

Automatic code assessment in Robotics higher education courses

Lía García-Pérez1 , David Roldán2 , José M. Cañas2
1Universidad Complutense Madrid, Spain, 2RoboticsLab Universidad Rey Juan Carlos, Spain.

How to cite: García-Pérez, L.; Roldán D.; Cañas J.M. 2024. Automatic code assessment in Robotics higher

education courses. In: 10th International Conference on Higher Education Advances (HEAd’24). Valencia,

18-21 June 2024. https://doi.org/10.4995/HEAd24.2024.17362

Abstract

This paper describes two automatic assessment tools developed for Unibotics, a robot

programming web platform for engineering education. The first one, for style

assessment, measures some quality indicators in the source code itself such as

complexity, number of loops, and PEP8 compliance. A second tool runs the robot

application developed by each student and measures its performance when solving the

task of each exercise. For students, both tools provide instant feedback which encourages

them to improve their score and so their source code. For teachers, they are automatic

assessment tools which provide additional information for student evaluation. Both tools

aim at improving the technology enhanced learning when using that robotics education

platform. They have been used in two courses at Universidad Rey Juan Carlos with 40

real students and some preliminary analytics have been collected.

Keywords: Educational robotics, web-based learning, robotic simulators.

1. Introduction

Code assessment has been an active topic in education for a long time. The assessment of

programming assignments is not a trivial task. There are many characteristics to take into

account, compiling and executing students’ programs require a lot of time, which is worse if the

number of students is high. For this reason, instructors cannot assess all characteristics of the

assignments or have to perform a more superficial assessment. Without adequate feedback,

students rarely have the opportunity to learn from their mistakes. When programming, students

need instant feedback to improve, however giving immediate feedback is not a simple task.

There are many errors that could be solved before submitting a piece of code with the

appropriate feedback such as, syntax and semantic error detection, software metrics analysis,

structural similarity analysis, keyword detector, plagiarism, diagram analysis, infinite loops

logical errors or unused statements. These errors can be detected automatically but since many

universities still check their student’s code manually, some of them are overlooked (Striewe &

Goedicke, 2014).

10th International Conference on Higher Education Advances (HEAd’24)
Universitat Politècnica de València, València, 2024
DOI: https://doi.org/10.4995/HEAd24.2024.17362HEAd

This work is licensed under a Creative Commons License CC BY-NC-SA 4.0
Editorial Universitat Politècnica de València 1263

https://orcid.org/0000-0002-6519-9108
https://orcid.org/0000-0001-7049-7460
https://orcid.org/0000-0003-4179-2211

Automatic code assessment in Robotics higher education courses

Rees (1982) suggested that by making programming issues visible and measurable for students

they learn to pay attention to them. Based on his work, many authors developed code analyzers

for programming languages such C, Ada, Fortran, etc and even relatively new programming

languages such as Python have a module to evaluate the programming style of a given code.

Important for any learning process, assessment can guide the students’ learning providing

feedback to both the student and the teacher. In this sense, automatic code assessment may help

the teacher to evaluate their students’ code in a fair and objective way. In addition, it will allow

the students to do code checking more frequently (Yang, Liu, & Yu, 2018). There are many

studies in the literature that provide assessment techniques and assessment tools to give

student’s appropriate and automated feedback for them to learn (Ihantola et al., 2010).

Regarding the teaching of robot programming, one of the main evaluation criteria is whether

the robot succeeds in performing the task for which it was programmed and, if so, with what

degree of efficiency. Robotic competitions typically use similar criteria to rank the participants

in an objective and quantitative way, they have tools for evaluating the effectiveness of a robot’s

code and make fair comparisons between attendant’s robot programs. Robotic competitions

such as RoboCup, ARIAC, MBZIRC and Darpa Robotics Challenge have traditionally been a

key element in research and in higher education. Also, VEX Robotics Competition, FIRST

LEGO League, RoboCup Junior, World Robot Olympiad are examples of interesting

competitions in secondary education where serve as a stimulus for students. Several illustrative

examples may be found in Evripidou et al. (2020). Many of the competitions are with physical

robots and recently some of them are also with simulated robots, which may simplify the

automatic evaluation.

In this work we present the automatic code evaluation system implemented on the Unibotics

platform. Unibotics is an open collection of exercises to learn robotics in a practical way, based

on Gazebo simulator and ROS middleware. It includes an automatic code effectiveness

evaluator and an automatic style evaluator. The system has been tested with 40 real engineering

students and some preliminary results are also described.

2. Automatic code assessment of robot programming

The question of code quality assessment was born along with the programming. Code developed

in a certain programming language to solve a specific problem can be assessed using three

different questions: (1) Functionality: Does the developed code solve the problem? (2) Code

Style: Is the developed code the most suitable for the proposed problem (speaking in terms of

efficiency, re-usability, easy to read and understand for other programmers...)? (3) Algorithm:

Taking into account a more abstract issue: is the algorithm implemented by the code adequate

and effective to solve the problem?

1264

Automatic code assessment in Robotics higher education courses

Functionality is the easiest to assess. A key question here is a correct and precise definition of

the problem proposed to students and the measurable requirements for the solution. Beyond

robotics competitions, in some robotics areas some standardized quality metrics and

benchmarks have already been proposed and are widely accepted. For robot navigation (Xia et

al., 2020), for visual object detection in robot perception systems the accuracy and recall

computed on certain datasets (Padilla et al., 2020), for self-localization algorithms the error on

some SLAM datasets (Huletski, Kartashov, & Krinkin, 2015), for autonomous driving the

combination of route completion and the infractions penalty (Yumaganov & Agafonov, 2021).

The programming style, or coding conventions, is an important aspect when writing code, since

it can make the written program intelligible to other programmers. However, code style

assessment could be less objective. Nevertheless several authors describe many style of coding

criteria that any programmer agrees with. The style rules of programming are indeterminate,

inconsistent and contradictory (Roque et al., 2019. Different ways of using factors such as

indentation, alignment and comments can be found in several books that address the topic. Lack

of consensus can be traced to the lack of definition of what exactly is programming style, and

what factors contribute to its definition.

Third question intends to assess a more abstract and complex idea, if the algorithm behind the

code is the most adequate to the proposed problem. Maybe the code solves the problem, the

style is perfect but the algorithm that the code implements is inefficient or to complicate for a

simple problem.

An interesting example of program assessment in a robotics context is described by Siegfried et

al. (2017). The authors used simulated robots and provided real-time feedback and gamified

hints to the students, who reduced the average time to write a correct program and the percentage

of them successfully writing a correct program also increased.

3. Unibotics platform for educational robotics

Unibotics is a robot programming web platform with engineering higher education contents

(Roldán-Álvarez et al., 2023). It allows the robot programming from the web browser and uses

state-of-the-art robotics tools such as ROS middleware and Gazebo simulator. It provides more

that 20 academic units on service robotics, autonomous driving, drones, computer vision and

mobile robots.

1265

Automatic code assessment in Robotics higher education courses

Figure 1. Example of the Vacuum Cleaner exercise web page

The platform provides several challenges where the student has to program the robot in Python

to solve a specific challenge (such as cleaning a full room with a vacuum cleaner) in a simulated

Scenario. For each exercise Unibotics already provides the Scenario, the robot sensors and

actuators through ROS topics, and the task to be solved.

The web page of each exercise is divided in three main parts as it is shown in Figure 1. In the

left side an inline text editor is be used to write the robot program. The right side includes a

view of the simulated world to see the robot behavior, a debugging console for text messages

and several exercise-specific widgets to show debugging information such as the processed

images. Then in the top area of the web page there is a toolbar which is used to implement the

basic operations of the platform: saving the current code, loading the code into the robot, running

the simulation, resetting it, showing and hiding some GUI widgets and two buttons to evaluate

the efficacy of the code and the programming style.

4. Automatic assessment tools in Unibotics

One of the main advantages of the platform is that the user is offered the possibility of evaluating

the code automatically and receive feedback.

Regarding the style of the code, the platform uses the rules from the PEP 8 style guide. This

evaluation offers information about how well-written the code is. This is an area that, in our

1266

Automatic code assessment in Robotics higher education courses

case, many students at the university often do not pay attention to when programming, focusing

only in if the code works and solve the issue, leading them to write unintelligible code that can

not be maintained nor updated in an easy way.

Regarding the efficacy evaluation, it heavily depends on the exercise itself. Two of them will be

described here for illustrative purposes. First, in the FollowLine exercise the challenge is to

program an autonomous F1 Car to complete a lap of the circuit in the shortest possible time by

following a red colored line drawn throughout the circuit. The car is equipped with an onboard

front camera and its motors accept forward speed V and angular speed W commands. Figure 2

shows the Gazebo scenario and the Formula1 car used. This exercise is designed to teach basic

reactive control, including PID controllers as well as introducing students to basic image

processing, for example color filters, morphological filters or segmentation of the red line from

the track. The typical solution involves segmenting the red line and making the car follow it

using a PID based control. The GUI of this exercise includes a bird’s eye view widget to know

the current position of the car inside the track.

The efficacy evaluator here gives a evaluation based on the time it takes for the car to go round

the circuit. Then, the score is calculated according to this formula: score = min(10, 10 − (seconds

− 60) ∗ 1/60) , where seconds represent the time it took the car to go round the circuit. Taking

60 seconds or less would give a score of 10. Then, the score is reduced one point for each extra

minute. If a student did not manage to complete a lap, both the time and the final score will be

a 0.

Second, in the BasicVacuumCleaner exercise the challenge is to program a robot, similar to

iRobot Roomba, to clean an apartment in a given time. The more area covered in a stint of 5

minutes, the better its efficacy. It is intended to teach coverage algorithms. The covered

percentage of cleanable surface is the score, which is shown to the student at the top right area

of the exercise webpage, as can be seen in Figure 1.

1267

Automatic code assessment in Robotics higher education courses

Figure 2. Example of the Follow Line exercise web page

5. Preliminary pilot study

In order to test the efficacy evaluator that Unibotics provides we carried out two pilot studies.

26 students from the Mobile Robotics course at the Robotics Software degree at URJC took part

in the first one. 14 students enrolled in the Computer Vision Master at the URJC also

participated. During their courses, they had to complete the Follow Line challenge. Both groups

were able to use the efficacy evaluator while they were carrying out the task. The goal of this

study was to check if the efficacy evaluator worked consistently and to analyse differences

between both groups.

The final results of the efficacy evaluator for both pilot studies are shown in Table 1.We present

both the time the student took to go round the circuit and the final efficacy score.

Thanks to the efficacy evaluator the students can have an idea about the performance of the code

they have written. Moreover, they are able to improve their code to check if the score is higher

after adding those improvements. The students know before starting to code, that the maximum

score would be achieved if the car is able to do a lap in 60 seconds or less. Therefore, they had

the basis to improve their codes before the submission deadline until their goal score was

achieved. The final marks of the challenge were not calculated only with this score, but also

other factors such as the style of the code.

1268

Automatic code assessment in Robotics higher education courses

Table 1. Students’ efficacy score

Degree students

Master students

Id Time Score Time Score

1 240 7 0 0

2 154 8.43 223 7.28

3 60 10 215 7.42

4 120 9 79 9.68

5 0 0 90 9.5

6 50 10 173 8.12

7 45 10 105 9.25

8 90 9.5 162 8.3

9 166 8.23 110 9.17

10 126 8.9 157 8.38

11 120 9 156 8.4

12 122 8.97 142 8.63

13 54 10 138 8.7

14 86 9.57 133 8.78

15 0 0

16 0 0

17 110 9.17

18 321 5.65

19 360 5

20 190 7.83

21 71 9.82

22 210 7.5

23 92 9.47

24 167 8.22

25 0 0

26 40 10

6. Conclusions

This work presents the automatic code assessment system in the Unibotics robot programming

platform. It includes a style evaluation based on PEP8 standard compliance and efficacy

evaluation which heavily depends on the robot task. A preliminary study with 40 students has

been performed URJC in which the students use an automatic efficacy evaluator to check the

performance of their code when completing the FollowLine challenge. The students

continuously received direct feedback about the performance of their code from the assessment

system, and were able to further refine it before delivering the final version.

1269

Automatic code assessment in Robotics higher education courses

 Regarding future lines, further work should study how they use the efficacy evaluator along the

whole learning process, how many times students modify and evaluate their codes until they

reach the final version. It would be interesting to study if the use of the efficacy evaluation tool

affects the learning results of the students. Introducing spatial deviation from the red line as a

new factor in the FollowLine score is under development.

References

Evripidou, S., Georgiou, K., Doitsidis, L., Amanatiadis, A.A., Zinonos, Z., Chatzichristofis,

S.A. (2020). Educational robotics: Platforms, competitions and expected learning outcomes.

IEEE access 8, 219534–219562

Huletski, A., Kartashov, D., Krinkin, K. (2015). Evaluation of the modern visual SLAM

methods. In: Artificial Intelligence and Natural Language and Information Extraction, Social

Media and Web Search FRUCT Conference (AINL-ISMW FRUCT).pp.19–25. IEEE

Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O. (2010). Review of recent systems for

automatic assessment of programming assignments. In: Proceedings of the 10th Koli calling

international conference on computing education research. pp. 86–93

Padilla, R., Netto, S.L., Da Silva, E.A. (2020). A survey on performance metrics for

objectdetection algorithms. In: 2020 international conference on systems, signals and image

processing (IWSSIP). pp. 237–242. IEEE

Roldán-Álvarez, D., Cañas, J. M., Valladares, D., Arias-Perez, P., & Mahna, S. (2023).

Unibotics: open ROS-based online framework for practical learning of robotics in higher

education. Multimedia Tools and Applications, 1-26.

Roque, L., Dantas, A., Camilo-Junior, C.G. (2019). Programming style analysis with recurrent

neural network to automatic pull request approval. In: 2019 International Joint Conference

on Neural Networks (IJCNN). pp. 1–7. IEEE

Siegfried, R., Klinger, S., Gross, M., Sumner, R.W., Mondada, F., Magnenat, S. (2017).

Improved mobile robot programming performance through real-time program assessment.

In: Proceedings of the 2017 ACM conference on innovation and technology in computer

science education. pp. 341–346

Striewe, M., Goedicke, M. (2014). A review of static analysis approaches for programming

exercises. In: Computer Assisted Assessment. Research into E-Assessment: International

Conference, Zeist, The Netherlands. Proceedings. pp.100–113. Springer

Xia, F., Shen, W.B., Li, C., Kasimbeg, P., Tchapmi, M.E., Toshev, A., Martín, R., Savarese, S.

(2020). Interactive Gibson benchmark: A benchmark for interactive navigation in cluttered

environments. IEEE Robotics and Automation Letters 5(2), 713–720.

Yang, C., Liu, Y., Yu, J. (2018). Exploring violations of programming styles: Insights from

open source projects. In: Proceedings of the 2018 2nd International Conference on Computer

Science and Artificial Intelligence. pp. 185–189.

Yumaganov, A., Agafonov, A. (2021). Comparison of autonomous driving approaches. In: 2021

International Conference on Information Technology and Nanotechnology (ITNT). pp. 1–4.

IEEE.

1270

