

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/206888

Alaejos-López, G.; Castelló, A.; Alonso-Jordá, P.; Igual, FD.; Martínez, H.; Quintana-Ortí,
ES. (2024). Algorithm 1039: Automatic Generators for a Family of Matrix Multiplication
Routines with Apache TVM. ACM Transactions on Mathematical Software. 50(1).
https://doi.org/10.1145/3638532

https://doi.org/10.1145/3638532

Association for Computing Machinery

© ACM, 2024. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
ACM Trans. Math. Softw. 50, 1, Article 6 (March 2024), 34 pages.
https://doi.org/10.1145/3638532

—

Algorithm XXX: Automatic Generators for a Family of Matrix
Multiplication Routines with Apache TVM
GUILLERMO ALAEJOS, Universitat Politècnica de València, Spain
ADRIÁN CASTELLÓ, Universitat Politècnica de València, Spain
PEDRO ALONSO-JORDÁ, Universitat Politècnica de València, Spain
FRANCISCO D. IGUAL, Universidad Complutense de Madrid, Spain
HÉCTOR MARTÍNEZ, Universidad de Córdoba, Spain
ENRIQUE S. QUINTANA-ORTÍ, Universitat Politècnica de València, Spain

We explore the utilization of the Apache TVM open source framework to automatically generate a family of
algorithms that follow the approach taken by popular linear algebra libraries, such as GotoBLAS2, BLIS and
OpenBLAS, in order to obtain high-performance blocked formulations of the general matrix multiplication
(gemm). In addition, we fully automatize the generation process, by also leveraging the Apache TVM framework
to derive a complete variety of the processor-specific micro-kernels for gemm. This is in contrast with the
convention in high performance libraries, which hand-encode a single micro-kernel per architecture using
Assembly code. In global, the combination of our TVM-generated blocked algorithms and micro-kernels for
gemm 1) improves portability, maintainability and, globally, streamlines the software life cycle; 2) provides
high flexibility to easily tailor and optimize the solution to different data types, processor architectures, and
matrix operand shapes, yielding performance on a par (or even superior for specific matrix shapes) with that
of hand-tuned libraries; and 3) features a small memory footprint.

Additional Key Words and Phrases: Portability and maintainability, software lifecycle, matrix multiplication,
BLIS framework, Apache TVM, blocking, SIMD vectorization, high performance

ACM Reference Format:
Guillermo Alaejos, Adrián Castelló, Pedro Alonso-Jordá, Francisco D. Igual, Héctor Martínez, and Enrique S.
Quintana-Ortí. —. Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with
Apache TVM. —, —, Article — (—), 34 pages. https://doi.org/---

1 INTRODUCTION
Over the past decades, there has been a persistent labor toward developing high performance
realizations of linear algebra (LA) libraries for a variety of architectures, such as vector processors,
multicore processors with SIMD (single-instruction, multiple-data) units, data-parallel graphics
processing units (GPUs) and, more recently, domain-specific architectures and accelerators. This
effort has come from major hardware vendors, with some relevant products being Intel MKL, AMD
AOCL, IBM ESSL, ARMPL and NVIDIA cuBLAS, as well as from the academic side, with software
packages such as GotoBLAS2 [15], OpenBLAS [33], BLIS [30] and ATLAS [13].
The general matrix multiplication (gemm) is a crucial computational kernel upon which these

LA libraries are built. In addition, gemm is also a key operation for deep learning applications
that leverage transformers for natural language processing or convolutional deep neural networks

Authors’ addresses: Guillermo Alaejos, Universitat Politècnica de València, Valencia, 46022, Spain, galalop@upv.es; Adrián
Castelló, Universitat Politècnica de València, Valencia, 46022, Spain, adcastel@disca.upv.es; Pedro Alonso-Jordá, Universitat
Politècnica de València, Valencia, 46022, Spain, palonso@upv.es; Francisco D. Igual, Universidad Complutense de Madrid,
Madrid, 28040, Spain, figual@ucm.es; Héctor Martínez, Universidad de Córdoba, Córdoba, 14071, Spain, el2mapeh@uco.es;
Enrique S. Quintana-Ortí, Universitat Politècnica de València, Valencia, 46022, Spain, quintana@disca.upv.es.

© —
XXXX-XXXX/—/—-ART— $15.00
https://doi.org/---

, Vol. —, No. —, Article —. Publication date: —.

https://doi.org/---
https://doi.org/---

—:2 Guillermo Alaejos et al.

for signal processing and computer vision [2, 29]. Unfortunately, these LA libraries present a few
obstacles:

1. The optimized routines in these libraries are hardware-specific. This is the case for Intel, IBM,
ARM and NVIDIA’s products. To a lesser extent, it also applies to GotoBLAS2, OpenBLAS
and BLIS,1 which leverage a collection of processor-customized micro-kernels [31].

2. Developing highly optimized micro-kernels for gemm requires a deep knowledge of high
performance computing and computer architecture.

3. The code in these libraries is very large. Besides, it is hard to master due to the abundant
use of productivity-enhancing macros, templates and high level programming techniques.
Maintaining the libraries thus mostly lies in the hands of the original developers.

4. The software misses some relevant cases such as, for example, support for half (i.e., 16-bit)
floating point precision or integer arithmetic.

5. The implementation of gemm in these libraries is sub-optimal under certain circumstances as
the code is usually tuned for “squarish”, large-scale cases.

6. The memory footprint of the libraries is often in the order of Mbytes.
In this paper we address the limitations of LA libraries by demonstrating that it is possible to

automatically generate a family of blocked algorithms for gemm, together with a collection of
micro-kernels for gemm, using Apache TVM (Tensor Virtual Machine) [8]. This alternative solution
offers the following advantages:

1. At a high level, the library is “replaced” by a collection of TVM generators (in the form
of Python routines), reducing the maintainability effort to a bare minimum and largely
improving the portability of the solution.

2. Using the appropriate backend compiler, the generation/optimization can be easily specialized
for distinct data types, further enhancing the portability and maintainability of the solution.

3. By adjusting the algorithm and micro-kernel to the problem, it is possible to outperform high
performance realizations of gemm in commercial products as well as academic libraries.

4. The optimization process for each problem dimension is largely seamless, boiling down to
the evaluation of a reduced number of micro-kernels. In other words, the optimization search
space is limited.

5. The memory footprint of the resulting realization of gemm is very small and the entire
framework library is also very small.

Our paper makes two significant contributions. Firstly, it offers a comprehensive and pedagogical
tutorial on building a high-performance implementation of gemm using TVM, complete with
extensive code examples and detailed explanations. Secondly, and perhaps more importantly, it
provides compelling evidence for the advantages of automating the development process. These
advantages include enhanced portability, reduced maintenance costs, insulation from hardware-
specific optimization details, and ultimately, improved performance. This performance boost arises
from the ability to explore multiple micro-kernels, which outperforms libraries relying on a single
general-purpose micro-kernel.

The rest of the paper is structured as follows. Section 2 provides an in-depth review of the state-
of-the-art in automatic realizations of high performance libraries in the fields of dense linear algebra
in general, and deep learning in particular, and discusses different alternatives towards automatic
code generation. In Section 3 and 4 we respectively review the modern realization of algorithms
and micro-kernels for gemm. This is then followed, in Sections 5 and 6, by the introduction of the
automatic generation of a baseline gemm algorithm and a variety of micro-kernels, respectively;

1The same comment applies to AMD’s library, which is simply a customized version of BLIS.

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:3

and in Section 7, by the extension of the automatization techniques to cover a complete family of
gemm algorithms. In Section 8 we evaluate the performance of the resulting solution in a platform
equipped with ARM cores, and demonstrate its portability to other modern architectures from
different vendors. Finally, in Section 9 we summarize the main results from this work.

2 RELATEDWORK
Automatic code generation is gaining interest in the last years as a means to attain performance
portability across existing and new architectures, for deep learning (DL) models, with a minimal
intervention from the programmer [20]. Recent languages and compiler frameworks, such as
Halide [24] or TVM [8], propose a clear separation of concerns between the definition of the
operation and its optimization, in order to ease development of operators to a plethora of target
architectures, including general-purpose processors, GPUs, digital signal processors (DSPs), and
specific-purpose accelerators [23]. Starting from a computational graph which defines the operator
and the data flow, optimization techniques for performance portability are applied at the graph
level, via operator fusions and transformations; and at the operator level, with hardware-specific
optimizations. Some of these optimizations are framework-specific (e.g., TensorFlowXLA [26]) while
others, developed by experts, are realized within specialized libraries (e.g., NVIDIA cuDNN[12]).

From a technical perspective, DL compilers can be broadly classified as JIT (Just-in-time) or AOT
(Ahead-of-time). JIT compilers generate executable code on-the-fly. Hence, they can exploit extended
runtime knowledge to fine-tune the final executable, at the cost of a certain overhead due to the code
generation logic. Many common DL frameworks and compilers rely or support JIT, including TFLite
and its Micro variant2, XLA, MLIR [19] and TVM. Contrarily, AOT compilers generate executable
code a priori, and execute common versions at runtime without further modification. The advantage
of the AOT approach is two-fold: first, it can extend the analysis scope, hence accommodating
more thorough optimizations; second, it eases the development of cross-compilation schemes
for embedded architectures [18] or remote execution-only architectures [10]. The use of external
libraries for DL primitives (mainly convolutions and linear algebra primitives) can be also considered
as AOT, since in general they are implemented statically and optimized prior to execution time.

Armed with hardware-agnostic IRs (Intermediate Representations), these compiler frameworks
effectively decouple schedule from computation, and enable the automatic exploration of the
scheduling and configuration spaces by means of auto-tuning techniques. A clear example is
AutoTVM [11], integrated within TVM, which performs a complete exploration of the search space;
at each iteration, the framework tests the generated code on the target device, and stores some
feedback which is eventually leveraged to find the optimal combination of configuration parameters.
This brute force optimization scheme guarantees finding the optimal solution (configuration setup),
but the number of tested configurations grows exponentially with the dimension of the design
space. Hence, the use of these naive schemes is limited to problems with reduced search spaces, or
where online testing is time-inexpensive. (Unfortunately, this is not the case of the architecture-
aware adaptation of DL models to a specific hardware setup.) In order to alleviate the expensive
search-and-test procedure, automatic learning schemes (such as XGBoost [7], within TVM) have
been enhanced [35] with Random Search [3], Bayesian optimization [17] and Genetic algorithms
[32]. More recently, Deep Reinforcement Learning techniques have been proposed to autonomously
guide and extract policies for optimal execution configuration [1, 22, 25, 37]. While all these efforts
alleviate the cost of the hyperparameter search, they are still computationally expensive and, in
many cases, yield solutions that are difficult to explain or reproduce for developers, or to port to
embedded architectures or systems with reduced compute capabilities.

2http://www.tensorflow.org/lite.

, Vol. —, No. —, Article —. Publication date: —.

—:4 Guillermo Alaejos et al.

Auto-tuning techniques within DL compiler frameworks follow similar ideas to those of auto-
tuning in dense LA routines. ATLAS [13] selects the cache configuration parameters and the
micro-kernel at installation time via a comprehensive search procedure. Recently, in the framework
of the BLIS project, the work in [21] demonstrated that deriving analytical models for optimal
configuration parameters selection is an effective way to attain high performance without the
necessity of an auto-tuning scheme for configuration parameter exploration. Replacing the auto-
tuning scheme with model-based solutions was also successfully explored in [33, 34].

Our approach combines the advantages of existing JIT compiler frameworks for easily deriving
high performance codes for gemm-based DL primitives, with analytical models in order to avoid
expensive auto-tuning. Our work differs from [4], which uses MLIR to describe early experiences
exclusively with gemm, as well as from [36], which proposes advanced auto-tuning schemes for this
primitive. Concretely, we leverage TVM to extend and further analyze the automatic generation
of gemm-based primitives for DL, integrating analytical models to ease the optimization process
without the need of expensive auto-tuning procedures. In addition, we apply our ideas to gemm
(Section 5 and 6).

The use of analytical models to determine optimal execution parameters eliminates the time
penalty introduced by auto-tuning, and avoids the lack of accuracy and reproducibility. While not
discussed in this work, 1) extending the analytical models to address other algorithmic variants for
gemm, which favor certain cache hierarchy setups [5], as additional configuration parameters; and
2) supporting optimal parallelization schemes [27] for gemm-based operators, and supporting this
additional degrees of freedom within the compilation stage are also clear benefits of our proposal. In
comparison, these extensions would introduce a non-affordable complexity to auto-tuning schemes.

3 A FAMILY OF BLOCKED ALGORITHMS FOR GEMM
In this section we review the modern realization of gemm in current high performance libraries,
and generalize the ideas to discuss a full family of algorithms for this operation.

3.1 The baseline algorithm
Consider the matrix multiplication𝐶 = 𝐶 +𝐴𝐵, abbreviated as𝐶 += 𝐴𝐵, where the matrix operands
present the following dimensions: 𝐴 → 𝑚 × 𝑘 , 𝐵 → 𝑘 × 𝑛, and 𝐶 → 𝑚 × 𝑛. The realization of
this kernel for general-purpose processor architectures with hierarchically-layered memories, in
libraries such as OpenBLAS, BLIS, AMD AOML and, possibly, Intel MKL/oneMKL, follow the basic
ideas of GotoBLAS2 [15] to decompose the computation into five nested loops, traversing the𝑚,𝑛, 𝑘

dimensions of the problem in a specific order. Inside these loops, two packing routines copy (and
re-arrange) certain blocks of the input operands𝐴, 𝐵 into two buffers,𝐴𝑐 →𝑚𝑐 ×𝑘𝑐 , 𝐵𝑐 → 𝑘𝑐 ×𝑛𝑐 ,
in order to favor an efficient utilization of the cache memories. (For simplicity, in the following
we assume that 𝑚, 𝑛, and 𝑘 are integer multiples of 𝑚𝑐 , 𝑛𝑐 , and 𝑘𝑐 , respectively.) Furthermore,
the fifth loop comprises a micro-kernel that is often vectorized to exploit the SIMD units in most
current general-purpose processors [30]. In short detail, the baseline algorithm for gemm aims at
maintaining a block 𝐵𝑐 in the L3 cache and a block 𝐴𝑐 in the L2 cache, while streaming 𝐶 directly
from the main memory into the processor registers. Furthermore, a small micro-panel of 𝐵𝑐 is to
reside in the L1 cache.

The orchestration of the data movements across the memory hierarchy in the baseline algorithm
for gemm is endowed by the specific nesting of the algorithm loops, in combination with a careful
choice of the loop strides/sizes of the buffers [21]. The operands’ partitioning induced by the loops
as well as the target level of the memory hierarchy for each operand block are illustrated in Figure 1
(left). We will also refer to the baseline algorithm as B3A2C0, where each letter denotes one of the
three matrix operands, and the subsequent number specifies the cache level where a part of the

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:5

+= +=

+=

+=+=

+=

+=

+=

L2

L3

L4

L5

L6

+=

+=

+=

+=

Zoom

in

L1

Loop

In L3 cache In L2 cache In L1 cache In registers

1 for (jc=0; jc<n; jc+=nc) // Loop L1
2 for (pc=0; pc<k; pc+=kc) { // L2
3 // Pack B
4 Bc := B(pc:pc+kc -1,jc:jc+nc -1);
5 for (ic=0; ic<m; ic+=mc) { // L3
6 // Pack A
7 Ac := A(ic:ic+mc -1,pc:pc+kc -1);
8 for (jr=0; jr<nc; jr+=nr) // L4
9 for (ir=0; ir<mc; ir+=mr) // L5
10 // Micro -kernel
11 C(ic+ir:ic+ir+mr -1,
12 jc+jr:jc+jr+nr -1)
13 += Ac(ir:ir+mr -1,0:kc -1)
14 * Bc(0:kc -1,jr:jr+nr -1);
15 }}

1 for (ic=0; ic<m; ic+=mc) // Loop L1
2 for (pc=0; pc<k; pc+=kc) { // L2
3 // Pack A
4 Ac := A(ic:ic+mc -1,pc:pc+kc -1);
5 for (jc=0; jc<n; jc+=nc) { // L3
6 // Pack B
7 Bc := B(pc:pc+kc -1,jc:jc+nc -1);
8 for (ir=0; ir<mc; ir+=mr) // L4
9 for (jr=0; jr<nc; jr+=nr) // L5
10 // Micro -kernel
11 C(ic+ir:ic+ir+mr -1,
12 jc+jr:jc+jr+nr -1)
13 += Ac(ir:ir+mr -1,0:kc -1)
14 * Bc(0:kc -1,jr:jr+nr -1);
15 }}

Fig. 1. Baseline (B3A2C0) and A3B2C0 algorithms (left and right, respectively) for gemm.

operand is to reside, with 0 referring to the processor registers. As 𝐵 is to reside both in the L1 and
L3 caches, we do not specify the former in the notation.

, Vol. —, No. —, Article —. Publication date: —.

—:6 Guillermo Alaejos et al.

3.2 Other members of the gemm family
We continue the discussion on the high performance realization of gemm by noting that there exist
five other algorithmic variants which can be obtained by re-organizing the loops of the baseline
algorithm in a different manner [5, 16, 28]. For example, a “twin” version is directly obtained by
swapping the roles of 𝐴 and 𝐵 in the baseline algorithm, yielding the A3B2C0 variant, where two
blocks of 𝐴 respectively occupy the L1 and L3 caches and a block of 𝐵 resides in the L2 cache; see
Figure 1 (right). In the same line, Figure 2 displays two additional variants of the gemm family:
B3C2A0 (left) and A3C2B0 (right) that maintain a block of 𝐶 in the L2 cache. The two missing
variants, where 𝐶 resides in the L3 cache, (C3B2A0 and C3A2B0, omitted for brevity,) are derived
by swapping the roles of 𝐴/𝐵 with 𝐶 in the two algorithms given in that figure; see [5].

4 HIGH PERFORMANCE MICRO-KERNELS FOR GEMM
In this section, we connect the six blocked algorithms for gemm with three types of micro-kernels
that differ in the matrix operand that resides in the processor registers [5, 16, 28]. For simplicity,
we assume that the cache configuration parameters𝑚𝑐 , 𝑛𝑐 , 𝑘𝑐 are respectively integer multiples of
the micro-kernel parameters𝑚𝑟 , 𝑛𝑟 , 𝑘𝑟 where, depending on the type of micro-kernel, two of the
latter parameters specify the dimension of the micro-tile that resides in the processor registers.

4.1 Operand Resident 𝐶 (in the processor registers)
The baseline algorithm for gemm and its “twin” A3B2C0 (both in Figure 1) cast the innermost
computation in terms of a micro-kernel that computes a smaller gemm, 𝐶𝑟 += 𝐴𝑟𝐵𝑟 , where 𝐴𝑟 →
𝑚𝑟 ×𝑘𝑐 , 𝐵𝑟 → 𝑘𝑐×𝑛𝑟 respectively denote two micro-panels of the buffers𝐴𝑐 , 𝐵𝑐 ; while𝐶𝑟 →𝑚𝑟 ×𝑛𝑟
is a small micro-tile of 𝐶 that resides in the processor registers during the execution of the micro-
kernel. This corresponds to the operation performed inside loop L5 of the baseline algorithm
B3A2C0 (see Figure 1), with

𝐴𝑟 = Ac(ir:ir+mr-1,0:kc-1),
𝐵𝑟 = Bc(0:kc-1,jr:jr+nr-1), and
𝐶𝑟 = C(ic+ir:ic+ir+mr-1,jc+jr:jc+jr+nr-1).

The realization of this micro-kernel iterates across the 𝑘𝑐 dimension of the problem (as part of an
additional loop, labeled as L6), at each step performing an outer product involving a single column
of 𝐴𝑟 and a single row of 𝐵𝑟 to update the entire micro-tile 𝐶𝑟 ; see Figure 3 (top).

For high performance, the data in𝐴𝑐 , 𝐵𝑐 are carefully packed as illustrated in Figure 4, in order to
ensure access with unit stride to the columns of𝐴𝑟 and the rows of 𝐵𝑟 from within the micro-kernel.
This reduces the number of cache evictions during these accesses as well as accommodates the use
of efficient SIMD instructions to load these elements into vector registers and operate with them.

4.2 Other types of micro-kernels: Operand Resident 𝐴 or Resident 𝐵
The four remaining variants of gemm (see, e.g., Figure 2) leverage two other types of micro-kernels:
The first one maintains a micro-tile of 𝐴 in the processor registers while performing an𝑚𝑟 × 𝑘𝑟
matrix-vector product per iteration of loop L6. The second one keeps a micro-tile of Resident 𝐵 in
the processor registers, and carries out an 𝑘𝑟 × 𝑛𝑟 vector-matrix product per iteration of loop L6.
These two types of micro-kernels are illustrated in Figure 3 (middle and bottom).

To enable SIMD loads/stores, each type of micro-kernel requires a specialized packing scheme
for two of the matrix operands. For the micro-kernel with Resident 𝐴 (in the processor registers),
𝐶𝑐 and 𝐵𝑐 are packed following the same pattern as 𝐴𝑐 in Figure 4 (with the entries of 𝐵𝑐 arranged
into micro-panels of 𝑘𝑟 rows). For the micro-kernel with Resident 𝐵, the buffers for 𝐶𝑐 and 𝐴𝑐 are
packed as 𝐵𝑐 in the same figure (with the entries of 𝐴𝑐 arranged into micro-panels of 𝑘𝑟 columns).

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:7

+=

+=+=

+=

+=

+=

+=

L2

L3

L4

L5

L6 +=+=

+=

+=

+=

Zoom

in

Loop

L1

In L3 cache In L2 cache In L1 cache In registers

1 for (jc=0; jc<n; jc+=nc) // Loop L1
2 for (pc=0; pc<k; pc+=kc) { // L2
3 // Pack B
4 Bc := B(pc:pc+kc -1,jc:jc+nc -1);
5 for (ic=0; ic<m; ic+=mc) { // L3
6 // Pack C
7 Cc := C(ic:ic+mc -1,jc:jc+nc -1);
8 for (pr=0; pr<kc; pr+=kr) // L4
9 for (ir=0; ir<mc; ir+=mr) // L5
10 // Micro -kernel
11 Cc(ir:ir+mr -1,0:nc -1)
12 += A(ic+ir:ic+ir+mr -1,
13 pc+pr:pc+pr+kr -1)
14 * Bc(pr:pr+kr -1,0:nc -1);
15 // Unpack C
16 C(ic:ic+mc -1,jc:jc+nc -1) := Cc;
17 }}

1 for (ic=0; ic<m; ic+=mc) // Loop L1
2 for (pc=0; pc<k; pc+=kc) { // L2
3 // Pack A
4 Ac := A(ic:ic+mc -1,pc:pc+kc -1);
5 for (jc=0; jc<n; jc+=nc) { // L3
6 // Pack C
7 Cc := C(ic:ic+mc -1,jc:jc+nc -1);
8 for (pr=0; pr<kc; pr+=kr) // L4
9 for (jr=0; jr<nc; jr+=nr) // L5
10 // Micro -kernel
11 Cc(0:mr -1,jr:jr+nr -1)
12 += Ac(0:mr -1,pr:pr+kr -1)
13 * B(pc+pr:pc+pr+kr -1,
14 jc+jr:jc+jr+nr -1);
15 // Unpack C
16 C(ic:ic+mc -1,jc:jc+nc -1) := Cc;
17 }}

Fig. 2. B3C2A0 and A3C2B0 algorithms (left and right, respectively) for gemm.

, Vol. —, No. —, Article —. Publication date: —.

—:8 Guillermo Alaejos et al.

1 for (pr=0; pr<kc; pr++) // Loop L6
2 C(ic+ir:ic+ir+mr -1,
3 jc+jr:jc+jr+nr -1)
4 += Ac(ir:ir+mr -1,pr)
5 * Bc(pr,jr:jr+nr -1);

r

+=

p
r

p

1 for (jr=0; jr<nc; jr++) // Loop L6
2 Cc(ir:ir+mr -1,jr)
3 += A(ic+ir:ic+ir+mr -1,
4 pc+pr:pc+pr+kr -1)
5 * Bc(pr:pr+kr -1,jr);

+=

r j
r

j

1 for (ir=0; ir<mr; ir++) // Loop L6
2 Cc(ir,jr:jr+nr -1)
3 += Ac(ir,pr:pr+kr -1)
4 * B(pc+pr:pc+pr+kr -1,
5 jc+jr:jc+jr+nr -1);

+=

irir

Fig. 3. Micro-kernels with Resident 𝐶 , Resident 𝐴 or Resident 𝐵 in the processor registers (top, middle and

bottom, respectively).

A Bc c

rm

nr

Ar

Br

Fig. 4. Packing in the baseline algorithm.

4.3 High performance
A few rules of thumb guide the design of a high performance micro-kernel for a processor archi-
tecture with a multi-layered memory hierarchy [21]. We discuss them for a micro-kernel with
Resident 𝐶 , but they are easily to derive for the two other types of micro-kernel:

• Considering the 𝑘𝑐 successive updates of the micro-tile 𝐶𝑟 occurring in loop L6, the micro-
kernel parameters 𝑚𝑟 , 𝑛𝑟 should be chosen sufficiently large so as to avoid stalls due the
latency between the issuance of two instructions that update the same entry of 𝐶𝑟 .

• Ideally,𝑚𝑟 should be equal to 𝑛𝑟 as this maximizes the ratio of computation to data movement
during the update of 𝐶𝑟 in loop L6.

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:9

These two principles suggest maximizing the values for𝑚𝑟 , 𝑛𝑟 as part of a “large” micro-kernel. In
practice though, the limited number of vector registers constrains the practical values of𝑚𝑟 , 𝑛𝑟
within a couple of dozens.

A comparison of the micro-kernel with Resident 𝐶 and those with Resident 𝐴/𝐵 reveals some
differences:

• The variants with Resident 𝐶 presents a higher arithmetic intensity since, while all types
of micro-kernels perform the same number of flops and number of loads from memory, the
variants with Resident 𝐴/𝐵 have to write a column or row of𝐶 back into the memory at each
iteration of the loop.

• Unlike the micro-kernel with Resident 𝐶 , the variants with Resident 𝐴/𝐵 do not present a
RAW (read-after-write) dependency between consecutive iterations of the micro-kernel.

The implementation of the micro-kernels in general-purpose processor architectures equipped
with SIMD arithmetic units is in practice done in Assembly code; vectorized using architecture-
specific SIMD instructions (e.g., Intel SSE/AVX, ARM NEON, etc.); and enhanced with high per-
formance computing techniques such as loop unrolling, software pipelining, data prefetching,
etc. [14].
We close this section by noting that for large, squarish gemm problems, the optimal values for

the micro-kernel parameters𝑚𝑟 , 𝑛𝑟 , 𝑘𝑟 can be determined, for a given processor architecture, via a
few experimental tests. However, for problems with one dimension much larger than the others,
the optimal values of these parameters may vary considerably, and they can only be determined
experimentally by first implementing them. Unfortunately, developing a high performance micro-
kernel is mostly a manual process, which requires an expert with a deep knowledge of high
performance computing and computer architecture to attain optimal performance.

5 AUTOMATIC GENERATION OF THE BASELINE ALGORITHM FOR GEMM
Apache TVM is an open source compiler framework that allows generating, optimizing, and
executing machine learning routines for (general-purpose) multicore processors, GPUs (graphics
processing units), and other accelerator backends [9]. In our effort toward automatically generating
high performance algorithms for gemm, we start from the TVM tutorial on how to optimize gemm
on a general-purpose processor by blocking (tiling) and packing the matrix operands.3 Concretely,
we build upon these instructions to assemble a TVM generator that automatically produces the
baseline algorithm for gemm. Our approach extends the tutorial in that we apply the optimizations
in a BLIS-like manner instead of following a general optimization approach. More concretely
we introduce the cache-aware packings as well as software prefetching. In addition, we provide
guidelines to derive different algorithmic variants for gemm.

5.1 Basic gemm with TVM
Consider a basic realization of gemm consisting of three loops that compute each element of the
output matrix by performing a reduction (i.e., an inner or dot product) across the 𝑘 dimension of
the problem:

for (i=0; i<m; i++)

for (j=0; j<n; j++)

for (p=0; p<k; p++)

C(i,j) += A(i,p) * B(p,j);

This specific realization of gemm, with the loops traversing the dimensions of the problem in
the order 𝑖 ⇒ 𝑗 ⇒ 𝑝 , can be obtained using the (Python-based) TVM generator in Figure 5. We
3https://tvm.apache.org/docs/tutorials/.

, Vol. —, No. —, Article —. Publication date: —.

https://tvm.apache.org/docs/tutorials/

—:10 Guillermo Alaejos et al.

distinguish nine fundamental parts in the code (in this basic example, some of the parts are empty,
but they will appear in the refined versions of the generator described in subsequent sections):

Part P0. Parameter list The function receives the matrix dimensions m, n, k, and the data
type of the operands (dtype) as parameters.

Part P1. Declaration of the input operands: Lines 3 and 4 define two operands, or place-
holders, respectively for 𝐴 and 𝐵, of the appropriate dimensions and data type.

Part P2. Definition of the operation: Lines 7–10 specify the operation to be computed in
terms of the two placeholders. In particular, line 7 defines the computation in terms of a
reduction (sum) across the dimension k.

Part P3. Preparation of the schedule: Line 13 creates a schedule. In TVM, this corresponds
to the order in which the loops within the program are executed and, in this particular
case, to the three nested loops induced from the application of the lambda function for each
(𝑖, 𝑗) entry across the reduction axis 𝑝 . By default, the schedule processes a tensor serially
following a row-major order.

Part P4. Specification of the loop ordering: The order in which the loops are generated with
the previous schedule may not match that of the baseline algorithm. Lines 16-18 extract the
desired axes induced from the computation loops defined in Part P2, and ensure that the
loops follow the scheme in the basic gemm: 𝑖 ⇒ 𝑗 ⇒ 𝑝 .

Part P5. Placement of the packings: No packing occurs in the basic gemm and, therefore,
this part is empty.

Part P6. Application of fine-grain optimizations: Fine-grain optimizations such as unroll-
ing and SIMD vectorization are not included in this initial version.

Part P7. Loop-level parallelization: Selection of the specific loop to parallelize, if necessary.
Part P8. Generation of code: Finally, line 39 instructs TVM to generate the code, in this case,

for an LLVM backend.

Other loop orderings are easily obtained using TVM by simply re-arranging differently the loop
variables in line 18. (However, this is also straightforward to do in the basic triple nested loop code
written in C.) More interestingly, this example also illustrates that code for distinct backends can
be obtained by simply changing the target in line 39. Concretely, the generic llvm target there
generates code for the machine in which the generator is executed, but the commented lines in
Part P8 offer several examples which generate code for other architectures. To close the discussion
of this first TVM generator, note that it is independent of the matrix operands’ data types.

5.2 Blocking for the baseline algorithm with TVM
Our next goal is to build a blocked algorithm that partitions the matrix operands mimicking the
three outermost loops of the baseline algorithm (B3A2C0), labeled as L1, L2 and L3. For this purpose,
remember that these loops divide 𝐴 into blocks of dimension𝑚𝑐 × 𝑘𝑐 , 𝐵 into blocks of dimension
𝑘𝑐 ×𝑛𝑐 , and𝐶 into blocks of dimension𝑚𝑐 ×𝑛𝑐 ; see Figure 1 (left). For clarity, consider the following
blocked algorithm, which realizes the partitioning scheme in the baseline algorithm for gemm in
order to decompose the matrix multiplication into a collection of finer-grain computations:

for (jc=0; jc<n; jc+=nc)

for (pc=0; pc<k; pc+=kc)

for (ic=0; ic<m; ic+=mc)

for (jr=0; jr<nc; jr++)

for (ir=0; ir<mc; ir++)

for (pr=0; pr<kc; pr++)

C(ic+ir,jc+jr) += A(ic+ir,pc+pr) * B(pc+pc,jc+jr);

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:11

1 def basic_GEMM(m, n, k, dtype):
2 # P1) Declare the input operands
3 A = te.placeholder ((m, k), name="A", dtype=dtype)
4 B = te.placeholder ((k, n), name="B", dtype=dtype)
5
6 # P2) Define the operation
7 p = te.reduce_axis ((0, k), "p")
8 C = te.compute ((m, n), lambda i, j:
9 te.sum(A[i, p] * B[p, j],
10 axis=p), name="C")
11
12 # P3) Prepare the schedule
13 sched = te.create_schedule(C.op)
14
15 # P4) Specify the loop ordering (schedule i->j->p)
16 (i, j) = C.op.axis
17 (p,) = C.op.reduce_axis
18 sched[C].reorder(i, j, p)
19
20 # P5) Emplace the packings
21 # No packings in this version
22
23 # P6) Apply fine -grain optimizations
24 # No optimizations in this version
25
26 # P7) Loop -level parallelization
27 # No parallelization in this version
28
29 # P8) Generate code with LLVM backend
30 # A few examples for specific targets:
31 # - ARMv8a (8.2) with NEON support
32 # llvm -device=arm_cpu -mattr=+v8.2a ,+fp-armv8 ,+neon"
33 # - ARMv8a (8.2) with NEON and FP16 support
34 # llvm -device=arm_cpu -mattr=+v8.2a ,+fp-armv8 ,+neon ,+ fp16fml
35 # - AMD Zen2 with AVX2 support
36 # llvm -mcpu=znver2
37 # - Intel Icelake with AVX512 support
38 # llvm -mcpu=icelake -server
39 return tvm.build(sched , [A, B, C], target="llvm")

Fig. 5. TVM generator for the basic gemm.

Figure 6 displays a TVM generator that produces a code for gemm that will perform the compu-
tation adopting the same blocking scheme. Compared with the TVM generator for the basic gemm
in Figure 5, the routine presents the following differences:

Part P0. Parameter list: In addition to the parameters from the basic gemm, the function
receives the blocking parameters mc, nc, kc.

Part P3. Preparation of the schedule (with blocking): In preparation for the operands’ tiling,
lines 9–13 prompt the sought-after splittings of the problem dimensions𝑚, 𝑛, 𝑘 .

Part P4. Specification of the loop reordering: Line 16 specifies a loop orderingwhichmatches
that of the baseline algorithm for gemm: 𝑗𝑐 ⇒ 𝑝𝑐 ⇒ 𝑖𝑐 ⇒ 𝑗𝑟 ⇒ 𝑖𝑟 ⇒ 𝑝𝑟 .

Here and in the following, for brevity, we will omit the parts that remain the same with respect to
the prior generators.
The code for gemm produced by TVM using the algorithm in Figure 6 differs from the high

performance realizations of gemm in libraries such as GotoBLAS, BLIS and OpenBLAS, in two
important aspects:

1. There are no packing routines that re-arrange the contents of the input matrices 𝐴, 𝐵 into
buffers in order to streamline the operation of the micro-kernel.

, Vol. —, No. —, Article —. Publication date: —.

—:12 Guillermo Alaejos et al.

1 def block_GEMM_B3A2C0(m, n, k, mc, nc, kc, dtype):
2 # P1) Declare the input operands
3 # As in basic_GEMM. Omitted for brevity
4
5 # P2) Define the operation with blocking
6 # As in basic_GEMM. Omitted for brevity
7
8 # P3) Prepare the schedule with blocking
9 sched = te.create_schedule(C.op)
10 ic, jc, \
11 ir, jr = sched[C].tile(C.op.axis [0],
12 C.op.axis [1], mc, nc)
13 pc, pr = sched[C].split(p, factor=kc)
14
15 # P4) Specify the loop ordering (schedule as in baseline/B3A2C0)
16 sched[C].reorder(jc, pc, ic, jr, ir, pr)
17
18 # P5) Emplace the packings
19 # No packing available in this version
20
21 # P6) Apply fine -grain optimizations
22 # No optimizations applied
23
24 # P7) Loop -level parallelization
25 # No parallelization in this version
26
27 # P8) Generate code with LLVM backend
28 return tvm.build(sched , [A, B, C], target="llvm")

Fig. 6. TVM generator for gemm mimicking the blocking scheme of the baseline algorithm.

2. The innermost loop does not formulate the computation in terms of an outer product that
updates a small𝑚𝑟 × 𝑛𝑟 micro-tile 𝐶𝑟 . Instead, the TVM generator produces a code which
decomposes this last computation into fine-grainmultiply-add operations involving individual
elements of 𝐴, 𝐵,𝐶 .

In the next subsection we deal with the first issue while the second one is discussed in Section 6.

5.3 Packing for the baseline algorithm with TVM
Figure 7 refines the TVM generator for the blocked algorithm to include hints to TVM in order
to produce a specialized version that packs 𝐴 and 𝐵 into two buffers, 𝐴𝑐 and 𝐵𝑐 , with the same
layout as that present in the baseline algorithm; see Figure 4. We note the following differences
with respect to the TVM generator for the blocked algorithm:

Part P0. Parameter list: The new routine receives two additional parameters: mr, nr.
Part P2. Definition of the operation and packing schemes for 𝐴 and 𝐵: Lines 8–12 decla-

re a 4D TVM tensor Ac which will hold a packed version of the complete operand 𝐴. Ac is
instantiated as a (2D) matrix of small (packed) matrices (micro-panels of𝐴), each of dimension
𝑚𝑟 × 𝑘𝑐 ; see the red micro-panel labeled as 𝐴𝑟 in Figure 4. Ac will potentially store all packed
micro-panels of𝐴 that will be generated during the iterations of loop L3 in Figure 1, and hence
its global dimension initially matches that of 𝐴. However, depending on the placement of the
packing specified by the user, TVM will evaluate the potential reuse level of the buffer(s) and
will accordingly adapt the buffer dimensions. (This will be refined in the following discussion
of part P5.) The lambda function in lines 10–11 specifies the desired packing scheme by
mapping the elements of Ac to their counterparts in 𝐴. Concretely, the four arguments (i,
j, q, r) of the function determine how the element Ac[i,j,q,r] is extracted from 𝐴

conformally with the packing scheme for the baseline algorithm.

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:13

1 def packed_GEMM_B3A2C0(m, n, k, mc, nc, kc, mr, nr, dtype):
2 # P1) Declare the input operands
3 # As in block_GEMM_B3A2C0. Omitted for brevity
4
5 # P2) Define the operation with (blocking and) packing
6
7 # Ac: 4D tensor with packed version of A
8 Ac = te.compute ((math.ceil(k/kc),
9 math.ceil(m/mr), kc, mr),
10 lambda i, j, q, r:
11 A[j * mr + r, i * kc + q],
12 name="Ac")
13
14 # Bc: 4D tensor with packed version of B
15 Bc = te.compute ((math.ceil(k/kc),
16 math.ceil(n/nr), kc, nr),
17 lambda i, j, q, r:
18 B[i * kc + q, j * nr + r],
19 name="Bc")
20
21 p = te.reduce_axis ((0, k), "p")
22 C = te.compute ((m, n), lambda i, j:
23 te.sum(Ac[p//kc, i//mr,
24 tvm.tir.indexmod(p, kc),
25 tvm.tir.indexmod(i, mr)] *
26 Bc[p//kc, j//nr,
27 tvm.tir.indexmod(p, kc),
28 tvm.tir.indexmod(j, nr)],
29 axis=p), name="C")
30
31 # P3) Prepare the schedule with blocking
32 # As in block_GEMM_B3A2C0. Omitted for brevity
33
34 # P4) Specify the loop ordering (schedule as in baseline/B3A2C0)
35 # As in block_GEMM_B3A2C0. Omitted for brevity
36
37 # P5) Emplace the packings
38 sched[Bc].compute_at(sched[C], pc)
39 sched[Ac].compute_at(sched[C], ic)
40
41 # P6) Apply fine -grain optimizations
42 # No optimizations applied
43
44 # P7) Loop -level parallelization
45 # No parallelization in this version
46
47 # P8) Generate code with LLVM backend
48 return tvm.build(sched , [A, B, C], target="llvm")

Fig. 7. TVM generator for gemm mimicking the (blocking scheme and) packing of the baseline algorithm.

Lines 15–19, involving the tensor Bc and the matrix 𝐵, play an analogous role to that described
previously for Ac and 𝐴.
Lines 21–29 define the operation to be computed in terms of the tensors Ac and Bc. Here Ac
is transposed (with respect to A), which is necessary to ensure that TVM generates a code
that accesses the entries of Ac with unit stride. Also the computation is defined in terms of a
reduction (sum) across the dimension k.

Part P5. Placement of the packings: Lines 38–39 place the computation of tensors Bc and Ac
at the desired points of the loop nesting: Concretely, inside the loop indexed by pc for Bc
and the loop indexed by ic for Ac; see the algorithm on the left of Figure 1. As a result of
combining the correct placement of the tensor buffers, loop ordering, and access pattern in
the blocked computation of C, the packed tensors Ac and Bc do not need to have the same size
as A and B, respectively. Instead, they are computed at each iteration of loop L3 (indexed by

, Vol. —, No. —, Article —. Publication date: —.

—:14 Guillermo Alaejos et al.

ic) and loop L2 (indexed by pc). In the latter case, for example, the reuse pattern of elements
for Ac guides the compiler to reduce the dimension of the packed buffer from𝑚×𝑘 to𝑚𝑐 ×𝑘𝑐
only (which matches the dimension of the buffer 𝐴𝑐 in Figure 4). An analogous comment
applies to matrix 𝐵 and its packed tensor counterpart.

The purpose of the packing operations is to favor a higher number of cache hits when accessing
the data in the L2 and L1 caches from the micro-kernel. The packing introduces a certain overhead,
but this is usually low because the packed data is re-utilized multiple times [21]. As a side note, let
us comment that, depending on the problem dimensions (𝑚,𝑛, 𝑘) and the loop strides (𝑚𝑐 , 𝑛𝑐 , 𝑘𝑐), in
some cases the costs of the packing operations may exceed their benefits. Fortunately, with TVM
we can easily eliminate any of the packing operations. For example, in the baseline algorithm in
Figure 7, the two packing operations can be eliminated by 1) removing lines 8-19; changing the
references from Ac and Bc to A and B in lines 23, 26; and 2) adapting accordingly the indexing on A
and B to accommodate the dimensionality modification from Ac and Bc (from 4D to 2D).
The intermediate representation (IR) produced by TVM using the generator for the packed

realization of gemm can be described as follows:

for (jc=0; jc<n; jc+=nc) { // Loop L1

for (pc=0; pc<k; pc+=kc) { // L2

for (i=0; ...) { // Packing Bc

for (j=0; ...)

for (q=0; ...)

for (r=0; ...)

Bc[...] = B[...];

}

for (ic=0; ic<m; ic+=mc) { // L3

for (i=0; ...) { // Packing Ac

for (j=0; ...)

for (q=0; ...)

for (r=0; ...)

Ac[...] = A[...];

}

for (jr=0; jr<nc; jr++) // L4

for (ir=0; ir<mc; ir++) // L5

for (pr=0; pr<kc; pr++) // L6

C[...] += Ac[...] * Bc[...];

} } }

(Here we omitted a few indexing details and introduced some formatting to ease the interpretation.)
This takes us one step forward toward automatically generating a high performance realization

of gemm that mimics the baseline algorithm for gemm by removing one of the caveats that appeared
in the previous blocking algorithm: the lack of packing routines. In the next section we address the
second missing detail: the formulation of the innermost loop of the algorithm as a micro-kernel that
performs an outer product.

6 AUTOMATIC GENERATION OF HIGH PERFORMANCE MICRO-KERNELS FOR
GEMM

The final stage in our journey to obtain a high performance realization of gemm has the goal of
integrating the automatic generation of high performance micro-kernels within the TVM routine
for gemm.

6.1 Micro-kernel with Resident 𝐶
Starting from the TVM generator in Figure 7, we introduce two main changes with the result shown
in Figure 8:

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:15

1 def packed_GEMM_B3A2C0_ukernel(m, n, k, mc, nc, kc, mr, nr, dtype):
2 # P1), P2) Declare the input operands and define the operation
3 # As in packed_GEMM_B3A2C0. Omitted for brevity
4
5 # P3) Prepare the schedule with blocking
6 sched = te.create_schedule(C.op)
7 ic, jc, \
8 ir, jr = sched[C].tile(C.op.axis [0],
9 C.op.axis [1], mc, nc)
10 pc, pr = sched[C].split(p, factor=kc)
11
12 # Expose loops inside micro -kernel
13 ir, it = sched[C].split(ir, factor=mr)
14 jr, jt = sched[C].split(jr, factor=nr)
15
16 # P4) Specify the loop ordering (schedule as in baseline/B3A2C0)
17 sched[C].reorder(jc, pc, ic,
18 jr, ir, pr, it, jt)
19
20 # P5) Emplace the packings
21 # As in packed_GEMM_B3A2C0
22
23 # P6) Apply fine -grain optimizations
24 # No optimizations applied
25
26 # P7) Loop -level parallelization
27 # No parallelization in this version
28
29 # P8) Generate code with LLVM backend
30 return tvm.build(sched , [A, B, C], target="llvm")

Fig. 8. TVM generator for gemm mimicking (the blocking and packing of) the baseline algorithm, and

integrating the optimized micro-kernel with Resident 𝐶 .

Part P3. Preparation of the schedule (with additional blocking): The𝑚𝑐 , 𝑛𝑐 dimensions of
the problem are respectively partitioned using factors𝑚𝑟 , 𝑛𝑟 , in order to expose the loops
that will operate with the individual elements of the micro-panel 𝐶𝑟 ; see lines 13–14.

Part P4. Specification of the loop ordering: Lines 17–18 place the newly created loops for
the micro-kernel, it and jt, within the global schedule.

6.2 Fine-grain optimizations for high performance and parallelization
The TVM generator can explore relevant optimizations at the micro-kernel level which pursue goals
that are similar to those of the low-level optimizations applied by the expert Assembly programmer.
By off-loading these optimizations to TVM, in exchange for less flexibility, there is a considerably
more reduced programming effort and higher performance portability across different processor
architectures.

Starting from the TVM generator in Figure 8, the enhanced alternative in Figure 9 illustrates the
necessary additions to introduce some conventional optimization techniques:

Part P6. Fine-grain optimizations: This invokes TVM methods to address three types of
optimizations:
• SIMD vectorization: The generator includes vectorization of three different stages of the
blocked algorithm to leverage the SIMD units of the architectures: micro-kernel computa-
tion (lines 8–10); packing 𝐴 into 𝐴𝑐 (lines 13–16); and packing 𝐵 into 𝐵𝑐 (lines 19–22). The
basic scheme remains the same for all of them: the innermost loop (𝑗𝑡 for the former and
𝑙 in latter two) is split to expose an additional inner loop, using a split factor (lanesize)
that matches the SIMD width of the target architecture. For example, for 32-bit floating
point data, lanesize is set to 4 for ARMv8a NEON (128-bit SIMD registers) and 16 for

, Vol. —, No. —, Article —. Publication date: —.

—:16 Guillermo Alaejos et al.

Intel AVX512 (512-bit SIMD registers). In general, in our experiments we will employ the
exact number of elements for a SIMD register, or an integer multiple of it. From the newly
exposed loops, the outer one is unrolled and the inner is vectorized (unroll and vectorize
methods, respectively) This produces a code comprising vector instructions for the desired
target processor.

• Prefetching and vector loads within the micro-kernel: ac and bc are tensors defined as read-
only copies of Ac and Bc. The purpose of creating these artifacts is two-fold: first, it helps
the compiler to introduce software-prefetching instructions in order to pre-load the micro-
panels of Ac and Bc that will be used throughout the computation of the micro-kernel;
second, it instructs the compiler to use vector registers in order to store the active parts
of ac and bc in the micro-kernel, and to use vector instructions to load them from Ac and
Bc. Diving into the details, the construction, re-use pattern and computation point (loop
indexed by pr) of ac and bc induce buffers that store the strictly necessary micro-panels of
Ac and Bc used within the computation of each iteration of loop prwithin the micro-kernel,
that is,𝑚𝑟 × 1 for ac, and 𝑛𝑟 × 1 for bc. Splitting the innermost loop (l) using a factor
that matches lanesize, unrolling and vectorizing it yield vector instructions to load the
micro-panels of Ac and Bc into𝑚𝑟/𝑙𝑎𝑛𝑒𝑠𝑖𝑧𝑒 and 𝑛𝑟/𝑙𝑎𝑛𝑒𝑠𝑖𝑧𝑒 vectors.

Part P7. Loop-level parallelization: TVM also allows exploiting loop parallelism via multi-
threading. Line 41 shows how to instruct TVM to split the iteration space for a given loop
across the active threads. The selection of the optimal loop to parallelize depends on the
problem dimensions and target architecture specifications; see [27] for a detailed discussion.

Figure 10 displays two examples of the assembly code generated by TVM: An𝑚𝑟 × 𝑛𝑟 = 4 × 4
micro-kernel for an ARMv8a ISA (instruction set architecture) with NEON vector instructions
and unrolling factor of 4 on the left; and an 𝑚𝑟 × 𝑛𝑟 = 4 × 16 micro-kernel for an x86 ISA
with AVX512 vector instructions (on the right). In both cases, for brevity, we only include the
instructions that are comprised by the reduction loop of the micro-kernel. The codes were ob-
tained using the generator for the optimized B3A2C0 variant depicted in Figure 9, selecting the
target as llvm -device=arm_cpu -mattr=+v8.2a,+fp-armv8,+neon for the ARMv8a architec-
ture, and llvm -mcpu=icelake-server for the x86 architecture. The codes share a similar struc-
ture, but present subtle differences in terms of syntax and vectorization strategy: The ARMV8a
codes rely on vector fused multiply-add instructions with a single element of 𝐵 as a source (e.g.
fmla v3.4s,v5.4s,v4.s[0]); in contrast, the x86 counterpart operates on a broadcast operation
and vector fused multiply-add strategy (vbroadcastss %xmm4,%zmm8 followed by vfmadd213ps
%zmm3,%zmm6,%zmm8).

7 OTHER MEMBERS IN THE FAMILY OF BLOCKED ALGORITHMS FOR GEMM
One of the advantages of TVM lies in that producing code for other blocked algorithms of the
gemm family only requires small changes in the generator routines in order to accommodate the
proper loop ordering, blocking and packing schemes. This is described in this section.

7.1 Blocking and packing for variants with 𝐶 in the L2 cache
Transforming the TVM generator for the baseline algorithm, with a micro-tile of Resident 𝐶 , (left
column in Figure 1) into that with a block of 𝐶 in the L2 cache and a micro-tile of Resident 𝐵
(A3C2B0, right column in Figure 2) requires a number of changes in the TVM generator, shown in
Figure 7, resulting in the variant displayed in Figure 11:

Part P0. Parameter list: This generator includes kr as a parameter (instead of mr).

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:17

1 def opt_GEMM_B3A2C0_ukernel(m, n, k, mc, nc, kc, mr, nr, lanesize , dtype):
2 # P1), P2) P3) P4) P5) as in packed_GEMM_B3A2C0_ukernel
3 # Omitted for brevity
4
5 # P6) Apply fine -grain optimizations
6
7 # 6.1. Vectorization of the microkernel
8 jto ,jt = sched[C].split(jt, factor=lanesize)
9 sched[C].unroll(jto)
10 sched[C].vectorize(jt)
11
12 # 6.2. Vectorization of the packing of A
13 x,y,z,l = Ac.op.axis
14 l,ll = sched[Ac].split(l, factor=lanesize)
15 sched[Ac].unroll(l)
16 sched[Ac].vectorize(ll)
17
18 # 6.3. Vectorization of the packing of B
19 x,y,z,l = Bc.op.axis
20 l,ll = sched[Bc].split(l, factor=lanesize)
21 sched[Bc].unroll(l)
22 sched[Bc].vectorize(ll)
23
24 # 6.4. Prefetching
25 ac = sched.cache_read(Ac, "global", readers =[C])
26 bc = sched.cache_read(Bc, "global", readers =[C])
27
28 sched[ac].compute_at(sched[C],pr)
29 x,y,z,l = ac.op.axis
30 l,ll = sched[ac].split(l, factor=lanesize)
31 sched[ac].unroll(l)
32 sched[ac].vectorize(ll)
33
34 sched[bc].compute_at(sched[C],pr)
35 x,y,z,l = bc.op.axis
36 l,ll = sched[bc].split(l, factor=lanesize)
37 sched[bc].unroll(l)
38 sched[bc].vectorize(ll)
39
40 # P7) Loop -level parallelization on ic
41 sched[C].parallel(ic)
42
43 # P8) Generate code with LLVM backend
44 return tvm.build(sched , [A, B, C],
45 target="llvm")

Fig. 9. TVM generator for gemm mimicking (the blocking and packing of) the baseline algorithm, integrating

both the optimized micro-kernel with Resident 𝐶 and fine-grain optimizations and a loop-level parallelization
of loop ic.

Part P2. Definition of the operation and packing schemes for 𝐴 and 𝐵: Lines 15–19 mod-
ify the dimensions of the Bc tensor (this version moves 𝐵 to registers) so that the size of each
submatrix (micro-panel) in Bc is 𝑘𝑟 × 𝑛𝑟 .

Part P3. Preparation of the schedule: Lines 34–37 apply tiling over 𝐶 in preparation for the
placement of the packing into the buffer Cc. In addition, line 39 creates a buffer for reading
and writing the matrix 𝐶 . From that point, the scheduler operates with the object Cc. This
change is crucial for the algorithms where𝐶 resides in either the L2 or L3 caches. Concretely,
these variants leverage cache_write to induce a copy from matrix𝐶 to the object Cc as well
as to restore the result of the micro-kernel, temporarily in Cc, back into 𝐶 .

Part P4. Specification of the loop ordering: Line 48 specifies a loop order that matches that
of the algorithm A3C2B0.

, Vol. —, No. —, Article —. Publication date: —.

—:18 Guillermo Alaejos et al.

1 .LBB1_5:
2 add x11 , x9, x10
3 add x12 , x8, x10
4 ldr q4, [x11 , #15952]
5 ldr q5, [x12 , #15968]
6 ldr q6, [x11 , #15968]
7 ldr q7, [x12 , #15984]
8 ldr q16 , [x11 , #15984]
9 ldr q17 , [x12 , #16000]
10 fmla v3.4s , v5.4s , v4.s [0]
11 fmla v2.4s , v5.4s , v4.s [1]
12 fmla v1.4s , v5.4s , v4.s [2]
13 fmla v0.4s , v5.4s , v4.s [3]
14 ldr q4, [x11 , #16000]
15 ldr q5, [x12 , #16016]
16 fmla v3.4s , v7.4s , v6.s [0]
17 fmla v2.4s , v7.4s , v6.s [1]
18 fmla v1.4s , v7.4s , v6.s [2]
19 fmla v0.4s , v7.4s , v6.s [3]
20 fmla v3.4s , v17.4s , v16.s [0]
21 fmla v2.4s , v17.4s , v16.s [1]
22 fmla v1.4s , v17.4s , v16.s [2]
23 fmla v0.4s , v17.4s , v16.s [3]
24 adds x10 , x10 , #64
25 fmla v3.4s , v5.4s , v4.s [0]
26 fmla v2.4s , v5.4s , v4.s [1]
27 fmla v1.4s , v5.4s , v4.s [2]
28 fmla v0.4s , v5.4s , v4.s [3]
29 b.ne .LBB1_5

1 .LBB5_12:
2 vmovaps -16(%rdx ,%r13), %xmm4
3 vmovaps (%rdx ,%r13), %xmm5
4 vmovups -64(%rsi ,%r13 ,4), %zmm6
5 vmovups (%rsi ,%r13 ,4), %zmm7
6 vbroadcastss %xmm4 , %zmm8
7 vfmadd213ps %zmm3 , %zmm6 , %zmm8
8 vmovshdup %xmm4 , %xmm3
9 vbroadcastsd %xmm3 , %zmm9
10 vfmadd213ps %zmm2 , %zmm6 , %zmm9
11 vpermilps $234 , %xmm4 , %xmm2
12 vbroadcastsd %xmm2 , %zmm10
13 vfmadd213ps %zmm1 , %zmm6 , %zmm10
14 vpermilps $239 , %xmm4 , %xmm1
15 vbroadcastsd %xmm1 , %zmm4
16 vfmadd213ps %zmm0 , %zmm6 , %zmm4
17 vbroadcastss %xmm5 , %zmm3
18 vfmadd213ps %zmm8 , %zmm7 , %zmm3
19 vmovshdup %xmm5 , %xmm0
20 vbroadcastsd %xmm0 , %zmm2
21 vfmadd213ps %zmm9 , %zmm7 , %zmm2
22 vpermilps $234 , %xmm5 , %xmm0
23 vbroadcastsd %xmm0 , %zmm1
24 vfmadd213ps %zmm10 , %zmm7 , %zmm1
25 vpermilps $239 , %xmm5 , %xmm0
26 vbroadcastsd %xmm0 , %zmm0
27 vfmadd213ps %zmm4 , %zmm7 , %zmm0
28 addq $32 , %r13
29 cmpq $2048 , %r13
30 jne .LBB5_12

Fig. 10. Assembly codes for the reduction loop (traversing 𝑘𝑐) of micro-kernels with Resident𝐶 automatically

generated by TVM for single precision. Left: ARMv8a assembly code with NEON vector instructions for a

4 × 4 micro-kernel with a loop unrolling technique with a factor of 4. Right: x86 assembly code with AVX512

vector instructions for a 4 × 16 micro-kernel.

Part P5. Placement of the packings: Lines 51–53 set the buffer for Cc and the Ac and Bc
tensors into the appropriate loops.

The TVM generator in Figure 11 does not include fine-grain optimizations, yet identical tech-
niques as those introduced in Section 6.2 apply for this member of the family. Also, the TVM
generator to obtain variant B3C2A0 can be easily derived following the same principles.

7.2 Blocking and packing for variants with 𝐶 in the L3 cache
The remaining two blocked algorithmic variants for gemm in the family store a block of matrix𝐶 in
the L3 cache throughout the computation. Starting from the TVM generator for variant A3C2B0 in
Figure 11, the following changes are introduced to obtain the missing TVM generator, for variant
C3A2B0, displayed in Figure 12:

Part P4. Specification of the loop ordering: Line 12 enforces a loop ordering which mimics
that of the algorithm in Figure 2 (right).

Part P5. Placement of the packings: The buffer 𝐶𝑐 does not need to be bound to any loop
because it belongs to the outer structure. The packings of Ac and Bc are placed in the same
loops as in the version with 𝐶 in the L2 cache (see lines 15–16).

Obtaining the last variant, C3B2A0, is direct and, therefore, its discussion is omitted for brevity.

8 EXPERIMENTAL RESULTS
In this section, we provide strong experimental evidence that the TVM-based approach to auto-
matically generate routines for the matrix multiplication paves an almost effortless road toward

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:19

1 def packed_GEMM_A3C2B0(m, n, k, mc, nc, kc, kr, nr, dtype):
2 # P1) Declare the input operands
3 # As in packed_GEMM_B3_A2C0. Omitted for brevity
4
5 # P2) Define the operation with blocking and packing
6
7 # Ac: 4D tensor with packed version of A
8 Ac = te.compute ((math.ceil(m/mc),
9 math.ceil(k/kr), mc, kr),
10 lambda i, j, q, r:
11 A[i * mc + q, j * kr + r],
12 name="Ac")
13
14 # Bc: 4D tensor with packed version of B
15 Bc = te.compute ((math.ceil(k/kr),
16 math.ceil(n/nr), kr, nr),
17 lambda i, j, q, r:
18 B[i * kr + q, j * nr + r],
19 name="Bc")
20
21 p = te.reduce_axis ((0, k), "p")
22 C = te.compute ((m, n), lambda m, n:
23 te.sum(Ac[m // mc, p // kr,
24 tvm.tir.indexmod(m, mc),
25 tvm.tir.indexmod(p, kr)] *
26 Bc[p // kr, n // nr,
27 tvm.tir.indexmod(p, kr),
28 tvm.tir.indexmod(n, nr)],
29 axis=p), name="C")
30
31 # P3) Prepare the schedule with blocking
32 sched = te.create_schedule(C.op)
33
34 cic , cjc , \
35 cir , cpr = sched[C].tile(C.op.axis [0],
36 C.op.axis [1],
37 mc, nc)
38
39 Cc = sched.cache_write(C, "global")
40
41 ic, jc, \
42 ir, jr = sched[Cc].tile(Cc.op.axis [0],
43 Cc.op.axis [1],
44 mc, nc)
45 pc, pr = sched[Cc].split(p, factor=kc)
46
47 # P4) Specify loop ordering (schedule as in A3C2B0)
48 sched[Cc].reorder(ic, pc, jc, pr, jr, ir)
49
50 # P5) Define packing placement
51 sched[Cc].compute_at(sched[C], cic)
52 sched[Ac].compute_at(sched[Cc], pc)
53 sched[Bc].compute_at(sched[Cc], ir)
54
55 # P6) Apply fine -grain optimizations
56 # No fine -grain optimizations applied.
57
58 # P7) Loop -level parallelization
59 # No parallelization in this version
60
61 # P8) Code generation
62 return tvm.build(sched , [A, B, C], target="llvm")

Fig. 11. TVM generator for gemm mimicking the blocking and packing schemes of the A3C2B0 algorithm.

experimenting with a rich variety of algorithms, micro-kernels and parallelization/optimization
options that offer fair performance in a number of scenarios.

, Vol. —, No. —, Article —. Publication date: —.

—:20 Guillermo Alaejos et al.

1 def packed_GEMM_C3A2B0(m, n, k, mc, nc, kc, kr, nr, dtype):
2 # P1) Declare the input operands
3 # As in packed_GEMM_A3C2B0. Omitted for brevity
4
5 # P2) Define the operation with blocking and packing
6 # As in packed_GEMM_A3C2B0. Omitted for brevity
7
8 # P3) Prepare the schedule with blocking
9 # As in packed_GEMM_A3C2B0. Omitted for brevity
10
11 # P4) Specify loop ordering (schedule as in C3A2B0)
12 sched[Cc].reorder(jc, ic, pc, jr, pr, ir)
13
14 # P5) Emplace the packings
15 sched[Ac].compute_at(sched[Cc], pc)
16 sched[Bc].compute_at(sched[Cc], ir)
17
18 # P6) Apply fine -grain optimizations
19 # No fine -grain optimizations applied.
20
21 # P7) Loop -level parallelization
22 # No parallelization in this version
23
24 # P8) Code generation
25 return tvm.build(sched , [A, B, C], target="llvm")

Fig. 12. TVM generator for gemm mimicking the blocking and packing schemes of the C3A2B0 algorithm.

8.1 General setup
Unless otherwise explicitly stated, the experiments in this section were carried out using a single
core of the NVIDIA Carmel processor (ARM v8.2) embedded on an NVIDIA Jetson AGX Xavier
board, using IEEE 32-bit floating point arithmetic (FP32). In order to reduce variability, the processor
frequency was fixed to 2.3 GHz, the threads were bound to the hardware cores, and the experiments
were repeated a large number of times reporting in the following the average results for each
experiment. In general, performance is measured in terms of billions of arithmetic operations
per second, abbreviated as GFLOPS when operating with floating point arithmetic and GIOPS for
integer arithmetic.

Also, unless explicitly stated, we target the baseline algorithm for gemm with a micro-kernel that
operates with Resident 𝐶 . For reference, when possible we include in the evaluation the results
obtained from up-to-date realizations of the gemm kernel in libraries such as BLIS (version v0.8.1),
OpenBLAS (version v0.3.19), and the ARM Performance Libraries (ARMPL, version v21.1).

The dataset for the experimentation includes two types of gemm problems: large square matrices
versus highly “rectangular” problems. Given the current interest in DL inference, the dimensions
of the latter are selected as those that result from applying the im2col transform [6] to cast the
convolution layers in the ResNet50 v1.5 deep neural network (DNN) model in terms of a gemm.
The “batch” size for the inference scenario is set to 128 samples. As some layers share the same
parameters, resulting in gemm problems of the same dimensions, we report the results for those
only once (per layer type); see Table 1. In the following, we will use “layer” to refer to “layer type”,
since we are only interested in the “layer dimensions”.

8.2 Cache configuration parameters
The performance of the GotoBLAS2-like realizations of gemm as well as our routines obtained with
TVM is strongly dictated by the optimization level of the micro-kernel and a proper selection of
the cache configuration parameters𝑚𝑐 , 𝑛𝑐 , 𝑘𝑐 . The optimal values for the latter three parameters
depend on hardware features such as number of cache levels, size, set associativity, etc., and the

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:21

Table 1. Dimensions of the gemm resulting from applying the im2col transform to the layers of the ResNet50

v1.5 DNN model with a batch size of 128 samples.

Layer Layer numbers 𝑚 𝑛 𝑘 Layer Layer numbers 𝑚 𝑛 𝑘

type id. in ResNet50 v1.5 type id. in ResNet50 v1.5
1 001 1,605,632 64 147 11 080 100,352 256 512
2 006 401,408 64 64 12 083/095/105/115/125/135 25,088 256 2,304
3 009/021/031 401,408 64 576 13 086/098/108/118/128/138 25,088 1,024 256
4 012/014/024/034 401,408 256 64 14 088 25,088 1,024 512
5 018/028 401,408 64 256 15 092/102/112/122/132 25,088 256 1,024
6 038 401,408 128 256 16 142 25,088 512 1,024
7 041/053/063/073 100,352 128 1,152 17 145/157/167 6,272 512 4,608
8 044/056/066/076 100,352 512 128 18 148/160/170 6,272 2,048 512
9 046 100,352 512 256 19 150 6,272 2,048 1,024
10 050/060/070 100,352 128 512 20 154/164 6,272 512 2,048

 0

 5

 10

 15

 20

 25

 30

 35

 40

Basic Blocked Packed ukernel Optimized

G
F

L
O

P
S

Variants

TVM
BLIS
OpenBLAS
ARMPL

Performance of GEMM on NVIDIA Carmel - m=n=k=2000

Fig. 13. Performance comparison of distinct TVM generators on a single NVIDIA Carmel core for square

matrices.

specific dimensions of the micro-kernel (given by 𝑚𝑟 × 𝑛𝑟 for a Resident 𝐶 case). Determining
these values via brute force experimentation involves an expensive search across a large 3D space,
possibly for each micro-kernel dimension.

Alternatively, one can use the analytical model in [21] to select the optimal values for the cache
configuration parameters. The advantage of this analytical approach in our particular case will be
exposed in the next subsection, when we automatically generate, explore and evaluate a variety of
micro-kernels, of different dimensions, using the TVM routine.

8.3 Comparison of the TVM generators
We open the experimental evaluation by illustrating the performance boost that is obtained by
incrementally integrating the blocking, packing, and fine-grained optimizations described with the
successive TVM generators. For simplicity, in this initial analysis we only consider a square gemm
problem with dimensions given by𝑚 = 𝑛 = 𝑘 = 2,000.

, Vol. —, No. —, Article —. Publication date: —.

—:22 Guillermo Alaejos et al.

Figure 13 shows the results for this first experiment. The five blue bars there report the perfor-
mance attained by the gemm routines automatically obtainedwith the five TVMgenerators described
in Sections 5 and 6. Concretely, the labels Basic, Blocked, Packed, `kernel, and Optimized in the 𝑥-
axis respectively refer to the TVM generators basic_GEMM, block_GEMM_B3A2C0, packed_GEMM_B3A2C0,
packed_GEMM_B3A2C0_ukernel, and opt_GEMM_B3A2C0_ukernel in Figures 5, 6, 7, 8, and 9. For the latter,
parallelization is disabled (line 41 of Figure 9). Hence, the reported performance results correspond
to a sequential gemm execution. For reference, the figure also displays the performance attained
with the realizations of the gemm kernel in BLIS (red line), OpenBLAS (yellow line), and ARMPL
(green line) for this particular problem size (on the NVIDIA Carmel core).

For this first experiment, we observe the notable performance raise attained with the integration
of the micro-kernel and the fine-grain optimizations (rightmost two bars) as well as the fact that,
for this problem dimension (and target processor core), the best TVM generator delivers a code
for gemm whose performance exactly matches that of the BLIS kernel for this operation. This is
not totally surprising since, for this initial experiment, we forced TVM to generate a routine with
exactly the same cache configuration parameters and micro-kernel dimensions as those used by
BLIS. Hereafter, all our TVM results correspond to the version of gemm obtained with the optimized
TVM generator opt_GEMM_B3A2C0_ukernel.

 0

 5

 10

 15

 20

 25

 30

 35

 40

4
x
4

4
x
8

4
x
1
2

4
x
1
6

4
x
2
0

4
x
2
4

4
x
2
8

4
x
3
2

8
x
4

8
x
8

8
x
1
2

8
x
1
6

8
x
2
0

8
x
2
4

8
x
2
8

8
x
3
2

1
2
x
4

1
2
x
8

1
2
x
1
2

1
2
x
1
6

1
2
x
2
0

1
2
x
2
4

1
2
x
2
8

1
2
x
3
2

1
6
x
4

1
6
x
8

1
6
x
1
2

1
6
x
1
6

1
6
x
2
0

1
6
x
2
4

1
6
x
2
8

1
6
x
3
2

2
0
x
4

2
0
x
8

2
0
x
1
2

2
0
x
1
6

2
0
x
2
0

2
0
x
2
4

2
0
x
2
8

2
0
x
3
2

2
4
x
4

2
4
x
8

2
4
x
1
2

2
4
x
1
6

2
4
x
2
0

2
4
x
2
4

2
4
x
2
8

2
4
x
3
2

2
8
x
4

2
8
x
8

2
8
x
1
2

2
8
x
1
6

2
8
x
2
0

2
8
x
2
4

2
8
x
2
8

2
8
x
3
2

3
2
x
4

3
2
x
8

3
2
x
1
2

3
2
x
1
6

3
2
x
2
0

3
2
x
2
4

3
2
x
2
8

3
2
x
3
2

G
F

L
O

P
S

Micro-kernel dimensions (mr x nr)

GEMM on NVIDIA Carmel - m=n=k=2000

TVM
BLIS
OpenBLAS
ARMPL

 0

 5

 10

 15

 20

 25

 30

 35

 40

4
x
4

4
x
8

4
x
1
2

4
x
1
6

4
x
2
0

4
x
2
4

4
x
2
8

4
x
3
2

8
x
4

8
x
8

8
x
1
2

8
x
1
6

8
x
2
0

8
x
2
4

8
x
2
8

8
x
3
2

1
2
x
4

1
2
x
8

1
2
x
1
2

1
2
x
1
6

1
2
x
2
0

1
2
x
2
4

1
2
x
2
8

1
2
x
3
2

1
6
x
4

1
6
x
8

1
6
x
1
2

1
6
x
1
6

1
6
x
2
0

1
6
x
2
4

1
6
x
2
8

1
6
x
3
2

2
0
x
4

2
0
x
8

2
0
x
1
2

2
0
x
1
6

2
0
x
2
0

2
0
x
2
4

2
0
x
2
8

2
0
x
3
2

2
4
x
4

2
4
x
8

2
4
x
1
2

2
4
x
1
6

2
4
x
2
0

2
4
x
2
4

2
4
x
2
8

2
4
x
3
2

2
8
x
4

2
8
x
8

2
8
x
1
2

2
8
x
1
6

2
8
x
2
0

2
8
x
2
4

2
8
x
2
8

2
8
x
3
2

3
2
x
4

3
2
x
8

3
2
x
1
2

3
2
x
1
6

3
2
x
2
0

3
2
x
2
4

3
2
x
2
8

3
2
x
3
2

G
F

L
O

P
S

Micro-kernel dimensions (mr x nr)

GEMM on NVIDIA Carmel - m=n=k=2000 (optimized)

TVM
BLIS
OpenBLAS
ARMPL

Fig. 14. Performance evaluation of the TVM generator on a single NVIDIA Carmel core for square matrices,

without and with fixed lane size/prefetching (left and right, respectively).

 0

 5

 10

 15

 20

 25

 30

 35

 40

4
x
4

4
x
8

4
x
1
2

4
x
1
6

4
x
2
0

4
x
2
4

4
x
2
8

4
x
3
2

8
x
4

8
x
8

8
x
1
2

8
x
1
6

8
x
2
0

8
x
2
4

8
x
2
8

8
x
3
2

1
2
x
4

1
2
x
8

1
2
x
1
2

1
2
x
1
6

1
2
x
2
0

1
2
x
2
4

1
2
x
2
8

1
2
x
3
2

1
6
x
4

1
6
x
8

1
6
x
1
2

1
6
x
1
6

1
6
x
2
0

1
6
x
2
4

1
6
x
2
8

1
6
x
3
2

2
0
x
4

2
0
x
8

2
0
x
1
2

2
0
x
1
6

2
0
x
2
0

2
0
x
2
4

2
0
x
2
8

2
0
x
3
2

2
4
x
4

2
4
x
8

2
4
x
1
2

2
4
x
1
6

2
4
x
2
0

2
4
x
2
4

2
4
x
2
8

2
4
x
3
2

2
8
x
4

2
8
x
8

2
8
x
1
2

2
8
x
1
6

2
8
x
2
0

2
8
x
2
4

2
8
x
2
8

2
8
x
3
2

3
2
x
4

3
2
x
8

3
2
x
1
2

3
2
x
1
6

3
2
x
2
0

3
2
x
2
4

3
2
x
2
8

3
2
x
3
2

G
F

L
O

P
S

Micro-kernel dimensions (mr x nr)

GEMM on NVIDIA Carmel - Layer 006 ResNet50 v1.5

TVM
BLIS
OpenBLAS
ARMPL

 0

 5

 10

 15

 20

 25

 30

 35

 40

4
x
4

4
x
8

4
x
1
2

4
x
1
6

4
x
2
0

4
x
2
4

4
x
2
8

4
x
3
2

8
x
4

8
x
8

8
x
1
2

8
x
1
6

8
x
2
0

8
x
2
4

8
x
2
8

8
x
3
2

1
2
x
4

1
2
x
8

1
2
x
1
2

1
2
x
1
6

1
2
x
2
0

1
2
x
2
4

1
2
x
2
8

1
2
x
3
2

1
6
x
4

1
6
x
8

1
6
x
1
2

1
6
x
1
6

1
6
x
2
0

1
6
x
2
4

1
6
x
2
8

1
6
x
3
2

2
0
x
4

2
0
x
8

2
0
x
1
2

2
0
x
1
6

2
0
x
2
0

2
0
x
2
4

2
0
x
2
8

2
0
x
3
2

2
4
x
4

2
4
x
8

2
4
x
1
2

2
4
x
1
6

2
4
x
2
0

2
4
x
2
4

2
4
x
2
8

2
4
x
3
2

2
8
x
4

2
8
x
8

2
8
x
1
2

2
8
x
1
6

2
8
x
2
0

2
8
x
2
4

2
8
x
2
8

2
8
x
3
2

3
2
x
4

3
2
x
8

3
2
x
1
2

3
2
x
1
6

3
2
x
2
0

3
2
x
2
4

3
2
x
2
8

3
2
x
3
2

G
F

L
O

P
S

Micro-kernel dimensions (mr x nr)

GEMM on NVIDIA Carmel - Layer 044 ResNet50 v1.5

TVM
BLIS
OpenBLAS
ARMPL

Fig. 15. Performance evaluation of the TVM generator on a single NVIDIA Carmel core for layers 2 (left) and

8 (right) of ResNet50 v1.5.

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:23

8.4 In search of the best micro-kernel
In this subsection we demonstrate the benefits of being able to automatically generate and subse-
quently evaluate a variety of micro-kernels for a particular problem dimension. (In comparison, a
manual development is a costly process that requires a high level of expertise.)

8.4.1 Effect of the micro-kernel. We unfold the analysis of the micro-kernels by assessing the
performance of the TVM-generated routines for the baseline algorithm that integrate micro-kernels
of different dimensions: For a square problem with𝑚 = 𝑛 = 𝑘 = 2,000 in Figure 14, and for the
gemm operations arising in two layers of the ResNet model in Figure 15. We clarify here that
the only difference between these micro-kernels is their dimensions. Thus, other optimization
possibilities, such as varying the loop unrolling factor, selecting the loop that to vectorize, etc. were
not evaluated in this experiment and were kept constant across all experiments. With respect to
the two plots in Figure 14, they evaluate the impact of two low-level optimizations included in the
TVM generator in Figure 9:

• Lane size: The innermost loop of gemm is further split using a factor that is an integer multiple
of the number of elements that fit into one vector register (e.g., 8 for FP16, 4 for FP32, or 2
for FP64 in the NVIDIA Carmel processor, for which the vector registers are 128-bit wide).

• Prefetching: The TVM method cache_read is invoked to induce the scheduler to include an
automatic prefetching when possible.

The left plot in Figure 14 was obtained by removing Part 6.4 (lines 24 to 38) in the TVM generator in
Figure 9, while the right plot was obtained with these lines included. In both cases, the performance
results correspond to sequential executions.

As a result from these additional optimizations, the performance of the TVM routine displayed in
the right plot of Figure 14, when setting the micro-kernel dimension to𝑚𝑟 × 𝑛𝑟 = 8 × 12, improves
from 16 to 18.7 GFLOPS with respect to its counterpart without these low-level optimizations.
Therefore, from now on we will only report results for the TVM-generated routines with these two
optimizations in place.

The right plot in Figure 14 demonstrates that a careful selection of the micro-kernel is critical to
attain high performance. Concretely, the performance achieved by using micro-kernels of different
dimensions varies between 10.3 GFLOPS (worst case, with𝑚𝑟 × 𝑛𝑟 = 32 × 32) and 26.8 GFLOPS
(best case, with𝑚𝑟 × 𝑛𝑟 = 8 × 12). The two performance plots in Figure 15 also contribute to show
that the best micro-kernel is largely dependent on the problem dimension. Specifically, the highest
GFLOPS rates are observed for the micro-kernels𝑚𝑟 × 𝑛𝑟 = 4 × 16 and 4 × 28 for layer 2, compared
with the micro-kernel𝑚𝑟 × 𝑛𝑟 = 4 × 24 for layer 8.

A direct comparison between the realizations of gemm in “hand-encoded” libraries and the TVM
routine using the best micro-kernel for each problem case reveals that, for square matrices, the
TVM routine delivers GFLOPS rates that are similar to those attained with BLIS (28.9 GFLOPS for
the former versus 28.8 GFLOPS for latter), and superior with respect to OpenBLAS (23.3 GFLOPS)
and ARMPL (26.4 GFLOPS). The scenario is different for the ResNet50 problems: For layer 2, the
TVM routine (with the best micro-kernel) delivers 22.4 GFLOPS versus 13.3 GFLOPS for BLIS, 17.1
GFLOPS for OpenBLAS, and 11.9 for ARMPL. In addition, for layer 8, the TVM routine (with the
best micro-kernel) achieves 26.1 GFLOPS versus 22.0 GFLOPS for BLIS (best library-based option).
From this point, we will always report the results for the TVM routine with the best micro-kernel
for each problem dimension.
The evaluation of the gemm operations associated with all the layers in the ResNet50 model

shows a variety of scenarios. Concretely, Figure 16 illustrates that the TVM routine outperforms
the BLIS realization by a large margin for layer 1–12 and by a visible difference for layers 15–17 (40

, Vol. —, No. —, Article —. Publication date: —.

—:24 Guillermo Alaejos et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

G
F

L
O

P
S

Layer id.

TVM
BLIS
OpenBLAS
ARMPL

4x28
4x28

4x16

4x20

4x24
4x28

4x16
4x24

4x24 4x16
4x16

8x12
4x28

4x24
8x12

8x12 8x12 4x24

8x12 8x12

Performance of GEMM on NVIDIA Carmel - ResNet-50 v1.5

Fig. 16. Performance evaluation of the TVM generator on a single NVIDIA Carmel core for ResNet50 v1.5.

The number on top of each blue bar represents the dimension𝑚𝑟 × 𝑛𝑟 of the best micro-kernel for that layer.

cases out of the total 53 convolution layers in the model, see Table 1); it is competitive for layer 14
and 20 (3 cases); and it is suboptimal for layer 13, 18, 19 (10 cases). Compared with OpenBLAS and
ARMPL, the TVM routine is consistently better. An analysis of the results taking into account the
operands’ dimensions shows that the TVM routine delivers higher performance for “rectangular”
cases, with𝑚 in the range 100,352–1,605,632, and it is competitive when𝑚=25,088. In contrast,
BLIS is better choice for “square” problems, with𝑚 in the range of 6,000.4

8.4.2 Why is TVM better? The superiority of the TVM routine is rooted in the fact that, by
(automatically) generating the micro-kernels of different dimensions, we can easily explore the
space and select the one that is better suited to a particular problem dimension. This is illustrated in
Figure 16, which reports the best micro-kernel for each problem dimension/DNN layer. Compared
with that, BLIS, OpenBLAS and ARMPL each integrate a single, manually-encoded micro-kernel,
which is therefore the only option for any problem dimension. The reason for this limitation
of the libraries is that manually implementing different micro-kernels is a time-consuming task,
requiring significant experience in high performance computing, computer architecture, and
assembly coding. In addition, the logic of selecting the appropriate micro-kernel dimension based
on problem dimensions is usually not supported in commercial or academic libraries.
Delving further into the matter, the theoretical reasons behind this behavior can be explained

using the analytical model in [21]. According to that, for problems with a reduced dimension 𝑘 ,
which in practice limits the effective value for the cache parameter 𝑘𝑐 , the micro-panel of 𝐵𝑐 that is
stored in the L1 cache (𝐵𝑟 , of dimensions 𝑘𝑐 × 𝑛𝑟) does not attain the optimal occupation of that
level, explaining the performance penalty.

Let us illustrate the problem for layer 2 and 8 of ResNet v1.5, whose experimental performance
for different micro-kernel dimensions was exposed in Figure 15. We complement that figure with
the values in Table 2, illustrating the cache parameters𝑚𝑐 , 𝑛𝑐 , 𝑘𝑐 and the theoretical occupation
4As a side note, the actual processing cost of the Resnet50 v1.5 model is concentrated in those cases where𝑚 is in the range
100,352–1,605,632 (47.8% of the total time), followed by𝑚=25,088 (35.6% of the total time). In terms of absolute cost, this
implies that the execution of all layers employing the TVM routine would require 39.1 s compared with 48.0 s when using
BLIS (and higher for OpenBLAS and ARMPL).

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:25

Table 2. Detailed L1 cache occupation for layers 2 and 8 of ResNet50 v1.5 for different micro-kernel dimensions.

Layer 𝑚𝑐 𝑛𝑐 𝑘𝑐 𝑚𝑟 𝑛𝑟 L1 Max Layer 𝑚𝑐 𝑛𝑐 𝑘𝑐 𝑚𝑟 𝑛𝑟 L1 Max
type id. (%) (%) type id. (%) (%)

2 7,168 64 64 4 4 1.56 25 8 3,584 256 128 4 4 3.12 25
2 6,656 64 64 4 8 3.12 50 8 3,584 256 128 4 8 6.25 50
2 6,144 64 64 4 12 4.69 50 8 3,328 275 128 4 12 9.38 50
2 6,144 64 64 4 16 6.25 50 8 3,328 275 128 4 16 12.50 50
2 5,632 64 64 4 20 7.81 50 8 3,072 298 128 4 20 15.60 50
2 5,120 64 64 4 24 9.38 50 8 3,072 298 128 4 24 18.80 50
2 5,120 64 64 4 28 10.90 50 8 3,072 298 128 4 28 21.90 50
2 7,168 64 64 8 4 1.56 25 8 3,584 256 128 8 4 3.12 25
2 6,656 64 64 8 8 3.12 25 8 3,584 256 128 8 8 6.25 25
2 6,144 64 64 8 12 4.69 50 8 3,328 275 128 8 12 9.38 50
2 7,168 64 64 12 4 1.56 25 8 3,584 256 128 12 4 3.12 25
2 6,656 64 64 12 8 3.12 25 8 3,584 256 128 12 8 6.25 25
2 7,168 64 64 16 4 1.56 25 8 3,584 256 128 16 4 3.12 25
2 7,168 64 64 20 4 1.56 25 8 3,584 256 128 20 4 3.12 25
2 7,168 64 64 24 4 1.56 25 8 3,584 256 128 24 4 3.12 25
2 7,168 64 64 28 4 1.56 25 8 3,584 256 128 28 4 3.12 25

of the L1 cache by 𝐵𝑟 , for different micro-kernel dimensions, determined using the analytical
model in [21]5. When executed on the Carmel processor, the analytical model indicates that, for
the 𝑚𝑟 × 𝑛𝑟 = 8 × 12 micro-kernel that is integrated BLIS for that particular architecture, the
micro-panel 𝐵𝑟 targeting the L1 cache only occupies 4.69% of the L1 cache for layer 2; and 9.38%
for layer 8. In contrast, this micro-kernel should have occupied up to 50% with 𝐵𝑟 for both layers,
reserving the rest of the L1 cache for entries from the 𝐴,𝐶 operands.
The only way to address this under-utilization of the L1 cache is by increasing 𝑛𝑟 , and hence

developing a new micro-kernel. Let us support this observation with a specific example. Consider
a micro-kernel of dimension𝑚𝑟 × 𝑛𝑟 = 4 × 28. In this case, the occupancy of the L1 cache by 𝐵𝑟
grows to 10.90% for layer 2 and up to 21.90% for layer 8, which is clearly superior to that observed
for the (BLIS) 8 × 12 micro-kernel. In summary, there is a clear theoretical benefit from adopting an
𝑚𝑟 ×𝑛𝑟 = 4× 28micro-kernel for these particular layers, which is conformal with the experimental
advantage that was reported in Figure 16.
Figure 17 reports the utilization rates of the L1 and L2 cache levels by 𝐵𝑟 and 𝐴𝑐 , respectively,

and all the layers. The results show that, especially for the L1 cache, the occupation compared
with BLIS explains the overall differences in performance between the BLIS micro-kernel and the
optimal alternative automatically generated with TVM reported in Figure 16. For reference, the
figure includes the theoretical maximum occupation rate for each cache memory (black line) for
the corresponding operands, dictated by the analytical model.
To wrap up this discussion, the under-utilization of the L1 and L2 cache levels resulting from

the small values of 𝑘 and𝑚 in non-square problems forces the developer to trade it off with larger
register block dimensions (𝑚𝑟 and/or 𝑛𝑟), and hence with the development a family of micro-
kernels that, in practice, are invoked intelligently depending on the problem dimensions. Using
a tool like TVM to automatically generate micro-kernels, together with an analytical model for
cache and register blocking parameters, alleviates this programmability burden not only to obtain
dimension-agnostic performance optimization on a single architecture, but also across different
architectures.

5In the table, we limit the study to those values of𝑚𝑟 and 𝑛𝑟 that do not cause register spilling, as this effect would yield a
performance penalty beyond that introduced by the negative effect of L1 under-occupation.

, Vol. —, No. —, Article —. Publication date: —.

—:26 Guillermo Alaejos et al.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
a
c
h
e
 O

c
c
u
p
a
n
c
y
 (

%
)

Layer id.

TVM BLIS MAX

L1-cache usage on NVIDIA Carmel - ResNet-50 v1.5

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
a
c
h
e
 O

c
c
u
p
a
n
c
y
 (

%
)

Layer id.

TVM BLIS MAX

L2-cache usage on NVIDIA Carmel - ResNet-50 v1.5

Fig. 17. Occupation for the L1 and L2 caches (left and right, resp.) on the Carmel platform for the best

TVM-generated micro-kernel compared with the BLIS micro-kernel.

8.4.3 Optimization of the micro-kernel. To close this discussion on the impact of the micro-kernel,
we note that, when searching for the optimal dimension of the micro-kernel, the exploratory space
is basically bi-dimensional, as we only need to select the values for𝑚𝑟 , 𝑛𝑟 . Now, the optimal value
for at least one of these two parameters is tied to the architecture lane size and, in addition, the
hardware imposes strict limits on the number of vector registers that can be used from inside the
micro-kernel, which in turn constrains the practical values for𝑚𝑟 , 𝑛𝑟 . As a consequence, selecting
the best option for the TVM-generated routines only requires a few dozens of experiments, and
the whole process can be also automatized, providing significant benefits in terms of reduced
programming and optimization efforts for the library developer.

In the next subsections we examine the programming benefits of the TVM-based approach, from the
viewpoints of performance, maintainability and portability, by exposing how TVM allows us to easily
generate routines for different data types, explore distinct packing schemes, evaluate alternative
parallelization options and, finally, instantiate the full family of matrix multiplication algorithms.
Finally, we close the experimental section with an evaluation on AMD and Intel architectures.

8.5 Maintainability: Generating codes for different data types
Generating a routine for a specific data type with TVM only requires adjusting the dtype argument
in the TVM generator, and modifying accordingly the lane size (see subsection 8.4.1). Compared
with this, producing manually a GotoBLAS-2 like routine, for a particular data type, requires a
careful re-design of the micro-kernel, usually in assembly, as well as the adaptation of the packing
functions.

In Figure 18 we report the performance of the routines generated with TVM for five data types:
FP16 (IEEE 16-bit floating point), FP32 (IEEE 32-bit floating point), FP64 (IEEE 64-bit floating point),
INT16 (integer 16-bit), and INT32 (integer 32-bit). This figure shows acceleration factors which are
conformal with the use of other precision formats.

8.6 Performance: Packing costs
For some problem dimensions, it may be beneficial to skip the packing of any of the matrix operands,
or both of them, into the buffers 𝐴𝑐 , 𝐵𝑐 . As described in subsection 5.3, eliminating the packing
scheme is straight-forward with TVM. In contrast, introducing this modification into a conventional
GotoBLAS2-like routine implies rewriting the micro-kernel, as this piece of code assumes that the

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:27

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

G
F

L
O

P
S

Layer id.

GEMM on NVIDIA Carmel for different data types - All layers ResNet50 v1.5

FP16
FP32
FP64
INT16
INT32

Fig. 18. Performance of the TVM generator for distinct data types on a single NVIDIA Carmel core for

ResNet-50 v1.5.

matrix operands are disposed/packed into the buffers in a certain manner; see Figure 4. Given that
the micro-kernel is in general encoded in assembly, this is a non-trivial task.
Figure 19 evaluates the packing possibilities using TVM to generate modified versions of the

baseline algorithm. As shown in the top chart, for small square matrices, the cost of the re-arranging
the data due to packing is not compensated with a “sufficient” acceleration of the micro-kernel. For
the problems associated with the convolutional layers in ResNet-50 v1.5 model, the dimensions
are large enough and this effect is not present. Nonetheless, the irregular sizes of these operands
dictate that, for layers 1, 2, 5, 7 and 18, the performance of the baseline algorithm generated with
TVM and a variant which packs only one of the matrix operands are close.

8.7 Performance: Parallelization options
The TVM generator can be leveraged to assess distinct options to orchestrate a multi-threaded
execution on a multicore processor. In Figure 20, we target the 8 cores in the NVIDIA Carmel
processor, evaluating four parallelization options for the baseline algorithm (see Figure 1, left) that
differ in the loop which is parallelized: 𝑗𝑐 , 𝑖𝑐 , 𝑗𝑟 , or 𝑖𝑟 . (Loop 𝑝𝑐 cannot be parallelized as this would
yield a race condition.) This shows that the best choice varies slightly between two of the options,
depending on the problem dimensions. However, investigating the best parallelization option adds
a dimension to the complexity to the optimization effort that is out-of-scope for this work.
At this point we recognize that an analysis of the parallelization options for a conventional

GotoBLAS-2-like routine is also straight-forward. Furthermore, in some cases, it may be more
convenient to parallelize multiple loops to expose sufficient thread-level parallelism [31]. Unfortu-
nately, when instructed to parallelize two or more loops, currently TVM extracts parallelism from
the outermost loop only.

8.8 Performance, maintainability and portability: The complete family of algorithms
In Section 7, we argued that producing code with TVM for other blocked algorithmic variants of
the gemm family only requires small changes into the generator routines. In this subsection we
analyze the practical impact of this on the sequential and parallel performance.

, Vol. —, No. —, Article —. Publication date: —.

—:28 Guillermo Alaejos et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

G
F

L
O

P
S

Size of problem

GEMM on NVIDIA Carmel for different packing options - m=n=k

No packing
Packing A
Packing B
Packing A and B

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

G
F

L
O

P
S

Layer id.

GEMM on NVIDIA Carmel for different packing options - All layers ResNet50 v1.5

No packing
Packing A
Packing B
Packing A and B

Fig. 19. Performance of the TVM generator for four distinct packing configurations using a single NVIDIA

Carmel core for small-square matrices and ResNet-50 v1.5 (top and bottom, respectively).

Figure 21 shows a clear superiority of the variants that maintain 𝐶 in the processor registers
over their counterparts that operate with 𝐵 in the registers. (We omit the variants with Resident 𝐴
because they present a symmetric role with the respect to the variants with Resident 𝐵.) The reason
is that, in the variants with Resident 𝐶 (i.e., B3A2C0 and A3B2C0), the elements of 𝐶 are housed in
the processor registers during the full execution of the micro-kernel loop and, therefore, there are
no writes to memory as part of its innermost loop (L6) of the algorithm. In contrast, the two other
variants, A3C2B0 and C3A2B0, integrate a micro-kernel that, at each iteration of the innermost
loop (L6), performs several writes on 𝐶 while this operand resides in a certain level of the cache
hierarchy. This behavior lies at the core of the algorithms/variants, and is preserved by TVM
which simply follows the programmer’s directives. With respect to the results, we observe small
differences in performance between the two versions that maintain 𝐶 in the processor registers, in
favor of either one or another depending on the specific layer.

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:29

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

G
F

L
O

P
S

Layer id.

GEMM on NVIDIA Carmel for different parallelization options - All layers ResNet50 v1.5

Parallel loop jc
Parallel loop ic
Parallel loop jr
Parallel loop ir

Fig. 20. Performance of the TVM generator for four distinct loop parallelization options on 8 NVIDIA Carmel

cores for ResNet-50 v1.5.

Table 3. Size (in bytes) of the gemm realization for each solution.

Solution gemm

ARMPL 29,145,688
BLIS 1,350,456
OpenBLAS 90,944
TVM 532,976

8.9 Memory performance: footprint
We next investigate the memory requirements of the automatically-generated codes for gemm.
Table 3 reports the size for a bare gemm test driver routine statically linked with each library
(column labeled as “gemm”). The memory allocation for the matrices and the necessary packing
buffers are not included, as their space requirements should be similar in all cases. Furthermore,
the test driver is the same in all cases to allow a fair comparison.
The lowest memory footprint for the gemm executable is offered by OpenBLAS with close to

89 KiB, followed by TVM with 520 KiB. BLIS and ARMPL need a total amount of 1.3 MiB and
27.8 MiB, respectively.

8.10 Portability: Experiments in other architectures
We close the experimental section by demonstrating the performance portability of the automatic-
generation approach for gemm using a pair of AMD and Intel processor architectures. For this
purpose, we compare the (sequential) routine generated by TVM, combined with the best micro-
kernel, against that of the realization of this kernel in BLIS (version 0.9.0) on an AMD EPYC
7282 (Rome) processor6; and the tuned implementation of the same kernel in Intel MKL (version
2021.0) on an Intel Xeon Platinum 8358 (Icelake) processor. In order to generate code specifically
tuned for these two architectures, we only had to set the appropriate target in Part P8 of the TVM
6We note that the realization of gemm in AMD’s native library (AOCL) is basically BLIS in disguise; see https://developer.
amd.com/amd-aocl/blas-library/.

, Vol. —, No. —, Article —. Publication date: —.

https://developer.amd.com/amd-aocl/blas-library/
https://developer.amd.com/amd-aocl/blas-library/

—:30 Guillermo Alaejos et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

G
F

L
O

P
S

Layer id.

GEMM (Sequential) on NVIDIA Carmel - All layers ResNet50 v1.5

B3A2C0 sequential
A3B2C0 sequential
C3A2B0 sequential
A3C2B0 sequential

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

G
F

L
O

P
S

Layer id.

GEMM (Parallel) on NVIDIA Carmel - All layers ResNet50 v1.5

B3A2C0 parallel
A3B2C0 parallel
A3C2B0 parallel
C3A2B0 parallel

Fig. 21. Performance of the TVM generators for four variants of the gemm family of algorithms on a single

core and 8 cores of the NVIDIA Carmel processor (top and bottom, respectively), for ResNet-50 v1.5. Note the

different scales of the 𝑦 axis in the two plots.

generator. Concretely, lines 35–38 in Figure 5 specify the backends selected for these two processor
architectures.

Figure 22 reports the results for this final experiment using the layers in the ResNet50 model as
testbed. The two charts there show a similar trend, which was already present in the results for the
NVIDIA Carmel core in Figure 16. Concretely, the TVM routine outperforms the library realizations
for the “rectangular” cases, but it is suboptimal for “square” problems. In order to investigate this
behavior in more detail, given that the library evaluated in the case of the AMD architecture is
BLIS, we inspected the internals of the micro-kernel integrated in the library for that particular
processor, in order to compare it with the micro-kernel generated by TVM.

Note that the BLIS and TVM solutions rely on the baseline algorithm for gemm and, therefore, on
a micro-kernel with Resident𝐶 . Specifically, for the AMD Rome, BLIS hand-encodes a micro-kernel
of dimension 𝑚𝑟 × 𝑛𝑟 = 6 × 16, unrolling loop L6 by a factor of 4. Given that the AMD Rome

, Vol. —, No. —, Article —. Publication date: —.

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:31

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

G
F

L
O

P
S

Layer id.

GEMM on AMD Rome - All layers ResNet50 v1.5

TVM
BLIS

2x40 2x40

2x32

2x32

2x32

2x32
2x32

2x40
2x40

2x32

2x40 2x40

2x40

2x40

2x40

2x40 2x40
2x40 2x40

2x40

 0

 50

 100

 150

 200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

G
F

L
O

P
S

Layer id.

GEMM on Intel Icelake - All layers ResNet50 v1.5

TVM
MKL

6x68

6x64 2x80
6x64

6x68

6x64
6x64

6x64

6x64

6x64

6x64

6x64

6x64

6x64 6x64
6x64

6x64

6x48

6x64
12x32

Fig. 22. Performance of the TVM generator for ResNet-50 v1.5 for AMD and Intel (top and bottom, respec-

tively).

features 16 vector registers, and that the SIMD width is 256 bits (that is, 8 FP32 per vector register)
for AVX2, the BLIS micro-kernel dedicates 6 × 2 = 12 vector registers to maintain the micro-tile
of 𝐶 . Furthermore, at each iteration of loop L6, the micro-kernel utilizes two vector registers to
load a row of the micro-panel 𝐵𝑟 (of dimension 𝑘𝑐 × 16 micro-panel) plus and single vector register
to broadcast one-by-one the six entries of a column of the micro-panel 𝐴𝑟 (of dimension 6 × 𝑘𝑐)
prior to operating with each. In total, the micro-kernel thus occupies 15 out of the 16 available
vector registers. In addition, the code for the micro-kernel features a notable number of (assembly)
prefetching instructions.
With the above-described configuration for the micro-kernel, the realization of gemm in BLIS

delivers 95.3 GFLOPS for square gemm problems of dimension𝑚 = 𝑛 = 𝑘 =2,000 while, by disabling
the prefetching instructions, the performance drops to 78.5 GFLOPS. Compared with that, the best
micro-kernel generated with TVM for that problem dimension corresponds to𝑚𝑟 × 𝑛𝑟 = 2 × 40,
which delivers 88.2 GFLOPS. The flop throughtput rate for TVM is thus somewhere between

, Vol. —, No. —, Article —. Publication date: —.

—:32 Guillermo Alaejos et al.

the two rates for BLIS (i.e., with and without prefetching) which, on the one hand, is not totally
surprising as TVM cannot exploit (assembly-level) prefetching instructions. On the other hand, the
dimensions of the best micro-kernel selected by TVM are quite surprising. To further investigate
this, we instructed TVM to generate a gemm routine using a BLIS-like micro-kernel, that is, with
𝑚𝑟 × 𝑛𝑟 = 6 × 16 and an unrolling factor of 4. Interestingly, the TVM routine that integrated this
micro-kernel reported 39.60 GFLOPS only. The reason is that, for this particular micro-kernel
dimension and unrolling factor, TVM produced a micro-kernel that did not maintain the micro-tile
of 𝐶 into the processor registers, incurring into register spilling during the execution of the micro-
kernel loop and considerably degrading performance! Whether we can enforce TVM to avoid this
effect is currently under investigation as, to a good extent, it depends on internal behavior of TVM.

9 CONCLUDING REMARKS
We have presented an integral TVM-based solution to automatically obtain high performance
realizations of gemm. On the one hand, our solution departs from conventional library-based realiza-
tions of gemm in that the full code is automatically generated, including both the blocked routines
for the family of gemm algorithms extending the ideas of GotoBLAS2 as well as the processor-
specific micro-kernels. On the other hand, compared with other JIT compilation frameworks, we
mimic the techniques in the GotoBLAS2/BLIS/OpenBLAS2 algorithms for gemm to obtain blocked
algorithms that attain an efficient utilization of the cache memories, considerably trimming the
cost of exploring the optimization search space. TVM can also generate competitive code for GPUs
that perform close to NVIDIA cuBLAS library. However, the schedule for the GPU-specific gemm
differs from that in the CPU version described in this work. Explaining the differences out of scope
for this work.

Our work exposes the programming advantages, from the points of view of performance, main-
tainability, and portability, of the TVM-automatized approach, which can be leveraged, among
others, to seamlessly generate routines for different data types, explore distinct packing schemes,
evaluate alternative parallelization options, and instantiate the entire family of matrix multiplication
algorithms.

ACKNOWLEDGMENTS
This work was supported by the research projects PID2020-113656RB-C22 (MCIN/AEI/10.13039/
501100011033), and PID2021-126576NB-I00; and CM via Multiannual Agreement with Complutense
University in the line Program to Stimulate Research for Young Doctors in the context of the V
PRICIT under projects PR65/19-22445 and CM S2018/TCS-4423. A. Castelló is a FJC2019-039222-
I fellow supported by MCIN/AEI/10.13039/ 501100011033. H. Martínez is a postdoctoral fellow
supported by the Consejería de Transformación Económica, Industria, Conocimiento y Universidades
de la Junta de Andalucía. This project has received funding from the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No 955558 (eFlows4HPC project). The
JU receives support from the European Union’s Horizon 2020 research and innovation programme,
and Spain, Germany, France, Italy, Poland, Switzerland, and Norway.

REFERENCES
[1] Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V. Le. 2017. Neural Optimizer Search with Reinforcement

Learning. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017 (Proceedings of Machine Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR,
459–468. http://proceedings.mlr.press/v70/bello17a.html

[2] Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying Parallel and Distributed Deep Learning: An In-depth Concurrency
Analysis. ACM Comput. Surv. 52, 4, Article 65 (Aug. 2019), 43 pages. https://doi.org/10.1145/3320060

, Vol. —, No. —, Article —. Publication date: —.

http://proceedings.mlr.press/v70/bello17a.html
https://doi.org/10.1145/3320060

Algorithm XXX: Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM —:33

[3] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 13, 1
(feb 2012), 281–305.

[4] Uday Bondhugula. 2020. High Performance Code Generation in MLIR: An Early Case Study with GEMM. CoRR
abs/2003.00532 (2020). arXiv:2003.00532 https://arxiv.org/abs/2003.00532

[5] A. Castelló, F. D. Igual, and E. S. Quintana-Ortí. 2022. Anatomy of the BLIS family of algorithms for matrix multiplication.
In 2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). 92–99.
https://doi.org/10.1109/PDP55904.2022.00023

[6] Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High Performance convolutional neural networks for document
processing. In International Workshop on Frontiers in Handwriting Recognition.

[7] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016,
Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (Eds.). ACM,
785–794. https://doi.org/10.1145/2939672.2939785

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q. Yan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: End-to-End Optimization Stack for Deep Learning. CoRR
abs/1802.04799 (2018). arXiv:1802.04799 http://arxiv.org/abs/1802.04799

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan
Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning. In Proceedings of the 13th USENIX Conference on Operating Systems Design
and Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Association, USA, 579–594.

[10] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,
Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
USENIX Association, Carlsbad, CA, 578–594. https://www.usenix.org/conference/osdi18/presentation/chen

[11] Tianqi Chen, Lianmin Zheng, Eddie Q. Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. 2018. Learning to Optimize Tensor Programs. CoRR abs/1805.08166 (2018). arXiv:1805.08166
http://arxiv.org/abs/1805.08166

[12] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. 2014. cuDNN: Efficient Primitives for Deep Learning. CoRR abs/1410.0759 (2014). arXiv:1410.0759
http://arxiv.org/abs/1410.0759

[13] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. 2001. Automated empirical optimizations of software and the
ATLAS project. Parallel Comput. 27, 1 (2001), 3–35. https://doi.org/10.1016/S0167-8191(00)00087-9 New Trends in
High Performance Computing.

[14] Kevin Dowd and Charles R. Severance. 1998. High Performance Computing (2nd ed.). O’Reilly.
[15] Kazushige Goto and Robert A. van de Geijn. 2008. Anatomy of a High-Performance Matrix Multiplication. ACM Trans.

on Mathematical Software 34, 3 (May 2008), 12:1–12:25.
[16] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. 2004. A Family of High-Performance

Matrix Multiplication Algorithms. In Proc. 7th Int. Conf. on Applied Parallel Computing: State of the Art in Scientific
Computing (Lyngby, Denmark) (PARA’04). 256–265.

[17] Kirthevasan Kandasamy,Willie Neiswanger, Jeff Schneider, Barnabás Póczos, and Eric P. Xing. 2018. Neural Architecture
Search with Bayesian Optimisation and Optimal Transport. CoRR abs/1802.07191 (2018). arXiv:1802.07191 http:
//arxiv.org/abs/1802.07191

[18] Duseok Kang, Euiseok Kim, Inpyo Bae, Bernhard Egger, and Soonhoi Ha. 2018. C-GOOD: C-Code Generation
Framework for Optimized on-Device Deep Learning. In Proceedings of the International Conference on Computer-Aided
Design (San Diego, California) (ICCAD ’18). Association for Computing Machinery, New York, NY, USA, Article 105,
8 pages. https://doi.org/10.1145/3240765.3240786

[19] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bondhugula, River Riddle, Albert Cohen, Tatiana Shpeisman,
Andy Davis, Nicolas Vasilache, and Oleksandr Zinenko. 2020. MLIR: A Compiler Infrastructure for the End of Moore’s
Law. CoRR abs/2002.11054 (2020). arXiv:2002.11054 https://arxiv.org/abs/2002.11054

[20] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan, and Depei Qian. 2020.
The Deep Learning Compiler: A Comprehensive Survey. CoRR abs/2002.03794 (2020). arXiv:2002.03794 https:
//arxiv.org/abs/2002.03794

[21] Tze Meng Low, Francisco D. Igual, Tyler M. Smith, and Enrique S. Quintana-Ortí. 2016. Analytical Modeling Is Enough
for High-Performance BLIS. ACM Trans. on Mathematical Software 43, 2, Article 12 (Aug. 2016), 18 pages.

[22] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad
Norouzi, Samy Bengio, and JeffDean. 2017. Device Placement Optimizationwith Reinforcement Learning. In Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017

, Vol. —, No. —, Article —. Publication date: —.

https://arxiv.org/abs/2003.00532
https://arxiv.org/abs/2003.00532
https://doi.org/10.1109/PDP55904.2022.00023
https://doi.org/10.1145/2939672.2939785
https://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1802.04799
https://www.usenix.org/conference/osdi18/presentation/chen
https://arxiv.org/abs/1805.08166
http://arxiv.org/abs/1805.08166
https://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
https://doi.org/10.1016/S0167-8191(00)00087-9
https://arxiv.org/abs/1802.07191
http://arxiv.org/abs/1802.07191
http://arxiv.org/abs/1802.07191
https://doi.org/10.1145/3240765.3240786
https://arxiv.org/abs/2002.11054
https://arxiv.org/abs/2002.11054
https://arxiv.org/abs/2002.03794
https://arxiv.org/abs/2002.03794
https://arxiv.org/abs/2002.03794

—:34 Guillermo Alaejos et al.

(Proceedings of Machine Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, 2430–2439. http:
//proceedings.mlr.press/v70/mirhoseini17a.html

[23] Thierry Moreau, Tianqi Chen, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. VTA: An
Open Hardware-Software Stack for Deep Learning. CoRR abs/1807.04188 (2018). arXiv:1807.04188 http://arxiv.org/
abs/1807.04188

[24] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
2013. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery, New York, NY, USA, 519–530. https:
//doi.org/10.1145/2491956.2462176

[25] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. 2017. Searching for Activation Functions. CoRR abs/1710.05941
(2017). arXiv:1710.05941 http://arxiv.org/abs/1710.05941

[26] Amit Sabne. 2020. XLA : Compiling Machine Learning for Peak Performance.
[27] Tyler M. Smith, Robert van de Geijn, Mikhail Smelyanskiy, Jeff R. Hammond, and Field G. Van Zee. 2014. Anatomy of

High-Performance Many-Threaded Matrix Multiplication. In Proc. IEEE 28th Int. Parallel and Distributed Processing
Symp. (IPDPS’14). 1049–1059.

[28] Tyler M. Smith and Robert A. van de Geijn. 2019. The MOMMS Family of Matrix Multiplication Algorithms. CoRR
abs/1904.05717 (2019). arXiv:1904.05717 http://arxiv.org/abs/1904.05717

[29] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2017. Efficient Processing of Deep Neural Networks: A
Tutorial and Survey. Proc. IEEE 105, 12 (Dec 2017), 2295–2329. https://doi.org/10.1109/JPROC.2017.2761740

[30] Field G. Van Zee and Robert A. van de Geijn. 2015. BLIS: A Framework for Rapidly Instantiating BLAS Functionality.
ACM Trans. on Mathematical Software 41, 3 (2015), 14:1–14:33.

[31] Field G. Van Zee and Robert A. van de Geijn. 2016. The BLIS Framework: Experiments in Portability. ACM Trans. on
Mathematical Software 42, 2, Article 12 (June 2016), 19 pages.

[32] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, and Jürgen Schmidhuber. 2011. Natural Evolution Strategies.
arXiv:1106.4487 [stat.ML]

[33] Zhang Xianyi, Wang Qian, and Zhang Yunquan. 2012. Model-driven Level 3 BLAS Performance Optimization on
Loongson 3A Processor. In 2012 IEEE 18th International Conference on Parallel and Distributed Systems (ICPADS).

[34] Kamen Yotov, Xiaoming Li, María Jesús Garzarán, David Padua, Keshav Pingali, and Paul Stodghill. 2005. Is Search
Really Necessary to Generate High-Performance BLAS? Proceedings of the IEEE, special issue on “Program Generation,
Optimization, and Adaptation” 93, 2 (2005).

[35] Huaqing Zhang, Xiaolin Cheng, Hui Zang, and Dae Hoon Park. 2019. Compiler-Level Matrix Multiplication Optimiza-
tion for Deep Learning. CoRR abs/1909.10616 (2019). arXiv:1909.10616 http://arxiv.org/abs/1909.10616

[36] Y. Zhang. 2009. Parallel solution of integral equation-based EM problems in the frequency domain. IEEE Press.
[37] Barret Zoph and Quoc V. Le. 2016. Neural Architecture Search with Reinforcement Learning. CoRR abs/1611.01578

(2016). arXiv:1611.01578 http://arxiv.org/abs/1611.01578

, Vol. —, No. —, Article —. Publication date: —.

http://proceedings.mlr.press/v70/mirhoseini17a.html
http://proceedings.mlr.press/v70/mirhoseini17a.html
https://arxiv.org/abs/1807.04188
http://arxiv.org/abs/1807.04188
http://arxiv.org/abs/1807.04188
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1904.05717
http://arxiv.org/abs/1904.05717
https://doi.org/10.1109/JPROC.2017.2761740
https://arxiv.org/abs/1106.4487
https://arxiv.org/abs/1909.10616
http://arxiv.org/abs/1909.10616
https://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578

