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A B S T R A C T   

Functional MRI is, currently, the most sensitive technique in breast cancer for detecting early tumors, and perfusion (DCE-MRI) has become the most important 
sequence to depict and characterize angiogenesis and neovascularization. In this work, we propose the use of new biomarkers that are related to clear physiological 
phenomena, obtained from MCR-ALS as an alternative to curve-based pseudo-biomarkers and pharmacokinetics models. In order to provide a discrimination and 
prediction model between healthy tissue and cancer, we propose using PLS-DA with double cross-validation (2CV) and variable selection, repeated several times and 
obtaining excellent average results for the performance indexes (f-score: 0.9149, MCC: 0.8538, AUROC: 0.8794). After selecting the optimal prediction model, a 
unique probabilistic map called “virtual biopsy” that shows in different colors the probability that each pixel of the image has a tumor behavior is obtained, helping 
the specialist with the identification and characterization of breast tumors with only one easy-to-interpret biomarker map.   

1. Introduction 

Breast cancer is one of the most prevalent cancers at present, being 
the main cause of cancer mortality within the female population. There 
were approximately 2.3 million new breast cancer cases worldwide in 
2020 [1,2]. Due to the lack of objective indicators of cancer presence 
(risk of developing tumoral tissue) and the high number of deaths that is 
consequence of this fact, breast cancer has been the focus of attention of 
the health community for a long time, addressing a large part of the 
efforts to the early diagnosis of the disease and prevention. The survival 
rate of breast cancer is really high if they are detected in very early 
stages, dropping dramatically to less than 15 % when detected in 
advanced stages [3]. 

Due to the high incidence of this disease, the efforts of the health 
community should be focused in the development of better diagnostic 
and treatment techniques. For this reason, different imaging techniques 
have been developed, including functional magnetic resonance imaging 
(MRI) due to its ability to early detect angiogenesis and neo
vascularization, main indicators of a tumor process [4]. 

Angiogenesis and neovascularization are biological processes asso
ciated to tissues with increased oxygen and nutrients demands. These 
processes seldom occur in healthy subjects, but they are strongly present 
in pathological conditions such as tumors. The formation of these new 
and tortuous vessels produces an increase in the blood perfusion, which 

can be studied with dynamic contrast-enhanced magnetic resonance 
imaging (DCE-MRI) [5]. In DCE-MRI studies, an exogenous contrast 
media is administered intravenously and diffuses from the capillary 
network into the extravascular extracellular space (EES) and returns, 
establishing a dynamic relationship between the image signal intensity 
changes and the amount of contrast media that passes and diffuses into a 
certain tissue. The capability to analyze tumor angiogenesis in a quan
titative and reproducible way from DCE-MR images has important ap
plications to depict and grade tumors, and also to early evaluate the 
therapeutic response after treatment onset [6,7]. To obtain quantitative 
measurements, it is necessary to fit and characterize the intensity versus 
time curves associated to each voxel of the image. Out of the different 
approaches proposed to achieve this characterization, mathematical 
pharmacokinetic models have become the most popular way due to their 
ability to provide clinically-oriented biomarkers in tumor analysis. 
Nevertheless, when the temporal resolution is low (which is the case of 
breast DCE-MRI, where only 6 different time points are acquired), the 
pharmacokinetic analysis is not useful and the radiologists prefer easier 
indicators such as the characteristics of the curves vs. time (slope, time 
to maximum, signal drop from peak percentage, etc.). However, this 
methodology can be improved with the application of multivariate 
image analysis (MIA) techniques to this kind of sequences. Recently, 
new biomarkers obtained from multivariate curve resolution (MCR) 
models have been also proposed [8,9] in prostate cancer studies in order 
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to provide more easy-to-interpret biomarkers, associated to specific 
physiological phenomena like angiogenesis. 

The aims of this paper are the following:  

1. To provide new parametric maps obtained from the MCR imaging 
biomarkers helping the radiologists with new tools for breast cancer 
diagnosis. Additionally, in this work, three new biomarkers have 
been introduced in order to help the professionals in the visualization 
of the lesions in the parametric maps.  

2. To test these biomarkers for classification/prediction of healthy vs. 
lesion tissues. The MCR biomarkers are introduced in a classification 
model using partial least squares discriminant analysis (PLS-DA) 
technique [10,11], studying the sensitivity and specificity associated 
to the rate of false positives (FP) and false negatives (FN), and testing 
different well-known figures-of-merit like f-score, MCC, AUROC, 
specificity, sensitivity and FN/FP percentages. 

3. To provide a new feature as a unique probabilistic map called “Vir
tual biopsy”, which is a probability heat map obtained after 
obtaining the optimal PLS-DA model. These virtual biopsies are 
projections of new external cases onto the classification model, 
obtaining a cancer probability value for each pixel of the new image. 

The paper is organized as follows. In Section 2 the data base is 
described and the multivariate statistical methods used in this work are 
introduced. Section 3 presents the results of the MCR model, showing 
their capability for breast cancer classification/prediction. Examples of 
virtual biopsies are also provided for testing the model in real patients, 
discussing the pros and cons of using this kind of biomarkers. Finally, 
Section 4 provides the conclusions. 

2. Material and methods 

2.1. Patient database 

The database for the PLS-DA method consists of 25 histologically- 
confirmed cases of breast tumors. DCE-MRI sequences were acquired 
with 3T Philips Medical Systems equipment in all cases, ensuring full 
breast coverage (720 images total, 400 kb per DICOM image, 288 Mb 
total per case approximately) per case, 120 slices acquired at 6 different 
dynamics, in-plane resolution of 432 × 432 voxels, each one measuring 
0.8734 × 0.8734 × 2 mm3). Slice thickness 1.9950 mm. Spacing be
tween slices: 1.5 mm. repetition time 5.7454 s, echo time 3,15 s. Flip 
angle: 18 Acquisition time: 13 min approx. No preprocessing is required 
to the sequences since they are obtained under the same configuration 
and MRI equipment. 

Then, 60 additional cases with the same sequence characteristics 
have been used as an external set for virtual biopsy testing. These cases 
are also histologically-confirmed cases of breast tumors. 

Both data bases are composed of ductal non special type (NST) 
infiltrating carcinomas; the tumoral subtypes considered in this study 
are described in Table 1: 

Reference tumor regions of interest (ROIs) were identified and 
confirmed by pathological anatomy and the “ground truth” about the 
lesions is well known. Then, the ROIs were segmented by an expert 
radiologist in breast imaging and her team (up to five radiologists), 
considering image findings and then, biopsy location, using a structured 
reporting scheme for evaluating breast cancer known as breast imaging 
– reporting and data system (BI-RADS®) [12]. This scale ranges from 1 
to 6, based on the description of the lesion findings, and allows defining 
two different types of ROIs:  

• DL: Dominant Lesion (malignant), related to well-known cancer 
tissue (BI-RADS = 6).  

• H: Healthy, related to healthy tissue (normal breast) (BI-RADS = 1). 

These ROIs are manually defined by the radiologists, considering the 

BI-RADS score and the biopsy result, and are used as the gold reference 
for tissue classification. It is assumed that the behavior of the healthy 
regions is similar in cancer and healthy patients. Therefore, it could be 
used safely as the healthy tissue reference. The PLS-DA X matrix is built 
after selecting 7276 pixels (rows) from 25 different breast cancer pa
tients (3498 pixels with lesion and 3778 healthy pixels). 

All patients gave consent for using their medical images, which were 
anonymized before post-processing. The local Ethics Committee 
approved the study protocol. 

2.2. MCR-ALS models calculation 

One possible way to look for physiological meaningful dynamics is 
by applying multivariate statistical projection models to the DCE-MRI 
data. When dealing with images, the application of these models is 
known as multivariate image analysis (MIA) [13,14], usually based on 
principal component analysis (PCA) [15,16]. Nevertheless, a relevant 
drawback of the application of PCA in DCE-MR image analysis is that the 
estimated dynamics patterns are orthogonal by design. The orthogo
nality of the principal components is a limitation to model different 
perfusion behaviors that are not necessarily orthogonal. Therefore, PCA 
can never be a good approach when it comes to revealing the actual 
underlying physicochemical or biological phenomena from DCE-MRI, 
since it aggregates new orthogonal components according to their 
explained variance, losing their direct interpretability and, as a conse
quence, the information provided by the “scores-maps” (instead of the 
distribution maps) incorporates noise or mixes different phenomena; 
hence lowering the performance. In order to overcome these drawbacks, 
it is possible to use more flexible models as multivariate curve 
resolution-alternating least squares (MCR-ALS) [17,18], which do not 
impose this constraint. MCR is preferred to PCA because of its ability to 
provide physiologically interpretable behaviors by imposing a priori 
knowledge on the model. MCR-ALS is an iterative method that performs 
a bilinear decomposition of an S matrix by means of an alternating least 
squares optimization algorithm, 

S=C(D)
T
+ E (eq. 1)  

Where S contains the signal intensity registered for each voxel in rows; 
DT is a matrix containing in its rows each of the perfusion dynamic 
behaviors modelled; C gathers in its rows the relative contribution of 
each dynamic behavior modelled at each voxel of the image; and E is a 
residual matrix [8,9]. A scheme about the dimensions of the matrices in 
eq. (1) is shown in Fig. 1. 

In order to apply the MCR algorithm, the S matrix is built by 
unfolding the n1 x n2 voxels of the 120 slices of each case that form a 
grayscale image for each channel in the time dimension (T). A scheme of 

Table 1 
Description of the different types of tumoral subtype considered in this work.  

Tumoral Subtype Abb. description 

Luminal A LUM 
A 

This group includes tumors that are estrogen 
receptor positive and progesterone receptor 
positive but human epidermal growth factor 
receptor 2 negative. 

Luminal B LUM 
B 

This type includes tumors that are estrogen 
receptor positive, progesterone receptor 
negative, and human epidermal growth factor 
receptor 2 positive. 

Human epidermal 
growth factor receptor 
2 

HER 
2 

This type includes tumors that are negative for 
estrogen receptor and progesterone receptor, 
but positive for human epidermal growth 
factor receptor 2. 

Triple Negative TN This type, which is also called the “basal type,” 
includes tumors that are negative for the 
estrogen receptor, progesterone receptor, and 
human epidermal growth factor receptor 2. 
They are the most aggressive.  
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the unfolding process needed to obtain the S matrix from the perfusion 
images is shown in Fig. 2. 

One MCR model is obtained per case. During the MCR-ALS iterative 
process, equal length normalization is applied to the columns of D ma
trix containing the dynamic behaviors modelled (Fig. 3). This way the 
values of the relative contribution of each dynamic behavior modelled 
(columns of C matrix) can be directly compared with each other. Once 
the iterative process is completed, by refolding each column of C matrix 
into the original spatial dimensions, new biomarker images are obtained 
(Fig. 4), which allow locating those voxels more related to each one of 
the corresponding modelled dynamic behaviours. 

Note that MCR-ALS is based on an iterative process that can provide 
infinite solutions for the same data matrix causing a problem known as 
ambiguity in the solution [17,18]. This problem can be solved by 
imposing constraints commonly related to prior knowledge about the 
problem faced. So, it is possible to obtain easier-to-interpret solutions, 
which also tend to be unique when constraints introduced under the 
hypothesized assumptions are accurate. 

For this, two additional constraints were imposed:  

• Non-negativity on the pixel relative contribution values C, because 
the intensity in a pixel has to be nonnegative.  

• Non-negativity on the dynamic profiles DT. 

According to these papers [8,9] and specific clinical advice about the 
breast cancer behaviour, two components are considered in MCR models 
regarding to the dynamic patterns related to perfusion studies that can 

Fig. 1. MCR model schema containing the dimensions of the matrices for the DCE-MRI perfusion analysis. The 3 components (LV) considered in this model are the 
dynamic behaviors related to NT (normal tissue), VT (vascularized tissue) and CMA (contrast media arrival). 

Fig. 2. Data structure for MCR analysis. Images are n1 x n2 pixels size, T is the number of time points (perfusion dynamics), z is the number of slices. The 2D unfolded 
S matrix dimensions are ((n1 x n2 x z)) x T. 

Fig. 3. Dynamic behaviors obtained from MCR-ALS. d1: type NT, normal tissue; 
d2: type CMA, contrast media arrival; d3: type VT, vascular tissue. 
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be expected using the “a priori” knowledge about the process. (i.e., 
normal tissue (type NT (d1)) and vascular tissue (type VT (d3)) (Fig. 3). 
Also, a third component is obtained because of the appearance of an 
artifact introduced by the MRI equipment overestimating the signal 
intensity before the contrast arrival, defined as CMA (d2) [8,9]). 

Furthermore, from the three parametric maps obtained from the 
MCR-ALS model and clinical advice, three new imaging biomarkers are 
calculated related to the differences between the previous dynamics 
(Fig. 5). These biomarkers have been proposed in order to improve the 
visualization of the lesions in the parametric maps. This is a result of 
applying the MCR-based model to the breast and a solid way of 
removing the “base” intensity of the perfusion MRI artifact, consisting 
on a pre-contrast arrival to the tissue, because the vascularized tissue 
does not have any contribution in C2 but it does in C3 and C1. This way, 
the visualization is clearly improved as can be seen by comparing Figs. 4 
and 5. 

B1=C1 − C2 ; 2 = C3 − C2 ; B3 =
C1 + C3

2
− C2 (eq. 2) 

These imaging biomarkers are proposed in this paper since they 
clearly improve the visualization of the tumor regions. Also, they will be 
included in the classification model for testing their prediction ability. 
Moreover, also in this case, it is possible to include the residual sum of 
squares (RSS) of the MCR model (sum of squares of rows of residual 
matrix E in eq. (1)) as an additional potential biomarker measuring the 
lack of fit in each voxel location. 

2.3. Variable selection using double cross-validation (2CV) with PLS-DA 

In this paper, the capability of imaging biomarkers obtained from 
MCR-ALS have been tested for breast cancer classification using latent- 
variables based statistical classification methods, such as partial least 
squares-discriminant analysis (PLS-DA) [10,11]. Seven MCR biomarkers 
are proposed for discrimination:  

• C1 (NT behavior)  
• C2 (CMA behavior)  
• C3 (VT behavior)  
• B1  

• B2  
• B3  
• RSS (Residual sum of squares obtained from MCR model) 

A 7-column X matrix is constructed by stacking all the selected voxels 
in rows with the value of the seven biomarkers in columns. The selected 
voxels are the ones defined by the radiologists as DL (lesion) or H 
(healthy) ROIs for each patient. These ROIs are logical images, each one 
associated to a specific slice of the breast DCE-MRI sequence. Thus, the X 
matrix is constructed by stacking all the voxels assigned at the corre
sponding local image for all the patients. For the same voxels, a 2-col
umn Y matrix is defined with two dummy variables (0–1). The first 
column defines the “DL” variable (value 1 if the voxel belongs to the 
“DL” region, and value 0 if otherwise). The second column defines the 
“H” variable and is built complementary to the first one. Once fitted the 
PLS-DA model, the class showing a predicted higher value is assigned to 
each corresponding voxel. Using these PLS-DA class assignments, the 
assigned category of the voxels is compared to the original classification. 
Therefore, if the voxel belongs to H, it can be evaluated as a TN (True 
Negative) or FP (False Positive) depending on its prediction, and as a TP 
(True Positive) or FN (False Negative) if it is DL. This yields the confu
sion matrix from which different classification performance indexes are 
calculated: 

precision =
TP

TP + FP

recall = sensitivity =
TP

TP + FN
specificity =

TN
TN + FP

(eq. 3) 

These indexes are combined in three new performance indexes, f- 
score, Matthews correlation coefficient (MCC) and the area under the 
receiver operating characteristic (AUROC), chosen to evaluate the 
overall classification model performance. The f-score [19] is defined as 
the weighted harmonic mean of precision and recall: 

f-score=
2⋅precision⋅recall
precision + recall

(eq. 4) 

It ranges between 0 and 1, and takes the maximum when the 

Fig. 4. Parametric distribution maps of MCR-ALS imaging biomarkers (C1, C2, C3).  

Fig. 5. Parametric maps of the alternative MCR-ALS imaging biomarkers: B1 (left), B2 (middle), B3 (right).  
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precision and recall are one (the number of FP and FN is zero). The closer 
the f-score is to one, the better the model is in terms of classification 
performance. Additionally, the Matthews correlation coefficient [20] 
(MCC) is the correlation coefficient between the observed and predicted 
binary classifications; it returns a value between − 1 and + 1. A coeffi
cient of +1 represents a perfect prediction, 0 corresponds to no better 
than random prediction, and − 1 indicates total disagreement between 
prediction and observation: 

MCC=
TP⋅TN − FP⋅FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)⋅(TP + FN)⋅(TN + FP)⋅(TN + FN)

√ (eq. 5) 

The AUROC is defined as the area under the curve in the sensitivity 
vs (1-specificity) plot where a value of 0.5 is equivalent to random guess 
and 1 is perfect classification. 

The variable selection method proposed in this work (Fig. 6) is a 
wrapped double cross-validation (2CV) with variable selection, showing 
high similarities with other 2CV methods [19,20]. This method consists 
of dividing the voxels from the cases of the data set (25 patients in this 
work) in three randomized groups of cases (i.e., 9, 8, 8 patients), defined 
as training, validation and test. All the voxels from each case have their 
own class identification (DL or H) and are located at their corresponding 
group. This way, the voxels from a specific case are always included in 
the same group in order to avoid any type of overfitting. Moreover, the 
number of voxels in each category has been balanced as much as 
possible in order to avoid any bias of the model. 

The method performs as follows [21]: For each iteration (It) the data 
set is split in the 3 different sets (training, validation and test) and then 
the sets are permuted 3 times (P) obtaining 3 different data arrange
ment. For each one of these data arrangements, starting from a number 
of latent variables (NLV) equal to one, the training set is used for PLS-DA 
model building, using all the variables (biomarkers) considered. Then, 

projecting the validation set onto the model fitted with the training set, 
an initial f-score (0) is calculated evaluating the performance in the 
model classification. 

The f-score (0) is stored and then, the values of the BPLS coefficients 
for each variable or biomarker are compared with their “null” distri
bution obtained after breaking the correlation structure between X and 
Y of the training set. This breakage process consists of randomizing the 
order of the Y matrix rows keeping the same X and building a PLS-DA 
model to obtain the “null” model coefficients. This is internally 
repeated 500 times in order to obtain the null distribution [19,20] of 
these coefficients. This way, the variable (biomarker) is removed from 
the X matrix if the coefficient of a certain variable is not statistically 
significant. It is considered statistically significant if the real coefficient 
is out of the central 95 % range for the random null distribution values 
(i.e. α = 0.05). 

At each iteration step, all the non-statistically significant variables 
are removed all at once and, in the next step, a new PLS-DA model is 
built with the remaining statistically significant variables from the 
training set X matrix, obtaining a new value of f-score (1) after projec
ting again the same validation set (only using the remaining statistically 
significant variables) onto the new PLS-DA model. If the new f-score (1) 
is higher than f-score (0), the previous model is discarded (maintaining 
the new model) and the new value of f-score (1) is updated. In this case, 
the iterative process continues with a new variable selection comparing 
the new BPLS coefficients after breaking again the correlation structure 
between X and Y. However, if f-score (1) is lower than f-score (0), the 
best model is the one considered in the previous step. This iterative 
process is repeated until the f-score (n) is lower than the one obtained in 
the previous step, f-score (n-1), keeping this “best” model with its 
associated f-score (n-1) and its own variable selection. From the best 
model selected, a final external set (test) is projected onto this model 

Fig. 6. PLS-DA with 2CV and variable selection method pseudocode. The algorithm pipeline is represented with loop structure and indentation for better under
standing. It (500) represents the number of times the data set is split. P (3) is the number of set permutations between training, validation and test for each It. N is the 
maximum number of variables in X (7). NLV is the current number of latent variables. 
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obtaining the “final f-score”. This value is stored for further 
comparisons. 

Afterwards, the NLV is increased by one repeating the same process 
explained for one LV. This way, at the end we loop through N-1 (where N 
is the initial number of variables considered in the X matrix) NLV 
obtaining N-1 models (with its own variable selection) and final f-score. 
Although the new biomarkers (B1, B2 and B3) are linear combinations of 
the original MCR biomarkers, the iterative model will always reach the 
maximum NLV (N-1) permitted since it is not computationally 
demanding and in some iterations, the optimal model is obtained with 6 
LV (the maximum number allowed). It should be noted that if the 
number of variables remaining in X is higher than the current NLV, the 
variable selection loop stops, the previous model is stored, and the loop 
continues with the next NLV. After this, the final f-score of these N-1 
models are compared and the highest final f-score determines the best 
model with the best variable selection. Note that if different models 
provide the same value of final f-score, the most parsimonious model is 
preferred for simplicity. 

The initial group randomization is repeated 500 times obtaining 
1500 (500 × 3) different data arrangements. Variable selection [19–21] 
is applied in each iteration and for each NLV tested as long as the f-score 
improves in order to determine which biomarkers supply relevant in
formation for classification, selecting them for obtaining the optimal 
model. This step is added to the iterative process because when variable 
selection is not applied to PLS-DA, a suboptimal model can be obtained, 
lowering the classification performance. In this work, all the variables 
were almost always selected in the final model (above 95 % inclusion) 
but these results cannot be known “a priori”. This high selection rate is a 
confirmation that every variable from MCR is important for the 
discrimination between classes (even the linear combinations of the 
original biomarkers) and their inclusion improves the goodness of 
classification. A pseudocode of the algorithm is shown in Fig. 6. 

At the end of the process, the value of the final f-score, MCC, the 
variable selection (biomarkers that remain in the model), the percentage 
of TN, TP, FN, FP and the related number of latent variables (NLV) for 
the “best” model obtained for each arrangement of the 1500 groups are 
obtained. This way, afterwards, it is possible to select the most relevant 
biomarkers from those appearing with the highest frequency in the 1500 
final models, as well as computing the overall final f-score, MCC, 
AUROC, TN, TP, FN and FP values. At the end of the process, the overall 
best model is selected from the best models of this arrangement by 
averaging the BPLS coefficients of the 10 best models since the differ
ences between them are not statistically significant (results not shown). 
However, the best model out of the 1500 iterations can be used as well 
obtaining almost identical results when calculating the virtual biopsies 
in section 3.2. Both options have been tested obtaining equivalent vir
tual biopsy images (results of the comparison not shown). 

Once the methods are described and in order to ease the under
standing of the results, a summarized step-by-step of the proposed 
methodology is presented:  

1 Read the MRI perfusion images and build the data matrices structure 
following the unfolding process described in Fig. 2Then, stack all the 
slices of the same case and build a unique 2D matrix with pixels in 
rows and time points in columns able to be analyzed by MCR. 

2 Calculate the MCR-ALS algorithm applying non-negativity con
straints for D and C, and compute 3 components in the initialization 
(PCA can be used to obtain a good starting point, when no a priori 
knowledge is available).  

3 Once C is obtained, calculate the 3 new biomarkers with simple 
arithmetic operations and rearrange the values of them in the orig
inal spatial resolution to obtain the parametric maps of the 
biomarkers. 

4 Select the pixels of the lesions (indicated by the group of expert ra
diologists) and built the database described in 2.3 to apply PLS-DA 
with variable selection.  

5 Repeat the PLS-DA iterative method enough times (1500 in this case) 
to obtain an optimal model with the correspondent BPLS coefficients  

6 Project external cases (i.e., not included in the 2CV iterative method) 
onto the classification model, obtaining a cancer probability value 
for each pixel of the image. Rearrange the new probability map in the 
original spatial resolution to obtain the virtual biopsy parametric 
maps. 

3. Results and discussion 

First, the results obtained from the PLS-DA model are analyzed, 
selecting the optimized model in terms of the performance indexes 
described in the last section (f-score, MCC, AUROC, sensitivity, speci
ficity and FN/FP percentages). Then, this model is used for prediction 
purposes, obtaining a probabilistic map of the breast in order to differ
entiate between tumoral and healthy tissue, which is called “virtual 
biopsy”. Some examples are shown in the last point of this section. 

3.1. Optimized PLS-DA model selection 

The results repeating the optimization process 1500 times are shown 
in Tables 2 and 3: 

As can be seen in the tables, the results are extremely good, obtaining 
high levels of f-score (0.9149 mean value), MCC (0.8538 mean value) 
and AUROC (0.8794 mean value), which means the optimized model is 
good for classification purposes, and better than other studies [21] 
(f-score = 0.7857). These results can also be analyzed in terms of the 
false positive rate (1.3 % mean rate) and the false negatives rate (6.14 % 
mean rate). This low FP rate can be assumed close to 0 since the model is 
built at pixel level and better than other studies [21] (7.5 %). Although 
the FN rate in slightly higher, it is still low and better than other studies 
[21] (13.5 %), although reference 21 is referred to another type of 
cancer (prostate). It should be noted that, as indicated, this analysis is 
performed at the pixel level, where the classification is more difficult 
than at the ROI level. 

Regarding the number of NLV, the average obtained is 3.37 and the 
best model has 2 NLV. However, 300 out of 1500 iterations reached the 
maximum number of NLV (6). 

In order to show a better visual understanding of the results, some 
histograms of the principal indexes are presented in Fig. 7: 

When the f-score distributions for the training and test sets are 
compared (Fig. 7, top), the differences are low, being the training f-score 
slightly better, as it is assumed because it is obtained from the set used to 
build the model. But the distributions are mostly overlapped, showing 
good prediction consistency. Similar results (not shown) are obtained 
for MCC and AUROC. 

Regarding the variable selection, the next table shows the results of 
the percentage of inclusion of each biomarker: 

As shown in Table 4, the biomarkers proposed in this paper are 
almost always included in the model (inclusion rate higher than 95 %). 
This result demonstrates the importance of every biomarker for classi
fication, even the ones obtained from the original MCR imaging bio
markers, and the lack-of-fit represented by the RSS. All of them are 
needed for improving the classification performance. However, it must 
be noted that this result might be not always the case: it depends on the 

Table 2 
Results of the iterative process, after 1500 iterations (f-score, MCC, AUROC, 
specificity, sensitivity and precision).   

f-score MCC AUROC specificity sensitivity precision 

Mean 0.9149 0.8538 0.8794 0.9686 0.8958 0.9754 
Median 

(prt 
50) 

0.9147 0.8533 0,9176 0.9719 0.8938 0.9780 

prt 25 0.8917 0.8155 0.8747 0.9583 0.8681 0.9676 
prt 10 0.8749 0.7894 0.7560 0.9432 0.8487 0.9550  
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quality of the biomarkers applied and their relationship with the organ 
analyzed. This model is also tumor-type dependent; it works better in 
highly vascularized lesions such as the ones of the data base (ductal non 
special type (NST) infiltrating carcinomas), but it could have difficulties 
with lobular carcinoma, in situ or patients who have undergone neo
adjuvant chemotherapy (NAC). 

3.2. Virtual biopsies 

Once the MCR modelling and PLS-DA classification abilities have 
been demonstrated, the next step is to select the best model and apply it 
for prediction. This model, as explained in section 2.3, is obtained by 
averaging the BPLS coefficients of the 10 best models. It should be noted 
that the group of best models were compared in terms of the regression 
coefficients and the differences between them were found not relevant 
(statistically significant differences in ANOVA, p-values>0.05) (results 
not shown). Therefore, the average model is a good representation of the 
group of best models. Then, the corresponding regression parameters of 
the PLS-DA model associated to each biomarker are taken and applied to 
the external data set mentioned on section 2.1 (60). Some examples of 
histologically-confirmed tumor and healthy cases are shown in Fig. 8: 

For prediction purposes, the best threshold for class separation is 
established in +2 as the prediction can take values up to 3. For this 
model, a value higher than 2 (in the breast region) can be considered 
high tumor probability and lower than 2 can be considered healthy 
tissue. As can be seen, the virtual biopsies are able to predict the tumor 
region with precision indicated in Fig. 8 with white arrows. Thus, the 
visual interpretation is clear and easy (with only one parametric map), 
supporting and helping the radiologists in their daily work. Posteriorly 
to this work, this model has been applied on a clinical multicentric 
evaluation to a more extended data base of 136 cases, yielding 96.2 % 
sensitivity and 84.7 % specificity with 23 and 4 FP/FN respectively on 
patient level (the results of the present work are on pixel level). 

4. Conclusions 

MCR-ALS imaging biomarkers were able to successfully extract the 
pure behaviors (associated to vascularization processes) from DCE-MRI 
sequences in breast cancer. Also, their ability to discriminate tumoral 
from healthy tissue has been demonstrated, showing average f-score of 
0.9149 and average MCC of 0.8538 which are the best results obtained 
from MCR-ALS models for cancer discrimination till now. These results 
are better than the ones published for prostate cancer (f-score = 0.7857) 
[21] and others where only first generation pharmacokinetic models are 
considered (sensitivity, between 0.45 and 0.63; specificity, between 
0.71 and 0.85) [22–24], AUC (0.7) [25]. Moreover, these results remark 
the relevance of MCR for extracting very useful information in situations 
where the DCE-MRI pharmacokinetic clinical biomarkers reach a 
computational limitation. Finally, new parametric maps known as 
“virtual biopsies” have been proposed as a clear and easy way of breast 
cancer detection, presented as a helping tool for radiologist’s daily 
cancer diagnosis tasks. 
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Table 3 
Results of the iterative process, after 1500 iterations (FP(%) and FN(%)).   

FP(%) FN(%) 

Mean 1.3112 6.1440 
Median (50th percentile) 1.1865 6.2044 
75th percentile 1.7290 7.8896 
90th percentile 2.3798 9.1773  

Fig. 7. Top: f-score (test) vs. f-scoreT (training), bottom left: %FP, bottom right: %FN. Calculated for the 1500 iterations of the PLS-DA iterative model.  

Table 4 
Percentage of inclusion of the biomarkers from MCR- 
ALS in the PLS-DA model, regarding the variable se
lection method.  

Biomarker % of inclusion 

C1 96.73 
C2 99.73 
C3 98.53 
RSS 97.93 
B2 100 
B1 99.33 
B3 99.8  
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[19] M. Sjöström, S. Wold, B. Söderström, PLS discriminant plots, in: Proceedings of 
PARC in Practice, Amsterdam, June 19–21, 1985, Elsevier Science Publishers B.V., 
North-Holland, 1986. 

[20] B.W. Matthews, Comparison of the predicted and observed secondary structure of 
T4 phage lysozyme, Biochim. Biophys. Acta Protein Struct. 405 (2) (1975) 
442–451. 

Fig. 8. Virtual biopsies examples calculated for external cases. Scale from − 1 to 3. Values > 2 show high probability of breast cancer in the breast region. The region 
of the body in the lower part of the image (below the breast) is not considered for cancer prediction as it contains vascular regions like the heart or big arteries. The 
breast region is indicated by the red squared section. The white arrow indicates the location of the tumor lesion in the image. The last example (bottom right) shows a 
virtual biopsy map of a healthy case. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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