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Resum
En l’era digital, a mesura que augmenta la necessitat de codi, es produeix un canvi

cap a plataformes sense codi que democratitzen el desenvolupament de programari en
permetre als usuaris crear aplicacions sense coneixements tradicionals de programació a
través d’interfícies intuïtives. La programació per exemples (PBE) amplia aquesta ten-
dència generant codi a partir d’exemples d’entrada-eixida, simplificant la programació
en inferir la lògica subjacent necessària. Aquest enfocament, arrelat en la Programació
Inductiva (IP), millora l’accessibilitat i l’automatització de la programació derivant re-
gles generals a partir d’exemples. Els grans models del llenguatge (LLM) han demostrat
les seues capacitats generals en la generació de textos per a una àmplia gamma de tas-
ques. En particular, aquesta tecnologia ha demostrat potents capacitats per a generar codi
a partir d’exemples de llenguatge natural. No obstant això, la investigació s’ha centrat
predominantment en la generació de codi a partir de descripcions en llenguatge natural,
prestant relativament poca atenció a altres dominis, com la programació per exemples.
Això suposa una gran oportunitat per a avaluar l’eficàcia dels LLMs en PBE. Aquest es-
tudi examina la capacitat dels LLM per a generar codi a partir d’un conjunt de dades
curades de tasques típiques i atípiques en Python i Haskell, amb l’objectiu d’avaluar el
potencial i les limitacions de l’ús de LLM per a avançar en PBE.

Paraules clau: PBE, LLM, grans models del llenguatge, generació de codi
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Resumen
En la era digital, a medida que aumenta la necesidad de código, se produce un cam-

bio hacia plataformas sin código que democratizan el desarrollo de software al permitir
a los usuarios crear aplicaciones sin conocimientos tradicionales de programación a tra-
vés de interfaces intuitivas. La programación por ejemplos (PBE) amplía esta tendencia
generando código a partir de ejemplos de entrada-salida, simplificando la programación
al inferir la lógica subyacente necesaria. Este enfoque, arraigado en la Programación In-
ductiva (IP), mejora la accesibilidad y la automatización de la programación derivando
reglas generales a partir de ejemplos. Los grandes modelos del lenguaje (LLM) han de-
mostrado sus capacidades generales en la generación de textos para una amplia gama
de tareas. En particular, esta tecnología ha demostrado potentes capacidades para ge-
nerar código a partir de ejemplos de lenguaje natural. Sin embargo, la investigación se
ha centrado predominantemente en la generación de código a partir de descripciones en
lenguaje natural, prestando relativamente poca atención a otros dominios, como la pro-
gramacion por ejemplos. Esto supone una gran oportunidad para evaluar la eficacia de
los LLMs en PBE. Este estudio examina la capacidad de los LLM para generar código a
partir de un conjunto de datos curados de tareas típicas y atípicas en Python y Haskell,
con el objetivo de evaluar el potencial y las limitaciones del uso de LLM para avanzar en
PBE.

Palabras clave: PBE, LLM, grandes modelos del lenguaje, generación de código
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Abstract
In the digital age, as the need for code increases, there is a shift towards no-code plat-

forms that democratise software development by enabling users to build applications
without traditional programming skills through intuitive interfaces. Programming-by-
Examples (PBE) extends this trend by generating code from input-output examples, sim-
plifying programming by inferring the underlying logic required. This approach, rooted
in Inductive Programming (IP), improves accessibility and automation of programming
by deriving general rules from examples. Large Language Models (LLMs) have demon-
strated general capabilities in text generation for a wide range of tasks. In particular, this
technology has demonstrated powerful capabilities for generating code from natural lan-
guage examples. However, research has predominantly concentrated on code generation
from natural language descriptions, with relatively little attention paid to other domains,
such as PBE. This presents a significant opportunity to evaluate the effectiveness of LLMs
in PBE. This study examines the ability of LLMs to generate code from a curated dataset
of typical and atypical tasks in Python and Haskell, with the aim of assessing the poten-
tial and limitations of using LLMs to advance PBE.

Key words: PBE, LLM, large language models, code generation
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CHAPTER 1

Introduction

In the digital age, the role of code has become more critical than ever, driving innovation,
automation, and the functionality of a vast array of applications and systems. As the
complexity of coding increases, there has been a notable shift towards no-code platforms,
which facilitate the democratisation of software creation by enabling users to build ap-
plications through intuitive interfaces without the necessity of traditional programming
skills. These tools facilitate the creation of websites, management of data, and automation
of processes by enabling users to interact with visual elements and templates, thereby re-
ducing the barrier to entry for software development.

An intriguing extension of this trend is Programming-by-Examples (PBE), a paradigm
where code is generated from a few provided examples of desired input-output pairs.
This approach simplifies the programming process by enabling the system to infer the
underlying logic required to transform inputs into outputs. One of the most prominent
applications of PBE is seen in Microsoft Excels FlashFill, which allows users to manipu-
late data effortlessly by recognising patterns from a handful of examples and generating
the corresponding code automatically.

The fundamental principle underlying PBE is inductive programming (IP), a branch
of artificial intelligence that is concerned with the generation of programs from incom-
plete specifications, typically examples. The objective of IP is to model and solve prob-
lems by deducing the general rules that connect input and output data. This technique
has demonstrated considerable potential in enhancing the accessibility and automation
of programming.

However, the landscape of code generation is undergoing a rapid transformation
through Large Language Models (LLMs). These models have transformed the field of
text and code generation by genearting responses and scripts that are indistinguishable
from those produced by humans. The question that arises is whether LLMs can match or
even surpass the performance of traditional IP techniques in generating code from exam-
ples. Can the capabilities of LLMs, which have demonstrated exceptional performance in
understanding and generating natural language, be effectively extended to the domain
of programming by examples?

This study aims to address these questions by evaluating the performance of LLMs
in the context of PBE. We examine the ability of LLMs to generate accurate code from
a curated dataset of tasks that range from typical programming challenges to specially
designed, atypical problems. By comparing the results across different programming lan-
guages such as Python and Haskell, we seek to understand the potential and limitations
of LLMs in this domain.

Through this analysis, we hope to provide insights into the intersection of LLMs and
IP.
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2 Introduction

1.1 Motivation

According to a study conducted by the OECD (Organization for Economics Compara-
tion and Development) [54] between 2011 and 2015 on digital literacy in the workplace,
participants were assessed at three levels. Level 1 included basic tasks such as deleting
an email, while level 3 addressed "complex" tasks such as extracting the percentage of
emails containing a keyword. The results found that in the US, 5 percent of the popu-
lation could perform level 3 tasks, another 26 percent could perform level 2 tasks, and
the remaining 69 percent were below level 2, with 26 percent of these people having no
knowledge of using a computer at all.

Although, today, we can assume that these figures have increased, and that the num-
ber of people using a computer in the workplace has increased, there is still a considerable
gap in the number of highly computer literate individuals. In addition, non-technical
users are faced with repetitive tasks that could easily be automated by more advanced
users.

Given this gap, there is a boom in no-code platforms. These platforms allow non-
programmer users the possibility to build and manage programs solely through an inter-
face, so that the user does not require programming knowledge to, for example, build a
website or an application.

A particular case is programming by examples (PBE), a programming paradigm that
synthesises the specifications of a program given user-defined input and output exam-
ples. In other words, the goal of programming by examples is, for example, given as
input a list of first and last names and as output only the name of the first two posi-
tions in the list, the system must recognise that the user wants to extract the first position
of each entry and generates the code that models that relationship, so that the user can
extend it to the next items in the list.

Inductive programming (IP) is an area of research that brings together the areas of
artificial intelligence and example programming to create systems capable of generating
programs from incomplete specifications, such as example input/output pairs. The most
prominent contribution in this field has been FlashFill [21], a technology presented by
Microsoft and applied in Excel that allows combining, transforming and extracting data
with just a few examples. With this tool, users without programming knowledge can
now work with large volumes of data.

On the other hand, the field of natural language processing (NLP) with the advent
of so-called large language models (LLMs) has undergone a revolution. These language
models have demonstrated human-equivalent capabilities in text generation. Even more
surprisingly, they have been able to generate code from abstract descriptions.

In light of these capabilities, an investigation into the potential of large language mod-
els (LLMs) for programming by example could prove to be a fruitful avenue of inquiry.
Our objective in this work is not only to assess the viability of this technology in this
context but also to gain insight into the reasoning capabilities of LLMs.

1.2 Objectives

This paper aims at a detailed evaluation of large language models for programming by
examples. For this purpose, the following aspects should be covered:

• Literature Review and Benchmark Creation
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– Conduct a Comprehensive Literature Review:

* Perform an exhaustive search of existing literature on PBE and LLMs.

* Utilise academic conferences, and journals to gather relevant studies and
reviews to provide a global picture of the field of PBE.

* Identify current methodologies, datasets, benchmarks.

– Develop a Diverse Benchmark for Evaluation:

* Design a benchmark that includes tasks of varying complexity to reflect a
wide range of scenarios.

* Assess the impact of the number of examples on task definition and solu-
tion accuracy.

* Ensure that tasks can be fully and unambiguously defined with a minimal
set of examples.

• Monitoring and Framework Establishment

– Ongoing Monitoring of Advancements in LLMs:

* Keep abreast of new developments and publications related to LLMs and
their applications in code generation.

* Evaluate how recent advanced might influence ongoing research and method-
ology in PBE.

– Establish Model and Language Foundations:

* Identify and document the LLMs to be used, considering their strengths
and weaknesses in relation to PBE.

* Select programming languages for evaluation based on their prevalence
in inductive programming systems, LLMs and other relevant metrics.

* Justify the choice of models and languages in terms of their suitability for
PBE tasks.

• Detailed Evaluation and Analysis

– Perform Comprehensive Evaluation:

* Develop a detailed evaluation framework to assess the performance of
LLMs on the benchmark tasks.

* Compare LLM performance across different tasks and programming lan-
guages to identify strengths and weaknesses.

– Conduct In-Depth Analysis of Results:

* Analyse the results to draw meaningful conclusions about the capabilities
and limitations of LLMs in PBE.

* Provide insights into areas for improvement and potential future direc-
tions for research.

1.3 Structure

The rest of the document is structured as follows:

• Chapter 2, State of the Art: A review of existing methodologies in program syn-
thesis is conducted, with particular emphasis on inductive programming and the
evolution of neural language models for code generation.
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• Chapter 3, Problem Analysis: An analysis of the challenges of LLMs, considering
technological choices for PBE, security, energy consumption, and legal frameworks.

• Chapter 4, Solution Design: Details on the experimental setup and methodologies
used for evaluating LLM performance.

• Chapter 5, Final Results: The final evaluation results are presented, along with an
insight into the findings.

• Chapter 6, Conclusion: A critical examination of the work presented and further
possible extensions.

• Appendix C, Glossary: Provides definitions for technical terms and acronyms used
throughout the document to aid understanding.



CHAPTER 2

State of the Art

Program synthesis is a research field that encompasses a wide variety of different tech-
nologies, implementations and applications. It aims at building programs based on user
intentionality, where this intentionality can be formalised in a natural language descrip-
tion, constraints, a schema or input/output example pairs.

This is why we can classify program synthesis into three major problems [28] (Figure
2.1 shows a visual representation of this segregation):

• Deductive: Specific and structured descriptions. These systems include, for exam-
ple, the generation of UML-based programs.

• Inductive: Using inductive reasoning to extract a generalisation about an incom-
plete problem, such as a subset of problem instances.

• Natural Language: The user’s intentionality is described in natural language sen-
tences.

In the first section, 2.1, we will focus on the field of induction-based program synthe-
sis, trying to give a global and complete vision. Subsequently, 2.2 details the evolution of
natural language generation technologies, focusing on the generation of code based on
these systems.

2.1 Inductive Programming

Inductive programming (IP), also known as automatic programming, programming by
examples (PBE) or inductive program synthesis (IPS), is a field that lies at the intersection
between machine learning, programming and algorithms. Its evolution is as diverse as
its many names and it is only in recent years that efforts have been made to unify the
multiple lines of research that belong to this field. This is why Kitzelmann [35] and Flener
et al. [19] encompass the different systems in the following problem-solving approaches:

• Analytical approach: Candidate programmes are constructed based on the input-
output characteristics of the examples.

• Search-based approach: Hypotheses about candidate programmes are generated
independently from the given specifications. Programme candidates are evaluated
according to the given specifications and one or more of the best evaluated candi-
dates are further developed.

5



6 State of the Art

Figure 2.1: Venn diagram showing the sub-fields contained in the field of program synthesis.

As mentioned in a survey by Gulwani et al. [22], we can divide the field of IP into two
main areas of study, inductive functional programming and inductive logic program-
ming. In the following sections we will give an overview of both.

2.1.1. Inductive Functional Programming

Summers, in 1977, with his THESYS [75] system, presents the first system in the field of IP.
In it, he analytically induced LISP functions of input/output examples. In particular, he
saw that by using a few basic primitives and a fixed program grammar, a restricted class
of recursive LISP programs satisfying the set of examples could be induced. Later, Bier-
mann’s method (1978) [5] and Igor1 (2006) [36] extended on Summers’ work. Biermann’s
approach was to use fragments to speed up the exhaustive enumeration of regular LISP
programs, while Igor 1 presents a more general system than Summers’, where the scope
of synthesised programs is larger thanks to the addition of a technique that allows the
introduction of new auxiliary functions. It is important to note that all the methods de-
scribed above suffer from strong restrictions in the general structure of the problem, such
as the use of a small number of primitives and that the examples should be in order
Also, synthesis is only limited to structural problems, where only the structure of the
arguments matters, but not their content, as for example in inverting lists.

Subsequent systems attempt to solve the above problems by shifting the focus to a
search problem in the solution space and start using more expressive languages. It extend
the possible tasks to be modelled, however this increased the space of possible programs.

MagicHaskeller (2005) [33] [32], presents a function-forming system in Haskell, which
uses an exhaustive search in the problem space. In order to bound this space, it uses only
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higher-order functions and strong typing. Igor2 (2009) [34] [25] also uses Haskell, this
system, in order to narrow down the search for programs, uses the analytical technique
mentioned in the other systems, thus achieving an example-driven search.

In the last decade, there has been a trend towards more robust systems, capable of
modelling more tasks and being able to define tasks with fewer examples. Another no-
table change has been in the use of programming language, where more recent systems
have moved towards using the functional language ML (Meta Language) and its sub-
sequent extensions, such as OCaml. ML is a more minimalist and efficient language
compared to Haskell, given a simpler syntax and type system, it facilitates the design of
inductive functional programming systems.

L2 o λ2 (2015) [18] is perhaps one of the most noteworthy systems implemented in
ML. This system generalises examples into hypotheses about the structure of the target
program, based on a fixed set of primitives. It then employs deductive reasoning axioms
to derive examples from the missing subexpressions within each hypothesis. The system
uses a combination of enumeration and deduction to search for hypotheses that satisfy
the given examples. This process is similar in Myth (2015) [56] which also makes use of
ML, but looks directly for recursive functions (in contrast, λ2 focuses on recursive data
structures). SMyth (2020) [42] extends the Myth system and switches its implementation
to the OCaml language. Burst (2022) [46] is also presented in OCaml as a more versatile
system, being able to handle logic specifications as well.

Finally, the most recent system to date is SyRup (2023) [82]. This system makes use
of a Domain Specific Language (DSL) which they call tiniyML, as it is a reduced version
of ML. Furthermore, it proposes a trace-driven approach to address challenges related to
ambiguity and generalisation in program synthesis.

2.1.2. Inductive Logic Programming

Compared to IFP, ILP is an area of research with more development and attention. In its
years of evolution, it has had numerous reviews, which are very useful to get a picture
of its progress at each stage of its development. The first of these reviews was presented
in 1997 [66]. In this article, they introduce the foundations of the psychology that helped
lay the groundwork of inductive logic programming. Subsequently, Muggleton [49] in
1999, Page et al. [57] in 2003, Zhang et al. [83] in 2022 and Cropper and Dumančić [12] in
2023, provide new approaches, possible improvements and limitations of the systems at
that time. We can attribute some of the attention attracted to the field to these reviews, as
they facilitate the entry of new researchers into the area.

The first formalisation of induction using logic is given by Plotkin [60] [58] [59] in
1970. In it, he proposes a generalisation based on positive examples, defined as base
clauses. Specifically, to determine the minimum generalisation of these base clauses in
relation to the background knowledge, composed of base literals. Plotkin’s contributions
continue to be influential in the field. At the end of the decade, Steven Vere continued
Plotkin’s work. During this time, Steven Vere introduces CONFUCIUS [79], a system that
uses first-order logic for the representation of clauses.

In the early 1980s, the MARVIN system [67], introduced by Sammut, evolved from
CONFUCIUS, incorporating both generalisation and specialisation. At the same time,
Ehud Shapiro [71] introduced a framework for model inference and developed a top-
down algorithm for deriving complete axioms from enumerated examples. Shapiro’s
work, influenced by inductive inference, introduced key concepts such as the Backtracing
algorithm for identifying false clauses and a refinement operator for the specialisation of
theories. He implemented these ideas in his MIs [70], system, initially focusing on Horn
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clauses and then integrating them into his PhD thesis as part of a program debugging
tool.

The late 1980s saw a surge in machine learning research within propositional logic
frameworks, probably driven by the popularity of logic programming and Prolog. Wray
Buntine [7] extended subsumption to address its limitations, while Stephen Muggleton
developed DUCE [48] to generalise propositional variables. Muggleton and Buntine
[51] introduced inverse resolution as a means of generalisation and predicate invention,
which ignited further research interest. Early alternatives to inverse resolution emerged
in systems such as FOIL [61], LINUS [39] and GOLEM [53] . FOIL employed a top-down
refinement operator guided by information-based search heuristics, LINUS transformed
ILP problems into a value-attribute representation for learning, and GOLEM, revisited
Plotkin’s concepts with efficiency improvements.

In 1990, Muggleton coined the term ”inductive logic programming” and together
with Pavel Brazdil, organised the first international workshop on inductive logic pro-
gramming the following year. These workshops have since become an annual event,
consolidating ILP as a research domain. Numerous systems have been developed and
successfully applied in various fields. Recent theoretical advances include the invention
of predicates, data mining, real number handling and adaptation to noisy examples, re-
flecting the expanding scope of the field.

Despite developments in other fields, there has continued to be an advance in example-
based programming systems. Among these, perhaps the most influential system is Pro-
gol [50] introduced in 1995. It uses an A* heuristic for a top-down search (from general
to specific), where examples are used to guide this search. In 2001, Aleph [73] a system
based on Prolog, restricts the search space by initially constructing a specific clause based
on the examples, then in the search it will ignoring any clause that is not more general
than this specific clause. This results in a very efficient system with very good perfor-
mance. Thanks to its simple implementation in a single Prolog document, it has proved
to be a very popular system.

In the last decade, more powerful, yet simpler and more efficient systems have be-
come available. In 2011, Aspal [11], a meta-level system that uses an ASP (answer set
programming) solver for ILP problem solving was introduced. Although the implemen-
tation may be complex, it is actually one of the simplest systems, it uses statements to con-
struct every clause that can belong to the hypothesis, adds a flag to each of this clauses
and thus formulates an ASP problem about which flags should be set. Next, in 2015,
Metagol [52] uses a Prolog meta-interpreter to build a test on the set of examples and
extract a program from that test. Its implementation takes up just 100 lines of code in
Prolog and is guaranteed to find the smallest program.

Popper [13] introduced in 2020, is the most recent ILP system to date. Popper brings
together ASP and Prolog to propose an approach called learning from mistakes. Specifi-
cally, he proposes to divide learning into three parts: generate, where the system gener-
ates a hypothesis that satisfies a set of constraints; test, where the hypothesis is tested with
the training examples; constrain, if the hypothesis fails, the system prunes the hypothesis
space by adding new constraints. According to the authors evaluations, it is shown to
be a powerful system in performance and with very low computation times. Still, the
system contains limitations that are left open for future systems, such as improving the
search space or the constraints.
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2.2 Neural Language Models

The resurgence of neural networks, particularly deep learning, brought about a paradigm
shift in NLP. Previous methods used rule based approaches for generating text, however
this was not efficient, as capturing all use cases is intractable (curse of dimensionality),
this specially applies to code.

The first mention of a neural language model, was in 2003, by Yoshua Bengio [4].
In his work he presents a system that fight this curse of dimensionality by using a feed-
forward network to learn both the distributed representation for each word and the prob-
ability function of a word sequence. Even though its approach was interesting, and per-
formance was good on simpler tasks, it failed in more complex ones. Mayor problems
where that it could not handle variable-length context, did not capture long-term depen-
dencies and suffered from training instabilities.

Recurrent Neural Networks (RNNs) [15] and LSTM [23] networks emerged as pop-
ular choices for modelling sequential data, including natural language and code. RNN
[45] and LSTMs [20], as language models, were pivotal in addressing some of the short-
comings of earlier models, particularly in handling variable-length inputs and capturing
longer-term dependencies.

Around 2014, researchers explored sequence-to-sequence (Seq2Seq) [76] models us-
ing RNNs, this models where ideal for tasks that involve converting sequences from
one domain to another, where the lengths of the input and output sequences can vary.
Early models like Code2seq [1], leveraged this approach for code generation. However
they still faced challenges in managing long-range dependencies and generating accu-
rate, contextually relevant code snippets.

The introduction of attention mechanisms marked a significant advancement in NLP.
These mechanisms enabled models to focus on relevant parts of the input sequence more
effectively during the decoding process. Bahdanau et al. [3] introduced attention mech-
anisms in Seq2Seq models, allowing for more effective alignment between input and
output sequences. Attention mechanisms significantly improved the performance of
code generation models by capturing dependencies more accurately, especially in long
sequences.

The Transformer architecture, introduced in 2017 by Vaswani et al. [78], marked a
breakthrough in NLP by replacing recurrence with self-attention mechanisms. Trans-
formers enabled parallelisation of computation, making training faster and more effi-
cient. Models based on the Transformer architecture, such as GPT [62] and BERT [14] ,
achieved remarkable results across a wide range of NLP tasks, including code generation.

The Transformer architecture also facilitated the development of larger pre-trained
models, which could be fine-tuned on specific code generation tasks. This fine-tuning
process allowed models to adapt to specific coding conventions, syntax, and semantics,
leading to substantial improvements in code generation performance. Models like Code-
BERT [17], which integrate representations of both natural language and code, exemplify
the potential of fine-tuning pre-trained models for code generation.

The development of large language models has demonstrated their ability to gener-
alise across different tasks, and these systems are currently being used as general-purpose
systems capable of performing a wide range of tasks. "How General-Purpose Is a Lan-
guage Model? Usefulness and Safety with Human Prompters in the Wild" [8] looks
at the practical implications of more general language models, in real-world scenarios.
This study examines the aforementioned general-purpose capabilities of these models by
analysing their interaction with non-expert users. Despite the performance showed in
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benchmarks, the research highlights significant gaps between theoretical capabilities and
actual utility. The paper introduces a framework to evaluate the effectiveness and safety
of language models when used directly by humans, focusing on the costs associated with
prompt creation and output interpretation. Through empirical studies, the authors reveal
that while models like GPT-3 can handle a diverse array of tasks, they often struggle with
understanding nuanced human commands, leading to increased human effort.

Data wrangling and PBE, in contrast use more structured and well defined tasks, this
avoids the variability present in human prompts. Both tasks share common goals as they
aim to automate data manipulation and try taking complex operations more accessible
to non-experts. However, they differ significantly in their scope and methodology. Data
wrangling focuses specifically on cleaning and manipulating data. In contrast, PBE has a
broader application in programming tasks, inferring program logic from user-provided
input-output examples to generate executable code. While data wrangling produces
transformed datasets, PBE creates actual programs or scripts.

"Can language models automate data wrangling?" [29] evaluates the problem of data
wrangling for LLMs. In there findings, they show that LLMs can approximate the per-
formance of specialised data wrangling tools. However, when considering these systems
for real-world applications, performance should not be the only consideration. The pa-
per argues that the main reason why it is not more widely used is because of limitations
in cost, infrastructure, privacy issues or lack of training data.

In the period preceding the submission of this work, a paper addressing a similar
topic was made available as a preprint on Arxiv. The paper, entitled "Is Programming by
Example Solved by LLMs?" [41], similar to this work, aims at evaluating large language
models for the task of PBE. In order to investigate the capabilities of large language mod-
els in the context of programming by example, the authors of the paper have constructed
a dataset comprising a diverse array of tasks of preexisting tasks. This resulted in the cre-
ation of a dataset including numerical vectors, string manipulation macros, and graphics
programs. Two different size models where fine-tuned for this specific task. The model
was evaluated by varying the number of potential solutions that it could generate. The
authors consider a task as resolved when one of this generated solutions does solve the
specific task. The findings demonstrate that, as expected, LLMs demonstrate high per-
formance when evaluated with the training data. However, the performance was found
to be suboptimal when evaluated on holdout data. Furthermore, the findings indicate
that the number of generated candidates should be in the order of 100 to obtain optimal
results.



CHAPTER 3

Problem Analysis

This chapter, provides a comprehensive examination of the critical challenges surround-
ing the evaluation of LLMs for code generation from examples, offering insights into
technological choices. In addition, we provide an overview of the challenges and con-
cerns associated with this technology. More precisely, the chapter contains the following
sections:

• Technological choices: This section looks at the various technical choices that need
to be made for evaluating LLMs for programming by examples.

• Security: This section examines the security implications of using LLMs, in partic-
ular the phenomenon of "hallucination".

• Energy consumption: The environmental impact of LLMs is a major concern due to
their high energy consumption during both training and deployment.

• Legal framework: The legal and ethical considerations of LLMs are becoming in-
creasingly important as their use becomes more widespread. This section provides
an overview of the current regulatory environment and the challenges posed.

3.1 Technological Choices

In order to conduct a comprehensive evaluation of large language models, it is necessary
to consider a number of factors. It is of the utmost importance to delineate each techno-
logical decision that will be required. The following section identifies and analyses each
of the technical choices in detail, providing insight into the factors that should be taken
into consideration before deciding into a final configuration.

3.1.1. Programming Language

State-of-the-art models are trained on trillions of publicly available data found on the
internet. Research has demonstrated that as these models increase in size, their general
capabilities also tend to increase [31]. With this increase in size, the necessity arises for
more data to train the models with [24]. In the domain of programming, as models in-
creased in size and more training data was represented by code, large language models
were able to also learn code generation. Currently, systems are able to generate quality
code in any desired programming language.

11
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Figure 3.1: Top 5 programming languages in GitHub.

However testing the performance of every existing programming language is imprac-
tical, so careful selection criteria should be used to choose one or more languages for
evaluation.

Programming languages can be grouped into paradigms, each offering distinct prin-
ciples and strategies for organising and writing code. In search of a programming lan-
guage suitable for the task of programming by examples, certain aspects should be taken
into consideration. Desired languages should facilitate the implementation of functions,
making it easy to model and test them. It should also be convenient programming lan-
guages with a high-level of abstraction. The chosen programming language should be
relatively simple, as the code implementation should not be a bottleneck. The objective
is to capture and model the relationship between the input and output of the provided
examples, rather than to asses the capacity of large language models to handle memory
management or other non-relevant tasks.

It is also important to consider the representation of the programming language in
the training data. As previously stated, these models are trained on a vast quantity of
data. However, it is not expected that every programming language will be represented
equally. As the specific training data for most LLMs is not publicly available, certain
approximations can be made to account for this. The popularity of the programming
language or the quantity of code available about it could be useful metrics for making
an informed decision about which programming languages are more likely to be repre-
sented in the models data, thus resulting in the best performance.

Given that GitHub 1 is the greatest resource for code, it serves as a crucial resource
for LLMs. When analysing language distribution across repositories, as seen in Figure
3.1 2 , Python emerges as the most prevalent language, constituting nearly 17% of the
platform’s code-base. Consequently, Python’s popularity in LLMs training data suggests
it may yield optimal performance in evaluations.

On the contrary, IP systems typically operate within a range of specific programming
languages. These systems commonly rely on languages such as Haskell, Prolog or other
Domain-Specific Languages (DSL). To ensure a fair and meaningful comparison between
IP systems and LLMs, it is imperative to standardise the programming language selection
to encompass Turing-complete, general-purpose languages.

Haskell emerges as a particularly suitable choice due to its adoption in popular sys-
tems like Igor2 and MagicHaskeller. Its expressive and functional nature aligns well with

1https://github.com/
2https://madnight.github.io/githut/#/pull_requests/2024/1

https://github.com/
https://madnight.github.io/githut/#/pull_requests/2024/1
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the principles of inductive programming, facilitating the creation of elegant and concise
solutions to complex problems.

Haskell is also a compelling choice for code generation with LLMs. Due to its mod-
est representation on GitHub 3 , where it ranks at position 27 among programming lan-
guages, with a mere 0.132%. Its inclusion offers valuable insights in our evaluations. By
examining potential correlations between task performance and language representation
in LLM training data, we gain a deeper understanding of how linguistic and computa-
tional principles relate.

In conclusion, the selection of programming languages for evaluating LLMs perfor-
mance in PBE requires careful consideration of multiple factors. The selected languages
should facilitate function the implementation of functions, offer high-level abstraction,
and be relatively simple to use. Additionally, the representation of these languages in
the training data of LLMs is a crucial consideration. Python is identified as the best
candidate due to its prevalence on platforms like GitHub, which may result in optimal
performance in LLMs. Conversely, while Haskell is expected to be less represented in
typical LLM training data, is widely used in inductive programming systems and offers
a functional paradigm well-suited to the task. By including both Python and Haskell in
the evaluation, we can gain insights into how language popularity and paradigm affect
performance across different systems.

3.1.2. Large Language Models

Large language models are computational models based on artificial neural networks.
In more precise terms, they can be categorised as generative models. These models
learn statistical relationships from vast amounts of data and are then able to generate
this data through the process of inference. In recent years, as both computing power
and the quantity of data have tend to increase, these models have been able to achieve
general-purpose language generation. As a consequence of this capabilities, a catalogue
of different models has developed rapidly. This makes it challenging to select the most
appropriate model(s) for evaluation. One might assume that selecting the best perfor-
mance model could a straightforward process. However,given the generality of these
models, no single metric can confidently indicate that a model performs better in all use
cases. Therefore, it is necessary to group models and analyse the potential advantages
and disadvantages of each.

On the one hand, we can identify models that have been designed with the ability to
perform a wide range of tasks. These models are not limited to a specific task and are
therefore capable of functioning as general assistants. This means that they can generate
code, write a poem or an essay about the First Wold War. Research has demonstrated that
this generality enhances the overall performance of the models [80], as evidenced by the
fact that a models ability to write poems can enhance its ability to write essays. This is
consistent with our understanding of human intelligence, which suggests that acquiring
new skills will be beneficial in other domains. Still, this approach has limitations, as it is
most effective with the largest and most computationally intensive models.

On the other hand, models designed for a specific task represent an interesting ap-
proach. These models are trained to perform in a specific task, such as code generation.
This specificity will result in sub-optimal performance in any task that the model has not
been trained for. In the aforementioned example, a model trained for code generation
will exhibit sub-optimal performance when tasked with the generation of poems or es-
says. The main advantage of this specific type of models is that it is possible to achieve

3https://madnight.github.io/githut/#/pull_requests/2024/1

https://madnight.github.io/githut/#/pull_requests/2024/1
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high levels of task performance with much smaller and less computationally intensive
models. Depending on the intended use case, this approach can be beneficial as it en-
ables edge computing, thus reducing latency and friction with the user.

Another crucual aspect to be taken into account is the accessibility of the models. The
development of these models has been primarily driven by private research laboratories.
This has resulted in the presentation of numerous models with licensing, restricting use
cases, or even restricting the access of the model through an API (application program-
ming interface). The advantage of closed models is in its easy of use, as they are usually
integrated into a computing platform, making them accessible. However, this hard limit
makes it so that use cases and modifications are impossible to perform.

In contrast, open-source models present themselves as models with open licensing
and accessibility. The aforementioned models do not impose any restrictions on the use
cases or modifications that can be performed. Nevertheless, these models are typically
less powerful than their closed counterparts.

When the specific model(s) for our use case have been chosen. Another challenge
arises in the manner of instructing the model to accurately perform the desired task.
These instructions are formally known as prompts. A prompt consists of a natural lan-
guage text description of the task that we want the model is to perform. The process of
prompt engineering involves the creation of a well-defined text queries with the objective
of obtaining a precise response. In order to achieve the desired outcome, the following is
necessary to take into consideration. First, it should be taken into consideration effective
strategies and techniques for well designed prompts [40] [9] [2]. Furthermore, taking this
strategies and techniques into consideration, a methodological approach should be em-
ployed. This will facilitate the construction of increasingly complex prompts and direct
the search towards an optimal solution.

The field of Large Language Models (LLMs) is advancing at an unprecedented rate,
with state-of-the-art models being released almost monthly. Among these, OpenAI’s
Generative Pre-trained Transformer (GPT) series has proven to be particularly influen-
tial. These models have had a significant impact on natural language processing (NLP)
by generating coherent and contextually relevant text in a range of applications. Al-
though not explicitly designed for programming tasks, GPT models have demonstrated
remarkable capabilities in this area.

GPT-4 [55] the latest in the series, has achieved ground-breaking results across a range
of benchmarks and leader-boards 4, cementing its reputation as the most powerful and
versatile model to date. It excels at a wide range of tasks, including complex reasoning
and coding, making it particularly relevant to our goals. Its ability to generate nuanced
and contextually appropriate text has set new standards in the field, demonstrating sig-
nificant advances in areas such as contextual understanding and problem solving.

GPT-3.5 [6], the predecessor to GPT-4, remains an important milestone in the evolu-
tion of LLMs. While it may not match the performance metrics of GPT-4, GPT-3.5 serves
as a critical benchmark for evaluating the challenges inherent in various NLP tasks. Its
strength lies in its balance between performance and computational efficiency, offering
an exceptional ratio of output quality to computational resources. This makes GPT-3.5 a
valuable tool for applications where computational constraints are an issue.

Within our current scope, we recognise the potential value of exploring additional
models, including open source alternatives or those specifically tailored for program-
ming. However, for the purposes of this work, we have chosen to focus exclusively on
GPT-4 and GPT-3.5. This decision allows for a focused analysis of their capabilities and

4https://arena.lmsys.org/

https://arena.lmsys.org/
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sets the stage for possible future evaluations of other models that may offer unique ad-
vantages or specialisations.

In conclusion, the selection of an appropriate LLM for a specific use case necessitates
a balancing act between general-purpose capabilities, task-specific efficiency, and acces-
sibility constraints. Once a model has been selected, it is essential to employ effective
prompt engineering in order to fully exploit its capabilities. This approach, ensures that
the chosen LLM can be effectively harnessed for the intended application, thereby max-
imising both performance and practicality. This study focuses on GPT-4 and GPT-3.5,
which offer a strategic approach to leveraging their proven capabilities in natural lan-
guage processing and code generation. This choice allows for a detailed examination of
state-of-the-art general-purpose models in programming tasks, while also establishing a
benchmark for potential future evaluations of other models.

3.2 Security

Despite the impressive capabilities of large language models, this technology is suscepti-
ble to a phenomenon known as "hallucinations." In the context of large language models,
hallucinations refer to the generation of text that appears plausible but is factually in-
correct or nonsensical [30]. This section will examine the nature of hallucinations, their
underlying causes, and their security implications [64].

It is possible to differentiate between intrinsic and extrinsic hallucinations [44]. Intrin-
sic hallucinations occur when the model alters the content of the input, thereby creating a
direct contradiction between the input and the output. To illustrate, if the input is "Paris
is the capital of France" and the output is "Paris is the capital of Spain". Here, the out-
put directly contradicts the factual content of the input. Extrinsic hallucinations occur
when, based on the input alone, it is not possible to validate the output’s validity. For
example, if the input is "The company launched a new product" and the output is "The
company launched a new product, which immediately became a global bestseller", the
claim about becoming a global bestseller cannot be verified from the input alone and may
be inaccurate.

The potential for hallucinations in LLMs introduces several security concerns [6]. A
significant concern is the risk of misinformation and disinformation. As this technology
becomes more widely used by regular users, and as its reliability increases, users trust
in the technology will also increase. As a consequence of this trust, users will tend to
pay less attention, overestimating the capabilities of the technology. This will result in
an increase in the harm caused by hallucinations, as users will begin to consider the
output of these models as the ground truth. This overestimation of capabilities can have
significant consequences for the spread of misinformation.

Moreover, hallucinations can be exploited for phishing and social engineering attacks.
The generation of convincing yet false content by LLMs has the potential to deceive users
into divulging sensitive information or undertaking harmful actions. Another significant
security concern is the issue of data privacy and confidentiality. The fabrication of infor-
mation about individuals or organisations through hallucinations can result in breaches
of confidentiality, causing reputational damage or violations of privacy.

The phenomenon of hallucinations in LLMs can be attributed to a number of factors.
A primary cause is the limitations inherent in the training data. LLMs are trained on
extensive datasets sourced from a variety of sources. If the datasets contain inaccuracies,
the model may learn and subsequently reproduce these errors. Furthermore, biases and
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data gaps can result in incomplete or unfair representation, which may lead to erroneous
information being generated by the model when attempting to infer missing details.

It is also the case that prompt ambiguity plays a significant role in the generation of
hallucinations. When a model is presented with an ambiguous or poorly constructed
prompt, it may attempt to infer meaning and generate a response based on incomplete
or unclear input. This often results in hallucinations.

Another factor that can influence the occurrence of hallucinations is overfitting. Over-
fitting occurs when the model becomes overly reliant on the data it has been trained on,
preventing it from generalising to new, unseen data.

The final factor to be considered is the possibility of attacks that attempt to exploit
the vulnerabilities of the model. These attacks are known as adversarial attacks. This
comprises the introduction of minor alterations to the input data, which manipulate the
model to generate erroneous or misleading outputs [72].

Addressing hallucinations in LLMs necessitates the implementation of both technical
solutions and social awareness. One essential strategy is improving the quality of train-
ing data. Ensuring the accuracy and comprehensiveness of training datasets can serve to
mitigate the occurrence of hallucinations. This necessitates the curating of datasets that
minimise biases and include verified information.

Systems that incorporate human oversight, whereby human intervention is integrated
into the training and evaluation of LLMs, can play a pivotal role in the identification and
rectification of hallucinations. This approach combines the efficiency of automated sys-
tems with the discernment of human validation.

It is important to educate users about the limitations of LLMs and the potential for
hallucinations, as this can help to mitigate over-reliance on these systems. The trans-
parency of the development and deployment of LLMs enables users to critically assess
the outputs, thereby promoting a more cautious approach to the information generated
by these models.

The occurrence of hallucinations in large language models presents a significant chal-
lenge to their safe and reliable use. As these models become increasingly integrated into
various sectors, it is of the utmost importance to gain an understanding of and to miti-
gate hallucinations. This is essential in order to utilise the benefits of these models while
minimising the associated risks. Continued research and development efforts are neces-
sary to enhance the accuracy and reliability of LLMs, ensuring their trustworthiness in
applications where factual correctness is key.

3.3 Energy Consumption

Despite their potential, these models present significant energy concerns. This section
explores the energy implications associated with LLMs, including their environmental
impact, factors contributing to their high energy consumption, and potential mitigation
strategies.

Deep learning models are inherently computationally intensive, requiring substan-
tial resources for training and deployment. The environmental impact of these models
is significant, primarily due to the considerable energy consumption involved in their
operation. The training of an LLM is a multi-stage process, involving data preprocessing,
model initialisation, and iterative training. Each of these stages contributes to the overall
energy footprint.

5https://epochai.org/blog/tracking-compute-intensive-ai-models

https://epochai.org/blog/tracking-compute-intensive-ai-models
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Figure 3.2: Number of models with training compute over different thresholds as of 2024 March
31. Source: EpochAI 5

The carbon footprint of training large-scale models is particularly concerning. Cur-
rently, LLMs are trained on massive data centres, as this training necessitates the utilisa-
tion of substantial computational resources. The latest models are estimated to require
1024 FLOPS (floating point operations per second) of training compute [63] (as shown in
Figure 3.2). This compute is associated with 1,300 MWh of electricity, which is equivalent
to the annual consumption of approximately 130 houses in a developed country [43].

The architecture employed in LLMs has a significant impact on their energy consump-
tion. Transformer-based models, which underpin many state-of-the-art LLMs, rely on at-
tention mechanisms that are computationally intensive. A significant factor is the sheer
size and complexity of these models. Modern LLMs, contain billions of parameters and
require substantial computational power. This appears to be an ongoing phenomenon.
Research indicates that the rate of growth in computing power for frontier models will be
fourfold per year, as evidenced by the observations that the compute required for train-
ing frontier models has grown by a factor of 4x per year [69]. This growth in computing
power will be accompanied by a parallel increase in energy consumption.

Furthermore, the energy consumption associated with the training of these models
is not the sole factor to be considered. The deployment of LLM in real-time applica-
tions, such as chatbots or language translation services, continues to consume energy.
Although less energy-intensive than training, the continuous inference required for these
applications contributes to the overall energy consumption and environmental impact
[68].

The energy concerns associated with LLMs can be addressed through a combination
of approaches, including improvements in model design, infrastructure efficiency, and
operational practices. One effective strategy is the development of more energy-efficient
model architectures. A growing number of researchers are tuning their attention to the
optimising of algorithms with the aim of reducing computational complexity without

6https://epochai.org/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year

https://epochai.org/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
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Figure 3.3: Trend of compute in deep learning models. Source: EpochAI 6

compromising model performance. Techniques such as model pruning, quantisation,
and knowledge distillation can significantly decrease the number of parameters and op-
erations required, thus lowering energy consumption [74].

Infrastructure improvements also play a pivotal role in addressing energy concerns.
The implementation of data centres optimised for energy efficiency and the utilisation of
renewable energy sources, can result in significant reduction in the carbon footprint as-
sociated with LLM operations. The implementation of advances in cooling technologies
and the utilisation of energy-efficient hardware can also contribute to a reduction in the
environmental impact.

The energy concerns associated with Large Language Models present significant chal-
lenges to their sustainable deployment and operation. The substantial energy consump-
tion involved in training and deploying these models has notable environmental impacts,
primarily due to the high computational demands and reliance on energy-intensive in-
frastructure. Nevertheless, through the implementation of advanced model architec-
tures, training techniques, and infrastructure efficiency, it is possible to mitigate these
impacts. It is therefore imperative that continued research and innovation is perused
in this area so environmental sustainability of this technology is ensured, enabling the
benefits they offer while their footprint is minimised.

3.4 Legal Framework

The rapid integration of these models into diverse sectors has outpaced the development
of a robust legal framework, leading to several legal and ethical controversies. These
issues are particularly prominent concerning the training data used by LLMs and the
ongoing efforts to regulate their use [38]. This section examines the current legal status
of LLMs, controversies associated with their training data, and the evolving regulatory
landscape, including initiatives such as the European Union’s AI Act [10].
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Currently, the legal framework governing LLMs is fragmented and still developing.
Most promising laws do not specifically address the unique challenges posed by LLMs,
resulting in a complex and often uncertain regulatory environment. In the United States,
for instance, no federal legislation explicitly regulates LLMs. Instead, the regulatory im-
pact on LLMs arises indirectly through existing laws related to data protection, intel-
lectual property, and liability. Notable examples include the General Data Protection
Regulation (GDPR) in the European Union [16]. These regulations impose requirements
on transparency in data collection practices, necessitate user consent for data usage, and
provide individuals with rights to access and delete their data. Consequently, these reg-
ulations affect how training data for LLMs is collected, stored, and utilised.

The training data employed for LLMs has become the main point of legal and ethical
debates. LLMs are typically trained on extensive datasets compiled from various sources
on the internet, including publicly available texts, proprietary content and personal data.
This practice gives raise to a number of significant legal issues. A further concern is
that many training datasets contain copyrighted materials, which raises questions about
intellectual property rights. The unauthorised use of such materials has resulted in le-
gal disputes over intellectual property rights, with several lawsuits being filed against
developers for allegedly using copyrighted texts without permission from authors and
publishers.

Furthermore, the computational capabilities of the models have also been a topic of
concern within the legislative community. In light of the current trend, it is anticipated
that an increase in computational power will result in enhanced model performance. This
enhanced performance is accompanied by an augmented impact on society. In order to
be able to control the influence of these models, some initiatives have been proposed to
segregate models by the computational power. This would involve making a distinction
should be made between less powerful systems with potentially less harmful capabilities
and the most advanced models, which may have the most harmful capabilities.

In order to address these challenges, a number of regulatory initiatives have been im-
plemented with the aim of establishing a clear and comprehensive legal framework for
the field of artificial intelligence. The European Union’s AI Act represents one of the most
comprehensive regulatory initiatives to date. The European Commission proposed the
AI Act in April 2021 with the intention of establishing a legal framework that would clas-
sify AI applications according to their respective risk levels. These levels were defined
as follows: unacceptable risk, high risk, and low risk. Depending on their applications,
LLMs could be categorised as high-risk, which would necessitate the implementation of
stricter rules involving transparency, accountability, and safety.

The AI Act identifies several key areas of relevance to LLMs. In order to ensure trans-
parency, the developers of this models are required to provide detailed information about
the model’s capabilities, limitations, and characteristics of the training data. This includes
the disclosure of potential biases and the sources of training data, thereby informing users
about the limitations and risks associated with LLM outputs. Risk management requires
the implementation of thorough assessments to identify and mitigate potential harms.
Theses assessments must include an evaluation of biases in training data and the imple-
menting of safeguards against adverse effects.

In addition to the AI Act, other jurisdictions are investigating the potential for imple-
menting regulatory frameworks. For instance, the United States of America is developing
guidelines for the management of AI risks, with a particular focus on the implementa-
tion of appropriate safeguards [77]. In order to ensure the safe and responsible use of
artificial intelligence, companies that utilise such technology are required to conduct a
comprehensive assessment of the implications of their respective AI systems, as well as
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to test and monitor them. Japan is also a pioneer in the field of legislation of artificial
intelligence [47]. The approach taken is to encourage a human-centric approach to ar-
tificial intelligence. This is achieved by following seven principles: (1) Human-centric;
(2) Education/literacy; (3) Privacy protection; (4) Ensuring security; (5) Fair competition;
(6) Fairness, accountability, and transparency; and (7) Innovation .These efforts represent
a growing recognition of the need for comprehensive legal frameworks to govern the
deployment and operation of LLMs, addressing the unique challenges they pose.

The legal framework surrounding LLMs is currently characterised by the emergence
of new regulations and the ongoing controversy surrounding their implementation. The
issues related to the use of training data, including intellectual property rights, privacy,
and bias, underscore the need for robust and clear regulations. As regulatory initiatives
continue to evolve, collaboration among developers, users, and policymakers will be
essential to creating a legal environment that balances innovation with ethical and legal
responsibilities. This will ensuring the responsible and equitable deployment of LLMs.



CHAPTER 4

Solution Design

In light of the comprehensive analysis of the challenges surrounding this work addressed
in Chapter 3, the following chapter will describe in detail each of the decisions that have
been made and the approaches taken to tackle the problem. The chapter has been struc-
tured as follows:

• System Architecture: This section outlines the proposed solution for a pipeline to
perform the evaluation. This pipeline will ensure a systematic and precise work-
flow.

• Methodology: This section outlines the methodology employed for the creation of
a comprehensive and well-designed dataset, as well as a prompting strategy that,
through incremental complexity, achieves satisfactory results.

4.1 System Architecture

In order to implement the code, a robust pipeline was developed with the objective of
facilitating a systematic and precise workflow. This is depicted in Figure 4.1, which illus-
trates a flow chart of the final pipeline. This pipeline is composed of a directed acyclic
graph, which features standard and decision nodes. Standard nodes represent the pri-
mary flow of operations, while decision nodes provide branching paths based on specific
conditions.

The pipeline comprises three main components: dataset extraction, code generation,
and code evaluation. Here’s a step-by-step breakdown of the workflow:

Figure 4.1: Code pipeline used for generation and evaluation of code produced by the large lan-
guage models.

21
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• Dataset Extraction: The pipeline begins with the conditional node Dataset, which
selects the first problem from the dataset to be modelled.

• Example Selection: Next, the variable N is initialised to one. The node N Examples
then extracts the first example associated with the selected problem.

• Code Generation: The LLM node generates the corresponding code based on the
extracted example. This generated code is subsequently saved for further process-
ing.

• Code Evaluation: The generated code is passed to the Evaluate Code node, where it
undergoes a series of tests. The Record Results node records the outcomes of these
evaluations, ensuring that the code is tested across all 20 examples within the prob-
lem set.

• Iteration: This process iterates for 9 steps, incrementing N by one in each iteration,
until the condition N ≤ 10 is satisfied. Once N exceeds 10, the pipeline moves to
the next problem in the dataset, repeating the entire sequence.

This systematic approach allows us to address each problem in the dataset in a me-
thodical manner, ensuring that every aspect of the code generation and evaluation is
thoroughly covered. By rigorously testing the code across multiple examples and config-
urations, we ensure the reliability and consistency of our results.

The workflow not only standardises the process but also provides a framework for
varying conditions and configurations, thereby enhancing the robustness of our solu-
tion. By utilising this structured pipeline, we are able to achieve consistent results across
different problem scenarios, thereby validating the reliability of our code generation and
evaluation process.

4.2 Methodology

4.2.1. Dataset

The main challenge in developing this work is to construct a dataset with a sufficiently
diverse range of use cases. It’s important not only to include different problems in the
dataset, but also to consider the number of examples for each task and the order in which
these examples are presented.

The dataset should contain an appropriate number of problems, but too many can
obscure the relationships between them. The complexity of each problem is a key factor.
Including problems of varying levels of difficulty is beneficial: simple problems help
establish a baseline to determine whether basic relationships are being captured, while
more complex, novel problems provide a higher benchmark for evaluating advanced
models.

A significant challenge is to define problems in a way that categorises them by com-
plexity. Determining whether a problem is ’easy’ can be subjective, as complexity often
depends on the evaluators perception. It is therefore desirable to establish a criterion for
assessing the complexity of problems in the dataset.

Another critical issue is determining the appropriate number of examples needed to
define a problem. It is valuable to assess how many examples are needed to capture
the underlying relationships, and whether there is a correlation between the number of
examples and model performance, or between difficulty and performance.
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The order and quality of examples are also crucial considerations. Defining problems
solely through examples is challenging, particularly in ensuring that examples are con-
sistent and comprehensive. Examples should be informative and specific to the problem.
For instance, the example 0,0=0 could illustrate addition, multiplication, or countless
other problems.

An extensive search in inductive programming’s literature was made to find a com-
plete and comprehensive set of task that enabled the comparison of both systems. How-
ever, most systems we encountered used a limited number of tasks for their evaluations,
which was not sufficient for a detailed comparison.

In their paper, Hofmann et al in [26] [27] present an evaluation frameworks for IP. This
can be considered as the first unified framework for identifying strengths and weakness
of IP systems, as well as one of the first comprehensive comparison of diverse IP systems.
Subsequently, the University of Bamberg established a website that serves as a portal
for the field of inductive programming1. The objective of this web page was to collect
all research in the filed in a single repository. The project team presented an extension
of Hofmann’s dataset and new evaluations for newer models. As this represents the
most comprehensive evaluation currently available, it was selected as the baseline for
our dataset.

As shown in Figure 4.2, the dataset consists of 32 tasks of varying complexity, ranging
from simple tasks as addition or determining even numbers, to more challenging tasks
as Ackermann function or Fibonacci. These tasks represent common problems for which
specific code implementations are readily available online.

As the dataset did not contain any specific criteria for the number of examples defin-
ing each task, we decided to extend each task to 20 input/output examples. We consid-
ered this quantity sufficient to cover a wide range of potential use cases, serving as an
upper bound for the examples required to accurately capture task behaviour.

In addition to the mentioned dataset, we introduce 12 new tasks, each with their
respective 20 input/output examples (shown in Figure 4.3). These additional tasks were
designed to introduce nuances and complexities not present in the original set. While the
relationships between inputs and outputs were intentionally created to be apparent to
humans, they were deliberately made atypical to challenge existing coding paradigms.
Consequently, no available code implementations for these tasks exist.

By deliberately crafting tasks with atypical relationships and deliberately avoiding
preexisting code implementations, we challenge the systems to generalise effectively and
adapt to unconventional patterns. Specially these tasks ensures that LLMs must rely only
on their language comprehension and generation capabilities.

In summary, constructing a comprehensive dataset for evaluating inductive program-
ming systems presents several challenges, as ensuring diversity in problem types and
complexity to determining the optimal number and quality of examples. This was ad-
dressed by adopting a baseline dataset from the University of Bamberg, extending it to
include 20 input/output examples per task, and introducing 12 additional atypical tasks.
This carefully crafted dataset aims to provide a robust framework for comparing PBE.
Additionally it asses the ability to handle both common and unconventional program-
ming tasks. Ultimately, this approach seeks to offer a more nuanced and comprehensive
evaluation of the task of PBE.

1https://www.inductive-programming.org/repository.html

https://www.inductive-programming.org/repository.html
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Figure 4.2: Dataset of programming problems associated with common tasks of varying difficulty,
extracted from a public repository of the University of Bamberg.
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Figure 4.3: Custom dataset of complex and atypical programming problems.
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4.2.2. Prompting

Having reached a point of finality with regard to the configuration and architecture of our
systems, we are now in a position to proceed. As previously outlined in Subsection 3.1.2,
the final remaining challenge is to define a prompt that can fully leverage the potential
of LLMs.

To this end, we initiated the process by defining the system prompt. System prompts
serve as a framework for guiding the overall context and constraints within which a
model operates. These prompts are of paramount importance for the effective man-
agement of how a model interprets user inputs and generates outputs. By defining the
model’s role in advance, system prompts facilitate consistent, reliable, and contextually
appropriate interactions, thereby enhancing the model’s effectiveness. This ensures that
the outputs are relevant and adhere to the specified guidelines.

With regard to the specific system prompt, we have opted for the following:

System: You are an inductive programming agent, an autonomous entity tasked
with inferring general rules or programs from a given set of input-output exam-
ples. It operates by analysing the provided examples to identify patterns or reg-
ularities and then formulates a generalised program that can accurately predict
outputs for unseen inputs.

We think this is an effective prompt because it provides clear and specific guidance
on the model’s role and objectives. The prompt ensures a clear role for the model by
explicitly defining its function as an "inductive programming agent." This approach is
designed to facilitate the process of rule inference, which is of particular significance in
the context of our desired tasks. Furthermore, by including input-output examples, we
aim to encourage the model to utilise example-based learning. Finally, we attempt to
indicate the aspects of the problem that the model should focus on in order to resolve it.
In particular, we emphasise the importance of generating general programmes that will
be applicable to new, unseen examples.

The previous system prompt was integrated with the subsequent two prompts in
order to facilitate the initial evaluation. In light of the fact that code generation will be
performed for both Python and Haskell, two prompts were crafted with the objective of
aligning with the respective programming language while minimising the discrepancy
between them. This led to the formulation of the following prompts:

Python Prompt

Given a list of examples which structure is f(input) = output, where given to a
function f the input values, we get as output the value of this variable.
Write in Python the function f that models the relationship between inputs and
outputs, so given new inputs we can get the corresponding outputs.
Avoid adding any additional functions as a main or a print.
Model the following function f in Python:
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Haskell Prompt

Given a list of examples which structure is f : input -> output, where given to a
function f the input values, we get as output the value of this variable.
Write in Haskell the function f that models the relationship between inputs and
outputs, so given new inputs we can get the corresponding outputs.
Avoid adding any additional functions.
Model the following function f in Haskell:

This prompts ensure that the structure of the examples is well defined, that the ob-
jective is clearly delineated and it is ensured that the generated code is aligned with the
requirements.

In order to provide an empirical evaluation of the quality of our prompt, we present
the obtained results in two distinct formats. The first format is a table which contains
the average performance of tasks over all examples. The second format is a series of
figures which demonstrate the performance of each task when varying the number of
examples (contained in the appendix). The figures show a resulting graph for each of
the problems contained in our dataset. Each individual graph displays the score for the
generated code on the y-axis, with the number of examples defined for each problem
displayed on the x-axis. Therefore, if a generated function is well defined and generalises
to every example, the resulting score should be 100%. As the system was prompted with
one example initially, then two examples, and so on until 10 examples, where a function
was generated for each case, the x-axis shows each of the generated configurations. This
results in a graph that depicts the performance of the generated function as the number
of examples is varied. Furthermore, a red rectangle has been added added, which serves
to differentiate and highlights the complex problems, as explained in Subsection 4.2.1.

The aforementioned results were employed to motivate the path to be followed in
order to obtain the optimal prompt for the task.

Firstly, an analysis of the performance of the Python-generated functions is presented
in Table 4.1 and Figures A.1 and A.3. Revealing that the outcomes of both GPT-3.5 and
GPT-4 are largely comparable. This is at odds with our initial expectations, which were
that as GPT-4 is a larger and more effective model, it should outperform GPT-3.5. How-
ever, the results for both models are not consistent and exhibit considerable fluctuations
in performance as the number of examples varies. The observed inconsistency in the
results precludes any further analysis aimed at identifying patterns that might be extrap-
olated from the data.

The ineffectiveness of the Haskell-generated functions is evident in Table 4.1. In this
instance, none of the models are able to accurately capture any relationship.

Upon further analysis of the individual generated code, a clear trend emerged for
both programming languages. In the case of Python, the fluctuations observed were a
consequence of the generated code not fitting accurately to the prompt in some cases,
this was caused by the inclusion of additional print statements, additional unnecessary
functions or compilation errors. In Haskell, this same issue was more prevalent, with
nearly all cases exhibiting compilation errors or the inclusion of additional, superfluous
functions.

The outcomes of this results serve to reinforce the initial concerns regarding the prompt.
In order to achieve useful results, it is of the utmost importance to align the model as
closely as possible with the intended task. This highlights the necessity for the develop-
ment of more effective prompting strategies.
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Table 4.1: Mean Scores over number of examples for GPT-3.5 and GPT-4 on Python and Haskell
using a simple prompt.

Function
Python Mean Scores(%) Haskell Mean Scores(%)
GPT-3.5 GPT-4 GPT-3.5 GPT-4

ack 9.0 12.5 0.0 0.0
add 50.0 40.0 0.0 0.0
add_even_prod 11.0 4.5 0.0 0.0
append 60.0 40.0 4.5 4.5
car 86.5 49.5 0.0 0.0
cdr 31.5 57.5 5.0 4.5
char_shift 23.5 80.0 0.0 0.0
cumulative_sum 22.0 51.5 0.5 0.0
drop 54.0 45.0 17.5 35.0
entangle_strings 31.0 60.0 0.0 0.0
eq 89.5 87.5 0.0 0.0
even 28.0 27.5 0.0 0.0
evenlist 44.0 48.5 0.0 0.0
evenpos 9.0 29.0 17.5 20.0
fib 7.5 23.0 0.0 0.0
geq 49.0 59.0 0.0 0.0
insert 43.0 73.0 0.0 0.0
last 80.0 38.0 0.0 0.0
lasts 4.5 24.5 0.0 0.0
length 57.0 57.0 2.5 0.0
length_non_repeating_char 44.5 85.5 0.0 0.0
member 72.5 49.0 0.0 0.0
mult 67.5 90.0 0.0 0.0
mult_add 0.0 0.0 0.0 0.0
mult_char 56.0 35.0 0.5 0.0
mult_plus_one 22.5 0.0 0.0 0.0
multfirst 13.5 50.0 2.5 4.0
multlast 8.0 54.5 2.5 4.5
nested_factorial_sum 11.0 16.0 0.0 0.0
odd 60.5 30.5 0.0 0.0
oddpos 31.0 27.5 24.0 30.0
oddslast 57.0 70.0 0.0 0.0
power_sum 2.0 1.0 0.0 0.0
reverse 90 60 4.5 4.5
shiftl 81 36.5 2.5 3.5
shiftr 29.5 57 3.5 3.0
sort 79.5 28.5 5.0 5.0
sum 62.0 95.0 60.0 95.0
swap 32.5 28.5 3.5 4
switch 50.0 44.5 3.0 4.5
symmetrical_pair_prod 0.0 0.5 0.0 0.5
take 24.5 25.0 31.5 35.0
weave 30.0 76.0 5.0 4.5
weighted_char_shift 24.0 40.5 0.0 0.0

The principal issue with the previous prompt was the generation of code that aligned
with the specified requirements. After a comprehensive evaluation, we determined that
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the most prudent course of action would be to build upon our previous prompt by incor-
porating a code template for the model to utilise in the construction of its final solution.
This approach is intended to enhance the consistency of our results, particularly in the
case of Haskell, where previous outcomes have been less than satisfactory. This led to the
formulation of the following prompts:

Python Prompt

User: Given a list of examples which structure is f(input) = output, where given to
a function f the input values, we get as output the value of this variable.
Write in Python the function f that models the relationship between inputs and
outputs, so given new inputs we can get the corresponding outputs.
Avoid adding any additional functions as a main or a print.
The code should have the following structure:
“‘python
def f(input):

# your code here
return output

“‘
Model the following function f in Python:

Haskell Prompt

User: Given a list of examples which structure is f : input -> output. Write in
Haskell a function that captures the relationship between the inputs and outputs
of the list.
The inputs and outputs should match the type defined in the in the function.
The code should have the following structure,
“‘haskell
f::
main :: IO ()
main = do input <- getLine
let ___ = map read (words input) :: [__]
let result = f ___ putStrLn (show result).
“‘
Model the following function f in Haskell:

Results for our new prompt where extracted, represented in the same layout as before
(Table 4.2 and Figures A.5, A.6, A.7 and A.8). A general improvement can be seen over
all results. Predominantly, Haskell (Figures A.6 and A.8) shows the most increase in
performance. Both GPT-3.5 and GPT-4 do solve the task in specific configurations. Still,
results are far from consistent and show undesirable instabilities.

On the other hand, Python (Figures A.5 and A.7) start promising results. Now some
difference can be observed between GPT-3.5 and GPT-4. GPT-3.5 results show a minor
improvement in stability and performance across tasks. Instead, GPT-4 shows a leap
in performance and stability. The results show that GPT-4 consistently is able to solve:
add, append, car, char_shift, cumulative_sum, entangle_string, eq, insert, last, length,
member, mult, reverse, shiftl, shiftr, sort, sum, switch and weave.

Despite this results, improvements in performance and stability are still desirable.
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Table 4.2: Mean Scores over number of examples for GPT-3.5 and GPT-4 on Python and Haskell
using a more complex prompt that defines the desired code structure.

Function
Python Mean Scores(%) Haskell Mean Scores(%)
GPT-3.5 GPT-4 GPT-3.5 GPT-4

ack 7.5 12.0 13.68 20.53
add 70.0 100.0 70.0 100.0
add_even_prod 2.0 0.5 7.5 12.0
append 70.0 100.0 78.0 53.5
car 80.0 99.5 29.5 76.0
cdr 56.0 73.0 30.5 32.0
char_shift 23.0 90.5 10.5 31.0
cumulative_sum 13.0 100.0 9.0 100.0
drop 52.0 55.5 47.0 26.5
entangle_strings 0.0 100.0 27.0 53.0
eq 45.0 100.0 32.5 100.0
even 45.0 40.0 40.5 47.0
evenlist 44.0 61.5 37.5 54.5
evenpos 7.0 34.0 39.5 56.0
fib 31.5 4.5 5.5 13.0
geq 41.0 58.0 16.5 59.5
insert 20.0 93.0 39.0 40.0
last 41.5 96.0 53.0 66.5
lasts 2.0 51.0 9.0 67.0
length 66.5 95.0 60.0 90.0
length_non_repeating_char 55.0 75.0 20.5 43.0
member 20.0 97.5 29.0 70.0
mult 34.0 100.0 3.5 66.5
mult_add 0.0 0.0 16.5 19.0
mult_char 21.0 63.0 28.0 35.0
mult_plus_one 8.0 42.5 7.5 18.5
multfirst 24.0 89.0 66.0 60.0
multlast 11.0 40.5 40.5 36.5
nested_factorial_sum 12.5 8.0 13.0 20.0
odd 55.5 70.0 34.0 75.5
oddpos 20.0 38.0 35.5 49.5
oddslist 30.5 65.0 41.0 72.0
power_sum 0.0 9.5 0.5 14.0
reverse 30.0 100.0 81.0 62.0
shiftl 36.0 91.0 41.0 23.0
shiftr 22.0 95.5 53.0 33.5
sort 51.0 83.0 28.5 40.0
sum 83.5 95.0 60.0 95.0
swap 22.0 42.5 39.5 47.5
switch 27.5 90.0 76.0 90.5
symmetrical_pair_prod 0.5 0.5 0.0 5.5
take 18.0 38.0 41.0 32.5
weave 20.0 92.0 45.5 70.0
weighted_char_shift 0.0 29.0 11.0 17.0

A great deal of research is currently being conducted with the objective of developing
effective methods for leveraging the power of prompting. A novel approach, Zero-Shot-
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Chain-of-Thought [37], has recently been introduced. This research demonstrates that
the addition of a simple sentence, "Think step by step," can enhance the performance of
zero-shot tasks. In the paper, the author states that "we show that LLMs are decent zero-
shot reasoners by simply adding “Let’s think step by step” before each answer. Experimental
results demonstrate that our Zero-shot-CoT, using the same single prompt template, significantly
outperforms zero-shot LLM performances on diverse benchmarks".

Given the performance benefits demonstrated by Zero-Shot-Chain-of-Thought, we
proceeded to implement these modifications to our previous prompt. This results in a
combination of a description of the task, the desired code template with which to generate
the output and the Zero-Shot-Chain-of-Thought strategy:

Python Prompt

User: Given a list of examples which structure is f(input) = output, where given to
a function f the input values, we get as output the value of this variable.
Write in Python the function f that models the relationship between inputs and
outputs, so given new inputs we can get the corresponding outputs.
Avoid adding any additional functions as a main or a print.
The code should have the following structure:
“‘python
def f(input):

# your code here
return output

“‘
Think step by step.
Model the following function f in Python:

Haskell Prompt

User: Given a list of examples which structure is f : input -> output. Write in
Haskell a function that captures the relationship between the inputs and outputs
of the list.
The inputs and outputs should match the type defined in the in the function.
The code should have the following structure,
“‘haskell
f::
main :: IO ()
main = do input <- getLine
let ___ = map read (words input) :: [__]
let result = f ___ putStrLn (show result).
“‘
Think step by step.
"Model the following function f in Haskell:

The results presented in Table 4.3 and Figures A.9, A.10, A.11 and A.12 are in accor-
dance with the experiments conducted in the Zero-Shot-Chain-of-Thought paper. It can
be observed that there has been an overall increase in stability and performance. In more
precise terms, in Python, GPT-3.5 (Figure A.9) exhibits a reduction in overall fluctuations
in the results. This is evidenced by the consistent resolution of certain problems that pre-
viously failed, including append, car, eq and shiftl. Given the good results observes with
GPT-4 on Python (Figure A.11) using the previous prompt, the improvements achieved
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in this case are comparatively less pronounced. Nevertheless, there has been a general
improvement in stability and performance. The instances where the problem consistently
solves have increased to include last. Haskell also demonstrates some improvements, al-
though GPT-3.5 (Figure A.10) still exhibits excessive inconsistency in achieving clear re-
sults. In contrast, GPT-4 (Figure A.12) demonstrates the most significant improvements
in comparison to previous results. In addition to the previous cases where the model did
accurately solved the problem, this method enables the solution of further operations,
including append, car, cumulative_sum, last, lasts, length, mult, multfirst, reverse swap
and switch.

Nevertheless, this solution could be further enhanced, as fluctuations are still present,
particularly in the case of code generation in Haskell using GPT-3.5.
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Table 4.3: Mean Scores over number of examples for GPT-3.5 and GPT-4 on Python and Haskell
using Chain of Thought in addition to defining the desired code structure.

Function
Python Mean Scores(%) Haskell Mean Scores(%)
GPT-3.5 GPT-4 GPT-3.5 GPT-4

ack 11.5 14.0 4.74 1.05
add 70.0 100.0 13.5 100.0
add_even_prod 7.0 6.0 15.26 1.03
append 90.0 100.0 42.0 85.0
car 99.5 99.5 34.5 85.5
cdr 48.5 75.5 30.0 75.5
char_shift 17.5 70.0 10.0 13.0
cumulative_sum 49.0 100.0 11.5 80.0
drop 62.0 52.5 47.5 16.5
entangle_strings 32.0 95.5 9.5 58.5
eq 71.5 94.5 16.5 100.0
even 27.5 53.0 24.5 41.5
evenlist 38.0 62.0 36.5 54.5
evenpos 32.0 38.0 37.0 44.0
fib 8.0 42.5 22.0 31.5
geq 53.0 57.0 12.5 56.0
insert 10.5 93.0 29.0 60.0
last 71.0 96.0 39.0 95.0
lasts 5.0 86.5 11.0 76.5
length 84.5 95.0 18.5 80.0
length_non_repeating_char 39.0 84.0 19.5 42.5
member 68.5 100.0 34.0 50.0
mult 10.0 93.5 8.5 86.5
mult_add 0.0 0.0 17.0 13.5
mult_char 70.0 70.0 56.0 14.0
mult_plus_one 7.0 5.5 13.5 16.0
multfirst 27.5 89.0 30.5 91.0
multlast 13.0 45.5 22.0 27.5
nested_factorial_sum 14.5 4.0 8.5 16.0
odd 52.5 63.0 20.0 66.0
oddpos 35.0 28.0 32.5 37.5
oddslist 47.0 65.0 30.0 60.0
power_sum 0.5 1.0 3.0 9.0
reverse 77.0 100.0 71.5 100.0
shiftl 90.0 92.5 60.5 50.0
shiftr 25.5 99.0 35.0 82.0
sort 67.5 83.0 25.5 69.0
sum 55.5 95.0 44.5 95.0
swap 32.5 67.0 24.0 70.0
switch 40.0 95.0 13.5 100.0
symmetrical_pair_prod 9.0 0.5 5.0 0.5
take 20.0 33.5 37.5 42.0
weave 53.5 86.0 10.5 58.0
weighted_char_shift 0.0 60.0 9.5 0.0

As research in the field of prompt engineering has continued to develop, More so-
phisticated methodologies have been devised for optimising the full potential of LLM
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systems. One of the promising strategies is flow engineering [81]. Flow engineering
focuses on optimising the interaction between LLMs and task-specific workflows. This
approach involves the structuring of LLM tasks as sequences of interconnected steps or
"flows". Each step represents a discrete unit of the task that can be independently exe-
cuted and refined. The division of complex tasks into manageable sub-tasks enables flow
engineering to enhances the model’s ability to handle intricate workflows with greater
accuracy. This enables more precise control over the model’s output and ensures that
the model adheres to the specified task-specific guidelines in an accurate and consistent
manner.

The efficacy of this strategy has led to the implementation of this approach to ad-
dress complex tasks such as code generation. This resulted in the development of Alpha-
Codium [65], a framework that integrates prompt engineering with flow engineering.
This framework enables the generation of code in an efficiently manner by structuring
tasks into logical flows. This process involves the utilisation of LLMs to interpret and
transform natural language prompts into sequences of actions that create code, ensuring
the code aligns with user specifications and computational requirements. By applying
principles of flow engineering, AlphaCodium enhances the process of code generation,
enabling LLMs to generate coherent, functional code by following defined procedural
steps. This integration of structured workflows and dynamic code generation shows how
flow engineering enables LLM-driven code generation in complex technical domains.

In light of the framework proposed by AlphaCodium, we decided to build our own
implementation tailored to our specific task. This resulted in the graph flow depicted in
Figure 4.4. The implementation builds a simpler system than that proposed in Alpha-
Codium. Based on our previous prompt configuration, which combined the description
of our task, the desired code template with which to generate the output and the Zero-
Shot-Chain-of-Thought strategy, we feed this prompt to the model with its respective
problem examples (prompt node). Given the code generated by the model (code gener-
ation node). Subsequently, the generated code is subjected to a code compilation node,
which serves to identify any potential compilation errors. In the event of a compilation
error in the generated code, the model is prompted again, this time with a prompt con-
taining the initial prompt, the generated code solution for the prompt and the specific
compilation errors. This stage is defined as the "reflecting" stage. In the event that no
compilation errorThe objective of this stage is to ensure that the model is able to at least
identify the relationship between the examples provided. Should the generated code be
unable to function as intended with the provided examples, the model will be prompted
again (reflect node), this time with a prompt containing the initial prompt, the generated
code solution for the prompt and specific examples where the code did not generate the
desired response. Nevertheless, if the generated code solution is found to be effective in
addressing the given examples, the final solution will be saved and the execution will be
terminated.

Figure 4.4: Proposed flow method.
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The workflow was employed to generate code solutions for each configuration. A
limitation of 15 iterations was imposed to prevent infinite looping, with each iteration
of the code generation process by the LLM being considered as a full iteration of the
associated graph.

This configuration is considered to be the final one. A more detailed analysis of the
results will be presented in Section 5. Our research indicates that our proposed configura-
tion represents the optimal approach for reliably utilising an LLM to capture the relation-
ship between inputs and outputs provided by examples. By constructing a well-defined
prompt that provides a detailed description of the task, the specific code structure that
is desired, utilising Chain-of-Thought in addition to iteratively improving the code by
checking for compilation errors and ensuring that it is able to work on the provided ex-
amples, we are able to accurately assess the full reasoning capabilities of large language
models without the need for additional constraints.





CHAPTER 5

Final Results

In this section we show the results for our final configuration. An analysis will carried out
to see if the results actually support our initial hypothesis. By further evaluating these
results, we also hope to look for global patterns in the data that may provide insight into
the behaviour of the models.

In this final stage of the evaluation process, we will be utilising the proposed dataset
(Subsection 4.2.1). As detailed in Subsections 3.1.1 and 3.1.2, the generation will be evalu-
ated for both Python and Haskell using both GPT-4 and GPT-3.5. The final prompt strat-
egy will consist of a combination of flow engineering and prompting. In more precise
terms, an autonomous agent has been designed, which, upon a first proposed solution,
iteratively attempts to improve until it successfully generates a function that captures the
relationship between the input-output examples seen by the model. The final prompt
solution and the methodology employed to arrive at it are presented in Section 4.2.2.

Figures 5.1, 5.2, 5.3 and 5.4 illustrates the performance of the final configuration bro-
ken down by programming language, model and task. The graphs illustrate the perfor-
mance of the generated code for the problems in the dataset. Each graph plots the code’s
score on the y-axis against the number of examples used to generate the code on the
x-axis. A score of 100% represents the optimal performance, indicating that the code gen-
eralises well across all examples. The x-axis ranges from 1 to 10 examples, illustrating the
function’s performance as the number of examples used to generate the code increases. A
red rectangle is used to highlight the distinction between simple and complex problems,
as described in a specific subsection.

The results demonstrate an overall improvement in performance across all configu-
rations. In the case of Python, GPT-3.5 exhibits an increase in performance and stability,
with tasks being solved consistently across all examples. These include add, append,
last, length, reverse, shiftl, sort and sum. In GPT-4, this trend is more pronounced. It is
evident that the majority of tasks are being solved, with only a few instances where the
model consistently fails to produce an output. In contrast, for Haskell, GPT-3.5 exhibits a
decline in performance and an increase in variability in comparison to Python. A similar
trend is observed in GPT-4 for Haskell, where a significant proportion of tasks are solved.
However, Haskell exhibits greater fluctuations than Python.
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Figure 5.1: GPT-3.5 scores for each function in Python using our proposed coding agent. Red
rectangles highlight the complex problems.
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Figure 5.2: GPT-3.5 scores for each function in Haskell using our proposed coding agent. Red
rectangles highlight the complex problems.
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Figure 5.3: GPT-4 scores for each function in Python using our proposed coding agent. Red
rectangles highlight the complex problems.
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Figure 5.4: GPT-4 scores for each function in Haskell using our proposed coding agent. Red
rectangles highlight the complex problems.

Although results per task provide valuable insight into the specific performance in
each task, the figures themselves are too complex and contain too much information.
This overwhelm of information makes it challenging to identify patterns in the data or
global trends.

By calculating the mean performance per task for each configuration (Figure 5.5), in-
teresting patterns emerge. The data presented in this figure clearly delineates two distinct
tendencies. Firstly, the results show that both programming languages the result show a
considerable improvement from the performance of GPT-3.5 to GPT-4. Additionally, the
results demonstrate that, for both LLMs, Pythons configurations exhibits superior per-
formance compared to Haskells configurations. This indicates that the best performance
configuration is GPT-4 utilising Python. This findings corraborate our initial hypothe-
sis. As anticipated, the superior capabilities of GPT-4 are reflected in its superior perfor-
mance. Also, as Python is a more common programming language, it will definitely be
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more overrepresented than Haskell in the training data of both models, thus resulting in
superior performance in Python over Haskell.

However, the most striking findings emerge when examining the relationship be-
tween performance and the number of examples. Contrary to expectations, there is no
discernible correlation between the two variables. It is noteworthy that, in all cases, there
is no discernible increase in performance when the number of examples is augmented.
This behaviour only appears at the one-to-two examples range. In this case, there is an
improvement in all cases, with the exception of GPT-3.5 with Python.

The results demonstrate that LLMs show problems of saturation. This implies that
if an LLM is unable to discern a relationship in the initial two examples, the addition of
further examples will not result in the acquisition of any further insights. One might posit
that this behaviour is analogous to that observed in humans, where the identification of
a summation from two examples is relatively straightforward. However, the addition of
numerous examples may prove to be a hindrance, rather than a benefit.

Figure 5.5: Comparison of mean scores over all problems for function generation in Python and
Haskell using GPT-3.5 and GPT-4. The plots depict the performance trends for Python (top-left

and bottom-left) and Haskell (top-right and bottom-right) across both model versions.

In light of these intriguing findings, it is worth further analysing the data in search
for more valuable insights. The dataset includes both typical coding problems, such as
member, add, and fibonacci, which are commonly encountered in learning environments,
and atypical tasks that were specifically created for this study. It would be of interest to
segregate the results in order to obtain more meaningful insights.
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Figures 5.6 and 5.7 illustrate the mean performance over typical and atypical tasks, re-
spectively. The outcomes of both experiments follow the same patterns as those observed
when using all the functions. Both models saturate, and the correlations between perfor-
mance of GPT-3.5, GPT-4, Haskell and Python remain consistent. A comparison of the
two results reveals a significant distinction between typical and atypical problems. The
tasks that are more commonly encountered result in a significantly higher performance
when compared to the tasks that are defined as uncommon.

Figure 5.6: Comparison of mean scores over typical problems for function generation in Python
and Haskell using GPT-3.5 and GPT-4. The plots depict the performance trends for Python (top-

left and bottom-left) and Haskell (top-right and bottom-right) across both model versions.
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Figure 5.7: Comparison of mean scores over atypical problems for function generation in Python
and Haskell using GPT-3.5 and GPT-4. The plots depict the performance trends for Python (top-

left and bottom-left) and Haskell (top-right and bottom-right) across both model versions.

The observed discrepancies in outcomes are indicative of promising outcomes. How-
ever, without a formal definition of complexity, it is not possible to state with confidence
that the observed differences in performance between typical and atypical tasks are due
to contamination. It is possible that the more atypical tasks are, in fact, more challeng-
ing to solve than the typical tasks. Due to time constraints, this topic could not be fully
addressed in this work. However, we hope that this will provide motivation for future
research in this area.

A comparative analysis between an IFP system and the final configuration could yield
valuable insights. As previously stated in Section 2, MagicHaskeller is an IFP system
that has shown good performance. Following an evaluation of a number of IFP sys-
tems conducted by the University of Bamberg1, we opt to compare our approach with
that of MagicHaskeller. In comparison to other sophisticated systems, such as Igor2,
MagicHaskeller demonstrated superior overall performance.

Table 5.1 presents a comparison between MagicHaskeller and GPT-4, utilising both
the Python and Haskell programming languages. The results demonstrate the percentage
of instances where the model correctly identified the relationship. These scores represent
the optimal performance, regardless of the number of examples employed. Due to time
constraints, some tasks were not evaluated with MagicHaskeller.

1https://www.inductive-programming.org/repository.html

https://www.inductive-programming.org/repository.html
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Table 5.1 shows the comparison between MagicHaskeller and GPT-4 using both Python
and Haskell. The results show the percentage of examples where the model correctly
captured the relationship. This scores where taken for the best performing case, with-
out considering the number of examples. Due to time constrains, some tasks where not
evaluated with MagicHaskeller.

In inductive programming systems, a search is conducted within the space of poten-
tial programs, resulting in either the successful identification of a program that models
the relationship or an unsuccessful outcome. This is why there is an absence of interme-
diate values between 0 and 100 in the results.

A comparison of the two systems reveals instances where the IFP system is unable to
solve certain tasks, while LLMs succeed. This is evident in tasks such as last, oddslist,
sum, swap, and switch. These results suggest that, in terms of pure performance for these
specific cases, LLMs outperform IFP systems. However, it is important to note that IFP
systems offer other advantages, such as efficiency and lower time and cost complexity,
which were not considered in this evaluation.

The assessment of the final configuration substantiates the initial hypothesis. The
analysis indicates a notable enhancement in performance from GPT-3.5 to GPT-4, partic-
ularly in the context of Python, which consistently demonstrates superior performance
compared to Haskell. This support the assumption that GPT-4 advanced capabilities con-
tribute to its superior performance, and that Python’s dominance in training datasets en-
hances its performance over Haskell. The study also reveals an interesting phenomenon:
a saturation point for LLMs. It appears that beyond the initial one or two examples, ad-
ditional data does not enhance performance. This saturation phenomenon indicates that
LLMs exhibit the capacity to identify patterns at an early stage, with additional examples
failing to enhance the clarity of relationships. Moreover, typical coding problems elicit su-
perior performance compared to atypical ones. Nevertheless, it is challenging to infer the
underlying cause of this phenomenon, which presents an opportunity for future research
extensions. Furthermore, a comparison with the results obtained by MagicHaskeller has
demonstrated that, at least in the context of this comparison, LLMs exhibit superior per-
formance. It is, however, important to recognise that IFP systems offer distinct advan-
tages in terms of efficiency, time, cost and complexity.
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Table 5.1: Comparison of best performing IP systems vs our results for GPT-4 with Python and
Haskell. Best resulting scores are chosen for both models.

Problem MagicHaskeller(%) GPT-4 Python(%) GPT-4 Haskell(%)
ack 100 60 47
add 100 100 100
add_even_prod Not evaluated 60 50
append 100 100 100
car 100 100 95
cdr 100 95 100
char_shift Not evaluated 100 100
cumulative_sum Not evaluated 100 100
drop Not evaluated 90 100
entangle_strings Not evaluated 100 100
eq 100 100 100
even 100 100 60
evenlist 100 95 95
evenpos 100 85 90
fib 100 100 100
geq 100 70 70
insert Not evaluated 100 100
last 0 100 95
lasts 100 100 95
length 100 95 100
length_non_repeating_char Not evaluated 100 100
member Not evaluated 100 100
mult 100 100 100
mult_add Not evaluated 0 70
mult_char Not evaluated 70 70
mult_plus_one Not evaluated 95 50
multfirst 100 0 100
multlast 100 100 100
nested_factorial_sum Not evaluated 100 45
odd 100 100 100
oddpos 100 85 90
oddslist 0 80 75
power_sum Not evaluated 55 55
reverse 100 100 100
shiftl 100 95 95
shiftr 100 100 100
sort 100 95 100
sum 0 95 95
swap 0 95 100
switch 0 95 100
symmetrical_pair_prod Not evaluated 50 45
take-n 100 95 60
weave 100 100 100
weighted_char_shift Not evaluated 90 90
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Conclusion

Given the objectives defined at the start of this work. This section will assess whether the
objectives in fact have been met. This will be demonstrated by the evidence presented
throughout the chapters of this work.

• Literature Review and Benchmark Creation

– Conduct a Comprehensive Literature Review:

* Perform an exhaustive search of existing literature on PBE and LLMs.

* Utilise academic conferences, and journals to gather relevant studies and
reviews to provide a global picture of the field of PBE.

* Identify current methodologies, datasets, benchmarks.

– Develop a Diverse Benchmark for Evaluation:

* Design a benchmark that includes tasks of varying complexity to reflect a
wide range of scenarios.

* Assess the impact of the number of examples on task definition and solu-
tion accuracy.

* Ensure that tasks can be fully and unambiguously defined with a minimal
set of examples.

The concerns and challenges addressed in this point are further detailed in Subsection
4.2.1. Subsection 4.2.1 contains our proposed solution design with regard to the dataset.
Looking back, it becomes evident that a benchmark was indeed identified successfully
for our specific task. It was correctly identified that this benchmark, in fact, lacked more
atypical and challenging problems, as it consisted only of common programming prob-
lems. This resulted in a dataset of 44 tasks, which can be consider to be complete and
diverse enough.The process of defining a task, particularly in terms of its complexity,
proved to be more challenging than initially anticipated. This is discussed in greater de-
tail in Subsection 4.2.1. This represents an unaddressed topic within the scope of our
work, which presents an opportunity for further extensions of this work. The number of
examples that comprise a task was empirically determined. Initially, a range of 1 to 10
examples was selected as a starting point. Given the results obtained, here was no need
to extend the number of examples beyond 10, as no correlations were observed between
the number of examples and the performance in a task.

• Monitoring and Framework Establishment

– Ongoing Monitoring of Advancements in LLMs:

47
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* Keep abreast of new developments and publications related to LLMs and
their applications in code generation.

* Evaluate how recent advanced might influence ongoing research and method-
ology in PBE.

– Establish Model and Language Foundations:

* Identify and document the LLMs to be used, considering their strengths
and weaknesses in relation to PBE.

* Select programming languages for evaluation based on their prevalence
in inductive programming systems, LLMs and other relevant metrics.

* Justify the choice of models and languages in terms of their suitability for
PBE tasks.

We believe that both the resulting models and programming languages have been
chosen on the basis of an informed decision, taking into account all the factors to be con-
sidered. In terms of models, GPT-4 has remained the reference in terms of performance
throughout this work, and GPT-3.5 has been useful in proving our initial expectations
and setting the baseline (for more information on why we chose these models, see Sub-
section 3.1.2). The decision to chose Python and Haskell as our final programming lan-
guages is explained in Subsection 3.1.1. As expected, Python gave the best performance.
Haskell also behaved according to our expectations, being less represented in the training
data, it shows worst performance than Python in all cases. It may be that it would have
been interesting to include more programming languages, but we believe that this could
be presented as a more comprehensive evaluation, specifically tailored to programming
languages.

An evaluation of the follow-up in research literature during this work presents as a
difficult objective to prove with evidence. However, if we carefully analyse the Section
4.2.2, this can indeed be seen. As part of our methodological approach to constructing
the best fitting prompt for our use case, this resulted in the need to iteratively improve
on previous results. This iterative improvement led to an extensive search for directions
to proceed. In fact, AlphaCodium [65], the paper that inspired our final prompt design,
was actually published during the time we were developing this work.

• Detailed Evaluation and Analysis

– Perform Comprehensive Evaluation:

* Develop a detailed evaluation framework to assess the performance of
LLMs on the benchmark tasks.

* Compare LLM performance across different tasks and programming lan-
guages to identify strengths and weaknesses.

– Conduct In-Depth Analysis of Results:

* Analyse the results to draw meaningful conclusions about the capabilities
and limitations of LLMs in PBE.

* Provide insights into areas for improvement and potential future direc-
tions for research.

The above detailed evaluation is included in the Section 5. This section, in addition
to showing the final results, also extends to analysing global trends over all tasks and by
complexity and compares our results with other IP systems. This gives an overview of
the general performance of the given models and allows us to empirically hypothesise
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about the behaviour of LLMs for the given task. However, an even more detailed and ex-
haustive evaluation would have been possible if the above-mentioned unresolved issues
had been addressed.

Finally, it is worth noting the differences between our work and that of [41]. As men-
tioned in Section 2, our work also aims to evaluate LLMs for PBE. However, we believe
that there are significant differences in the approach taken. In contrast to our imple-
mentation, the authors of the aforementioned paper decided to build a dataset using a
variety of existing datasets, rather than creating a new one. This resulted in a dataset
comprising a considerable number of tasks, including those related to numerical vectors,
string manipulation, and graphical programs. In comparison, our dataset is less diverse
in terms of both quantity and range of tasks. We believe that this reduced number of
tasks facilitates a more straightforward comparison of performance in specific tasks. In
their evaluations, they obtained results for GPT-4 and a fine-tuned system. The results
demonstrated the efficacy of the model in generating solutions to given tasks, with the
evaluation conducted on a set of N programs, where N ranged from 1 to 200 samples.
Our approach, however, is superior to this brute-forcing method, as the generation of 200
code samples is both costly and time-consuming. In contrast, our iterative improvement
strategy involved the generation of a maximum of 15 samples. A further shortcoming of
the paper is the arbitrary definition of the number of examples to be included. This is
determined on a task-by-task basis, without any clear criterion for making this decision.

In conclusion, we consider that the objectives of our work have been successfully
achieved. For each objective, we have provided a detailed account of the evidence that
supports our assertion and explained the reasons why we believe that this has been
achieved in our work. We have also demonstrated how our approach differs from previ-
ous works in this domain.

6.1 Limitations and Future Work

This work demonstrates that, despite the promising capabilities demonstrated by large
language models, programming by example remains an open problem. Further research
on evaluation, with this work as a starting point, could prove beneficial. Furthermore,
work on improving the alignment of these systems to the desired prompt should of help.
In this section, we aim to provide insight into potential paths for improvement to this
work and additional avenues for a more comprehensive evaluation.

Firstly, a number of potential enhancements can be made to the dataset employed. It
is acknowledged that the dataset contains unresolved flaws that could potentially affect
the performance of LLMs. In the course of our evaluations, no consideration was given to
the order in which the examples were presented. Additionally, no detailed consideration
was given to the specific examples used, nor to their informational value. Due to time
constraints, this topic was not fully addressed; however, it is open to further investiga-
tion. Furthermore, improvements could be made to the presented dataset. One potential
avenue for improvement would be to expand the scope of the problems included in the
dataset. It is proposed that the evaluation be expanded by including additional example-
based tasks in the form of graphs or logic problems. This would broaden the scope of
the evaluation. Another potential avenue for improvement concerns the categorisation
of each problem in terms of its complexity.

It would be possible to extend the evaluation to cover a greater number of models.
We standby in the decision of only using GPT-3.5 and GPT-4 for this work. Neverthe-
less, a comparison of other models may be of interest. In particular, if such a comparison
encompasses an extensive array of models, exhibiting a diverse range of sizes and gen-
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eral capabilities or those specifically crafted for code generation. An alternative approach
could be to construct a more specialised model as presented in [41], trained for the spe-
cific task of code generation using input-output examples. With regard to the issue of
prompting, we believe that our proposed method has been sufficiently refined. Never-
theless, as novel strategies are developed and the alignment between the prompt and its
intended purpose is enhanced, this could potentially yield intriguing new insights.

Although the approach is of interest, we believe that a more thorough evaluation
using other programming languages will not yield any new insights. This is because
we believe that as a benchmark, this is not sufficient for evaluating the performance of a
model within different languages. Nevertheless, it could be a valuable addition to a more
diverse existing benchmark.

In conclusion, this study demonstrates that despite the advances presented by LLMs,
the domain of programming by example continues to present significant challenges. Our
investigation highlights the necessity for further research in the evaluation of these sys-
tems, with this study serving as a preliminary point of departure. In conclusion, the
proposed avenues for further investigation, namely dataset enhancement, model com-
parison and prompt refinement, provide a framework for future research. By addressing
these avenues, we can advance towards more effective and accurate programming by
example using LLMs.

6.2 Relation to Studies

The completion of this project would not have been possible without the acquisition of
the skills and knowledge gained during the Bachelor of Computer Science degree at the
Technical University of Valencia. The degree provided not only the technical skills re-
quired to complete this project, but also the development of soft skills that were applied
across the duration of the project.

Soft skills have been of vital importance. The most crucial skill for this work has been
problem-solving. Having the capacity to confidently address the problem by breaking
it down into simpler tasks, then managing the pacification of these tasks and evaluating
the time and effort required has been of great use. This skill has been largely covered
in Project Management, thanks to its practical approach to the project cycle, which has
helped to acquire essential skills for the management of any project size.

In addition, the acquisition of technical and specific skills has been of great benefit
in this context. The knowledge acquired in Programming Languages, Technologies and
Paradigms has enabled informed decision-making regarding the selection of appropri-
ate programming languages, with an understanding of the distinctive paradigms and
features that characterise each programming language. Machine Learning has proven
invaluable in providing a robust foundational understanding of neural networks and
supervised and semi-supervised learning techniques. In particular, Information Storage
and Retrieval Systems have been of great use. his subject encompasses the study of data
structures and algorithms employed for the management of unstructured information in
large volumes of data, predominantly text data. Both Machine Learning and Information
Storage and Retrieval Systems can be considered foundational technologies that have
been employed in the construction of large language models. Intelligent Agents have
been instrumental in the development of the final prompting strategy employed in the
evaluations. The proposed method, which comprises flow engineering and a prompt,
may be regarded as an agent that is capable of generating code and taking actions to
rectify this code until a satisfactory result is achieved.



6.2 Relation to Studies 51

In addition to the aforementioned skills, it is also important to consider those that
are often overlooked in the context of computer science. Firstly, programming skills de-
veloped throughout the degree, particularly in Introduction to Computer Science and
Programming and Programming courses, where skills were acquired for the purpose
of producing high-quality code. Finally, it is important to consider the development of
writing skills, particularly those acquired in English for Computing (B2), where students
were required to produce accurate written work in English related to Computer Science.

The integration of these diverse skills and knowledge areas exemplifies the compre-
hensive and multidisciplinary nature of the Computer Science degree. The curriculum is
balanced, imparting critical technical competencies and emphasising essential soft skills
and practical applications. The degree has fostered the development of problem-solving
abilities, technical expertise, and communication skills, which have been pivotal in over-
coming the challenges faced throughout this work and ensuring a well-rounded and ef-
fective approach to its completion. This foundation will undoubtedly serve as a robust
platform for future endeavours in the field of computer science and beyond.
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APPENDIX A

Additional Figures

Figure A.1: GPT-3.5 scores for each function in Python using a simple prompt. Red rectangles
highlight the complex problems.
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Figure A.2: GPT-3.5 scores for each function in Haskell using a simple prompt. Red rectangles
highlight the complex problems.
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Figure A.3: GPT-4 scores for each function in Python using a simple prompt. Red rectangles
highlight the complex problems.
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Figure A.4: GPT-4 scores for each function in Haskell using a simple prompt. Red rectangles
highlight the complex problems.
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Figure A.5: GPT-3.5 scores for each function in Python using a more complex prompt that defines
the desired code structure. Red rectangles highlight the complex problems.
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Figure A.6: GPT-3.5 scores for each function in Haskell using a more complex prompt that defines
the desired code structure. Red rectangles highlight the complex problems.
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Figure A.7: GPT-4 scores for each function in Python using a more complex prompt that defines
the desired code structure. Red rectangles highlight the complex problems.
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Figure A.8: GPT-4 scores for each function in Haskell using a more complex prompt that defines
the desired code structure. Red rectangles highlight the complex problems.
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Figure A.9: GPT-3.5 scores for each function in Python using Chain of Thought in addition to
defining the desired code structure. Red rectangles highlight the complex problems.
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Figure A.10: GPT-3.5 scores for each function in Haskell using Chain of Thought in addition to
defining the desired code structure. Red rectangles highlight the complex problems.
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Figure A.11: GPT-4 scores for each function in Python using Chain of Thought in addition to
defining the desired code structure. Red rectangles highlight the complex problems.
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Figure A.12: GPT-4 scores for each function in Haskell using Chain of Thought in addition to
defining the desired code structure. Red rectangles highlight the complex problems.



APPENDIX B

Sustainable Development Goals

Sustainable Development Goals High Medium Low Not Applicable
No Poverty X

Zero Hunger X
Good Health and Well-being X

Quality Education X
Gender Equality X

Clean Water and Sanitation X
Affordable and Clean Energy X

Decent Work and Economic Growth X
Industry, Innovation, and Infrastructure X

Reduced Inequality X
Sustainable Cities and Communities X

Responsible Consumption and Production X
Climate Action X

Life Below Water X
Life on Land X

Peace, Justice, and Strong Institutions X
Partnerships for the Goals X

Table B.1: Relationship of the work with the Sustainable Development Goals.

The digital era has seen a surge in demand for software solutions, with a significant
shift towards no-code platforms that democratise software development. This democrati-
sation is critical to fostering inclusive economic growth and innovation, which is closely
aligned with the United Nations Sustainable Development Goals, particularly in the ar-
eas of decent work and economic growth, and industry, innovation and infrastructure.

Traditional software development often requires extensive programming skills, which
can be a barrier for many. By enabling users to create applications without deep techni-
cal knowledge, no-code platforms and tools such as Programming-by-Examples (PBE)
expand opportunities for a wide range of people. This inclusivity helps to integrate non-
traditional developers into the technology workforce, promoting decent work and eco-
nomic opportunity for a wider range of people. For example, individuals in developing
regions or from non-technical backgrounds can now participate in the digital economy
and contribute to innovation and entrepreneurship without the steep learning curve as-
sociated with traditional programming.

The application of Large Language Models (LLMs) to PBE has the potential to sig-
nificantly increase productivity. LLMs, which can generate code from natural language
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examples, streamline the development process by automating repetitive and complex
coding tasks. This automation can lead to shorter development cycles, enabling compa-
nies to innovate faster and more efficiently. By reducing the time and expertise required
to develop software, LLMs enable a more dynamic and responsive approach to market
needs, driving economic growth through accelerated innovation.

Large Language Models (LLMs) are increasingly recognised as one of the technolog-
ical innovations of our time, and their use is spreading from specialist applications to
mainstream users in a variety of domains. By rigorously evaluating and understand-
ing the performance of LLMs, particularly in the context of Programming-by-Examples
(PBE), we gain valuable insights into their capabilities and limitations. This rigorous eval-
uation not only improves our understanding of LLMs, but also drives further progress
and innovation. By refining these systems through continuous research and develop-
ment, we can maximise their potential to transform software development, making it
more accessible, efficient and adaptable to different needs. Such advances ensure that
LLMs remain at the forefront of technological innovation, contributing to the wider goals
of sustainable economic growth and robust infrastructure development.

The development of intelligent programming tools such as LLMs for PBE supports
the creation of a robust digital infrastructure. By helping to generate code from exam-
ples, LLMs contribute to the foundation of a more accessible and scalable digital ecosys-
tem. This advancement supports the development of interoperable and efficient systems,
which are critical components of modern digital infrastructure. By simplifying software
development, LLMs help bridge the gap between technology and end-users, making so-
phisticated digital tools and services more accessible.

The exploration of Large Language Models for Programming-by-Examples is an im-
portant step towards achieving the Sustainable Development Goals of promoting decent
work and economic growth, building resilient infrastructure, fostering innovation and
sustainable industrialisation. By lowering barriers to software development, increasing
productivity and supporting the creation of robust digital infrastructure, these technolo-
gies play a key role in fostering a more inclusive and innovative digital economy. As we
continue to integrate LLMs into the programming landscape, their potential to democra-
tise software development and drive sustainable growth will be instrumental in shaping
the future of work and industry.



APPENDIX C

Glossary

Word Definition
Benchmark A standard or point of reference against which things may

be compared or assessed.
PBE (Programming by Examples) A programming paradigm where the system generates a

program based on a set of input-output examples provided
by the user.

IP (Inductive Programming) A type of programming that involves learning general rules
and patterns from specific examples or observations.

NLP (Natural Language Processing) A field of AI focused on the interaction between computers
and humans through natural language, enabling machines
to understand, interpret, and generate human language.

LLM (Large Language Models) Advanced machine learning models that are trained on vast
amounts of text data to understand, generate, and manipu-
late human language.

UML Unified Modeling Language, a standardized modeling lan-
guage used to specify, visualize, construct, and document
the artifacts of software systems.

IPS (Inductive Program Synthesis) The process of automatically generating programs from ex-
amples and specifications through inductive reasoning.

LISP A family of programming languages, known for their sim-
ple syntax and powerful features, widely used in artificial
intelligence research.

Haskell A standardized, general-purpose purely functional pro-
gramming language with strong static typing and lazy
evaluation.

ML A general-purpose functional programming language
known for its type inference and pattern matching. Often
used as shorthand for "Machine Learning" as well.

OCaml A functional programming language that extends the Caml
dialect with object-oriented and imperative features.

Prolog A logic programming language associated with artificial in-
telligence and computational linguistics, based on formal
logic.

Python A high-level, interpreted programming language known
for its readability, simplicity, and wide applicability in var-
ious domains.

Continued on next page
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Word Definition
ASP (Answer Set Programming) A form of declarative programming oriented towards dif-

ficult combinatorial search problems, based on the stable
model (answer set) semantics of logic programming.

Meta-interpreter A program that interprets another program, allowing
for dynamic interpretation of different programming lan-
guages or paradigms.

Curse of dimensionality A phenomenon where the difficulty of analysis and compu-
tation increases with the number of dimensions in the data,
often leading to issues with overfitting and data sparsity.

API Application Programming Interface, a set of protocols and
tools for building and interacting with software applica-
tions, enabling communication between different software
systems.

Prompt A directive given to a model or system to perform a task,
often used in the context of querying or guiding large lan-
guage models.

FLOPS Floating-Point Operations Per Second, a measure of a com-
puter’s performance, especially in fields requiring high
computational power like simulations and scientific calcu-
lations.

GPT Generative Pre-trained Transformer, a type of AI model de-
veloped by OpenAI, known for its capability to generate
human-like text based on pre-training on a large corpus of
text data.

GPT-3.5 A version of OpenAI’s Generative Pre-trained Transformer
model that offers advanced language understanding and
generation capabilities, a step between GPT-3 and GPT-4.

GPT-4 The fourth generation of OpenAI’s Generative Pre-trained
Transformer, offering improved performance, context un-
derstanding, and generation abilities compared to its pre-
decessors.
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