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Abstract. Motivated by recent investigations of Sophie Grivaux and Étienne
Matheron on the existence of invariant measures in Linear Dynamics, we
introduce the concept of locally bounded orbit for a continuous linear op-
erator T : X −→ X acting on a Fréchet space X, and we use this new
notion to construct (non-trivial) T -invariant probability Borel measures
on (X,B(X)).
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1. Introduction

This paper focusses on some aspects of the relationship between Topological
and Measurable Dynamics in the particular context of Linear Dynamics, our
main aim being to find some sufficient conditions for a linear dynamical system
to admit (non-trivial) invariant probability Borel measures.

A linear dynamical system is a pair (X,T ) where X is a separable infinite-
dimensional Fréchet space (that is, a locally convex and completely metrizable
topological vector space), and where T : X −→ X is a continuous linear
operator acting on X. We will briefly write T ∈ L(X), and given a vector
x ∈ X we will denote its T -orbit by

OT (x) := {Tnx ; n ≥ 1}.

A linear dynamical system T ∈ L(X) can be examined from various
perspectives. For instance, one may focus on Topological Dynamics and, if we
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denote by E the topological closure of any subset E ⊂ X, one can study
notions such as recurrence and hypercyclicity: a vector x ∈ X is said to be

– recurrent for T if x ∈ OT (x), and the set of recurrent vectors for T will
be denoted by Rec(T );

– hypercyclic for T if X = OT (x), and the set of hypercyclic vectors for T
will be denoted by HC(T ).

In Linear Dynamics the concept of “hypercyclicity” has historically been the
main studied property and [5,30] represent a comprehensive compilation of
such a theory, but “linear recurrence” has recently appeared in the 2014 paper
[18], followed by the works [11,13,14,28,34] and [35] among others.

Alternatively, one can adopt the Measurable Dynamics (also called Er-
godic Theory) point of view and, considering a positive finite (often normal-
ized and therefore probability) measure μ defined on the σ-algebra of Borel sets
B(X) of X, investigate notions such as invariance and ergodicity:

– such a measure μ is called T -invariant (or simply invariant) if μ(A) =
μ(T−1(A)) for all A ∈ B(X);

– and μ is called T -ergodic (or just ergodic) if it is invariant and μ(A) ∈
{0, μ(X)} when A = T−1(A).

The study of Ergodic Theory in the context of Linear Dynamics started in
1994 with the pioneering work of Flytzanis (see [21,22]), and was then fur-
ther developed in the papers [3,4,6,29] and [27] between others. See also the
textbooks [5,15] and [41].

It is by now well understood that the notion of ergodicity can be seen as
the measure-theoretic counterpart of hypercyclicity, while invariance can be
compared with recurrence. To state this analogy let N be the set of positive
integers, denote the return set from any x ∈ X to any subset E ⊂ X by

NT (x,E) := {n ∈ N ; Tnx ∈ E},

and note that a vector x ∈ X is hypercyclic for T ∈ L(X) precisely when
the return set NT (x,U) is infinite for every non-empty open subset U ⊂ X,
and that x ∈ X is recurrent for T when NT (x,U) is infinite at least for every
neighbourhood U of x. Using this notation we reach the announced analogy:

– when μ is a T -ergodic measure with full support (that is, μ(U) > 0
for every open set U �= ∅), it was exhibited by Bayart and Grivaux
in 2006 that then μ-a.e. vector x ∈ X is not only hypercyclic, but even
frequently hypercyclic: for every non-empty open subset U ⊂ X the return
set NT (x,U) has positive lower density dens(NT (x,U)) > 0, where the
lower density for any set A ⊂ N is

dens(A) := lim inf
N→∞

#(A ∩ [1, N ])
N

;

the vector x ∈ X is then called frequently hypercyclic for T and we will
denote by FHC(T ) the set of frequently hypercyclic vectors for T ; see [3,
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Proposition 3.12] or [5, Corollary 5.5] for the details of this argument,
which uses the Birkhoff pointwise ergodic theorem in a crucial way;

– and when μ is just T -invariant, it was checked in [27] that then μ-a.e.
vector x ∈ X is also not only recurrent, but even frequently recurrent: for
every neighbourhood U of x the return set NT (x,U) has positive lower
density dens(NT (x,U)) > 0; the vector x ∈ X is then called frequently
recurrent for T and we will denote by FRec(T ) the set of frequently recur-
rent vectors for T ; see [27, Lemma 3.1] for the details of this argument,
which uses again the Birkhoff pointwise ergodic theorem this time com-
bined with the ergodic decomposition theorem, and see [11] for more on
frequent recurrence.
These results emphasize the importance of being able to ensure the ex-

istence of invariant measures possibly satisfying additional properties such as
having full support or being ergodic, weakly and even strongly mixing. This
kind of question goes back to the classical work of Oxtoby and Ulam [37] where
the existence of invariant positive finite Borel measures, but for continuous au-
tomorphisms acting on completely metrizable spaces, was fully characterized.
In our linear framework note that every operator T ∈ L(X) admits the atomic
Dirac mass δ0 as an invariant measure since the zero-vector is always a fixed
point, so we will say that a probability (or positive finite) Borel measure μ on
(X,B(X)) is non-trivial if it differs from δ0 (or from every positive multiple
of δ0).

The existence of non-trivial invariant measures in Linear Dynamics has
recently been explored in the works [29] and [27]. In fact, [29, Section 2] ex-
tends to the linear setting a constructive technique already known for compact
dynamical systems obtaining that, under some “natural topological assump-
tions” on the space X and the operator T , then one can construct a T -invariant
measure with full support from a frequently hypercyclic vector x ∈ FHC(T ).
This was slightly refined in [27, Section 2] weakening the “frequent hyper-
cyclicity” requirement into that of “reiterative recurrence”: we say that x ∈ X
is reiteratively recurrent for T if for every neighbourhood U of x the return
set NT (x,U) has positive upper Banach density Bd(NT (x,U)) > 0, where the
upper Banach density for any set A ⊂ N is

Bd(A) := lim sup
N→∞

(
max
m≥0

#(A ∩ [m + 1,m + N ])
N

)
.

We will denote by RRec(T ) the set of reiteratively recurrent vectors for T and,
even though the inclusions FHC(T ) ⊂ FRec(T ) ⊂ RRec(T ) are usually strict
(see [11, Theorem 5.8]), exactly the same “natural topological assumptions”
from [29, Section 2] were used in [27, Section 2] to construct a non-trivial
T -invariant measure from each non-zero reiteratively recurrent vector x ∈
RRec(T ) \ {0}.
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The aforementioned “topological assumptions” on T ∈ L(X) require the
underlying space X to be a Banach space in both works [29] and [27], since
some kind of “local boundedness” is needed along the construction of invariant
measures developed. The main objective of this paper, and what we do in
Section 2, is extending the constructive technique exposed in [27,29] to the
context of operators acting on Fréchet spaces via the new concept of locally
bounded orbit (see Definition 2.2). The rest of the paper is organized as follows:
in Section 3 we apply the theory developed in Section 2 by adding general
restrictions on X and T , we discuss why the invariant measures constructed
are optimal in terms of Banach limits, and we adapt the main ideas from
Section 2 to study almost-F-recurrence and some equivalences of Devaney
chaos in the Fréchet setting. In Section 4 we elaborate further on the notion
of “locally bounded orbit” by exhibiting some explicit examples and stability
results.

2. Invariant measures on Fréchet spaces

In this section we recall the technique developed in [29] and [27] to construct
invariant measures for operators acting on Banach spaces and we extend it
to the Fréchet setting by introducing the concept of locally bounded orbit (see
Definition 2.2 below). The basic results that we need from [27,29] were origi-
nally stated for Polish dynamical systems so that we start by presenting some
notation.

2.1. From the Banach to the Fréchet case

We will say that the pair (X,T ) is a Polish dynamical system if T : X −→ X is
a continuous map acting on a Polish space X, that is, a separable completely
metrizable topological space. Note that the concept of “linear dynamical sys-
tem” as defined at the Introduction of this paper is indeed a particular case
of Polish system. Moreover, the topological and measurable notions already
defined, such as “recurrent/hypercyclic vector” and “invariant/ergodic mea-
sure”, make sense in this rather general context and by abuse of notation we
will utilize them also for Polish systems. See [20] for recent investigations on
the relation between both Polish and linear dynamical systems.

Given a Polish space X we will denote by τX the original (separable
and completely metrizable) topology of the space, but we will often consider
a second topology τ on X fulfilling some properties with respect to τX . The
σ-algebra of Borel sets induced by each of these topologies will be denoted
by B(X, τX) and B(X, τ) respectively, and if they coincide we will simply
write B(X). All the measures considered in this paper will be
non-negative finite Borel measures defined on Polish spaces, hence regular
(see [16, Proposition 8.1.12]), and we will usually omit the words “Borel”
and “regular”. Moreover, for any non-negative measure μ on a Polish space
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(X, τX) we will denote its support by

supp(μ) := X \
⋃

{U ⊂ X ; U is τX -open and μ(U) = 0}.

It is easy to check that a point x ∈ X belongs to the support supp(μ) if and
only if μ(U) > 0 for every measurable neighbourhood U of x. Let �∞ be the
space of all bounded sequences of real numbers, we will write 1l ∈ �∞ for the
sequence with all its terms equal to 1, and for each A ⊂ N the element 1lA ∈ �∞

will be the sequence in which the n-th coordinate is exactly 1 if n ∈ A and
0 otherwise. Recall also that a Banach limit is a positive and shift-invariant
continuous linear functional m : �∞ −→ R, which preserves the value of the
limit for every convergent sequence (see [17, page 82]).

Using the previously introduced notation we can explore the very tech-
nical lemma, originally stated in [29, Remarks 2.6 and 2.12] and later refined
in [27, Lemma 2.1], which allows to construct plenty of invariant (but possibly
null) measures for every Polish dynamical system T : (X, τX) −→ (X, τX)
admitting a second Hausdorff topology τ on X which fulfills some conditions
with respect to τX :

– [27, Lemma 2.1]: Let (X,T ) be a Polish dynamical system, denote by
τX the original topology of X and suppose that there exists a Hausdorff
topology τ on X fulfilling that
(α) T : X −→ X is τ -τ -continuous;
(β) τ ⊂ τX ;
(γ) every τ -compact set is τ -metrizable;
(δ) B(X, τ) = B(X, τX);

then for each x0 ∈ X and each Banach limit m : �∞ −→ R one can find a
(non-negative) T -invariant finite Borel regular measure μ on (X,B(X))
for which μ(X) ≤ 1 and such that μ(K) ≥ m(1lNT (x0,K)) for every τ -
compact set K ⊂ X. Moreover, we have the inclusion

supp(μ) ⊂ OT (x0)
τ
.

In [27, Theorem 2.3] it is shown that conditions slightly stronger than (α),
(β), (γ) and (δ) allow to obtain non-null measures by applying [27, Lemma 2.1]
to each reiteratively recurrent point. This result has the following automatic
corollary (already observed in [27, Proof of Theorem 1.3]):

Corollary 2.1. Let Y be a Banach space, assume that its dual Banach space
X := Y ′ is separable, and let T ∈ L(X) be the adjoint of some S ∈ L(Y ). Given
a (non-zero) vector x0 ∈ RRec(T ) one can find a (non-trivial) T -invariant
probability measure μx0 on (X,B(X)) such that

x0 ∈ supp(μx0) ⊂ OT (x0)
σ(X,Y )

.

Moreover, if the set RRec(T ) is dense in X, then there exists a T -invariant
probability measure μ on (X,B(X)) with full support. In particular, the result



  185 Page 6 of 30 A. López-Mart́ınez Results Math

is true for every operator T ∈ L(X) with respect to the weak topology σ(X,X ′)
as soon as (X, ‖ · ‖) is a separable reflexive Banach space.

Note that given any Banach space X we are denoting by X ′ its topological
dual space, which is again a Banach space, and given a dual pair (Y,X) we are
denoting by σ(X,Y ) the weak topology on the space X induced by Y . Using
this “locally convex spaces”-notation let us briefly explain how Corollary 2.1
is implicitly proved in [27, Proof of Theorem 1.3 and Theorem 2.3]: when
T ∈ L(X) is the adjoint operator of some S ∈ L(Y ) it is well-known that
(α) T : X −→ X is σ(X,Y )-σ(X,Y )-continuous;
(β) σ(X,Y ) ⊂ τ‖·‖, where τ‖·‖ is the norm topology of (X, ‖ · ‖);

(γ∗) every vector of X has a basis of τ‖·‖-neighbourhoods consisting of σ(X,Y )-
compact sets;

and if (X, ‖ · ‖) is separable [29, Fact 2.1] shows that condition (γ∗) im-
plies the σ(X,Y )-metrizability of every σ(X,Y )-compact set, but also that
B(X,σ(X,Y )) = B(X, τ‖·‖), which are conditions (γ) and (δ) needed to ap-
ply [27, Lemma 2.1]. Then, each reiteratively recurrent vector x0 ∈ RRec(T )
can be shown to return enough frequently to every of its σ(X,Y )-compact and
τ‖·‖-neighbourhoods of the type Kr := {x ∈ X ; ‖x0 − x‖ ≤ r} for r > 0, to
admit a Banach limit mr : �∞ −→ R such that

mr(1lNT (x0,Kr)) = Bd(NT (x0,Kr)) > 0.

In order to repeat this proof when (X, τX) is a Fréchet space obtained as the
strong dual of some locally convex space (Y, τY ), we must prove that conditions
(α), (β), (γ) and (δ) still hold between σ(X,Y ) and τX (see Lemma 2.6 below),
but we also need to solve the following problem: if (X, τX) is not a Banach
space then the τX -neighbourhoods of the vector selected x0 ∈ RRec(T ) are
no longer σ(X,Y )-compact and [27, Lemma 2.1] seems useless. The following
definition will avoid this issue:

Definition 2.2. Let T ∈ L(X) be an operator acting on a Fréchet space X. A
vector x ∈ X has a locally bounded orbit for T if there exists a neighbourhood
U of x such that the set U ∩OT (x) is bounded in X. We will denote by �bo(T )
the set of vectors with locally bounded orbit for T .

Using this new concept we can state Theorem 2.3 below, which is the
main result of this paper. Recall first that given any Hausdorff locally convex
topological vector space (Y, τY ), then its topological dual space Y ′ can be
endowed with a Hausdorff locally convex topology β(Y ′, Y ) for which a basis
of β(Y ′, Y )-neighbourhoods of the 0Y ′ -vector is formed by the following family
of σ(Y ′, Y )-closed sets

{E◦ ; E ⊂ Y is a bounded subset in (Y, τY )} ,

where E◦ := {x ∈ Y ′ ; |〈u, x〉| ≤ 1 for all u ∈ E} ⊂ Y ′ denotes the (absolute)
polar of each set E ⊂ Y with respect to the dual pair (Y, Y ′). The topology
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β(Y ′, Y ) is called the strong topology on the space Y ′ induced by (Y, τY ), and
the Hausdorff locally convex topological vector space (Y ′, β(Y ′, Y )) is called
the strong dual of (Y, τY ); see [32, Chapter 8] for more on duality for locally con-
vex spaces. Recall also that (Y, τY ) is called quasi-�∞-barrelled if every bounded
sequence in its strong dual space is equicontinuous
(see [32, Section 12.1] or [38, Definition 8.2.13]). Here we have our main result:

Theorem 2.3. Let (Y, τY ) be a quasi-�∞-barrelled Hausdorff locally convex topo-
logical vector space, assume that its strong dual (X, τX) := (Y ′, β(Y ′, Y )) is a
separable Fréchet space, and let T ∈ L(X) be the adjoint of some linear map
S : Y −→ Y . Given a (non-zero) vector x0 ∈ RRec(T ) ∩ �bo(T ) one can find
a (non-trivial) T -invariant probability measure μx0 on (X,B(X)) such that

x0 ∈ supp(μx0) ⊂ OT (x0)
σ(X,Y )

.

Moreover, if the set RRec(T ) ∩ �bo(T ) is dense in X, then there exits a T -
invariant probability measure μ on (X,B(X)) with full support. In particular,
the result is true for every operator T ∈ L(X) with respect to the weak topology
σ(X,X ′) as soon as (X, τX) is a separable reflexive Fréchet space.

The rest of this section is devoted to prove Theorem 2.3, but let us include
some initial remarks:

Remark 2.4. Let T ∈ L(X) be an operator acting on a Fréchet space X. Note
that:
(a) When X is Banach the equality �bo(T ) = X holds because the unit

ball of X is a bounded set, so that Theorem 2.3 is just an extension of
Corollary 2.1 to operators acting on Fréchet spaces.

(b) When X is a Fréchet space which is not Banach:
(b1) We have that X\Rec(T ) ⊂ �bo(T ). Indeed, given any x ∈ X\Rec(T )

there is some neighbourhood U of x such that U ∩ OT (x) is finite,
so that X \ �bo(T ) ⊂ Rec(T ).

(b2) If x ∈ Rec(T ) has a bounded orbit for T (that is, the set OT (x) is
bounded in X) then x ∈ �bo(T ). In particular: if the vector x is
T -periodic (that is, T px = x for some p ∈ N) or if x is a unimodular
T -eigenvector (that is, Tx = λx with |λ| = 1) then x ∈ �bo(T ); and
if the operator T is power-bounded then �bo(T ) = X (see Subsec-
tion 3.1 and Section 4).

(b3) We have that HC(T ) ⊂ Rec(T ) \ �bo(T ). Indeed, given x ∈ HC(T )
and any neighbourhood U of x then U ∩OT (x) is dense in U and not
bounded since X is not Banach. Thus, if T is Devaney chaotic (that
is, T has a hypercyclic vector and the T -periodic vectors are dense)
then �bo(T ) is a dense but meager set in X (see Subsection 3.2 and
Section 4).

See Section 4 for more on this new concept of locally bounded orbit.
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Remark 2.5. The reader is referred to the textbooks [32,38] for details regard-
ing the following facts:
(a) The space (Y, τY ) in Theorem 2.3 has to be a separable quasi-barrelled

(DF)-space. Indeed, since the strong dual space (Y ′, β(Y ′, Y )) is as-
sumed to be separable we deduce that (Y, τY ) has to be separable, and
hence quasi-barrelled by [38, Corollary 8.2.20], but we also know that
(Y ′, β(Y ′, Y )) is a Fréchet space so that (Y, τY ) has a fundamental se-
quence of bounded sets (see [9, Corollary 5]).

(b) Conversely to (a), and since the strong dual of any (DF)-space is always
a Fréchet space (see for instance [32, Section 12.4]), we have that the
hypothesis of Theorem 2.3 are satisfied as soon as the starting space
(Y, τY ) is a (DF)-space with separable strong dual.

(c) Note that, when (X, τX) := (Y ′, β(Y ′, Y )), the definition of strong topol-
ogy implies that every vector x ∈ X admits a basis of τX -neighbourhoods
formed by σ(X,Y )-closed sets.

(d) In the statement of Theorem 2.3 the sentence “T ∈ L(X) is the adjoint of
S : Y −→ Y ” means that “we have the dual-evaluation equality 〈Su, x〉 =
〈u, Tx〉 for every pair (u, x) ∈ Y × X”.

We are now ready to prove Theorem 2.3. See Subsection 2.3 for some
examples and extra remarks.

2.2. Proof of Theorem 2.3

Let us start by showing that [27, Lemma 2.1] can be used in our Fréchet
setting. Recall first that a topological space is called Lindelöf if every open
cover of the space admits a countable subcover, and that a topological space
is called hereditarily Lindelöf if every subspace of it is Lindelöf.

Lemma 2.6. Let (Y, τY ) be a Hausdorff locally convex topological vector space,
denote its strong dual space by (X, τX) := (Y ′, β(Y ′, Y )), and let T : X −→ X
be a linear map. Then:
(α) T is σ(X,Y )-σ(X,Y )-continuous if and only if it is the adjoint of some

linear map S : Y −→ Y ;
(β) σ(X,Y ) ⊂ τX .
Moreover, if the Hausdorff locally convex space (Y, τY ) is separable then:
(γ) every σ(X,Y )-compact set is σ(X,Y )-metrizable;

and if the Hausdorff locally convex space (X, τX) is hereditarily Lindelöf then:
(δ) B(X,σ(X,Y )) = B(X, τX).

Proof. Property (α) is well-known (see [32, Section 8.6]) and (β) follows from
the definition of σ(X,Y ) and τX . Property (γ) is also known since for any
τY -dense countable set {uk : k ∈ N} ⊂ Y the function

d(x, y) :=
∑
k∈N

2−k · min{1, |〈uk, x − y〉|} for each (x, y) ∈ X × X,
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can be checked to be a metric defining the weak topology on each σ(X,Y )-
compact subset. For (δ) note first that B(X,σ(X,Y )) ⊂ B(X, τX) by (β).
Conversely, let U ∈ τX and for each x ∈ U select a σ(X,Y )-closed τX -
neighbourhood Ux of x such that Ux ⊂ U . Thus, U =

⋃
x∈U Ux is a cover-

ing of U . If now (X, τX) is hereditarily Lindelöf we can obtain a countable
sub-covering of U formed by σ(X,Y )-closed sets, which finally implies that
U ∈ B(X,σ(X,Y )). �

We can now proceed with the proof of Theorem 2.3: let (Y, τY ) be a quasi-
�∞-barrelled Hausdorff locally convex topological vector space, assume that its
strong dual space (X, τX) := (Y ′, β(Y ′, Y )) is a separable Fréchet space, and
let T ∈ L(X) be the adjoint of some linear map S : Y −→ Y .

Since the space (X, τX) is assumed to be separable and metrizable one can
check that (Y, τY ) is also separable, and that (X, τX) is hereditarily Lindelöf.
Hence Lemma 2.6 applies to our situation in its full generality and we have
that:

Claim 1. Given x0 ∈ X and a σ(X,Y )-compact set K ⊂ X with Bd(NT (x0,K))
> 0, there exists a T -invariant probability measure μ on (X,B(X)) such that
μ(K) > 0. Moreover, we have the inclusion

supp(μ) ⊂ OT (x0)
σ(X,Y )

.

Proof. In [27, Fact 2.3.1] it was shown that for any set A ⊂ N one can con-
struct a Banach limit mA : �∞ −→ R such that mA(1lA) = Bd(A). We re-
peat the explicit construction of such a Banach limit in Proposition 3.4 be-
low, where we discuss the optimality of this construction (see Subsection 3.1).
Hence there exists a Banach limit mK : �∞ −→ R such that mK(1lNT (x0,K)) =
Bd(NT (x0,K)) > 0 for the σ(X,Y )-compact set K. By Lemma 2.6 we can
now apply [27, Lemma 2.1] to x0 and mK obtaining a T -invariant positive
finite measure μ on (X,B(X)) for which μ(K) ≥ mK(1lNT (x0,K)) > 0. �

Now we use the “locally bounded orbit”-assumption:

Claim 2. Given a vector x0 ∈ RRec(T ) ∩ �bo(T ) there exists a T -invariant
probability measure μx0 on (X,B(X)) such that

x0 ∈ supp(μx0) ⊂ OT (x0)
σ(X,Y )

.

In particular, if x0 �= 0 then μx0 is a non-trivial T -invariant measure.

Proof. Since the vector x0 has a locally bounded orbit for T there exists a τX -
neighbourhood U of x0 such that K := U ∩OT (x0) is a countable τX -bounded
set and hence an equicontinuous set in Y ′ by the quasi-�∞-barrelled assumption
on (Y, τY ). Moreover, we have that K = U ∩ OT (x0) is relatively σ(X,Y )-
compact by the Alaoglu-Bourbaki theorem (see [32, Section 8.5, Theorem 2]).
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Let (Un)n∈N be a basis of σ(X,Y )-closed τX -neighbourhoods of x0 and
let (Vn)n∈N := (Un ∩ U)n∈N, which is again a basis of τX -neighbourhoods of
x0. Set

Kn := Vn ∩ OT (x0)
σ(X,Y )

= Un ∩ K
σ(X,Y ) ⊂ Un ∩ K

σ(X,Y )
for each n ∈ N.

Note that every Kn is a σ(X,Y )-compact set included in Un for which

NT (x0, Vn) = NT (x0, Vn ∩ OT (x0)) ⊂ NT (x0,Kn) ⊂ NT (x0, Un).

Hence we can apply Claim 1 to x0 and each set Kn obtaining a sequence
(μn)n∈N of T -invariant probability measures on (X,B(X)) for which μn(Un) ≥
μn(Kn) > 0 and such that

supp(μn) ⊂ OT (x0)
σ(X,Y )

for each n ∈ N.

Then μx0 :=
∑

n∈N
2−n ·μn is a T -invariant probability measure on (X,B(X))

fulfilling that

x0 ∈ supp(μx0) ⊂ OT (x0)
σ(X,Y )

,

which also implies that μx0 is non-trivial when x0 �= 0 (see [27, Fact 2.3.2] for
more details). �

To prove the part of Theorem 2.3 regarding the existence of a T -invariant
measure with full support one can argue just as in [27, Theorem 2.3]:

Claim 3. If the set RRec(T ) ∩ �bo(T ) is dense in X there exits a T -invariant
probability measure μ on (X,B(X)) with full support.

Proof. Given any countable dense subset {xk ; k ∈ N} ⊂ RRec(T ) ∩ �bo(T )
and applying Claim 2 to each vector xk we obtain a sequence (μxk

)k∈N of
T -invariant probability measures on (X,B(X)) such that xk ∈ supp(μxk

) for
each k ∈ N, and μ :=

∑
k∈N

2−k · μxk
fulfills the desired properties. �

Finally, and in order to complete the proof of Theorem 2.3, let us argue
what happens for reflexive spaces. Recall first that a Fréchet space (X, τX) is
called reflexive if the canonical inclusion from X into its strong bi-dual space
X ′′ is an isomorphism, that is, the linear map

J : (X, τX) −→ (X ′′, β(X ′′,X ′))

where given x ∈ X the map J(x) : X ′ −→ K acts as [J(x)](u) = 〈J(x), u〉 :=
〈u, x〉 for all u ∈ X ′, and where β(X ′′,X ′) is the strong topology induced
on X ′′ by the locally convex space (X ′, β(X ′,X)). Since the strong dual of
a Fréchet space is always a (DF)-space, in the previous situation we have
that (Y, τY ) := (X ′, β(X ′,X)) is a (DF)-space; see [32, Section 12.4] and
[36, Chapter 23] for more details.

Claim 4. The conclusion of Theorem 2.3 holds for every operator T ∈ L(X)
with respect to the weak topology σ(X,X ′) as soon as (X, τX) is a separable
reflexive Fréchet space.
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Proof. Let (X, τX) be a separable reflexive Fréchet space, consider any op-
erator T ∈ L(X) and denote by (Y, τY ) := (X ′, β(X ′,X)) the strong dual
space of (X, τX). Note that the strong dual of (Y, τY ), that is (Y ′, β(Y ′, Y )) =
(X ′′, β(X ′′,X ′)), coincides with (X, τX) by reflexivity. Hence:

(i) The space (Y, τY ) is a (DF)-space and it is separable because so is its
strong dual. Then (Y, τY ) is a quasi-�∞-barrelled Hausdorff locally convex
topological vector space (check Remark 2.5).

(ii) The strong dual of (Y, τX) coincides with the separable Fréchet space
(X, τX).

(iii) The operator T ∈ L(X) can be seen as the adjoint of the linear map
S : Y −→ Y defined as

Su ∈ Y such that 〈Su, x〉 := 〈u, Tx〉 for every x ∈ X.

Indeed, the linear map S is the adjoint of T , and T coincides with the
adjoint of S by reflexivity.

By (i), (ii) and (iii) we have that the initial hypothesis of Theorem 2.3 are
fulfilled by (Y, τY ), (X, τX) and T ∈ L(X), so that the conclusion holds. More-
over, note that the corresponding weak topology that appears in the statement
σ(X ′′,X ′) = σ(Y ′, Y ) coincides with σ(X,X ′) by reflexivity. �

2.3. Remarks on Theorem 2.3

Let us include here some examples where Theorem 2.3 can be applied:

Example 2.7 (Reflexive Fréchet spaces). The “reflexive” hypothesis is not too
restrictive since plenty of interesting Fréchet spaces are reflexive. Moreover,
the positive part of considering a reflexive space is that we have no restriction
on the operators to which we can apply Theorem 2.3.

Among these spaces we have the important class of Fréchet-Montel spaces
like the space of all holomorphic functions H(Ω) on any open connected subset
Ω ⊂ C equipped with the compact-open topology, also the space of smooth
functions C∞(Ω) on any open subset Ω ⊂ R

n equipped with the compact-
open topology in all derivatives, or the space of all (real or complex) sequences
ω = K

N endowed with its usual coordinatewise convergence topology.
We refer to [32, Chapter 11] for more on reflexivity.

Example 2.8 (The case of (DF)-spaces with separable dual). Apart from the
reflexive setting, and as pointed out in Remark 2.5, the conclusion of Theo-
rem 2.3 also holds when we start considering a (DF)-space (Y, τY ) with sep-
arable strong dual and we pick an adjoint operator in that dual space. An
important class of spaces fulfilling this property are the (LB)-spaces with sep-
arable dual.

For instance one can consider the so-called Köthe sequence spaces
(see [36, Chapter 27]). Indeed, for every Köthe matrix A = (ak,j)k,j∈N, as
defined in [36, Page 327] but also explicitly included in this notes (see Exam-
ple 4.5 below), the respective Köthe space λp(A) is the strong dual space of
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an inductive limit of countably many Banach spaces for every 1 ≤ p ≤ ∞. In
particular, when 1 < p < ∞ then λp(A) is always a reflexive Fréchet space
(see [36, Proposition 27.3]) and, even though the spaces λ1(A) and λ∞(A)
are not necessarily reflexive (see [36, Theorem 27.9: Dieudonné-Gomes]), we
at least have that λ1(A) is always separable and the strong dual space of
an inductive limit of c0-weighted spaces. Thus, Theorem 2.3 applies to every
continuous weighted backward shift acting on λ1(A).

In Section 4 we give explicit examples of locally bounded orbits for some
classical operators acting on the already mentioned spaces H(C), ω and λp(A),
but let us end this part of the paper with a possible generalization of Theo-
rem 2.3 for Polish dynamical systems:

Remark 2.9. If one reads carefully the proof of Theorem 2.3 it is obvious that
the construction holds because we assume the existence of a reiteratively re-
current point admitting a basis of neighbourhoods whose intersection with the
respective orbit is compact for the weak topology. We could give a similar
definition in the general Polish dynamical systems setting:

Definition 2.10. Let T : X −→ X be a continuous map acting on a Polish
space (X, τX) and let τ be any Hausdorff topology on X. We say that a point
x ∈ X has a locally τ -compact orbit for T if any of the following equivalent
conditions holds:

(i) for each τX -neighbourhood U of x there is a second τX -neighbourhood
V of x such that V ∩ OT (x)

τ
is a τ -compact set contained in U ;

(ii) there exists a decreasing basis of τX -neighbourhoods (Un)n∈N of x ful-
filling that Un+1 ∩ OT (x)

τ
is a τ -compact set contained in Un for every

n ∈ N.

Note that, when (Y, τY ) is a quasi-�∞-barrelled Hausdorff locally con-
vex topological vector space whose strong dual (X, τX) := (Y ′, β(Y ′, Y )) is a
Fréchet space as in Theorem 2.3, then a vector x ∈ X has a locally σ(X,Y )-
compact orbit for an operator T ∈ L(X) if and only if x ∈ �bo(T ). A completely
similar proof to that of Theorem 2.3 shows now the following extension of
[27, Theorem 2.3]:

Theorem 2.11. Let (X,T ) be a Polish dynamical system. Assume that X is
endowed with a Hausdorff topology τ which fulfills (α), (β), (γ) and (δ) with
respect to the original Polish topology τX on X. Given a point x0 ∈ RRec(T )
with a locally τ -compact orbit for T one can find a T -invariant probability
measure μx0 on (X,B(X)) such that

x0 ∈ supp(μx0) ⊂ OT (x0)
τ
.

Moreover, if the set of reiteratively recurrent points with locally τ -compact orbit
for T is dense in X, then there exits a T -invariant probability measure μ on
(X,B(X)) with full support.
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3. Applications, optimality, almost-F -recurrence and chaos

In this section we apply Theorem 2.3 to certain linear dynamical systems
T ∈ L(X) with many locally bounded orbits, obtaining for them a very strong
equivalence between two generally distinguished recurrence notions. We also
discuss the optimality of Theorem 2.3 in terms of Banach limits and Fursten-
berg families, which implies the optimality of the announced equivalence. We
finally use again the concept of locally bounded orbit to extend, from the Ba-
nach to the Fréchet setting, two results from the recent works [12,14] regarding
the notions of almost-F-recurrence and Devaney chaos.

3.1. Applications and optimality of the measures constructed

By Theorem 2.3 we can construct invariant measures from every single reitera-
tively recurrent vector and then we can show the existence of many frequently
recurrent points, which have a much stronger recurrent behaviour than that
of reiterative recurrence (see [27, Lemma 3.1]). These arguments were already
exhibited in [27, Theorem 1.3] for adjoint operators acting on dual Banach
spaces but now we can obtain an extension of such a result in our “dual
Fréchet setting”:

Proposition 3.1. Let (Y, τY ) be a quasi-�∞-barrelled Hausdorff locally convex
topological vector space, assume that its strong dual (X, τX) := (Y ′, β(Y ′, Y ))
is a separable Fréchet space, and let T ∈ L(X) be the adjoint of some linear
map S : Y −→ Y . Then we have the inclusions

RRec(T ) ∩ �bo(T ) ⊂
⋃

{supp(μ) ; μ is aT -invariant probability measure on B(X)}
⊂ FRec(T ).

In particular, this holds for every T ∈ L(X) as soon as (X, τX) is a separable
reflexive Fréchet space.

Proof. Using Theorem 2.3 we have that for any vector x0 ∈ RRec(T )∩ �bo(T )
there is a T -invariant probability measure μx0 on (X,B(X)) such that x0 ∈
supp(μx0). Using now [27, Lemma 3.1] we get that supp(μx0) ⊂ FRec(T ) and
the result follows. �

If we guarantee that every reiteratively recurrent vector has a locally
bounded orbit, then we recover the main results from [27, Section 3] but in
our more general “dual Fréchet setting”:

Corollary 3.2. Let (Y, τY ) be a quasi-�∞-barrelled Hausdorff locally convex topo-
logical vector space, assume that its strong dual (X, τX) := (Y ′, β(Y ′, Y )) is a
separable Fréchet space, and let T ∈ L(X) be the adjoint of some linear map
S : Y −→ Y . If we suppose that RRec(T ) ⊂ �bo(T ) then

FRec(T ) = RRec(T )

and, moreover, the next statements are equivalent:
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(i) T admits an invariant probability measure with full support;
(ii) T is frequently recurrent (that is, the set FRec(T ) is dense in X);
(iii) T is reiteratively recurrent (that is, the set RRec(T ) is dense in X).

In particular, the inclusion RRec(T ) ⊂ �bo(T ) holds if we assume any of the
following conditions:

– the space (X, τX) is Banach (that is, (X, τX) is a locally bounded Fréchet
space);

– or the operator T ∈ L(X) is power-bounded (that is, every T -orbit is
bounded).

Proof. By definition we always have the inclusion FRec(T ) ⊂ RRec(T ) for
every operator T ∈ L(X), and even for every Polish dynamical system (X,T ).
The converse inclusion follows from Proposition 3.1 since we are assuming that
RRec(T ) ⊂ �bo(T ). Moreover, (i) ⇒ (ii) follows from [27, Lemma 3.1], we have
the equivalence (ii) ⇔ (iii) since FRec(T ) = RRec(T ), and (iii) ⇒ (i) follows
from Theorem 2.3.

Note that if (X, τX) is a Banach space, or if T ∈ L(X) is a power-bounded
operator, then we clearly have the inclusions RRec(T ) ⊂ X ⊂ �bo(T ). �

We consider worth mentioning again that Corollary 3.2 contains [27,
Theorem 1.3], which is the original Banach version of the result. Moreover,
following the arguments employed in [27] one can prove extended versions of
Proposition 3.1 and Corollary 3.2 for “product” and “inverse” linear dynami-
cal systems. This was deeply studied in [27, Sections 5 and 6] and we will not
develop it further here.

Let us now focus on the optimality of the measures obtained in Section 2.
First of all we have to mention that Theorem 2.3 does not hold, and hence
Proposition 3.1 and Corollary 3.2 are no longer true, outside the “dual/reflexive
setting” described in Section 2. Indeed, in [11, Section 5] there are explicit
examples of linear dynamical systems, acting on non-dual spaces, that have
plenty of reiteratively recurrent vectors (they have a co-meager and hence
dense set of such vectors) but no non-zero frequently recurrent vector, so that
the only invariant probability measure that these operators admit is the trivial
Dirac delta δ0 (see [11, Theorem 5.7 and Corollary 5.8]).

A second question regarding the optimality of Theorem 2.3 is whether
we can weaken or not the “reiterative recurrence” assumption. Indeed, if we
could construct invariant measures from vectors presenting a weaker recurrent
behaviour than that of reiterative recurrence, then Proposition 3.1 and also
Corollary 3.2 would show the existence of frequently recurrent vectors but
starting from a condition weaker than reiterative recurrence. We are about
to show that we cannot find such a weaker property, but in order to give a
complete answer to this question let us recall the following definitions already
used and deeply studied in the works [7,8,10–14,27,28,35]:
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Definition 3.3. If we denote by P(N) the power set of the set of positive inte-
gers N, then:

(a) a collection of sets F ⊂ P(N) is called a Furstenberg family (or just a
family for short) if ∅ /∈ F and for every A ∈ F the inclusion A ⊂ B ⊂ N

implies that B ∈ F ;
(b) and given an operator T ∈ L(X) and a Furstenberg family F ⊂ P(N), a

vector x ∈ X is called F-recurrent for T if for every neighbourhood U of
x the return set NT (x,U) = {n ∈ N ; Tnx ∈ U} belongs to F . We will
denote by FRec(T ) the set of F-recurrent vectors for T , and we will say
that the operator T is F-recurrent whenever the set FRec(T ) is dense in
X.

Note that frequent and reiterative recurrence, as defined in the Intro-
duction of this paper, are two particular cases of F-recurrence that appear
precisely when F is chosen to be:

– the family of sets with positive lower density, which will be denoted as in
[8,14,27] by

D :=
{

A ⊂ N ; dens(A) = lim inf
N→∞

#(A ∩ [1, N ])
N

> 0
}

;

– or the family of sets with positive upper Banach density, which will be
denoted as in [8,14,27] by

BD :=
{

A ⊂ N ; Bd(A) = lim sup
N→∞

(
max
m≥0

#(A ∩ [m + 1,m + N ])
N

)
> 0

}
.

Therefore, our search for a property weaker than “reiterative recurrence”,
yet still enabling us to derive the conclusion of Theorem 2.3, can be formulated
(and was implicitly asked by A. Avilés to the author of this paper in the context
of the original Banach space result [27, Theorem 1.3]) as follows:

– Is there any Furstenberg family F ⊂ P(N) fulfilling that BD � F and
such that the conclusion of Theorem 2.3 still holds for every vector
x0 ∈ FRec(T ) ∩ �bo(T )?

Recall that, in Claim 1 of Theorem 2.3, it is necessary that given a set A ∈
BD then one can find a Banach limit mA : �∞ −→ R such that mA(1lA) =
Bd(A) > 0, since this Banach limit is crucial to construct the strictly positive
invariant measure required. Thus, the optimal form of Theorem 2.3 in terms of
Furstenberg families would appear if we replace BD by the “apparently new”
family

BL :={A ⊂ N ; there exists a Banach limit mA : �∞ −→ R with mA(1lA) > 0} .

Proposition 3.4. We have the following equality of Furstenberg families BD =
BL.
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Proof. The inclusion BD ⊂ BL was already discussed in [27, Fact 2.3.1] and
follows since given A ∈ BD we can find a strictly increasing sequence of positive
integers (Nk)k∈N and a sequence of intervals of positive integers (Jk = {jk +
1, jk + 2, ..., jk + Nk})k∈N such that

lim
k→∞

#(A ∩ Jk)
Nk

= Bd(A) > 0,

thus mA : �∞ −→ R with mA(φ) := limU 1
Nk

∑
n∈Jk

φn for each φ = (φn)n∈N ∈
�∞, where U ⊂ P(N) is a fixed non-principal ultrafilter on N, is a Banach
limit for which mA(1lA) = Bd(A) > 0.

Conversely, given a set A ∈ BL there is a Banach limit mA : �∞ −→ R

such that mA(A) > 0. Using now [40, Theorem 1], which asserts that the
maximum value that a Banach limit can get on a sequence φ = (φn)n∈N ∈ �∞

is precisely the value given by the functional M : �∞ −→ R with

M(φ) := lim
N→∞

⎛
⎝sup

m≥0

1
N

m+N∑
j=m+1

φj

⎞
⎠ ,

we clearly have that Bd(A) = M(1lA) ≥ mA(1lA) > 0 and hence A ∈ BD. �

Proposition 3.4 shows that the measures from Theorem 2.3 (but also those
constructed in [27]) are optimal in terms of Banach limits and Furstenberg
families. This observation slightly improves the classical result of Oxtoby and
Ulam [37, Theorem 1] for Polish dynamical systems:

Proposition 3.5. Let (X,T ) be a Polish dynamical system acting on the Polish
space (X, τX). The following statements are equivalent and optimal in terms
of Banach limits and Furstenberg families:

(i) there exists a positive finite T -invariant Borel measure μ on (X,B(X));
(ii) there exist a point x ∈ X and a τX-compact set K ⊂ X such that

limN→∞
#(NT (x,K) ∩ [1, N ])

N
> 0;

(iii) there exist a Hausdorff topology τ on X fulfilling the properties (α), (β),
(γ) and (δ) with respect to τX , a point x ∈ X and a τ -compact set K ⊂ X
such that Bd(NT (x,K)) > 0.

Proof. (i) ⇒ (ii) was already shown in [37, Theorem 1] by using similar ar-
guments to those employed in [27, Lemma 3.1]. We have (ii) ⇒ (iii) since
τX fulfills the properties (α), (β), (γ) and (δ) with respect to itself. Finally,
(iii) ⇒ (i) follows from [27, Lemma 2.1]. The optimality in terms of Banach
limits, Furstenberg families and densities follows from Proposition 3.4 and
[27, Lemma 2.1]. �
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3.2. Almost-F -recurrence and Devaney chaos on dual Fréchet spaces

We finish Section 3 by showing two more locally bounded orbit’s applications,
which are not related to the existence of invariant measures but that also use
the “dual Fréchet setting” from Section 2. Both applications are based on
recent investigations from Rodrigo Cardeccia and Santiago Muro, who have
successfully used the “adjoint operators acting on dual Banach spaces setting”
to obtain strong results regarding the notions of almost-F-recurrence and De-
vaney chaos (see [14] and [12] respectively).

Let us start by the notion of almost-F-recurrence, name recently coined
by Cardeccia and Muro for general Furstenberg families in [14, Definition 3.2],
although this concept was previously considered for particular families (un-
der very different names) by several authors such as Costakis and Paris-
sis [19], Badea and Grivaux [2, Proposition 4.6] and Grivaux and Matheron
[29, Section 2.5]:

Definition 3.6 [14, Definition 3.2]. Given a Furstenberg family F ⊂ P(N) we
say that an operator T ∈ L(X) is almost-F-recurrent if for every non-empty
open subset U of X there exists a vector xU ∈ U such that the return set
NT (xU , U) = {n ∈ N ; TnxU ∈ U} belongs to F .

We remark that the notion of almost-F-recurrence is highly inspired
in the so-called PF property introduced in 2018 by Puig [39]: an operator
T ∈ L(X) has the PF property if for every non-empty open subset U of
X there exists a vector xU ∈ X such that the return set NT (xU , U) be-
longs to F . The only difference between these two concepts is the relation
“xU ∈ U”, so that almost-F-recurrence is slightly stronger than the PF prop-
erty. However, both concepts coincide whenever F ⊂ P(N) is left-invariant,
that is, if for every A ∈ F and k ∈ N the set (A − k) ∩ N belongs to F ,
where A − k := {a − k ; a ∈ A}. Indeed, note that if F is left-invariant and
there exists some x0 ∈ X \ U fulfilling that NT (x0, U) ∈ F and for which
n0 := min(NT (x0, U)), then the vector xU := Tn0x ∈ U clearly fulfills that
(NT (x0, U)−n0)∩N = NT (xU , U) and hence NT (xU , U) ∈ F . It is worth men-
tioning that the usual families considered in the literature (such as BD and D
mentioned in Subsection 3.1) are left-invariant (see also [10], [14, Section 3] or
[28, Example 4.2]), so it is natural to just focus on the similarities/differences
between almost-F-recurrence and the standard notion of F-recurrence.

As observed in [14, Section 3], since the definition of F-recurrence (see
Definition 3.3) requires the density of the set FRec(T ), and since the F-
recurrent vectors return to each of their neighbourhoods with “frequency F”,
it follows from Definitions 3.3 and 3.6 that the concept of almost-F-recurrence
is (at least formally) weaker than that of F-recurrence. Indeed, it is asked in
[14, Section 5] and still open for the moment, if both properties coincide or not
for continuous linear operators. This question encourages to search for results
similar in spirit to [27, Theorem 1.3] and Corollary 3.2, where several notions
of F-recurrence are shown to coincide for different Furstenberg families. In
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fact, one of the main lines of though in the recent work from Cardeccia and
Muro [14] is to search for families F �= G ⊂ P(N) fulfilling that almost-F-
recurrence and almost-G-recurrence are equivalent properties. This led to the
so-called block families (see [14, Definition 3.3] but also [24,31,33]):

Definition 3.7. For a Furstenberg family F ⊂ P(N) we define bF , the asso-
ciated block family, in the following way: a set B ⊂ N belongs to bF if there
exists some AB ∈ F such that for each finite subset F ⊂ AB there is some
nF ∈ N ∪ {0} for which F + nF := {f + nF ; f ∈ F} ⊂ B.

Roughly speaking, the block family bF obtained from a given F is the
collection of sets that contain every finite block from a fixed set of the original
family, but possibly translated. Some general basic properties (such as the
inclusion F ⊂ bF) and examples (such as the equality bD = BD) are exposed
in [14, Section 3], and the authors prove in [14, Theorem 3.12] the equivalence
between the notion of almost-F-recurrence and that of almost-bF-recurrence,
for adjoint operators acting on dual Banach spaces and every left-invariant
Furstenberg family F ⊂ P(N). Using locally bounded orbits and the “dual
Fréchet setting” exposed at Section 2 we can obtain the following extension of
such a result:

Theorem 3.8. Let (Y, τY ) be a quasi-�∞-barrelled Hausdorff locally convex topo-
logical vector space, assume that its strong dual (X, τX) := (Y ′, β(Y ′, Y )) is
a separable Fréchet space, and let T ∈ L(X) be the adjoint of some linear
map S : Y −→ Y . If the set [bF ]Rec(T ) ∩ �bo(T ) is dense in (X, τX) for a
left-invariant Furstenberg family F ⊂ P(N), then T is almost-F-recurrent.

Proof. Let U be an arbitrary but fixed non-empty τX -open subset of X. By
assumption there is some x0 ∈ U ∩ [bF ]Rec(T )∩ �bo(T ). Since x0 has a locally
bounded orbit we can find a σ(X,Y )-closed τX -neighbourhood V of x0 fulfilling
that V ∩ OT (x0) is a countable τX -bounded set and hence an equicontinuous
set in Y ′ by the quasi-�∞-barrelled assumption on (Y, τY ). Without lost of
generality we can assume that V ⊂ U , and by the Alaoglu-Bourbaki theorem
(see [32, Section 8.5]) we have that

K := V ∩ OT (x0)
σ(X,Y )

is a σ(X,Y )-compact set fulfilling that K ⊂ V ⊂ U . Note also that we have
the inclusions

NT (x0, V ) = NT (x0, V ∩ OT (x0)) ⊂ NT (x0,K) ⊂ NT (x0, U),

which imply that NT (x0,K) ∈ bF by the hereditarily upward property of the
Furstenberg family F . By definition of block family there exists a set A ∈ F
such that for every finite subset F ⊂ A there is some nF ∈ N ∪ {0} fulfilling
that F + nF := {f + nF ; f ∈ F} ⊂ NT (x0,K). Set r0 := min(A).

Following now the proof of [14, Theorem 3.12], for each n ∈ N let An :=
A ∩ [1, n] and pick some an ∈ N ∪ {0} such that T an+r(x0) ∈ K for every
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r ∈ An. Since K is σ(X,Y )-compact and (Y, τY ) is separable, property (γ)
from Lemma 2.6 shows that K is also σ(X,Y )-metrizable. Thus, there exist a
subsequence (ank

)k∈N and a vector xU ∈ K satisfying that (T ank
+r0(x0))k∈N

is σ(X,Y )-convergent to xU ∈ K ⊂ U . We finally claim that (A − r0) ∩ N ⊂
NT (xU , U) and hence that NT (xU , U) ∈ F by left-invariance, which finishes
the proof since U was arbitrary. Indeed, for any r ∈ A with r > r0,

T r−r0(xU )=T r−r0

(
σ(X,Y ) – lim

k→∞
T ank

+r0(x0)
)

=σ(X,Y ) – lim
k→∞

T ank
+r(x0),

and T ank
+r(x0) ∈ K provided that r ∈ Ank

, that is, as soon as nk > r. The
σ(X,Y )-compactness of the set K implies that T r−r0(xU ) ∈ K ⊂ U and hence
r − r0 ∈ NT (xU , U) as we had to show. �

We refer the reader to [14, Section 3] for more on almost-F-recurrence
and the possible consequences of Theorem 3.8. Let us now focus on the notion
of chaos: a linear dynamical system T ∈ L(X) is called Devaney chaotic (or
just chaotic for short) if T is hypercyclic and the set of T -periodic vectors is
dense. In [12, Theorem 3.11] Cardeccia and Muro characterize the notion of
chaos, for adjoint operators acting on dual Banach spaces, as a concrete case
of F-hypercyclicity: they introduce the family APb ⊂ P(N) of sets containing
arbitrarily long arithmetic progressions with a fixed common bounded differ-
ence, and they show that an adjoint operator acting on a dual Banach space
T ∈ L(X) is chaotic if and only if T is APb-hypercyclic, but also if and only if
the operator T is hypercyclic and has dense small periodic sets. We can again
extend this result to our “dual Fréchet setting”:

Theorem 3.9. Let (Y, τY ) be a quasi-�∞-barrelled Hausdorff locally convex topo-
logical vector space, assume that its strong dual (X, τX) := (Y ′, β(Y ′, Y )) is a
separable Fréchet space, and let T ∈ L(X) be the adjoint of some linear map
S : Y −→ Y . The following assertions are equivalent:
(i) T is hypercyclic and the set [APb]Rec(T ) ∩ �bo(T ) is dense in X;
(ii) T is hypercyclic and has dense small bounded periodic sets;
(iii) T is (Devaney) chaotic.

The interested reader can find the precise definition of the previous con-
cepts in [12], but let us just mention that T ∈ L(X) is said to have dense
small bounded periodic sets if every non-empty open subset U ⊂ X contains a
bounded set Y ⊂ U such that T p(Y ) ⊂ Y for some p ∈ N. The proof is analo-
gous to that of [12, Theorem 3.11], but using the arguments of Theorems 2.3
and 3.8 regarding locally bounded orbits, and we just include a sketch of the
proof:

Proof (Sketch to prove Theorem 3.9). For (iii) ⇒ (i) recall that every peri-
odic vector is trivially APb-recurrent; to prove (i) ⇒ (ii) one can adapt the
arguments employed in both Theorems 2.3 and 3.8 regarding locally bounded
orbits, but following the proof of [12, Proposition 3.9 and Lemma 3.10]; and
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the final implication (ii) ⇒ (iii) follows as in [12, Theorem 3.11] because every
bounded set in (X, τX) is relatively σ(X,Y )-compact (recall that (Y, τY ) is
quasi-barrelled by separability, see Remark 2.5). �

Note that Theorems 2.3, 3.8 and 3.9 are just modest extensions to the
Fréchet-space setting of three results originally proved for operators acting
on Banach spaces. However, and as we are about to show in the following
section, the main classical examples of operators in Linear Dynamics present
plenty of locally bounded orbits so that the results obtained here will usually
be applicable.

4. More on locally bounded orbits

In this final section we elaborate further on locally bounded orbits (see Defi-
nition 2.2). In particular, we study the topological and dynamical structure
of the set �bo(T ), we give some explicit examples of locally and non-locally
bounded orbits for operators acting on (non-Banach) Fréchet spaces, and we
argue which kind of strong recurrence is needed for a locally bounded orbit
to be bounded. We also include a final subsection with some open problems
regarding the main results of this paper.

4.1. Stability results and explicit examples

When studying a set of vectors with some dynamical property with respect to
an operator T ∈ L(X), in our case the set �bo(T ), many properties may be
observed. First of all we can look at the size of such a set: we have already
argued in Remark 2.4 that �bo(T ) can be the whole space, it could also be
a dense but meager set, or even the singleton set formed by the zero-vector
�bo(T ) = {0} (see [26]). Let us show that, at least, the set �bo(T ) always
contains the linear span of the T -eigenvectors:

Proposition 4.1. For every T ∈ L(X) acting on (real or complex) Fréchet
space X we have the inclusion span(Eig(T )) ⊂ �bo(T ), where Eig(T ) := {x ∈
X ; Tx = λx for some λ ∈ K}.
Proof. Recall that X \ Rec(T ) ⊂ �bo(T ) as argued in Remark 2.4, so that
we just have to check the inclusion span(Eig(T )) ∩ Rec(T ) ⊂ �bo(T ). We
start by noticing that for each x ∈ span(Eig(T )) there exist non-zero num-
bers α1, ..., αk ∈ K \ {0}, eigenvalues λ1, ..., λk ∈ K and vectors x1, ..., xk ∈
Eig(T ) such that x =

∑
1≤j≤k αjxj , where Txj = λjxj and λj �= λl for all

1 ≤ j �= l ≤ k. Hence, the set of eigenvectors {x1, ..., xk} ⊂ X is linearly
independent and, since Tnx − x =

∑
1≤j≤k(λn

j − 1) · αjxj for each n ∈ N, it
follows that x ∈ Rec(T ) if and only if |λj | = 1 for all 1 ≤ j ≤ k. We deduce
that, if x ∈ span(Eig(T ))∩Rec(T ), then the orbit OT (x) is a compact set and
finally x ∈ �bo(T ). �
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Note that the linear subspace span(Eig(T )) ⊂ X is a T -invariant set
for every operator T ∈ L(X), so that a natural property to look at is the
T -invariance of �bo(T ):

Proposition 4.2. If a continuous linear operator T ∈ L(X) is invertible, then
T (�bo(T )) ⊂ �bo(T ).

Proof. Given any x0 ∈ �bo(T ) set x1 := T (x0). By definition there exists a
neighbourhood U0 of x0 such that U0 ∩ OT (x0) is a bounded set, and by the
continuity of T−1 we can find a neighbourhood U1 of x1 such that T−1(U1) ⊂
U0. We claim that U1∩OT (x1) ⊂ T (U0∩OT (x0)), which would finish the proof
since the image of a bounded set by a continuous operator is again bounded.
Indeed, given any vector x ∈ U1 ∩ OT (x1) there exists some n ∈ N such that
x = Tnx1 = Tn+1x0 ∈ U1, but then the vector y := T−1(x) = Tn−1x1 = Tnx0

fulfills that y ∈ U0 ∩ OT (x0) and x = Ty. �

Let us apply Propositions 4.1 and 4.2 to the following well-known class
of operators:

Example 4.3 (Birkhoff, MacLane and differential operators). For a complex
number a ∈ C \ {0} consider the translation operator, also called the Birkhoff
operator, Ta : H(C) −→ H(C) on the space of entire functions endowed with
the usual compact-open topology, where [Ta(f)](z) := f(z + a) for each f ∈
H(C). The operator Ta is invertible and chaotic (see [30, Example 2.35]), so
that the set �bo(Ta) is Ta-invariant by Proposition 4.2, and a dense but meager
set in H(C). A function f ∈ H(C) belongs to �bo(Ta) if and only if there exist
k0 ∈ N, ε > 0 and w = (wj)j∈N ∈ ]0,+∞[N such that

∀n ∈ N with max
|z|≤k0

|f(z) − f(z + na)| < ε, then max
|z|≤j

|f(z + na)| ≤ wj ∀j ∈ N.

In the space of entire functions we can also consider the standard differen-
tial operator, commonly known as the MacLane operator, D : H(C) −→ H(C),
where [D(f)](z) := f ′(z) for each f ∈ H(C). The operator D is not invertible
but chaotic (see again [30, Example 2.35]), so that Proposition 4.2 does not
apply although the set �bo(D) is again a dense but meager set in H(C). A
function f ∈ H(C) belongs to �bo(D) if and only if there exist k0 ∈ N, ε > 0
and w = (wj)j∈N ∈ ]0,+∞[N such that

∀n ∈ N with max
|z|≤k0

∣∣∣f(z) − f (n)(z)
∣∣∣ < ε, then max

|z|≤j

∣∣∣f (n)(z)
∣∣∣ ≤ wj ∀j ∈ N,

where we are using the notation f (n)(z) := [Dn(f)](z).
Birkhoff and MacLane operators are a particular case of the so-called

differential operators, usually denoted by ϕ(D) : H(C) −→ H(C), where
ϕ ∈ H(C) is an entire function of exponential type acting on the standard
differential operator D : H(C) −→ H(C). These operators were originally
studied by Godefroy and Shapiro (see [25, Section 5]) and it is well-known
that for each a ∈ C\{0} we have the equality Ta = eaD but also D = p(D) for
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the polynomial p(z) = z (see [30, Section 4.2] for more details). It is clear that
a general differential operator ϕ(D) is not necessarily invertible, so that Propo-
sition 4.2 cannot always be applied. However, Godefroy and Shapiro showed
that ϕ(D) is a chaotic operator, and hence �bo(ϕ(D)) is a dense but meager
set in H(C), as soon as ϕ is a non-constant function (see [25, Theorem 5.1]).
Note that an entire function f ∈ H(C) belongs to �bo(ϕ(D)) if and only if
there exist k0 ∈ N, ε > 0 and w = (wj)j∈N ∈ ]0,+∞[N such that

∀n ∈ N with max
|z|≤k0

∣∣f(z) − [ϕ(D)n(f)](z)
∣∣ < ε, then

max
|z|≤j

∣∣[ϕ(D)n(f)](z)
∣∣ ≤ wj ∀j ∈ N.

Finally, given any differential operator ϕ(D) we can apply Proposition 4.1
obtaining that the linear span of the exponential functions A := span{eλz ; λ ∈
C} is contained in �bo(ϕ(D)). Indeed, it is well-known and not hard to check
that

ϕ(D)(eλz) = ϕ(λ) · eλz for every λ ∈ C,

so that eλz ∈ Eig(ϕ(D)). Moreover, A is a dense set (see the nice proof of
[30, Lemma 2.34] originally from [1, Sublemma 7]), so that A is a dense ϕ(D)-
invariant subalgebra of (H(C),+, ·) with respect to the usual addition and
pointwise product of entire functions, contained in �bo(ϕ(D)) for every differ-
ential operator ϕ(D). In summary, differential operators have plenty of locally
bounded orbits.

Let us show that the set of locally bounded orbits �bo(T ) is not necessarily
T -invariant when the studied operator T ∈ L(X) is not invertible:

Example 4.4 (The backward shift on the space of all sequences). Let ω = K
N

be the space of all (real or complex) sequences endowed with the standard
Fréchet topology of convergence in all coordinates (see for instance [30, Ex-
ample 2.2]). Consider the backward shift operator B : ω −→ ω, which acts as
B((xj)j∈N) := (xj+1)j∈N for each x = (xj)j∈N ∈ ω. It is well-known and easy
to check that B is chaotic, so that �bo(B) is a dense but meager set in ω, and
a sequence x = (xj)j∈N ∈ ω belongs to �bo(B) if and only if there exist k0 ∈ N,
ε > 0 and w = (wj)j∈N ∈ ]0,+∞[N such that

∀n ∈ N with max
1≤j≤k0

|xj − xn+j | < ε, then |xn+j | ≤ wj ∀j ∈ N.

Note that the set �∞
K

:= {(xj)j∈N ∈ K
N ; supj∈N |xj | < +∞} of all (real

or complex) bounded sequences is a dense linear subspace of �bo(B). Indeed,
�∞
K

is even a dense B-invariant subalgebra of the Fréchet algebra (ω,+, ·) with
respect to the coordinatewise addition and product of sequences, which shows
that the backward shift on ω presents plenty of locally bounded orbits.

Contrary to Birkhoff operators, the backward shift B : ω −→ ω is not
invertible and we claim that it does not satisfy the conclusion of Proposi-
tion 4.2. Indeed, one way of proving that B(�bo(B)) is not included in �bo(B)
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is the following: we construct a vector y = (yj)j∈N ∈ ω \ �bo(B) such that
yj > 0 for every j ∈ N (so that y is non-hypercyclic for B), and we consider
z = (zj)j∈N ∈ ω with

zj =

{
−1 if j = 1,

yj−1 if j > 1,

since then we will have z ∈ �bo(B) but Bz = y /∈ �bo(B). We construct
y = (yj)j∈N recursively:

– Step 1: We start by fixing any finite word of positive numbers (y1, y2, y3, ...,
yN ) ∈ ]0,+∞[N , which will be the first N ≥ 1 coordinates of the final
vector y = (yj)j∈N ∈ ω.

– Step 2: We now consider the following sequence of finite words

(y1, 1),

(y1, 2), (y1, y2, 2),

(y1, 3), (y1, y2, 3), (y1, y2, y3, 3),
...

(y1, N), (y1, y2, N), (y1, y2, y3, N), · · · (y1, y2, y3, ..., yN , N),

and we add them after the first N coordinates we already had, obtaining
the “new” finite sequence

(y1, y2, y3, ..., yN , yN+1, ..., yN+φ(N)) := (y1, y2, y3, ..., yN , y1, 1︸︷︷︸, y1, 2︸︷︷︸, y1, y2, 2︸ ︷︷ ︸, ...,
y1, y2, y3, ..., yN , N︸ ︷︷ ︸),

where we have the equality φ(N) =
∑N

i=1(i+1)(N +1−i) = N3+6N2+5N
6 .

– Step 3: We repeat Step 2 infinitely many times, but each time on the
“new” and strictly longer finite sequence obtained from the previous ap-
plication of Step 2, and we let y = (yj)j∈N ∈ ω be the final limit sequence
obtained from this recursive process.

Note that y = (yj)j∈N /∈ �bo(B) since for every k ∈ N we have that the
finite word (y1, y2, y3, ..., yk,M) appears along the sequence (yj)j∈N for every
positive integer M ∈ N.

Example 4.5 (The backward shift on Köthe spaces). Following [36, Chapter 27]
we will say that an infinite matrix A = (ak,j)k,j∈N of non-negative numbers is
a Köthe matrix if it satisfies:

(KM1) The inequality ak,j ≤ ak+1,j holds for all k, j ∈ N.
(KM2) For each j ∈ N there exists some k ∈ N such that ak,j > 0.
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Given such a matrix A = (ak,j)k,j∈N and 1 ≤ p < ∞ the Köthe space λp(A) is
defined as

λp(A) :=

⎧⎨
⎩x = (xj)j∈N ∈ K

N ; qk(x) :=

(∑
j∈N

|xj · ak,j |p
)1/p

< ∞ for all k ∈ N

⎫⎬
⎭ ,

and for p = ∞ the Köthe space λ∞(A) is defined as

λ∞(A) :=
{

x = (xj)j∈N ∈ K
N ; rk(x) := sup

j∈N

|xj | · ak,j < ∞ for all k ∈ N

}
,

where (qk)k∈N and (rk)k∈N are sequences of seminorms defining the topology
of λp(A) and λ∞(A).

Assume now that A = (ak,j)k,j∈N is a Köthe matrix and that p ∈ [1,∞] is
a fixed value such that the backward shift operator B : λp(A) −→ λp(A), acting
in λp(A) as in Example 4.4, is well-defined and hence continuous by the Closed
Graph Theorem. Using the known characterization of bounded sets for Köthe
spaces (see [36, Lemma 27.5]) a vector x = (xj)j∈N ∈ λp(A) belongs to �bo(B)
if and only if there exist k0 ∈ N, ε > 0 and w = (wj)j∈N ∈ ]0,+∞[N ∩ λ∞(A)
such that

∀n ∈ N with
∑
j∈N

|(xj − xn+j)ak0,j |p < εp, then
∑
j∈N

( |xn+j |
wj

)p

≤ 1,

when 1 ≤ p < ∞, or such that

∀n ∈ N with sup
j∈N

|xj − xn+j | · ak0,j < ε, then sup
j∈N

|xn+j |
wj

≤ 1,

when p = ∞. The dynamical behaviour of B, but also the space λp(A), strongly
depend on the matrix A, so there are not general locally bounded orbits for
B : λp(A) −→ λp(A). Indeed, λp(A) could be a Banach space and hence
�bo(B) = λp(A), but also the operator B : ω −→ ω from Example 4.4 is a
particular case of B : λ∞(A) −→ λ∞(A), precisely when ak,j = 1 for j ≤ k
and 0 otherwise.

We finish this subsection by showing that if a locally bounded orbit has
a too strong recurrent behaviour then the orbit has to be bounded. This will
be the case for uniformly recurrent locally bounded orbits. A vector x ∈ X
is called uniformly recurrent for T ∈ L(X) if for every neighbourhood U of
x the return set NT (x,U) = {n ∈ N ; Tnx ∈ U} has bounded gaps, that
is, if for the strictly increasing sequence of integers (nk)k∈N forming the set
NT (x,U) = {nk ; k ∈ N} we have that

sup
k∈N

(nk+1 − nk) < ∞.

We will denote by URec(T ) the set of uniformly recurrent vectors for T , and we
will say that the operator T is uniformly recurrent whenever the set URec(T )
is dense in X. Uniform recurrence is a very strong notion that has sometimes
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been called “almost periodicity” (see for instance [11]). It is not hard to check
that the orbit of a uniformly recurrent vector for an operator T ∈ L(X) is
bounded when X is a Banach space, but as shown in [11, Example 3.3], not
necessarily bounded when X is just a (non-Banach) Fréchet space. Let us show
that local boundedness is the key in this fact:

Proposition 4.6. Given an operator T ∈ L(X) acting on a Fréchet space X,
the orbit of a uniformly recurrent vector x ∈ URec(T ) is locally bounded for T
if and only if its orbit OT (x) is bounded. Hence, if the set URec(T ) ∩ �bo(T )
is non-meager then T is power-bounded and X = URec(T ).

Proof. If there is a neighbourhood U of x such that U ∩ OT (x) is a bounded
set and N ∈ N is the maximum gap between two consecutive elements from
NT (x,U), then one can check that

OT (x) ⊂
N⋃

j=0

T j (U ∩ OT (x)) ,

which are bounded sets by the continuity of T . Hence, if URec(T ) ∩ �bo(T ) is
a non-meager set then T is power-bounded by Banach-Steinhaus, and by [11,
Theorem 3.1] we get that X = URec(T ). �

This last result is an extension of [11, Corollary 3.2] that shows, in some
way, what kind of (weak) boundedness is exhibited by a uniformly recurrent
orbit in a Fréchet space (see [11, Section 3]). We would also like to point out
that Proposition 4.6 does not hold for locally bounded orbits with a weaker
recurrent behaviour than that of uniform recurrence:

Example 4.7. From the Furstenberg families F ⊂ P(N) studied in the lit-
erature in the context of Linear Dynamics, the next notion of F-recurrence
slightly weaker than uniform recurrence is that of frequent recurrence as de-
fined in the Introduction. As we have mentioned in Subsection 3.1, this notion
coincides with F-recurrence for the family F = D of positive lower density
sets. A standard separation result such as [30, Lemma 9.5] shows that the
family F = D has the following property:

(∗)
{
there exists a sequence of pairwise disjoint sets (Ak)k∈N ∈ FN such that:

for every n ∈ Ak and every n′ ∈ Ak′ with n 	= n′, then |n − n′| ≥ max{k, k′}.

Let us show that, given a Furstenberg family F ⊂ P(N) fulfilling (∗), then
we can construct for B : ω −→ ω a vector x ∈ FRec(B) ∩ �bo(B) such that
OB(x) is not bounded:

First of all, we may assume that min(Ak) > k for every k ∈ N by taking
a subsequence of (Ak)k∈N if necessary. Let (ms)s∈N ∈ N

N be the increasing
sequence of integers forming the set

⋃
k∈N

Ak. We now construct the vector
x = (xj)j∈N ∈ ω recursively:
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– Step 1: We start by letting x1 = 1, and xj = 0 for every 1 < j ≤ m1 in
case that 1 < m1. We have fixed the first “m1” coordinates of the final
vector x = (xj)j∈N ∈ ω.

– Step 2: Now we have that m1 ∈ Al for some l ∈ N. By property (∗) and
the assumptions on (Ak)k∈N we have that m2 − m1 ≥ l and also that
m1 > l, so we have no problems in letting

(xm1+1, xm1+2, ..., xm1+l−1, xm1+l)

:=

{
(x1, x2, x3, ..., xl−1, xl) if l = 2k + 1 for some k ≥ 0,

(1, 2, 3, 4, 5, ..., l − 1, l) if l = 2k for some k ≥ 1,

and we let xj = 0 for every m1+ l < j ≤ m2 in case that m1+ l < m2. We
have fixed the first “m2” coordinates of the final vector x = (xj)j∈N ∈ ω.

– Step 3: We repeat Step 2 infinitely many times by considering each time
ms for s ≥ 2, and using that ms+1−ms ≥ l as soon as ms ∈ Al by (∗), but
also that ms > l by the assumptions on (Ak)k∈N. We let x = (xj)j∈N ∈ ω
be the final limit sequence obtained from this recursive process.

From the previous construction it is not hard to check that x = (xj)j∈N fulfills
the characterization of locally bounded orbit given in Example 4.4 for B :
ω −→ ω with the parameters k0 := 1, any positive value 0 < ε < 1, and the
sequence w = (wj)j∈N := (j)j∈N ∈ ]0,+∞[N. However, the set OB(x) is not
bounded since x = (xj)j∈N /∈ �∞

K
= {(xj)j∈N ∈ K

N ; supj∈N |xj | < +∞}.
Moreover, the construction implies that for each positive integer k ∈ N we
have the following equality

max
1≤j≤2k+1

∣∣∣[Bn(x)]j − xj

∣∣∣ = 0 for every n ∈ A2k+1 ∈ F .

We deduce that for each neighbourhood U of x in ω, with respect to the
topology of convergence in all coordinates, the return set NB(x,U) belongs
to F and hence x ∈ FRec(B). We would like to mention that the families
F ⊂ P(N) fulfilling (∗) have been called hypercyclicity sets in [7]. Assuming
(∗) it is also not hard to construct an F-hypercyclic vector for the backward
shift B : ω −→ ω.

4.2. Some problems

In Example 4.4 we show that the set �bo(T ) is not necessarily T -invariant when
the operator T ∈ L(X) is not invertible, but one can check that the inclusion
B(Rec(B) ∩ �bo(B)) ⊂ Rec(B) ∩ �bo(B) holds for the backward shift operator
B in both Examples 4.4 and 4.5. This motivates our first problem:

Problem 4.8. Is the inclusion T (Rec(T ) ∩ �bo(T )) ⊂ Rec(T ) ∩ �bo(T ) true for
every continuous linear operator T ∈ L(X)? What about the inclusion T (X \
�bo(T )) ⊂ X \ �bo(T )?

Note that if T (X \ �bo(T )) ⊂ X \ �bo(T ) is true, then T (Rec(T ) ∩
�bo(T )) ⊂ Rec(T )∩ �bo(T ) follows trivially from the following reasoning: given
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x ∈ Rec(T ) ∩ �bo(T ) and an open neighbourhood U of x such that U ∩ OT (x)
is bounded, then we have that OT (x) ∩ U ⊂ Rec(T ) ∩ �bo(T ).

An operator S ∈ L(Y ) is said to be quasi-conjugate (resp. conjugate)
to a second operator T ∈ L(X) if there exists a continuous map J : X −→
Y for which S ◦ J = J ◦ T and such that J has dense range (resp. J is
an homeomorphism); and a property P is said to be preserved under (quasi-
)conjugacy when the following holds: if an operator T ∈ L(X) has property P
then every operator S ∈ L(Y ) that is (quasi-)conjugate to T also has property
P . In Example 4.4 we have shown that locally bounded orbits are not preserved
under quasi-conjugacy since B : ω −→ ω is quasi-conjugate to itself by taking
J = B = S and there exists z ∈ �bo(B) such that Bz /∈ �bo(B). This motivates
the following problem:

Problem 4.9. Are locally bounded orbits preserved under conjugacy?

Note that given T ∈ L(X), S ∈ L(Y ) and an homeomorphism J : X −→
Y with S◦J = J◦T , if J is linear then the same arguments from Proposition 4.2
show that J(�bo(T )) = �bo(S) and also that �bo(T ) = J−1(�bo(S)), so that
the problem here is knowing what happens if J is non-linear.

The following questions seem to be non-trivial and all of them are based
on removing the locally bounded orbit assumption in Theorems 2.3, 3.8 and
3.9. Using Remark 2.5, we state them directly for adjoint operators acting on
the dual of a (DF)-space:

Problems 4.10. Let (Y, τY ) be a (DF)-space whose strong dual Fréchet space
(X, τX) := (Y ′, β(Y ′, Y )) is separable and let T ∈ L(X) be the adjoint of some
linear map S : Y −→ Y . Then we ask:

(a) Given a vector x0 ∈ RRec(T ) \ �bo(T ), does it follow that there exists
a T -invariant probability measure μ on (X,B(X)) fulfilling that x0 ∈
supp(μ)?

(b) Given a non-empty open set U ⊂ X and a Furstenberg family F ⊂ P(N),
does the existence of a vector x ∈ U ∩ [bF ]Rec(T ) \ �bo(T ) implies the
existence of z ∈ U fulfilling that NT (z, U) ∈ F?

(c) Given a left-invariant Furstenberg family F ⊂ P(N) for which T is
almost-bF-recurrent, does it follow that T is an almost-F-recurrent op-
erator?

(d) If T is an APb-hypercyclic operator, does if follow that T is Devaney
chaotic?

What happens if T ∈ L(X) is an operator acting on a separable reflexive
Fréchet space (X, τX)?
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The author would like to thank José Bonet and Alfred Peris for their valuable
advice and numerous readings of the manuscript, and to specially thank Santi-
ago Muro for finding the reference [40]. The author also thanks the anonymous
reviewer, whose comments have considerably improved the paper.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement
with Springer Nature. The author was partially supported by the Spanish Min-
isterio de Ciencia, Innovación y Universidades (grant number FPU2019/04094);
also by MCIN/AEI/10.13039/501100011033/FEDER, UE Projects PID2019-
105011GB-I00 and PID2022-139449NB-I00; and by the Fundació Ferran Sun-
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