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Abstract

The field of affective computing is an area that has emerged with great momentum and is

constantly evolving. This field integrates psychophysiology, computer science, biomed-

ical engineering, and artificial intelligence, developing systems capable of inducing and

recognizing emotions automatically. Its main focus is the study of human behavior

through emotions, which play a fundamental role in actions such as social interaction,

decision-making, or memory.

Recently, technological advances have made possible the development of human-

machine intelligent systems that were previously unattainable. Elements such as virtual

reality and generative models of artificial intelligence are becoming increasingly relevant

in the field of affective computing. The combination of these technologies could lead to

much more realistic experiments that, along with automatic recognition of physiological

responses, could constitute a robust methodology for evoking and identifying emotional

states in social dynamic environments.

This thesis focuses on the elicitation and recognition of emotions in virtual reality

through the creation of the first virtual human, based on a generative language model,

capable of engaging real-time conversations with a human. Various physiological sig-

nals have been measured, and signal processing tools have been developed to monitor

responses automatically. Based on this, the elicitation and recognition of emotions

through machine learning have been evaluated and validated, as well as the recognition

of subjects with depressive symptoms.

This work begins with the adaptation of a 2D eye-tracking fixation algorithm to

a 3D virtual reality environment. In this context, it is necessary to consider that, in

addition to the gaze point, the position of the head within the environment is dynamic,

so it must be taken into account to recognize fixations. Since the algorithm depends

on a set of parameters, an experimental methodology has been developed, based on the

joint optimization of a set of variables, to find the optimal values of these parameters.
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The algorithm has been published to be used by the scientific community.

Secondly, the skin conductance signal, which measures sympathetic nervous system

activation, is examined. This signal often exhibits motion artifacts that distort the in-

formation it conveys. Due to the challenge of automatically detecting and correcting

these artifacts, this task has predominantly been performed manually. This thesis pro-

poses the first algorithm for automatic detection and correction of these artifacts, based

on deep learning models. A model based on convolutional neural networks with a long

short-term memory input layer is developed for artifact detection, improving upon state-

of-the-art results. For artifact correction, a regression algorithm is utilized to replace

the affected signal. The results of this work demonstrate that the phase decomposition

of the manually corrected signal and that which could be performed by an expert do

not show significant differences. Conversely, both differ significantly from the original

signal with artifacts. The model has been made publicly available for use in systems

with automatic processing.

Next, an experimentation for emotion elicitation and detection is conducted. This

experimentation is based on a real-time, voice-based conversation with a virtual human.

This virtual human has been developed using state-of-the-art artificial intelligence tech-

nology, such as generative language models, voice transcription, voice synthesis, and lip

synchronization. The experimentation takes place in a semi-immersive virtual reality

environment where the virtual human is displayed through life-sized projection. The

prototype has been technically validated, and communicative dynamics between the

virtual human and the subject have been analyzed. Additionally, the naturalness and

realism of the conversations, as well as the elicited emotions in the subjects, have been

evaluated.

Finally, the prototype has been used for the recognition of depressive symptoms

using eye-tracking and electrodermal activity. For this purpose, an experiment was

conducted with 98 subjects, and a methodology for analysis and validation based on

machine learning was developed to make predictions. The models achieved a precision

of 0.733 and a recognition rate of non-depressive patients of 0.828. Additionally, the

recognition of naturalness and realism of conversations, as well as the elicited emotions,

has been explored.

The work developed in this thesis presents relevant contributions, not only to the field

of affective computing but also, to related areas such as signal processing and human-

machine interactions. The tools developed, along with innovative artificial intelligence

models, enable experimentation in human social dynamics environments that have never
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been designed before. The results demonstrate how this work is capable of modeling

such relevant information as emotions and depressive symptoms of the person being

interacted with. Fields such as psychology, medicine, or education can utilize many of

the tools developed in this thesis to provide more information in decision-making or

social interaction processes.





Resum

El camp de la computació afectiva és un àmbit que ha sorgit amb gran impuls i està

en constant evolució. Aquest camp aconsegueix integrar psicofisiologia, informàtica,

enginyeria biomèdica i intel·ligència artificial, desenvolupant sistemes capaços d’induir i

reconèixer emocions de manera automàtica. El seu enfocament principal és l’estudi del

comportament humà a través de les emocions, les quals juguen un paper fonamental en

accions com la interacció social, la presa de decisions o la memòria.

Recentment, els avanços tecnològics han possibilitat el desenvolupament de sistemes

intel·ligents humà-màquina que abans no eren factibles. Elements com la realitat virtual

i els models generatius d’intel·ligència artificial estan adquirint un paper rellevant en el

camp de la computació afectiva. La combinació d’aquestes tecnologies pot donar lloc a

experimentacions molt més realistes que, juntament amb el reconeixement automàtic de

respostes fisiològiques, podrien constituir una metodologia robusta per evocar i identi-

ficar estats emocionals en entorns de dinàmiques socials.

Aquesta tesi es centra en la evocació i reconeixement d’emocions en realitat virtual

mitjançant la creació del primer humà virtual, basat en un model de llenguatge gen-

eratiu, que permet mantenir converses en temps real amb un humà. S’han mesurat

diverses senyals fisiològiques i desenvolupat eines de processament de senyals per mon-

itoritzar les respostes de manera automàtica. A partir d’això, s’ha avaluat i validat no

només la evocació i reconeixement d’emocions mitjançant aprenentatge automàtic, sinó

també el reconeixement de subjectes amb śımptomes depressius.

Aquest treball comença amb l’adaptació d’un algoritme de fixacions d’eye-tracking

en 2D a un entorn 3D de realitat virtual. En aquest context, és necessari tenir en

compte que, a més del lloc de l’impacte de la mirada, la posició del cap dins de l’entorn

és dinàmica, pel que cal tindre-la en compte per a reconèixer les fixacions. Donat que

l’algoritme depèn d’una sèrie de paràmetres, s’ha realitzat una metodologia experimen-

tal, fonamentada en l’optimització conjunta d’un conjunt de variables, per a trobar els
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valors òptims d’aquests paràmetres. L’algoritme ha sigut publicat per a ser utilitzat per

la comunitat cient́ıfica.

En segon lloc, s’estudia la senyal galvànica de la pell, que mesura l’activació del

sistema simpàtic. Aquesta senyal sol presentar artefactes de moviment que distorsionen

l’informació que es puga extraure de la mateixa. A causa de la dificultat que suposa

la detecció i correcció d’artefactes de forma automàtica, aquesta tasca s’ha realitzat

majoritàriament de forma manual. En aquesta tesi es proposa el primer algoritme de

detecció i correcció automàtica d’aquests artefactes, basat en models d’aprenentatge pro-

fund. Es desenvolupa un model basat en xarxes convolucionals amb una capa d’entrada

de long short-term memory per a la detecció d’artefactes, millorant els resultats de

l’estat de l’art. Per a la correcció d’artefactes s’utilitza un algoritme de regressió que

substituiria la senyal afectada. Els resultats d’aquest treball mostren que la descom-

posició fàsica de la senyal corregida manualment i la descomposició fàsica que podria

realitzar un expert, no guarden diferències significatives. En canvi, ambdues śı que les

tenen comparades amb la senyal original amb artefactes. El model s’ha fet públic per

al seu ús en sistemes amb processament automàtic.

A continuació, es desenvolupa una experimentació per a l’evocació i detecció d’emocions.

Aquesta experimentació està basada en una conversa en temps real i per veu amb

un humà virtual. Aquest ha sigut desenvolupat utilitzant la tecnologia més avançada

d’intel·ligència artificial, com són els models generatius de llenguatge, transcripció de

veu, śıntesi de veu i sincronització labial. L’experimentació s’ha dut a terme en un en-

torn de realitat virtual semi-immersiu en el qual l’humà virtual es mostra a través d’una

projecció a mida natural. El prototip ha sigut validat tècnicament i s’han analitzat

les dinàmiques comunicatives entre l’humà virtual i el subjecte. A més, s’ha avaluat la

naturalitat i el realisme de les converses, aix́ı com les emocions evocades en els subjectes.

Finalment, s’ha utilitzat el prototip per al reconeixement de śımptomes depressius

utilitzant biomarcadors d’eye-tracking i l’activitat electrodermal. Per a això, s’ha real-

itzat un experiment amb 98 subjectes i s’ha desenvolupat una metodologia d’anàlisi i

validació basada en aprenentatge automàtic per a realitzar prediccions. Els models han

assolit una precisió de 0.733 i una taxa de reconeixement de pacients no depressius de

0.828. A més, s’ha explorat el reconeixement de naturalitat i realisme de les converses,

aix́ı com les emocions evocades.

El treball desenvolupat en aquesta tesi presenta contribucions rellevants, tant per

al camp de la computació afectiva com per a altres àrees afins com el processament

de senyals i les interaccions humà-màquina. Les eines desenvolupades juntament amb
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models innovadors d’intel·ligència artificial aconsegueixen realitzar una experimentació

en entorns de dinàmiques socials humanes que mai abans s’havia dissenyat. Els resultats

mostren com aquest treball és capaç de modelitzar informació tan rellevant com emocions

i śımptomes depressius de la persona amb la qual es parla. Àrees com la psicologia, la

medicina o l’educació poden utilitzar moltes de les eines desenvolupades en aquesta tesi

per a proporcionar més informació en la presa de decisions o en la interacció social.





Resumen

El campo de la computación afectiva es un área que ha surgido con gran impulso y está

en constante evolución. Este campo logra integrar psicofisioloǵıa, informática, ingenieŕıa

biomédica e inteligencia artificial, desarrollando sistemas capaces de inducir y reconocer

emociones de manera automática. Su enfoque principal es el estudio del comportamiento

humano a través de las emociones, las cuales desempeñan un papel fundamental en

acciones como la interacción social, la toma de decisiones o la memoria.

Recientemente, los avances tecnológicos han posibilitado el desarrollo de sistemas

inteligentes humano-máquina que antes no eran factibles. Elementos como la realidad

virtual y los modelos generativos de inteligencia artificial están adquiriendo un papel rele-

vante en el campo de la computación afectiva. La combinación de estas tecnoloǵıas puede

dar lugar a experimentaciones mucho más realistas que, junto con el reconocimiento au-

tomático de respuestas fisiológicas, podŕıan constituir una metodoloǵıa robusta para

evocar e identificar estados emocionales en entornos de dinámicas sociales.

Esta tesis se centra en la evocación y reconocimiento de emociones en realidad vir-

tual mediante la creación del primer humano virtual, basado en un modelo de lenguaje

generativo, que permite mantener conversaciones a tiempo real con un humano. Se

han medido diversas señales fisiológicas y desarrollado herramientas de procesamiento

de señales para monitorizar las respuestas de manera automática. A partir de esto,

se ha evaluado y validado no solo la evocación y reconocimiento de emociones medi-

ante aprendizaje automático, sino también el reconocimiento de sujetos con śıntomas

depresivos.

Este trabajo comienza con la adaptación de un algoritmo de fijaciones de eye-tracking

en 2D a un entorno 3D de realidad virtual. En este contexto es necesario considerar que,

además del lugar del impacto de la mirada, la posición de la cabeza dentro del entorno

es dinámica, por lo que hay que tenerla en cuenta para reconocer las fijaciones. Dado

que el algoritmo depende de una serie de parámetros, se ha realizado una metodoloǵıa
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experimental, fundamentada en la optimización conjunta de un set de variables, para

encontrar los valores óptimos de estos parámetros. El algoritmo ha sido publicado para

ser utilizado por la comunidad cient́ıfica.

En segundo lugar, se estudia la señal galvánica de la piel, que mide la activación del

sistema simpático. Esta señal suele presentar artefactos de movimiento que distorsionan

la información que se pueda extraer de la misma. Debido a la dificultad que supone

la detección y corrección de artefactos de forma automática, esta tarea se ha realizado

mayoritariamente de forma manual. En esta tesis se propone el primer algoritmo de de-

tección y corrección automática de estos artefactos, basado en modelos de aprendizaje

profundo. Se desarrolla un modelo basado en redes convolucionales con una capa de

entrada de long short-term memory para la detección de artefactos, mejorando los re-

sultados del estado del arte. Para la corrección de artefactos se utiliza un algoritmo de

regresión que reemplazaŕıa la señal afectada. Los resultados de este trabajo muestran

que la descomposición fásica de la señal corregida manualmente y la descomposición

fásica que podŕıa realizar un experto, no guardan diferencias significativas. Por el con-

trario, ambas śı la tienen frente a la señal original con artefactos. El modelo se ha hecho

público para su uso en sistemas con procesamiento automático.

A continuación, se desarrolla una experimentación para la evocación y detección

de emociones. Esta experimentación está basada en una conversación a tiempo real

y por voz con un humano virtual. Este ha sido desarrollado utilizando la tecnoloǵıa

más avanzada de inteligencia artificial, como son los modelos generativos de lenguaje,

transcripción de voz, sintetización de voz y sincronización labial. La experimentación se

ha realizado en un entorno de realidad virtual semi-inmersiva en el que el humano virtual

se muestra a través de una proyección a tamaño natural. El prototipo ha sido validado

técnicamente y se han analizado las dinámicas comunicativas entre el humano virtual y

el sujeto. Además, se ha evaluado la naturalidad y el realismo de las conversaciones, aśı

como las emociones elicitadas en los sujetos.

Por último, se ha utilizado el prototipo para el reconocimiento de śıntomas depre-

sivos utilizando bio-marcadores de eye-tracking y la actividad electrodermal. Para ello,

se ha realizado un experimento con 98 sujetos y desarrollado una metodoloǵıa de análisis

y validación basada en aprendizaje automático para realizar predicciones. Los modelos

han alcanzado una precisión de 0.733 y una tasa de reconocimiento de pacientes no de-

presivos de 0.828. Además, se ha explorado el reconocimiento de naturalidad y realismo

de las conversaciones, aśı como las emociones evocadas.

El trabajo desarrollado en esta tesis presenta contribuciones relevantes, tanto para el
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campo de la computación afectiva, como para otras áreas afines como el procesamiento de

señales y las interacciones humano-máquina. Las herramientas desarrolladas junto con

modelos novedosos de la inteligencia artificial consiguen realizar una experimentación, en

entornos de dinámicas sociales humanas, nunca antes diseñada. Los resultados muestran

como este trabajo es capaz de modelizar información tan relevante como emociones y

śıntomas depresivos de la persona con la que se habla. Campos como la psicoloǵıa,

medicina o educación pueden utilizar muchas de las herramientas desarrolladas en esta

tesis con tal de aportar más información en la toma de decisiones o en la interacción

social.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Affective computing

In recent decades, affective computing (AfC) has emerged as a significant area of re-

search, with a focus on analyzing human responses through implicit measures. Intro-

duced by Rosalind Picard, this interdisciplinary field combines elements of psychology,

computer science, and biomedical engineering to automate the quantification and recog-

nition of human emotions [1]. Implicit measures have the potential to automatically

discern and categorize human emotional states, representing a valuable complement to

traditional explicit measures. The capture of emotional insights through implicit mea-

sures typically begins with passive sensors that collect data about the user physical state

or behavior without actively interpreting the input.

In this context of continuous evolution, the field of AfC is witnessing the integration

of diverse technological approaches. The present era showcases various technologies,

with a notable emphasis on advances in artificial intelligence (AI), have demonstrated

remarkable utility and adaptability to this field. Particularly, the incorporation of algo-

rithms from machine learning (ML) and even deep learning (DL) has become a standard

used tools. Additionally, the accessibility of expansive models such as GPT-3, ChatGPT,

GPT-4 or StableDiffusion, along with user-friendly libraries like PyTorch and Hugging

Face, has taken part in the design and modelization of more complex but sophisti-

cated experimentations. This intersection of AI innovations presents an unprecedented

opportunity in the field of AfC, especially in the realms of emotion classification and

elicitation. This nascent junction of advanced tools and emotional analysis underscores

1
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an emerging area of research.

1.1.2 Emotion modelling

Emotion modelling consists in model human emotions into discrete or continuous emo-

tions. As an example of this task it can be shown the different theorization of emotions

showed by Ekman and Russell.

Categorical models classify emotions in discrete categories. This means that each

emotion is disconnected from the rest of emotions. The Ekman basic emotion model [2]

distinguish between six emotions: anger, surprise, disgust, enjoyment, fear, and sadness.

However, categorical models cannot include all the emotions as these models have a

concrete number of emotions fixed. This conceptualization could result into a non-

optimal emotion detection. It can lead to a mandatory choice identification problem,

which is that subjects are likely to distinguish among presented categories rather than

to identify an emotion label themselves [3]. Also, the subject could have emotions that

are not in the label emotion set. Even if the subject feels a neutral state, it has to pick

up one emotion.

On the other hand continuous models recognize emotions quantifying them in di-

mensions. A common set of dimensions link the various emotional states in this model.

They are defined in a two (valence and arousal) or three (valence, arousal, and power)

dimensional space. Each emotion occupies a position in this space. One of the most

common models is the Russell’s circumplex model [4]. This model postulates that every

emotion is a linear combination of two affective dimensions: arousal and valence. The

arousal dimension delineates the individual psycho-physiological activation related to

the emotion, while the valence dimension quantifies the subjectively experienced posi-

tivist or negativity of the emotion [5]. This bifurcation results in four distinct regions

of the model: High arousal and valence correlates with emotions such as happiness or

excitement; high arousal and low valence is indicative of an angry state; low arousal and

valence is associated with sadness or depression; and high valence with low arousal is

characteristic of a relaxed or contented state.

The majority of studies used the knowledge of these models to classify and predict

annotated data, either by using the Ekman’s model with six possible emotions or through

the Russell’s model, quantifying the level of arousal and valence. This task commonly

involves the use of different supervised ML algorithms. ML algorithms generally provide

more reasonable classification accuracy compared to other approaches, but one challenge

in achieving good results in the classification process, is the need to have a sufficiently
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Figure 1.1: Ekman’s 6 basic emotions.

large training set [7]. Data is an integral part of the existing approaches in AfC and

in most cases it is a challenge to obtain annotated data that is necessary to train ML

algorithms. There are many datasets which are public, for the task of classifying emotion

types, such as:

• SEMAINE: provides audiovisual recordings between a person and a virtual agent

and contains emotion annotations such as angry, happy, fear, disgust, sadness,

contempt, and amusement [8].

• DREAMER: provides electroencephalography (EEG) and electrocardiography (ECG)

recordings, as well as emotion annotations in terms of valence, arousal, and dom-

inance of people watching film clips [9].
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Figure 1.2: Circumplex 2D model theorized by Rusell. Image extracted from [6]

1.1.3 Emotion recognition

Emotion recognition (ER) uses different types of tools to classify emotions through au-

tomatic models or human classification in specific tasks. In spite of human emotions

variability, it is assumed that there are basic principles, perhaps even basic neural mech-

anisms that make a particular event ”emotional” [10, 11]. To find these principles and

their underlying mechanisms, researchers typically study specific emotions, using con-

crete tasks. As is appropriate, specific experimentations could yield to various types

of data, from single neuron firing patterns and activate levels of a concrete brain area.

There are different mechanism that could ensemble these data sources and extract pat-

terns from the experimentation in order to classify the different emotions of the subjects

during it.

ER studies human emotions through various modalities. Some case of study are

the automation of recognizing facial expressions in video, spoken expressions in audio,

written expressions in text, and physiological signals measured by wearable devices.

The knowledge extracted from these insights is used to assess and study the theoretical

models of the multidimensional nature of human emotions.

Emotions influence the activity of the autonomous nervous system (ANS), which,

in turn, regulates various physiological parameters. Consequently signals such as heart
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rate variability (HRV), electrodermal activity (EDA), temperature, and breath patterns

are frequently analyzed to recognize emotions. However, the choice of systems for ER

depends on the application area and different systems may be suitable for different

purposes [12]. It’s crucial to acknowledge the complexity of the experimental setup, as

it directly impacts the quality of measuring a specific signal.

1.1.3.1 Implicit measures

Traditionally, most theories of human behaviour research have been based on a human

mind model that assumes that humans can think about and verbalize accurately their

attitudes, emotions and behaviours [13, 14]. Therefore, classical psychological evalua-

tions used self-assessment questionnaires and interviews to quantify subjects responses.

However, these explicit measures have been demonstrated to be subjective, as stereotype-

based expectations can lead to systematically biased behaviour, given that most indi-

viduals are motivated to be, or appear, non-biased [15]. Indeed, research on implicit

social cognition suggests that people can act in biased ways without intending to do so.

The terms used in questionnaires can also be interpreted differently by respondents, and

the outcomes depend on the subjects possessing a wide knowledge of their dispositions,

which is not always the case [16]. Recent advances in neuroscience show that most of

the brain processes that regulate our emotions, attitudes and behaviours are not con-

scious and therefore cannot be biased. In contrast to explicit processes, humans cannot

verbalize these implicit processes [17].

Implicit measures refer to methods used to assess psychological constructs, such as

attitudes, beliefs, or emotions, without relying on direct self-report or conscious intro-

spection [18]. These measures are designed to tap into underlying cognitive processes

that individuals might not be fully aware of or might not be able to accurately report

through explicit means. Implicit measures are particularly useful when studying atti-

tudes or emotions that individuals might have difficulty expressing or might not even

be consciously aware of [19]. Then, implicit measures could capture social behaviour

patterns under certain conditions.

Several implicit measuring techniques, to detect affect, have been proposed in recent

years [20,21]. They could be divided in two groups: physiological and behavioral signals.

Physiological signals encompass multichannel readings originating from the central and

ANS, conveying meaningful information regarding actions, responses and feelings [22].

Some examples of their applications in human behaviour research are HRV which has

been correlated with arousal changes in vehicle drivers to detect critical points in a
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route [23], a marker of stress [24] or to correlate it to emotional intelligence as a function

of gender [25]. EEG records an electrogram of the spontaneous electrical activity of the

brain. EEG is every time more common in AfC experimentations due two reasons.

Firstly, EEG data shows effectively cerebral activity information related with human

emotional experiences, exploring the neural mechanisms behind them [26]. Secondly,

the data recording tool could be integrated properly with the movement of a subject in

real world applications. Another common used signal is EDA, which has been used to

measure stress, affective arousal and cognitive processing [27–29].

On the other hand, behavioral signals are often spontaneous and may undermine

the objectivity of AfC. An example of this type of signals is eye-tracking (ET) which

has been used to measure subconscious brain processes that show correlations with

information processing in risky decisions [30], empathy [31] and problem solving [32].

Facial expression analysis has been applied to detect emotional responses in e-learning

environments [33] and speech emotion recognition has been used to detect depressive

disorders [34]. However, people could fake these type of signals such facial expressions

or speech to hide real emotions [35,36].

Numerous studies explore ER not only in specific real-world experiences but also

in daily-life habits. Dai et al.’s [37] work investigates the collection of biosignals us-

ing a designed bio-sensor. They suggest that ER results can be valuable for emotional

health monitoring and serve as key references for clinically diagnosing mental diseases.

Boateng [38] focuses on ER within couples, collecting daily data in various situations.

Consequently, the study of ER proves to be a versatile field applicable in diverse scenar-

ios and everyday situations. Poria et al. [39] highlight the increasing popularity of ER

in conversations, with various AI techniques analyzing conversations ranging from psy-

chological to friendly. Thus, this field is not only intriguing for its potential to indicate

the development of mental illnesses but also crucial for understanding how individuals

behave in interpersonal interactions.

This work will be focus on two implicit measures, one behavioral and the other

physiological, that can be employed using wearable sensors in an ecological setup: ET

and EDA.

1.1.3.2 Eye-tracking

ET is the process of measuring either the point of gaze (where the subject is looking) or

the motion of an eye relative to the head. The tool used for measuring gaze position and

eye movement is called an eye tracker [40]. Eye trackers find applications in research on
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the visual system, psychology, psycho-linguistics, marketing, and as an input device for

human-computer interaction. The configurations of ET setups can vary significantly.

There are various technologies that can be employed for ET, such as head-mounted

displays (HMD) or ET glasses. ET, especially when combined with VR, is a powerful

tool. In immersive VR, the use of HMDs allows not only the presentation of the virtual

environment (VE) to the subject but also simultaneous tracking of the gaze position

within that environment. The choice of ET tool or the experimental design for ET

measurements is crucial in understanding the information provided by this tool. If

the eye tracker measures the subject in a VE, it will record the subject’s gaze on the

virtual content. On the other hand, when using ET glasses, which are more common in

non-immersive or semi-immersive environments, the measurements are in the real-world

space of the experiment. Extrapolating this data to understand which objects were

looked at can involve complex post-processing.

There are various ways to present data from ET research, with static representations

and heatmaps being among the basic methods. In static representations, the saccade

path is used to connect fixation points above the image. The size of the fixation is

typically determined by the fixation duration. On the other hand, heatmaps are repre-

sentations that aggregate the number of times a region has been visited by the subject.

The areas with higher density indicate where users focused their gaze more frequently.

Heatmaps are a well-established visualization technique commonly used in ET studies.

The use of ET is highly diverse, finding applications in various fields. In recent stud-

ies, ET has been explored as a tool for the early detection of autism spectrum disorder.

For instance, the work by Alcañiz et al. [41] utilized ET to identify patterns distin-

guishing between autistic and control children based on visual attention behaviors in a

VE. Another study by Ashraf et al. [42] delved into how ET methodology contributes

to training, assessment, and feedback practices in clinical settings. This research em-

phasized the importance of ET in analyzing the learning curve and providing valuable

feedback to users during training. Furthermore, ET is under investigation for car driver

distraction detection, as evidenced by the work of Said et al. [43]. Their algorithm

assesses instances when the driver is not looking at the road or closes their eyes for an

extended period, tested in both virtual and real environments. In summary, ET is a

signal that has recently received considerable attention due to its versatility in various

experimental setups, demonstrating its potential as a tool for feedback, prevention, or

classification.
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1.1.3.3 Electrodermal activity

EDA is the property of the human body that causes continuous variation in the electrical

characteristics of the skin. Historically, EDA has also been known as skin conductance,

galvanic skin response (GSR) or skin conductance response (SCR). The traditional the-

ory of EDA holds that skin resistance varies with the state of sweat glands in the skin.

Sweating is controlled by the sympathetic nervous system [44] and skin conductance

is an indication of physiological arousal. If the sympathetic branch of the autonomic

nervous system is highly aroused, then sweat gland activity also increases, which in turn

increases skin conductance. In this way, skin conductance can be a measure of emotional

and sympathetic responses [45]. When there are significant changes in EDA activity in

response to a stimulus, it is referred to as an event related SCR. These responses, other-

wise known as EDA peaks, can provide information about emotional arousal to stimuli.

Other peaks in EDA activity that are not related to the presentation of a stimulus are

referred to as non stimulus locked SCR.

External factors such as temperature and humidity affect EDA measurements, which

can lead to inconsistent results. Internal factors such as medications and hydration can

also change EDA measurements, demonstrating inconsistency with the same stimulus

level. Lastly, electrodermal responses are delayed from 1 to 5 seconds. These show the

complexity of determining the relationship between EDA and sympathetic activity [46].

Often, EDA monitoring is combined with the recording of heart rate, respiratory rate,

and blood pressure, because they are all autonomically dependent variables. The skill of

the operator may be a significant factor in the successful application of the tool. EDA

has a potential potential advantages of low cost and implementability. Also the EDA

measure devices are cheaper than other biosignal devices or indeed, the tool to measure

EDA signal is included in certain devices setups.

EDA is employed in various types of studies, with a predominant focus on health-

related research. This signal can provide valuable feedback for clinical therapies or

diagnostics. It is even being used as a measure to model reactive environments in

VR. For instance, Liu et al.’s work [47] specifically examines the EDA signal as an

indicator of stress levels in patients. They categorize patient stress level as high, medium,

and low, achieving a final accuracy of 81.82%. Alcañiz et al. [48] investigates different

variables derived from EDA signal processing to recognize patterns of autism in children.

Their results demonstrate promising accuracy, ranging between 90.30% and 83.33%

depending on the analyzed task. On the other hand, Chiossi et al.’s work [49] introduces
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a physiologically adaptive system that optimizes a VE based on physiological arousal,

specifically the EDA signal. They conduct a simulated social virtual scenario modified

based on the detected arousal. Therefore, applications of EDA can be diverse, primarily

focused on detecting physiological patterns related to the subject’s arousal during an

experience. Although this signal is often presented as a complement to other signals like

HRV, it can also be studied as a standalone signal, sufficient to reveal certain patterns

and trends in the subject.

1.1.3.4 Artificial intelligence in emotion recognition

All the information extracted from the different signals needs to be optimize and study.

AI emerges as the best tool to exploit all the ways in which a signal could be modeled.

The different techniques that could be applied in the study of a signal become AI in a

versatile tool capable to achieve the goal to interconnect signal processing and AfC.

Nowadays there are many experiments that include ML models as a modeling tool,

to find patterns in ER. For example, the work of Sharma et al. [50] uses convolution

neural networks (CNN) to find the level of engage of a student with a lesson through

movements of head and eyes. The work of Tabbaa et al. [51] combines the information

of different sources such as ET or GSR to predict the valence and arousal states of the

studied subjects. However, ML and DL are not only used as predictive models of the

subject’s emotional state. These models are also used in the feature extraction process

of the different signals. For example, the work of Zemblys et al. [52] employs, for ET,

specific tasks such as fixations and saccades classification, or for determining if a blink

has occurred, as demonstrated in the study by Medeiros et al. [53].

In conclusion, AI facilitates the exploration of advanced techniques for extracting

information from various biosignals, enriching the study of AfC in subjects. However,

it emerges not only as a sophisticated statistical tool capable of creating predictive and

classification models in AfC, but also, as a tool that enables the development of more

complex and versatile experiments.

1.1.4 Emotion elicitation

Understanding behavioral patterns requires not only measuring stimuli but also con-

sidering the subject’s situational context to identify and activate physiological markers.

Foundational theories posit that personality emerges through interactions with situa-

tional variables [54, 55]. Personality is viewed as differences in how individuals react to
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situations rather than context-free individual differences [56]. Variables like extraversion

or risk-taking have been found to be weak predictors of behavior in specific situations

but strongly correlated with behavioral trends over time [56]. This parallels the evi-

dence supporting the bias of crowds model, where implicit measures are weak predictors

of individual behavior in a given situation but strongly associated with aggregated data,

as highlighted by Gawronski et al. [57].

The elicitation of emotions is crucial for the ethical and reliable induction of affective

states, a key factor in developing systems for detecting, interpreting, and adapting to

human affect [58]. Laboratory methods for emotion elicitation can be broadly catego-

rized as active or passive. Active methods involve directly influencing subjects through

behavioral manipulation [2], social interaction [59], and dyadic interaction [60]. Passive

methods usually present external stimuli as images, sound or video. As to the use of

images, the international affective picture system is among the databases most used as

an elicitation tool in ER methodologies [61]. It includes over a thousand depictions of

people, objects and events, standardized on the basis of valence and arousal [58]. With

respect to audio-visual stimuli, many studies have used film to induce arousal and va-

lence [62]. Previous methods have significant limitations, emphasizing the need for high

degrees of presence to simulate real-world experiences [63]. Consequently, VR presents a

novel approach to emotion elicitation in ER studies by simulating real-world situations

in laboratory environments.

1.1.4.1 Virtual reality

The exploration of VR originated in the field of computer graphics and has since ex-

panded into various disciplines [64–67]. In the contemporary landscape, VR-supported

video games have gained more popularity compared to the past [68,69], and other fields

such as architectural design [70] to education [71], learning, social skills training [72],

surgical procedure simulations [73], and support for the elderly. VR facilitates intricate

experiments related to navigation studies that would typically require a laboratory set-

ting. Without VR, researchers might have to conduct such experiments directly in the

field, potentially with limited control and intervention capabilities.

In the contemporary context, VR emerges as a novel and potent tool for behavioral

research in psychological assessment, offering simulated experiences that mimic the real

world [74,75]. VR facilitates the simulation and assessment of spatial environments un-

der controlled laboratory conditions, enabling the isolation and modification of variables

in a cost-effective and time-efficient manner, which is impractical in real space [76, 77].
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Moreover, studies have explored VR ability to induce emotions, demonstrating that VE

can evoke emotional responses in users [77]. Other research has highlighted the use of

immersive VE as tools for emotional induction, generating states of relaxation, anx-

iety, basic emotions, and examining the influence of users’ cultural and technological

backgrounds on emotional responses in VR [78–81]. Additionally, studies suggest that

emotional content enhances the sense of presence in an immersive VE [82], and when

presented with the same content, self-reported emotional intensity is significantly higher

in immersive environments than in non-immersive ones [83]. Thus, immersive VEs,

whether displaying 360° panoramas or 3D scenarios through a HMD emerge as potent

tools for psychological research [84].

Additionally, VR has gained substantial relevance in psychological treatments [85].

De-Juan-Ripoll et al. [86] asserted that VR serves as an invaluable tool for assessing risk-

taking profiles and training related skills, with transferability to real world situations.

A comprehensive review by Slater et al. [87] presented key evidence of VR applications,

highlighting strengths and weaknesses, across diverse research areas such as science, ed-

ucation, training, physical training, and investigations into social phenomena and moral

behaviors. The potential of VR extends to fields like travel, meetings, collaboration,

industry, news, and entertainment. Moreover, a recent review by Freeman et al. [85],

focusing on VR in mental health, underscored its efficacy in both assessing and treating

various psychological disorders, including anxiety, schizophrenia, depression, and eating

disorders.

The versatility of VR as a stimulus, capable of replacing real world stimuli and

recreating otherwise impossible experiences with high realism, has led to its widespread

application in research exploring innovative approaches to psychological treatment and

training. For instance, VR has been instrumental in addressing issues related to phobias,

such as agoraphobia and fear of flying [88]. Additionally, it has been utilized to enhance

traditional motor rehabilitation systems [89,90] by developing games that improve task

performance. Specifically, within psychological treatment, VR Exposure Therapy has

demonstrated efficacy. This approach enables patients to gradually confront fear stimuli

or stressful situations in a controlled and safe environment, allowing therapists to manage

psychological and physiological reactions [88].

The different set-ups that could be used to display VR have been continuously evolv-

ing during the last years. Nowadays with the increasing use of this technology, more

sophisticated technologies could use it easily. Higher or lower degrees of immersion can

depend by three types of VR systems provided to the user:
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• Non-immersive systems represent the simplest and most cost-effective category of

VR applications that utilize desktops to replicate images from the real world.

• Immersive systems offer a fully simulated experience by incorporating various sen-

sory output devices, including HMDs that enhance stereoscopic views through user

head movements, as well as audio and haptic devices.

• Semi-immersive systems, like Fish Tank VR, occupy an intermediate position be-

tween non-immersive and fully immersive systems. They present a stereoscopic

image of a 3D scene on a monitor, utilizing perspective projection aligned with the

observer’s head position [91]. Advanced immersive systems have demonstrated a

closer approximation to reality, creating an illusion of technological non-mediation

and instilling a sense of presence in the VE [92]. Moreover, these advanced im-

mersive systems surpass the other two categories by allowing the incorporation

of multiple sensory outputs, enabling interactions and actions to be perceived as

more authentic [93–95].

Over the past two decades, VR has commonly been presented through desktop PCs

or semi-immersive setups like cave assissted virtual environment (CAVE) or Powerwalls

[96]. In contemporary applications, there is a growing utilization of HMDs, offering fully

immersive systems that effectively isolate users from external stimuli. These HMD-based

systems deliver a heightened level of immersion, inducing a more pronounced sense of

presence. Presence is defined as the perceptual illusion of non-mediation, giving users

the feeling of being present within the virtual scene [97].

1.1.4.2 Virtual humans

Virtual humans (VHs) are computer-simulated entities resembling human characters

that commonly engage with humans through computer screens or speakers. Research

in this domain revolves around their representation, movement, and behavior, encom-

passing human-like traits such as speech, gestures, emotions, empathy, and memory.

Presently, a VH is essentially a computer program attempting to emulate human char-

acteristics [98]. The core components shaping the body and mind of a VH include

embodiment, either in a digital or physical form. The body’s purpose is to generate

real-time audiovisual content for the VH, enabling live conversational interaction and

information reception from users. Conversely, the mind endows the VH with the ability

to comprehend natural language, engage in reasoning and creativity, possess memory,
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and have attributes such as a life history, mood, motivations, and attitudes [98]. The in-

teraction with users through verbal conversation represents one of the most challenging

aspects of VHs. They must not only generate coherent, meaningful, and contextual-

ized messages but also retain information and ideas from ongoing conversations. The

roots of these interactive tools can be traced back to chatbots and later evolved into

conversational agents.

The VH field is a vast research domain comprising numerous research topics such

as human movement, facial expression, voice synthetization, memory, communication,

interaction with the environment, etc. All in all VH is an emerging field of study that

nowadays is increasingly possible with the development of the novel technology.

From Chatbots to Large language models

The first software that allows to interact with natural language were chatbot. They

are an informatic system that could establish a conversation with one or more users

through different communication channels as voice, text or visual language [99]. How-

ever, classical chatbots have a pre-defined sequence of answers to the different possible

inputs. It is a bounded system which response is already settled. The use of the chat-

bots is very diverse. The first operational chatbot is found in ELIZA [100] in 1966 and

PARRY [101] in 1972. ELIZA and PARRY where used exclusively to simulate a typed

conversation with a doctor.

Indeed, these algorithms extract the answer from a database of sentences of doctors.

Once the query of the human is done it is compared against the database and the one

with highest similitude is the answer of the chatbot. Since there, chatbots have been a

very popular field of study. Many different algorithms have been used to improve the

communication with a subject trying to overcome the past models. Some of them are

MegaHAL [102] which is based in Markov’s model basing its prediction in a probability

distribution choosing between the most likely words for the answer. Chatbots finally

evolved when AI algorithms were incorporated to this field.

A large language model (LLM) is a language model characterized by its large size in

the number of parameters. As language models, they work by taking an input text and

repeatedly predicting the next token or word [103]. Up to 2020, fine tuning was the only

way a model could be adapted to be able to accomplish specific communicative tasks.

Larger sized models, such as a generative pre-trained transformer (GPT) like GPT-

3 [104], however, can be prompt-engineered to achieve similar results. Therefore, these

models are allowed to simulate a real conversation with a human. Most of these models
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allow the introduction of a written context of the conversation, enriching the situation

and the way and the messages that the model has to communicate. They have also

the capability to remember key points of the conversation, allowing a coherent dialogue

with the human. With the actual technology advancement, it is more frequently that a

human user could achieve a natural and realistic conversation with a LLM.

To evaluate the naturalness of a conversation there are several tests that could be

used, being the Turing test the most famous and exigent one. The Turing test [105],

postulated by Alan Turing, was meant as a test for machine intelligence based on whether

a human. The test consist whether a human could distinguish, in a conversation with

a computer, if it was ruled by a human or not. The machine would pass the test if

the human could not distinguish, in different tries, consistently which conversation was

ruled by a human and which not. However, with the emergence of VH, this type of

test should also be completed with evaluations about the main characteristics of a VH

such as interaction or memorization. For example, the 2K Botprize competition [106]

is a game bot variant of the Turing test, which replaces chatting with a shooting game

environment. The work of Alvarado et al. [107] proposed a test that evaluates aspects

of cognitive functioning, associative learning and language acquisition. The work of Pan

et al. [108] started to theorize a Turing test for chatbots or VH in VR, and also the

challenges that the researches would face against to design certain characteristics such

as presence.

VH displays

Technologies which enable the creation of an avatar body for a virtual human, and

the ways in which that body can incorporate human, and non-human like senses. Much

of the work in this area is being driven by the computer generated imagery (CGI) of the

film industry, and the motion capture and animation of the gaming industry. However,

for a VH, both imagery and animation need to be generated in real time, and in response

to unknown events which becomes this task really challenging [98].

In digital terms, an avatar for a VH (or physical human) can take a number of forms

such as:

• A static 2D head-and-shoulders image, as used in many chat applications

• An animated 2D head-and-shoulders or full body image, as used in some customer

support applications

• A fully animated 3D character within a game or virtual world.
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In creating an avatar for a human or VH, the key areas are:

• Facial rendering which includes mainly lip and eyes movement at rest and for

speech animation.

• Body rendering and movement animation at rest and for speech animation. This

includes from simple movements as breathing to hand movement during the speech.

• Cloth modeling

Whilst having a high-fidelity digital model of a human face offers one level of problem,

having it move to create realistic expressions, and, particularly, to synchronize its mouth

with any speech is an even greater challenge. Facial animation includes both, the making

of facial expressions (raising eyebrows, scrunching eyes, and smiling) and the movement

of the mouth (and neighbouring areas) to match any speech being produced. For the

moment, the best tools to achieve the facial animation come from DL models.

In the case of lip-synchronization the main approach of these models is to, given an

audio file, predict the position of certain elements around the mouth. This has been

investigated in 2D video images and also in 3D avatars. There are a few libraries that

accelerate the development of this task. Salsa LipSync Suite [109] provides automated,

high quality, language-agnostic, lip-sync approximation for 2D and 3D characters, of-

fering real-time processing of the input audio files to reduce/eliminate timing lag. It is

also capable of controlling eye, eyelid, and head movement and performs random emote

expressions, essentially providing a realistic face motion for the target 3D characters.

The work of [110] use it. At present, Facegood and Nvidia have proposed speech-driven

real-time virtual human synthesis schemes respectively. Karras et al. [111] took audio

data as input and output of the 3D vertex coordinates of a fixed topology mesh and

proposed a 3D face animation driving method based on deep learning and low delay

sound. Based on this method, Nvidia implements the audio2face model and embeds

it into Omniverse. Like audio2face, there is also the Metahuman creator of the unreal

engine [112], Facegood proposes a model Voice2face [113] based on DL, which converts

audio into blend shape mixed weight, and combines automatic speech recognition (ASR)

and text to speech (TTS) to realize an end-to-end human-computer interaction scheme.

There are different works that have studied how to embody realistically a VH. The

work of Döllinger et al. [114] showed how embodying a photo-realistic personalized

virtual body affects the awareness of one’s internal body signals and how the sense of

embodiment is involved in the effects of virtuality and perspective on body awareness.



16 Chapter 1

Unreal engine is another platform for the development of avatars. Unity and Nvidia

Omniverse could also develop avatars in 2D and 3D. However, there are not remarkable

research that have studied body mechanics in VR for the embodiment of VHs. For the

moment this is a research area that has to be studied.

Various studies have indicated that a VH with a human-like appearance tends to

convey higher message credibility in advertising contexts compared to those with an

anime-like appearance [115]. In the research by Garcia et al. [116], a VH’s faces demon-

strated high accuracy in ER without engaging in conversation. However, these faces

were limited in gesticulation, which prevented the display of various facial expressions

associated with emotional states. The work conducted by Karuzaki et al. [117] suc-

cessfully created a realistic VH using Unity implementation and lips synchronization

in VR. Nevertheless, the audio was prerecorded before the conversation, requiring syn-

chronization with the VH’s lips beforehand rather than in real-time streaming. Thus,

to the best of my knowledge, achieving a VH in VR that can naturally express facial

and body movements, along with synchronized real-time audio and lip movement during

a conversation, has not yet been accomplished. This highlights that the study of VHs

remains an evolving field with countless opportunities for improvement, necessitating

the implementation of increasingly realistic methods that faithfully emulate the reality

we perceive.

1.1.5 Applications of affective computing in virtual reality

AfC research has mostly used non-immersive 2D images or videos to elicit emotional

states. However, immersive VR, which allows researchers to simulate environments in

controlled laboratory conditions with high levels of sense of presence and interactivity,

is becoming more popular in emotion research [118].

In the realm of AfC research, the predominant approach has revolved around the uti-

lization of non-immersive 2D images or videos as stimuli to evoke emotional responses.

Nonetheless, there is a discernible shift towards the adoption of immersive VR. This tech-

nology permits researchers to replicate intricate environments within tightly controlled

laboratory settings, thereby engendering heightened levels of both sensory engagement

and interactivity. The ascendancy of immersive VR is increasingly apparent in the

sphere of emotion research, as observed by Maŕın-Morales et al. [118].

Due to the pronounced sense of presence that VR induces in users, it has been rec-

ognized as a potent tool for evoking emotions within laboratory settings. In one of

the initial confirmatory studies exploring the effectiveness of immersive VR as an affec-
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tive medium, Baños et al. [63] demonstrated that both immersion and affective content

significantly influence the sense of presence. However, the relevance of immersion was

found to be more pronounced in non-emotional environments compared to emotional

ones. Subsequent studies further supported the idea that VR can effectively evoke var-

ious emotions, including anxiety and relaxation [78], positive valence in obese children

engaged in exercise [119], arousal in natural environments such as parks [120], and differ-

ent moods in social environments featuring avatars [121]. Maŕın et al. [122] developed

four different VEs to predict arousal and valence in each setting, achieving an accu-

racy of 75.00% and 71.21% for arousal and valence dimensions, respectively. Prabhu

et al. [123] designed a VE that utilized biofeedback to alleviate pain and anxiety in

patients undergoing total knee arthroplasty, demonstrating promising results during pre

and post-operative care. The research by Ontiveros-Hernández et al. [124] underscored

the significance of emotion in human activity, particularly in training, using an emo-

tional VR scenario. In summary, VR emerges as a promising tool not only for identifying

or inducing specific emotions but also for effective training and learning applications.

1.1.6 Depression

Experiments in AfC not only possess the capability to elicit and identify emotions but

also unveil patterns related to deeper emotional states, including those associated with

mental health conditions such as depression, anxiety, or schizophrenia. Specifically,

depression is a pervasive condition affecting more than 260 million people globally, con-

stituting approximately 3.5% of the global population [125]. Depression influences an

individual’s thoughts, behavior, feelings, and overall sense of well-being [126], mani-

festing as a mental state characterized by low mood and aversion to activity [125].

Individuals experiencing depression often exhibit a loss of motivation or interest, along

with diminished pleasure or joy from activities that typically bring enjoyment [127].

While it may be a temporary response to life events, such as the loss of a loved one,

depression can also serve as a symptom of certain physical diseases and a side effect of

medications and medical treatments. Symptoms may encompass sadness, difficulty in

concentration, significant changes in appetite, alterations in sleep patterns, feelings of

dejection or hopelessness, and, in severe cases, suicidal thoughts.

The continuous advancement of technology enables a much faster and reliable di-

agnosis of physical diseases. However, this is not the case for mental illnesses, which

are also very challenging to diagnose. Moreover, the symptoms that these illnesses may

manifest in each patient are highly distinct. Therefore, the implementation of automatic
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techniques that can achieve diagnosis or identify certain patterns for mental illnesses is

increasingly necessary. These tools can facilitate early diagnosis, assess symptom sever-

ity, and make appropriate referrals for individuals dealing with conditions like depres-

sion. The progress in digital technology provides opportunities for monitoring cognitive

and behavioral development, contributing to precision medicine in mental health diag-

nosis. This involves identifying valid biomarkers and behavioral indicators, enabling the

development of personalized preventive and treatment interventions. Such interventions

can be tailored to individual characteristics and needs throughout their lifespan. This

holistic approach holds promise for enhancing mental health diagnosis and patient care.

1.2 Objectives

The main objective of the thesis is to develop an AfC framework for emotion elicitation

and recognition using AI. To do so, we will develop an automatic analysis platform

for ET and EDA to perform ER through the use of these biomarkers. In addition, we

developed a prototype of VH based on LLM to enhance emotional elicitation simulating

social human communicative dynamics. Finally, the developed tools are validated in a

use case for ER and depression assessment, completing the thesis objective.

1º Objective. Study and develop an ET fixation identification algorithm in 3D

VR to perform automatic feature extraction.

2º Objective. Develop a deep learning model for the automatic identification and

correction of artifacts in EDA signal.

3º Objective. Develop and evaluate a VH capable of simulating human commu-

nicative dynamics, engaging in voice-based, realistic, and natural real-time con-

versations. The VH should be designed to express various emotions, with distinct

dialogues corresponding to the emotions triggered.

4º Objective. Recognize emotion and depression symptoms during social commu-

nicative dynamics with VH.

1.3 Thesis structure

The thesis is structured as follows:
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Chapter 2. Development and calibration of an ET fixation identification

algorithm for immersive VR. This chapter introduces a novel ET algorithm to

detect fixations in VR based in I-DT algorithm validated in 2D experimentations.

This work also studies the optimum thresholds of the algorithm in terms of different

ET features.

Chapter 3. Automatic Artifact Recognition and Correction for EDA

based on DL models. This chapter shows different DL and ML models that

had been studied to identify artifacts in segments of EDA signal. The best model

among them is selected, an automatic correction of the identified artifacts was per-

formed and compared against manual expert corrections. Results showed similar

performance between the manual and the automatic correction.

Chapter 4. Developing conversational VHs for social emotion elicitation

based on LLMs. This third chapter presents the whole development and valida-

tion of a VH in VR. The VH is allowed to maintain conversations with a human in

real time by voice. This chapter explains all the different platforms, applications

and AI models used to achieve it. Moreover, different VHs were designed with

different emotional states, studying the possibility that the dialogue between the

subject and the VH achieves emotion elicitation.

Chapter 5. Emotion and depression recognition through conversational

Virtual Humans. This chapter studies the emotion and depression recognition

through the use of emotional VHs. The work analyzes ET and EDA signals,

processing them in order to obtain several features for the identification of ER

and depressive patterns. The classification of the targets is done through a ML

pipeline and studies which emotional VH could contribute better to a specific

target for its recognition.

Chapter 6. Discussion. This chapter discuss the results obtained in the dif-

ferent chapters, and the major contribution of the thesis. It also enumerates the

possible future lines of work related with the work of this thesis and the framework

developed.

Chapter 7. Conclusion. Provides an overall summarized conclusion of the work

in this thesis.
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Finally, the manuscript enumerates the publications and research stages derived from

this thesis and provides a list of references.



Chapter 2

Development and calibration of

an eye-tracking fixation

identification algorithm for

immersive virtual reality

Llanes-Jurado, J., Maŕın-Morales, J., Guixeres, J., & Alcañiz, M. (2020). Development

and calibration of an eye-tracking fixation identification algorithm for immersive virtual

reality. Sensors, 20(17), 4956. https://doi.org/10.3390/s20174956.

Abstract

Fixation identification is an essential task in the extraction of relevant information from

gaze patterns; various algorithms are used in the identification process. However, the

thresholds used in the algorithms greatly affect their sensitivity. Moreover, the applica-

tion of these algorithm to eye-tracking (ET) technologies integrated into head-mounted

displays (HMD), where the subject’s head position is unrestricted, is still an open issue.

Therefore, the adaptation of ET algorithms and their thresholds to immersive virtual

reality (VR) frameworks needs to be validated. This study presents the development of

a dispersion-threshold identification algorithm applied to data obtained from an ET sys-

tem integrated into a HMD. Rules-based criteria are proposed to calibrate the thresholds

of the algorithm through different features, such as number of fixations and the percent-

age of points which belong to a fixation. The results show that distance-dispersion

21
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thresholds between 1◦-1.6◦ and time windows between 0.25 s− 0.4 s are the acceptable

range parameters, with 1◦ and 0.25 s being the optimum. The work presents a cali-

brated algorithm to be applied in future experiments with ET integrated into HMD,

and guidelines for calibrating fixation identification algorithms.

2.1 Introduction

Virtual reality (VR) is a rapidly improving emerging technology [128]. While the gaming

industry is taking the lead in the development of VR, it has also found many research

applications. VR allows the simulation of experiences which create the sensation of be-

ing in the real world [74]. It is very helpful in human-subject-based experiments that are

difficult to perform in the real world; it offers environment simulations under controlled

laboratory conditions where researchers can efficiently isolate and manipulate features

while keeping the other environmental stimuli unchanged [75, 76]. VR not only allows

free navigation and real-world type movement [129], it can also evoke similar emotions

and cognitive process to physical environments [77]. There are three types of VR, dif-

ferentiated by the degree of immersion that the technology provides: non-immersive,

semi-immersive and immersive [128]. Virtual environments displayed on single-screens,

such as desktop PCs, are classified as non-immersive [130]. Powerwall screens, or cave

automatic virtual environment (CAVE) technologies, achieve higher degrees of immer-

sion [90, 131]. This technological environment is classified as semi-immersive VR. Im-

mersive virtual environments (IVE), using head-mounted display (HMD) technologies,

provide the highest degree of immersion. HMDs isolate the subject from external world

stimuli and provide a complete simulated experience [132]. Continuing technical HMD

upgrades, such as in resolution and field of view, are increasing researcher’s interest in

and use of this technology [128, 133]. Technologies such as HTC Vive or Oculus Rift

allow six degrees of freedom (DoF) inside the IVE, which is crucial for whole-room VR

experiences [134]. Whereas other types of HMD, such as Oculus Go has only three

DoF which is the simplest form of user tracking in VR. This is an important difference

because increased DoF gives higher sense of presence inside the VR [135].

The development of VR technologies has enhanced research into understanding hu-

man behaviour [128]. Moreover, in addition to classic self-assessment, VR can be com-

bined with several implicit measures which model unconscious processes, such as elec-

trodermal activity (EDA), heart rate variability (HRV) [122,136] and eye-tracking (ET).

ET is the analysis of eye movements based on corneal reflection and pupil detection.
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It is an important source of data for obtaining a complete dataset of features from the

analysis of different types of eye movements [137]. ET studies what a subject is looking

at [138, 139]. During recent years, developments in ET technology have allowed it to

be incorporated into many devices, such as screens, mobile ET glasses and HMDs. ET

has a powerful application in VR, as has been shown in many previous studies. For

example, Tanriverdi et al. [140] measured the difference in the interaction between eye

movements and hand pointing in VR scenarios to assess spatial memory. More recently,

Skulmowski et al. [141], using ET, studied the psychological behaviour of subjects in VR,

and Juvrud et al. [142] and Clay et al. [143] highlighted and explored ET applications

through immersive VR devices.

Eye movement has been studied mainly in two different experimental designs, world-

centred and head-centred [144–146]. The principal difference between them is the ori-

gin of the coordinate system. In the world-centred design the gaze is directed at the

2D display, while the subjects is positioned in front of a screen, with restricted head

movement [147]. This system is used in experimental designs where remote or desktop-

integrated eye trackers are used [148]. The head-centred design, on the other hand,

measures gaze points within the video recording, which moves as the subject moves

his/her head. In this case, the subject can freely move during the experiment; however

the origin of the gaze coordinates is in the video display. This has big advantages in

real-world experiments, but involves some difficulties in automatically identifying what

the subject is looking at. This type of system derives from advanced technologies, such

as mobile eye trackers (MET) [148]. However, the eye trackers integrated into HMDs

present a new VR-centred framework, where the origin of the coordinate system is the

virtual environment. The subject can move freely inside the VR scenario, and the im-

pact point of the gaze is calculated using the intersection between the gaze ray and the

polygons of the virtual environment.

One of the most useful methods of modelling gaze-behaviour patterns is through

fixation classification. A fixation is defined as a cluster of points where the distance be-

tween points is not greater than a certain value and its temporal interval is longer than a

certain time. Intuitively, it has been interpreted as a group of points where a subject has

focused his/her gaze [139]. There has been extensive discussion in the literature about

the minimum time and dispersion distance to define a fixation. It has commonly been

considered that the minimum fixation time has to be above 0.1 s [149]. The minimum

time depends on the task being performed by the subject. For tasks such as reading

and visual search, the minimum fixation time stipulated is 0.225 s and 0.275 s, respec-
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tively. For tasks where eye-hand coordination is required, the mean fixation time has

been established at 0.4 s [139]. In summary, mean fixation time has been established as

between 0.15 s to 0.65 s [138]. The dispersion angle of fixations is not as yet defined but

they are normally fixed below 2◦ [139]. To perform fixation classification analysis, there

are three main types of spatial criteria algorithms; velocity-based, dispersion-based and

area-based [150]. Velocity-based algorithms use the eye’s velocity information assuming

that fixation points have low velocities and saccades points higher ones. One of the most

popular algorithms is called velocity-threshold identification (I-VT). Dispersion-based

algorithms emphasize the spatial distance between points using at the same time tem-

poral and spatial information. They are based on the idea that spatial distance is lower

in fixations than in saccades. The robustness and accuracy achieved is better than the

two other types of dispersion based algorithms [150]. A representative algorithm from

this type is the dispersion-threshold identification (I-DT). Finally, area-based algorithms

identify a group of points which are inside an area of interest (AoI). All three types of

ET fixation identification algorithms need a set of thresholds and spatial and temporal

information to classify eye movements.

These fixation identification algorithms are mainly applied in world-centred and

head-centred experiments. Very little work has been done on fixation classification in

the VR-centred paradigm [143,151]. In world- and head-centred paradigms only 2D gaze

vectors have been studied; however, for VR-centred, ET provides two 3D vectors, gaze

and head position [147, 152]. How to apply both sets of vectors, in order to study eye

movements, is an underaddressed challenge. Duchowski et al. [151], to obtain visual an-

gle, proposed a solution where head position is averaged for every set of points that can

be included inside a fixation. While this solution is a valuable contribution, the speci-

fication of the optimum parameters for a concrete ET fixation classification algorithm

in VR-centred design remains an open question. Duchowski et al. [151] introduced the

parameters of the 3D implemented algorithm, manually aligning the gaze-interaction

points of subjects with the environmental targets displayed. On the other hand, it is

not believed that the gaze acquisition that derives from the VR engine has an influence

on eye-signal frequency, as this is influenced by the velocity of the renderization. In

a later world-centred study, Bobić et al. [153] examined the number of predicted and

real saccades in a guided task, using an I-VT algorithm. Whereas other studies, such

as [145, 154, 155], did not report the exploration of different sets of parameters for fix-

ation classification tasks. It is critical to identify in the related literature the best set

of parameters for the algorithm, because very different results can be obtained, and
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interpretations made, depending on the parameters used [149, 156, 157]. Moreover, the

methodology that should be used to identify this optimum region is still an open issue.

There is no clear way to infer which is the optimum set of parameters for an ET fixation

classification algorithm. For example, Blignaut [157] researched the optimum disper-

sion threshold for a I-DT algorithm in a free world-centred task, examining different

features, and obtained an optimum region between 0.7◦ and 1.3◦ for radius threshold,

using a time window of 0.1 s. There is still no consensus of how to achieve the optimum

parameters for an ET fixation classification algorithm.

This study proposes a new methodology to calibrate a VR-centred fixation classifica-

tion algorithm using ET integrated into an HMD. A guided experiment was designed to

study the fixation identification of an I-DT algorithm applied to an IVE. While there is

no ground truth that identifies the optimum parameters for any particular feature [157],

four different features were examined in this task. A set of rules was established for each,

with the aim of reaching an agreement between the features as a criterion to achieve the

most suitable parameters. A final set of optimum thresholds is proposed for use with

the I-DT algorithm in future research.

2.2 Materials and Methods

2.2.1 Participants

A group of 57 healthy volunteers (27 females and 30 males), with normal or corrected-

to-normal vision, was recruited to participate in the experiment. The mean age of the

group was 25.36 (SD = 4.97). The inclusion criteria were as follows: age between 18 and

36 years; Spanish nationality; not having any previous VR experience. All methods and

experimental protocols were performed in accordance with the guidelines and regulations

of the local ethics committee of the Polytechnic University of Valencia.

2.2.2 Virtual Environment and Data Collection

The virtual environment was displayed through an HTC Vive Pro Eye, an HMD with

an integrated ET system (see Figure 2.1), offering a field of view of 110◦. The scene

is displayed with a resolution of 1440 × 1600 pixels per eye, with a refresh rate of 90

Hz. The set-up includes HTC Wireless Adapter, and an HTC base station covering a

6 × 6 m2 area. The ET data were obtained from the Unity VR through the ET SDK

(SRanipal), with a maximum frequency of 120 Hz and an accuracy of 0.5◦ − 1.1◦. The
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computer used was an Intel Core i7-770 CPU 3.60 GHz with an Nvidia GeForce GTX

1070.

To perform the study an immersive 3D scenario, using the Unity 3D 1 platform, was

developed. This features a room modelled by an occlusive Cube Map, which is a Unity

object that captures all the possible stimuli on the object’s surface. This type of object,

ensures that all the projections of the eye-tracker rays impact against an element in the

scene to provide continuous feedback of the subject’s gaze.

Figure 2.1: Example of a subject using the HTC Vive Pro Eye for the development of
the experiment.

The room includes two large similarly-sized panels. Each panel displays a matrix

of 4 × 4 numbers, where every square is identified by a sequence from 1 to 16 in the

first panel, and 17 to 32 in the second. Each square includes a background colour to

ensure contrast between the cells and focus the subject’s attention (see Figure 2.2(a)).

The initial location of the viewer is above a marked orange point in the scene, in front

of one of the panels (Figure 2.2(b)). The location of this orange point was established

to provide frontal gaze to one panel (from −14.93◦ to 14.93◦), and diagonal gazes in the

other one (from 25.02◦ to 45.00◦), to ensure that the subject moved his/her head during

the experiment.

1https://unity.com/
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(a) Virtual Scenario from subject perspective. (b) Perspective view of the scenario.

Figure 2.2: Virtual scenario screenshots. The orange dot (b) designates the position of
the subject.

Several squares were lit following a pre-determined sequence designed to evoke many

different fixations. The subjects were asked to look at the illuminated squares during

the task. The sequence was the same for all subjects. It had been created randomly

with the following guidelines: It had to begin in the front panel and explore its four

diagonals and its centre. Next, the subject had to look at the furthest and nearest points

of the second panel (on the right). Finally, from a certain square the sequence changed,

such that the squares lit alternated between the panels, first the left, then the right, etc.

The resulting sequence was 1, 16, 4, 13, 6, 11, 7, 10, 17, 32, 22, 10, 20, 5 and 30. The

subjects were asked to freely explore the environment for 1 minute to adapt to it. After

that, every square was lit for 3 seconds following the predetermined sequence, the total

time of the guided task being 45 seconds. Every lit square was defined as an AoI.

The raw eye-tracking data included the 3D position of the impact of the gaze ray

in the environment, and the 3D head position in the virtual space. This data is the

input of the I-DT algorithm. The gaze point includes the coefficient, for each eye, of

the probability that an eyelid movement constitutes a blink, where 1 means completely

closed, and 0 open. Points above 0.75 in either eye were considered as blink points and

removed [152]. This represented 0.69% of the total raw data. Moreover, the virtual

environment exports a file, which recorded when a specific square was lit (e.g. square 1

; time 0 s − 3 s). This file was used to synchronize the gaze data with the illuminated

sequence protocol. Only data that were, in terms of time, between the first and last lit
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squares were taken into account.

2.2.3 Fixation identification algorithm

The algorithm implemented is an adaptation of an I-DT algorithm. A previous study

suggests the use of this algorithm due to its robustness and accuracy in the fixation

identification task and its low number of parameters (dispersion and time threshold)

[150]. Moreover the I-DT algorithm has been used in many previous ET parametrical

studies [156,157]. In accordance with the VR-centred paradigm, the algorithm considers

3D points which are intersections of the gaze rays with virtual objects whose origin is

the 3D head position. For fixation identification, head position was averaged every time

that a point was added as a candidate to be a part of the fixation. Averaging the head

position of the subject will take into account the free 3D movement of the subject inside

the VR. Then, each beam considered as a part of a fixation will have its origin in an

averaged head position [151]. It is important to note that the methodology followed or

the algorithm used are not dependent on the dimensionality of the experiment. Both

could be used with 2D data, however this work examines a VR-centred experiment

designed in 3D. To measure the distance between a set of points, dispersion distance

(DD) [156] was used. DD measures the angular distance between the pairs of points

that are candidates to be a part of a fixation. The algorithm records a set of consecutive

points with time differences smaller than a specific value (line 2). The highest distance

in the group has to be less than the dispersion threshold value (line 5 and 6 of Algorithm

1) to consider the set of points as a potential fixation. The dispersion threshold and

time window are parameters which have to be set initially to the I-DT algorithm. Both

are essential for the fixation classification task. In addition, the algorithm we present

applied, as an innovation, a frequency threshold below which possible fixation points

were discounted (line 3 and 6 of Algorithm 1). This ensured that the algorithm did

not use gaze data recorded at frequencies that do not facilitate the detection of fast eye

movements. The temporal decrease of the data collection frequency could be provoked

by an increment in the graphic renderization requirements of the GPU environment or

saturation of the computing capacity, which needs to be taken into account in a VR-

centred framework. Since the raw ET data was obtained using the ET SDK (SRanpial)

through a Unity script, the frequency of the data depends on the processing velocity

of the graphic engine. Therefore, although the ET device works at 120 Hz, acquisition

will be lower if the Unity rendering frequency is lower, which is highly dependent on the

GPU of the computer used and the complexity of the environment. Frequency variation
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during the experiment was analysed. To ensure the quality of the fixation classification,

the frequency threshold was set at 30 Hz, the lowest frequency the literature uses to

study ET data [152]. The pseudocode of the algorithm can be seen as follows.

Algorithm 1: Dispersion Algorithm

Data: Data(t, xg, yg, zg, hx, hy, hz)

Parameters: Dispersion Threshold, Time Threshold, Frequency Threshold

Start

1 while New gaze point is available do

2 Initialize window to cover the Time Threshold

3 if Points Frequency > Frequency Threshold then

4 Computation of θ for each pair of points

5 if θmax <= Dispersion Threshold then

6 while θmax <= Dispersion Threshold and

Points Frequency > Frequency Threshold do

7 Add samples

end

8 All samples except the last one are classified as a fixation.

9 Remove all this window samples.

else

10 Remove first sample

end

else

11 Remove first sample

end

end

Where t is the time, xg, yg, zg are gaze coordinates and hx, hy, hz are head position

points. The dispersion angle θ is obtained from the scalar product between two vectors,

eq. (2.1)

cos θij =
d⃗i · d⃗j
|d⃗i||d⃗j |

, with d⃗n = g⃗n − h⃗ . (2.1)

The sub-indexes i and j are two arbitrary points and dn is the final end-point of the

subject’s gaze n, the origin of which is the average head position in each component

h⃗ = (hx, hy, hz) [151].
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2.2.4 Calibration criteria

To identify suitable parameters for the I-DT algorithm a parametrical analysis examined

different features. No feature exists that ensures the optimum set of parameters, or any

ground truth, that can quantify how good are the parameters used by the ET algorithm

[157]. An agreement between four different features was used as an appropriate criteria

to evaluate the algorithm’s optimum parameters, dispersion threshold and time window.

The features used in the study are averaged between all the subjects. They are discussed

over the next paragraphs; a set of requirements was established. The four features used

were, number of fixations, percentage of points classified as a part of a fixation, mean

fixation time and percentage of fixations inside AoIs. These features were examined in

terms of the dispersion thresholds and time windows in a grid search [156, 157]. The

objective is to find a set of points that simultaneously satisfy the conditions imposed for

each feature. This set of points would be the optimum to use for an I-DT algorithm in a

VR-centred experiment. The grid used to calibrate the algorithm started at 0◦ and went

to 2.5◦, in steps by of 0.1◦, and time windows from 0.1 s to 0.5 s by intervals of 0.05 s.

It is important to note that the first three features can be computed for guided and free

tasks, whereas the fourth can be computed only for guided task protocols where specifics

AoIs are defined. This calibration method used the first three features to obtain the

optimum calibration, and the fourth, a specific feature which depends on the type of

study, to specify and obtain the final calibration results.

• Number of fixations This measures the average number of fixations per subject

during the task. For small dispersion thresholds the growth of the feature increases

from zero until a maximum. After this maximum, the feature decreases until one

single fixation for a high dispersion threshold and any time window value is ob-

tained. The parameters to be selected must all exceed the maximum number of

fixations due to the high instability in this region [157].

• Percentage of points classified inside a fixation measures the amount of points

classified as part of a fixation. This feature is linked to the number of fixations.

In the first step, with a small change in the dispersion threshold, the percentage

of points increases exponentially. However, this increasing tendency changes when

a maximum number of fixations is reached, which produces an elbow point in the

feature [157]. After this point, the growth of the curve becomes smoother until it

reaches 100% of the points included as part of a fixation. This feature helps identify

a lower-limit for the dispersion threshold. Moreover, this feature has to be as high
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as possible to classify more points as fixation points [157]. Following this condition,

this feature determines a single point and not a region of points.

• Mean fixation time This measures the average fixation time per subject. As has

been seen in previous studies, this feature follows a linear relation with the disper-

sion threshold of the I-DT algorithm [156, 157] in 2-D world-centred experiments.

The mean time fixation increases proportionally as this parameter increases. This

is due to the fact that the more points there are inside a fixation, increases in the

dispersion threshold involve increases in fixation time. Parameters which involve

mean fixation times above certain mean times cannot be considered as optimum.

This condition defines an upper-limit for the dispersion threshold and time window.

In this work, the predefined maximum mean time is established at 1.5 s. Despite

the fact that this fixation time is higher than the upper limit established in the

literature (0.65 s [138]), it is close to the results obtained by [151] in a IVE, that

is, 1.9 s mean fixation time.

• Percentage of fixations in AoI. This measures the percentage of fixations with

centres inside AoIs. A similar feature was used by [151,153] to calibrate algorithms.

In the present work, the majority of the fixation centres were found to be inside

the defined AoIs. The percentage is obtained when the AoI is lit. This measure

not only provides spatial information about where the fixation centre is located, it

also provides temporal information, because it only records gaze points inside an

AoI when it is lit. With the variation of the parameters of the algorithm, different

numbers of points are classified as part of fixations and the positions of the centres

of the fixations also change. The feature starts with the highest value (close to

100%). While the dispersion threshold is increased, more points are therefore part

of the same fixation. In consequence, the center of the fixation is displaced in

order to be in the average position of all the fixation points. These displacements

cause the centre of the fixation to be placed randomly in the environment for high

dispersion threshold values instead of being centred around an AoI. This evolution

tends to induce a decreasement in the percentage of fixations inside AoIs. However,

we hypothesise that during this decrease there is a stable region where the variation

of the parameters does not affect the percentage of fixations inside the AoI. This

region represents the set of parameters that better model visual attention, as the

values of this feature are unaffected by small changes in the parameters. The search

of this stable region requires two previous steps. First, a simple moving average
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(SMA) of three points is used on the signal in order to smooth it and eliminate noise.

After that, the first derivative of the feature is computed. Stability is considered

to be established when the variation in points is below 2%. Table 2.1 summarises

the criteria and the features used to calibrate the ET algorithm.

Table 2.1 shows the criteria and the features used to calibrate an ET algorithm.

Table 2.1: Calibration criteria of the features.

Measure Criterium

Number of fixations
After the maximum

fixation number

Percentage of points

classified inside a fixation

After elbow point and

as high as possible

Mean fixation time
Lower than certain

predefined time

Percentage of fixations

inside AoI
Stable region

Based on the criteria in Table 2.1, the strategy followed in the calibration process

was: (1) Computation of the features which do not depend on the definition of an AoI as

being constituted by number of fixations, percentage of points classified inside a fixation

and mean fixation time, (2) to compute the optimum value based on maximizing the

percentage of points which belong to a fixation, (3) Step 1 is recomputed by including

the percentage of fixations inside AoIs. (4) Step 2 is repeated. Therefore, to obtain

the optimum set of parameters, steps 1 and 2 take account only of the free-task related

features, while 3 and 4 take account of these features and the guided task related feature.

2.3 Results

2.3.1 Frequency analysis

The evolution of the frequency of the eye-tracking data acquisition averaged by all the

subjects during the experiment is shown at Figure 2.3 including mean and standard de-

viations. The fluctuation of the frequency is mainly between 44−46 Hz where the mean

frequency is 44.95 Hz. However, the ET data recording frequency of one subject was

below 10 Hz between 34.5 − 35 s This anomalous frequency caused the high-frequency
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variation shown in Figure 2.3. The acquisition of the data mostly complies with the

minimum accepted frequency established in 30 Hz.

Figure 2.3: Temporal evolution of the ET data frequency. The blue line is the average
frequency by subject for each second. The discontinuous line indicates the standard
deviation above and below the mean frequency.

2.3.2 Algorithm calibration

Figure 2.4 shows that the number of fixations strongly depends on both parameters. Two

different regions can be distinguished in this feature. The first region is defined from

0◦ until the maximum number of fixations, between 0.25◦ − 0.6◦. This region shows an

increase in the number of fixations until the maximum is reached. After that, the features

decreases smoothly as both parameters are higher. The highest number of fixations is

achieved with the minimum time window (0.1 ms) and with a dispersion threshold of

0.25◦. However, this maximum becomes smoother with greater time windows.
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Figure 2.4: The left-hand graphic shows the evolution of the average number of fixations
in terms of the dispersion threshold and the time window. The right-hand graphic shows
the projected dispersion threshold.

The evolution of the percentage of points classified as fixation points is shown in

Figure 2.5. Between 0 ◦ and 0.5 ◦ the curve grows exponentially until an elbow point.

This elbow point accords with the maximum number of fixations (Figure 2.4) for each

time window [157]. However, this inflexion point is more difficult to detect as the time

window increases. The percentage of points inside a fixation decreases as the time

window lengthens, but increases with the increment in the dispersion threshold.

Figure 2.5: The left-hand graphic shows the evolution of the percentage of points clas-
sified as a part of a fixation in terms of the dispersion threshold and the time window.
The right-hand graphic shows the projected dispersion threshold.

Figure 2.6 shows that the mean fixation time depends linearly on the dispersion

threshold and does not depend on the time window for the plotted region. The higher

is the dispersion threshold the higher is the mean time fixation. A mean time of 1.5 s

is achieved for a dispersion threshold of 1.5◦, whereas for a value of 0.5◦ a mean time of

0.65 s is achieved.
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Figure 2.6: The left-hand graphic shows the evolution of the mean fixation time in
terms of the dispersion threshold and the time window. The right-hand graphic shows
the projected dispersion threshold.

Taking these results into account and applying the rules established in Table 2.1,

the optimum set of parameters can be inferred from these computed features. The

rules derived from the features, number of fixations, percentage of points classified as a

fixation, and mean fixation time, specify a region of parameters (shown in Table 2.2).

Moreover, based on our optimization strategy, the percentage of points classified as

fixations should be as high as possible; this is achieved for a time window of 0.1 s and

a dispersion threshold of 1.6◦, with a value of 90.43%.

Table 2.2: Optimum parameters using the criteria of number of fixations and mean time
fixation.

Parameters Values

Dispersion th (◦) 0.3 − 1.6 0.5 − 1.5 0.6 − 1.6 0.8 − 1.7 0.9 − 1.6 1.4 − 1.6 1.4 − 1.5 1.4 − 1.5

Time window (s) 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

The feature percentage of points inside AoIs was computed and added to the results.

As can be seen in Figure 2.7, the percentage of points inside AoIs has a high degree

of dependency on the time window value, as it varies from 76 % with 0.1 s to 91 %

with 0.4 s, maintaining the dispersion threshold in 1◦. A flat region is demonstrated

for time windows above 0.2 s − 0.50 s (Figure 2.7) and a dispersion threshold between

0.5◦ − 1.2◦. This stability is not seen for time windows from 0.1 s to 0.2 s which have

a decreasing trend. As the dispersion threshold parameter increases from points higher

than 1.3◦ − 1.5◦, the feature value decreases to zero.
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Figure 2.7: The left-hand graphic shows the evolution of the percentage of fixations
inside AoI in terms of the dispersion threshold and the time window. The right-hand
graphic shows the projected dispersion threshold.

The established criterion of stability for the feature percentage of fixations inside

AoIs was added to the results of Table 2.2. A final acceptable set of points that fulfil

all the conditions of Table 2.1 was obtained, and is shown at Figure 2.8.

Figure 2.8: The four different features used to calibrate an I-DT algorithm with the
points that fulfill all the conditions established (red points) in terms of the dispersion
threshold for different time windows.
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Table 2.3 shows the values of the red points of Figure 2.8. Only four time windows

fulfil the conditions imposed by the Table 2.1. Points where the time window is below

0.25 s are excluded due to high variability in the feature percentage of fixations inside

the AoIs. Longer time windows, such as 0.45 s and 0.5 s, are not optimum because the

elbow point has not been reached yet. Dispersion points below 1◦ and higher than 1.6◦

were also discarded, due to the instability of the percentage of fixations inside these

AoIs and due to their large mean fixation time values. The results showed a positive

correlation between the optimum dispersion points and the optimum time window: when

the time window is larger, the dispersion threshold also increases. Following the criteria

that the percentage of points classified as fixations should be as high as possible, the

highest value found was 67.82%, for a time window of 0.25 s and a dispersion threshold

of 1◦.

Table 2.3: Optimum parameters using the criteria from number of fixations, mean time
fixation and percentage of fixations inside AoI.

Parameters Values

Dispersion th (◦) 1 1 and 1.2 1.4 − 1.6 1.5

Time window (s) 0.25 0.3 0.35 0.4

2.4 Discussion

The purpose of this study is to develop an I-DT fixation algorithm to be used in a VR-

centred experiment and obtain optimum thresholds for the algorithm in a 3D IVE. The

results can be discussed on four levels: (1) the novelty of the algorithm used, (2) the

optimum thresholds obtained; (3) comparisons with previous studies; (4) the calibration

procedure used.

The present study experimentally validated the use of head movements using an I-

DT fixation identification algorithm, with an integrated ET sensor in a new generation

HMD, the HTC Vive Pro Eye. Moreover, we introduced a new frequency threshold. As

can be seen in Figure 2.3, the frequency of the data in an IVE is not always continuous,

and it can suffer from high variability due to the IVE renderization; this needs to be

considered in VR-centred eye-tracking research. The algorithm presented is robust in

the face of these fluctuations, and rejects possible fixation classifications for points below

a certain frequency threshold. In addition, as the maximum frequency of the ET device

used was 120 Hz, and acquisition in this relatively simple environment was 44.95 Hz,
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the complexity of the environment needs to be taken into account as it strongly depends

on the GPU hardware used. On the other hand, the I-DT algorithm used in this work

is not dependent on the dimensionality of the experiment. It could be used to analyze

fixation classification in 2D data. This leads to a more general approach to studying

ET data.

The strategy followed to calibrate the I-DT algorithm in this research, was to obtain

an agreement between the features computed, following the rules established in Table

2.1. The analysis showed the dependency of the number, duration and position of each

fixation in terms of the I-DT parameters. Based on the criteria established for every

feature computed, a final set of parameters for the calibration of the I-DT algorithm in

an IVE was achieved. Thresholds between 1◦ and 1.6◦ for dispersion and time windows

between 0.25 s and 0.4 s are the optimum, where the point that best fits the fixed criteria

is 1◦ and 0.25 s. It is interesting that the optimum points found followed a proportional

relation between the time window and the dispersion threshold. To select concrete values

inside this optimum region, the feature that has to be boosted has to be known [157]. For

example, with values of 1◦ and 0.3 s, more fixations will be obtained, but the percentage

of points classified as being inside fixations will be less than the classification achieved

for parameter points 1.2◦ and 0.3 s. The results showed a parametrical region that

might be considered for future studies where the I-DT fixation classification algorithm

is used in an IVE. To the best of the authors’ knowledge, these results present the first

calibration of a fixation algorithm in VR.

There are many similarities between the results obtained in this work and previous

studies. The features examined in this work, obtained using a VR-centred system,

follow similar shapes and trends to features computed in world-centred scenarios [156,

157], with different numerical values. Blignaut (2009) [157] showed that the number

of fixations achieved is higher than 50 for optimum parameters in an experiment of

15 s duration. The mean fixation time achieved in the present study was 0.25 s for

a dispersion threshold of 1.45◦. This mean time accords with the mean fixation time

established in the literature for world-centred experiments, which is between 0.15 s and

0.65 s [138]. However, Shic et al. (2008) [156] obtained a mean fixation time of 1 s

for a dispersion threshold of 1◦. On the other hand, VR-centred experiments, such as

that of Duchowski et al. (2002) [151], identified a total number of fixations between

15 − 30 for a 44 s experiment and a mean fixation time of 1.9 s. In the present study,

the maximum number of fixations obtained was 28 for the optimum set of parameters,

for an experiment of less than 60 s duration. The mean fixation time obtained from
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the optimum parameters was between 1 s and 1.5 s. The mean fixation time is higher

in this study but this might be due to two reasons. The first might be related to the

experimental methodology, where the subjects have to look at a fixed AoI for at least

3 s. The second could be that ET in VR manifests some different characteristics in

comparison to 2D schema, which accords with the results obtained by [151]. Also, the

linear relationship between the mean fixation time and the dispersion threshold agrees

with the findings of [156,157]. Thus, the results suggested that the number of fixations is

lower, and mean fixation time is higher, in VR-centred than world-centred experiments.

The present work used a guided experiment which indicated where the subject had

to look every time. However the VR design could introduce bias in the subject’s gaze

due the used colors and numeration, which is a limitation of the present study. Previous

studies, such as [151,153], also used this type guided experiment to calibrate their own

ET algorithms. This methodology allows the researcher to identify what the subjects

have been looking at, at any particular time. This is a key point because this methodol-

ogy allows the researcher to know and define AoIs and record different features to enable

spatial and temporal comparisons between subjects. This comparison is not possible in

a free-experimentation task because this does not allow a comparative analysis of AoIs

between subjects. In the present study the features which can be computed in guided

and free tasks, such as number of fixations, gave us preliminary knowledge of the region

of agreement of the parameters. The results show dispersion thresholds of 0.3◦ to 1.6◦,

and time windows from 0.1 s to 0.45 s, where the most suitable set of parameters was

found for 1.6◦ and 0.1 s. This parametrical region accords with the results achieved by

Blignaut (2009) [157], an experiment developed with a free ET task. When the feature

specifically assigned to measure the guided task, the percentage of fixations inside the

AoI, was used, the optimum parametrical region was reduced, which provided more ac-

curate results. The results obtained reduced the time window parameter to the interval

0.25 s to 0.4 s, and the dispersion threshold to 1◦−1.6◦, the optimum point being 0.25 s

and 1◦. This feature complements and specifies the parametrical research. For this

reason, a guided experiment provides features appropriate to calibrate a specific ET al-

gorithm. On the other part, the exposure time of the subject to the VR is low, in order

to avoid ocular fatigue. However, it would be interesting to evaluate how this fatigue

could affect to the results of the optimum parameters in longer experimentations.
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2.5 Conclusion

In conclusion, the present study has demonstrated the implications of using an I-DT

algorithm in an IVE, which includes some key points as the head movement of the sub-

jects, previously presented by [151]. Moreover, a new frequency threshold is introduced

in order to avoid the variation of the frequency which comes from the IVE. The algo-

rithm presented is robust in the face of these fluctuations, and rejects possible fixation

classifications for points below a certain frequency threshold. Four different features

were used, as no definitive feature exists for modelling visual attention through ET fix-

ation identification algorithms. Different conditions were established for each feature,

the optimum thresholds being those that simultaneously accomplish all the conditions

of the features. This ends up with a set of parameters which are between 1◦ and 1.6◦

for dispersion and time windows between 0.25 s and 0.4 s. However, the point that best

fits the fixed criteria is 1◦ and 0.25 s. We presented a simple case of a guided task, as

the experiment did not attempt navigation. Future work will be needed to address how

a navigation task influences the calibration. This work established rules to calibrate an

ET algorithm; these could be modified based on experiments undertaken and the objec-

tives of the studies. The recent technological developments in VR and ET open a huge

new research field combining both technologies. It could mean a breakthrough in the

analysis of human behaviour in controlled experimental set-ups using immersive VR.

The analysis presented, the type of methodology, and the criteria used in this work,

provide a useful guide for future research in the use of ET for fixation classification

studies in IVE. Furthermore, this research presents a novel I-DT algorithm adapted to

a VR-centred ET paradigm, and some innovations, such as frequency acquisition and

the use of 3D head movement for the I-DT algorithm. The algorithm was calibrated

and obtained a final set of optimized thresholds, which might be used as a tool in future

research analysing gaze patterns in HMDs.

Supplementary Material

The I-DT algorithm in VR-centred system is implemented in the following link

https://github.com/ASAPLableni/VR-centred I-DT algorithm

https://github.com/ASAPLableni/VR-centred_I-DT_algorithm
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Abstract

Researchers increasingly use electrodermal activity (EDA) to assess emotional states,

developing novel applications that include disorder recognition, adaptive therapy, and

mental health monitoring systems. However, movement can produce major artifacts that

affect EDA signals, especially in uncontrolled environments where users can freely walk

and move their hands. This work develops a fully automatic pipeline for recognizing and

correcting motion EDA artifacts, exploring the suitability of long short-term memory

(LSTM) and convolutional neural networks (CNN). First, we constructed the EDABE

dataset, collecting 74 h EDA signals from 43 subjects collected during an immersive vir-

tual reality (VR) task and manually corrected by two experts to provide a ground truth.

The LSTM-1D CNN model produces the best performance recognizing 72% of artifacts

41
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with 88% accuracy, outperforming two state-of-the-art methods in sensitivity, AUC and

kappa, in the test set. Subsequently, we developed a polynomial regression model to

correct the detected artifacts automatically. Evaluation of the complete pipeline demon-

strates that the automatically and manually corrected signals do not present differences

in the phasic components, supporting their use in place of expert manual correction.

In addition, the EDABE dataset represents the first public benchmark to compare the

performance of EDA correction models. This work provides a pipeline to automatically

correct EDA artifacts that can be used in uncontrolled conditions. This tool will allow

to development of intelligent devices that recognize human emotional states without

human intervention.

3.1 Introduction

Electrodermal activity (EDA) is a non-stationary signal that indicates electrical poten-

tial via the sweat glands on the surface of the skin [158]. EDA represents a quantitative

functional measure of sudomotor activity and, therefore, an objective assessment of

emotional arousal [159]. An EDA signal can be decomposed into two different and non-

redundant components: a phasic and tonic component [160]. The phasic component is

the decomposition of the rapid movements of the signal, known as the skin conductance

response (SCR), which commonly provides the features used in EDA-based studies to

provide valuable information for many scientific research fields [161]. Special atten-

tion has been given to the approach by psychology and health-related studies [162]. In

clinical analysis, SCR is used to assess pain, stress, schizophrenia, and peripheral neu-

ropathy [159, 160]. In neuroscience and psychology, it is used to assess the subject’s

arousal levels [163]. For example, [164] used EDA signals to assess the stress of subjects

in emulated real-life job scenarios, and [165] studied EDA to distinguish between stress-

ful and calm conditions. [166] also analyzed the stress levels of a subject using the signal.

Elsewhere, studies related to mental illness have utilized EDA signals, with [167] finding

statistical evidence concerning the relationship between healthy patients and patients

with bipolar disorder using features of EDA signals and [168] discovering significant

correlations between EDA signals and engagement in dementia patients.

Most previous research has collected EDA signals in laboratory environments [169],

where subjects are usually seated and often cautioned not to move the hand to which

the electrodes are attached. However, recent applications have recorded EDA in en-

vironments where the users can walk freely and move their hands, such as daily-life
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settings and virtual reality (VR) environments. Notably, many wearable devices have

been developed to enable the possibility of acquiring EDA signals in a daily-life scenario,

leading [170] to propose a wearable EDA sensor for detecting drowsiness in drivers, [171]

to analyze the affective state of children in everyday situations when interacting with

robots, and Kim and Fesenmaier [172] to measure traveler emotions in real time during

a four-day visit. Meanwhile, VR has been used to simulate environments where subjects

can freely move and interact, which creates the sensation of being in the real world [173].

VR can display different scenarios to evoke emotions or provoke cognitive processes in

the subject [77, 129] and has been used in case studies of, for example, social adapta-

tion in social phobia contexts, the reduction of anxiety and pain, rehabilitation, and

neurological diagnosis [174–178]. EDA has been used in VR experiments to examine su-

domotor activity and arousal levels to assess anxiety and stress [179], conduct emotional

assessments [180], and diagnose autism [181].

However, among the most significant issues concerning the use of EDA signals in

daily-life and VR environments is the subject’s movement during data collection. Al-

though these technologies can offer an accurate environment for recording subject re-

sponses, the absence of control over the environments can impact EDA records. Most

movements can cause interferences in the contact between the skin and the record-

ing electrodes, producing major artifacts in EDA recordings [182]. [169] suggested that

artifacts in EDA signals may conceal the existence of important correlations between

the signal and the subject’s arousal levels due to their heavy influence on the phasic

component. Therefore, ensuring the quality of the signal in uncontrolled environments

represents a critical challenge.

Most EDA-based experiments manually remove major artifacts using a human ex-

pert, because there is no robust and established methodology for automatically recog-

nizing and correcting EDA signals. Artifacts can be manually corrected using various

software, including Ledalab (www.ledalab.de) and SCRalyze [183]. However, manual

correction has several disadvantages. First, it is a time-consuming and tedious task.

Second, manual correction can introduce subjective human bias, with different experts

correcting different signals. However, most critically, it cannot be applied in real-time

or for short time periods without human intervention, as there is a demand for intelli-

gent wearable devices that need to integrate a fully automated pipeline into the sensors.

Examples of such systems include automatic systems for disorder recognition [181] adap-

tive therapies [178], mental health monitoring systems at home [165], driver drowsiness

detection [170], and aesthetic evaluations [129].

www.ledalab.de
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Therefore, algorithms that can quickly detect and correct artifacts, ensuring data

quality, appear essential for future applications of intelligent EDA-recording devices.

However, works that develop automatic methods for removing artifacts remain limited

[169, 182, 184–186] and present several limitations (see Section 2 for further details): i)

The works that recognize artifacts detect whether a segment of a signal did or did not

contain an artifact, but did not provide a continuous clean signal, which is needed to

compute the phasic component and assess arousal, ii) the works that corrected signals did

not compare their results with signals manually cleaned by experts, the most common

method for removing artifacts, iii) previous works did not assess the impact of the

correction on the phasic component, which is related to the emotional arousal dimension

and represents the most important feature in the state-of-the-art approach, and iv) the

performances of the different methods are not comparable because there is no public data

benchmark. That is, no extant research has considered the development of a model that

removes major EDA artifacts to provide a clean signal that does not have differences in

terms of the phasic component with the signal that was cleaned manually by an expert.

This work develops an automatic recognition and correction algorithm for EDA sig-

nals, thus providing an artifact-free corrected signal that can be used in uncontrolled

environments where users can freely walk and move their hands. This involves exploring

two novel approaches: a long short-term memory neural networks (LSTM) in combina-

tion with a 1D convolutional neural networks (CNN), and a 2D CNN for spectrogram

analysis. We compare these approaches with two state-of-the-art methods. A total of

74.46 h of EDA signal recordings were collected in a VR environment in which the 43

participants had to perform different tasks that required hand and body movements.

The signals were manually corrected by two experts, generating an artifact-free signal for

use as a ground truth. The labels obtained from the manual correction procedure were

used to train and test the artifact recognition models. Next, automatic correction was

performed on the artifacts detected. Finally, to measure the quality of the automatic cor-

rections, the phasic component was evaluated pairwise with the automatic correction,

the manual correction, and the original raw signal using two different decomposition

algorithms, namely, CDA and cvxEDA.

The rest of this paper is organized as follows. Section 2 introduces the related

literature. Section 3 describes the dataset’s construction and the proposed methods for

recognizing and correcting the artifacts. Section 4 presents the experimental results and

provides a performance analysis of the proposed model. Section 5 discusses the findings,

and Section 6 concludes the research.
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3.1.1 Realted work

Several studies have considered EDA artifact recognition. For example, the work of [187]

explored the recognition of EDA artifacts using a model based on four rules derived

from the minimum and maximum range of the EDA signal or its temporal variation.

However, the research on automatic detection of artifacts on EDA signals employing ML

methodologies remains limited. Adopting a sampling frequency of 8 Hz, [182] detected

motion artifacts in 5 s EDA segments and extracted different features from the raw EDA

signal, including statistical variables (e.g., the mean, the maximum and minimum values

of the data, and wavelet coefficients) to distinguish between artifacts and non-artifacts.

A dataset with a duration of 130 min is used. The method achieved 96% accuracy

using a support vector machine (SVM) model. However, the proportion of artifacts

was not reported, and it should be considered when interpreting the performance of the

model. [188] employed the same methodologies and objectives but used a larger dataset

than other experimentations, including a total of 107.56 h between 13 participants.

The data collected were based on ambulatory EDA signals with a sampling frequency

32 Hz that was later resampled to 8 Hz. Validation revealed a 98% true positive rate

(TPR). However, the approach followed had certain limitations, such as recognizing

artifacts using 5 s segments, a lack of evaluation of artifacts in the whole signal, and

not providing a final corrected signal. In addition, the final dataset has an artifact

percentage of 48.96%, which differs from the initial unbalanced percentage of artifacts

(17%). [185] adopted a different approach, studying the use of unsupervised learning

to identify artifacts from the raw signal, achieving competitive results compared to

supervised learning. In addition, [189] also analysed an unsupervised approach using

synthetic data as groundtruth. [186] presented recently a model that recognize segments

of 5 s affected by artifacts with 94.7% of accuracy based on a ML model feeded by a new

set of hand-crafted features. They compared the method with the methodologies of [182]

and [187], outperforming the previous results. They collected both clean and corrupted

EDA signal from immobile and moving hands, respectively, and their differences were

used to create the groundtruth. However, they did not perform a correction of the

artifacts providing reconstructed signals, which are needed for intelligent device systems,

and did not analyse the implication of the artifact recognition on the phasic component.

In contrast, several works have studied the automatic correction of EDA signals

without directly recognizing the artifact. That is, these methods modify the whole sig-

nal without needing to identify the artifact. Most contributions arrive from the field
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of signal processing, which has proposed using low-pass filters or exponential smooth-

ing for artifact correction such as [190]. However, these approaches can modify certain

segments of an EDA trace, which affects genuine physiological responses, creating more

artifacts [169]. Other studies have used Stationary wavelet transform models to automat-

ically remove artifacts in EDA signals. For example, the work of [184] models wavelet

coefficients using a Gaussian mixture distribution. Their model required estimating

three parameters using the expectation-maximization algorithm. Elsewhere, [191] made

a breakthrough by studying the automatic model cvxEDA, which linearly decomposed

the EDA signal into tonic components, phasic components, and a Gaussian noise term

that represents the signal’s white noise. Therefore, this algorithm enabled the direct

decomposition of the EDA signal into two main components while simultaneously re-

moving the noise term. This model is based on Bayesian statistics and convex opti-

mization. [191] showed that cvxEDA outperforms CDA in terms of finely discriminating

arousal levels. Furthermore, its low computational cost and efficiency has led to its use

in other experiments e.g. [192, 193]. Meanwhile, [169] proposed a wavelet-based trans-

formation based on the Stationary wavelet transform that used a zero-mean Laplace

distribution to model the wavelet coefficients and only required estimating a single pa-

rameter. More recently, [194] used a deep convolutional autoencoder for automatic signal

correction, which more effectively demonstrated the signal-to-noise ratio than previous

methods. According to that work, “the ideal scenario would be having an extra ref-

erence clean EDA signal which then can be matched with the reconstructed signal to

evaluate whether the reconstructed signal accurately recovers the underlying SCRs in

the EDA signals without any distortions.” However, only five subjects and 39 segments

of the work include a clean EDA signal for evaluation, and the validation focused on

the signal-to-noise ratio. Therefore, none of these works analyzed the implication of the

correction in the phasic component of the signal to recover the underlying SCRs.

Although the correction methods used in previous works produced improvements in

signal-to-noise quality, none of those studies validated their findings by using an EDA

signal manually corrected by an expert as a ground truth. Having the clean signal as a

reference can critically improve automated approaches by enabling not only the quan-

tification of the existing artifacts via a comparison of raw and clean signals but also

the evaluation of the correction via a comparison between the automatically corrected

signal and the manually cleaned signal. Furthermore, this approach can compute the

underlying phasic component of the clean signal and evaluate how the automatic cor-

rection impacts this component, the most important and common feature used in such
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studies. As such, emulating the manual corrections performed by experts must be the

ultimate goal of ML and DL models given that most studies use manual correction for

artifact correction [161].

Meanwhile, no previous research has combined artifact identification followed by

signal correction in the same pipeline. In addition, none has been found that presented a

precise characterization of motion artifacts (e.g., total number, duration, and percentage

of the signal affected), which is especially important to characterize the noise levels of

the signal used in each study and understand the differences on the results between

studies. This might be due to the need for a manually cleaned signal to quantify the

artifacts, a reconstruction that no study has included. Finally, previous studies have

not made their models available for use by the scientific community, which limits the

ability to produce comparisons between models. Furthermore, there is no benchmark

public data, which would enable the same test data to be used in comparisons of novel

methods with the state-of-the-art. As such, there are limitations when comparing the

performances reported as the performances is related to the type and number of artifacts

and the methodology used.

The most important existing studies on EDA signal filtering and artifact recognition

are summarized in Table 3.1. The table presents the objective of the study, the methods

used, the subject task, the target type, and the total EDA time used.

Concerning the model used to recognize artifacts in EDA, no previous work has

explored the use of deep learning (DL) algorithms. DL is being a really important tool in

order to classify and recognize patterns in different types of signals and images [195,196].

This tool has been applied in recent years to other physiological signals, such as an

electrocardiogram (ECG) or electroencephalogram (EEG). Models such as U-Net [197],

ResNet [198] or recurrent neural networks (RNNs) have shown good performances and

versatility in different types of health-related problems. For example, Kyathanahally et

al. [199] used two DL models for ghost artifact correction in EEG spectrograms. The

first model classified whether the spectrogram had a spurious echo in it or not. The

second model conducted a regression over the spectrogram to correct the artifact. This

work shows promising results for the detection of ghost artifacts in EEG. With regard

to ECG signals, the work of Bento et. al. [200] utilized two different DL classification

models to study the classification of atrial fibrillation. The work of Liu et al. [201]

performed a segmentation over hippocampal images using a 3D DenseNet to classify if

certain subject sould suffer Alzheimer’s disease. Finally, RNN was used by Antczak [202]

to automatically denoise ECG signals. Various models were tested, including re-trained
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Table 3.1: Summary description of each study related to the automatic correction or
recognition of artifacts methodology in EDA signal, compared with the characteristics
of the proposed work.

Study Objective Used methods Subject’s task Target
Performance
evaluation

Time sample

cvxEDA [191]
Signal

correction

Bayesian statistics
and convex

optimization

Static breath
and simulation

Raw signal

Increasement of
arousal

recognition
vs. raw signal

and CDA

5.1 h
(30 subj.)

Shukla et al. [169]
Signal

correction
Wavelet transform Driving Raw signal

Increasement of
arousal recognition

vs raw signal

20.11 h
(15 subj.)

Chen et al. [184]
Signal

correction
Wavelet transform

Physical, cognitive
and emotional tasks

Raw signal

Artifact power
evaluation metric

vs other filter
methods

81.5 h
(32 subj.)

Taylor et al. [182]
Artifact

recognition
Support Vector

Machine
Physical, cognitive

and emotional tasks
Expert labelling
of 5 s window

% of windows with
artifact detected

2.17 h
(32 subj.)

Zhang et al. [185]
Artifact

recognition
k−Nearest
Neighbour

Static task
in laboratory
and real-life

walking

Expert labelling
of 5 s window

% of windows with
artifact detected

23 h
(21 subj.)

Our proposal

Artifact
recognition

+
signal

correction

(1) Classical ML
(2) Recurrent Neural

Networks
(3) U-Net

VR tasks without
movement restrictions

Conitinuous signal
cleaned by expert

% artifact detected
in EDA signal

+
signal generated

phasic component
vs

corrected signal

74.46 h
(44 subj.)

ones, and results improved for the pre-trained models with artificial ECG signals.

In summary, previous research did not assess artifact recognition and correction in

the same workflow. Furthermore, no work has studied the comparison of automatic

correction algorithms against an expert-corrected signal. Therefore, previous studies do

not provide a final cleaned signal that emulates the type of correction performed by an

expert.

3.1.2 Objectives

In this work, we develop an automatic recognition and correction algorithm for EDA

signals, thus providing an artifact-free corrected signal that can be used in uncontrolled

environments where users can freely walk and move their hands. To this end, we ex-

plore two approaches from the DL field that have not previously been used for artifact

recognition in EDA signals. In addition, we compare them with a state-of-the-art ML

method. A total of 74.46 h of EDA signal recordings were collected from 44 partici-

pants in an VR environment where the participants had to perform different tasks that

required hand and body movements. The signals were corrected by two experts, gener-

ating an artifact-free signal that was used as a groundtruth. The labels obtained from
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the manual correction procedure were used to train and test the artifact recognition

models. Afterwards, an automatic correction was performed on the artifacts detected

by the best recognition model. Finally, to measure the quality of the automatic correc-

tion, the phasic component was evaluated pairwise between the automatic correction,

the manual correction, and the original raw signal, using two different decomposition

algorithms, CDA and cvxEDA. Therefore, the main objective of this work is to au-

tomatically recognize and correct EDA artifacts, achieving an automatically corrected

signal that is indistinguishable from expert manual correction in terms of phasic com-

ponents. This model can be used in intelligent wearable devices for monitoring human

cognitive-emotional states for healthcare services without human intervention.

3.2 Materials and Methods

3.2.1 Participants

A group of 43 volunteers (13 females and 30 males) was recruited to participate in the

experiment. The mean age of the group was 37.52 (SD = 8.38). The following inclu-

sion criteria were applied: age between 18 and 50 years, Spanish nationality, and no

previous VR experience. Before the subject’s participation, they received documentary

information about the study and gave their informed consent for their involvement. All

methods and experimental protocols were performed according to The Code of Ethics

of the World Medical Association (declaration of Helsinki), and the experimental pro-

tocol was approved by the ethics committee of the Universitat Politècnica de València

(P4 18 06 19).

3.2.2 Data collection: EDABE dataset

We collected and published the Electrodermal activity artifact correction benchmark

(EDABE) dataset [203], which includes raw electrodermal activity signals and the signals

reconstructed via manual correction for use as a ground truth. To the best of our

knowledge, this is the first public dataset, enabling comparison of methods. The EDABE

dataset includes a total of 74.46 h of EDA recording affected by motion artifacts from

the 43 subjects. It is divided into a training set with 33 subjects (56.27 h) and a test set

with 10 subjects (18.19 h). We propose the adoption of the area under the curve (AUC)

metric for evaluation on the test set. Given the dataset includes unbalanced classes,

the AUC metric provides a more robust measure for future comparisons utilizing this
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dataset.

The data were collected during a VR study that had the objective of inducing stress

in the subject by simulating daily situations at work in a virtual environment. The

participants had to perform different tasks in the virtual scenario to achieve this ob-

jective. First, subjects were placed in an office setting, where they talked to a virtual

avatar about issues related to work and personal life. Then, the subjects were moved

to another scenario, a meeting with five virtual avatars in which they had to actively

participate in decision making.

In all the settings that required conversations with the avatars, the subjects were

able to choose between the four options displayed on the lower part of the screen.

Finally, the participants played three different minigames. The first minigame involved

extinguishing a fire in a virtual forest as fast as possible. The second minigame entailed

reorganizing a pipe to allow water to flow through it in the minimum possible time. In

the last minigame, the subjects had to complete a maze while simultaneously solving

simple arithmetic equations as a parallel task. The faster the subjects solved both

problems, the higher their score. In all three minigames, the participants had to move

both of their hands to complete the games. As such, the EDA signal became noisier in

the minigames section due to the induced stress and the subjects’ rapid movements.

The subjects performed the VR scenario with a HTC Vive Pro-eye head mounted

display working at 90 Hz refresh rate with 1440×1600 pixels per eye and a field of view

of 110◦. EDA data were recorded at a sampling frequency of 128 Hz using a Shimmer3

together with the Consensys software. A total, 43 EDA signals were collected. The

average experiment duration was 104 ± 8 min, producing a total of 74.46 h of signals.

The virtual environment is developed in Unity3D platform.

3.2.3 Methodology overview

The proposed methodology is summarized in Fig. 3.1. First, two experts corrected

the EDA signals to provide the ground truth. Next, two state-of-the-art and two new

models fitted over the training set were developed: i) [182], ii) [186], iii) an LSTM with

a 1D CNN, and iv) a 2D CNN that analyze the signal’s spectrogram. Following training

and validation, the models were evaluated using the test set, with different classification

metrics evaluated over each test signal. The algorithm that achieved the highest Kappa

and TPR was selected as the best model.

Second, a fully automatic signal correction pipeline was developed. Artifacts were

identified among the EDA signals using the best model. Then, a regression model was
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used to correct the detected artifacts to provide a final clean signal. Finally, the phasic

component was calculated using the CDA and cvxEDA algorithms.

Validation of the complete pipeline involved comparing the phasic component of the

three signals, namely, the raw signal, the automatic correction, and the expert manual

correction (i.e., the ground truth). The similarity between the three signals was analyzed

over the results of different regression metrics applied to each signal, namely, root mean

square error (RMSE), mean absolute error (MAE), and cross-correlation. An ANOVA

with a post-hoc analysis evaluated the differences between the phasic component of the

signals.

SVM, RFC, LogR

Ar�fact recogni�on model development

Data preprocessing

2D CNN

LSTM + 1D CNN

Data modelling Evalua�on

Best model

Data acquisi�on

Feature extrac�on
Hossain et al.  (2022)

Spectrogram
genera�on

EDA training/valida�on 
data

(51.35 h)
EDA test data

(18.19 h)

Signal correc�on pipeline

EDA data Ar�fact
recogni�on

Regression model
on ar�facts

Automa�c 
clean signal

CDA/cvxEDA
decomposi�on

Phasic 
component 

(SCR)
Postprocessing

SVM, GBC, RFC and 
LogR

Feature extrac�on
Taylor et al. (2015)

Figure 3.1: Schematic representing the artifact recognition and correction pipeline.

3.2.4 Expert artifact correction

The following procedure was used to obtain the manual correction of the signal. The

expert cleaned the signal using Ledalab software, which allowed them to visualize the

complete EDA signal and indicate, in the signal itself, in which sample the artifact

started and ended. Ledalab allows the manual correction through different interpolations

as linear or spline, allowing the expert to choose between the one that best suits the

segment signal affected. The expert then performed an automatic interpolation on the

signal, correcting the parts of it that were determined to be artifacts according to their

own criteria. Ledalab recorded the corrected samples, thereby collecting the artifact

samples. These data were subsequently used as labels to perform a binary classification
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that divided the samples into “artifact” and “non-artifact” samples.

One expert corrected 21 signals and the other corrected 22 signals, of which 33 were

randomly assigned to the training set and 10 to the test set, representing 56.27 h and

18.19 h of EDA signal. The labels for each corrected signal were used to produce a

descriptive-artifact analysis table.

3.2.5 Artifact recognition models

This work proposes four ML and DL classification algorithms. The first two methods

replicates the methodology described by [182] and [186]. The four methodologies share

the same target processing, assigning artifact or non-artifact label according with the

percentage of artifacts in a 0.5 s segment. If more than 50% of the segment was labeled

as an artifact, the sample of 0.5 s was labeled as an artifact; otherwise, it was labeled as

non-artifact. All the models were fitted using the training set. As a filter, signals with

an artifact percentage below 1% were removed, leaving 51.35 h of EDA signal to train

the three models.

Upon training all four models, we conducted a test evaluation of the models that

collected the mean values of different metrics, including accuracy, Kappa, TPR, and

true negative ratio (TNR). Due to the considerable imbalance between the proportion

of artifacts and non-artifacts, the Kappa score and TPR were selected to evaluate artifact

detection performance. Once the best model was selected, we applied post-processing

to the labeling provided by the model. This involved re-labeling the signal segment

between two artifacts as an artifact if they were separated by less than a certain time

threshold, with the aim of merging nearby artifacts. The time threshold used was fixed

at 2 s. Subsequently, an additional metric was implemented, namely, the percentage

of artifacts detected. This metric was used because artifacts are not single points but

sets of samples with a time duration. As such, this metric measures the percentage

of artifact detection. To consider a detection valid, we analyzed the percentage of the

duration of the artifact that the model labels an artifact. If this percentage exceeded a

threshold value, the corresponding detection was considered correct.

3.2.5.1 Taylor et al. model

The first method [182] is based on the extraction of several hand-crafted features from

the raw EDA. The segments of 0.5 s are processed obtaining several types of features.

The first is statistical features such as the minimum, maximum, mean, median, standard
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deviation and range. These statistical features were also computed over the first and

second derivative of the segment. The same process is repeated for a low-pass filter of

the signal with a frequency threshold of 16 Hz and to its first and second derivative. The

last set of features was achieved from the computation of wavelet decomposition using

Harr window of level three. From each level, the mean, median, maximum, standard

deviation and number of coefficients above zero is computed. A total set of 62 features

were obtained.

A backward feature selection (BFS) method based on SVC was used to select the

best 40 features. Afterwards three different models were used, logistic regression (LogR),

random forest classifier (RFC) and SVC. A parameter tunning was performed over each

model to obtain the best hyperparameters, validating it through a group cross-validation

of 5 folds. This type of cross-validation method was selected to ensure that the samples

that belong to the same subject were not simultaneously present in train and validation

split. The parameters used in the grid were 0.01, 0.1, 1, 10 and 100 for C in LogR; 200,

400 and 600 estimators, 10, 30 and 50 max. depth for RFC model; 1, 10, 100 and 1000

for C and 0.001, 0.01, 0.1, and 1 for Gamma in SVM model. The model with highest

accuracy was selected as the best model.

3.2.5.2 Hossain et al. model

The second model reproduces [186] methodology. In our case, the model extracted the

features and recognized wheter or not an artifact was present in a signal segment of 0.5 s

instead of 5 s to produce comparable results. The computed features can be divided into

three groups. First, statistical features such as the mean, median, standard deviation,

minimum, maximum, range and shannon entropy from the raw signal and its first and

second derivatives. These characteristics are also computed from the phasic component

of the EDA signal. Second, autoregresive features were obtained from the coefficients of

an autoregressive model over the 0.5 s signal segments, excluding the interception coef-

ficient but adding the error variance. These type of features had also been used in other

works related with time signal analysis [204, 205]. Finally, time-frequency features that

were based in two different time-frequency transformations: variable frequency complex

demodulation (VFCDM) [206] and wavelet. VFCDM was applied to the signal segment

using four different frequencies: 64 Hz, 48 Hz, 32 Hz and 16 Hz. Standard deviation

and mean were computed from this decomposition. From the wavelet decomposition, a

three-level wavelet decomposition using Haar window is used. Mean, median, standard

devation and range of each level is obtained for each level. A total of 50 characteristics



54 Chapter 3

were obtained.

Following the original work, a BFS based on RFC was used to select the best 40

features. The input data were processed using standard scaler and min-max normaliza-

tion. Parameter tuning was implemented using group cross-validation of 5 folds. The

studied models were SVM, gradient boosting classifier (GBC), RFC and LogR. The pa-

rameters used in the grid were 0.01, 0.1, 1, 10 and 100 for C in LogR; 200, 400 and 600

estimators, 0.01 and 0.1 learning rate and 3, 5 and 10 max depth for GBC; 200, 400

and 600 estimators, 10, 30 and 50 max. depth for RFC model; 1, 10, 100 and 1000 for

C and 0.001, 0.01, 0.1, and 1 for Gamma in SVM model. Highest accuracy defined the

best model.

3.2.5.3 LSTM-1D CNN

This section proposes a novel model that implemented artifact detection in the last 0.5 s

of a 5 s signal segment. This model’s main purpose is to learn from the signal’s temporal

evolution. The architecture of this model was inspired by the work of [200] and [202],

who both used CNN and LSTM to extract features from a raw ECG signal. Our work

uses a set of LSTM layers in combination with 1D CNN layers.

Fig. 3.2 details the model architecture. Its first two layers were LSTM layers of 16

neurons that returned the hidden state output for each input time step. Subsequently,

the network included four convolutional levels, each of which featured three convolutional

layers with a batch-normalization operation performed after each convolution. Finally,

each level included a dropout value of 0.05 and a max-pooling operation of size 2. The

numbers of filters in each level were 32, 64, 128, and 256; kernel size was 5. Finally,

the model featured two fully connected layers of 256 and 16 neurons and a final fully

connected layer comprising a single perceptron with a sigmoid activation function. The

model was trained with the rmsprop optimizer at a learning rate of 5 × 10−5 and a

batch size of 16. Due to the imbalance, the cost function used to train the model was

the Dice-Sørensen coefficient (DSC). The model had an early stopping threshold of 30

epochs. The percentage of artifacts in the training set was 12.60%. No filter was applied

to the raw signal. For each 5 s segment, min-max scaling was applied.
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Figure 3.2: Schematic representation of the architecture used for raw signal classification
and LSTM-1D CNN model.

3.2.5.4 Spectrogram and 2D CNN

The last proposed approach involved studying the recognition of artifacts via spectro-

gram artifact classification and segmentation. First, a spectrogram of each segment of

32 s of signal was created using fast fourier transform (FFT) with size 4096. Then, two

consecutive models were used for the temporal segmentation of artifacts. The first model

was an image classification model that classified a spectrogram as having an artifact or

not. The second model was an image segmentation model that created a temporal seg-

mentation inside the spectrogram to find the artifacts. This second model only studied

the spectrograms classified as containing an artifact by the first spectrogram classifica-

tion model. This model combination was based on the work of [199], and both models

were based in 2D CNN layers. An overview of the pipeline appears in Fig. 3.3.

FFT

Has 
artifact(s)

Artifact
recognition in  
spectogram

(CNN)

Clean

Artifact
segmentation in 

spectogram
(U-Net)

EDA signal
Vector

labelling

Figure 3.3: Scheme of the followed methodology for the detection and segmentation of
EDA artifacts in the spectogram.
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To obtain the spectrogram of a signal segment, the FFT algorithm was used. Using

an FFT of size 4096, a resolution of 64 samples was achieved. To obtain the squared

matrix, the time segments of each signal were divided into 32 s segments. A matrix

representation with the dimensions 64 × 64 was obtained. In these representations, the

vertical axis represents the frequencies in Hz, and the horizontal axis shows the temporal

information in seconds. The spectrograms were obtained with a 50% overlap.

The classification model was a set of CNN layers used to perform image artifact

recognition. The spectrogram was classified as containing an artifact if this percentage

exceeded 0% based on a comparison with the ground truth. Otherwise, the spectrogram

would be classified as clean. This binarization was used for labeling by the spectrogram

classification model. The model architecture comprised four convolutional levels featur-

ing between 16 and 128 filters, as Fig. 3.4(a) shows. The fully connected layers in the

last two levels of the model had a dropout rate with a value of 0.5. The model’s cost

function was binary cross-entropy.

In contrast, the segmentation model followed a U-Net architecture, as Fig. 3.4(b)

shows. The target image was a binary image in which the label 1 indicated an artifact.

Therefore, the artifact was represented as a vertical segment in the spectrogram, with the

width being the temporal segmentation of the artifact demonstrated by Fig 3.3. This

pre-processing procedure produced the binary artifact mask image that was model’s

target. A maximum of 256 filters was used by the segmentation model. The kernel

size for all CNNs was set to 5 × 5, and the dropout rate of the convolutional levels was

set to 0.05. The model’s cost function was calculated as the mean of DSC and binary

cross-entropy. Using Adam optimizer with a batch size of 4, the learning rate for both

models was 1 × 10−4, and both models had an early stopping threshold of 30 epochs.

The total percentage of spectrograms with artifacts in the training set of the classi-

fication spectrogram model was 45.38%. Considering the spectrograms that contained

an artifact, the total number of pixels identified as belonging to an artifact produced

a total percentage of artifact pixels of 39.80%. The data introduced in the two models

was a set of min-max normalized spectrograms with the dimensions 64×64. To increase

the size of the training dataset and achieve a higher degree of model generalizability and

robustness, the two models were trained using data augmentation technique [207]. For

this, we implemented two different types of transformation. The first involved defining

random vertical or horizontal lines equal to zero that hide––at random––certain pixels

in the spectrogram. The minimum and maximum threshold numbers of hidden pixels

were 256 and 1024. The second transformation was the translation of the spectrogram
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(a) Spectogram artifact classification ar-
chitecture

(b) Spectogram artifact segmentation architecture

Figure 3.4: Architecture of the two models included in the spectrograms and 2D CNNs.
Image (a) shows the artifact classification model, and image (b) shows the model that
achieved the segmentation of the artifacts in the spectogram.

image via a random vertical and horizontal pixel distance. The minimum and maximum

threshold distances defined were 4 and 16 pixels. All the images in the dataset suffered

both types of transformation, increasing the size of the dataset three times.

3.2.6 Artifact correction

Following the artifact recognition task, a regression model was developed to correct the

detected artifacts via the samples of signals labeled artifacts. This automatic correc-

tion process combined two interpolation methods. The first was a linear interpolation

between the beginning and the end of the artifact. The second involved obtaining a

polynomial of degree 8. The first and last samples of the artifact were taken to obtain

this polynomial, and six additional internal and evenly spaced samples were considered.

The methods produced a set of points for each sample labeled an artifact. Finally, the

techniques were averaged for each point of the artifact to combine the corrections per-

formed using the linear and nonlinear approaches. This approach partially reproduced

the methodology involving the use of the Ledalab software. The method used in this

work combines the two approaches, with the linear fit capturing the tendency of the

artifact segment and a 8th degree polynomial estimation to adjust the interpolation to

the non-linearity of the EDA signal. Subsequently, a simple moving average of eight



58 Chapter 3

samples was implemented. The simple moving average was applied from 0.125 s before

the beginning of the corrected artifact to 0.125 s after the end of the artifact to smoothen

the joint between the corrected artifact segment and the original EDA signal.

A set of metrics was computed to evaluate the quality of the automatic correction.

We analyzed differences in terms of the phasic component between (1) the raw signal, (2)

the automatically corrected signal, and (3) the signal manually corrected by experts. We

focused on phasic component because it assessed the sympathetic activity and the central

meaning of EDA is revealed by its peaks [160]. To probe the robustness of the proposed

methodology, we obtained the phasic component using two different approaches: the

CDA (using the Ledapy library) and the cvxEDA algorithms. The metrics compared

the three phasic signals by pairs, and the computed metrics were the RMSE, MAE,

cross-correlation, and the difference in the area under the curve (DAUC). Furthermore,

the phasic components of the signals were segmented into intervals of 5 min, upon which

the mean could be computed. We analyzed the distribution of the means among the

three signals using a one-way ANOVA test, performing a post-hoc analysis by pairs to

observe statistical differences between them. The hypothesis considered is that if the

automatic correction simulates the manual correction, no differences would be observed

between them, while differences would be observed between the raw signal and the two

corrections.

3.3 Results

3.3.1 Signal and artifact description

Table 3.2 shows the descriptive analysis of the artifacts identified considering the train

and test stes, and the complete dataset. The mean artifact presence percentage was

10.63 ± 11.59%.

Table 3.2: Descriptive features for the artifacts extracted from all signals. Metrics are
shown as mean and standard deviation per participant. (*) Samples are computed
considering a target each 0.5 s.

Artifact
duration (s)

Number
of artifacts

Signal
affected (%)

First
artifact (s)

Minimum
artifact

duration (s)

Time
between

artifacts (s)

Total samples
with artifact*

Total
samples*

Train 5.37 ± 3.59 113.48 ± 97.12 9.97 ± 11.80 86.13 ± 173.98 1.08 ± 0.70 169.35 ± 291.63 44669 405194

Test 5.14 ± 3.01 182.30 ± 86.71 12.81 ± 10.57 45.65 ± 22.36 0.73 ± 0.55 48.47 ± 44.01 18246 130962

Complete
dataset

5.22 ± 3.56 129.49 ± 99.16 10.63 ± 11.59 76.72 ± 153.75 0.88 ± 0.53 89.74 ± 125.76 62915 536156
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3.3.2 Artifact recognition

Upon training and validating the four different approaches, the models were evaluated

on the test set (18.19 h of recording), with the performance calculated via a binary

classification each 0.5 s. Therefore, the models were tested on 130962 samples. The

performance metrics shown in Table 3.3 are averaged across the test set, providing the

mean and standard deviation for each metric.

Table 3.3: Evaluation of the different proposed approaches on the test set. Results
appear as means and standard deviations. The model with the highest AUC, Kappa
and TPR is highlighted in bold.

Model Accuracy TPR TNR Kappa AUC DSC

Taylor et al.
[182]

0.91 ± 0.05 0.32 ± 0.13 0.98 ± 0.04 0.39 ± 0.09 0.65 ± 0.05 0.44 ± 0.12

Hossain et al.
[186]

0.91 ± 0.05 0.38 ± 0.18 0.96 ± 0.08 0.42 ± 0.10 0.67 ± 0.06 0.47 ± 0.14

Raw signal and
LSTM-1D CNN

0.88 ± 0.09 0.65 ± 0.16 0.89 ± 0.17 0.49 ± 0.08 0.76 ± 0.06 0.57 ± 0.07

Spectrogram and
2D CNN

0.87 ± 0.10 0.63 ± 0.17 0.87 ± 0.15 0.42 ± 0.09 0.75 ± 0.06 0.50 ± 0.11

Of the different ML models tested using the feature extraction and ML approach,

the RFC was the best model following the features extracted from [182] whereas, the

GBC outperformed the other models following the set of features of [186]. However,

both performed worse than the DL approaches in terms of Kappa, TPR and AUC. The

spectrogram and 2D CNN approach produced the second-best performances, achieving

a TPR of 0.63 and a Kappa of 0.42. The best performance was achieved by the raw

signal and LSTM-1D CNN approach, which achieved a TPR of 0.65 and a Kappa of

0.49. This performance is also corroborated by the AUC metric (0.76). This led to

the selection of raw signal and LSTM-1D CNN approach as the model for recognizing

artifacts to be implemented in the final pipeline.

The predictions of the raw signal and LSTM-1D CNN model were post-processed to

render artifact recognition more accurate. This involved merging the artifacts separated

by under 2 s. Table 3.4 shows an improvement in the mode’s performance, producing a

TPR of 0.72, a Kappa of 0.50 and an AUC of 0.79 in test set.

Next, we evaluated the percentage of artifacts detected in terms of different overlap

thresholds. Fig. 3.5 shows a decrease in the percentage of detected artifacts according to

the overlap ratio threshold. If we consider a 50% overlap threshold that is, considering

identification as valid if the model classified the artifact at least half of the time the
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Table 3.4: Evaluation of the raw signal and LSTM-1D CNN model predictions on the
test set after artifact recognition post-processing. Results appear as means and standard
deviations.

Model Accuracy TPR TNR Kappa AUC DSC

Raw signal and
LSTM-1D CNN

+ post-processing
0.87 ± 0.10 0.72 ± 0.13 0.86 ± 0.18 0.50 ± 0.10 0.79 ± 0.06 0.58 ± 0.10

model detected 59.88% of the artifacts. In addition, if we considered a 20% threshold

the model identification increased to 81.39%.
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Figure 3.5: Evolution of percentage of artifacts detected in terms of the overlap ratio
threshold. The line represents the average in the metric; its margin area, in light blue,
indicates the standard deviation above and below the mean of the metric.

3.3.3 Artifact correction

Using the LSTM-1D CNN model with post-processing, a fully automated pipeline was

implemented to the test signal data to obtain clean signals. This included a regression to

interpolate the signal during the artifacts and a decomposition of the signal into phasic
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and tonic components. Fig. 3.6 shows the final interpolation result for a raw signal

segment after the automatic correction process. The supplementary materials include

the signals automatically corrected by the discussed algorithm.

1840 1850 1860 1870 1880 1890 1900 1910
Time (s)

0.30

0.35

0.40

0.45

0.50

S

Raw data
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Automatic

Figure 3.6: Automatic correction of a certain segment of an EDA signal. The blue line
is the raw signal of the segment. The orange line is the manual correction performed
by an expert, and the red line is the automatic correction performed by the artifact
recognition and correction algorithm.

We validated the complete pipeline by comparing the phasic component of three

signals: (1) the raw signal, (2) the automatic correction, and (3) the expert manual

correction (as ground truth). This involved a pairwise evaluation of the signals. Table

3.5 shows that automatic and manual cleaning produced lower RMSE, MAE, and DAUC

values according to both decomposition algorithms (CDA and cvxEDA). The ANOVA

test did not find any statistical differences (p-value > 0.05) between automatic and

manual corrections. In contrast, statistical differences (p-value < 0.05) were observed

between the automatic cleaning and raw signal and between the manual cleaning and

the raw signal. Fig. 3.7 shows boxplots of the values of the phasic components for each

signal and decomposition analysis. In accordance with posthoc analysis, both signals

demonstrate a higher similarity in the distribution of automatic and manual clean signals

compared with the raw signals.

3.4 Discussion

This work aimed to develop a fully automatic pipeline for recognizing and correcting

artifacts in EDA signals collected in uncontrolled scenarios involving hand and body

movements. The work applied two new approaches using DL algorithms: an LSTM-1D
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Table 3.5: Statistical metrics for the pairwise evaluation of the phasic components of
the automatic corrections, the manually cleaned signals, and the raw signals. Results
appear as means and standard deviations for each participant.

Algorithm
Phasic

component
RMSE MAE

Cross
correlation

DAUC p-value

Automatic
and

manual
0.146 ± 0.096 0.054 ± 0.033 0.772 ± 0.229 0.194 ± 0.184 0.427

CDA
Automatic

and
raw signal

0.171 ± 0.108 0.068 ± 0.071 0.743 ± 0.216 0.246 ± 0.247 < 0.001 (***)

Manual
and

raw signal
0.153 ± 0.102 0.064 ± 0.055 0.795 ± 0.186 0.377 ± 0.616 0.012 (*)

Automatic
and

manual
0.339 ± 0.256 0.078 ± 0.039 0.633 ± 0.235 0.236 ± 0.168 0.246

cvxEDA
Automatic

and
raw signal

0.929 ± 0.786 0.272 ± 0.437 0.609 ± 0.207 0.478 ± 0.230 < 0.001 (***)

Manual
and

raw signal
0.835 ± 0.809 0.255 ± 0.423 0.682 ± 0.278 0.317 ± 0.311 < 0.001 (***)

CNN applied to the raw signal and a 2D CNN applied to the spectrogram. The previous

works of Taylor [182] and [186] were used as a benchmark.

This research contributes several novelties that build upon the state-of-the-art ap-

proaches. First, some previous research on artifact recognition [182, 185, 186] had de-

tected whether a segments of a signal contained an artifact. However, they did not

provide a final clean signal enabling computation of the phasic component. This could

be critical because, for example, [186] analyzed segments of 5 s and, considering that

many artifacts in our signals are shorter (see Table 3.2), this analysis could affect long

segments of uncorrupted signal. Meanwhile, other studies had not recognized artifacts,

instead aiming to directly correct signals using, for example, wavelet-based transfor-

mation [184] or convolutional autoencoders [194]. However, these works did not use

manually reconstructed signals as a ground truth, which represents the objective of this

study, that is, to emulate the reconstruction performed by an expert by providing an

artifact-free signal.

This is the first work to develop a fully automatic pipeline with three steps: (1)

artifact recognition each 0.5 s, (2) post-processing of artifact recognition, and (3) cor-

rection of the signal based on artifact identification. Meanwhile, by using as a ground

truth a manual reconstruction of the signal, we have been able to assess the pipeline’s
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(a) Boxplot Ledapy (b) Boxplot cvxEDA

Figure 3.7: Boxplot showing the distribution of different phasic values. Image (a) shows
the comparison using the CDA decomposition method. Image (b) shows the results
produced by the cvxEDA algorithm.

performance via a comparison of the automatic and manual corrections. Additionally,

the dataset created contains 74.46 h of raw and manually reconstructed data, indicating

labeling of more than 500.000 samples of 0.5 s. The data were collected from 43 dif-

ferent participants, ensuring the capacity to perform inter-subject extrapolations. The

uncontrolled scenario used guaranteed the production of hand and body motion artifacts

because participants needed to complete minigames causing major motion artifacts and

simulating the real implementation conditions of intelligent EDA devices.

Notably, no previous work had analyzed the implications of automatic corrections for

the phasic component of the signal, the most common feature used in studies because it

relates to arousal [161]. This may be due to the need for the reconstruction of the signal

to analyze the implications of the correction for the phasic component, information not

contained in the majority of previous work. This work has analyzed the differences

between the phasic component derived from our pipeline and the manual correction,

demonstrating no differences between them. This novel result supports our pipeline as

an emulation of human expert artifact correction.

Furthermore, this is the first artifact correction pipeline that is available for the

use (and testing) of the scientific community and the first work that includes a dataset

featuring raw data, manual reconstructions, and automated corrections. Thus, it rep-

resents a benchmark that can be used by future researchers to compare new methods
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and improvements using the same data, a current limitation on the state-of-the-art lim-

itation that precludes comparison of the results because different data are used. These

methodological improvements represent a breakthrough in the validation of recognition

and correction algorithms for EDA signals.

We used two state-of-the-art methods as a benchmark. In the test set, both achieve

the highest accuracy, but they present the lowest Kappa and AUC. It is because the

TPR is relatively low, since [182] and [186] detects the 32% and 38% of the artifacts

respectively. Notably, these results were worse than those presented by previous studies.

There are two potential reasons for this discrepancy. First, the type of labeling used in

the present work differs from that used in other studies. That is, other studies directly

assigned a complete window of 5 s the label of artifact or not artifact, while we used

the comparison with the manual correction to assign this label in segments of 0.5 s,

which suppose an important increasement of the precision of the correction. Second,

the imbalance of the current dataset (10.63%) exceeds that of previous experiments

(e.g., 48.96% in the work of [188]). This could bias the performance and the results of

previous works. Note that we use a dataset collected during a VR Serious Game, which

is an actual use case of the pipeline, while as an example [186] create a specific protocol

to generate the artifacts.

The two models using DL architectures outperformed the feature extraction and

classical ML approach, achieving higher TPR, Kappa, AUC, and DSC values in the test

set. Inspired by prior research on ECG denoising [200, 202], we investigated the use

of a LSTM-1D CNN. Concurrently, the adoption of a 2D CNN was explored, drawing

motivation from previous studies on Magnetic Resonance Spectroscopy denoising [199].

The best model was the raw signal and LSTM-1D CNN model, which achieved a final

accuracy of 0.88, a Kappa value of 0.49, and a TPR value of 0.65. This represents

a large increase in artifact detection performance relative to previous methodologies.

Meanwhile, the spectrogram and 2D CNN model achieved a Kappa value of 0.42, a TPR

value of 0.63, and total accuracy of 0.87. This model’s performance was inferior to that

of the raw signal and LSTM-1D CNN model, likely because 2D CNN was not optimized

for the study of spectrogram images due to the non-local information that a spectrogram

provides, with CNNs basing their knowledge on the local information contained in the

data. More specialized models, such as spectral-CNN, could be implemented in future

research to study the artifact detection problem in the EDA context.

To improve artifact recognition, a post-processing method was applied to the pre-

dictions of the raw signal and LSTM-1D CNN model. This post-processing improved
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artifact detection, as demonstrated the increased Kappa and TPR values (0.50 and 0.72,

respectively). We also analyzed the percentage of artifacts included in the test set that

were correctly identified by the model. Considering an identification valid if the model

correctly labeled 50% of the artifact, the pipeline recognized 59.88% of the artifacts,

with detection increasing to 81.39% with the use of a 20% threshold. Therefore, most

artifacts were identified at least partially correctly, potentially because the model iden-

tifies the most aggressive segments of artifacts but not the entirety of the correction

made by human experts.

Finally, the EDA signal was corrected using linear and polynomial regressions on

the segments identified as artifacts. The automatic correction algorithm used in this

work was designed to be similar to the type of manual correction enabled by Ledalab

software. Although the results obtained fulfilled the initial objective, the type of auto-

matic correction could be complemented or replaced by other correction methodologies.

For example, the methodologies suggested by [184] or [169], who implemented wavelet

transformation, lowpass filters [190], and the cvxEDA algorithm [191] could enrich the

corrections made by the proposed algorithm.

The complete pipeline was evaluated based on the implications of the corrections for

the phasic component. This involved using a one-way ANOVA with a post-hoc test to

compare the three signals: (1) the raw signal, (2) the automatic correction, and (3) the

manual correction by a human expert (ground truth). According to Table 3.5, there

was no statistical difference (p-value > 0.05) between the phasic component produced

by the automatic correction and the manual correction for either the CDA or cvxEDA

algorithm. Furthermore, the type of correction performed was robust against the type of

signal decomposition applied, showing similar results for the two algorithms. Meanwhile,

statistically significant differences (p-value < 0.05) were observed between the phasic

component of the raw signal and the manual correction, as well as between the raw signal

and the automatic correction. This indicates that the automatic correction features less

artifact noise than the raw signal (see Fig. 3.7). Other metrics, namely, RMSE, MAE,

and DAUC, also showed that the phasic component of the automatic correction was

closer to the phasic component of the manual correction than to the phasic component

of the raw signal. Therefore, the results suggest that the automatic correction accurately

simulates manual correction, independently of the decomposition algorithm used. These

results support this paper’s main objective of providing an artifact-free corrected signal

that emulates manual correction by a human expert.

However, the study does have some limitations that must be addressed in future
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research. First, model results can be improved by including more experts for manual

correction to reduce human bias. This would enrich the signal target and, therefore, the

generalizability of the models. Second, the visual inspection and manual reconstruction

can create an unrealistic morphology in the EDA signal, even if it is the standard practice

in experiments. The manual cleaning aims to reduce the negative impact of the artifact

on the signal and, in particular, on the phasic component, but it is not capable of re-

constructing the real affected EDA. The alternative approach to obtain the artifact-free

signal is to create a protocol that forces one hand to generate movements while the other

is stationary, collecting data from both different locations simultaneously, as performed

by [186]. Even if these protocols may have a low degree of ecological validity since it

is an artificial task, and EDA signal can change depending on the location [208], the

model must be tested considering this alternative groundtruth. Third, future research

should evaluate the model in other types of environments and tasks because the specific

movements performed can modify the form of the artifacts. Validating the methodology

for EDA signals collected during other types of tasks would strengthen the model and

demonstrate its applicability to other contexts as real-world experimentations. More-

over, the procedure has not been tested for signals from different EDA devices or those

with frequencies below 128 Hz. The methods established here could be studied at dif-

ferent sampling frequencies to review their performance and generalizability. Finally,

future experiments should consider researching the development of fine-tuned architec-

tures for different models, which could improve their classification metrics. For example,

generative-adversarial networks and reinforcement learning represent promising alterna-

tives to the models demonstrated in this work.

3.5 Conclusion

We have developed a fully automatic pipeline for recognizing and correcting EDA motion

artifacts, achieving a corrected signal that does not differ from manual correction by hu-

man experts in terms of phasic component. The recognition of the artifacts outperforms

two previous state-of-the-art methods. These results show that EDA signal correction

in scenarios that require body movements can be achieved automatically, findings that

can enhance the use of EDA signals in future experiments conducted in uncontrolled

environments, including immersive VR and real-world settings. These findings also pro-

vide encouragement for the development of intelligent devices for recognizing human

emotional states for healthcare services without human intervention, including imple-
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mentations in the contexts of disorder recognition, adaptive therapy, remote mental

health monitoring systems, and driver drowsiness detection.

Data and model availability

The complete pipeline is available in

https://github.com/ASAPLableni/EDABE LSTM 1DCNN. Furthermore, the EDABE

dataset is publicly available in Mendeley Data for use as a benchmark in comparisons

of the performance of future models and pipelines

https://data.mendeley.com/datasets/w8fxrg4pv5 [203].

https://github.com/ASAPLableni/EDABE_LSTM_1DCNN
https://data.mendeley.com/datasets/w8fxrg4pv5




Chapter 4

Developing conversational virtual

humans for social emotion

recognition based on large

language models
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Abstract

Emotions play a critical role in numerous processes, including, but not limited to, social

interactions. Consequently, the ability to evoke and recognize emotions is a challeng-

ing task with widespread implications, notably in the field of mental health assessment

systems. However, up until now, emotional elicitation methods have not utilized simu-

lated open social conversations. Our study introduces a comprehensive Virtual Human

(VH), equipped with a realistic avatar and conversational abilities based on a Large Lan-

guage Model. This architecture integrates psychological constructs—such as personality,

mood, and attitudes—with emotional facial expressions, lip synchronization, and voice

synthesis. All these features are embedded into a modular, cognitively-inspired frame-

work, specifically designed for voice-based semi-guided emotional conversations in real

69
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time. The validation process involved an experiment with 64 participants interacting

with six distinct VHs, each designed to provoke a different basic emotion. The system

took an average of 4.44 seconds to generate the VH’s response. Participants assessed

the naturalness and realism of the conversation, scoring averages of 4.61 and 4.44 out

of 7, respectively. The VHs successfully generated the intended emotional valence in

the users, while arousal was not evoked, though it could be recognized in the VHs. Our

findings underscore the feasibility of employing VHs within affective computing to elicit

emotions in socially and ecologically valid contexts. This development holds significant

potential for application in sectors such as health, education, and marketing, among

others.

4.1 Introduction

Affective computing (AfC) explores the capacity for eliciting, recognizing, comprehend-

ing, and appropriately responding to human emotions. This interdisciplinary field

merges insights from psychology, computer science, and biomedical engineering [209].

Emotions play a critical role in a variety of processes, including decision-making, cre-

ativity, and social interaction. Many works have focused on discerning an individual’s

emotional state through biomarkers, self-report questionnaires, and machine learning

(ML) algorithms. Given that AfC probes directly into human behavior, its applications

span across diverse sectors, such as marketing and education, with a special emphasis

on healthcare. For instance, numerous studies have investigated depression recognition

utilizing a variety of biosignals [210] and recently, there are different works that have

used voice as a biomarker of the depression level of the subject [211, 212]. Notably, the

data collection environment for these systems is of critical importance, as it must mimic

real-life scenarios to trigger specific phenomena associated with depressive symptoms,

which are linked with heightened negative emotional states [213]. Other research has fo-

cused on stress recognition by analyzing physiological responses, with an aim to enhance

treatment strategies and potentially prevent these conditions [214]. Hence, the ability

to evoke, comprehend, and recognize emotions poses a significant challenge, one that

has far-reaching implications across numerous fields, particularly in enhancing human

wellbeing.

Emotions can be quantitatively analyzed using Russell’s circumplex model [4]. This

model postulates that every emotion is a linear combination of two affective dimensions:

arousal and valence. The arousal dimension delineates the individual psychophysiolog-
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ical activation related to the emotion, while the valence dimension quantifies the sub-

jectively experienced positivity or negativity of the emotion [5]. This bifurcation results

in four distinct regions of the model: high arousal and positive valence correlate with

emotions such as happiness or excitement; high arousal and negative valence is indica-

tive of angry; low arousal and negative valence is associated with sadness or depression;

and finally, positive valence with low arousal is characteristic of a relaxed or contented

state. Emotions induce measurable physiological and behavioral changes [215]. Research

in voice patterns has risen in the past year in the subfield known as Speech Emotion

Recognition, demonstrating a high capability for recognizing emotions [216], founding

this conclusion in many different languages. Moreover, other biosignals has been used to

model emotions such as eye-tracking, electrodermal activity (EDA), electrocardiogram

(ECG), and electroencephalogram (EEG).

The majority of AfC research primarily centers on stimuli derived from image or

audio sources. For instance, the International Affective Picture System (IAPS) dataset

comprises a set of images depicting individuals, objects, or events, all of which have

been standardized based on valence and arousal parameters [217]. Another example is

the DEAP dataset, which encompasses a collection of 120 videos evaluated in terms of

arousal and valence [218]. However, the pursuit of AfC research necessitates meticulous

approximation to specific, realistic daily scenarios, thus underscoring the need to develop

innovative ecological experimental tools. In the landscape of such advancements, virtual

reality (VR) has emerged as a significant and promising tool. Currently, VR heralds a

paradigm shift for behavioral research in psychological assessment. It allows a repro-

ducible experience between different users with a high degree of presence, the sensation

of ’being there’. Technological strides have facilitated the manifestation of VR across

diverse platforms. One application is via powerwall screens or cave automatic virtual en-

vironment (CAVE) technologies. Although classified as semi-immersive VR, these plat-

forms nonetheless deliver a high degree of immersion without isolating the physical body

of the subjects [90, 131]. In the realm of immersive technology, head-mounted displays

(HMDs) offer a distinct experience. These devices provide an unparalleled degree of

immersion, isolating the user from the external world and simulating a complete virtual

experience [132]. Owing to these characteristics, VR has emerged as a highly engaging

and realistic medium for emotion elicitation. Numerous experiments employing this

tool have successfully achieved their objectives in emotion elicitation. For instance, the

study by [122] explored emotion elicitation through four different virtual environments,

effectively validating their initial hypothesis by inducing varied emotional responses in
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alignment with each virtual environment. Similarly, the work of [219] demonstrated

that VR could serve as a more efficient medium to elicit emotions such as anger or fear

compared to desktop or non-immersive tools.

Another important attribute is that VR also allows the introduction of elements

which are not possible to achieve in real world experimentation such as virtual hu-

mans (VH). VH are human-like characters which commonly interact through a com-

puter screen and/or speakers. They exhibit human-like behaviours such as speech or

gestures, but also other human characteristics as emotions, empathy or memory [220].

For the moment, a VH is a computer program which tries to simulate a human. There

is a set of main elements that build a body and the mind of the VH. On the one hand,

the body aims to provide real-time audiovisual content for the VH, enabling real-time

interaction, as well as the senses to receive information from the users. On the other

hand, the mind aims to provide the ability to interpret natural language, reasoning,

creativity, and memory, as well as providing a life history, mood, motivations, attitudes,

and content. In particular, one of the most challenging parts of a VH is the interaction

with a subject through a verbal conversation. The VH not only has to generate coher-

ent, meaningful and contextualized messages, it also has to remember messages or ideas

of the conversation. The origin of this type of interactive tools is found in chatbots and

later in conversational agents.

The first software that allows to interact with natural language were chatbots. They

are an informatic system that can establish a conversation with one or more users

through different communication channels as voice, text or visual language [99]. How-

ever, classical chatbots have a pre-defined sequence of answers to the different possible

inputs. It is a bounded system which response is already settled. The use of the chat-

bots is very diverse. The first operational chatbot is found in ELIZA [100]. Since there,

chatbots have been a very popular field of study. Many different algorithms have been

used to improve the communication with a subject trying to overcome the past models.

Some of them are MegaHAL [102] which is based in Markov’s model basing its predic-

tion in a probability distribution choosing between the most likely words for the answer.

Chatbots finally evolved when artificial intelligent (AI) algorithms were incorporated to

this field.

The use of intricate models capable of generating the most appropriate response

to a given input has given rise to the concept of Conversational AI. Unlike chatbots,

conversational AI algorithms are unbounded, with responses generated based on the in-

put. These models undergo prior training with data from conversations, books, or other
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forms of text, enabling them to communicate with humans. Several strategies exist to

augment the interaction with conversational AI and render it more human-like, primar-

ily through the use of language models. These models have been employed to enhance

the performance of chatbots by enabling them to generate more complex responses not

merely extracted from a database, but based on them. Additionally, the work of [221]

defines an avatar as intelligent if it demonstrates proactive actions, responsiveness to

the environment, and social interaction with other users. Early language models ap-

plied to generate conversations emerged from the work of [222]. The model developed

in this study could perform two distinct tasks; providing technical support for Ubuntu

programming and generating Twitter conversations. Today, there are various conversa-

tional AI technologies in use, such as Alexa, Siri, or Cortana [223, 224]. GPT models

by OpenAI [225] represents a significant advancement in this field, emerging as one of

the most sophisticated language models to date. Given the type of training GPT un-

derwent, it can introduce contexts that align with the model’s response. This not only

enables the delivery of generic yet precise messages, but it also allows for responses to be

crafted according to certain guidelines. Consequently, it becomes possible to orchestrate

a conversation wherein the AI can interact based on the context’s instructions, such as

generating extroverted or empathetic messages, thereby simulating personality traits.

These AI models are nearing the ability to emulate a conversation in a typical social

situation with another human [220]. For instance, the study by [226] validates the use of

GPT-3 and Blender as a question-answer teacher through written dialogues. However,

despite these advancements, there is still a lack of research on emotion elicitation and

recognition using conversational AI.

Furthermore, a significant portion of studies involving the use of conversational AI

have traditionally relied on interaction with the subject through written text displayed

on a computer screen. This method of communication is somewhat unrealistic as it fails

to replicate a real-life conversation between human beings. Currently, various AI models,

such as voice synthesizers or audio transcription tools, could foster a more authentic con-

versation. Audio transcription models, which transcribe spoken language into written

text, have been a focal point of recent research. Most of these models convert the audio

input into a Mel spectrogram to capture non-trivial features necessary for transcription.

This task encounters several challenges, including the punctuation of sentences with pe-

riods or question marks, and transcribing different languages within the same sentence.

However, novel automatic speech recognition (ASR) models based on transformers such

as Whisper are outperforming the task of transcribing voice [227]. Conversely, voice
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synthesizer models have seen more extensive research over the years, yet certain issues

remain unresolved, such as achieving naturalness in the synthetic voice. For a realistic

conversation, it is crucial that the model’s voice closely imitates a human voice. Addi-

tionally, appropriate intonation for questions or for conveying sadness or happiness is

essential. The voice should also respect certain pauses, as indicated by periods or com-

mas. This challenge has recently been addressed by platforms like AWS Polly, which

incorporates commands in the plain text to indicate pauses or to instruct the model

to speak louder or faster. The integration of VR and the aforementioned AI models

could potentially construct a VH. Currently, most research in this area is conducted in

2D, using screens or smartphones [228]. However, these mediums may not fully realize

the potential degree of realism achievable with VR. The study by [229] investigated the

difference between a chatbot displayed through a screen interface and the same chat-

bot displayed through a terminal interface. The results revealed that an improperly

displayed avatar could compromise the naturalness of the communication. Similarly,

the work of [230] compared face-to-face human interviews with face-to-VH interviews in

healthcare decision-making. This study yielded promising results, with VH interviews

achieving ratings comparable to those of human interviewers. Interestingly, VH even

outperformed human interviewers in terms of confidence ratings. Therefore, elements

such as voice or appearance significantly influence the naturalness of the user’s experi-

ence. VR could potentially enhance the sense of realism in a conversation with a VH

and also allows interaction with and control of the VH within the virtual environment.

Nonetheless, achieving a realistic user experience with a VH presents a set of chal-

lenges that are currently difficult to overcome. The primary obstacles involve replicating

the physical behaviors and movements of a human body in the avatar, in a bid to make

the VH as realistic as possible. One of the significant challenges is lip synchronization,

a task that only a handful of AI models are currently able to handle. Hand movements

and gestures, which are vital for conveying naturalness, pose a similar hurdle. Another

vital aspect is the ability of the avatar to evoke and express different emotions. This

feature is not only critical from an emotion recognition standpoint, but it also necessi-

tates a responsive avatar that can alter its facial expressions and gestures in response

to the subject’s messages. The study by [231] reveals that while artificial faces have

different effects compared to real faces, both can stimulate a neurological response in

the subject. Furthermore, [232] demonstrates that realistic avatar faces can aid users in

accurately identifying emotions more effectively than without them. Several solutions

exist for off-streaming scenarios, but very few are available for real-time or live cases.
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In the realm of VR, there are platforms that enable the deployment of an avatar capa-

ble of synchronizing lip movements with an audio file. One of the most sophisticated

and realistic platforms is Nvidia’s Omniverse. It features a library called Audio2Face,

which facilitates lip synchronization. Unity is also in the process of developing the Salsa

library for coordinating lips and gestures. However, at present, no complete program

or library can combine all the required elements to replicate the physical behavior of a

human through the avatar of a VH in real time.

To the best of our knowledge, no previous work has developed a comprehensive

VH incorporating a realistic avatar, conversational abilities based on Language Models,

embedded psychological constructs such as personality, mood or attitudes, along with

emotional facial expressions, lip synchronization, and voice synthesis, all intended for

use in real-time semi-guided conversations. The primary objective of this research is to

develop and validate a set of VHs that combine all these technologies and demonstrate

the ability to elicit emotions in humans. To this end, we utilize various technologies from

companies including AWS, Google, OpenAI, and Nvidia. Upon constructing the VH, all

the different steps involved in the conversation are validated through an experimental

setup involving 64 participants. This paper presents an analysis of the real-time perfor-

mance of the conversational pipeline, an evaluation of human-machine interactions, the

naturalness and realism of the generated conversation, as well as the emotions elicited

in subjects, and the ability to identify VH’s emotion. Our results reinforce the viability

of utilizing VHs in the field of affective computing to induce emotions in ecologically

valid contexts. Such advancements provide a range of applications in sectors such as

health, education, and marketing, among others.

This paper is structured as follows: Section 2 elucidates the experimental design

and the tools utilized therein, along with the analytical methods employed. Section 3

presents the results derived from the aforementioned analysis. Section 4 discusses the

work accomplished and the objectives met, and provides a discussion of the results.

Lastly, Section 5 concludes the study and highlights the key findings.

4.2 Materials and methods

4.2.1 Participants

A group of 64 subjects was recruited to participate in the experiment. The mean age

of the subjects was 31.956, SD = 10.339 years, including 31 males, 32 females and 1
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non-binary gender. The group was established based on specified inclusion parameters:

a) ages between 18 and 55 years, b) right-hand dominance (due to possible influence on

EEG patterns [233]), c) normal vision, and d) Spanish as the first language, articulated

with a Spanish accent. Exclusion conditions involved: a) pregnancy or nursing, b)

presence of psychiatric disorders, and c) usage of psychotropic drugs. To ensure the

subjects constituted a homogeneous group and they were in a healthy mental state,

they were filtered by the Patient Health Questionnaire (PHQ-9). PHQ-9 is a standard

psychometric test used to quantify levels of depression. Significant levels of depression

would have affected the emotional responses. Only participants with a score lower or

equal than 9 were included in the study.

Prior to their participation, they received documentary information on the study

and gave their written consent for their involvement. The responses were anonymized

and randomized to ensure the privacy of the information. The study obtained the

ethical approval of the Ethical Committee of the Polytechnic University of Valencia

(P06 25 07 2022).

4.2.2 Instrumentation

The experimentation room was equipped with a 6.36 × 2 meters white screen, which

was used as a method of projection for semi-immersive, life-size VR. This screen was

outfitted with two Optoma projectors (ZH400UST DLP), each with a resolution of

1920 × 1080 pixels, which after blending, provided a projection of 3600 × 1080 pixels.

The room was also fitted with a Logitech 5.1 sound system, model z5500. The PC used

has the following spec: CPU, Intel(R) Xeon(R) W-2265 CPU @ 3.50GHz (24), RAM,

131585MB, and GPU, Quadro RTX 6000/PCIe/SSE2.

During the experimental procedure, we collected a variety of data from each partic-

ipant, encompassing speech, ET, and physiological measures such as EEG, ECG, and

EDA. Speech data was gathered using a SYNCO G1 A1 wireless microphone system,

with the recording device positioned on the participant’s forehead. ET information was

recorded using the Pupil Invisible glasses from PupilLabs. The glasses feature a frontal

camera with a resolution of 1088 × 1080 pixels, operating at a frequency of 30 Hz. The

device recorded a the subject’s gaze, and additionally provided an accelerometer and gy-

roscope, all functioning at 200 Hz. EEG and ECG signals were simultaneously captured

utilizing the B-Alert x10 system (Advanced Brain Monitoring, Inc., USA), recording at

a frequency of 256 Hz. EEG sensors were strategically placed in frontal (Fz, F3, F4),

central (Cz, C3, C4), and parietal (POz, P3, P4) regions, adhering to the international
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Figure 4.1: Photo of the experimentation room

10-20 electrode placement system on the participants’ scalps. A pair of reference elec-

trodes was positioned below the mastoid. Electrode conductivity was confirmed with an

aim to maintain electrode impedance below 20 kΩ. The ECG left lead was situated on

the lowermost rib, while the right lead was placed on the right collarbone. Lastly, EDA

signal was acquired using the Shimmer3 device, with a recording frequency of 128 Hz.

4.2.3 VH: General scheme

In our development of the VH, we employed a cognitive-inspired architectural design

that divided the system into body and mind components. Drawing inspiration from the

framework proposed by [220], the body component is further stratified into two subsys-

tems encompassing senses and actions. A comprehensive overview of this design scheme

is graphically represented in Fig 4.2. The VH’s body action subsystem shows an avatar

that is visually rendered with facial expressions tailored to reflect its emotional state.

As participants vocalize, their audio is relayed in real-time to the VH’s senses subsys-

tem. Upon the termination of speech, a real-time silence detector module identifies the

cessation and proceeds to route the audio to a transcription module, converting speech

into text. This transcribed text is then transferred to the VH’s mind system. Here, a

conversation module leverages a LLM to generate responses. These responses take into

consideration various factors including the VH’s life-history, the contextual situation,
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attitudinal disposition, prevailing mood, and motivations. Additionally, it references

the conversation memory to ensure temporal coherence. The crafted response text is

then passed to the action subsystem of the VH’s body. This response is synthesized

into an audio file, broadcast through speakers, while the VH avatar’s lip movements are

synchronized to mimic authentic speech. Concurrently, the senses subsystem is primed

to anticipate the forthcoming participant response, marking the commencement of the

next iteration of the process. During the experiment, the behavioral and physiological

responses of the subject are collected to be modelled in future steps of the work.
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Figure 4.2: Scheme of the VH’s architecture and the human-machine interaction

4.2.4 VH Body: Actions

The objective of the Actions subsystem, which is a part of the body component, is

to produce real-time audiovisual content for the VH, enabling real-time conversational

interaction.

4.2.4.1 Avatar

Four realistic avatars were acquired, comprising one male and one female, each with two

variations: one in a casual outfit and the other in a semi-formal outfit. Five alternative
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emotional expressions (neutral, happy, sad, relaxed, and angry) were developed for each

avatar, yielding a total of 20 avatars. The size of the avatars were designed according

with the height of the population in Spain, 1.76 m and 1.62 m for men and women

respectively. After acquiring the avatars in FBX format, they were imported into Au-

todesk Maya 2022 for rigging and the generation of blendshapes. Blendshapes, which

are 3D mesh deformers, totaled 122 for the female avatar and 125 for the male avatar.

Using these blendshapes, the polygonal mesh of the avatar could be manipulated to gen-

erate specific expressions such as modifying the corners of the mouth or the furrowing

of eyebrows for a sad expression. Blendshapes can be grouped based on prominent and

common facial parts such as eyebrows, eyes, mouth, ears, nose, cheeks, and neck, all

of which have a considerable number of blendshapes for necessary modifications. Eye

blinking was also animated using blendshapes. Next, the avatar’s body geometry was

cut at the base of the neck, thus dividing the avatar’s geometry into two parts: the

head and the body. Following this modification, an idle animation was created for the

avatar and, once complete, it was exported in USD format using an Omniverse connector

plugin for Autodesk Maya (Legacy). We adopted the definition of ’avatar’ as a visual

representation that includes technical aspects such as geometry, blendshapes, textures,

materials, and rigging. This avatar can be controlled either by a physical human or by

a VH, as described in [220]. It’s worth noting that some authors consider an avatar to

be only those representations controlled by a physical human and may regard it as a

component of a larger agent [234].

4.2.4.2 Facial Expressions and Body Movement

The avatar’s mouth, eyes, eyebrows, nose, and body movements were modulated based

on the emotion to be elicited, utilizing the facial action coding system (FACS) [235]. The

neutral avatar was designed with neutral features. The happy avatar was characterized

by a moderate smile, a slight curved elevation of the eyebrows, open eyes, and a slight

body sway. The relaxed avatar displayed a slight smile, a slight curved elevation of the

eyebrows, a dilated nose, and contracted eyes. The angry avatar featured a very slight

inverted smile, straight and lowered eyebrows, a contracted nose, and a furrowed brow

accompanied by a body sway. The sad avatar exhibited a slight inverted smile, a raised

brow, and contracted cheeks. All avatars presented a breathing animation. These facial

expressions were designed based on the FACS and two online pre-tests were conducted

with images of the faces on 102 subjects to refine the faces (further information in the

supplementary materials). Table 4.1 show a summary of the traits for each mood.
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Table 4.1: Facial and body movements design per emotion.

Emotion Arousal Valence
Body

Movements
Mouth Eyebrows Nose Extra

Neutral Neutral Neutral Breathing Neutral Neutral Neutral -

Happy High Positive Swaying Moderate Smile
Slightly Raised

Curved
Neutral Open Eyes

Relaxed Low Positive Breathing
Very Slight

Smile
Slightly Raised

Curved
Extended

Contracted
Eyes

Angry High Negative Swaying
Very Slight

Inverted Smile
Lowered
Straight

Contracted
Furrowed

Brow

Sad Low Negative Breathing
Slight Inverted

Smile
Raised Brow Neutral

Contracted
Cheeks

4.2.4.3 Lip Synchronization

Nvidia Omniverse’s Audio2Face app was utilized for real-time lip synchronization. The

previously created USD file with the idle animation was imported and the ”Character

Transfer” tool was used to animate the avatar’s face. The Player Streaming feature

was used to receive the synthesized VH voice. Texture modification could be achieved

through the shader associated with each object’s material, where the base color and

opacity could be changed. To illuminate the scene, three rectangular lights were added:

a rim light behind the character, tilted upwards with low intensity and a neutral color;

another light at 45 degrees to the right of the character, tilted downward with high

intensity and a warm color; and a third light at 45 degrees to the left of the character,

tilted upwards with low intensity and a cold color. This lighting setup added realism to

the character compared to the default lighting. The avatar was displayed directly in the

full-screen mode of the application, prepared to synchronize the lips as the synthesized

voice was played.

4.2.4.4 Voice synthesizer

The synthetic voice for the VH message was produced using Amazon Polly API, a

service that leverages artificial intelligence models to convert text into an audio file in

MP3 format. To provide a more natural and expressive prosody, we employed the speech

synthesis markup language (SSML) for text input. This allowed us to introduce precise

pauses at punctuation marks, such as periods and commas, with respective durations of

0.6 and 0.25 seconds. Two distinct voice identities were utilized: ’Lucia’, a neural voice,

provided the female articulation, while ’Enrique’, a standard voice, was used for male

avatars. Note that, at the time of the experiment, AWS did not offer a neural voice
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for Spanish males. These selections were made based on their representative qualities,

contributing to a more immersive interaction with the VH.

4.2.5 VH Body: Senses

The senses subsystem of the VH is designed to endow it with a capacity to perceive its

environment, focusing specifically on auditory perception.

4.2.5.1 Silence Detection

To facilitate real-time interaction with participants, we implemented an algorithm that

detects the cessation of voice activity, signifying the end of a participant’s speech. We

utilized the silence detection model from the pyannote library [236], which ceases record-

ing upon identifying a silence period exceeding one second. The onset and offset acti-

vation thresholds were both set at 0.5 s. The model commences silence checking three

seconds after the onset of audio streaming. Should it identify an absence of voice activity

lasting over a second, it ceases the streaming. Due to its operation in the background,

this process does not cause any delay or interference with the participant’s audio. The

recorded audios are systematically stored in a designated folder for each participant and

conversation.

4.2.5.2 Audio Transcription

Participant speech is transcribed into text, in the speaker’s native language, utilizing

Google Cloud’s Speech-to-Text service. This service not only transcribes spoken words

but also includes punctuation marks such as periods and question marks, enhancing

the clarity and interpretability of the transcribed message for subsequent analysis. The

model accepts audio input in WAV format and provides an output featuring multiple

components of the recorded audio. If it identifies distinct segments of speech as sep-

arate messages, it will return each message individually. A post-processing function

was employed to consolidate all individual messages generated by the AI model, thus

preventing any overlap of messages.

4.2.6 VH Mind

The Mind system is designed to endow the VH with capabilities for natural language

comprehension, rational thought, creativity, and memory. In addition, it furnishes the

VH with a life history, context, attitudes, motivations, and mood.
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4.2.6.1 Life-history, context, attitudes, mood and motivations

This module aims to create a narrative that provides a set of psychological features and

context to the VH. In particular, it provides a life history (name, age, birthplace, current

city, and profession), conversation’s spatial context, motivation for the specific mood,

and the VH attitude to engage in social interactions. The names used was selected from

the list of most common names in Spain according to the Spanish National Statistics

Institute, excluding compound names, trying to reduce any possible personal bias to a

particular name. The current city was defined as Valencia (Spain) to provide spatial

coherence, due to the experiment was performed in this city. The avatars with a non-

neutral emotional state also include a motivation to engage in conversations on sports

or cinema.

The constructed narratives conform to the following template: “The following is a

conversation with [name]. [name] is a [X]-year-old [nationality] [gender]. He/she was

born in [birthplace] and currently lives in [current city]. [name] is [profession]. At the

moment, [name] is [context]. Today, [name] is [mood] because [motivations]. Due to

his/her [mood], [name] is [attitude].”. Given that this module establishes the VH’s

gender and mood state, this information is employed to manually select an avatar that

coheres with these traits. To evade repetitiveness in opening and concluding phrases,

each avatar is imbued with a distinct greeting and farewell. We hypothesize that the

pre-defined mood embedded in the VH is capable of triggering the VH’s emotions during

the conversation and can elicit emotions in the subjects. Table 4.2 furnishes a summary

of the parameters defined in this module for each VH.

4.2.6.2 Conversational module

The Conversational Module plays a crucial role in crafting the prompt that is sent to

the large language model LLM. It integrates a variety of inputs, namely the emotional

narrative (encompassing life-history, context, attitudes, mood, and motivation), the

most recent transcription of the subject’s audio, and, when applicable, the log of the

conversation from the memory module. Notably, all these inputs are in Spanish. To

personalize the dialogue template, the subject’s name is manually added at the onset

of the experiment. Using this information, a structured and context-sensitive prompt is

assembled following the defined sequence. Subsequently, this prompt is transmitted to

the LLM for processing. Interestingly, the LLM occasionally generates not just the VH’s

response but also anticipates the subsequent interaction from the participant due to the
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Table 4.2: Summary of the different conversational parameters of each VH based on the
mood.

Neutral 1 Neutral 2 Angry Happy Sad Relaxed

Life-history
Ana/David,

37 yo, Madrid,
Pharmacist

Laura/Alejandro,
27 yo, Valladolid,
Waiter/waitress

Marta/Jorge,
31 yo, León,

Theater actor

Maŕıa/Javier,
30 yo, Valencia,

Teacher

Sara/Daniel,
25 yo, Ciudad Real,

Studying psychology and
retail associate

Lućıa/Pablo,
21 yo, Bilbao,

Book translator

Context Subway stop Tramway stop Bus Bar
Sitting on a
park bench

Walking on
the promenade

Motivation - -

She/He has been
denied a salary

increase and
prices have
gone up.

She/He has obtained
a position as a
primary school

teacher in Valencia.

The landlord just
called her/him to tell
her/him that he needs

the apartment in
a month’s time.

He/She is on
vacation and
has just left

a spa.

Attitude

Kind, friendly
and likes to

talk about sport.
Likes to chat
and ask what

sports the people
she/he talks

to like.

Kind, friendly
and likes to

talk about cinema.
Likes to chat
and ask what

films the people
she/he talks

to like.

Needs to let
off steam.

She/He is not
interested in

the rest.
Wants to talk

about her/his anger.

Kind, friendly.
Likes to talk

and ask questions.

She/He does not
feel like talking.
She/He does not

ask many
questions.

Kind, friendly.
Eager to talk

and ask questions.

Greetings
Hello, my name

is what
is your name ?

Hello, my name
is what

is your name ?

My name is
what is

your name ?

Nice to meet
you, my name
is What is
your name ?

Hello, my
name is

and yours ?

Hello, my name
is what

is your name ?

Farewall

I’m sorry,
I have to go.

We’ll talk some
other time.

See you later!

I’m sorry, I
have to go.

We’ll talk some
other time.

See you later!

Well, I have
to go. Goodbye!

I’m sorry,
I have to go.
It was nice

meeting you and
talking with you.

See you later!

I’m sorry,
I have to go...
See you later!

I’m sorry,
I have to go.
Nice talking

with you.
See you later!

number of token to generate is fixed. Hence, the module performs a post-processing

step to filter out a single coherent response from the VH. Additionally, this module

makes adjustments for specific words or expressions that the synthesis process struggles

to handle accurately, such as ”jaja” or ”(laughs)”. Table 4.3 presents an illustrative

example of the prompt crafted by the Conversational Module:

4.2.6.3 Large Language Model

The LLM employed in this study is GPT-3 by OpenAI, specifically utilizing the text-

davinci-002 variant via API. The model had different parameters such as temperature,

presence penalty, frequency penalty and maximum number of tokens which were meticu-

lously calibrated. Temperature determines the output’s level of focus and determinism;

higher values make the output less deterministic. This parameter ranges from 0 to 1,

and it was set to 0.9 in this study. The presence penalty parameter controls the intro-

duction of new tokens and enhances the model’s reluctance to discuss novel topics as

the parameter value increases. Ranging from -2 to 2, the presence penalty was set to

0.9. The frequency penalty penalizes new tokens based on their existing frequency in

the text, reducing the likelihood of the model repeating the same line verbatim. This
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Table 4.3: Illustration of the prompt used to create a VH’s response

”The following is a conversation with Marta. Marta is a 31 year old
Spanish woman. Marta was born in León and is living in Valencia.
Marta works as a theater actress. Marta is on a bus and is talking
to the person sitting next to her. Today Marta is angry because she
has asked for a salary increase and has not been granted it. This
year the prices of electricity, rent and food have gone up and with
Marta’s salary it is difficult to make ends meet. In this situation,
Marta cannot spend money on activities she likes to do in her free
time, such as going to the gym or to the movies, because she has to
save money to be able to pay for all the expenses. Today Marta is
angry and needs to let off steam. That’s why Marta is not interested
in getting to know the people she talks to and only wants to tell
them why she is angry.
Marta: My name is Marta. What is your name?
(SUBJECT’S NAME): (...)
(CONVERSATION LOG)
Marta: ”

parameter also varies between -2 and 2, and it was set to 0. Lastly, the maximum num-

ber of tokens indicates the quantity of new tokens generated in the language model’s

response. It can range from 1 up to the model’s token size limit, which was 4000 in this

case. For this study, the maximum number of tokens was set to 150. These parameter

settings were established through an exhaustive iterative process involving numerous

trials during the pre-pilot phase.

4.2.6.4 Memory

The memory module serves a pivotal role in preserving the conversation’s log. This

stored log is subsequently utilized by the Conversational Module to uphold the short-

term temporal coherence, thereby ensuring the continuity and flow of the conversation.

4.2.7 Experimental procedure

In the initial phase of the experiment, participants were asked to fill out a battery

of psychological questionnaires encompassing demographic information, PHQ-9, State-

Trait Anxiety Inventory Questionnaire (STAI), and several other physiological assess-

ment questionnaires, which will be used for further analysis. STAI was used to assess

the emotional baseline of each participant. Following this, participants were equipped
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with the sensors described and proceeded to engage in six distinct conversations with a

set of six VHs. They were displayed at a realistic scale via a projector encompassing an

entire screen in a dimly-lit room, where the screen served as the primary source of light.

This configuration helped in concentrating participants’ attention on their communica-

tion with the VHs. The commencement of each interaction took place at a distance

of 2.60 meters from the screen, although adjustments for cognitive and social comfort

were allowed. The research team oversaw and managed the experiment from a separate

location to minimize any potential influence on participants’ responses.

The experimental procedure is shown in Figure 4.3. The initial two interactions in-

volved neutral-emotion VHs, with the order of gender representation counterbalanced.

Subsequently, participants engaged with four emotionally expressive VHs expressing

happiness, relaxation, sadness, and anger, with the order and gender of these interac-

tions again counterbalanced. Prior to each interaction, participants were provided with

a situational context (e.g., ”You are at a tramway stop and a person initiates a conver-

sation with you”). The VH initiated the dialogue with a greeting, enabling participants

to partake in open-ended conversations absent of specific guidelines or objectives. Inter-

actions could be concluded by participants bidding farewell to the VH, prompting the

experimenter to manually terminate the task. Alternatively, after a maximum duration

of 4 minutes, the VH automatically bid goodbye, and the task was concluded by the

experimenter.

Neutral Neutral Happy Relaxed Sad Angry

Emo�ons counterbalanced

Figure 4.3: Scheme of the experimentation protocol

Following each conversation, participants were instructed to assess both the natu-

ralness and realism of the social interaction. Naturalness is appraised in terms of the

conversation’s flow, spanning from ”I felt very forced during the conversation” to ”I felt

very natural during the conversation”. Realism assesses the content generated during

the conversation, ranging from ”It was an artificial conversation. It doesn’t resemble a

real conversation at all” to ”It was a realistic conversation. The content was very similar

to that of a real conversation”. Both metrics employ a 7-point Likert scale.

In addition, they were asked to identify both the VH’s emotions and their own,
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utilizing the Self-assessment Manikin (SAM) questionnaire [237]. This is a standardized

measure of valence and arousal referring to Russell’s Circumplex Model. In this context,

participants were asked to rate both subjective and VH’s valence and arousal using two

9-point Likert scales during their conversations. We hypothesize that a happy VH will

induce high arousal and positive valence; relaxed VH, low arousal and positive valence;

sad VH, low arousal and negative valence; and angry VH, high arousal and negative

valence. We are setting 5 as the threshold on both scales, as it represents the midpoint

of the Likert scale. Data collection was executed from October 2022 to February 2023.

4.2.8 Data analysis

The present analysis of the experiment is structured into five distinct sections. The first

section focuses on evaluating the time-processing efficiency of the pipeline employed,

paying particular attention to the time expended by the modules that incorporates AI-

based APIs: audio transcription, LLM, and voice synthesizer. The pipeline log, based

on UNIX time, was used for this computation, assessing the interval between input

receipt and output provision by each module. The remaining pipeline modules, those

not reliant on external AI-based API services, were collectively evaluated.

The second section embarks on a descriptive analysis of human-computer speech in-

teraction, drawing upon features extracted from the conversations. For clarity, we define

a ’conversation’ as the total time frame from greeting to farewell. An ’interaction’ refers

to a cluster of one or more consecutive phrases that are conveyed concurrently within

the same audio recording or synthesized by either the participant or the VH respec-

tively. A ’sentence’, on the other hand, pertains to a distinct phrase with an identified

or fabricated endpoint. Our analysis covered the total duration of the conversation,

the number of interactions per conversation, the number of sentences per conversation,

and the number of words per conversation. Additionally, we evaluated the total dura-

tion and speaking duration per interaction. For human participants, interactions were

dissected into three phases: (1) ’Time to start talking’, representing the silent interval

between the initiation of the recording and the beginning of speech, (2) ’Time talking

per interaction’, and (3) ’Time of final silence’, the span between when participants

stopped speaking and the conclusion of the recording. Silent periods were identified us-

ing pyannote voice activity detection model [236]. It should be noted that as the VH’s

voice is synthesized, there are no segments pertaining to ’Time to start talking’ or ’Time

of final silence’; hence, the total and speaking durations are identical in this instance.

Lastly, the interaction time was further evaluated in relation to its position within the



Materials and methods 87

conversation for both the human interlocutor and the VH. This computation subse-

quently differentiated between the initial audio of the human and VH, the second audio,

and so forth. Figure 4.7 clearly illustrates the average evolution of speaking duration

throughout the conversation. Due to non-normality of the data based on Shapiro-Wilk

test, Mann-Whitney-Wilcoxon test were applied to analyse differences between VH and

subjects interactions.

As the final component of our analysis of human-computer speech interactions, we

conducted a manual review to assess instances where errors in the interaction could be

produced. These errors are separated in two, depending on the source, which are the

silence detection module and the LLM exhibited errors. Errors arising from the silence

detection pipeline were quantified by tallying the number of times in which the VH in-

terrupted the subject during the subject’s speech within each conversation. Conversely,

errors stemming from incoherent responses generated by the LLM encompassed various

categories, including repeated messages, statements made in the third person, messages

that were inconsistent with prior conversation topics, the use of incorrect words, includ-

ing foreign or nonexistent terms, and technical errors, such as instances where the VH

failed to comprehend the human’s sentence.

Naturalness and the realism of the conversations was analysed for each type of VH.

A Friedman test is used to identify statistical differences among various VH conditions,

averaging both neutral scores. This is followed by a post-hoc analysis using the Nemenyi

test with Bonferroni correction to examine statistical differences between distinct states.

Additionally, a Wilcoxon signed-rank test is employed to evaluate the average scores in

neutral versus emotional conditions for each subject.

Finally, the emotional responses elicited in participants (i.e., the emotions experi-

enced by the subjects), and the identification of the emotional state of the VH (i.e.,

the emotion the participant perceives the VH to be experiencing) have been explored in

Section 3.4 and 3.5. The results were collected based on valence and arousal utilizing the

SAM scale [238], employing a 9-point Likert scale. Once the normality of the distribu-

tions is verified, a repeated measures ANOVA is performed over the different emotional

states. A post-hoc analysis with Bonferroni correction is performed to analyze statistical

differences between the different emotional states. One subject was excluded from the

analyses of naturalness, realism, emotion elicitation, and emotion identification because

his/her score on the STAI questionnaire surpassed the 95th percentile (47 for women

and 40-41 for men) [239].
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4.3 Results

4.3.1 Technical performance

Figure 4.4 presents the distribution of processing times utilized by each module to gen-

erate an output. The LLM, specifically OpenAI’s GPT-3, was the most time-consuming

module with a mean processing time of 1.82 ± 1.46 s, constituting 41.07% of the total

conversation pipeline duration. The 99th percentile of the distribution is at 6.89 s. The

audio transcription module, employing Google’s Speech-to-Text technology, also demon-

strated a substantial processing duration of 1.70 ± 0.62 s, corresponding to 38.14% of

the total pipeline time. In comparison, the voice synthesizer module, powered by AWS

Polly, required a relatively minor average processing time of 0.09±0.04 s to complete the

voice synthesis, amounting to only 2.13% of the pipeline’s overall time. The remaining

modules, encompassing data recording and storage as well as text cleaning, required

an average processing time of 0.82 ± 0.42 s, equating to 18.65% of the total pipeline

time. Overall, the entire conversation pipeline commanded an average processing time

of 4.44± 1.77 s, where the 99th percentile of the time consumption is located in 10.18 s.

4.3.2 Human-machine interaction

The average duration of a conversation is 3.44 ± 0.97 minutes, involving an average of

20.81 ± 6.51 interactions per conversation between the VH and the participant. Figure

4.5 shows the time distribution of the conversation durations. It illustrates two distinct

distributions, separated by a temporal threshold set at 4 minutes to conclude the conver-

sations. Conversations concluding below this threshold exhibit an average duration of

2.730± 0.712 minutes and includes 57.34% of the conversations. Conversely, the second

distribution encompasses conversations that exceed the 4-minute threshold, terminating

with an average time of 4.349±0.163 minutes. Notably, 42.66% of conversations extend

beyond this threshold.

The mean number of sentences used by the subject was 17.23 ± 5.60 sentences per

conversation. In contrast, the VH uses significantly more sentences, averaging 23.71 ±
6.97. According to the Mann-Whitney test, there is a statistically significant difference

(p-value < 0.001) between these two distributions. As for the word count, a conversation

involves an average of 112.46±54.85 words contributed by the human participant, while

the VH uses more words, averaging 145.25±51.46. Again, the Mann-Whitney test reveals

a statistically significant difference (p-value < 0.001) between these distributions.
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Figure 4.4: Boxplot of the time spent by the whole pipeline and splitted by each module.

With respect to audio interaction features, the extracted results are outlined below

and visualized schematically in Figure 4.6. The human participant typically takes an

average of 1.27 ± 1.91 seconds to begin speaking, with their speaking duration averag-

ing 3.94 ± 1.61 seconds. The VH, conversely, engages in lengthier speaking durations,

averaging 5.74 ± 3.85 seconds. A statistically significant difference is indicated by the

Mann-Whitney test (p-value < 0.001). The silence detection pipeline’s average time

to cease recording following the participant’s discontinuation of speech is 2.80 ± 0.54

seconds. The average audio duration for the human participant is 8.01 ± 3.66 seconds,

while the VH’s average audio duration is slightly lower, at 5.74± 3.85 seconds, present-

ing statistical differences (p-value < 0.001). The audio duration and the end of the VH

time speaking is the same because the API of the module returns the audio with only

the sentence of the VH. The use of the silence detection algorithm is not necessary.
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Figure 4.5: Distribution of the time conversation duration for all conversations.

Figure 4.7 illustrates the average speaking duration per audio segment, categorized

by their position within the conversation for both the human participant and the VH.

On average, the VH spends more time speaking than the human. However, similar

trajectories are observed for both, as the initial and concluding audio segments tend to

be shorter, while those in the third and fourth positions are typically longer.

Table 4.4 presents the percentages of errors per conversation and the corresponding

impact on individual interactions arising from various error types, as well as the cumu-

lative effect across all conversations and interactions. Among these error categories, the

most prevalent error source stems from VH interruptions induced by the silence detec-

tion algorithm, affecting 1.22% of individual subject interactions, which form part of a

total of 11.24% conversations. Concerning the LLM, inconsistent messages are the most

common error affecting the 0.85% of the interaction, that form part of the 9.12% of the

conversations. It is follow by technical errors, repeated message, 3rd person message and

incorrect words. A total of 2.62% of samples and the 23.28% of conversations have been

affected by any different error from the LLM. In summary, the 3.84% of the interaction

show some type of error, affecting 29.02% of the conversations.
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Figure 4.6: Schematic of the audio interaction features extracted for human and VH.

Table 4.4: Percentage of conversations and interactions affected by each type of error.

Source Error type
Affected

interactions (%)

Affected

conversations (%)

Silence detector VH interruption 1.22 11.24

LLM

Repeated message 0.59 6.35

3th Person message 0.33 3.59

Inconsistent message 0.85 9.12

Incorrect words 0.08 0.83

Technical errors 0.77 8.29

Total 2.62 23.28

Total affected 3.84 29.02

4.3.3 Naturalness and realism

The perceived naturalness (pertaining to conversation flow) and realism (related to con-

versation content) are analyzed based on the emotional states of the VHs. The averaged

scores for each VH, along with the statistical values from the Friedman test across

different groups, are presented in Table 4.5. This analysis reveals distinct differences

in both naturalness and realism across various VHs. Post-hoc analysis, however, does

not reveal any statistically significant differences between the four non-neutral emotions

(relaxed, happy, sad, and angry). Yet, these emotions collectively exhibit statistical

differences when compared to the neutral state in all cases, with the exception of the

relaxed-neutral comparison in terms of realism. To further analyse these findings, we
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Figure 4.7: Mean duration of the audios in terms of each position in the conversation for
the Human and the VH. The average time is represented by a line whereas the standard
deviation of the duration is the shadowed area.

examine the statistical differences between the emotional and neutral states of the VHs.

The Wilcoxon signed rank test reveal a statistically significant difference between both

groups, with emotional states outperforming neutral ones by approximately one point

in both naturalness and realism. The overall scores for naturalness and realism are 4.52

and 4.48 respectively, placing them above the midpoint on the Likert scale from 1 to 7,

suggesting a general sense of satisfactory realism and flow in the conversations with the

VHs.

4.3.4 Emotion elicitation

Table 4.6 presents the averaged score of participant self-assessment using SAM for va-

lence and arousal using the Likert scale from 1 to 9. These scores describes the VH’s

ability to elicit emotions in subjects. Repeated measures ANOVA reveals statistical

differences between conditions in terms of valence, but not in terms of arousal. As

illustrated in Figure 4.8, the positions of both the angry and relaxed VHs align with

their respective theoretical emotion quadrants according to Russell ( [4]). However, the

VH exhibiting happiness induces less arousal than expected, resulting in its placement

outside of its corresponding quadrant. Conversely, the VH expressing sadness elicits a

greater degree of valence than hypothesized, leading to its repositioning into the relaxed
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Table 4.5: Average subject assessment of the VHs naturalness and realism, standard
deviation in parenthesis

Personality Naturalness (1-7) Realism (1-7)

Neutral 4.16 (1.32) 4.20 (1.38)

Angry 4.64 (1.70) 4.75 (1.70)

Happy 5.00 (1.58) 4.74 (1.65)

Sad 5.02 (1.72) 4.89 (1.60)

Relaxed 4.90 (1.75) 4.64 (1.45)

p-value < 0.001 (***) < 0.001 (***)

Neutral 4.16 (1.32) 4.20 (1.38)

Emotional 4.89 (1.39) 4.75 (1.30)

p-value < 0.001 (***) < 0.001 (***)

All 4.52 (1.41) 4.48 (1.37)

quadrant. A pairwise comparison was undertaken to examine the distribution of arousal

and valence experienced by participants after interacting with the VH, depending on

each distinct emotional state of the VH. The results of post-hoc analysis are displayed in

Table 4.7. In regard to valence, the hypothesized differences manifested in pairwise as-

sessments. These include contrasting anger and happiness, anger and relaxation, along

with happiness and sadness. However, the comparison between sadness and relaxation

was the sole exception, displaying no notable differences. On the other hand, no sta-

tistical differences were identified in terms of arousal elicited by the different emotional

states of the VHs.
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Figure 4.8: SAM questionnaire results for subject self-assessment. The dot shows the
average value of the valence and arousal. The vertical and horizontal lines show the
standard deviation in terms of arousal and valence for each different emotion.

4.3.5 Emotion identification

The average score for subject emotion identification of the VH is shown in Table 4.8.

The results of the repeated measures ANOVA show statistical differences in valence and

arousal. Figure 4.9 shows that the location of the relaxed VH fits the theoretical model
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Table 4.6: Scores of the valence and arousal for subject self-assessment. Standard
deviation is inside parenthesis. (*) p-value < 0.05, (**) p-value < 0.01, (***) p-value <
0.001.

Personality Valence (1-9) Arousal (1-9)

Angry 4.89 (1.89) 5.23 (1.72)

Happy 6.62 (1.90) 4.66 (2.02)

Sad 5.39 (1.93) 4.69 (1.79)

Relaxed 6.16 (1.89) 4.74 (1.67)

p-value < 0.001 (***) 0.262

Table 4.7: Statistical comparison between the different emotional states for subject self-
assessment over the different VH personalities. (*) p-value < 0.05, (**) p-value < 0.01,
(***) p-value < 0.001.

Personality
p-value

Valence Arousal

Angry Happy < 0.001 (***) 0.078

Angry Sad 0.118 0.053

Angry Relaxed < 0.001 (***) 0.060

Happy Sad < 0.001 (***) 0.890

Happy Relaxed 0.148 0.715

Sad Relaxed 0.014 (*) 0.827

of arousal and valence [4]. Angry VH is very close to its theoretical quadrant, with a high

arousal and a valence close to the scale neutral point. Similarly, happy VH is very close to

its corresponding with a positive valence and an arousal close to the scale neutral point.

Finally, the sad VH gets slightly more arousal and valence than expected, achieving the

position in the quadrant correspondent to the happy VH. Table 4.9 includes the post-hoc

analysis. Regarding valence, the study successfully demonstrated all the hypothesized

differences, specifically between the emotional states of anger and happiness, anger and

relaxation, happiness and sadness, as well as sadness and relaxation. As for arousal,

not only did the study confirm hypothesized contrasts, such as those between anger and

sadness, and anger and relaxation, it also unveiled unanticipated differences, namely

between anger and happiness, and sadness and relaxation. However, the results did

not corroborate hypothesized distinctions in the case of happiness versus sadness and

happiness versus relaxation.
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Figure 4.9: SAM questionnaire results for subject identification. The dot shows the
average value of valence and arousal. The vertical and horizontal lines show the standard
deviation in terms of arousal and valence for each different emotion.

4.4 Discussion

This work introduces the first comprehensive VH system specifically designed for real-

time emotion elicitation during semi-guided conversations. It was created through the

integration of cutting-edge AI and VR platforms, based on a cognitively-inspired archi-
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Table 4.8: Scores of the valence and arousal for subject identification. Standard devia-
tion is inside parenthesis. (*) p-value < 0.05, (**) p-value < 0.01, (***) p-value < 0.001.

Personality Valence (1-9) Arousal (1-9)

Angry 4.98 (2.15) 6.15 (1.90)

Happy 6.87 (1.54) 4.91 (1.83)

Sad 5.39 (2.29) 5.08 (1.85)

Relaxed 6.51 (1.54) 4.16 (1.66)

p-value < 0.001 (***) < 0.001 (***)

Table 4.9: Statistical comparison between the different emotional states for subject self-
assessment over the different VH personalities. (*) p-value < 0.05, (**) p-value < 0.01,
(***) p-value < 0.001.

Personality
p-value

Valence Arousal

Angry Happy < 0.001 (***) < 0.001 (***)

Angry Sad 0.285 0.001 (**)

Angry Relaxed < 0.001 (***) < 0.001 (***)

Happy Sad < 0.001 (***) 0.493

Happy Relaxed 0.119 0.002 (**)

Sad Relaxed < 0.001 (***) 0.004 (**)

tecture where each module aims to perform a particular task in a mind/body scheme.

The primary objective of this research was to validate the developed VHs as emotional

stimuli, exploring the range of emotions evoked in the subject during their interaction

with the VH. The generation of the emotions was based on modifications in VH’s body

(i.e. facial expressions) and the mind (i.e., attitudes, moods, and motivations repre-

sented in the prompts sent to the LLM). For this purpose, a total of twenty VHs were

crafted, having five emotional states (neutral, anger, happiness, sadness, and relaxation),

two genders (male and female), and two types of appearance (casual and semi-formal).

4.4.1 Virtual Human architecture

This research introduces a novel framework for developing VH, founded on the idea

of bifurcating modules into mind and body, a concept adapted from the architecture

proposed by [220]. The body system is further delineated into action and sensory sub-

systems. The action subsystem is engineered to generate real-time audio-visual con-

tent for the VH, thereby facilitating real-time interactive conversations. This involves
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the integration of a lifelike avatar completed with facial expressions, synthesized voice,

and lip synchronization. Notably, we leveraged AI-based models: AWS Polly API for

instantaneous voice synthesis, and Nvidia audio2face for real-time lip synchronization.

This approach culminates in a realistic audio-visual interface that is projected on a large

screen, displaying a life-size avatar. The sensory subsystem equips the VH with auditory

capabilities. It comprises a silence detection module, which conducts ongoing analysis

to ascertain when the interlocutor has finished speaking, and an audio transcription

module based on Google’s AI model. This module provides the cognitive competency

to interpret the spoken audio. The mind system furnishes the VH with psychological

traits along with cognitive and emotional aptitudes. Specifically, we endowed it with

cognitive proficiencies such as language comprehension, rational thought, creativity, and

memory, utilizing GPT-3. Additionally, we incorporated psychological traits and states

such as life-history, context, attitudes, moods, and motivations into the prompts sent

to the LLM. To ensure temporal coherence, we integrated a memory module. The par-

ticipants were equipped with a microphone enabling them to converse with the VH.

Further, data pertaining to ET, EEG, ECG, and EDA were collected. These biomet-

ric data will fuel future research, facilitating the development of automatic emotion

recognition systems and biofeedback intelligence. Several recent studies have deliber-

ated on approaches to create VHs. For instance, [240] proposed a four-class taxonomy

rooted in the degree of form and behavioral realism. A ’Digital Human’ necessitates

a realistic anthropomorphic appearance, intelligence, autonomous and natural verbal

and non-verbal communication, cognitive, affective, and social abilities. Our present

architecture attempts to encompass all these elements, thereby illuminating the path

for future research in the evolution of VH.

4.4.2 Technical performance

The architecture under study has been technically dissected, with time expenditure for

each module thoroughly analyzed. Initial focus was directed towards three modules that

incorporated AI-based API services, namely the voice synthesizer, the audio transcrip-

tion, and the LLM. Remaining modules were evaluated collectively. The LLM module

emerged as the most time-consuming, with an average time expenditure of 1.826±1.462 s

(41.07%). While alternative LLMs offering greater efficiency are available, GPT-3 was

chosen for its superior conversation quality and coherence compared to other text gen-

erator models. Moreover, the usage of GPT-3 through OpenAI’s API bypasses the need

for local computation of model responses, thus preventing potential tool slowdowns. At
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the onset of data collection, GPT-4 was not available. Importantly, the selected model

should balance between high-quality text generation and time efficiency to maintain

conversational naturalness. Slow models may compromise this aspect. The second most

time-consuming module is the audio transcription module, consuming an average time

of 1.70 ± 0.62 s (38.14%). The Whisper ASR model was considered but was ruled out

due to its local computation requirement and time-intensive nature. The voice synthe-

sizer module operates the fastest AI-based API for generating the VH’s voice, requiring

0.09±0.04 s (2.13%). Although synthetic speech generation models are emerging in the

open-source realm, as far our knowledge, the AWS’s speed currently outperforms those

deployed locally. As new AI models continue to evolve and garner interest, it is antici-

pated that more accurate and efficient models will be developed and become accessible.

Currently, reliance on external AI-based APIs is essential to yield high-quality VHs,

primarily due to (1) the scarcity of open-source AI models for translate and synthesize

voices, as well as generate text, and (2) the high computational resources demanded

by such AI models, necessitating large-scale computing distributions. Nevertheless, the

modular nature of the proposed VH architecture facilitates the independent testing and

time optimization of new AI models, enhancing each module individually. The remaining

modules collectively consume 0.82 s, accounting for 18.650% of the total communicative

pipeline. Despite its relatively small proportion, this time duration could potentially

be curtailed. Further exploration into alternative data processing or saving mechanisms

could reduce this duration, thus contributing to a more fluid conversation.

4.4.3 Human-machine interaction

Descriptive features were extracted from audio recordings of each conversation, providing

a quantitative evaluation of duration and the nature of verbal human-machine interac-

tions between the subject and the VH. The conversation’s average duration amounted

to 3.38 ± 0.98 minutes, encompassing an average of 20.61 ± 6.40 interactions. However,

the histogram (Fig. 4.5) clearly displays two normal distributions with distinct central

tendencies. 57.34% of the conversations belong to the distribution that does not exceed

the 4-minutes threshold, with a mean of 2.730 minutes. Notably, 42.66% of the conver-

sations exceed the threshold. This indicates high engagement experienced by the subject

during the conversation and suggests a considerable amount of information condensed

within the conversations.

On the other hand, statistical analysis unveiled that the VH consistently employed

on average more sentences (23.71 vs 17.23, +37%) and words (144 vs 110, +30%) than
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human participants, culminating in extended periods of VH’s speech (5.74 vs 3.94 s,

+45%). These results indicate a higher level of dominance by the VH in the conversation,

likely attributable to its design focus on triggering emotional narratives. Given this, the

engagement appears quite balanced, with users demonstrating a high level of involvement

during the conversations, as evidenced by sentence and word counts. Additionally, the

duration of interactions suggests that the conversations were notably fluid. Maintaining

such fluidity and balance was crucial in this experimental protocol to prevent excessive

dominance by either the VH or the subject in conversations. It’s pertinent to note that

while subjects’ speech rates may vary, the VH maintains a fixed speech rate which could

differ from that of the subjects. Future research will examine variances in semantic and

prosodic speech features. Furthermore, the pursuit of developing more sophisticated

VHs that can closely mimic human speech remains an ongoing challenge.

The audio derived from the interaction with the subject can be segmented into

three parts: (1) time to start speaking, (2) speaking duration, and (3) silence detection.

Subjects, on average, commenced speaking 1.27 s after recording initiation. This part

represents a natural waiting time until the subject detects that the VH stops speak-

ing. However, the silence detection module holds paramount importance within the

pipeline, tasked with the precise identification of dialogue termination or silence within

audio streaming. However, a potent AI model capable of detecting the end of a dia-

logue in streaming audio is yet to be realized. To bridge this gap, we implemented a

silence detection algorithm based on audio activity detection, facilitating uninterrupted

dialogues without preset time thresholds for speech pauses. Nevertheless, the algorithm

necessitates audio recording each time it’s invoked, potentially causing considerable con-

versation delays. The average time spent during an interaction loop, identifying when a

user concludes speaking, is measured to be 2.808 ± 0.546 s. This duration is amenable

to optimization for delay reduction. Our algorithm employs diverse time thresholds to

safeguard against information loss. Humans can quickly tell when someone has finished

speaking due to the rhythm and tone of speech, or what’s known as prosody. This

suggests that upcoming silence detection systems should use these prosodic features

to more quickly detect when speech has ended instead of a fixed threshold of activity

detection. It should be noted that the pipeline duration, from the moment the silence

detection module concludes that the subject has ceased speaking until the VH begins its

response, averages at 4.445 s (Fig. 4.4). Comparatively, the real-time silence detection

requires 2.808 s. Thus, a substantial portion of the waiting period for the subject, prior

to receiving a response, is dedicated to ascertaining that the subject has completed their
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dialogue.

The errors arising from human-machine interaction were manually reviewed post-

experimentation and categorized into distinct types, such as VH interruptions, repetitive

VH messages, and incorrect word usage, with the corresponding percentages of affected

interactions and conversations detailed in Table 4.4. Although the silence detector

interrupts only 1.22% of the interactions, it can disrupt the flow of 11.24% of them.

Consequently, it is a critical module slated for future enhancements, incorporating a

more sophisticated model considering not just voice activity but also prosodic dynamics

to discern if the subject has concluded the interaction. In contrast, the LLM issues affect

between 0.08% and 0.85% of interactions, impacting a total of 23.28% of conversations.

Utilizing future versions of LLM will ameliorate these ratios. Nonetheless, it is crucial to

highlight that while these issues impede a specific interaction during the conversation,

they don’t necessarily affect the entire conversation. The subjects’ perception of the

conversation flow is analyzed in the subsequent subsection.

4.4.4 Naturalness and realism

The naturalness and realism of the model has an average score of 4.52 and 4.48 over 7

correspondingly. The highest score in naturalness and realism is achieved by the sad VH

which is 5.02 and 4.89 respectively. On the other hand, it can be seen how the neutral

VH achieves, in average, lower punctuation’s in both scores. This could be due to

different reasons. The first one is that emotion increases the sense of presence, as stated

in previous literature [78,241]. Therefore, as long as the emotion is expressed by the VH,

the engagement and social presence of the subject increases, enhancing the naturalness

and realism of the conversations. This results present a new step in analysing the

relationship between presence and emotions during conversations with VH, supporting

previous evidence. However, we need to consider that the neutral VHs are the ones that

are seeing firstly by the subject, since they were used as an adaptation process, allowing

subjects to familiarize with the system. As the experimentation progress, they get used

to the look and the interaction with the VH due to their exposure, and the scores of

realism and naturalness may increase.

4.4.5 Emotion elicitation

The results of the SAM regarding the self-asesessment showed differences in terms of the

valence elicited in the subjects by VHs (Table 4.6). In general, there is a VH’s tendency
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of eliciting emotions with positive valence during the conversations, since the lowest

score (4.89), achieved by the angry VH, is very closed to the the scale neutral point of 5.

Nevertheless, we achieved all the expected differences, acomplishing the goal of eliciting

varying emotions in terms of valence. To reduce the positive bias, stronger negative

narratives may be designed, and the VH may be improved to increase the subject’s

empathy. In terms of arousal, the subjects did not report any differences. Therefore, we

were not able to elicit coherent arousal reactions in subjects. One potential reason is that

VHs did not change the prosody features of the voice depending on the emotional state

such as volume, tone and speech rate, and it is well-known that para-verbal aspects of

human communication carries on a significant portion of the emotional content expressed

by individuals [242]. This could affect the arousal perception as well as its elicitation.

Further research is needed to elicit arousal during conversation with VHs and to explore

its relationship with para-verbal features.

4.4.6 Emotion identification

In the case of emotional identification of the VHs, the expected differences were all

achieved in valence. Therefore, the subjects were able to identify all the emotions

designed in terms of valence. In the case of arousal, several differences are shown,

supporting the hypothesis that although coherent arousal was not elicited in the subjects,

they were able to identify different arousal patterns between VHs. In general, the

negative emotions have been identified as higher arousal than the positive ones. It could

be related to the negative bias in social-emotional interaction, since humans use negative

information far more than positive information [243]. On the other hand, happy VH

presented lower perceived arousal than expected as it was close to the scale neutral

point, and further efforts are needed either to elicit effusive happy states, or to reduce

the negativity bias effect.

4.4.7 Future of virtual humans

Recent reviews underscore the crucial role of ecological and social emotion elicitation

methods in various fields, particularly healthcare, including the assessment, monitor-

ing, and intervention of mental health disorders like depression, anxiety, bipolar, and

psychotic disorders. [244] highlighted the urgent need for comprehensive evaluation of

diverse healthcare conversational agents, focusing on their acceptability, safety, and ef-

fectiveness. Their review revealed that most conversational agents described in the
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literature are text-based, machine learning-driven, and delivered via mobile apps. [245]

emphasized the significance of recent technological advancements in chatbots to men-

tal health research and care. They detailed how smartphones, social media, artificial

intelligence, and VR offer new opportunities for ”digital phenotyping” and remote inter-

vention, but noted the need for further efforts towards solidifying implementation. [246]

proposed an empathic conversational agent framework, combining natural language pro-

cessing techniques and artificial intelligence algorithms for real-time monitoring and

co-facilitation of patient-centered healthcare. However, their system relies on a rule-

based emotional message generation, limiting the potential for open-ended conversation.

Furthermore, they did not integrate the conversational agent with in an avatar. In a

comprehensive review of emotional chatbots, [247] combines VR, a chatbot and a voice

user interface in a smartphone aplication, but without a Large Language Model. [248]

discussed the current limitations of the state-of-the-art. They pointed out that gener-

ative chatbots are still not based on LLM, possibly due to their novelty. Moreover, no

research thus far has incorporated a conversational agent into an avatar.

Denecke et al. [249] presented the most recent review of Conversational Agents in

health, illustrating that the current landscape of health CAs is predominantly charac-

terized by rule-based, simple systems in terms of CA personality and interaction.

In other fields, [250] developed a VR scenario with a chatbot to facilitate job interview

training. Face recognition and sentiment analysis were utilized to analyse and provide

feedback to the participant. [251] provided a review of chatbots in education, outlining

potential future areas of education that could benefit from this advanced AI technology.

However, they have not yet presented any comprehensive VH.

Despite the rise of AI-based technologies in fields such as natural language processing

and computer graphics, there remains a lack of studies in affective computing that

analyze human emotional responses using these methods. There is no existing work

that integrates advanced technologies like audio transcription, LLM, speech synthesis,

lip synchronization, and VR to create a realistic VH capable of conducting real-time,

open-ended conversations. The system developed in this study represents a significant

advancement by merging these technologies.

Recent reviews of chatbots, conversational agents, or VHs suggest they will have

significant implications in several fields such as health and education. It is our hope

that the present work can guide future applications of VH in these areas.
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4.4.8 Limitations and future research

The present study has certain limitations that future research should aim to address.

A significant constraint lies in the VR platform employed, which hampers the natu-

ral movements and gestures of the VH, diminishing its realism. The platform does

not accommodate hand or leg movements, and the VH’s blinking pattern was pre-

programmed, limiting the organic behavior. Furthermore, the absence of an effective AI

model to control voice modulation, rhythm, and tone could influence the participant’s

empathetic response towards the VH. The static facial expression of the VH during the

conversation also reduces the naturalism and realism of the interaction. Incorporating

dynamic changes in the VH’s facial state throughout the conversation could greatly en-

hance its lifelike quality. Another area of potential improvement pertains to the use

of advanced language models, such as GPT-4, which could potentially provide superior

text generation performance, thus improving the natural flow of conversation between

the participant and the VH. Upgrades in audio transcription models could further en-

hance the realism of the VH’s conversation. Looking forward, future research should

concentrate on refining the VH to serve as a more ecologically valid social environment

for eliciting psychological phenomena via emotions. Such efforts will aid in expanding

the potential applications of VH across various disciplines. As we chart the course of our

future research trajectory, we plan to expand our scope by developing emotion recog-

nition systems grounded in biometric data already collected, including ET, EEG, ECG

and EDA. Additionally, we aim to introduce a new phase in our experimental design

by including subjects exhibiting depressive symptoms. Our objective is to architect

an automated health assessment and monitoring system driven by supervised machine

learning. This system will leverage our ecologically valid environment during emotional

elicitation. Our hypothesis proposes that such systems will instigate the manifestation

of specific phenomena tied to depressive symptoms. This is based on the understanding

that depressive symptoms often correlate with impaired social skills and amplified neg-

ative emotional states, as supported by prior studies [213,252]. Therefore, our approach

aims to leverage these insights, advancing the development and application of intelli-

gent systems for improved mental health diagnosis and treatment. In addition, further

research needs to assess the influence of VH gender on emotion elicitation, as well as

whether there are subject gender differences in terms of assessing the system.
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4.5 Conclusion

The findings presented here mark a new step in the field of AfC and its applications,

presenting the first real-time conversational VH capable of engaging in semi-guided dia-

logue based on LLM. Drawing on a modular cognitive framework, we divided the VH into

distinct mind and body components, providing a realistic life-size avatar with language

comprehension, rational thought, creativity, and memory. We presented an extensive

validation of the system in terms of technical performance, human-machine interaction,

naturalness and realism, and emotion elicitation and identification. This breakthrough

marks a considerable progression in the crafting of ecologically valid social virtual envi-

ronments and the ability to generate emotion-driven responses that are shaped by the

nuances of social and contextual factors. The intelligent system unveils a multitude

of possibilities and potential applications, spanning mental health and permeating a

plethora of other disciplines.
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Chapter 5

Emotion and depression

recognition through

conversational Virtual Humans

Abstract

The investigation of emotion recognition (ER) through virtual reality (VR) has garnered

significant attention in recent years. This tool could be extended to routinely environ-

ments to examine the emotion elicitation. This study proposes an experimentation that

involves four virtual human (VH), each designed to convey distinct emotional states, to

elicit different emotions in individuals. Furthermore, it is studied the recognition of a

mental illness such as depression. To achieve this, a study was performed engaging a

total of 98 participants in conversations with the VHs, including eye-tracking (ET) and

electrodermal activity (EDA) signal analysis. The ET and EDA signals were indepen-

dently processed. From the ET data has been obtained fixations, saccades and blinks,

while specific areas of interest (AoI) were defined for the VHs, generating distinctive

features. On the other hand, the EDA signals underwent thorough pre-processing, in-

cluding artifact correction and signal decomposition into phasic and tonic components.

Machine learning (ML) algorithms are finally used to perform classification tasks over

different targets. Notably, our research yielded promising results in the recognition of

depression during VH interactions, achieving a balanced accuracy rate of 0.685. How-

ever, the performance of ER varied across different targets, with the more robust result

obtained for the classification of VH valence, reaching a balanced accuracy of 0.655. This

107
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research marks an initial exploration of AI-based VH applications in the domains of ER

and depression assessment in VR, offering a glimpse of their potential utility in diverse

fields such as healthcare, education, and even the realm of interactive entertainment,

including video games.

5.1 Introduction

Affective computing (AfC) encompasses various approaches, with one of the most sig-

nificant being Russell’s circumplex model [4]. This model characterizes emotions in

a 2D affective space defined by two axes: arousal and valence. Russell’s model pro-

vides a numerical description for different emotions within this 2D framework. Emotion

recognition (ER) is the field dedicated to the identification of human emotions, and it

represents a relatively new and evolving area of research where technology plays a piv-

otal role. In the course of studying this field, various techniques have been developed,

drawing from disciplines such as computer science and statistical analysis. Much of the

effort in this field is focused on automating ER through methods like signal processing,

facial recognition, or speech recognition, all geared toward precise ER. Additionally, the

accuracy of ER significantly improves when various techniques are combined, utilizing

data encompassing text, biosignals, audio, and video. Numerous works have delved

deeply into ER using diverse techniques. For instance, the study by Lim et al. [253]

introduces a model that incorporates convolutional and recurrent neural networks for

speech ER, achieving a high level of accuracy in the recognition task. Ghofrani et al.’s

work [254] demonstrates that real-time ER through facial analysis is now feasible with

a high degree of accuracy. Furthermore, Cong et al.’s research [255] illustrates how

various signal processing techniques, such as heart rate variability (HRV) and electro-

dermal activity (EDA), can enhance ER, even when employing signals that have already

undergone extensive study and development.

Eye-tracking (ET) stands as one of the fundamental physiological indicators for

measuring visual attention. This technology not only tracks the subject’s gaze but also

captures additional parameters like blink frequency and pupil diameter [148]. Previous

research, such as the study by Tarnowski et al. [256], has explored ER tasks by extracting

features from eye movements, including fixations, saccades, and pupil diameter. Notably,

they achieved a remarkable maximum accuracy of 80% using a support vector classifier

(SVM). Furthermore, the examination of visual attention through the concept of areas

of interest (AoI) has proven to be a valuable approach in assessing task performance.
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For instance, the research conducted by Houwei et al. [257] defines various AoIs, where

fixation time and other features were meticulously analyzed. This feature extraction

methodology led to an accuracy of 84.1% in recognizing three distinct emotional states:

positive, negative, and neutral. Moreover, novel techniques, such as deep learning (DL),

have been applied to analyze ET data, as demonstrated in the work by Aracena et

al. [258]. In this study, both the temporal information of gaze and pupil diameter were

utilized to recognize emotions, yielding favorable results.

Another highly utilized signal in ER is EDA. EDA reflects the activity of the sym-

pathetic nervous system, making it a crucial signal in ER studies. EDA can be decom-

posed into tonic and phasic components through de-convolution techniques [160, 259].

The tonic component is associated with slower movements and changes in the skin con-

ductance, while the phasic component represents rapid movements of the signal, often

referred to as the skin conductance response (SCR). The SCR commonly provides the

features used in EDA-based studies, offering valuable information for a wide range of

scientific research fields [161]. This approach has received significant attention from psy-

chology and health-related studies [162]. In clinical analysis, SCR is used to assess pain,

stress, schizophrenia, and peripheral neuropathy [159, 160]. According to Sharma et

al. [260], the galvanic skin response (GSR) obtained through the EDA signal can assess

stress and anxiety in patients and can also be used for behavioral therapy. This signal

has been studied as a standalone biomarker in various research works. For example,

the study by Ayata et al. [261] focused on ER, categorizing the arousal and valence of

subjects using the EDA signal. In this work, the Deap dataset was employed, where

subjects underwent various visual stimuli while their EDA signal was recorded. This

model achieved an accuracy of 71.53% and 71.04% for arousal and valence, respectively,

using a random forest classifier (RFC). Innovative approaches have also transformed the

EDA signal into a spectrogram. The work by [262] used a 2D convolutional DL model

to classify the EDA signal into four different emotions (amusing, boring, relaxing, and

scaring), achieving a maximum accuracy of 80.20%. Furthermore, advancements such as

feature extraction from frequency and time-frequency decomposition [263] have demon-

strated high accuracy in arousal and valence recognition, reaching 85.75% and 83.90%,

respectively. These research findings collectively demonstrate the diverse and comple-

mentary processing methodologies for the EDA signal. However, since changes in GSR

signal often manifest slowly and exhibit a time delay, it is common practice to com-

plement the study of EDA signal with other types of biosignals, such as HRV or even

ET. This combination allows for a more comprehensive and accurate understanding of



110 Chapter 5

emotional responses and cognitive processes

The exploration of AfC requires the incorporation of highly realistic scenarios to

elicit a profound sense of immersion in subjects, aiming to evoke emotions authentically.

VR plays a crucial role in enabling the development of immersive environmental simula-

tions, allowing users to engage as if they were in the real world [77]. These simulations

span a wide variety of setups, encompassing different formats and platforms [264]. The

progressive integration of VR technology into research has enhanced the sense of immer-

sion in virtual environments (VE), a pivotal factor for achieving a lifelike experience.

Immersion in VR is defined as the objective level of fidelity provided by a VR system

and is inherently associated with the employed technology [265]. The advancements in

VR technologies have significantly enriched research focused on understanding human

behavior [128]. Beyond conventional self-assessment methods, VR offers the opportu-

nity to integrate various implicit measures capturing unconscious processes, including

EDA, HR [129, 136], and ET. Numerous studies have explored human behavior within

VR environments, concurrently recording biosignals to discern patterns in interactions.

For instance, de-Juan-Ripoll et al. [86] research investigates subjects’ risk-taking behav-

ior using ET and EDA signals, revealing distinctive patterns enabling the classification

of subjects into high or low risk-taking categories. Similarly, Pinto et al. [266] explore

various biosignals, including ECG and EDA, to assess emotions during video viewing,

achieving high accuracy of 69.13% for arousal and 67.75% for valence in the ER task.

Moreover, the work of Vicente-Querol et al. [267] compares ER in immersive and non-

immersive VR settings, indicating a marginal improvement in the VR environment for

emotion recognition. Collectively, these studies emphasize the growing significance of

combining VR with biosignal recording to gain insights into human behavior and emo-

tional responses.

On the other hand, there have also been significant advances in AI-based technol-

ogy. For instance, individuals can interact and maintain a normal conversation through

a language model facilitated by generative pre-trained transformers (GPT) models, such

as GPT-3 by OpenAI [104, 268], representing a noteworthy advancement and emerging

as one of the most sophisticated language models to date. Additionally, interactive

chatbots like Alexa, Siri, or Cortana have already existed [223, 224]. Various models,

such as speech transcription from Whisper [227] or Google’s Speech to Text, are cur-

rently available and can achieve voice transcription with very good results not obtained

previously. Moreover, platforms like AWS Polly have achieved commendable results

in voice synthesis across various languages, offering a high level of flexibility. In sum-
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mary, the current state of AI technology enables the enhancement of elements within

virtual experiments. More complex yet realistic experiments can be developed using

the technology mentioned above. The utilization of the latest AI-based technology in

conjunction with VR allows for the introduction of elements that are unattainable in

real-world experimentation, such as virtual humans (VH).

VHs are human-like characters that typically interact through computer screens

and/or speakers. They exhibit human-like behaviors, including speech, gestures, as well

as human characteristics like emotions, empathy, and memory [98]. The construction of

a VH entails the utilization of various tools, such as automatic text generation, speech

synthesis, and the interface through which the VH is presented. However, all these

technologies could be used nowadays, allowing the creation of a VH. The use of these

advances could replicate difficult dynamics, such as social interactions through a con-

versation, something that couldn’t be achieved without this technology. The utilization

of this technology fosters a more natural interaction, thereby achieving a more realistic

elicitation of emotions.

Numerous studies have utilized VHs to explore subjects ability to recognize emotions.

For instance, the work of Finkelstein et al. [269] introduces a virtual platform featuring

VHs to facilitate the study and teaching of ER. This platform incorporates various

interactive games to effectively demonstrate ER. In the study by Zibrek et al. [270],

the focus is on assessing subjects capability to discern emotions conveyed by the VH

through different gestures and facial expressions. Additionally, this study examines the

correlation between VH gender detection and ER. Notably, the researchers found that

the model used to display motion did not impact gender perception but did influence ER.

In the work of Durupinar et al. [271], different VHs are employed for ER across various

genders, ages, and races. Statistically significant effects emerged among different groups

for individual emotion types. These studies collectively explore the subject’s capacity to

recognize emotions conveyed by VHs. However, it is worth noting that studies focusing

on the elicitation of emotions in subjects during interactions with VHs are currently

lacking. The work of Llanes et al. [272] studies emotion elicitation and recognition

through the use of four VH with different emotional states and two neutral VHs. The

results show statistical differences in most of the four emotions examined. However,

there is a dearth of research that investigates ER in the interaction with VHs through

the information collected by biosignals.

The amalgamation of various technologies described not only has the capability to

recognize social emotions but can also identify more emotional disorders, including those
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classified as mental illnesses such as depression. Depression, which affects 264 million

people globally, has a significant impact on the quality of life and can even lead to severe

outcomes, including suicide [273]. Given that traditional self-reported assessments are

susceptible to biases and may not accurately reflect real-world scenarios, it is impera-

tive for primary care centers to augment clinical assessments with digital screening tools.

These tools can facilitate early diagnosis, classification of symptom severity, and appro-

priate referrals for individuals struggling with depression. The advancements in digital

technology present opportunities for monitoring cognitive and behavioral development,

thereby contributing to precision medicine in the field of mental health diagnosis. This

approach entails the identification of valid biomarkers and behavioral indicators, which,

in turn, enable the development of tailored preventive and treatment interventions.

These interventions can be customized to suit individuals’ unique characteristics and

needs throughout their lifespan. This holistic approach represents a promising avenue

for improving mental health diagnosis and patient care.

There is compelling evidence that ET serves as a suitable biomarker for correlat-

ing with depression, primarily through the measurement of visual attention [274]. ET

technology has demonstrated the capacity to detect gaze patterns associated with de-

pressive symptoms by comparing eye gaze behavior towards various stimuli between

control subjects and individuals exhibiting depressive symptoms [275]. Additionally,

the EDA signal has been investigated for recognizing depression symptoms. Kim et al.’s

work [276] demonstrated an accuracy of 74% and a sensitivity of 74% in recognizing

depressive subjects using only EDA features from stress and relaxation tasks. However,

the study of this signal is commonly conducted in conjunction with other biosignals,

such as the electrocardiogram (ECG) signal. For example, the work of Ding et al. [277]

delves into the recognition of depression patients using a combination of EEG, EDA,

and ET. The study revealed that the integration of data from different sources enhances

the performance of depression recognition in comparison to prior research efforts. This

underscores the potential of combining multiple biomarkers to improve the accuracy of

depression diagnosis and understanding.

The study of depression through VHs is an area that has been explored in previous

research. For example, Philip et al. [278] conducted a study with individuals at various

levels of depression, where participants engaged in two randomly ordered interviews,

one with a specialist and another with embodied conversational agents (ECAs). In this

case, patients with depression exhibited a high degree of acceptance toward the ECAs.

User responses were also used to classify the different levels of depression, achieving a
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sensitivity of 73% and specificity of 95%. This study demonstrates the validity and ac-

ceptability of using an ECA for diagnosing major depressive disorders. Egede et al. [279]

divided participants into two groups. Half of the participants completed tasks guided by

a VH, while the other half performed tasks guided by text on a screen. Various biosignals

were used to classify the level of depression in subjects based on the PHQ-9 question-

naire. The results indicated that the use of VHs influenced the expressive behavior of

the subjects and improved their disposition towards tasks. Lastly, the study conducted

by Takemoto et al. [280] involved a group of participants divided into depressive and

non-depressive individuals. They were asked to engage in conversations with both, a VH

and human interviewers, with gaze patterns recorded by an eye-tracking device during

both types of interactions. The results of the experiment revealed significant differences

in eye movements between the control group and the group with depression symptoms.

However, a common limitation across these studies is the absence of a generative

language model, such as the current GPT-3 and GPT-4. Moreover, these studies do not

employ voice transcription models based on AI, allowing real-time voice conversations

between the user and the VH. Nor do they use AI-based voice generation models that

can achieve a much more natural and characteristic voice. Finally, they also do not

utilize VR platforms that can add greater realism to VHs through aspects like lip or

body movement. All in all, these limitations hinder VHs from engaging in spontaneous

conversations with subjects, thereby reducing the realism of the interactions and the

possibility of eliciting emotions.

In summary, this research focuses on ER and depression recognition through a con-

versational VHs in VR. It marks the first instance of deploying such an experimental

setup for AfC research. It is also the first work that use VHs in the research of mental

illnesses such as depression. The study employs various signal processing techniques

sourced from ET and EDA data to identify different emotions based on the arousal and

valence scale. Additionally, the dataset is enriched by incorporating simple process-

ing of the conversations with the VHs and demographic features. A data classification

pipeline, which encompasses statistical methods like feature selection and ML, will be

utilized to create the most accurate classification models. To ensure the robustness of

the results and prevent overfitting, a validation check has been carried out. Lastly, as

the experimentation involves conversations with four different emotional VHs, the same

ML pipeline will be employed to determine which emotional VH is more influential

in assessing specific targets. This comprehensive approach aims to contribute to the

understanding of emotions and mental health assessment within VE.
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This manuscript is structured as follows: Section 2 explains the experimental design

and the tools utilized therein, along with the analytical methods employed. Section 3

presents the results derived from the aforementioned analysis. Section 4 discusses the

work accomplished and the objectives met, and provides a discussion of the results.

Lastly, Section 5 concludes the study and highlights the key findings.

5.2 Materials and methods

5.2.1 Participants

A total of 98 participants were recruited for this experiment, with a mean age of 33.95±
11.10 years. Out of the participants, 50 were women, 47 were males and 1 identified

as another gender. Before their participation, participants were provided with detailed

information about the study and provided written consent for their involvement. To

protect the privacy of their responses, the data were anonymized and randomized.

Ethical approval for the study was obtained from the Ethical Committee of the

Polytechnic University of Valencia (Approval ID: P06 25 07 2022). Data collection took

place between October 2022 and February 2023.

To ensure that the participant group was homogeneous and in a healthy mental

state, they were assessed using the PHQ-9, a standard psychometric test for measuring

levels of depression. The control group, consisting of participants with a PHQ-9 score

below 9, included 64 individuals. The mean age of this control group was 31.96 ± 10.34

years. Among them, there were 32 women, 31 males and 1 participant with another

gender identity.

5.2.2 Virtual-Human

The VH model utilized in this study is based on the one used in the work of Llanes et

al. [272]. In this research, six different VHs were employed, with two of them exhibiting

a neutral emotional state, while the remaining four VHs expressed specific emotions,

including anger, happiness, sadness, and relaxation. For the purposes of this study, only

the data collected from conversations with these four emotionally expressive VHs are

considered.
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5.2.3 Questionnaire

The experiment began with an initial phase where participants completed a battery of

psychological questionnaires that included demographic information, the PHQ-9, state-

trait anxiety inventory (STAI) questionnaire, and several other physiological assessment

questionnaires, which will be used for further analysis. The STAI questionnaire was uti-

lized to evaluate the emotional baseline of each participant. Afterward, the participants

engaged in six different conversations with a set of six VHs. Following each conversa-

tion, the participants were instructed to assess the naturalness and realism of the social

interaction. Naturalness was evaluated based on the flow of the conversation, ranging

from ”I felt very forced during the conversation” to ”I felt very natural during the con-

versation.” Realism assessed the content generated during the conversation, with ratings

ranging from ”It was an artificial conversation. It doesn’t resemble a real conversation

at all” to ”It was a realistic conversation. The content was very similar to that of a real

conversation.” Both metrics utilized a 7-point Likert scale.

Furthermore, participants were required to identify the emotions of both, the VH

and themselves by using the self-assessment Manikin (SAM) [237, 238] questionnaire

once the conversation with the VH finished. The SAM questionnaire is a standardized

measure that assesses valence and arousal, referencing Russell’s circumplex model. In

this context, participants rated the valence and arousal of both themselves and the

VH using two 9-point Likert scales during their conversations. We hypothesized that

a happy VH would elicit high arousal and positive valence, a relaxed VH would result

in low arousal and positive valence, a sad VH would induce low arousal and negative

valence, and an angry VH would lead to high arousal and negative valence.

On the other hand, the patient health questionnaire (PHQ), specifically the PHQ-9,

is a widely used psychological test designed to assess and measure the severity of depres-

sive symptoms in individuals [281]. Developed as a self-administered tool, the PHQ-9 is

derived from the primary care evaluation of mental disorders diagnostic instrument for

common mental disorders. This questionnaire comprises nine questions corresponding

to the diagnostic criteria for major depressive disorder. Respondents rate the different

questions with a numerical frequency of specific depressive symptoms over the past two

weeks, providing a quantitative measure of the individual’s depressive state.

The results from the questionnaires in this study were numerical values on different

scales. A threshold value was established, with different value depending on the ques-

tionnaire, to treat the output of the questionnaires as binary classification problems.
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Below each threshold, the score was considered low, and above it, the score was con-

sidered high, achieving a binary segmentation. For the questionnaires related to VH

naturalness and realism, the threshold was set at 4. Any score exceeding this thresh-

old was deemed high, labeled as 1, and 0 otherwise. The proportions of ones in each

target were 66.53% and 62.90% for naturalness and realism, respectively. In the case of

arousal and valence scores for subject and VH, the threshold for classification was set

to 5, performing the same assignment for the labels as before. The proportion of ones

in each target was human arousal 55.24%, human valence 38.31%, VH arousal 58.06%

and VH valence 40.32%. For the PHQ-9 questionnaire, specific thresholds were already

established for identifying depressive symptoms. A threshold value of 9 was used in the

PHQ-9 questionnaire as the point at which a subject can be classified as depressive. If

the score was less than 9, the subject was classified as non-depressive (label 0); otherwise

they were classified as depressive (label 1). The percentage of depressive subjects was

35.42%.

5.2.4 Data pre-processing

This study encompasses three different types of data sources: ET, EDA, and conver-

sations between humans and VHs, in addition to the demographic variables of each

subject. It is explain below how the various data sources have been processed to obtain

a unified dataset that enables the performance of different classification tasks.

5.2.4.1 Conversations

Various features have been extracted from the conversation with the VH. These features

included the total duration of the conversation, the average time the subject and the

VH spend talking, the total number of words spoken by the subject and the VH, count

of interactions between the subject and the VH, the maximum number of words and

maximum time talking in a single interaction by the subject and the VH. Additionally,

other variables were obtained, such as the speech time of the first and last message from

the subject in the conversation and the total time spent speaking in the first three and

last three messages with the VH. These features collectively provide a comprehensive

overview of the conversational dynamics during the interactions between the subjects

and the VH.
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5.2.4.2 Eye-tracking

The ET signal is processed using the PupilLab algorithm. This algorithm includes

several key components for analyzing eye movements and related measurements. The

algorithm identifies fixations by considering the eye movement’s velocity, where fixa-

tions have velocities below 68/s and durations exceeding 60 ms. It compensates for

vestibulo-ocular eye movements using optic flow from the scene camera and applies spe-

cific thresholds to distinguish fixations. The algorithm is designed to be robust against

head movements and provides information about the total number of fixations and their

durations. Eye saccades, which are rapid eye movements between fixations, are charac-

terized by their amplitude in degrees and time duration. Moreover, PupilLab includes a

blink detector that identifies blinks by analyzing rapid drops and increases in 2D pupil

confidence. This process allows for the computation of the number of blinks and their

durations. The system collected data from the gyroscope, providing angular velocity

information in the x (horizontal), y (vertical), and z (optical) axes. Additionally, data

from the accelerometer was obtained, measuring linear acceleration in the same three

axes. Roll and pitch, which describe the device’s rotation, were also measured. These

processing steps collectively offer detailed insights into eye movements, blinks, and the

device’s orientation.

Pupil Cloud facilitates automatic gaze mapping for our research by employing the

reference image mapper enrichment. This process is grounded in the structure from

motion technique, which constructs a 3D model of the environment seen in the scene

video and tracks the camera’s position within this model. With this information, gaze

data is monitored in 3D and then projected onto the reference image plane. To sup-

port our analysis, a distinct enrichment was generated for each VH, with tasks being

segmented and assigned accordingly. The fixation computation provided positions on

static images. AoIs for specific body parts, such as the head, eyes, nose, mouth, left

arm, right arm, torso, legs, and feet were defined. Various metrics for each AoI were

calculated, including the total fixation count (the sum of individual fixation counts),

total fixation time (the sum of fixation durations), time to first fixation (from the con-

versation’s start to the first fixation within the AoI, or the conversation’s total duration

if no fixation occurs), and total visits to the AoI (the number of consecutive fixation

groups within the AoI). These processes enabled to collect comprehensive data on gaze

behavior, particularly related to specific body parts, facilitating a detailed analysis of

user interactions with the VH.
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5.2.4.3 Electrodermal Activity

In EDA signal processing, the automatic recognition and correction model, introduced

in [282] to eliminate artifacts in the raw signal, was applied. Subsequently, EDA signal

was decomposed into its phasic and tonic components using the Ledapy library. This

allowed to analyze the corrected EDA signal from three distinct components: the signal

itself, phasic and tonic components.

Each EDA source yielded different features. For the corrected signal, statistical at-

tributes including the mean, standard deviation, signal amplitude, and Shannon entropy

were computed. Following this, the signal was divided into temporal segments that cor-

responds to the interactions between human and the VHs. Across each of these EDA

segments, the mean, standard deviation and signal amplitude were extracted. Addition-

ally, autoregressive (AR) features with a lag of 4 from the corrected EDA signal were

calculated. The number of peaks and the mean value of the peaks was also determined

in the phasic component.

Autoregressive features

An AR model is commonly used in fields as statistics or signal processing. The AR

model describes the output of the variable as a linear combination of the own previous

values of the signal. AR model is specified by p which set the order of the model. An

AR(p) is defined in equation 5.1.

Xt =

p∑
i=1

ϕiXt−i (5.1)

where ϕ1, ..., ϕp are the coefficients of the AR(p) model. A polynomial degree of

p = 4 was selected, resulting in the calculation of four coefficients along with the error

associated with the AR polynomial fitting. These coefficients were the ones used for the

modeling of the EDA segments, using them as features for the ML models.

Wavelet features

The wavelet features were obtained through the transformation of the EDA signal

using a discrete wavelet transform (DWT). The DWT of a signal y is computed by

passing it through a series of filters. Then the result can be shown as a convolution

between the signal and a series of filters showed in equation 5.2.

yDWT (i) =
∞∑

k=−∞
y(k)g(i− k) (5.2)
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where g is the specific filter for the DWT and yDWT id the DWT of the input signal

y. For the processing of EDA signal, the Haar window was used, to obtain the wavelet

features set.

Hjorth features

Hjorth parameters are indicators of statistical properties used in signal processing

in the time domain introduced by Hjorth in 1970 [283]. The parameters are activity,

mobility, and complexity. This signal is commonly used in EEG field, however, other

experimentations had used it as complementary features for their studies. The Hjorth

activity is defined in equation 5.3.

activity = var(y(t)) (5.3)

where var indicates the variance of the signal in the time domain.

The Hjorth mobility is showed by equation 5.4.

mobility =

√√√√√var

(
dy(t)

dt

)
y(t)

(5.4)

Finally, the last feature is the Hjorth complexity in equation 5.5.

complexity =

mobility

(
dy(t)

dt

)
mobility(y(t))

(5.5)

This set of features were extracted and also used as inputs for the ML model.

5.2.5 Data source linkage

The extraction of features was also context-dependent and was based on three distinct

conversational situations within the overall experimentation: interactions with different

emotional VHs and the time when the human or the VH were speaking. The connection

between these diverse data sources is established using the time variable. To begin, the

target events were associated with timestamps that indicate when each event occurred.

These timestamps were then matched with the timestamps from the other data sources,

and the sample with the closest timestamp (in absolute value) to the target event was

selected for analysis. Equation 5.6 outlines this methodology mathematically.

Cidx = argmin(|ttarget − t⃗Dx |) (5.6)
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where Dx represents the data source to link, ttarget signifies the target time to es-

tablish a connection with, argmin designates the position in the database Dx of the

minimum value within the temporal vector, and Cidx denotes the nearest position in Dx

to the target time. Through this data processing, we can effectively identify the specific

data point that corresponds to the occurrence of a particular event, denoted as target,

within the data source Dx.

In this research, the conversation database was used as a central component, inte-

grating it with the other databases. This approach was chosen because the conversation

data contains the essential information about the start and end times of each interaction

involving the different emotional VHs. Additionally, it included timestamps indicating

when a human subject or a VH was speaking. Therefore, the start and end times of

conversations were used as reference points for data extraction from various sources.

In cases where temporal records of ET or EDA were missing within the specified time

intervals, these gaps were marked as missing data in the final database. Variables with

missing data exceeding 10% were excluded from the analysis.

All the previously mentioned features were obtained for each subject and also for each

emotional VH. Four data subsets were extracted for each subject because the subject

interacted with four emotional VHs. Demographic and questionnaire variables of the

subjects were added. Since each subject has four data subsets, the demographic and

questionnaire variables, which do not depend on the emotional VH, were duplicated

across the data subsets. All in all, the whole database consisted in 392 records where

the key columns were the subject and the emotion of the VH.

Table 5.1 presents the number of features obtained for three different scenarios. In

the general case, considering the complete data source in the experimentation. Divided

by VH, which results in different features for each VH, processing data from the begin-

ning to the end of each emotional VH. Finally, it shows the number of features obtained

for each interaction with the VH. Regardless of these three scenarios, various calculations

were performed on the variables. A set of information was derived from each variable,

including the mean, standard deviation, median, and maximum of that variable. Table

5.1 illustrates the different variable groups in which variables were organized according

to each data source and the situation in which the variable was calculated.

In addition, the emotional state of the VH was encoded in just two features, repre-

senting high or low valence and high or low arousal. All of these results summarize a

final dataset of 392 records with 156 variables for the classification of depressive patients.

The dataset for ER had 149 variables, as the information from other questionnaires is
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Table 5.1: Description of the set of features obtained by data source. The parenthesis
of each cell specifies the total number of features obtained.

Model
Variables

Data
Source

General by VH
by

Interaction
Total

features

Input Conversations -
Num. sentences

Time talking
Num. diff. words

(10)
Num. words
Time talking

(5) 15

Input ET -

Fixations
Saccades
Blinks

AoI
Ang. speed

(102) - 102

Input EDA
Baseline
statistics

(2)

Statistics
AR

Hjorth
Wavelet

(18) Statistics (6) 26

Input Demographic

Age
Gender

Video-games
Medicine

(6) - - 6

Output Questionnaire -
Naturalness, Realism,

SAM Scores
and PHQ-9

(7) - 7

not utilized to identify the classification of one of them and only 256 rows (64 subjects)

due to the elimination of the depressive subjects. The removal of the depressive subjects

is because they could bias the ER task due to their emotional state.

One subject was excluded from the analyses of naturalness, realism, emotion elicita-

tion, and emotion identification because their score on the STAI questionnaire exceeded

the 95th percentile (47 for women and 40-41 for men) [239].

5.2.6 Statistical and Machine Learning analysis

5.2.6.1 Statistical and ML tools

Various statistical techniques and ML approaches were employed in this study. To

reduce the initial number of features in the dataset, a correlation analysis was conducted.

Features with correlations exceeding 0.95 with other features were eliminated, resulting

21 features removed, 14 from ET and 7 from EDA.

Due to the extensive feature set obtained, a feature selection process was employed.

For each specific target variable, either a Mann-Whitney test or an unpaired t-test was

applied to determine which features held statistical significance concerning the target.

Multiple confidence intervals were established based on common p-value thresholds, in-

cluding 0.05, 0.01, and 0.001, resulting in various sets of features depending on the
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chosen statistical significance level. In cases where no target variable displayed signifi-

cance with a p-value below 0.05, an alternative feature selection method was employed.

This method involved utilizing mutual information coefficient (MIC) [284] when the

target variable was discrete. MIC measures the interdependence between two distinct

variables, producing a value of zero when the variables are entirely independent and a

higher value when there is greater dependence between them. Specifically, the first 30

features with higher values and above zero were chosen as significant variables based on

mutual information score. If none of these selection methods yielded a single significant

variable, the complete set of features was retained.

Different ML algorithms were employed to explore the optimal selection of features,

models and parameters for classifying whether the subject had a high or low score in the

target variables under investigation. The models used were: SVM [285] with parameters

C (0.01, 0.1, 1, 10, 100), γ (0.01, 0.1, 1, 10, 100), and kernels(rbf, sigmoid); Logistic

Regression (LogR) with parameter C (0.01, 0.1, 1, 10, 100); RFC [286] with parameters

for the number of estimators (100, 200, 400) and maximum depth of (5, 10, 20, 30, or

without a maximum depth).

5.2.6.2 ML pipeline

The ML pipeline designed for ER and depression recognition consists in a two nested

cross-validation (CV) splits. The inner and outer CV had 10 folds and 4 repetitions.

Evaluation metrics, such as accuracy, kappa, precision and ROC-AUC were scrutinized

on the test set following the model obtained from the inner partition. These metrics

were computed for 40 different combinations of test sets, yielding mean and standard

deviation values for each combination. The inner combination used unique sets of fea-

tures and models for each train-validation iteration, followed by a grid search which

model parameters were optimized by the balanced accuracy score. The model was then

fitted with the training data and applied to the test set. Figure 5.1 provides a visual

representation of the described processing pipeline.

In the context of naturalness, realism and ER, each subject exhibits distinct emo-

tional responses based on the VH entity with which they engage. Consequently, indi-

vidual subjects possess varied targets contingent upon the emotional state of the VH.

On the other hand, the case study of depression recognition was not conducted on

a sample-by-sample basis. A single subject may correspond to multiple samples due to

interactions with one or more VHs (after data processing, several samples belonging to

the same subject may be removed) but it always had the same target. Therefore, the



Materials and methods 123

partitioning into training, validation, and test sets was based on subjects and not by

individual samples. From the ML pipeline described earlier, the two CV were replaced

by group cross validation (GCV), wherein samples were grouped based on each subject.

To obtain the prediction in the ML pipeline, the probabilities of being depressive for

each of the subject’s samples were calculated. The mean probability across all samples

was computed. If this mean exceeds 0.5, the subject is classified as depressive; otherwise,

they were classified as non-depressive.

Figure 5.1: Scheme of the ML pipeline used for social ER and depress recognition.

The same pipeline is employed to build a ML model for each emotional state (Angry,

Happy, Sad, and Relax) for each corresponding target. This division aims to determine

which emotional state of the VH yields the highest classification metrics. Additionally,

the ROC curves of the four different emotional VHs were computed, adding also the

ROC curve of the general model that simultaneously considers all four distinct emotional

states.
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5.2.6.3 Overfitting check

To assess the potential overfitting of the ML pipeline, six random targets were created.

The ML pipeline was trained on each of these random targets. These random targets

were designed to mirror the proportion of ones found in the actual target. The goal of

these methodology is to compare statistically the score obtained by the random targets

against the real target. If the comparison between these distributions reveals a statisti-

cally significant difference (indicated by a p-value of less than 0.05), it suggests that the

ML pipeline is performing beyond a chance level and the results are not overfitted. An

unpaired two samples t-test was used as statistical test.

5.3 Results

5.3.1 Naturalness and Realism

The results for naturalness and realism are presented in Table 5.2. This table displays

the outcomes for the different target variables, indicating the combination of model and

feature subset that achieved the highest balanced accuracy in each target classification.

The highest balanced accuracy is achieved for the realism target with 0.717. This target

also attains the best results for the other scores, except for precision and TNR. This

table also contains the overfitting score, showing that both targets have all the metrics

with high statistical difference against the random targets, except the TNR metric. The

selected models are SVC and RFC. The feature selection method for both targets is All.

Table 5.2: Results of the models obtained with highest balanced accuracy for the differ-
ent ER targets. These results are depicted in terms of the mean and standard deviation,
calculated over the test set for each individual subject. The overfitting check is showed
through the significance level with the score. The statistical results, between parenthe-
sis, are shown as - no significant difference, * p-value < 0.05, ** p-value < 0.01 and ***
p-value < 0.001.

Target
Feature
selection

Model
Balanced
accuracy

Kappa Precision ROC-AUC TPR TNR

Naturalness All SVC
0.697 ± 0.105

(***)
0.364 ± 0.192

(***)
0.810 ± 0.117

(***)
0.697 ± 0.105

(***)
0.770 ± 0.141

(***)
0.624 ± 0.234

(-)

Realism All RFC
0.717 ± 0.094

(***)
0.419 ± 0.171

(***)
0.777 ± 0.118

(***)
0.717 ± 0.094

(***)
0.831 ± 0.098

(***)
0.602 ± 0.193

(-)

The results obtained for each emotional VH are presented in Table 5.3. The table

displays the results for each target and metric, categorized by emotional state. The

last column of the table reveals the statistical results in terms on the p-value, obtained
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from the comparison of each metric distribution for the different emotional states. For

naturalness the best VH is the anger VH in terms of balanced accuracy and kappa. On

the other hand, for realism, the best VH is the happy one in terms of kappa, achieving

a 0.175, but the anger is the best model according with the balanced accuracy with a

0.655.

Table 5.3: Results of the emotional VH models with highest balanced accuracy. Differ-
ent scores are shown for each VH emotion. Results are shown as mean and standard
deviation over test set per subject.

Target Metric
Emotional state

Anger Happy Sad Relax

Naturalness

Balanced
Accuracy

0.741 ± 0.216 0.641 ± 0.24 0.643 ± 0.226 0.581 ± 0.309

Kappa 0.229 ± 0.353 0.237 ± 0.393 0.091 ± 0.288 −0.051 ± 0.322
Precision 0.702 ± 0.313 0.724 ± 0.266 0.726 ± 0.264 0.525 ± 0.406

ROC-AUC 0.646 ± 0.19 0.664 ± 0.211 0.55 ± 0.15 0.473 ± 0.196
TPR 0.936 ± 0.154 0.858 ± 0.222 0.864 ± 0.308 0.393 ± 0.375
TNR 0.359 ± 0.418 0.401 ± 0.414 0.2 ± 0.4 0.517 ± 0.452

Realism

Balanced
Accuracy

0.655 ± 0.266 0.575 ± 0.354 0.594 ± 0.195 0.576 ± 0.356

Kappa 0.141 ± 0.442 0.175 ± 0.582 0.071 ± 0.258 0.154 ± 0.574
Precision 0.635 ± 0.377 0.730 ± 0.395 0.772 ± 0.207 0.514 ± 0.416

ROC-AUC 0.596 ± 0.251 0.650 ± 0.374 0.542 ± 0.138 0.594 ± 0.352
TPR 0.778 ± 0.302 0.574 ± 0.369 0.929 ± 0.175 0.812 ± 0.348
TNR 0.389 ± 0.454 0.567 ± 0.389 0.083 ± 0.276 0.379 ± 0.439

Appendix B complements the information showed in this section, showing the dis-

tribution plots of the various metrics using boxplots. It is also included the ROC curves

for each emotional state, along with the general model.

5.3.2 Social emotion recognition

The results for the various social emotions are presented in Table 5.4. This table displays

the outcomes for the different target variables, indicating the combination of model

and feature subset that achieved the highest balanced accuracy score in each target

classification. The highest balanced accuracy obtained is achieved for the VH valence

with a 0.655 score. This target also attains the best results for the other scores, except

for precision, TPR and TNR. The lowest balanced accuracy and kappa is obtained

for human valence target. The overfitting test show significant differences specially in

VH arousal target. Conversely, between two and three significant differences could be

obtained in the analysis of the other targets. The models selected were RFC and SVC
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two times both of them. The feature selection was also selected two times MIC and two

times all the variables.

Table 5.4: Results of the models obtained with highest balanced accuracy for the differ-
ent ER targets. These results are depicted in terms of the mean and standard deviation,
calculated over the test set for each individual subject. The overfitting check is showed
through the significance level with the score. The statistical results, between parenthe-
sis, are shown as - no significant difference, * p-value < 0.05, ** p-value < 0.01 and ***
p-value < 0.001.

Target
Feature
selection

Model
Balanced
accuracy

Kappa Precision ROC-AUC TPR TNR

Human
Arousal

MIC RFC
0.581 ± 0.128

(-)
0.153 ± 0.247

(-)
0.593 ± 0.145

(**)
0.581 ± 0.128

(-)
0.696 ± 0.155

(***)
0.467 ± 0.175

(***)

Human
Valence

All RFC
0.553 ± 0.124

(-)
0.106 ± 0.262

(-)
0.488 ± 0.327

(*)
0.553 ± 0.124

(-)
0.305 ± 0.199

(-)
0.802 ± 0.133

(-)

VH
Arousal

MIC SVC
0.630 ± 0.112

(**)
0.234 ± 0.210

(**)
0.675 ± 0.148

(***)
0.630 ± 0.112

(*)
0.671 ± 0.174

(**)
0.589 ± 0.217

(-)

VH
Valence

All SVC
0.655 ± 0.082

(-)
0.292 ± 0.158

(-)
0.536 ± 0.111

(*)
0.655 ± 0.082

(-)
0.644 ± 0.130

(***)
0.666 ± 0.072

(***)

The results obtained for each emotional state of the VH are presented in Table 5.5.

The table displays the results for each target and metric, categorized by emotional state.

Thre results show that relax and sad VH obtains most of the times the highest scores

in terms on Kappa and ROC-AUC scores. The relax VH obtains the best results for

the identification of human arousal and valence with a kappa score of 0.288 and 0.171

respectively. Whereas, sad VH obtains the best results for VH arousal and valence with

a kappa score of 0.5 and 0.178 respectively. Indeed the relax VH model surpasses the

scores of the base model which contains the information from the rest of the emotional

VH.

Furthermore, Appendix B provides several visual representation of the various met-

rics and targets distributions using boxplots for the division by emotional states and

also, the distributions obtained for the overfitting test. The Appendix also includes the

ROC curves for each emotional state, along with the general model.

5.3.3 Depression recognition

Table 5.6 shows the results for depression recognition for the best model. The results

are averaged over the test set of the different folds. Is also shown the best set of features

obtained for the model, according the feature selection method implemented. The best

model is the SVC with the features from the 0.05 (∗) significance level. The balanced

accuracy obtained exceeds the 0.65 score, which is 0.685, while kappa score is 0.388 and
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Table 5.5: Results of the emotional VH models with highest balanced accuracy. Differ-
ent scores are shown for each VH emotion. Results are shown as mean and standard
deviation over test set per subject. Statistical comparison between the different distri-
bution is shown as well.

Target Metric
Emotional state

Anger Happy Sad Relax

Human
Arousal

Balanced
accuracy

0.611 ± 0.314 0.732 ± 0.236 0.561 ± 0.238 0.635 ± 0.267

Kappa 0.067 ± 0.249 0.046 ± 0.079 −0.006 ± 0.160 0.288 ± 0.410
Precision 0.095 ± 0.233 0.571 ± 0.495 0.167 ± 0.338 0.642 ± 0.334

ROC-AUC 0.550 ± 0.150 0.531 ± 0.054 0.500 ± 0.094 0.669 ± 0.214
TPR 0.333 ± 0.471 0.062 ± 0.108 0.133 ± 0.287 0.866 ± 0.282
TNR 0.641 ± 0.423 1.0 ± 0.0 0.844 ± 0.341 0.417 ± 0.479

Human
Valence

Balanced
accuracy

0.485 ± 0.290 0.520 ± 0.167 0.510 ± 0.309 0.680 ± 0.279

Kappa 0.135 ± 0.364 0.049 ± 0.263 0.0 ± 0.0 0.171 ± 0.353
Precision 0.353 ± 0.361 0.188 ± 0.370 0.021 ± 0.081 0.132 ± 0.318

ROC-AUC 0.604 ± 0.216 0.531 ± 0.145 0.500 ± 0.000 0.604 ± 0.190
TPR 0.567 ± 0.442 0.144 ± 0.272 0.111 ± 0.314 0.25 ± 0.433
TNR 0.500 ± 0.423 0.882 ± 0.191 0.667 ± 0.453 0.869 ± 0.283

VH
Arousal

Balanced
accuracy

0.625 ± 0.346 0.724 ± 0.252 0.554 ± 0.226 0.768 ± 0.221

Kappa 0.093 ± 0.250 0.059 ± 0.235 0.050 ± 0.163 0.080 ± 0.544
Precision 0.25 ± 0.417 0.822 ± 0.193 0.213 ± 0.337 0.718 ± 0.399

ROC-AUC 0.604 ± 0.259 0.518 ± 0.12 0.523 ± 0.177 0.762 ± 0.212
TPR 0.286 ± 0.41 0.973 ± 0.083 0.346 ± 0.455 0.788 ± 0.286
TNR 0.875 ± 0.298 0.053 ± 0.223 0.642 ± 0.395 0.654 ± 0.367

VH
Valence

Balanced
accuracy

0.535 ± 0.269 0.573 ± 0.245 0.612 ± 0.152 0.825 ± 0.228

Kappa 0.017 ± 0.452 0.020 ± 0.353 0.178 ± 0.245 0.050 ± 0.150
Precision 0.667 ± 0.315 0.255 ± 0.361 0.534 ± 0.375 0.040 ± 0.116

ROC-AUC 0.500 ± 0.274 0.513 ± 0.217 0.617 ± 0.153 0.537 ± 0.105
TPR 0.759 ± 0.339 0.373 ± 0.430 0.500 ± 0.341 0.333 ± 0.471
TNR 0.200 ± 0.400 0.652 ± 0.360 0.724 ± 0.325 0.747 ± 0.388

the ROC-AUC score is above 0.65 with a final score of 0.685. Finally, the TPR and

TNR scores are 0.542 and 0.828 respectively.

The results of depression recognition splitted by the VH emotional state are shown

in table 5.7. The scores obtained shown that the closest models to the base model are

happy, relax and sad VHs, being the relax VH the one which obtains the best results in

terms of balanced accuracy, kappa, ROC-AUC and TNR. The anger model appears to

be the model with lowest scores.

Figure 5.2 shows a set of boxplots for the different computed metrics. The four

different emotional states of the VH have similar distributions. However the sad state
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Table 5.6: Result of the best model for depression recognition. Mean and standard
deviation are shown for each score over the test set per subject. Added to the numeric
results is shown the level of significance of the comparison between each metric and the
overfitting check inside parenthesis. The statistical results are shown as - no significant
difference, * p-value < 0.05, ** p-value < 0.01 and *** p-value < 0.001.

Model
Feature

set
Balanced
accuracy

Kappa Precision ROC-AUC TPR TNR

SVC 0.05
0.685 ± 0.199

(**)
0.388 ± 0.413

(***)
0.733 ± 0.351

(***)
0.685 ± 0.199

(***)
0.542 ± 0.281

(***)
0.828 ± 0.239

(-)

Table 5.7: Results of the different emotional VH models with highest balanced accuracy
obtained. Different scores are shown for each VH emotion. Results are shown as mean
and standard deviation over test set per subject. Statistical comparison between the
different distributions obtained by each emotion is shown. The statistical results are
shown as - no significant difference, * p-value < 0.05, ** p-value < 0.01 and *** p-value
< 0.001.

Metric Emotional state
Anger Happy Relax Sad

Balanced
accuracy

0.584 ± 0.187 0.637 ± 0.128 0.646 ± 0.143 0.613 ± 0.145

Kappa 0.182 ± 0.365 0.252 ± 0.242 0.254 ± 0.286 0.226 ± 0.274

Precision 0.533 ± 0.31 0.548 ± 0.328 0.495 ± 0.413 0.582 ± 0.242

ROC-AUC 0.584 ± 0.187 0.637 ± 0.128 0.646 ± 0.143 0.613 ± 0.145

TPR 0.454 ± 0.239 0.583 ± 0.327 0.517 ± 0.425 0.65 ± 0.241

TNR 0.713 ± 0.256 0.69 ± 0.311 0.775 ± 0.281 0.577 ± 0.322

shows the most compact distribution. However the boxplots does not show clearly any

emotional state which distributions are, consistently, above the rest of states.

Figure 5.3 depicts the AUC curve of the various models studied for depression recog-

nition. In this case, the four different emotional VHs have similar trajectories. In

contrast, the general model is above all of them achieving a higher score.

The comparison against random targets shows statistical differences between 0.05

and 0.001 in metrics such as kappa, precision, ROC-AUC and TPR. The distributions

of the metrics are shown as boxplots for the real and the random targets in Figure

5.4. In general, the performance of the model with random targets tended to be lower

than the model trained with the depression target. Furthermore, the metrics, such as

accuracy, tended to approach the proportion of ones in the real target and also, were

closer to a score of 0.5 in the ROC-AUC score or a low score in TPR, indicating the

random behavior of the ML pipeline when random targets are studied.
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Figure 5.2: Boxplots distribution of the different scores obtained in the test set per
subject for the different emotional VH state.

5.4 Discussion

This study represents the first research to evaluate and model ER and depression assess-

ment in real-time conversations with a VH using biomarkers and AI. This experimenta-
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Figure 5.3: AUC curve of the different models in terms of the VH emotional state. The
general model is in black dashed line. The diagonal line in grey indicates the performance
in the AUC curve of a random model.

tion represents a novel application of an intelligent system that improves the ability to

generate social affective processes. Moreover, various signal processing techniques have

been applied to maximize the information gleaned from different physiological features,

depending on the type of signal. Several variable selection techniques and ML models

have been tested to achieve the most accurate model. Across all these tasks, the results

highlight the potential of this type of experimentation for identifying subjects emotions

effectively and recognizing depressive patients.

5.4.1 Naturalness and Realism

Regarding the results obtained in naturalness and realism, models with high values of

balanced accuracy with a 0.697 and 0.711 and kappa of 0.364 and 0.419 are achieved for
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Figure 5.4: Distributions of the different scores obtained for each prediction on the test
set. The dark blue represents the model obtained using the real target, while the orange
represents the model obtained using a random target.

naturalness and realism respectively. The overfitting check reveals significant differences

in all metrics except one. This check demonstrates that the obtained models are not

overfitted and show results over the chance level. It can be concluded that the recognition
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of naturalness and realism carried out, through conversations with VHs, is robust and

yields good results.

The VH that achieves the highest values in the metrics is mainly the anger VH with

a balanced accuracy of 0.741 and 0.655 for naturalness and realism respectively. This

indicates that the anger VH exhibits the highest effectiveness in representing naturalness

and realism. This may stem from the possibility that participants in such interactions

can attain higher level of empathy in comparison to interactions with other emotional

states of the VH. Indeed, in the case of naturalness, the anger model achieves better

results that the general model. The second higher score, in general, is achieved by the

happy VH in both targets. These two results indicates that emotional states of higher

arousal, through the subject’s interaction with the VH, could be recognize better and

robustly. Therefore, emotional states of greater intensity can generate a greater sense

of realism and naturalness, regardless of the valence value of the emotion.

5.4.2 Emotion recognition

The results obtained for ER, they are worse compared to naturalness and realism. In

this case, the overfitting check does not turn out to be significant in most metrics. This

demonstrates that these models are not as robust as in the previous case of naturalness

and realism. However, robust results are achieved for the study of VH arousal and

valence, achieving a balanced accuracy of 0.630 and 0.655 respectively. However, the

identification concerning emotion elicitation does not turn out to be entirely robust.

Regarding the results obtained for each emotional VH, in the case of arousal and

valence elicitation, the results obtained by the relax VH outperform the general model,

with a balanced accuracy of 0.635 and 0.680 respectively. This demonstrates that the

use of more than one VH may not be beneficial for emotion elicitation. Regarding the

identification of the emotional state of the VH, the result is also not entirely robust

for any emotional VH. In any case, the sad VH achieves the best results in the case of

valence identification with a balanced accuracy of 0.612 and a kappa result of 0.178.

Comparing the work performed against previous researches, this study contributes

with several novelties to the state of the art. As has been seen, the works of [269], [270]

and [271] used VH to study ER. However, these VHs do not have any interaction with

the subject or they make an interaction using a prepared script for a conversation.

This methodology differed highly with the one exposed in this work, where the VH, is

completely autonomous and could make any kind of answer. Moreover, the emotions

displayed by the VHs in these studies was induced through the avatar of the experimen-
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tation. Another important novelty of this work is that it makes this implementation but

also, the emotional state is also induced through the contextualization of the LLM used

for answer generation. And finally, this work is the first that studies the ER through

ML models which are based on biosignal features. Past works did not used biosignals

to perform ER in this kind of experiments.

In conclusion, the results of the ER task do not demonstrate the desired level of

robustness required for strong classification evidence. This limitation may stem from

several factors. Firstly, the lack of modulation in the VH’s voice according to the emo-

tions conveyed in its sentences could potentially diminish the empathetic response from

the subject. Similarly, the context provided for each VH may not have been sufficiently

nuanced to foster empathy with the VH. Additionally, it is important to explore al-

ternative signals such as EEG or HRV, which could offer complementary information

beyond what was analyzed in this study. Furthermore, a more thorough analysis of the

subject’s voice and textual content could enhance the assessment of displayed emotions.

These data sources may offer the most informative insights to improve the performance

of ER tasks.

5.4.3 Depression recognition

The results obtained in depression recognition are indicative and promising as an initial

exploration. The recognition of depressive subjects is consistent, achieving a balanced

accuracy score of 0.685 and a kappa score of 0.388. Nevertheless, a high TNR which

value is 0.828 was achieved. This is significant because the model’s ability to assign a

subject as non-depressive is very consistent. In other words, if the model categorizes you

as non-depressive, there is a high likelihood that you are not. This also implies that it

does not exceeding the classification of depressive subjects, making it a reliable model.

The overfitting check achieve significant results for all metrics, showing an increment of

the results above the chance level. However, the standard deviation of the results shows

to be high compared with other models. More tests and research should be performed

to corroborate the results obtained in this work. In conclusion, the model tested in

this work could therefore provide reliable guidance for future researchers in depression

recognition through VH.

On the other hand, the models obtained by emotional VHs achieve results similar

to the general model, especially the happy, relax, and sad. The anger VH performs

the worst. The highest result is achieved by the relax VH with a balanced accuracy of

0.646. Therefore, the recognition of depressive patients may be easier when it comes to
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eliciting emotions other than anger, with those having more positive valence showing

better results. This could be due because depressive subjects find more difficult to

empathy with other subjects which emotional state has high valence.

The methodology followed in this work improves depression recognition experiments

performed before. In this work an AI-based VH is developed to maintain real time

conversations with subjects. The conversations did not followed any pattern or question

script, the VH was under no boundary. The experimentations performed before such

as [278], [279] and [280] had a script of questions for the VH, avoiding the freedom of the

conversations. Moreover, these studies compared the performance of the interview of

the VH with the analogous performed by a specialist. Moreover, the work of Takemoto

et al. [280] is the only one that uses ET to analyze the differences between the subjects

interviewed by the VH or the specialist. Therefore, this study contributes with several

novelties to the state of the art. This is the first study that does not perform an interview

over the subjects, on the contrary, this work developed an autonomous VH without

any script constrain. Secondly, is the first study that ensembles different biosignals

to perform depression recognition in this type of experimentation, contributing with a

methodology to study ML depression classification models.

5.4.4 Limitations and future research

To enhance the experimentation for ER or depression recognition, several improvements

can be implemented. Firstly, the contextualization of the VHs should improved or

modified for certain tasks, depending on the task to be performed. For example, the

VH with anger context should be modified for depression recognition, but for ER it is

more necessary to modify the context of the happy VH. The introduction of personal

questions could be a first step to improve emotion elicitation during the conversations.

On the other hand, improvements are needed in emotion elicitation. Testing different

text-to-speech models or using different types of messages could enhance emotional

elicitation from the VHs. Additionally, the synthesized voice did not modulate rhythm,

tone, or volume based on emotions in the message. The VH’s body movement was

limited to idle motions, significantly reducing the scope of bodily expressions, and facial

expressions remained static throughout the task. Overall, improving these factors can

lead to greater effectiveness in emotion elicitation. In the case of depression recognition,

the obtained results are promising and interesting. However, more research should be

perform to verify the obtained results in this work.

The relevance of this experimentation is that it allows a high level of freedom for
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the subject. Therefore, to model the experimentation correctly, it needs more tools

to generalize all the information collected. One important factor is the number of

subjects. More subjects are needed to study to generalize patterns of the different

type of conversations. A higher number of subjects could generalize better this type of

experimentation. Moreover, the experimentation perform allows the subject to express

movement, gesture and sentences in many different ways. Fundamental knowledge could

be find in features or data sources that are not studied in this work. For this reason,

a higher work in feature creation and source analysis should be performed to find more

interesting variables to use in the ML models.

From the modelling part, there are few improvements that could be done. The first

of them is the study of other different feature selection methods. This work also experi-

mented with feature selection methods based in recursive feature elimination. However,

these results eventually led to overfitting and did not achieve a proper performance on

the test set, discarding them. It has been observed that simpler variable selection meth-

ods, such as checking the correlation of these variables with the target, result in less

overfitting of the model performance. In addition, this work did not use any imputation

method. The use of imputation methods would increase the data samples, avoiding

the exclusion of subjects with only a few missing variables. This would be particularly

important in the case of studying models based on the VH emotional state, where the

number of samples is reduced, potentially hindering good model generalization.

On the other hand, more in-depth research should be conducted on the features

related to conversations with the VHs. In our case, the features extracted from this

data source was lower compared with the ET and EDA sources. However, the authors

of this study believe that these conversations contain more information than is currently

being captured. Further processing, such as sentiment analysis in the sentences or

obtaining the most frequent words could be an effective step in giving this data source

more relevance. Indeed, a LLM could be use in order to analyze the plain text of the

conversation. The LLM could perform sentence recognition or conversation summarizing

or also, it could obtain strategic outputs to use them as variable inputs for the ML model.

5.5 Conclusion

The work presented represents a significant advancement in AfC research and in the

recognition of depressive subjects through the use of VHs. This study analyzes emotion

and depression recognition with the involvement of four different emotional VHs, utiliz-
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ing features extracted from ET, EDA, and conversational data. The research explores

various feature extraction methods and establishes a methodology to identify the opti-

mal set of features and models for each target. The findings in this work reveal certain

trends and patterns, particularly in the recognition of depressive patients, which pave

the way for utilizing VHs in identifying these targets. The obtained results are promising

and further evidence is needed in order to implement procedures that would improve the

objectivity and validity of ER and depression assessment. However, the findings suggest

that there is certain knowledge from the ET and EDA biomarkers that would allow

the automatizing of, especially, depression assessment. The system and methodology

employed in this study have a multitude of potential applications in various fields, not

limited to healthcare or AfC but extending to areas such as education or psychology.
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Discussion

This chapter discusses the major implications of this thesis. The overall results of the

thesis are examined, placing them in the context of the ultimate goal of the thesis.

Finally, various future research directions related to the different fields studied are pre-

sented.

6.1 General framework

The primary aim of this thesis is to construct an affective computing (AfC) system

geared towards eliciting and recognizing emotions through the use of automatically pro-

cessing biosignals such as eye-tracking (ET) and electrodermal activity (EDA). To elicit

emotions, a virtual human (VH) capable of engaging in real-time conversations within

a subject is developed in virtual reality (VR). The VH was developed using the latest

AI technologies to allow natural VH-human interactions such as large language model

(LLM) to generate VH answers, lip synchronization or speech to text model. Finally,

these developments were ensembled to perform emotion elicitation and recognition and,

additionally, depression recognition.

Firstly, this thesis studies the adaptation of an ET fixation detection algorithm from

2D to 3D in VR. To adapt the algorithm into 3D VR, head movements were taken in

consideration to compute the subjects gaze in the virtual environment (VE). Moreover,

this work also presents a methodology to calibrate the parameters of the algorithm in

a VE. Notably, this calibration approach is algorithm-agnostic, relying instead on ET

features like fixation count or mean fixation duration.

However, one objective of this thesis was to utilize the ET algorithm alongside auto-

137
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matic feature extraction. Nevertheless, the algorithm could not be used for automatic

fixation identification during the VH experimentation phase. This limitation arose be-

cause the VH was developed in a semi-immersive setup due to graphical technical re-

strictions. Considering this, the algorithm developed for full immersive VR with HMD,

could not be applied under these conditions. For this reason, the algorithm was not

utilized in the final experiment.

Despite this, thanks to the insights gained in the algorithm and methodology devel-

oped, a deeper understanding from the ET field has been obtained in order to understand

the features set extracted by PupiLab. Therefore, even though the fixation identification

algorithm developed could not be directly applied, it has offered valuable knowledge nec-

essary to identify features and understand which could be relevant for addressing issues

related to ER or the classification of depressive subjects.

The primary factor that has influenced the inability to construct the VH in immersive

VR is the technological development of VR. Despite the enormous progress made in this

field in recent years, and its increasingly commonplace use, there are some technologies

that are challenging to develop in this environment. In the case of VH development,

it was possible to create a virtual avatar movement allowed, but there was no way to

include the realistic and natural lip movement from real-time voice audio. Although

Unity has libraries like Salsa that are starting to implement these features, they could

not implemented at the date of the experimentation started to be tested. Alternatively,

there was Audio2Face from Omniverse. This library allowed the development of a VH

that could not only have simple movement but also move the lips in real-time and in

sync with the input audio involving highly realistic simulation. In this way, a realistic

as possible VH could be created. However, this library is not allowed for immersive VR,

being only possible to use in screens. It was decided to proceed with this approach for

the experimentation, even if it meant foregoing immersive VR and, consequently, the

implemented ET algorithm.

Secondly, the EDA artifact detection and correction algorithm, also represents a

breakthrough in the analysis of this signal. The designed algorithm is the first on that

uses deep learning (DL) models for the recognition of artifacts and also, it presents an

algorithm to correct them. The results are not only innovative for this reason, but they

also overcome state of the art results, establishing the comparison between machine and

human correction as a metric to measure and optimize. This algorithm was applied to

the VH experimentation phase. The EDA correction algorithm could eliminate artifacts

from the signal without the need of manual intervention. This tool has significantly
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reduced the time required for developing the experimentation and processing data, but

especially, it enables the automatic processing of EDA signals for use in assessment

tasks.

On the other hand, this thesis contributes with another significant result. To the

best of our knowledge, this work has not only been the first to construct a VH using

the most advanced AI technologies available to date but has also achieved the objective

of conducting emotion recognition (ER) and the identification of depressive patients

through the use of conversational VHs.

For the construction of the VH, it has been necessary to understand and adapt

various recently innovative AI models, such as Nvidia Omniverse, Google S2T, and

especially Large Language Models (LLM) like GPT-3. This work assembles all these

technologies into different modules, allowing the replacement of the AI model of any of

them with a much better or more innovative one. Furthermore, this work demonstrates

how to integrate all these modules to design the most natural VH possible. The advances

achieved in this work are a first step that opens the door to the design, implementation,

and use of VH in VR, something that had not been done before.

Lastly, this thesis successfully utilizes the designed VH and contextualizes it with

various emotions and aspects to determine if its use can elicit emotions. A technical

analysis of the conversations is performed. The results showed the differences between

the sentences and interactions between the human and the VH, while other metrics are

computed such as the amount of errors produced by the LLM. In general, most of the

conversations are fluid, achieving a high percentage of conversations above the 4 minutes

of duration.

This experimentation also allowed a second type of analysis. This other work studied

the ER and depressive patterns through the data collected during the conversations,

which also involves EDA and ET signals. After the use of different signal processing

and feature extraction techniques, a set of variables was obtained to predict, through

machine learning (ML) models, certain targets from the ER and a depression target.

The results of the analysis showed a good performance in the naturalness and realism

identification, but lower scores in arousal and valence recognition. However, the results

obtained for depression recognition showed to be promising achieving a high rate of

accuracy and precision.

The results provided by this thesis are numerous and encompass various fields, rang-

ing from signal processing and the study of statistical and ML methods to the application

in an experiment involving a VH. Moreover, the work presented in this thesis manages
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to make novel and significant contributions to the different studied fields.

6.2 The use of biosignals for emotion recognition

As it has been explained in this thesis, there are numerous studies that employ various

biosignals to conduct ER or pattern recognition related to health, such as stress or, in

our case, depression. The use of these biosignals provides an objective understanding of

the subject’s behavior that cannot be controlled by the subject themselves. This is in

contrast to questionnaires, where the subject’s response is subjective and may, therefore,

complicate the discovery of behavioral patterns. For this reason, the study of biosignals

is becoming increasingly important in conducting psychological or health experiments.

In this thesis, two signals have been studied which are ET and EDA. For the study

of the ET signal, a methodology based on the use of metrics related to fixations and

AoIs has been developed to calibrate an ET fixation detection algorithm. In this case,

different parameter values have been investigated to find optimal points that achieve

the best possible results in various metrics simultaneously. Different sets of parameters

are obtained, with the 1◦ dispersion and 0.25 s window time parameters being the best

set, achieving a percentage of points classified as fixations of 67.82%. However, this is a

specific case for the type of VE under study. This work primarily provides a methodology

to follow for achieving the identification of fixations and saccades that respects various

metrics simultaneously and is algorithm-agnostic.

On the other hand, this work also introduces a DL model that automatically iden-

tifies artifacts in the EDA signal and corrects them automatically using a regression

algorithm. This is the first work that achieves both objectives, automatic detection

and correction of artifacts in EDA signal. This work contributes numerous innovations

that result in a final outcome where EDA artifacts are recognized with a 72% TPR

and an accuracy of 87%. It also succeeds in surpassing several widely used state-of-

the-art models. Subsequently, the correction performed by the regression algorithm on

the detected artifacts is analyzed. The work statistically demonstrates that the signal

corrected by the regression algorithm is not significantly different from the manually

corrected signal, while both types of corrections are different from the uncorrected EDA

signal. Therefore, this model not only exhibits a significant difference from the uncor-

rected EDA signal but also achieves artifact correction similar to the manually corrected

signal. Thus, the model effectively accomplishes artifact removal in the EDA signal and

makes novel contributions in this field.
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Finally, these tools were applied in ER and depression recognition case studies.

Both data sources were processed and several features were extracted to perform a

classification task. The results obtained showed a fundamental need of the processing of

these signals to find information and patterns by the ML models in the classification task.

The use of biosignals represents different sources that could be profitable to optimize any

kind of AfC experimentation. Several different but complementary type of information

could be extracted from each signal. Moreover, this work also shows the necessity and

the advantages in automatizing the signal processing of these kind of signals, reducing

the time spent in the experimentation. Therefore, the optimization in the study of signal

processing is a task necessary in the AfC field.

6.3 Virtual humans for emotion elicitation and mental health

assessment

This work demonstrates how the construction and use of a VH is something that, despite

its complexity, is currently feasible. Additionally, this work has shown how real-time

conversations between humans and VH is possible, extracting valuable information from

various data sources. The results exposed in this thesis show how the VH could achieve

a high degree of naturalness and realism during the conversation. Moreover, it is demon-

strated that VHs can serve as tools to aid ER and, especially, the diagnosis of mental

illnesses. All in all, the results presented in this thesis represents a breakthrough in the

research involved with the VHs.

The experimentation performed in this work, developed different VHs with various

emotional states. It is demonstrated that in some cases, the use of multiple emotional

states of VHs achieves a more comprehensive prediction, while in other instances, the

use of a single VH can yield a better prediction. This opens up possibilities for contex-

tualizing VHs, as different contexts can be specified based on the same emotional state

to optimize ER. Furthermore, this thesis also demonstrates that robust identification of

depressive patients can be achieved through human-VH interaction. This particularly

opens the door to use this technology as a support tool for medical diagnosis, through

an interaction similar to that of a specialist with a patient. Future experiments can

explore this methodology and develop it for other types of mental illnesses.

This thesis represents an initial step of a path that can only improve. The devel-

opment of technologies used for VH construction is continuously advancing. This will,

therefore, allow for a much smoother interaction between human and VH. Greater real-
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ism in the VH, not only in appearance but also in voice, thus enabling better emotion

elicitation will be achieved. Finally, LLM are currently experiencing rapid improve-

ments. Increasingly, these models can generate a greater number of words and handle

much larger contexts. This advancement will enable the specification of the VH emo-

tional state in more detail, as well as achieving much more realistic and contextually

coherent responses. This could mark the beginning of research whose main focus is the

contextualization of VHs to obtain the highest score possible in ER. Despite being more

complex, such research could bring about changes to the experiment itself through only

a simple text input, yielding very different results and findings.

6.4 Future work

In this work, various avenues are opened, such as the exploration of algorithms related

to ET and EDA, the implementation and improvement of different modules for the VH

or the use of it in other type of experimentations. Different aspects can be further

explored based on the findings presented in this thesis.

In the case of ET, the use of different algorithms and their adaptation to VR, if

necessary, is a very interesting continuation of the study outlined in this thesis. Other

calibration methodologies for ET algorithms can be explored using alternative algo-

rithms, along with comparing their performance. Algorithms employing unsupervised

ML can also be investigated to gain a better understanding of the subject’s AoI and

fixations performed during the experimentation. On the other hand, proposing different

calibrations in a comprehensive study, where the subsequent validation of the calibration

is examined, is particularly intriguing. This approach can yield valuable insights into

the algorithm and parameters to be used.

Related to the study of EDA signal conducted in this work, the design and imple-

mentation of new architectures in this field is a first point to explore. Even the use

of transformer layers to enhance the detection model or create a new regression model

is something achievable today. The overall improvement of the model is a task that

will require various novel resources from ML and DL, which are becoming more easily

applicable every day. The investigation into model enhancement can also become a very

extensive task that explores various research domains in the signal processing and AI

fields.

Regarding the development of the VH, there are numerous extensions to consider.

Firstly, updating the VH with various AI models that are emerging daily is something
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that should be explored. Additionally, more modules can be added to the VH, such as a

real-time sentiment analysis. This module would identify the emotions in the subject’s

message, influencing the VH response, and based on it, the tone of the message could

change. The introduction of a camera that can take photos or real-time videos of the

subject, to analyze their movement and study the level of interest, is another aspect

to explore. In conclusion, concerning the enhancement of the VH, there are numerous

modules that can be improved and added to enhance interaction with humans increasing

drastically the amount of information that could be extracted.

Lastly, all the points outlined for further investigation could potentially enhance

the ER or the recognition of depressive patients studied in this work. Improvements

in signal processing algorithms or the VH are aspects that can directly enhance the

results of this thesis. Moreover, other signals widely used in ER or the detection of

depressive subjects, such as ECG or EEG can be further studied. Throughout this work,

various data sources have been explored to gather as much information as possible for

performing classification tasks. In the case of these two signals, they are extensively used

and investigated in different experiments. This exploration can enhance the detection

of emotions or mental illnesses in conjunction with the use of VHs. The study of these

signals, in this case, requires the development of automatic processing methods that

allow their future real-time application. This opens the door to the development of

calibration algorithms or artifact removal algorithms that may lead to very interesting

results.

6.5 Future applications of the framework

The future applications of the proposed framework in this thesis, span a diverse array

of domains. It has several applications in different fields but the main ones could be

focused in the development of medical assessment for mental illness. For example, one

potential application is the integration of this system into primary care settings to

facilitate the early detection and stratification of depression, enabling the delivery of

personalized medicine. This type of system would also avoid collapse in primary care,

especially psychiatrists and psychologists. Moreover, the framework could be deployed

as a home monitoring tool to detect early signs of depression relapse, allowing for timely

intervention before the illness escalate. Notably, the system’s automated functionality

makes it well-suited for home use, allowing the removal of certain modules according with

the services of the patient. Additionally, the framework holds potential for addressing a
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spectrum of mental health disorders beyond depression, including post-traumatic stress

disorder, bipolar disorder, and borderline personality disorder. Furthermore, it could

be adapted for use in supporting neuro-divergent individuals, aiding in the assessment

and enhancement of social skills among those on the autism spectrum.

Furthermore, the framework holds potential for application in other contexts such

as education or professional field. It could function as a valuable resource for training

and refining social and communication skills in both, academic and professional envi-

ronments. As an educational tool, it could augment traditional teaching methods by

integrating into lesson contexts provided by instructors, even outside the school. In

professional settings, the framework could be developed for team-building initiatives,

conflict resolution strategies, and leadership programs. Insights gleaned from analyzing

emotional dynamics and social interactions could offer invaluable perspectives on group

organization, fostering more efficient and cohesive work environments.
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Conclusion

This thesis presents several novel contributions in the realm of signal analysis and affec-

tive computing (AfC) tasks. The primary aim of this research is to develop automated

tools capable of eliciting and recognizing emotions within an AfC experimentation. To

achieve this objective, various technologies have been developed and investigated. Ini-

tially, the focus was on extending an eye-tracking (ET) fixation identification algorithm

from 2D to 3D in virtual reality (VR), incorporating head movement into the algo-

rithm. Additionally, a novel methodology was introduced to analyze the optimal set

of thresholds for the ET algorithm in VR. Another significant aspect of this study in-

volves the analysis of electrodermal activity (EDA) signals. Specifically, an automatic

artifact correction method was developed, yielding results comparable to manual cor-

rections performed by experts. Leveraging advancements in both ET and EDA signals,

automated emotion recognition became feasible. Subsequently, an AfC experiment was

designed to elicit emotions, involving the development of a virtual human (VH) based

on cutting-edge artificial inteligence (AI) technologies. This VH is capable of elicit-

ing emotions through real-time, open-ended voice conversations with human subjects.

The VH ability to elicit emotions in humans during these conversations was evaluated,

alongside the identification of emotions expressed by the VH itself. Finally, all these

tools and insights were integrated into a comprehensive experimentation framework.

This framework facilitates the automatic processing of ET and EDA signals for emotion

recognition (ER) and depression assessment, leveraging advanced statistical methods

such as machine learning (ML).

The presented insights offer a comprehensive understanding of psycho-physiological

responses to AI-based intelligent system for social emotion elicitation, paving the way
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for improved practices across various domains. The findings have the main implications

in health and psychology, where this tool could help in the recognition and treatment of

other mental illnesses or in the early diagnosis of them, aiding therapies such as phobia

recovery or training in the educational and professional field. However, developing ER

models in VR for extrapolation to other environments requires additional investigation.

This calls for a new sub-field in AfC, necessitating future studies with larger datasets

and participant numbers in various immersive settings.

In conclusion, emotions play a critical role in our daily lives, so an understanding and

recognition of emotional responses is crucial for human research. We believe that the

framework proposed can revolutionize emotion elicitation and recognition experiments,

and will impact transversely in many areas of research, opening new opportunities for

the scientist community.
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J. (2024). Developing conversational Virtual Humans for social emotion elicitation based

on large language models. Expert Systems with Applications, 246, 123261.

https://doi.org/10.1016/j.eswa.2024.123261.

Carrasco-Ribelles, L. A., Llanes-Jurado, J., Gallego-Moll, C., Cabrera-Bean, M.,

Monteagudo-Zaragoza, M., Violán, C., & Zabaleta-del-Olmo, E. (2023). Prediction

models using artificial intelligence and longitudinal data from electronic health records:

A systematic methodological review. Journal of the American Medical Informatics As-

sociation, 30(12), 2072–2082.

https://doi.org/10.1093/jamia/ocad168

Llanes-Jurado, J., Carrasco-Ribelles, L. A., Alcañiz, M., Soria-Olivas, E., & Maŕın-
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Llanes-Jurado, J., Maŕın-Morales, J., Guixeres, J., & Alcañiz, M. (2020). Develop-

ment and calibration of an eye-tracking fixation identification algorithm for immersive

virtual reality. Sensors, 20(17), 4956.

https://doi.org/10.3390/s20174956.

Conference publications

Gómez-Zaragozá, L., Minissi, M.E., Llanes-Jurado, J., Altozano, A., Alcañiz Raya,
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Appendix A

Supplementary materials

This section provides supplementary materials detailing the results of the pretest per-

formed to validate the faces designed for the emotional virtual humans (VH).

Pretest 1

A group of 56 subjects was recruited to participate in the experiment. The mean

age of the subjects was 32.94 years, with a standard deviation (SD) of 11.45 years; the

group included 30 males and 26 females.

To design four emotions (happy, relaxed, angry, and sad) and a neutral expression

for two genders (male and female), 10 faces were created. An online survey was created

to evaluate each face using the Self-Assessment Manikin in terms of arousal and valence,

employing a Likert scale from 1 to 9.

Table A.1: Scores of arousal and valence for VH in pre-test 1

Male Female

Valence Arousal Valence Arousal

Mean SD Mean SD Mean SD Mean SD

Neutral 4.89 0.82 3.84 1.73 5.11 0.82 3.64 1.99

Happy 6.18 1.21 3.73 1.85 6.18 1.54 4.61 1.91

Relaxed 4.71 1.04 3.36 1.81 5.11 1.25 3.82 1.88

Angry 2.93 1.50 6.27 1.65 2.84 1.75 7.00 1.33

Sad 2.46 1.64 5.91 2.09 2.48 0.95 6.04 1.79

Total 4.24 1.24 4.62 1.83 4.34 1.26 5.02 1.78
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Figure A.1: Scores of the valence and arousal in male VH for subject self-assessment in
pre-test 1

Figure A.2: Scores of the valence and arousal in female VH for subject self-assessment
in pre-test 1

The main conclusions of the pretest for both genders were as follows:
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• “Angry” was correctly placed in the quadrant denoting high arousal and negative

valence.

• “Sad” was evaluated with higher arousal than expected. Corrections are needed

to decrease arousal.

• “Relaxed” was very close to the “Neutral” face. Corrections are needed to increase

positive valence.

• “Happy” was close to the correct quadrant, but corrections are needed to increase

both arousal and positive valence.

• The “Neutral” face was close to the midpoint; therefore, no corrections are needed.

Pretest 2

A group of 46 subjects was recruited to participate in the experiment. The mean

age of the subjects was 37.32 years, SD = 13.98, including 23 males and 23 females.

In this second phase, the 10 faces were modulated to ensure that each basic emotion

was evaluated in the theoretical quadrant of the Circumplex Models of Affect, i.e., happy

in high arousal and positive valence, relaxed in low arousal and positive valence, angry

in high arousal and negative valence, and sad in low arousal and negative valence. An

online survey was developed to evaluate each face using the Self-Assessment Manikin to

measure arousal and valence, utilizing a Likert scale from 1 to 9.

Table A.2: Scores of arousal and valence for VH in pre-test 2

Male Female

Valence Arousal Valence Arousal

Mean SD Mean SD Mean SD Mean SD

Neutral 4.91 0.89 3.91 1.66 5.28 0.86 3.57 1.67

Happy 6.83 1.22 3.61 2.07 6.61 1.56 4.63 1.77

Relaxed 5.67 0.87 3.35 1.72 6.20 1.36 3.80 1.98

Angry 2.59 1.50 7.04 1.26 2.63 1.34 6.33 1.61

Sad 2.70 1.24 5.37 1.74 2.74 1.39 5.04 1.84

Total 4.54 1.14 4.66 1.69 4.69 1.30 4.67 1.77
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Figure A.3: Scores of the valence and arousal in male VH for subject self-assessment in
pre-test 1 (blue dots) and pre-test 2 (orange dots)

Figure A.4: Scores of the valence and arousal in female VH for subject self-assessment
in pre-test 1 (blue dots) and pre-test 2 (orange dots)

The main conclusions of the pretest for both genders are as follows:

• The emotion of “anger” was successfully achieved.
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• “Sad” faces showed a decrease in arousal but still experienced higher arousal than

expected. However, the final values were close to 5.

• “Relaxed” faces notably increased in valence and are now in the correct quadrant.

• “Happy” faces increased in valence but did not see an increase in arousal. For

females, arousal is close to 5, aligning with the theoretical quadrant; however, the

male face is still distinctly placed in the quadrant of high arousal and low valence.

Final Conclusions

We successfully achieved neutral, angry, and relaxed faces. Sad faces experienced

higher arousal, and happy faces showed lower arousal than expected. The results exhibit

a bias to increase arousal in negative conditions and decrease it in positive ones. How-

ever, given that this is a static face that will be used dynamically during a conversation,

where the face will be modulated by lip synchronization, we decided not to develop more

extreme faces, as it can provoke uncanny valley reactions during conversations.

Final faces

The following screenshots are the final faces validated in the second pre-test and

used in the experiment.
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Neutral:

Figure A.5

Figure A.6
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Figure A.7

Figure A.8
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Angry:

Figure A.9

Figure A.10
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Figure A.11

Figure A.12
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Sad:

Figure A.13

Figure A.14
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Figure A.15

Figure A.16



162 Appendix A

Relaxed:

Figure A.17

Figure A.18
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Figure A.19

Figure A.20
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Happy:

Figure A.21

Figure A.22
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Figure A.23

Figure A.24





Appendix B

Naturalness, Realism and Valence

and Arousal in Human and VH

graphical results

Naturalness

Figure B.1 shows the distribution over the test results for the prediction of natural-

ness for the different virtual human (VH) emotional states.
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Figure B.1: Boxplots over the test distribution of the different scores measured for the
Naturalness prediction. The metrcis are, from above to below and from right to left the
following ones: Accuracy, Cohen-Kappa, Precision, RoC, TPR and TNR.

Figure B.2 shows the AUC curve for the prediction of naturalness in the test set.

There are compared the different curves obtained for each different emotional VH. It is

also added the AUC curve of the general model.
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Figure B.2: AUC curve of the different models in terms of the VH emotional state for
the Naturalness prediction. The general model is in black dashed line. The diagonal
line in grey indicates the performance in the AUC curve of a random model.

Figure B.2 shows different type of curves. The curves corresponding to the emotional

states sad and relax does not overpass the diagonal line which represents a random

model. However, the states Happy and Anger are above the general model in most of the

trajectory, being the Happy the one that is above mostly. The trajectory of the general

model shows that are thresholds which are inconvenient for the model performance, but

other set of thresholds could achieve a high performance of the model.

Figure B.3 shows the distribution of the naturalness target against five target ran-

domly generated. Different scores are shown for the comparison of both distributions.
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Figure B.3: Distributions of the different scores obtained for each prediction on the test
set to check for overfitting in the naturalness models. In dark blue, we have the model
prediction through the actual target, while in orange, we find the model prediction of
the overfitting check.
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Realism

Figure B.4 shows the distribution over the test results for the prediction of realism

for the different VH emotional states.
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Figure B.4: Boxplots over the test distribution of the different scores measured for the
realism prediction. The metrcis are, from above to below and from right to left the
following ones: Accuracy, Cohen-Kappa, Precision, RoC, TPR and TNR.
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Figure B.5 shows the AUC curve for the prediction of realism in the test set. There

are compared the different curves obtained for each different emotional VH. It is also

added the AUC curve of the general model.
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Figure B.5: AUC curve of the different models in terms of the VH emotional state for
the realism prediction. The general model is in black dashed line. The diagonal line in
grey indicates the performance in the AUC curve of a random model.

Figure B.5 shows different type of curves. The curves corresponding to the emotional

states sad, relax and anger does not overpass the diagonal line which represents a random

model in the AUC plot. However, the happy state is above the diagonal but below the

general model in the whole trajectory.

Figure B.6 shows the distribution of the realism target against five target randomly

generated. Different scores are shown for the comparison of both distributions.
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Figure B.6: Distributions of the different scores obtained for each prediction on the
test set to check for overfitting in the realism model. In dark blue, we have the model
prediction through the actual target, while in orange, we find the model prediction of
the overfitting check.
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Human Arousal

Figure B.7 shows the distribution over the test results for the prediction of human

arousal for the different VH emotional states.
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Figure B.7: Boxplots over the test distribution of the different scores measured for the
human arousal prediction. The metrcis are accuracy, cohen-kappa, precision, ROC-
AUC, TPR and TNR.
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Figure B.8 shows the AUC curve for the prediction of human arousal in the test set.

There are compared the different curves obtained for each different emotional VH. It is

also added the AUC curve of the general model.
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Figure B.8: AUC curve of the different models in terms of the VH emotional state for
the human arousal prediction. The general model is in black dashed line. The diagonal
line in grey indicates the performance in the AUC curve of a random model.

Figure B.5 shows different type of curves. The curves corresponding to the emotional

states sad, relax and anger does not overpass the diagonal line which represents a random

model in the AUC plot. However, the happy state is above the diagonal but below the

general model in the whole trajectory.

Figure B.9 shows the distribution of the human arousal target against five target

randomly generated. Different scores are shown for the comparison of both distributions.
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Figure B.9: Distributions of the different scores obtained for each prediction on the test
set to check for overfitting in the human arousal model. In dark blue, we have the model
prediction through the actual target, while in orange, we find the model prediction of
the overfitting check.
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Human Valence

Figure B.10 shows the distribution over the test results for the prediction of human

valence for the different VH emotional states.

Anger Happy Relax Sad
Emotion

0.0

0.2

0.4

0.6

0.8

1.0

Ba
la

nc
ed

 A
cc

ur
ac

y

Anger Happy Relax Sad
Emotion

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ka
pp

a

Anger Happy Relax Sad
Emotion

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Anger Happy Relax Sad
Emotion

0.0

0.2

0.4

0.6

0.8

1.0

RO
C-

AU
C

Anger Happy Relax Sad
Emotion

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Anger Happy Relax Sad
Emotion

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Figure B.10: Boxplots over the test distribution of the different scores measured for
the human valence prediction. The metrcis are (a) Accuracy, (b) Cohen-Kappa, (c)
Precision, (d) ROC-AUC, (e) TPR and (f) TNR.
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Figure B.11 shows the AUC curve for the prediction of human valence in the test

set. There are compared the different curves obtained for each different emotional VH.

It is also added the AUC curve of the general model.
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Figure B.11: AUC curve of the different models in terms of the VH emotional state for
the human valence prediction. The general model is in black dashed line. The diagonal
line in grey indicates the performance in the AUC curve of a random model.

Figure B.11 shows different type of curves. The curves corresponding to the emo-

tional state sad, happy and anger does not overpass the diagonal line which represents

a random model in the AUC plot. However, the relax could overpass the diagonal line

in certain regions. All the emotional states are below the general model in the whole

trajectory.

Figure B.12 shows the distribution of the human valence target against five target

randomly generated. Different scores are shown for the comparison of both distributions.
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Figure B.12: Distributions of the different scores obtained for each prediction on the test
set to check for overfitting in the human valence model. In dark blue, we have the model
prediction through the actual target, while in orange, we find the model prediction of
the overfitting check.
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VH Arousal

Figure B.13 shows the distribution over the test results for the prediction of VH

arousal for the different VH emotional states.
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Figure B.13: Boxplots over the test distribution of the different scores measured for the
VH arousal prediction. The metrcis are (a) Accuracy, (b) Cohen-Kappa, (c) Precision,
(d) ROC-AUC, (e) TPR and (f) TNR.
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Figure B.14 shows the AUC curve for the prediction of VH arousal in the test set.

There are compared the different curves obtained for each different emotional VH. It is

also added the AUC curve of the general model.
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Figure B.14: AUC curve of the different models in terms of the VH emotional state for
the VH arousal prediction. The general model is in black dashed line. The diagonal line
in grey indicates the performance in the AUC curve of a random model.

Figure B.14 shows different type of curves. The curves corresponding to the emo-

tional state sad, happy and anger does not overpass the diagonal line which represents

a random model in the AUC plot. However, the relax state has a similar trajectory to

the general model, which also is overpassed by the relax model in certain probability

regions.

Figure B.15 shows the distribution of the VH arousal target against five target

randomly generated. Different scores are shown for the comparison of both distributions.
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Figure B.15: Distributions of the different scores obtained for each prediction on the test
set to check for overfitting in the VH arousal model. In dark blue, we have the model
prediction through the actual target, while in orange, we find the model prediction of
the overfitting check.
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VH Valence

Figure B.16 shows the distribution over the test results for the prediction of VH

valence for the different VH emotional states.
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Figure B.16: Boxplots over the test distribution of the different scores measured for the
VH valence prediction. The metrcis are (a) Accuracy, (b) Cohen-Kappa, (c) Precision,
(d) ROC-AUC, (e) TPR and (f) TNR.
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Figure B.17 shows the AUC curve for the prediction of VH valence in the test set.

There are compared the different curves obtained for each different emotional VH. It is

also added the AUC curve of the general model.
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Figure B.17: AUC curve of the different models in terms of the VH emotional state for
the VH valence. The general model is in black dashed line. The diagonal line in grey
indicates the performance in the AUC curve of a random model.

Figure B.17 shows different type of curves. The curves corresponding to the emo-

tional state relax, happy and anger does not overpass the diagonal line which represents

a random model in the AUC plot. However, the sad state overpass this line in the whole

trajectory but always below the general model.

Figure B.18 shows the distribution of the VH valence target against five target

randomly generated. Different scores are shown for the comparison of both distributions.
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Figure B.18: Distributions of the different scores obtained for each prediction on the
test set to check for overfitting in the VH valence. In dark blue, we have the model
prediction through the actual target, while in orange, we find the model prediction of
the overfitting check.
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[180] Débora Salgado, Felipe Martins, Thiago Braga Rodrigues, Conor Keighrey, Ronan

Flynn, Eduardo Naves, and Niall Murray. A qoe assessment method based on eda,

heart rate and eeg of a virtual reality assistive technology system. pages 517–520,

06 2018.
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