020625 

G20 0.5264 -6.058E-05 0.028871535 0.5259922 -0.000394131 0.020249099 

G21 2.0832 -0.0001487 0.041166446 1.5970488 -0.000131469 0.030887137 

G22 0.558 0.0001397 0.027393055 0.454868 0.000153579 0.019316472 

G23 0.3479 0.0001953 0.023208843 0.3205696 9.45669E-05 0.015974863 

G24 2.9563 2.747E-05 0.061249378 2.5095958 -0.001213923 0.045516449 

G25 0.4358 -6.613E-06 0.010194386 0.1564608 3.58953E-05 0.005450238 

G26 0.2492 0.0001346 0.008776027 0.232524 0.000205348 0.006065158 

G27 0.2867 -3.086E-05 0.009109123 0.2707084 7.80461E-05 0.006868964 

G28 2.1737 -7.109E-05 0.041901382 1.6810645 -0.00034719 0.027516877 

G29 1.2161 -0.0003836 0.032993237 1.0296181 -9.85506E-05 0.022637389 

G30 1.0351 -0.0001859 0.017255397 1.0922814 -0.000311344 0.017043753 

G31 0.3414 -0.0001684 0.025143984 0.4167161 -0.000242301 0.017357018 

G32 1.7505 -2.9E-05 0.020453667 1.1495947 -9.90823E-05 0.01767286 
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Table B.10 Statistical Summary of Forced-latency and ARIMA Solutions Based on 2019 

Researched year (GLONASS Constellation). 

Satellite number Forced-latency solution ARIMA solution 

Range Mean Standard 

deviation 

Range Mean Standard 

deviation 

R01 1.2667 -0.0005381 0.044852227 3.1984203 -0.004149562 0.045009518 

R02 2.3813 0.0005844 0.055542537 3.6873187 -0.001648612 0.053784796 

R03 1.5971 6.946E-05 0.037646967 1.4047545 -0.002178903 0.030561641 

R05 4.0259 3.052E-05 0.06280272 4.2670917 0.000144468 0.061074027 

R07 0.89 0.0003981 0.037082986 1.3249966 0.002276881 0.030244021 

R08 9.7221 -0.0014347 0.142262745 9.0260758 0.000296778 0.129630568 

R09 0.8984 0.0005545 0.03063252 1.0475332 0.000267929 0.023797831 

R11 17.3634 0.0004016 0.140465907 9.2257275 0.003806498 0.100330646 

R12 1.1264 -0.000355 0.026631272 2.0801127 0.000524211 0.025061159 

R13 1.9816 0.0009964 0.058822388 1.9040982 0.001508324 0.046231817 

R14 4.3266 1.7E-05 0.055995512 4.3348 -0.002431407 0.053483545 

R15 0.7268 0.0002005 0.025144312 0.8516591 -3.71552E-05 0.020583409 

R16 1.54 -0.0015181 0.04266338 1.5176261 -0.000362108 0.037823468 

R17 2.0802 -0.0001873 0.056832367 1.8941 -0.004174457 0.051473707 

R18 1.4975 0.0004078 0.040167887 3.5882264 -0.00162776 0.047140766 

R19 0.8576 0.0003168 0.033601727 1.1633837 0.001405383 0.024407277 

R20 0.8354 -5.977E-05 0.039811917 0.9215725 0.002310314 0.032003372 

R21 1.3452 -0.0004507 0.030431118 1.2508864 -0.000466248 0.025072136 

R22 1.859 0.0003872 0.046212477 1.5991456 0.002692214 0.035672043 

R23 1.2843 0.0001936 0.049984009 2.0200884 -0.003315627 0.045597329 
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Table B.11 Statistical Summary of Forced-latency and SVR Solutions Based on 2019 Researched 

year (GPS Constellation). 

Satellite number 

Forced-latency solution SVR solution 

Range Mean 
Standard 

deviation 
Range Mean 

Standard 

deviation 

G01 0.439 -3.613E-05 0.011379166 0.2401662 5.75456E-06 0.007155902 

G02 0.6868 4.765E-05 0.025602174 0.4490141 5.6799E-06 0.016725165 

G03 0.4646 -6.798E-06 0.009647712 0.2595149 -1.62033E-05 0.006640761 

G05 0.4297 0.0001105 0.036282182 0.2551995 -7.87978E-05 0.023564363 

G06 2.6457 -0.0001671 0.038067975 1.8422589 4.22479E-05 0.023598273 

G07 0.466 0.0001324 0.026535446 0.2546985 -0.000219135 0.017494474 

G08 3.2704 0.0001911 0.054260502 3.4005719 -0.000425012 0.036399809 

G09 0.3946 5.072E-05 0.009933569 0.2421975 -4.37754E-05 0.006586248 

G10 0.2529 0.0001554 0.007726498 0.13185 -0.000108034 0.005108184 

G11 0.41 0.0001501 0.026122454 0.230093 -7.99941E-05 0.01747204 

G12 0.499 6.621E-05 0.029919431 0.3333164 -1.37256E-05 0.019088182 

G13 0.792 3.678E-05 0.023977226 0.476684 -7.33536E-05 0.015698894 

G14 0.3403 0.0001124 0.02444168 0.1883986 -0.000135338 0.015960487 

G15 0.9867 -8.8E-05 0.027099498 0.7703019 0.000197906 0.018346197 

G16 0.5838 0.0002217 0.02844636 0.3066183 -0.000288169 0.018521159 

G17 1.8075 -0.000377 0.041137835 1.6431365 0.000378356 0.029781711 

G19 0.6637 0.0001123 0.026641516 0.4042983 -0.000147606 0.0173603 

G20 0.5264 -6.058E-05 0.028871535 0.2941554 0.000227905 0.018832566 

G21 2.0832 -0.0001487 0.041166446 1.2152302 0.000237225 0.026762567 

G22 0.558 0.0001397 0.027393055 0.3275938 8.94911E-05 0.017751455 

G23 0.3479 0.0001953 0.023208843 0.1761486 -0.000111299 0.015171014 

G24 2.9563 2.747E-05 0.061249378 2.6238387 -0.000900496 0.037209757 

G25 0.4358 -6.613E-06 0.010194386 0.2642173 -1.18048E-05 0.006815088 

G26 0.2492 0.0001346 0.008776027 0.14075 -0.000147555 0.005956392 

G27 0.2867 -3.086E-05 0.009109123 0.16835 2.44933E-06 0.006034831 

G28 2.1737 -7.109E-05 0.041901382 1.2993118 0.000117287 0.029149388 

G29 1.2161 -0.0003836 0.032993237 0.6557619 0.000208123 0.021404457 

G30 1.0351 -0.0001859 0.017255397 1.7990917 -0.000452917 0.023479395 

G31 0.3414 -0.0001684 0.025143984 0.2013592 0.000260472 0.016435871 

G32 1.7505 -2.9E-05 0.020453667 0.9804059 -4.35585E-05 0.012437483 
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Table B.12 Statistical Summary of Forced-Latency and SVR Solutions Based on 2019 Researched 

year (GLONASS Constellation). 

Satellite number 

Forced-latency solution SVR solution 

Range Mean 
Standard 

deviation 
Range Mean 

Standard 

deviation 

R01 1.2667 -0.0005381 0.044852227 1.6459399 -1.47015E-05 0.036475206 

R02 2.3813 0.0005844 0.055542537 1.6432151 -0.000215276 0.034669574 

R03 1.5971 6.946E-05 0.037646967 2.674892 -0.000440744 0.036589049 

R05 4.0259 3.052E-05 0.06280272 4.2750901 -0.000575576 0.040383806 

R07 0.89 0.0003981 0.037082986 2.7426026 0.000476589 0.034814261 

R08 9.7221 -0.0014347 0.142262745 10.168702 -0.000330068 0.089811404 

R09 0.8984 0.0005545 0.03063252 0.6059657 -0.000523577 0.020421729 

R11 17.3634 0.0004016 0.140465907 17.3529 0.000170097 0.138700751 

R12 1.1264 -0.000355 0.026631272 0.7270242 0.000291128 0.01706238 

R13 1.9816 0.0009964 0.058822388 2.35595 0.000318291 0.047560052 

R14 4.3266 1.7E-05 0.055995512 4.2407982 -0.000493659 0.048550441 

R15 0.7268 0.0002005 0.025144312 0.4907162 -0.000115515 0.016011171 

R16 1.54 -0.0015181 0.04266338 1.7376004 0.000648761 0.034577753 

R17 2.0802 -0.0001873 0.056832367 3.016321 -0.000465259 0.044202434 

R18 1.4975 0.0004078 0.040167887 2.9616841 -0.000850659 0.038286375 

R19 0.8576 0.0003168 0.033601727 1.3018625 -5.11668E-06 0.02431003 

R20 0.8354 -5.977E-05 0.039811917 1.7986419 0.001424976 0.035755842 

R21 1.3452 -0.0004507 0.030431118 2.6475604 -0.000199289 0.029528062 

R22 1.859 0.0003872 0.046212477 2.0813513 -0.000566557 0.038279138 

R23 1.2843 0.0001936 0.049984009 3.9600635 -0.000940583 0.060625801 
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Table B.13 Statistical Summary of Forced-latency and ARIMA Solutions Based on 2015 

Researched year (GPS Constellation). 

Satellite number 

Forced-latency solution ARIMA solution 

Range Mean 
Standard 

deviation 
Range Mean 

Standard 

deviation 

G01 0.333 -5.273E-05 0.00909752 0.3242235 -0.000248144 0.007820062 

G02 0.741 0.0002909 0.023296129 0.6939566 -0.000157102 0.014151568 

G03 0.655 2.743E-05 0.0132895 0.828527 0.000289129 0.012921966 

G04 0.981 6.408E-05 0.022790773 1.1181983 0.000518605 0.020421421 

G05 0.317 -0.000114 0.028967581 0.2658293 0.000366258 0.018017528 

G06 0.263 0.0002172 0.008778312 0.2722939 -0.000261065 0.006624563 

G07 0.744 0.0004564 0.025195851 0.7117699 -2.00183E-06 0.015086769 

G09 0.374 -3.047E-05 0.009704824 0.3795465 -0.000142499 0.007344769 

G10 2.112 0.0004271 0.044316855 2.1084485 0.001877721 0.037006101 

G11 0.898 -4.067E-05 0.02805203 0.8504914 0.000388717 0.017383585 

G12 0.382 3.653E-05 0.028015979 0.4723849 -0.000294015 0.016836618 

G13 0.941 -0.000111 0.030520925 0.8380023 0.000715787 0.020259934 

G14 0.307 -3.299E-05 0.021447792 0.2868796 0.0001323 0.012654547 

G15 0.328 -1.301E-06 0.021752809 0.3170153 -0.000304117 0.013030659 

G16 0.466 5.521E-05 0.027292193 0.4744565 -2.58369E-05 0.016488228 

G17 1.899 -0.0004291 0.04170652 1.9443379 -0.000103104 0.030319983 

G18 0.293 6.857E-05 0.025589103 0.2856948 -0.000258349 0.015666896 

G19 1.755 -0.0001725 0.055873003 1.776 0.000251468 0.046303807 

G20 0.254 3.065E-05 0.023321096 0.207086 1.89975E-07 0.012958596 

G21 0.353 7.342E-05 0.030232463 0.3017321 0.000327391 0.0177551 

G22 0.748 -0.000128 0.025238698 0.7120039 -3.18399E-06 0.018090246 

G23 0.557 -0.000157 0.022495126 0.6303225 0.000246582 0.016092017 

G24 1.136 -0.0005361 0.03609758 1.0587767 -0.000465688 0.027043333 

G25 0.336 -6.786E-05 0.010054452 0.3280871 0.000242557 0.007287116 

G27 0.456 -8.986E-05 0.011311564 0.4597131 0.000363394 0.008312748 

G28 1.27 0.0002574 0.034583084 1.2407854 -0.000460882 0.025277609 

G29 0.269 0.0001061 0.022763163 0.4451302 -0.000193528 0.013630155 

G30 0.278 2.979E-05 0.007920279 0.3726284 -0.000109973 0.006974728 

G31 1.612 -0.0001265 0.03495725 1.6139954 -6.24661E-05 0.030165203 

G32 0.382 -7.058E-05 0.011021359 0.3853837 -0.000299757 0.007730302 
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Table B.14 Statistical Summary of Forced-latency and ARIMA Solutions Based on 2015 

Researched year (GLONASS Constellation).  

Satellite number 

Forced-latency solution ARIMA solution 

Range Mean 
Standard 

deviation 
Range Mean 

Standard 

deviation 

R01 0.546 3.038E-05 0.036121797 0.6246872 0.001927429 0.026325306 

R02 2.316 -0.0008566 0.057919785 2.2845486 0.00453958 0.04922714 

R03 1.408 -0.000362 0.048423642 1.381 0.003786403 0.037946382 

R04 1.427 -0.0003837 0.055222001 1.3969241 0.005302176 0.042291043 

R05 1.172 -5.923E-05 0.049744366 1.1879874 0.005245397 0.039238565 

R06 0.849 -0.0001494 0.05369412 0.9650364 0.003747721 0.038902436 

R07 0.95 -0.0006319 0.047715148 0.9102557 -0.003027989 0.033886877 

R09 0.866 -0.0001759 0.038310681 0.8528298 0.003419693 0.027920203 

R10 1.966 -0.0005616 0.056358779 2.0550822 0.003678198 0.045431847 

R11 2.174 1.404E-05 0.050832264 2.1834255 0.001571883 0.041746199 

R12 3.298 -0.001085 0.072087213 3.3540996 0.004663016 0.065447329 

R13 2.935 -7.011E-05 0.072189921 2.8451702 -0.005133886 0.059270295 

R14 1.359 -0.0008041 0.05047457 1.454824 0.003638915 0.038881329 

R15 8.974 0.0032773 0.182034754 8.8736438 -0.001282992 0.162290778 

R16 3.646 -0.0002614 0.060611247 2.1625603 0.002908539 0.04139812 

R17 0.889 -0.0003324 0.04184499 0.8640992 0.002676213 0.031796108 

R18 1.624 0.0003114 0.04024695 1.6203617 0.002753374 0.029822151 

R19 2.267 3.629E-05 0.07224285 2.2440426 -0.008996875 0.057888453 

R20 1.777 -0.0006339 0.05324257 1.8073263 -0.005339005 0.041808179 

R21 1.006 -0.0002496 0.02980887 0.9765663 -0.00185674 0.019671132 

R22 1.352 0.0003452 0.043962833 1.3590036 0.00285239 0.030168146 

R23 3.085 0.0011883 0.063498515 3.0357151 -0.002284023 0.057313009 

R24 2.797 0.0004878 0.062712622 2.7728655 -0.004225475 0.053038346 
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Table B.15 Statistical Summary of Forced-Latency and SVR Solutions Based on 2015 Researched 

year (GPS Constellation). 

Satellite number Forced-latency solution SVR solution 

Range Mean Standard 

deviation 

Range Mean Standard 

deviation 

G01 0.333 -5.273E-05 0.00909752 0.1924487 3.15784E-05 0.006142972 

G02 0.741 0.0002909 0.023296129 0.5504991 -0.000226304 0.016644285 

G03 0.655 2.743E-05 0.0132895 0.4237199 -3.49833E-05 0.008937737 

G04 0.981 6.408E-05 0.022790773 2.3202496 -0.000731374 0.028321218 

G05 0.317 -0.000114 0.028967581 0.1819994 4.01844E-05 0.020120922 

G06 0.263 0.0002172 0.008778312 0.139491 -0.000184845 0.005976858 

G07 0.744 0.0004564 0.025195851 0.5032971 -0.00038952 0.017427882 

G09 0.374 -3.047E-05 0.009704824 0.1890757 5.91567E-05 0.006452327 

G10 2.112 0.0004271 0.044316855 2.5987751 -0.000751572 0.030282738 

G11 0.898 -4.067E-05 0.02805203 0.6310846 3.13898E-05 0.019922459 

G12 0.382 3.653E-05 0.028015979 0.2269955 -0.000167331 0.019665018 

G13 0.941 -0.000111 0.030520925 0.7594857 0.000174615 0.0215967 

G14 0.307 -3.299E-05 0.021447792 0.1714283 -4.86474E-06 0.015047718 

G15 0.328 -1.301E-06 0.021752809 0.1665 -5.17669E-05 0.015123994 

G16 0.466 5.521E-05 0.027292193 0.2337279 -5.53705E-05 0.018719229 

G17 1.899 -0.0004291 0.04170652 2.5795501 -0.000192909 0.038283339 

G18 0.293 6.857E-05 0.025589103 0.1744984 -2.15692E-05 0.017984342 

G19 1.755 -0.0001725 0.055873003 1.2457424 0.000234564 0.036743127 

G20 0.254 3.065E-05 0.023321096 0.171 -2.42994E-05 0.016547734 

G21 0.353 7.342E-05 0.030232463 0.1979976 -0.000174968 0.021221389 

G22 0.748 -0.000128 0.025238698 1.2036612 0.000131297 0.019731682 

G23 0.557 -0.000157 0.022495126 0.3672417 9.28789E-05 0.015688997 

G24 1.136 -0.0005361 0.03609758 1.8663749 0.000943184 0.028149336 

G25 0.336 -6.786E-05 0.010054452 0.1750008 8.16996E-05 0.006742096 

G27 0.456 -8.986E-05 0.011311564 0.3234925 8.12575E-05 0.007788274 

G28 1.27 0.0002574 0.034583084 0.8824857 -0.000221293 0.023956579 

G29 0.269 0.0001061 0.022763163 0.166 -0.000199324 0.016015702 

G30 0.278 2.979E-05 0.007920279 0.1415 -2.46425E-05 0.005475921 

G31 1.612 -0.0001265 0.03495725 1.252299 -0.000250302 0.019426116 

G32 0.382 -7.058E-05 0.011021359 0.2173868 6.46379E-05 0.007538734 
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Table B.16 Statistical Summary of Forced-Latency and SVR Solutions Based on 2015 Researched 

year (GLONASS Constellation). 

Satellite number Forced-latency solution SVR solution 

Range Mean Standard 

deviation 

Range Mean Standard 

deviation 

R01 0.546 3.169E-05 0.036123734 0.4952539 -0.001069845 0.024150453 

R02 2.316 -0.0008581 0.05792304 3.115046 -0.000880811 0.039595199 

R03 1.408 -0.000364 0.048426137 2.0864656 -0.000634598 0.038218841 

R04 1.427 -0.0003865 0.055224681 2.8572086 -0.002017706 0.048486876 

R05 1.172 -5.983E-05 0.049747276 2.8029139 -0.000975671 0.041211959 

R06 0.849 -0.0001522 0.053696704 2.9692865 -0.001579809 0.053303796 

R07 0.95 -0.0006328 0.047717897 2.1091777 0.000961383 0.035702542 

R09 0.866 -0.0001763 0.03831296 0.5830814 -0.000336035 0.023808827 

R10 1.966 -0.0005597 0.05636183 1.9591167 -0.001202508 0.036349565 

R11 2.174 1.515E-05 0.050835271 1.7815994 -0.000685163 0.032111443 

R12 3.298 -0.0010816 0.072090841 4.6359901 -0.000591722 0.046308089 

R13 2.935 -6.68E-05 0.072193556 4.5838613 0.001948393 0.063549439 

R14 1.359 -0.0008041 0.05047457 1.239425 3.36642E-05 0.034845299 

R15 8.974 0.0032802 0.182045324 9.7999901 0.000789923 0.111780621 

R16 3.646 -0.0002624 0.060614789 3.2288989 -0.000801528 0.039868304 

R17 0.889 -0.000336 0.041846164 0.9986178 -0.0001299 0.028220689 

R18 1.624 0.0003096 0.040249012 1.7041425 0.000160082 0.030413254 

R19 2.267 3.961E-05 0.072246477 3.0979333 0.002123586 0.063916358 

R20 1.777 -0.0006322 0.053245488 2.4684046 0.001203287 0.045748319 

R21 1.006 -0.0002475 0.029810007 0.7721141 0.000195372 0.019789071 

R22 1.352 0.0003419 0.043964403 1.1656203 -0.001079144 0.030127973 

R23 3.085 0.0011912 0.063501724 4.3376799 0.000743657 0.041739872 

R24 2.797 0.0004852 0.062715893 4.3994406 0.001362264 0.051252077 
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Table B.17 Statistical Summary of Forced-latency and ARIMA Solutions Based on 2014 

Researched year (GPS Constellation). 

Satellite number 

Forced-latency solution ARIMA solution 

Range Mean 
Standard 

deviation 
Range Mean 

Standard 

deviation 

G01 1.401 0.0001835 0.055253245 1.7871542 -0.001296629 0.044621957 

G02 0.393 9.189E-05 0.022393114 0.3989942 -0.000393805 0.014804224 

G03 2.34 0.0002333 0.049821519 2.4822041 0.001129928 0.044415966 

G04 0.665 0.0010956 0.021859628 0.687702 -0.000833242 0.017477782 

G05 0.468 0.0002803 0.025069339 0.4623345 -5.78134E-05 0.016582966 

G06 1.213 -0.0002899 0.026832343 1.2229745 0.000567175 0.019623317 

G07 1.087 0.0003083 0.029197269 1.1568829 0.00031301 0.019428258 

G08 4.594 0.0005506 0.071479703 4.6472443 -0.00095443 0.064395387 

G09 3.144 -0.0017038 0.063806462 3.1626687 0.001576698 0.059152372 

G10 0.503 -0.0015071 0.027405396 0.5166661 -0.000445392 0.018631386 

G11 0.573 4.229E-05 0.024161554 0.597151 -0.00011349 0.015308076 

G12 0.568 -8.98E-05 0.029799297 0.7035366 0.000207466 0.020828129 

G13 0.463 -2.99E-05 0.034820628 0.4524916 0.000271384 0.024149105 

G14 0.41 0.0001368 0.021958181 0.3956864 -5.32015E-05 0.014574374 

G15 1.071 0.0002443 0.027394448 1.0583683 -0.000486138 0.019232217 

G16 0.41 0.0001019 0.026958175 0.4290365 -0.00027835 0.017635582 

G17 1.129 -0.0003564 0.034032555 1.099983 0.000509427 0.021570862 

G18 0.346 1.784E-05 0.024690442 0.3826751 -9.94428E-05 0.016197407 

G19 0.858 4.971E-05 0.02570127 0.7885742 -0.000291438 0.019685517 

G20 0.31 -6.779E-05 0.023630047 0.3649347 0.000111614 0.015905719 

G21 0.852 0.0001772 0.032818552 0.8544505 0.000443198 0.020416777 

G22 0.324 -0.0001686 0.023599872 0.3140708 0.000213614 0.015527081 

G23 0.323 3.013E-05 0.02178726 0.3375998 3.55564E-06 0.014867581 

G24 1.248 0.0001137 0.036168179 1.1962703 0.000321761 0.027908781 

G25 0.281 3.036E-05 0.011582443 0.2579192 0.000284218 0.009385093 

G26 1.268 1.205E-05 0.023898477 1.2562432 -0.0002716 0.022119495 

G27 4.372 0.0004042 0.061833612 4.3699304 0.000226882 0.044554784 

G28 1.159 0.0005151 0.030138706 1.1932563 -8.94451E-05 0.022209893 

G29 0.701 5.597E-05 0.028213086 0.6210117 0.000372959 0.019857597 

G31 0.774 -7.404E-05 0.024939081 0.7435909 0.000140598 0.017810907 

G32 0.747 -2.619E-05 0.016936275 0.7296885 0.000256055 0.013642087 
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Table B.18 Statistical Summary of Forced-latency and ARIMA Solutions Based on 2014 

Researched year (GLONASS Constellation). 

Satellite number 

Forced-latency solution ARIMA solution 

Range Mean 
Standard 

deviation 
Range Mean 

Standard 

deviation 

R01 3.196 0.0007508 0.061083832 3.1808462 0.001584308 0.055829477 

R02 0.878 0.0003754 0.043184594 0.884 0.003970491 0.033341775 

R03 2.156 -8.14E-05 0.051500718 2.1418422 0.004543401 0.043808055 

R04 1.086 -0.0003687 0.044296103 1.073 0.003050354 0.033297018 

R05 2.22 -0.0008689 0.058844468 2.2063464 0.003471885 0.048621564 

R06 2.304 0.0005897 0.066959618 2.277 0.002719121 0.055065941 

R07 1.214 -0.0001212 0.048149976 1.188193 -0.003720146 0.037251863 

R08 2.568 0.0005288 0.065546946 2.5738234 -0.003624479 0.066988353 

R09 2.059 0.0002589 0.054998899 2.1846512 0.003255312 0.046283751 

R10 2.115 -0.0013685 0.062275689 2.0573316 0.004006219 0.048504893 

R11 3.665 0.0007402 0.068670347 3.5750126 0.002797231 0.049504816 

R12 4.77 -0.0002072 0.080951725 5.2768954 0.004185526 0.074101277 

R13 2.569 -0.0006623 0.061958837 2.5346446 -0.003595786 0.047965067 

R14 1.591 0.0005733 0.048279358 1.56 0.002982737 0.037516862 

R15 4.393 0.0011377 0.07940703 4.3236426 0.000954633 0.059364687 

R16 2.812 -0.000617 0.062789581 2.81 0.004249444 0.055900387 

R17 1.374 -0.0004767 0.051840694 1.3537087 0.004843452 0.042994493 

R18 0.949 -0.0001396 0.046070593 0.8700777 -0.004360127 0.035076438 

R19 1.385 0.0002779 0.036238509 1.3887056 -0.002020891 0.027384802 

R20 2.217 -0.0003828 0.058276978 2.2029216 -0.004806924 0.040595848 

R21 1.95 0.0001417 0.059359688 1.8849855 -0.003774 0.041810033 

R22 3.094 -0.0007641 0.073533472 3.069454 0.004438201 0.062559975 

R23 4.152 -0.0004156 0.083092957 4.1678945 -0.005850685 0.068386046 

R24 2.626 0.0004903 0.064192913 2.6194197 -0.005768553 0.057042095 
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Table B.19 Statistical Summary of Forced-latency and SVR Solutions Based on 2014 Researched 

year (GPS Constellation). 

Satellite number 

Forced-latency solution SVR solution 

Range Mean 
Standard 

deviation 
Range Mean 

Standard 

deviation 

G01 1.401 0.0001835 0.055253245 2.0045171 0.000492485 0.046226332 

G02 0.393 9.189E-05 0.022393114 0.2104222 0.000171523 0.015808521 

G03 2.34 0.0002333 0.049821519 3.8904406 
-

0.000380691 
0.042657973 

G04 0.665 0.0010956 0.021859628 0.4914991 
-

0.000757814 
0.015319372 

G05 0.468 0.0002803 0.025069339 0.2753622 4.90234E-05 0.017763919 

G06 1.213 -0.0002899 0.026832343 1.058493 0.000449811 0.0209067 

G07 1.087 0.0003083 0.029197269 0.9264988 -1.14618E-05 0.021368584 

G08 4.594 0.0005506 0.071479703 4.6664901 0.000876046 0.049720387 

G09 3.144 -0.0017038 0.063806462 4.8743178 0.001018419 0.050983225 

G10 0.503 -0.0015071 0.027405396 0.2655876 0.001479786 0.020497306 

G11 0.573 4.229E-05 0.024161554 0.3386825 0.000240234 0.017028238 

G12 0.568 -8.98E-05 0.029799297 0.2505425 0.000216186 0.020173389 

G13 0.463 -2.99E-05 0.034820628 0.2679905 0.000201884 0.023392056 

G14 0.41 0.0001368 0.021958181 0.2096137 9.06444E-05 0.015513525 

G15 1.071 0.0002443 0.027394448 1.1924903 1.43543E-05 0.021710908 

G16 0.41 0.0001019 0.026958175 0.2273141 9.52035E-05 0.018744393 

G17 1.129 -0.0003564 0.034032555 0.7988042 0.000381241 0.023644392 

G18 0.346 1.784E-05 0.024690442 0.178 0.00021972 0.017436819 

G19 0.858 4.971E-05 0.02570127 0.6994925 9.40874E-05 0.018644438 

G20 0.31 -6.779E-05 0.023630047 0.191 0.000245889 0.016702429 

G21 0.852 0.0001772 0.032818552 1.5349727 6.57814E-05 0.02562605 

G22 0.324 -0.0001686 0.023599872 0.1765 0.000314845 0.016805378 

G23 0.323 3.013E-05 0.02178726 0.175 0.000209298 0.015330714 

G24 1.248 0.0001137 0.036168179 1.0519948 0.000117586 0.026504788 

G25 0.281 3.036E-05 0.011582443 0.1425 0.000236915 0.008133785 

G26 1.268 1.205E-05 0.023898477 0.9041154 0.000239897 0.016489446 

G27 4.372 0.0004042 0.061833612 4.369 -4.75265E-05 0.060097617 

G28 1.159 0.0005151 0.030138706 0.8059043 
-

0.000224418 
0.021123971 

G29 0.701 5.597E-05 0.028213086 0.4245433 0.000176899 0.019648283 

G31 0.774 -7.404E-05 0.024939081 0.5111543 0.000220962 0.017289343 

G32 0.747 -2.619E-05 0.016936275 1.0227315 0.00023658 0.013760304 
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Table B.20 Statistical Summary of Forced-latency and SVR Solutions Based on 2014 Researched 

year (GLONASS Constellation). 

Satellite number 

Forced-latency solution SVR solution 

Range Mean Standard deviation Range Mean 
Standard 

deviation 

R01 3.196 0.0007508 0.061083832 4.3764882 
-

0.000817006 
0.041672729 

R02 0.878 0.0003754 0.043184594 2.5333078 
-

0.001618455 
0.041832649 

R03 2.156 -8.14E-05 0.051500718 2.1870055 
-

0.001320328 
0.038612251 

R04 1.086 -0.0003687 0.044296103 1.5547421 
-

0.001632041 
0.037807062 

R05 2.22 -0.0008689 0.058844468 1.7537802 
-

0.000363356 
0.039847677 

R06 2.304 0.0005897 0.066959618 3.4466792 -0.00148489 0.05708544 

R07 1.214 -0.0001212 0.048149976 3.0473675 0.000843724 0.045744407 

R08 2.568 0.0005288 0.065546946 3.946845 
-

0.000157942 
0.060394081 

R09 2.059 0.0002589 0.054998899 2.7261864 
-

0.002476592 
0.051408929 

R10 2.115 -0.0013685 0.062275689 2.5240879 -0.00088034 0.04834449 

R11 3.665 0.0007402 0.068670347 3.2135363 -0.00102302 0.046457556 

R12 4.77 -0.0002072 0.080951725 4.598991 
-

0.002015078 
0.05663822 

R13 2.569 -0.0006623 0.061958837 2.2336686 0.001830206 0.050946188 

R14 1.591 0.0005733 0.048279358 2.9694963 
-

0.001310935 
0.041482063 

R15 4.393 0.0011377 0.07940703 4.327 
-

0.001379543 
0.061894976 

R16 2.812 -0.000617 0.062789581 4.3153534 
-

0.000781464 
0.049277404 

R17 1.374 -0.0004767 0.051840694 2.8417083 
-

0.000953287 
0.040215181 

R18 0.949 -0.0001396 0.046070593 2.6467751 0.000948304 0.043490281 

R19 1.385 0.0002779 0.036238509 1.0654953 
-

0.000428741 
0.02479094 

R20 2.217 -0.0003828 0.058276978 2.8012833 0.000461361 0.05111428 

R21 1.95 0.0001417 0.059359688 3.0195112 0.000551666 0.049125637 

R22 3.094 -0.0007641 0.073533472 4.3056553 
-

0.000815026 
0.059656891 

R23 4.152 -0.0004156 0.083092957 4.4133408 0.001313659 0.076973645 

R24 2.626 0.0004903 0.064192913 4.4096259 0.001313713 0.046104237 
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Table B.21 Statistical Summary of Forced-latency and ARIMA Solutions Based on 2013 

Researched year (GLONASS Constellation). 

Satellite 
number 

Forced-latency solution ARIMA solution 

Range Mean 
Standard 

deviation 
Range Mean 

Standard 

deviation 

G01 4.524 2.214E-05 0.113219584 4.3152419 0.000412172 0.095546135 

G02 4.528 -0.0001558 0.114644535 4.3049571 0.000164164 0.093243598 

G03 4.494 0.0002644 0.116290877 4.2784164 -0.001286178 0.096421332 

G04 4.56 -0.0003351 0.113958866 4.3278427 0.000445873 0.093641375 

G05 4.503 -4.591E-05 0.116437751 4.2949872 0.000561348 0.097492565 

G06 4.535 0.0009638 0.117282697 4.2983432 0.000362941 0.099880576 

G07 4.522 5.031E-05 0.114858805 4.3006451 -0.000350223 0.094224093 

G08 4.514 -0.0006172 0.115924161 3.8297485 0.000582576 0.093485941 

G10 2.093 -0.0001111 0.040716172 2.0711608 -4.35132E-05 0.033694879 

G11 4.555 6.956E-06 0.114827228 4.3499336 0.000494658 0.097802162 

G12 4.592 -5.947E-05 0.117314368 4.2605202 -0.000602674 0.096164001 

G13 4.519 -0.000176 0.116401185 4.2965723 0.000772992 0.095139006 

G14 4.515 0.0001523 0.114742385 4.3019331 -0.000222713 0.093621963 

G15 4.541 5.344E-05 0.114429518 4.3422824 0.000269116 0.095652011 

G16 4.539 3.408E-05 0.115586249 4.3196209 -3.79106E-05 0.094362935 

G17 4.532 0.0006339 0.115981819 3.4951773 0.000318554 0.091982881 

G18 4.498 7.014E-05 0.11538383 4.2783514 0.000226329 0.092510829 

G19 4.552 -8.115E-05 0.114826143 4.3060811 0.000476339 0.09741409 

G20 4.532 0.00011 0.115456029 4.3089099 -7.5053E-05 0.092566479 

G21 4.543 4.301E-05 0.116493919 3.5417132 5.6296E-05 0.090766801 

G22 5.637 -0.0006785 0.13177722 4.2958216 0.000943751 0.094681005 

G23 4.526 -9.552E-05 0.108120629 4.3755029 -0.000892741 0.091836013 

G24 4.481 0.0004136 0.118878095 4.2971179 -0.000241948 0.097085816 

G25 4.526 2.156E-05 0.113031117 4.3150795 -0.000390466 0.095131958 

G26 147.307 0.0054262 2.82353352 130.9763 0.054327064 2.537043094 

G27 4.52 7.234E-05 0.112938124 4.3110947 -0.000221453 0.095603441 

G28 4.521 -0.0007756 0.114873917 4.2834156 3.70082E-05 0.096127893 

G29 4.558 -0.0001834 0.115099847 4.2920824 7.3228E-05 0.095782971 

G31 4.522 0.0001483 0.115037925 3.9272715 0.000611629 0.095028241 

G32 4.521 -0.0002423 0.115831952 4.3003695 -0.000239713 0.100856781 
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Table B.22 Statistical Summary of Forced-latency and ARIMA Solutions Based on 2013 

Researched year (GLONASS Constellation).  

Satellite 

number 

Forced-latency solution ARIMA solution 

Range Mean 
Standard 

deviation 
Range Mean 

Standard 

deviation 

R01 0.853 0.0003003 0.035914985 0.8531703 -0.002052058 0.028820784 

R02 2.541 0.000814 0.0568916 2.4546138 -0.004255551 0.043121619 

R03 1.657 0.0016703 0.049545305 1.6517581 -0.003139875 0.041400314 

R04 1.78 5.539E-05 0.047432845 1.7253637 -0.002663364 0.039017396 

R05 2.957 0.0017238 0.062555041 3.9096639 -0.000308441 0.061157744 

R06 1.166 -0.0008132 0.056694957 1.4676263 -0.004229056 0.043612214 

R07 4.214 0.0015586 0.089041173 4.2017113 0.005855935 0.078999295 

R08 1.113 -0.0019857 0.042954156 1.1123399 0.001740154 0.035356772 

R09 2.262 -0.0004124 0.060189454 2.4285843 -0.003144464 0.050467383 

R10 2.779 -0.0020669 0.080693869 3.0012063 -0.005592663 0.065775092 

R11 2.184 0.000432 0.051560356 2.1487829 -0.002099275 0.041310303 

R12 2.696 -0.0012306 0.063993089 2.7533644 -0.004287944 0.046505488 

R13 3.388 0.0009419 0.075902034 3.3497447 0.005327002 0.063409552 

R14 2.916 0.000343 0.059521438 3.0064648 -0.005003884 0.058282652 

R15 1.224 -0.0014188 0.053755267 1.1929346 -0.001165544 0.036636352 

R16 4.268 0.0001423 0.070703202 4.1942219 -0.00274366 0.062728897 

R17 1.535 -8.505E-05 0.053182272 1.5524009 -0.004959647 0.043219755 

R18 2.972 -8.273E-05 0.06271845 3.5735753 0.002443143 0.064178235 

R19 2.104 -0.0007655 0.045680332 2.1419604 0.001548186 0.037648472 

R20 1.99 0.0003441 0.058459586 1.9873337 0.005920608 0.043840373 

R21 4.826 -0.0012689 0.084729554 7.0830178 0.002348156 0.088289045 

R22 1.798 0.0001876 0.047856472 1.7875452 -0.003606159 0.038810686 

R23 1.513 -0.0007988 0.052560156 1.4760539 0.003903133 0.043132534 

R24 1.392 0.0005482 0.051545399 1.5116174 0.004161983 0.040519649 
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Table B.23 Statistical Summary of Forced-latency and SVR Solutions Based on 2013 Researched 

year (GPS Constellation). 

Satellite number 

Forced-latency solution SVR solution 

Range Mean 
Standard 

deviation 
Range Mean 

Standard 

deviation 

G01 4.524 2.214E-05 0.113219584 4.1492422 -0.00037365 0.073135719 

G02 4.528 -0.0001558 0.114644535 4.1432917 -0.000227278 0.075021847 

G03 4.494 0.0002644 0.116290877 4.477 -0.001811847 0.129866273 

G04 4.56 -0.0003351 0.113958866 4.4064989 -0.000756201 0.117789528 

G05 4.503 -4.591E-05 0.116437751 4.1551009 -0.000572552 0.079307802 

G06 4.535 0.0009638 0.117282697 4.3910009 -0.00179688 0.119698239 

G07 4.522 5.031E-05 0.114858805 4.51 -0.001469496 0.11948479 

G08 4.514 -0.0006172 0.115924161 4.1284808 -0.000107796 0.117825561 

G10 2.093 -0.0001111 0.040716172 1.5289391 0.000208011 0.031116623 

G11 4.555 6.956E-06 0.114827228 4.1359178 -0.000388268 0.074752672 

G12 4.592 -5.947E-05 0.117314368 4.521 -8.92704E-05 0.120944704 

G13 4.519 -0.000176 0.116401185 4.1764826 -0.000312175 0.078740916 

G14 4.515 0.0001523 0.114742385 4.1321521 0.000157946 0.111521226 

G15 4.541 5.344E-05 0.114429518 4.2393036 -0.000345716 0.111768622 

G16 4.539 3.408E-05 0.115586249 4.18278 -0.00166823 0.112397664 

G17 4.532 0.0006339 0.115981819 4.2801739 0.000916512 0.115059514 

G18 4.498 7.014E-05 0.11538383 4.1559909 -0.000398024 0.074858751 

G19 4.552 -8.115E-05 0.114826143 4.1752764 -0.000247086 0.074469071 

G20 4.532 0.00011 0.115456029 4.129442 -0.000410075 0.075454325 

G21 4.543 4.301E-05 0.116493919 4.516 -9.70959E-05 0.120648225 

G22 5.637 -0.0006785 0.13177722 5.482002 -0.001821468 0.126179439 

G23 4.526 -9.552E-05 0.108120629 4.1300565 -0.000223627 0.070807168 

G24 4.481 0.0004136 0.118878095 4.512 -0.001794379 0.098906926 

G25 4.526 2.156E-05 0.113031117 4.1743894 -0.00109998 0.111991553 

G26 147.307 0.0054262 2.82353352 147.323 0.022490716 2.273495062 

G27 4.52 7.234E-05 0.112938124 4.148937 -0.000444153 0.072977622 

G28 4.521 -0.0007756 0.114873917 4.1712072 -4.18214E-05 0.077524381 

G29 4.558 -0.0001834 0.115099847 4.1710375 -0.000177941 0.075243937 

G31 4.522 0.0001483 0.115037925 4.502 4.6776E-05 0.121848107 

G32 4.521 -0.0002423 0.115831952 4.3840011 -6.52526E-05 0.091893891 
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Table B.24 Statistical Summary of Forced-latency and SVR Solutions Based on 2013 Researched 

year (GLONASS Constellation). 

Satellite number 

Forced-latency solution SVR solution 

Range Mean 
Standard 

deviation 
Range Mean 

Standard 

deviation 

R01 0.853 0.0003003 0.035914985 1.5266318 -0.000655961 0.027008271 

R02 2.541 0.000814 0.0568916 2.9135088 -0.002252255 0.053075546 

R03 1.657 0.0016703 0.049545305 3.5725932 -0.002822408 0.048588235 

R04 1.78 5.539E-05 0.047432845 1.812981 -0.000337851 0.034127235 

R05 2.957 0.0017238 0.062555041 4.2265878 -0.001824568 0.050450013 

R06 1.166 -0.0008132 0.056694957 1.221267 0.000308368 0.039905054 

R07 4.214 0.0015586 0.089041173 5.5990409 0.001105644 0.061771656 

R08 1.113 -0.0019857 0.042954156 0.8194638 0.002617234 0.028589356 

R09 2.262 -0.0004124 0.060189454 2.3580313 -0.000138748 0.044426805 

R10 2.779 -0.0020669 0.080693869 4.4440489 0.000337731 0.059846879 

R11 2.184 0.000432 0.051560356 1.9432519 -0.000643363 0.036338333 

R12 2.696 -0.0012306 0.063993089 3.6204901 -0.000538829 0.045437829 

R13 3.388 0.0009419 0.075902034 4.2899901 0.001021206 0.051665549 

R14 2.916 0.000343 0.059521438 2.8195463 -0.001512039 0.038555423 

R15 1.224 -0.0014188 0.053755267 2.5734562 6.57325E-05 0.043025618 

R16 4.268 0.0001423 0.070703202 4.248 3.89551E-06 0.052684294 

R17 1.535 -8.505E-05 0.053182272 1.1820543 -0.000111345 0.035739941 

R18 2.972 -8.273E-05 0.06271845 3.204991 0.000384649 0.051976204 

R19 2.104 -0.0007655 0.045680332 2.2496893 0.001339152 0.034033721 

R20 1.99 0.0003441 0.058459586 2.2869683 0.000310951 0.048529031 

R21 4.826 -0.0012689 0.084729554 4.8086722 0.001228683 0.068592611 

R22 1.798 0.0001876 0.047856472 3.0365085 -0.000540927 0.0406655 

R23 1.513 -0.0007988 0.052560156 2.5263573 0.001418247 0.040713506 

R24 1.392 0.0005482 0.051545399 1.2453906 0.000107334 0.036864281 
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Figure B.1 BREST station coordinates solutions residuals according to 2021 data. 

(Prepared by the author). 

 

Figure B.2 ABMF station coordinates solutions residuals according to 2021 data. 

(Prepared by the author). 
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Figure B.3 ANKR station coordinates solutions residuals according to 2021 data. 

(Prepared by the author). 

 

Figure B.4 UNBJ station coordinates solutions residuals according to 2021 data. 

(Prepared by the author). 
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Figure B.5 UNBJ station east component residuals according to 2021 data 

(Prepared by the author). 

 

Figure B.6 UNBJ station north component residuals according to 2021 data 

(Prepared by the author). 
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Figure B.7 UNBJ station Up component residuals according to 2021 data 

(Prepared by the author). 

 

Figure B.8 HOFN station coordinates solutions residuals according to 2021 data. 

(Prepared by the author). 
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Figure B.9 KERG station coordinates solutions residuals according to 2021 data. 

(Prepared by the author). 

 

Figure B.10 NTUS station coordinates solutions residuals according to 2021 data. 

(Prepared by the author). 
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Appendix.C                                                                                 

Analyzing RT-PPP EWS Research Experiment Comprehensive 

Statistical Summaries    

Table C.1 Summary of 2-centimeters Vertical Displacement Experiment at 10 Degrees Elevation 

Angle with High Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-04-17 23:24:56 2022-04-19 00:46:24 24 91290 

  Coordinates components (m) Displacement components (m) Latency 

 
 X Y Z East North UP Seconds 

Mean  4455834 3127064 3314433 -0.16114 0.034825 -0.14608 32.06 

Standard 

deviation 
 0.393469 0.654338 0.879729 0.41735 0.58147 0.919028 1.75 

Minimum  4455823 3127055 3314425 -5.5291 -4.6009 -10.8696 30.22 

Maximum  4455839 3127067 3314434 2.8829 3.5126 5.4947 41.67 

Table C.2 Summary of 3.75-centimeters Vertical Displacement Experiment at 10 Degrees 

Elevation Angle with High Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-04-19 21:25:09 2022-04-20 21:29:34 24 86666 

 Coordinates components (m) Displacement components (m) Latency 

 
X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.023592 -0.03255 0.054975 33.54 

Standard 

deviation 
0.148353 0.238717 0.318546 0.127974 0.300612 0.271516 1.57 

Minimum 4455830 3127060 3314426 -1.604 -5.385 -7.1358 31.73 

Maximum 4455836 3127066 3314440 1.3924 4.4135 6.759 42.89 
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Table C.3 Summary of 5-centimeters Vertical Displacement Experiment at 10 Degrees Elevation 

Angle with High Latency Stream. 

Start date End date 
Duration 

(hours) 

# of 

events 

2022-04-20 21:32:32 2022-04-21 20:46:04 24 83616 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455833 3127064 3314433 0.002814 -0.3725 -0.64498 26.07 

Standard 

deviation 
2.244827 1.485629 1.638109 0.604309 1.887514 2.449866 3.079 

Minimum 4455824 3127059 3314426 -1.6821 -5.4618 -9.5415 22.75 

Maximum 4455843 3127072 3314445 2.5602 3.8945 16.7481 36.62 

 Table C.4 Summary of 10-centimeters Vertical Displacement Experiment at 10 Degrees Elevation 

Angle with High Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-04-20 21:32:32 2022-04-21 20:46:04 24 103134 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.043 0.009764 0.114018 34.69 

Standard 

deviation 
0.066557 0.053325 0.048074 0.04623 0.028939 0.081301 0.33 

Minimum 4455833 3127064 3314433 -0.073 -0.1553 -0.1729 30.47 

Maximum 4455834 3127064 3314433 0.1917 0.123 0.3687 38.9 

Table C.5 Summary of 15-centimeters Vertical Displacement Experiment at 10 Degrees Elevation 

Angle with High Latency Stream.  

Start date End date 
Duration 

(hours) 
# of events 

2022-04-23 14:00:26 2022-04-24 13:29:09 24 84523 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.021852 0.001917 0.053161 16.37 

Standard 

deviation 
0.098908 0.051432 0.064702 0.049906 0.028509 0.115373 0.34 

Minimum 4455833 3127064 3314433 -0.0802 -0.1053 -0.2987 30.40 

Maximum 4455834 3127064 3314433 0.1628 0.128 0.3431 42.82 
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Table C.6 Summary of 20-centimeters Vertical Displacement Experiment at 10 Degrees Elevation 

Angle with High Latency Stream.  

Start date End date 
Duration 

(hours) 
# of events 

2022-04-24 13:30:59 2022-04-25 13:31:59 24 85129 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 -0.05941 -0.40578 0.03534 31.81956 

Standard 

deviation 
1.574038 1.111771 2.27902 0.341906 1.653282 2.461163 0.258519 

Minimum 4455829 3127059 3314418 -2.4168 -10.1569 -12.079 31.19 

Maximum 4455845 3127072 3314436 5.5596 0.1887 13.5634 32.51 

Table C.7 Summary of 2.5-centimeters Vertical Displacement Experiment at 10 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-01-09 08:43:44 2022-01-09 21:04:34 12 52920 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.00191 0.0159 0.084142 13.86554 

Standard 

deviation 
0.043718 0.030175 0.040868 0.025083 0.022659 0.057874 0.382081 

Minimum 4455834 3127064 3314433 -0.0671 -0.0565 -0.0668 13.06 

Maximum 4455834 3127064 3314434 0.1591 0.3972 0.4714 19.3 

 

 

 

 

 

 



322 

 

Table C.8 Summary of 2-centimeters Vertical Displacement Experiment at 10 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 

# of 

events 

2022-04-16 07:26:37 2022-04-16 20:31:00 24 99280 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455833 3127064 3314433 0.016859 0.117826 -0.23043 15.76 

Standard 

deviation 
1.671532 0.706984 0.485649 0.417101 0.570332 1.740818 0.43 

Minimum 4455816 3127058 3314430 -0.6474 -0.1391 -15.3946 14.8 

Maximum 4455834 3127064 3314433 5.0239 8.9736 0.331 24.54 

Table C.9 Summary of 3.75-centimeters Vertical Displacement Experiment at 10 Degrees 

Elevation Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-04-16 07:26:37 2022-04-16 20:31:00 24 98219 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455833 3127064 3314433 0.072063 -0.02337 -0.16253 14.13 

Standard 

deviation 
1.508415 0.896478 0.820706 0.367798 1.00537 1.614467 0.47 

Minimum 4455817 3127054 3314426 -0.3394 -6.8425 -20.3132 13.09 

Maximum 4455836 3127066 3314436 4.3178 6.4798 3.8183 26.33 
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Table C.10 Summary of 5-centimeters Vertical Displacement Experiment at 10 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date Duration 

(hours) 
# of events 

2021-12-18 07:20:30 2021-12-18 20:00:04 12  52900 

 Coordinates components (m) Displacement components (m) Latency 
 

X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 -0.01014 0.013717 0.037007 20.31731 

Standard 

deviation 

0.03781 0.044361 0.028874 0.027794 0.02344 0.053938 5.061788 

Minimum 4455834 3127064 3314433 -0.0732 -0.0515 -0.1131 13.03 

Maximum 4455834 3127064 3314433 0.0859 0.0819 0.1804 32.39 

Table C.11 Summary of 10-centimeters Vertical Displacement Experiment at 10 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-01-08 06:06:46 2022-01-08 18:01:49 12 51210 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 -0.01213 0.028169 0.068581 13.76434 

Standard 

deviation 
0.061782 0.047156 0.044476 0.017054 0.026995 0.083662 0.373289 

Minimum 4455834 3127064 3314433 -0.0694 -0.0318 -0.1226 13.01 

Maximum 4455834 3127064 3314433 0.0387 0.0956 0.2692 23.18 
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Table C.12 Summary of 10-centimeters Vertical Displacement Experiment at 10 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-04-10 18:02:06 2022-04-11 19:43:04 24 101041 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 -0.08568 0.09293 0.010834 16.49989 

Standard 

deviation 
0.168984 0.495776 0.468236 0.405231 0.338247 0.46365 0.530498 

Minimum 4455833 3127060 3314431 -3.3461 -1.3797 -2.1234 15.48 

Maximum 4455839 3127070 3314445 2.5575 6.2629 12.889 29.85 

Table C.13 Summary of 15-centimeters Vertical Displacement Experiment at 10 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-01-11 08:53:23 2022-01-11 21:12:24 12 52770 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Seconds East North UP Seconds 

Mean 4455834 3127064 3314433 0.00093 0.012714 0.751067 13.79182 

Standard 

deviation 
0.072877 0.059827 0.054549 0.032805 0.01494 1.372916 0.471851 

Minimum 4455834 3127064 3314433 -0.0842 -0.0248 -0.3049 13.04 

Maximum 4455834 3127064 3314433 0.0675 0.0752 5.4645 39.29 
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Table C.14 Summary of 20-centimeters Vertical Displacement Experiment at 10 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 

# of 

events 

2022-01-12 07:08:31 2022-01-13 20:09:24 12 158464 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.230621 -0.12062 0.751067 15.08206 

Standard 

deviation 
0.934523 1.03006 0.765221 0.676825 0.42063 1.372916 0.619147 

Minimum 4455833 3127063 3314433 -1.7853 -1.1935 -0.3049 13.64 

Maximum 4455837 3127068 3314437 2.0979 1.8218 5.4645 23.96 

Table C.15 Summary of 20-centimeters Vertical Displacement Experiment at 10 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 

# of 

events 

2022-04-14 21:40:34 2022-04-15 22:19:54 24 105881 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 -0.01722 0.012998 0.036249 14.76666 

Standard 

deviation 
0.093981 0.078422 0.066231 0.052122 0.021642 0.127216 0.43232 

Minimum 4455833 3127064 3314433 -0.168 -0.0863 -0.2194 13.79 

Maximum 4455834 3127064 3314433 0.0877 0.0828 0.3033 23.32 

Table C.16 Summary of 2.5-centimeters Vertical Displacement Experiment at 20 Degrees 

Elevation Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-05-26 16:41:42 2022-05-27 09:52:04 24 73653 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314434 -0.26714 0.225551 0.98772 14.50664 

Standard 

deviation 
10.98553 5.068923 6.485626 2.41567 1.455005 13.43454 0.355711 

Minimum 4455706 3126998 3314361 -42.0632 -12.1581 -159.099 13.73 
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Maximum 4456021 3127145 3314543 19.1993 15.1209 227.0894 20.22 

Table C.17 Summary of 5-centimeters Vertical Displacement Experiment at 20 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-05-27 20:05:40 2022-05-28 19:54:29 24 71712 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314434 0.164519 -0.09456 0.868278 14.0704 

Standard 

deviation 
3.807372 2.093448 2.10172 1.364933 0.918858 4.537454 0.583749 

Minimum 4455816 3127056 3314428 -16.8678 -13.8189 -18.6646 13.13 

Maximum 4455902 3127092 3314473 10.8567 5.9556 82.3654 33.78 

Table C.1 Summary of 10-centimeters Vertical Displacement Experiment at 20 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 

# of 

events 

2022-05-28 19:56:45 2022-05-29 19:16:49 24 99321 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.132406 -0.01149 0.186443 11.69356 

Standard 

deviation 
1.154719 0.766881 0.510188 0.662717 0.482178 1.228855 229.3005 

Minimum 4455821 3127053 3314421 -11.3703 -9.5102 -16.1644 -43185.6 

Maximum 4455848 3127072 3314441 7.1259 5.0555 16.0803 24.36 

Table C.19 Summary of 15-centimeters Vertical Displacement Experiment at 20 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-05-29 19:21:05 2022-05-30 18:42:15 24 100000 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.058414 0.072087 0.154462 15.52544 
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Standard 

deviation 
2.209989 1.123966 1.344911 0.597571 0.697826 2.666849 0.383278 

Minimum 4455824 3127059 3314427 -13.0323 -13.5603 -12.2753 14.62 

Maximum 4455886 3127084 3314451 3.5265 6.2583 55.5203 21.06 

Table C.20 Summary of 20-centimeters Vertical Displacement Experiment at 20 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-05-30 18:48:06 2022-05-31 20:22:19 24 109230 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455840 3127069 3314439 0.513164 0.584668 9.257824 16.29189 

Standard 

deviation 
4.151763 3.065962 3.185033 1.767017 2.171701 5.379876 0.413921 

Minimum 4455775 3127018 3314419 -31.7181 -6.7302 -58.6254 15.23 

Maximum 4455924 3127093 3314522 20.2362 47.7223 121.8743 22.19 

Table C.21 Summary of 5-centimeters Vertical Displacement Experiment at 35 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-06-01 19:21:32 2022-06-02 17:13:44 24 64932 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455833 3127064 3314434 0.225006 0.430404 0.102917 17.88131 

Standard 

deviation 
5.954902 3.139596 4.240767 1.448775 2.178393 7.513833 1.606805 

Minimum 4455782 3127041 3314404 -7.1054 -8.1726 -61.8903 13.07 

Maximum 4455863 3127076 3314452 12.4112 22.5045 30.7973 72.32 
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Table C.22 Summary of 10-centimeters Vertical Displacement Experiment at 35 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-06-02 17:16:05 2022-06-03 11:43:49 24 78459 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.107126 -0.05636 0.461612 13.98343 

Standard 

deviation 
1.342718 1.189053 1.006635 0.394334 0.710793 1.889267 0.366688 

Minimum 4455791 3127041 3314385 -10.7442 -16.082 -66.2931 13.13 

Maximum 4455900 3127100 3314509 6.4745 25.2916 104.1646 16.49 

Table C.23 Summary of 15-centimeters Vertical Displacement Experiment at 35 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-06-02 17:15:59 2022-06-03 11:43:49 24 78459 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.107126 -0.05636 0.461612 13.98343 

Standard 

deviation 
1.342718 1.189053 1.006635 0.394334 0.710793 1.889267 0.366688 

Minimum 4455791 3127041 3314385 -10.7442 -16.082 -66.2931 13.13 

Maximum 4455900 3127100 3314509 6.4745 25.2916 104.1646 16.49 

Table C.24 Summary of 20-centimeters Vertical Displacement Experiment at 35 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-06-03 11:48:10 2022-06-05 20:27:24 24 129253 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314434 -0.0667 0.024515 0.71087 14.58299 

Standard 

deviation 
10.92347 4.749082 4.175151 2.644977 3.052653 11.95798 0.419664 

Minimum 4455780 3127042 3314407 -200.84 -230.223 -57.3805 13.58 
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Maximum 4456658 3127397 3314694 13.1252 15.0331 875.4229 19.76 

Table C.25 Summary of 1-centimeter Horizontal Displacement Experiment at 10 Degrees 

Elevation Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2021-12-11 09:28:35 2021-12-12 05:39:15 24 86329 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 -0.06711 -0.00829 -0.16057 10.27278 

Standard 

deviation 
0.707706 0.978578 0.718171 0.411027 0.156245 1.334495 574.1009 

Minimum 4455825 3127049 3314414 -10.2905 -10.4504 -18.7129 -43180.7 

Maximum 4455834 3127064 3314433 0.0589 0.3347 0.2045 32.42 

 

Figure C.1 Displacements scatter plot with 10 degrees elevation angle and 1 cm level of 

horizontal level of utilizing low latency stream displacements (Prepared by the author). 
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Table C.26 Summary of 2.5-centimeters Horizontal Displacement Experiment at 10 Degrees 

Elevation Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2021-12-13 06:21:39 2021-12-14 07:37:04 12 110747 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.143379 -0.01008 0.328474 13.80747 

Standard 

deviation 
1.045623 1.773098 0.373441 0.864627 0.730818 1.759258 0.345345 

Minimum 4455833 3127064 3314433 -0.0784 -9.3509 -0.2944 13.09 

Maximum 4455847 3127086 3314437 11.0111 0.8681 21.7322 26.38 

 

Figure C.2 Displacements scatter plot with 10 degrees elevation angle and 2.5 cm level of 

horizontal level of displacements utilizing low latency stream (Prepared by the author). 
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Table C.27 Summary of 3.75-centimeters Horizontal Displacement Experiment at 10 Degrees 

Elevation Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2021-11-25 16:05:40 2021-11-26 19:53:14 24 118805 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.014421 -0.00946 0.029126 17.73743 

Standard 

deviation 
0.037035 0.036134 0.029658 0.030585 0.024225 0.045107 0.420607 

Minimum 4455834 3127064 3314433 -0.0612 -0.0847 -0.1027 16.78 

Maximum 4455834 3127064 3314433 0.1272 0.0634 0.1825 20 

 

Figure C.3 Displacements scatter plot with 10 degrees elevation angle and 3.75 cm level of 

horizontal level of displacements utilizing low latency stream (Prepared by the author). 
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Table C.28 Summary of 5-centimeters Horizontal Displacement Experiment at 10 Degrees 

Elevation Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2021-11-22 13:08:04 2021-11-23 13:09:09 24 101285 
 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 -0.01151 -0.00934 0.034933 15.6045 

Standard 

deviation 
0.047032 0.046053 0.033577 0.039287 0.032245 0.05364 0.366666 

Minimum 4455834 3127064 3314433 -0.1435 -0.1271 -0.1191 14.75 

Maximum 4455834 3127064 3314433 0.1102 0.098 0.2405 19.23 

 

Figure C.4 Displacements scatter plot with 10 degrees elevation angle and 5 cm level of 

horizontal level of displacements utilizing low latency stream (Prepared by the author). 
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Table C.29 Summary of 10-centimeters Horizontal Displacement Experiment at 10 Degrees 

Elevation Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2021-11-10 18:18:55 2021-11-11 18:29:19 24 101966 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.001772 -0.00703 0.035038 14.28755 

Standard 

deviation 
0.061238 0.064737 0.050423 0.067076 0.05655 0.052785 0.411958 

Minimum 4455833 3127064 3314433 -0.1949 -0.198 -0.0787 13.3 

Maximum 4455834 3127064 3314433 0.1799 0.1556 0.3327 21.59 

 

Figure C.5 Displacements scatter plot with 10 degrees elevation angle and 10 cm level of 

horizontal level of displacements utilizing low latency stream (Prepared by the author). 
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Table C.30 Summary of 15-centimeters Horizontal Displacement Experiment at 10 Degrees 

Elevation Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2021-11-09 18:01:55 2021-11-10 18:15:59 24 102431 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.010344 0.00049 0.024361 15.13536 

Standard 

deviation 
0.070502 0.080665 0.067658 0.091327 0.074185 0.047021 0.407814 

Minimum 4455833 3127064 3314433 -0.2113 -0.181 -0.1183 14.18 

Maximum 4455834 3127064 3314433 0.2375 0.1782 0.2245 16.69 

 

Figure C.6 Displacements scatter plot with 10 degrees elevation angle and 15 cm level of 

horizontal level of displacements utilizing low latency stream (Prepared by the author). 
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Table C.31 Summary of 20-centimeters Horizontal Displacement Experiment at 10 Degrees 

Elevation Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2021-11-07 16:01:10 2021-11-08 15:46:59 24 99132 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.009139 0.024356 0.033876 14.48738 

Standard 

deviation 
0.086693 0.099302 0.08685 0.114423 0.098265 0.046594 0.478253 

Minimum 4455833 3127064 3314433 -0.3981 -0.2087 -0.1216 13.59 

Maximum 4455834 3127064 3314433 0.3182 0.2345 0.1625 25.57 

 

Figure C.7 Displacements scatter plot with 10 degrees elevation angle and 20 cm level of 

horizontal level of displacements utilizing low latency stream (Prepared by the author). 
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Table C.32 Summary of 2.5-centimeters Horizontal Displacement Experiment at 10 Degrees 

Elevation Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2021-12-03 12:21:58 2021-12-04 14:09:54 12 32658 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 -0.00093 0.000469 0.044786 20.96389 

Standard 

deviation 
0.030488 0.028058 0.025775 0.019475 0.019166 0.040429 0.290743 

Minimum 4455834 3127064 3314433 -0.0578 -0.0605 -0.0566 19.71 

Maximum 4455834 3127064 3314433 0.0467 0.0488 0.1949 22.01 

 

Figure C.8 Displacements scatter plot with 10 degrees elevation angle and 2.5 cm level of 

horizontal level of displacements utilizing low latency stream (Prepared by the author). 
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Table C.33 Summary of 5-centimeters 3D Displacement Experiment at 10 Degrees Elevation 

Angle with High Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-04-25 13:34:30 2022-04-26 14:07:49 24 88240 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 -0.02196 -0.02942 -0.04366 31.01398 

Standard 

deviation 
0.308418 0.319843 0.693897 0.13111 0.452082 0.676274 0.292615 

Minimum 4455826 3127061 3314422 -1.2333 -7.0505 -11.9099 30.43 

Maximum 4455834 3127064 3314433 1.7613 0.7608 0.6766 37 

 

Figure C.9 Displacements scatter plot with 10 degrees elevation angle and 5 cm level of 

horizontal level of displacements utilizing high latency stream (Prepared by the author). 
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Table C.34 Summary of 10-centimeters 3D Displacement Experiment at 10 Degrees Elevation 

Angle with High Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-04-26 14:10:14 2022-04-27 14:36:29 24 83653 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.018351 -0.00261 0.081394 31.81533 

Standard 

deviation 
0.248318 0.172243 0.160761 0.126162 0.106918 0.299708 0.332173 

Minimum 4455833 3127063 3314432 -0.5706 -0.2796 -1.5281 31.2 

Maximum 4455834 3127064 3314434 0.2863 0.4008 0.548 38.67 

 

Figure C.10 Displacements scatter plot with 10 degrees elevation angle and 10 cm level of 

horizontal level of displacements utilizing high latency stream (Prepared by the author). 
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Table C.35 Summary of 15-centimeters 3D Displacement Experiment at 10 Degrees Elevation 

Angle with High Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-04-29 14:04:09 2022-04-30 15:13:39 24 90571 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455833 3127064 3314433 0.045046 0.06923 -0.36612 29.10894 

Standard 

deviation 
1.395828 0.759296 0.369582 0.26258 0.55865 1.510106 1.557864 

Minimum 4455825 3127060 3314430 -0.346 -0.7671 -9.4335 26.37 

Maximum 4455834 3127064 3314433 2.3668 2.8233 0.3718 36.19 

 

Figure C.11 Displacements scatter plot with 10 degrees elevation angle and 15 cm level of 

horizontal level of displacements utilizing high latency stream (Prepared by the author). 
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Table C.36 Summary of 20-centimeters 3D Displacement Experiment at 10 Degrees Elevation 

Angle with High Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-04-30 15:16:37 2022-05-01 11:21:59 24 70360 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.086744 -0.04921 0.025967 18.09761 

Standard 

deviation 
0.198527 0.104074 0.213227 0.141992 0.150701 0.229865 714.4931 

Minimum 4455833 3127064 3314433 -0.4937 -0.5482 -0.3683 -43172 

Maximum 4455834 3127065 3314435 0.5271 1.2406 1.8662 42.09 

Figure C.12 Displacements scatter plot with 10 degrees elevation angle and 20 cm level of 

horizontal level of displacements utilizing high latency stream (Prepared by the author). 
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Table C.37 Summary of 5-centimeters 3D Displacement Experiment at 10 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 

# of 

events 

2022-05-01 14:32:32 2022-05-02 18:31:39 24 119907 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.056777 0.010119 0.166886 15.05893 

Standard 

deviation 
0.401216 0.55868 0.769778 0.323504 0.541513 0.817169 0.437964 

Minimum 4455827 3127059 3314420 -1.424 -7.3351 -13.3442 14.02 

Maximum 4455840 3127071 3314443 3.8725 5.027 10.8071 19.84 

Figure C.13 Displacements scatter plot with 10 degrees elevation angle and 5 cm 3D level of 

displacements utilizing low latency stream (Prepared by the author). 
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Table C.38 Summary of 10-centimeters 3D Displacement Experiment at 10 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-05-03 15:49:38 2022-05-04 14:01:09 24 95159 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.071176 -0.00791 0.160085 16.91275 

Standard 

deviation 
0.066409 0.069144 0.048734 0.048727 0.027316 0.091901 0.477276 

Minimum 4455834 3127064 3314433 -0.0792 -0.2626 -0.0669 15.81 

Maximum 4455834 3127064 3314433 0.1741 0.1272 0.5323 29.84 

 

Figure C.14 Displacements scatter plot with 10 degrees elevation angle and 10 cm 3D level of 

displacements utilizing low latency stream (Prepared by the author). 
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Table C.39 Summary of 15-centimeters 3D Displacement Experiment at 10 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 

# of 

events 

2022-05-04 14:02:43 2022-05-05 04:00:44 24 60023 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455835 3127065 3314434 -0.00956 -0.19997 1.880901 17.74591 

Standard 

deviation 
2.41755 1.59551 1.561803 1.282906 0.344016 3.010852 0.374425 

Minimum 4455833 3127063 3314433 -4.0596 -1.2468 -0.2881 16.88 

Maximum 4455841 3127069 3314438 2.1907 4.1696 9.0074 20.63 

 

Figure C.15 Displacements scatter plot with 10 degrees elevation angle and 15 cm 3D level of 

displacements utilizing low latency stream (Prepared by the author). 
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Table C.40 Summary of 20-centimeters 3D Displacement Experiment at 10 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 

# of 

events 

2022-05-05 08:57:02 2022-05-06 03:03:44 24 72139 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455833 3127064 3314433 0.045195 -0.08962 -0.40881 17.67635 

Standard 

deviation 
1.31232 0.890442 0.522274 1.405339 0.181602 0.883111 0.456096 

Minimum 4455810 3127045 3314413 -18.2733 -6.0178 -29.2972 16.65 

Maximum 4455843 3127067 3314442 11.2932 3.7383 11.5518 31.44 

 

Figure C.16 Displacements scatter plot with 10 degrees elevation angle and 20 cm 3D level of 

displacements utilizing low latency stream (Prepared by the author). 
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Table C.41 Summary of 5-centimeters 3D Displacement Experiment at 20 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-05-06 05:52:46 2022-05-07 13:07:54 24 133805 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455833 3127064 3314433 0.249996 0.250344 0.03682 18.5228 

Standard 

deviation 
2.343049 1.227136 1.297722 1.285896 0.842386 2.513301 0.497258 

Minimum 4455817 3127057 3314426 -5.2591 -4.8471 -15.289 17.32 

Maximum 4455852 3127075 3314450 9.9174 8.2146 22.5322 28.16 

 

Figure C.17 Displacements scatter plot with 20 degrees elevation angle and 5 cm 3D level of 

displacements utilizing low latency stream (Prepared by the author). 
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Table C.42 Summary of 10-centimeters 3D Displacement Experiment at 20 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-05-07 13:10:23 2022-05-08 13:49:49 24 105561 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314434 -0.00237 0.040684 0.57713 12.00734 

Standard 

deviation 
3.054439 1.613576 2.128646 0.827874 0.882288 3.873054 539.1399 

Minimum 4455822 3127058 3314425 -10.4139 -12.1656 -12.4972 -43180.6 

Maximum 4455884 3127111 3314463 9.7629 12.6535 72.6273 24.96 

 

Figure C.18 Displacements scatter plot with 20 degrees elevation angle and 10 cm 3D level of 

displacements utilizing low latency stream (Prepared by the author). 

 



347 

 

Table C.43 Summary of 15-centimeters 3D Displacement Experiment at 20 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-05-07 13:10:23 2022-05-08 13:49:49 24 105947 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 -0.04754 0.052134 0.301571 20.5242 

Standard 

deviation 
2.381942 1.013669 1.16064 0.680906 0.484191 2.711122 0.486316 

Minimum 4455822 3127056 3314426 -12.3341 -9.7335 -14.9559 19.56 

Maximum 4455883 3127084 3314460 3.0574 4.4435 58.4307 34.6 

 

Figure C.19 Displacements scatter plot with 20 degrees elevation angle and 15 cm 3D level of 

displacements utilizing low latency stream (Prepared by the author). 
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Table C.44 Summary of 20-centimeters 3D Displacement Experiment at 20 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-05-07 13:10:23 2022-05-08 13:49:49 24 115827 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.039235 0.054599 0.216087 14.12583 

Standard 

deviation 
1.528388 0.697062 0.764682 0.409612 0.462056 1.739347 0.652489 

Minimum 4455821 3127058 3314426 -10.2577 -9.5391 -13.7587 13.1 

Maximum 4455868 3127078 3314454 3.4988 12.2186 35.8824 29.78 

 

Figure C.20 Displacements scatter plot with 20 degrees elevation angle and 20 cm 3D level of 

displacements utilizing low latency stream (Prepared by the author). 
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Table C.45 Summary of 5-centimeters 3D Displacement Experiment at 30 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 

# of 

events 

2022-05-10 18:06:48 2022-05-11 15:51:03 24 85679 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 0.010547 0.014106 0.029608 14.94355 

Standard 

deviation 
0.094383 0.090318 0.084751 0.048875 0.039279 0.142537 0.613516 

Minimum 4455832 3127062 3314431 -0.921 -0.5637 -3.039 14.05 

Maximum 4455834 3127065 3314434 0.4781 0.3667 1.4374 52.91 

 

Figure C.21 Displacements scatter plot with 30 degrees elevation angle and 5 cm 3D level of 

displacements utilizing low latency stream (Prepared by the author). 
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Table C.46 Summary of 10-centimeters 3D Displacement Experiment at 30 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-05-12 08:03:55 2022-05-12 22:33:06 24 46615 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 -0.00297 -0.03041 0.002173 30 

Standard 

deviation 
0.198377 0.111926 0.096641 0.124744 0.076592 0.199482 0 

Minimum 4455832 3127063 3314433 -0.3527 -0.3105 -2.0321 30 

Maximum 4455834 3127065 3314434 0.6185 0.4909 1.0948 30 

 

Figure C.22 Displacements scatter plot with 30 degrees elevation angle and 10 cm 3D level of 

displacements utilizing low latency stream (Prepared by the author). 
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Table C.47 Summary of 15-centimeters 3D Displacement Experiment at 30 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-05-14 20:03:52 2022-05-15 15:28:54 24 55220 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 -0.0101 -0.02854 0.182255 14.36352 

Standard 

deviation 
0.212331 0.138151 0.124757 0.076218 0.042295 0.268582 0.709033 

Minimum 4455833 3127064 3314433 -0.3466 -0.1811 -0.2477 13.34 

Maximum 4455835 3127064 3314434 0.2448 0.1042 1.0391 19.37 

 

Figure C.23 Displacements scatter plot with 30 degrees elevation angle and 15 cm 3D level of 

displacements utilizing low latency stream (Prepared by the author). 
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Table C.48 Summary of 20-centimeters 3D Displacement Experiment at 30 Degrees Elevation 

Angle with Low Latency Stream. 

Start date End date 
Duration 

(hours) 
# of events 

2022-05-25 18:54:55 2022-05-26 09:17:50 24 60415 

 Coordinates components (m) Displacement components (m) Latency 

 X Y Z East North UP Seconds 

Mean 4455834 3127064 3314433 3.07E-05 0.018957 0.005313 13.86883 

Standard 

deviation 
0.315758 0.175269 0.347373 0.058181 0.115748 0.484053 0.33017 

Minimum 4455809 3127050 3314405 -3.3789 -9.1577 -38.2733 13.17 

Maximum 4455860 3127079 3314464 3.1667 10.084 41.84 15.57 

 

Figure C.24 Displacements scatter plot with 30 degrees elevation angle and 20 cm 3D level of 

displacements utilizing low latency stream (Prepared by the author). 
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