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Abstract 

Chemical changes in cod-liver oil produced by oxidation and adulterations with other oils were 

modelled using RGB-laser scattering imaging. Two types of composition-altered cod-liver oil 

were:  oxidised oil at three different temperatures (4, 20, and 40ºC) and cod-liver oil adultered 

with wheat-germ, soybeana, sesame and corn. Both types of altered oils and control samples were 

analyzed by the imaging technique and chemical measurements were also carried out to know the 

oxidation status. The capacity of the technique for detecting pure cod-liver oil was tested by 

applying multivariate regression and discriminant procedures based on PLS using the information 

captured from each type of laser (650nm, 550nm and 450nm).  The results showed the capacity 

of the technique to capture the variability provided by the cod-liver oil against the other vegetable 

oils used as adulterants. It was discriminate from all vegetable oils and all them were detected 

when were added as adulterants. Changes in the oxidation status were also modelled by predicting 

the oxidation parameters with R2>0.90, independently of the temperature of storage. Those 

capacities made it possible to discriminate pure cod-liver from all tested adulterated-oxidised 

samples performing a common model. The prediction capacity was synergic when models were 

performed including the three lasers, as opposed to the results obtained with singly-laser models.  
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1. Introduction  

The beneficial effects of replacing dietary saturated fatty (SFAs) acids with unsaturated fatty acids 

(UFAs) on human health have been observed through extensive research at all levels of the 

hierarchy of evidence: in vitro, in vivo, cohort studies, meta-analysis, etc. Most of them are 

consistent in that reducing dietary SFAs while UFAS increases LDL cholesterol and 

cardiovascular disease risk significantly reduced (Sacks et al., 2017). There are diverse sources 

of UFAs in the human diet. Those compounds are present naturally in raw animal, vegetal and 

algae-origin materials. Their proportion and composition vary depending on the properties of the 

original organism and how they are processed to derive into a food product. The sources of UFAs 

could form part of a human diet as part of the original raw material matrices (fresh mackerel, 

almonds, avocado, etc.), as extracted oils (cod-liver oil, sesame oil, soybean oil, etc.) or as part of 

a processed product formula (pre-cooked meal, cereal derivate products, dairy foods, etc.). Thus, 

these types of fats represent added-value products from which enrich the diet as supplements or 

ingredients.   

One of the most valuable sources is the liver of the cod. The cod-liver oil (CO) represents a 

traditional source of healthy compounds such as vitamins A, D and omega-3 fatty acids of 

(eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids) (Cortese et al., 2015). The results 

reported from epidemiological studies revealed that high fish oil consumption is directly related 

to low mortality following coronary heart disease and some types of cancer (Lentjes et al., 2014). 

Those factors stimulate the demand of this oil and then increase the price value in the market. 

Therefore, CO fraud with low price oils such deteriorated batches and vegetables oils can be done 

in order to increase economical benefits. From a technical and quality control points of view, the 

adulterations in oils are more difficult to detect when the composition of the adulterant is 

chemically near to the composition of the authentic one. 

Some techniques to detect different adulterations and oxidation status in CO has been reported 

previously, which are based in different technologies. Part of the power of those techniques lead 

in their combination with machine learning and multivariate statistical methods to process the 



obtained data. The detected oils had both vegetal and animal origin. Some examples in the 

detection of changes produced by vegetable oils are canola, sunflowers, corn, soybean, and walnut 

oils using FTIR combined, nuclear magnetic resonance spectroscopy, gas chromatography and 

Raman spectroscopy combined with partial least squares (PLS), principal component regression 

(PCR) , discriminant analysis (DA), artificial neural networks (ANN), etc. (Ahmmed et al., 2022; 

Giese et al., 2019; Abdul Rohman & Che Man, 2011a). In the case of adulterant oil from animal 

origin, chicken, beef and mutton fat were successfully detected following the same procedures 

(A. Rohman & Che Man, 2011; Abdul Rohman & Che Man, 2011b). In the other hand, some of 

the most used techniques to study the deterioration of CO in oxidation terms are the 

characterisation of the peroxide value and anisidine by the AOCS Official Methods Cd 8b-90 and 

Cd 18-90, respectively (AOCS, 2017). 

 

 One family of spectroscopic techniques that works fast, collecting a significant amount of 

chemical information on which to apply machine learning procedures, is imaging analysis. These 

methods capture spectral information from interactions between light and matter in a two-

dimensioned sensor, which is divided into pixels. The pixels are the unit of signal detection, from 

which a map of the surface of a product could be reconstructed using the spectral information. 

The use of this type of technique in characterisation of CO is limited, however, its suitability to 

study the quality of similar edible oils has been reported with techniques such hyperspectral 

imaging. Some examples are the categorisation of sesame oils from other adulterated oils (Xie et 

al., 2014), evaluation of various quality attributes such as peroxide index, acidity of olive oils and 

prevent its adulteration from other low-grade oils (Cano Marchal et al., 2013). In this sense, the 

laser-scattering imaging technique has not been tested in that type of food matrix, however it has 

great potential as tool to characterizing changes in oils, concretely in CO, since it can be combined 

with machine learning procedures to analysing the generated data. This technique is based on 

capturing digital images of the diffraction patterns generated by the interaction between a given 

food matrix and a laser light. Thus, the coherent light is transmitted through the material up to the 



surface, where it has given scattered properties depending on the sample's structure and 

components. These phenomena depend on the physicochemical properties of the matrix, as 

backscattered photons inherently interact with internal components (Mollazade et al., 2013). 

Therefore, the suitability to be applied on CO inspection is founded in the results obtained by this 

technique modelling physicochemical properties of different food matrix such as the moisture 

content of peppers during drying (Romano et al., 2012), the textural properties of vegetable 

creams (Verdú et al., 2018), the effect of fibre enrichment on biscuit properties (Verdú et al., 

2019), or characterising the curding process of milk with different fat content (Verdú et al., 2021).  

Then, in this work, the laser-backscattering imaging technique is proposed as a control technique 

of cod-liver oil in terms of adulteration and oxidative status detection. The study focused on the 

non-destructive prediction of the type of adulterants vegetable oils and oxidation parameters 

testing the imaging information from three different wavelength lasers and the combination of all 

of them applying machine learning procedures. 

 

2. Material and Methods 

2.1 Experimental procedure 

 

 



  

Figure 1. Scheme of the experimental phases. CO: cod-liver oil. 

 

Modelling of the chemical changes in cod-liver oil (CO) due to oxidation processed and 

adulterations with other oils using RGB-laser scattering imaging was carried out following the 

phases showed in the Figure 1. Two types of composition-altered cod-liver oil were prepared. The 

first type was prepared based on allowing oxidation at three different temperatures (40, 20, and 4 

oC), for 17, 63 and 105 days, respectively (Figure 1-1). The second type was generated by 

adulterating cod-liver oil with vegetable oils (wheat-germ, soybean, sesame and corn) (Figure 1-

2). Both types of altered oils and control samples were analyzed by the imaging technique (Figure 

1-5). In the case of the oxidized oils, chemical measurements were also carried out to know the 

oxidation status of the samples (peroxide value, anisidine value and total oxidation value, Figure 

1-4)). The capacity of the technique for discriminating CO from other oils and detecting 

adulterations was tested by applying multivariate discriminant procedures (Figure 1-6). In the 

same way, the capacity to predict the CO oxidation status, multivariate regression procedures 

were applied to model the oxidation analysed parameters (Figure 1-7). Finally, a common 
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discriminant model was made aimed at detecting any type of the studied chemical alteration at 

once (Figure 1-8).   

2.2 Chemicals and raw materials/ Reagents 

All the reagents were of standard analytical grade. Iodine, potassium iodide, potassium iodate, 

sodium thiosulfate, and sulfuric acid were supplied by Scharlab (Spain). 1-decanol was acquired 

from Thermo Fisher Scientific (USA). Glacial acetic acid was purchased from Labkem (Spain) 

and p-anisidine was obtained by Sigma-Aldrich (Spain).  

2.3 Peroxide value 

Primary oxidation products were assessed by PV measurement using the redox-potentiometric 

titration method. Approximately 1 g of oil was dissolved in 10 mL of a glacial acetic acid and 1-

decanol solution (3:2 v/v, containing 0.005 % iodine). Then, 200 μL of a saturated KI solution 

were added. After 1 min incubation in darkness, 50 mL of distilled water were added, and the 

mixture was titrated with a 0.01 M sodium thiosulfate solution using an automated titration 

instrument Metrohm 905 titrando (Herisau, Suiza). The PV was calculated according to the 

following equation: 

𝑃𝑉 (𝑚𝐸𝑞/𝐾𝑔) =  10 × (𝑉𝑠 − 𝑉𝑏) × (
𝑁

𝑊
) 

where Vs is the volume of thiosulfate consumed for each sample (mL), Vb is the volume of 

thiosulfate consumed for the blank (mL), N is the titer of the thiosulfate solution and W is the 

weight of the sample (g).  

2.4 Anisidine value 

Secondary oxidation products were assessed by AV measurement using the American Oil 

Chemists' Society (AOCS) Official Method Cd 18–90. Briefly, 1 mL of oil sample was mixed 

with 25 mL isooctane and centrifugated at 4000 rpm and 15 oC for 20 min. Then, 2 mL of the 

supernatant were mixed with 400 μL of the p-anisidine solution (0.25 % p-anisidine in glacial 

acetic acid) and incubated at room temperature for 10 min in darkness. The absorbance of the 

supernatant was measured using a Spectrophotometer (Helios Zeta UV-VIS, Thermo Fisher 



Scientific, USA) at a wavelength of 350 nm before (A1 value) and after incubation (A2 value). 

The AV value for each sample was calculated according to the following formula: 

𝐴𝑉 = 25 (1.2𝐴2 − 𝐴1) 

2.5 Totox value  

The total oxidation of the samples was calculated as the total oxidation value (Totox) according 

to the formula: 

𝑇𝑉 = 2𝑃𝑉 + 𝐴𝑉 

2.6 Oils  

The cod-liver oil (CO) and the vegetable oils used as adulterants (corn (C), sesame (Se), 

wheatgerm (WG) and soybean (So)) were obtained from Guinama S.L.U, Spain.  Table 1 shows 

physicochemical characterisation facilitated by the provider. The adulterated versions of CO were 

made by adding 1 and 5 % vegetable oils. Twenty samples of CO per type of adulterant oil were 

produced.   

 

 

Table 1. Physicochemical information of cod-liver oil and adulterant oils. 

Property   CO   Se   So   WG   C 

Density (g/mL) 0.923 (0.006) 0.9 (0.007)   0.917 (0.005)   0.9 (0.005)   0.9 (0.005) 

Acid value (mg KOH/g) 0.15 (0.71)   0.2 (0.35)   0.04 (0.01)   0.1 (0.01)   0.2 (0.5) 

Refractive index 1.477 (0.005) 1.5 (0.005)   1.472 (0.004)   1.5 (0.005)   1.5 (0.005) 

Palmitic acid (C16:0) (%) 9.7 (1.9)   13 (3.2)   10.7 (1.9)   13 (1.1)   0.5 (0.2) 

Estearic acid (C18:0) (%) 2.2 (0.1)   5.8 (1.3)   4 (1.1)   2.5 (0.8)   1.7 (1) 

Oleic acid (C18:1) (%) 15.5 (2.4)   42 (3.8)   21.9 (3.2)   25 (2.8)   32 (2.9) 

Linoleic acid (C18:2) (%) 1.4 (0.8)   38 (4.3)   54.4 (4.1)   6.4 (1.7)   53 (8.6) 

Linolenic acid (C18:3) (%) 0.8 (0.2)   0.5 (0.2)   8.1 (1.3)   52 (5.3)   1.2 (0.5) 

 cod-liver oil (CO), corn oil(C), sesame oil (Se), wheatgerm oil (WG) and soybean oil (So). Values are expressed as mean (SD). 

 



For studying the oxidation status of the oils, aliquots (20 mL) of fish oil were stored in darkness 

in 20-mL amber glass vials (28 mm diameter and 60 mm heigh) at 40, 20, and 4 oC, for 17, 63 

and 105 days, respectively. For each temperature, three vials were taken from the incubator at 

scheduled times, then PV and AV were analysed and the Totox value was calculated.  

 

2.7 Imaging device  

The imaging device was based on (Verdú et al., 2020). It was designed to capture, in digital 

images, the variability projected in the diffraction patterns generated after a light-food matrix 

interaction. The structured light (laser) transmits throughout the studied matrix, from bottom to 

upper surfaces, responding to possible variability sources due to interactions with the oil 

components. That variability could be modelled by data extracted from digital images of the 

resulting diffraction patterns. Figure 2 shows a scheme of the device setup. The elements were a 

digital camera, three laser lights, and a computer. The device was installed inside a dark box away 

from external light pollution. The camera's capture parameters were set to manual mode, avoiding 

uncontrolled alterations to the work regime (gain, shutter speed, white balance, etc.). A digital 

Logitech C920 camera (1080p/30 fps - 720p/30 fps) was the capture system. Images were 

acquired in the RGB format and were saved as JPEG (1980 × 1080). The camera was vertically 

placed 15 cm over the sample container located in the middle of the visual field. Used laser 

pointers (1mmθ, 50 mW) were three, which had the wavelengths 650 nm (R), 550nm (G) and 

450nm (B). They were perpendicularly placed 20 cm under the zone where the wells plate was 

placed. Images of diffraction patterns from each wavelength were captured individually during 

light emission times, 3s per laser in the order R, G and B (Figure 1). The objective of this 

configuration was to transmit enough light to project the variability of the studied matrix without 

saturating the camera sensor. Seven replicates of images per sample were taken. Thus, 21 

diffraction patterns per sample were captured in images to be later processed (7xR+7xG+7xB). 

 



  

Figure 2. Scheme of the device and imaging data processing.  

 

2.8 Image processing and data extraction 

Images were processed after the capture procedure to extract information from the diffraction 

patterns generated during light-matrix interactions. The imaging processing was done with the 

aim of testing the information generated by each wavelength in an individual and concatenated 

mode. The image processing and data extraction was done as follows (Figure 2): 

- Intensity from each pixel position placed across the diameter of each diffraction pattern 

was extracted in grayscale as a numeric vector formed by 195 values. This dataset was 

destined to test the prediction models by using the singly laser wavelengths.  

- The extracted vectors from the R, G and B diffraction patterns were joined to create a 

concatenated version of the all lasers data (195 values x 3). This dataset was destined to 

create the prediction models by using the information from the three laser wavelengths at 

the same time.  

- The final spectrum for each sample was the mean from the seven abovementioned 

measurements. That spectrum represented a fingerprint of 585 variables from each 

sample.  
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- The extracted spectra from the experiment were placed in matrices of m rows (number of 

samples) and n=195 columns (singly laser wavelength data studies) or n=585 columns 

(concatenated laser wavelength data studies). The format of the generated data matrix 

allowed for applying multivariate statistical methods to model the captured variance in 

the images. 

2.9 Statistical analysis 

The prediction models were carried out using Partial Least Squares procedures (PLS). That 

method projects variance to a reduced space of variance which explains the relationship between 

the two sets of variables X (imaging dataset) and Y (physicochemical properties), by maximising 

the covariance between datasets. It generates new synthetic variables, called latent variables 

(LVs), which collect the original variance from data in a reduced dimensional space. In this 

experiment, two type of PLS was used in function of the type of modelled response variable; 

numerical (oxidation status) or categorical (adulteration). Partial Least Square Regression (PLS-

R) (Geladi & Kowalski, 1986), was used to generate linear regression models between oxidation 

parameters (PV, AV and TV) and imaging datasets to predict the oxidation status from the 

extracted imaging information. The regression models were evaluated based on the determination 

coefficient R2 between measured and predicted datasets. Moreover, Partial Least Square 

Discriminant Analysis (PLS-DA) was used to generate classification models for differentiating 

fresh cod-liver from adulterated samples, non-eatable oxidized samples and other types of oils.  

The discriminant models were evaluated by F-score, calculated as follows:  

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2𝑥
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
       (1) 

Were precision and recall were calculated as follows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (2) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (3) 



TP, TN, FP and FN indicate true positives, true negatives, false positives and false negatives, 

respectively.  

The performed discrimination models were: 

- CO recognition model (CO-M): tested the capacity to discriminate CO from the 

remaining oils as a unique category (WG, Se, C and So). The stablished categories were 

two: CO and non-CO oils. 

- Discriminant model for CO and pure adulterants (OT): aimed to test the capacity of the 

technique to capture the variance generated from each type of oil. The stablished 

categories were five: CO, WG, Se, C and So. 

- Adulterated-CO recognition model (A-CO): aimed to discriminate pure CO from 

adulterated CO with any vegetable oil. The stablished categories were two: CO and 

adulterated CO. 

- Detection of adulterant type model (OT-A-CO): aimed to detect adulterated CO and the 

type of adulterant added. The stablished categories were five: CO, WG, Se, C and So. 

- Total discriminant model for CO (T-CO): aimed to discriminate CO from the rest of the 

studied oils, adulterated samples and non-eatable CO samples because its oxidation 

status. The limit to classify CO oil as non-eatable was 5 meq/kg O2 for PV. Higher values 

are considered as non-acceptable for sensory attributes (Joint FAO/WHO Codex 

Alimentarius Commission, 2017). The stablished categories were two: pure CO and 

unsuitable oil (pure adulterant oils+ adulterated CO + oxidized CO).  

 

The models were performed using 66 % samples as training lot by applying cross-validation 

procedures (venetian blinds) and validated using the remaining 33 % samples (test lot). That 

procedure was repeated with 100 different randomised training and test lots of samples. The 

optimum number of latent variables (NLV) were selected based on the minimum root means 

square error (RMSE) for each combination. Thus, the figures of merit for each prediction model 



were expressed as the mean R2 and F-score values from those 100 model replicates. Significance 

of the model differences was evaluated by ANOVA. Each type of model was performed from 

information on each single laser and the combination of them after apply a mean-centring process. 

Thus, four different models were tested for each application: R-models, G-models, B-models and 

R+G+B models (Figure 2). 

 

3. Results and discussion   

3.1 Analysis of oxidation status 

Changes in the state of oxidation of fish oil during the storage at different temperatures are shown 

in Figure 3. As can be observed, the different deterioration parameters varied with storage 

temperature. At the beginning of the experiment the PV was 2.55 mEq O2/kg. This value 

constantly increased for the 4 and 20 oC samples during all the incubation period, while for 4 oC 

samples a rapid increase, was followed by a stationary phase reached at eleven days of storage. 

CODEX/FAO has set limits for the quality parameters of fish oils intended for human 

consumption (Joint FAO/WHO Codex Alimentarius Commission, 2017). These regulatory upper 

limits are set at 5 mEq O2/kg, 20, and 26, for PV, AV and Totox, respectively. After 2 days of 

incubation, the samples stored at 40 oC exceeded the 5 mEq O2/kg limit (5.91 mEq O2/kg) 

stablished for PV. For 20 and 4 oC, this value was exceeded after 14 days (6.14 mEq O2/kg) and 

31 days (7.99 mEq O2/kg) of incubation, respectively. The AV of the samples increased with time 

for all the storage temperatures; however, only samples stored at 20 oC (21.84) exceeded the 20 

upper limit stablished for AV. Finally, Totox value of 4, 20, and 40 oC samples, exceed the 

regulatory limit (≤ 26) after 17, 63 and 105 days of incubation, respectively.  

 

 



 

Figure 3. Evolution of the oxidation parameters peroxide value (A), anisidine value (B) and 

total oxidation value (C) for cod-liver oil at 4ºC ( ), 20ºC ( ) and 40ºC ( ). Bars indicate 

standard deviation.  

 

3.2 Imaging response 

The response obtained from the imaging device evidenced the capacity of the technique to capture 

the disruption generated in the diffraction patterns due to the modification of the CO matrix. This 

first exploration of the obtained spectra showed differences in the laser profiles, mainly in the 

external zones, where the transmitted light was softer. Figures 4-A and 4-B can be visualised the 

effect of alterations in CO on the captured information by the imaging technique. Figure 4-A 

show the raw spectra from the RGB-lasers for pure CO and M, and the spectra obtained from the 

CO adulterated with 1% of M. In the same way, Figure 4-B compares pure CO from t0 of storage 

with CO stored 20ºC/63 days. Both examples showed alteration in the external zones of the 

profiles, however, with the aim of highlighting the differences, a mean-centering process for each 

example. Figures 4-C and 4-D show the mean-centered spectra, where the differences between 

the control CO and the altered CO samples can be observed in the above-mentioned zones of the 

profiles. The reduced modifications in the central zones would be related with the saturation of 

light. The high intensity of the laser-light transmitted in this zone (Airy disk) of the pattern 

produces a zone with a lower sensibility to the changes in the matrix than the extreme ones. Thus, 

after observing the capacity of the technique to capture the variability generated by the studied 
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alterations in the CO matrix, the possibilities of modelling those alterations from the imaging 

information were explored applying different machine learning procedures.  

 

 

  

Figure 4. Examples of obtained RGB-lasers signal from different CO samples. A: mean-centered 

spectra from pure CO ( ), pure M ( ) and CO adulterated with M (5%) ( ); B: mean-centered 

spectra from pure CO and CO 20ºC/60days ( ); 

 

3.2 Modelling changes from adulterations (discrimination studies) 

As it was above mentioned, the changes generated in CO due to adulterations were proposed in 

four phases focused to characterizing the pure adulterant oils and their presence in CO. The first 

test was focused to discriminate CO from the remaining oils. The results from PLS-DA models 

using imaging information from R, G, B and complete R+G+B spectra are included in the Table 

2. The models performed from B-laser and complete R+G+B information had the highest 

significant F-scores, although R and G-models also provided successful results with F-scores > 

0.95. These results evidenced the capture of the inner features of CO opposite to the properties of 

other similar oils, regardless of the type. The next model (OT) was focused on generating a model 

to not only discriminate CO but also recognize the other types of oils which could act as 
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adulterants. The results in Table 2 show the best F-score (0.98) for R+G+B information, followed 

by B-laser (0.93). In this case, increasing the oil categories increases the complexity the model, 

reducing the viability of the R and G-lasers.  

After observing the capacity to discriminate CO and the adulterant oils, discrimination models of 

adulterated CO with those oils were tested. The first model in this sense was performed to 

discriminate pure CO from CO adulterated with any of the adulterants. The results are included 

in the Table 2 (A-CO). In this case, all of lasers reported F-scores>0.90, however the best 

classification was obtained from R+G+B complete information. The last model was focused on 

identifying the type of adulteration on the previous-identified adulterated CO samples. The results 

in the Table 2 (OT-A-CO) shows again the best results for R+G+B model. In this case F-score 

did not pass 0.90. That reduction manifests the increased difficulty in discriminating the type of 

adulterant after being mixed with CO in a reduced proportion (1 and 5%). 

 

 

 

 

Table.2 Results of the modelling procedures  



  

 

Finally, after evidence the capacity of the technique to discriminate CO from the different types 

of oils and adulterated CO, a total discriminative model (T-CO) was performed including the 

oxidised samples detected in the analysis of the oxidation status (>10mEq O2). Thus, the model 

was trained from pure CO and the rest of the non-pure CO samples as two categories. The F-

scores were successful for all lasers (R=0.91, G=0.91 and B=0.92), however, in the same way of 

the previous models, complete R+G+B information rise the best result with a 0.96. Figure 5 shows 

the variance space within the two first LV from the PLS-DA, where the discrimination of CO 

samples can be visualised.  

R G B RGB

0.97b 0.95a 0.99c 0.99c

0.87b 0.78a 0.93c 0.98d

0.92a 0.93b 0.94b 0.99c

0.77b 0.67a 0.86c 0.90c

Temperature of storage Oxidation parameter

PV 0.43a 0.44a 0.43a 0.92b

AV 0.87b 0.62a 0.61a 0.89c

TV 0.45a 0.46a 0.46a 0.89b

PV 0.90b 0.84a 0.89b 0.94c

AV 0.87a 0.88a 0.86a 0.92b

TV 0.79a 0.84a 0.74a 0.94b

PV 0.40a 0.40a 0.67b 0.91c

AV 0.83a 0.80a 0.90b 0.91b

TV 0.56a 0.54a 0.74b 0.91c

PV 0.46a 0.40a 0.61b 0.90c

AV 0.69c 0.46b 0.31a 0.90d

TV 0.49b 0.42a 0.66c 0.93d

Laser light data as regressors
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Figure 5. Representation of a part of the variance space (LV1 and LV2) from total CO 

discriminant model (T-CO) done with PLS-DA where CO samples can be distanced from the rest 

of the samples. :CO; :WG; :M; :So; :Se;  :CO+WG;   :CO+M;  :CO+So;  :CO+Se; 

 :oxidised CO-4ºC;  :oxidised CO-20ºC;  :oxidised CO-40ºC. 

 

The relationship between the imaging information in type of laser terms and the complexity of 

the model has been represented in the Figure 6. The number of latent variables (NLV) represent 

the complexity of the model. Models including two categories of samples (CO-M, A-CO and T-

CO) raised F-scores>0.90 for all lasers, while the models where the adulterants were characterised 

(OT and OT-A-CO) only raised that mark with complete R+G+B information (and B in one case) 

at the same time that the cost of the model in NLV increased drastically. Thus, the changes from 

adulteration could be successfully modelled by discrimination procedures due to the high capacity 

of the technique to capture the variability among oils. The best results were obtained using the 

complete R+G+B information for most of the cases, principally for the models including more 
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types of oils. It meant that the captured diffraction patterns from the RGB lasers could fix 

information from which models with different complexity can be performed. 

 

Figure 6. Discrimination model success and complexity in function of type of imaging 

information and samples. : R+G+B models; : R-laser models; : B-laser models; : G-laser 

models; :CO-M (2 categories); : OT (5 categories); :A-CO (2 categories); : OT-AC-O (5 

categories); : T- CO (2 categories). Red zone: F-score>0.9; grey zone: F-score 0.8-0.9. 

 

The results reproduce those reported in other studies, where similar functions are developed based 

on other spectroscopic techniques. Abdul Rohman & Che Man (2011a) also reported models 

based on FTIR and PLS and PCR, where canola, corn, soybean and walnut oils were successfully 

detected at 1% (v/v) with a R2>0.98 for all cases, but in that case NIR zone of the spectra was 

used. Moreover, Giese et al. (2019) also obtained successful results quantifying vegetable oil 

adulterations in CO with FT-IR spectra with a detection limit of 0.22%, and a 100% correct 

classification of pure cod liver using NMR.  
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3.3 Modelling changes from oxidation (regression studies) 

The effect of the oxidation on CO during different storages was characterised by the imaging 

technique. The evolution of the chemically-measured parameters of oxidation status PV, AV and 

TV was modelled from the imaging information at each storage condition and including all 

samples as a common model. Table 2 shows the results in R2-prediction terms. In this case, models 

performed from complete R+G+B information reported higher prediction capacity that the single 

lasers (~ 0.90). This result was observed for all storage temperatures. In regard to the oxidation 

parameter, there was not observed a pattern of better prediction for some of them. All had high 

and low predictions such the case of PV, which raised 0.90 with R-laser at 20ºC but 0.43 ate 4ºC 

with that same laser. When all samples were included in the model, similar results to the specific 

models were obtained. The R+G+B models provide R2=0.9 for PV and AV and 0.93 for TV. 

Figure 7A and 7B shows the examples of observed vs predicted values for PV and AV. Results 

showed how incorporing more samples and image information generates more complex models 

(Figure 6). This tendency is clear in the evolution of the models including all samples. PV, AV 

and TV were successfully predicted from R+G+B information, however more than 8 NLV was 

the optimum, while models from the single temperatures required less than half NLV to obtain 

the same result (Figure 7C 

). This pattern agreed with the previously observed in the classification models.  These results 

evidenced that the variability generated in the imaging data by the oxidation processes had not 

dependence from the temperature of storage. It allowed to train a precise prediction model 

regardless the storage conditions of the selected samples. 



   

Figure 7. Measured and predicted PV (A) and AV (B). Red and black lines represent identity line 

1:1 and real adjust, respectively. 4ºC ( ), 20ºC ( ) and 40ºC ( ). Bars indicate standard 

deviation. Regression model success and complexity in function of type of imaging information 

and samples (C). : PV; : AV;  : TV; red: R-laser models; blue: B-laser models; green: G-

laser models, white: R+G+B models. Red zone: R2>0.9; grey zone: R2 0.8-0.9. Arrow highlights 

the evolution of the models including all samples.  

 

5. Conclusions 

The RGB-laser scattering imaging technique combined with machine learning procedures was 

tested to characterise the alterations in the composition of cod-liver oil due to adulterations with 

other oils and oxidation. The results showed the capacity of the technique to capture the variability 

provided by the cod-liver oil against the other vegetable oils used as adulterants. The technique 
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discriminated the fish oil from pure wheat-germ oil, soybean oil, sesame oil and corn oil, at time 

to detect them when were added as adulterants. In the same way, changes in the oxidation status 

were successfully modelled by predicting the oxidation parameters with R2>0.90, independently 

of the temperature of storage. Those capacities made possible to generate a discrimination model 

including all non-pure cod-liver oil samples, where pure cod-liver oil was differenced from other 

vegetable oils, adulterated cod-liver oil and non-eatable cod-liver oil due to oxidation status. The 

higher prediction capacity of the information captured by each type of laser was observed when 

complete spectra was used (R+G+B). The discriminative capacity was synergic when models 

were performed including the three lasers, as opposed to the results obtained with singly-laser 

models. In general, individual lasers did not generate accurate models, with some exceptions. 

Thus, the technique could be used as fast and non-destructive accessory to improve quality control 

procedures in a low-cost way, which can help to detect fraud in this type of fish oil. Following 

developments based on this technique must include more types of adulterants and contaminants 

from a non-oily origin, as well as and possible hazardous chemicals typical in sea products such 

as heavy metals and marine toxins. 
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