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ABSTRACT 
 

 In recent years, the rapid development of the industry has created a clear need for 

increasing amounts of energy. As a consequence, the search for green energy sources has become 

more prevalent in all fields of research. One example that has recently gained significant attention 

is wind turbines, and due to the lack of space and land, offshore wind turbines. However, this type 

of energy technology currently presents significant challenges, such as its hostile location and high 

costs. Therefore, this work proposes the implementation of DTs (DT) as a solution. This paper 

addresses the state of the art and the concept of DTs, as well as how they could be applied to the 

offshore wind energy industry. It begins with a definition of the technology and analyzes how the DT 

works, how it connects the physical reality with the virtual world, and what the key components of 

this technology are. Then, the current needs of the offshore wind energy industry are analyzed: how 

DTs are used in design, installation, maintenance, and worker safety, as well as the advantages of 

sustainability, will be discussed. Subsequently, the current problems that prevent DTs from being 

sufficiently developed will be addressed: high costs, the need for precise models, standardization, 

and data policy will be included in this document. Finally, future directions of the industry will be 

examined, including the classification of DTs at different levels. 
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CHAPTER 1: INTRODUCTION  

 
  

 Due to its promising potential to achieve zero-emission goals and its abundant renewable 

resource, which is wind in the ocean, the offshore industry has grown significantly in recent years. 

This can be seen in the annual reports provided by the GWEC (Global Wind Energy Council). In 

Fig. 1, we can observe the annual installations in power capacity by region (Alex, 2023). It is clear 

that China is leading the way in offshore energy compared to the rest of the world. However, even 

with China in the lead, Europe and other parts of the world have significant projects in the offshore 

wind industry. The intentions to advance in this industry are reflected in the Global Offshore Wind 

Alliance. This alliance, although primarily composed of European members, originated from the 

Government of Denmark, IRENA (International Renewable Energy Agency), and GWEC (Global 

Wind Energy Council). The member countries of this association are: Australia, Belgium, 

Colombia, Denmark, Germany, Ireland, Japan, the Netherlands, Norway, Portugal, Spain, Saint 

Lucia, the UK, and the USA. These countries aim to achieve 380 GW of offshore energy by 2030 

and 2000 GW by 2050. 

 

 

 

 
Fig. 1. Global annual new offshore installed capacity per years in MW (Source: 

https://gwec.net/gwecs-global-offshore-wind-report-2023/) 

 

  

 For these reasons and others, such as the uniformity of the terrain in the ocean, the vast 

expanses, and the stronger winds, it is evident that offshore farms are a significant investment to 

consider for focusing our efforts on improving and renewing global energy production. 

Additionally, these benefits contribute to turbines that are much more powerful and efficient than 

similar installations on land. However, like all emerging technologies, they present significant 

problems and challenges, some of which will be reviewed in this paper. As we will see later, one 

of the most important challenges in the offshore industry involves the operations and maintenance 

https://gwec.net/gwecs-global-offshore-wind-report-2023/
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of the farms, due to their remote location from the coast and the oceanic weather conditions. 

Another issue that requires solutions is the physical integrity and safety of the workers. For these 

reasons and more, as mentioned in this paper, Digital Twins (DTs) are proposed as a solution. 

This technology, along with the Internet of Things and artificial intelligence, even in its early 

development stage, promises great potential to provide solutions and reduce costs, not only in 

the offshore industry but across all industries, leading to a true technological revolution.  

 This paper, consisting of four main sections, begins by recounting the history of DTs and 

providing a definition of them, as well as explaining all their components. In the second section, 

all the current needs of the offshore industry are listed, compared with onshore, and all the 

mentioned challenges and more are reviewed, explaining why DTs are a good solution to these 

challenges. The third section details how DT technology is in its early stages and the reasons why 

these solutions cannot yet be fully implemented. Finally, the future directions and current levels 

of DTs are reviewed, along with perspectives from some companies related to the energy sector. 
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CHAPTER 2: WHAT IS A DIGITAL TWIN? 

 

 

2.1. INTO THE CONCEPT 

  

 With the constant evolution of digital technologies, we have observed significant 

advancements in the integration of advanced concepts such as the main topic I will discuss in this 

paper, DT. The DT represents a precise virtual replica of a physical system, process, or product, 

allowing for real-time simulation, monitoring, and analysis of its real-world counterpart. These 

advanced technologies enable remote supervision, real-time data collection, and control of cyber-

physical devices and systems through robust network infrastructures. This integration and 

synchronization between the physical and virtual worlds provide organizations with a deeper, 

predictive, and controlled insight into their operations, optimizing efficiency, decision-making, and 

innovation in the modern industry. As we will see next, the concept that encompasses DT has 

been around for more than 20 years now, and it continues to evolve currently, expanding into new 

fields of technology. The evolution of the usage of the term "Digital Twin" is reflected in Fig. 2, 

whereby searching the Scopus database, we can observe the number of papers related to DT 

published from 2010 to 2023. 2024 data is not included because it is the year of publication of 

this work. 

 

2.1.1. Background and development of the concept 

 
 Once the term is introduced, we can begin to explore the history, origin, and evolution of 

the concept itself. It is said that the DT origin is in Apollo’s program created by NASA. However, 

in this initial stage, NASA used a physical twin, which remained on Earth as a spacecraft identical 

to the one that flew at that time Fig. 3. The first definition appeared in a scientific article dated 

2010: “A DT is an integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or 

system that uses the best available physical models, sensor updates, fleet history, etc., to mirror 

the life of its flying twin. The DT is ultra-realistic and may consider one or more important and 

interdependent vehicle systems, including propulsion/energy storage, avionics, life support, 

vehicle structure, thermal management/TPS, etc. In addition to the backbone of high-fidelity 

physical models, the DT integrates sensor data from the vehicle’s on-board Integrated Vehicle 

Health Management (IVHM) system, maintenance history, and all available historical/fleet data 

obtained using data mining and text mining”, (Shafto et al., 2010). Although in this definition the 

term DT is used to refer to the DT of a vehicle, there are terms that are identical for any device 

and that will be of great importance in this article, such as sensor data, high-fidelity physical 

models, maintenance history, and data mining.  
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Fig.2. Number of publications with keywords {Digital Twin}. Source: Scopus 

 

 

 Despite this being the first definition of the term DT as such, if we go even further back in 

the concept’s bibliography, we find the origin of the idea in a conceptual model used in a Product 

Lifecycle Management course at the University of Michigan in the early 2003s, where Professor 

Michael Grieves described what he called the “Mirrored Spaces Model” with all the elements that 

we now know as DT: real space, virtual space and data flow between real space and virtual space. 

Additionally, this idea also contained the four phases of creation, production, 

operation/maintenance, and data availability. (Grieves & Vickers, 2017)  

 If we go deep into the literature written about DTs in the years after 2010, we realize that 

the vast majority of articles use the term DT to refer to specific vehicles or applications, and not 

as a general concept. In 2013 (J. Lee et al., 2013), we saw the first time that someone thought of 

DTs for an application beyond aircraft or spacecraft, using it to duplicate a production line. It was 

not until 2015 (Ríos et al., 2015) that we found an article that talks about DTs as a product, thus 

opening the term to be used in more general fields, although this article talked specifically about 

airplanes. 
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Fig. 3. Apollo 13 Physical Twin at Mission Control in Houston. Image credit: 

NASA 

 

2.1.2. General definition 

 
 Over the years and with the continuous advancement and understanding of DT, there 

has been a big proliferation in the quantity of definitions used to describe them. As a result of this 

expansion, the number of discussions and debates about what is and what is not a DT has grown 

proportionally to knowledge, prompting stakeholders to grapple with the complexities of what 

exactly constitutes a DT. In (VanDerHorn & Mahadevan, 2021), dedicated to exploring the 

literature on the subject and attempting to seek a general definition, we encounter up to 46 

different definitions of the concept, often differentiated from each other solely by the application 

of the DT itself. As the authors of this article argue, it is necessary to establish a general definition 

for the concept before proceeding with any work to avoid confusion. Therefore, this paper 

proposes one of the most modern definitions, stated in 2018 (Talkhestani et al., 2018): “DT is a 

virtual model of a physical asset capable of fully mirroring its characteristics and functionalities 

during its entire lifecycle. It is an approach to manage all generated digital data of a component 

or system along its lifecycle and retrieve them as needed by simulation or optimization functions 

to address any occurring challenges”. The proposed definition, while limited to only the most basic 

elements of the DT, thereby avoids delving into specifics with field-specific terminology. By 

emphasizing simplicity and accessibility, the definition aims to provide a solid foundation for 

understanding the essence of the DT concept while leaving room for customization and 

adaptation to specific contexts.  
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2.2. COMPONENTS OF A DT 

  

 Once we have an established definition, we can subsequently delineate the components 

of a DT: a physical asset, a virtual reality, and the interconnections between physical reality and 

virtual reality. This is reflected in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Schematic representation of DT components 

 

 

2.2.1. Physical reality 

 
 First of all, we find the product or object we wish to replicate with a DT, that is, the physical 

world. According to (Zheng et al., 2019), the physical space is a complex, diverse, and dynamic 

environment that comprises people, machines, materials, rules, and environmental conditions. 

This layer of the DT includes all the objects necessary for product development as well as for its 

operation, such as data sources, computing resources, and software. All these objects occupy 

physical space in the real world and are separated and placed in different locations, but they need 

to be connected by some cloud or Internet of Things (IoT) technology. Once connected, all the 

data can be collected and processed for subsequent virtualization and optimization. 

 One of the most important sections of a DT system is the sensors, as this section will be 

responsible for collecting data that will be processed. In (Juarez et al., 2021), the authors define 

sensors as components that are directly linked to the devices and serve as conduits for acquiring 

data and information; once the sensor collects the data, it transmits them to the physical realm 

for processing. 

 Some examples of sensors used in the field of offshore wind turbines are listed in (Wind 

Turbines: Tiny Sensors Play Big Role | Mouser, s. f.): 

 

a) Accelerometers: Accelerometers, which measure changes in velocity, are used in both 

PHYSICAL 
REALITY 

VIRTUAL 
REALITY 

INTERCONNECTION 
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onshore and offshore wind turbines to detect and monitor vibrations in various 

components of the turbine, such as the blades, shafts, or tower. This data can be valuable 

for predicting fatigue failures or for braking if necessary. 

 

b) Wind sensors: Wind sensors are placed atop the nacelle and can be either mechanical 

or ultrasonic. Because the latter do not require any recalibration unlike the mechanical 

ones, they are more commonly used in offshore turbines, as they provides an advantage 

by reducing on-site maintenance due to the difficult access they have. These sensors 

measure the distance to any object using sound waves, sending out a low-frequency 

wave and detecting the wave once reflected by the target. By measuring the time it takes 

for the wave to travel to and from, it is possible to calculate the distance between the 

sensor and the object. 

 

c) Temperature sensors: Temperature sensors are located in positions where an increase 

in temperature could indicate overheating of a component, whether it be a shaft or any 

object part of a subsystem subject to high friction. 

 

d) Displacement sensors: In wind turbines, monitoring the physical integrity of the system 

is essential due to the top-loading caused by the tall towers and the size of the rotor and 

nacelle. Here are three examples of displacement sensors: 

 
 

i. Laser sensors: Laser sensors can be used to perform this function because they 

are capable of detecting very small movements in the foundation relative to the 

tower, caused by jostling due to waves or wind. They work by transmitting a beam 

of light to an optical receiver at a specified distance. Any relative deviation 

between the two is transformed into distance measurements, allowing the 

displacement to be quantified. 

ii. Capacitive sensors: This type of sensor determines the distance between the 

stator and the rotor in the turbine. Their operation is based on the principle of 

electrical capacitance, which exists between two conductive surfaces that are 

close to each other and changes depending on the distance between them. 

iii. Draw-wire sensors: These sensors integrate a spring-loaded coiled wire with a 

spool-type transducer. As the wire extends or contracts from the spool, the 

rotation of the spool is gauged and translated into a measure of alteration. An 

image of this type of sensor is shown in Fig. 5. 
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Fig. 5. Draw-wire displacement sensor (Source: Bourns) 

 

 

e) Eddy current sensors: This type of sensor is based on measuring Foucault currents so 

that the movement of a piece, such as a shaft, can be detected from the electric current 

generated when it enters a magnetic field. 

 

 In some of the literature on DT (VanDerHorn & Mahadevan, 2021), the physical world is 

often divided into three parts, as shown in Fig. 6: the product itself, the environment that contains 

it, and finally, the processes that are given between product and environment. In this sub-section 

we will go a little deeper into them: 

 

a) Physical product: The first aspect of the framework is the physical product, which refers 

to the actual tangible object. It focuses on characteristics like its geometrical attributes, 

material properties, and functionality. This object, as a physical entity, has boundaries 

and borders that separate it from other physical entities that, although coexist in the same 

environment, are not of interest for the creation of the DT. In the case of creating a DT 

for an offshore turbine, the physical reality would encompass the actual turbine structure; 

this includes the turbine blades, gearbox, generator, support structure, etc. 

 

b) Physical environment: As the second subsection of the physical reality, this 

encompasses on one hand, the immediate surroundings of the physical asset (for 

offshore turbines we can talk about the ocean or other wind turbines near there), and on 

the other hand, external factors that affect the installation such as oceanic conditions, 

weather, wave patterns, water depth, marine life presence, etc. These elements play a 
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critical role in determining the structural integrity, operational efficiency, and maintenance 

needs of the offshore turbine. 

 
 

c) Physical processes: We can define this last part of the physical world as the outcome 

that arises from the relationships established between the physical product and the 

physical environment. In the context of an offshore turbine, an example of a physical 

process could be the rotation of the turbine blades, which is caused by the movement of 

air around it. 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

Fig 6. Graphic that shows the relation between Physical product, Physical environment and 

Physical processes 

 

2.2.2. Virtual space 

 
 The second component of this division is the virtual space, which, in summary, is the 

virtual entity representing an idealized form of physical reality. This virtual space is achieved 

through physical measuring, e.g. using sensors. According to (Zheng et al., 2019), a virtual space 

consists of two parts: 

 

a) Virtual environment platform (VMP): The function of the VMP is to build a virtual model 

that integrates an operational environment for the algorithm library. This includes the 

physical models upon which the algorithms will be based to calculate predictions and 

actions for the external environment of the DT.  

Physical Product Physical Environment 

Physical Processes 

Physical Processes 
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b) DTs (DT application subsystem): This part duplicates the physical space itself, and on 

this layer, the necessary calculations and operations of the VMP are carried out. This 

means that there is a direct relationship between the two parts. 

 
 

2.2.3. Interconnections 

 
 Finally, we have the interconnections established between the physical product and the 

virtual space. This part is defined as a channel through which information flows bidirectionally, 

meaning from the physical space to the virtual and vice versa. We could say that this 

interconnection is divided into two phases; the Metrology phase, where a physical state is 

collected in some type of data, and the Realisation phase, where this data is introduced into the 

DT. A good example of these two phases is seen in (Jones et al., 2020): “A change in temperature 

of a physical motor is measured using an Internet-of-Things thermometer (metrology phase), the 

temperature measurement is transferred to the virtual environment via a web service, a virtual 

process determines the difference in temperatures between the physical motor and the virtual 

motor, and then updates the virtual motor such that both measures are the same”. We can see 

this reflected in Fig. 7. This part can be further divided into three layers: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. Diagram with sequences of physical-to-virtual phases 

 

 

a) Data storage: Firstly, through a direct measurement of physical reality, the necessary 

data for subsequent processing must be collected. This includes manual and offline 

collection as well, for example, visual inspections. Additionally, at this step, data provided 

by the virtual entity is also collected. All of this is stored in a database. 

 

Measure 
temperature 

(IoT thermometer) 

Transfer 
measurement 

(via web service) 

Determine 
temperature 

difference (physical 
vs virtual motor 

Update virtual motor 
to match physical 
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b) Data processing: In (Zheng et al., 2019), the authors divide this step into four sub-steps: 

data acquisition, data preprocessing, data analysis and mining, and data fusion. 

 
 

c) Data mapping: Data mapping can be defined as the arrangement of physical data that 

is to be linked in a virtual workspace using modules that facilitate data storage and 

retrieval processes. There are three main parts of data mapping: time series analysis, 

correlation analysis, and synchronization. 
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CHAPTER 3: NEEDS OF THE OFFSHORE WIND 

ENERGY INDUSTRY 

 

3.1. OVERVIEW  

 

 It has been shown that offshore wind energy is of significant importance to the world’s 

renewable energy phase, and thus offshore wind farms play a major role in the supply of 

electricity. These gigantic wind turbine arrays, located at sea, are subjected to special 

difficulties in keeping them up and running. DTs represent the virtual clones of offshore wind 

farms, which are the central tools in addressing such challenges. Through real-time monitoring, 

predictive analytics, and optimization capabilities, DTs optimize system performance, therefore 

contributing to the success of the offshore wind power generation industry towards clean and 

reliable energy sources. Before delving into the main part of this chapter, I will provide a brief 

introduction to understand the type of structures we aim to work with alongside DT: offshore wind 

farms. 

 

3.1.1. Introduction to offshore wind farms 

 
 Since the inception of the first offshore wind farm prototype in Denmark back in 1991, 

and especially with the commencement of commercial wind farm assembly along the North Sea 

coast in the early 2000s, there has been a remarkable surge in proposed projects in this sector 

across the globe. These ventures span numerous regions, including the United States, China, 

Japan, Germany, Spain, Belgium, Norway, France, and beyond. Although the first offshore wind 

turbine was constructed 350 meters from the shore, advancements in technology and research 

in this field have led to engineering marvels such as Dogger Bank (England) (Fig. 8), which will 

be the world’s largest offshore wind farm once it is finished. Located over 130 km off the northeast 

coast of England, it is capable of providing energy to over 6 million homes annually. 

 The main argument for utilizing offshore wind farms, apart from expanding energy 

generation in countries with limited land territory, is the higher wind intensity experienced in open 

seas. This is due to the significantly lower surface roughness and turbulence compared to land, 

resulting in higher wind speeds at lower altitudes than onshore. This translates to a significant 

reduction in tower height, as well as much lower fatigue and an increase in the installation’s 

lifespan. 

 As mentioned earlier, the environmental conditions for offshore farms differ significantly 

from those installed on land, and therefore they require unique construction features.  

In addition to these conditions, new variables must be taken into account to determine the optimal 

tower height, such as the maximum sea depth at the farm’s location, wave conditions, seabed 
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type, etc.  

  

 

Fig. 8. Artist’s impression of the new ‘Voltaire’ turbine installation vessel (Source: 

https://doggerbank.com/construction/) 

 

 

3.1.2. Offshore vs Onshore 

 
 In this section, a brief list of some of the differences between offshore and onshore wind 

farms will be provided (Colmenar-Santos et al., 2016) and (Esteban et al., 2011), as well as the 

advantages and disadvantages of this kind of energy generation.  

 

 Advantages: 

 

a) Firstly, we find the advantage of the increased wind resource quality in the sea. As we’ve 

already mentioned, wind speed is higher most of the time, increasing further away from 

the coastline. Additionally, since offshore farm towers are much shorter, turbine fatigue 

is significantly reduced. 

 

b) Another significant and obvious advantage is the vast amount of available space in the 

sea, leading to larger installations and farms themselves. Furthermore, locating at long 

distances from the coast eliminates both acoustic and visual impacts from the shoreline. 

All these factors make it possible to install much larger turbines capable of generating 

significantly more energy per unit. 

https://doggerbank.com/construction/
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c) There is the possibility of utilizing existing infrastructure from other marine energy 

production facilities. For example, helipads from offshore oil platforms can be repurposed 

for transporting materials and personnel. 

 
 

d) The construction, as well as the maintenance and operation of these complex 

installations, generate a large number of new job opportunities. 

 
 
 Disadvantages: 

 

a) Arguably the main and largest disadvantage of offshore farms is the cost of the processes 

required for installation, such as construction and maintenance.  

 

b) According to data from (Ioannou et al., 2018), operation and maintenance costs for 

offshore farms can account for up to 30% of the total investment over their entire lifespan, 

which is double the proportion compared to onshore farms. 

 
 

c) Another disadvantage is the complex engineering required to design and maintain the 

foundations of the towers, which are subjected to adverse conditions at sea. This 

complexity is compounded by the difficulty of reaching these foundations for 

maintenance. This typically necessitates additional structures for docking ships or landing 

aircraft. (Fig. 9) 

 
 

d) A third disadvantage is the ease of propagation of turbulence caused by the rotation of 

turbine blades. This is because the roughness of the sea surface is much lower. Thus, 

greater separations between towers and more complex designs are needed to prevent 

interactions between turbines. 
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Fig 9. A helicopter transferring maintenance personnel to an offshore tower (Source: Tesicnor) 

 

3.2. CHALLENGES IN OFFSHORE WIND INDUSTRY 

 
 As offshore wind farms carve out an increasingly significant presence in the renewable 

energy market, unique challenges arise within their marine environment. The aim of this chapter 

is to delve into some of these challenges, ranging from technical and logistical aspects to 

environmental concerns. From deep waters to mitigating environmental effects, offshore wind 

farms face a plethora of challenges requiring innovative solutions and novel strategies. 

 

3.2.1. Offshore farms assessment 

 
 While monitoring in onshore farms is entirely controlled, in offshore farms, direct 

measurements are much more challenging and costly due to their remote location. Currently, 

monitoring of these farms relies on shore-based reviews using in-situ data collected by monitoring 

ships, but these data collections are periodic, with a significant time gap between them. Another 

challenge faced by offshore farm assessment is the economic challenge. As mentioned earlier, 

the investment required is significantly larger than for an onshore turbine, and this difference is 

even more pronounced in the realm of maintenance and operation. Therefore, it is crucial to find 

a way to reduce costs in this aspect.  

 According to (Li & Wang, 2011), each wind turbine will require up to maintenance visits 

per year. This means that companies must strategically plan these visits to optimize the intervals 

between them, as well as take advantage of favorable weather windows. 

 In addition to complexity and economics, it is also crucial to consider the safety of workers 

responsible for these tasks. In the offshore wind sector, there have been no reported fatalities, 

unlike in the oil and gas industry, where there were 5 accidents related to air and water 

transportation just between 1998 and 1999 (Atkinson, 2010), along with 111 falls, 20 machinery-
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related incidents, and 2 diving-related incidents. Workers in this sector are exposed to a hostile 

environment (Fig. 10) and often operate heavy machinery, leading to significant expenses for 

companies in terms of enhancing safety measures to prevent accidents. Apart from the human 

cost, accidents result in considerable delays and financial losses. In next sub-section we will delve 

into some of this risks. 

  

3.2.2. Impact of weather conditions 

 
 The challenging location of these farms exposes them to harsh weather and 

environmental conditions, such as heavy waves, storms, high-speed winds, etc. As mentioned 

earlier, the weather also influences the periodical revisions due to its difficulty to realize a 

maintenance operation while there are bad weather conditions. The stochastic and intermittent 

nature of the wind poses a significant challenge to the construction and maintenance of these 

farms, necessitating new methods of prediction and remote monitoring, such as LIDAR and 

SODAR (V. N. Dinh & McKeogh, 2019). These instruments, based on the Doppler effect, use light 

and sound respectively to determine wind speed.  

 

 

 

Fig. 10. A worker inside the turbine’s tower (Source: (Atkinson, 2010)) 

 

3.2.3. Risks for health 

 
 In the previous sections, the significant impact of the environment and the location of 

farms on the safety and health of all personnel involved in the offshore industry has been 



24 
 

discussed. In this section, a brief report will be provided on incidents that have occurred in this 

field and the most notable risks in this industry. Before delving into the list of risks, it is important 

to understand the numbers to quantify how dangerous this industry is. In Table 1, we can see that 

despite all the harsh conditions and the high number of incidents per year, the number of fatalities 

is zero. This table only shows incidents that have taken place offshore, as the reports included 

data on onshore cases, which are not relevant to this work (Health and Safety Statistics, s. f.).  

 
 
Year of report Incidents on 

vessels 
Incidents on turbine 
regions 

Lost work day 
injury 

2013 (Only 
Europe) 

281 178 66 

2014 (Only 
Europe) 

256 378 44 

2015 (Only 
Europe) 

213 375 41 

2016   284 420 43 

2017 616 521 49 

2018 278 288 39 

2019 245 291 62 

2020 232 241 43 

2021 274 289 50 

2022 325 298 46 

 
Table 1. Incidents report from each year from G+ members (Source: (Health and Safety 

Statistics, s. f.)) 

 
  

 Once we know the data, let's proceed to name the most common risks in OWF (Karanikas 

et al., 2021): 

 

a) Noise: Some studies mention noise as a risk since low frequencies and infrasound 

affect sleep and present various psychological effects. However, this risk is considered 

anecdotal and not a danger to public health. 

 

b) Electromagnetic fields: This is one of the most frequently cited threats during the 

operational phase of the turbines. For the surrounding community, it is a negligible risk 

since we are constantly exposed to electromagnetic waves in modern society. However, 

some studies suggest that close exposure of high intensity and duration can lead to long-

term consequences, potentially causing cancers (McCallum et al., 2014). 

 

c) Shadow flicker: This is a phenomenon unique to this industry, caused each time a 

moving turbine blade blocks and lets through light. While epileptic effects in some workers 

could be considered, studies have shown that these effects are noticeable at frequencies 

starting from 3 Hz, with most turbines having blade rotation frequencies of 0.5 to 1 Hz. 

Nonetheless, reports of headaches, fatigue, dizziness, and nausea caused by this 

phenomenon have been documented. 
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d) Vibration: This phenomenon, considered auditory, only affects onshore farms since there 

are no populations near offshore farms, and there are no cases where exposure to 

vibration notably affects workers. However, if we focus on vibration as the movement 

produced, we observe that various tools or machines can cause vibrations in workers' 

arms or even whole-body vibrations. 

 
e) Hazardous chemicals and materials: The majority of substances that typically cause 

problems include epoxy resins, synthetic chemicals, and fumes released from fiberglass. 

These can pose a biological risk as they have the potential to cause cancers and 

irritations of the respiratory tract as well as the eyes. 

 
f) Physical risks: The height of the towers poses a significant danger to workers, as a fall 

can be fatal if proper safety measures are not in place. Additionally, workers must climb 

the tower, sometimes several times a day, carrying tools and machines. Furthermore, the 

limited space inside the turbine's nacelle forces workers to operate in uncomfortable and 

physically straining conditions. 

 

3.2.4. Marine Spatial Planning 

 
 So far, the distribution of marine space usage for infrastructure has been focused in a 

specific manner, meaning only the precise location for that infrastructure is considered, without 

taking into account a general overview of the entire space as is done on land. The development 

of an offshore energy industry raises this issue due to the significant space it occupies, 

necessitating a shift in vision towards the spatial organization and jurisdiction. A lack of common 

vision and integrated regulation in laws can lead to problems among stakeholders and potential 

users of this space. As a solution, Marine Spatial Planning (MSP) can be proposed, which is an 

approach to planning human activities that considers marine space similar to terrestrial space, 

including policies and new objectives (Sørensen et al., 2009). According to the Intergovernmental 

Oceanographic Commission (IOC) of UNESCO, MSP is a process of analyzing and allocating 

parts of a three-dimensional marine space for specific uses to achieve ecological, economic, and 

social objectives that are typically specified through political processes. In this way, MSP results 

in a much more comprehensive way of visualizing a marine region. 

 

3.2.5. Difficulties for cost estimation 

 
 Due to the novelty of these types of installations, the calculation of necessary investments 

remains a set of estimations and uncertainties based on computer modeling and approximations. 

This is because there are not enough real case studies, leading to a lack of papers discussing 

actual costs, with most proposing equations and models for calculation. It also depends on other 

factors such as the type of foundation and fixation to the seabed used. In (Maienza et al., 2020), 
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a lifecycle model for floating farms is studied considering CAPEX (Capital Expenditure), OPEX 

(Operating Expenditure), DECEX (Decommissioning Expenditure), and LCOE (Levelized Cost of 

Energy). In (Ioannou et al., 2018), parametric expressions for cost calculations based on a series 

of simulations are introduced. Most literature suggests dividing costs into 5 parts (Díaz & Guedes 

Soares, 2023): 

 

1. Project development 

2. Production and Acquisition 

3. Installation and Commissioning 

4. Operation and Maintenance 

5. Decommission 

 

 In Table 2, we can see an example of cost distribution for a floating wind farm. If the 

fixation type were solid foundations, the decommissioning cost could absorb more than 10% of 

the total investment instead of just 4%. 

 

Main area Subarea and sub % 

Development & Project 

Management (3%) 

Project management (67%), Consenting & development 

services (15%), Site investigations (15%), and Environmental 

surveys (3%). 

Turbine (22%) Blades (18%), Drive train (19%), Power conversion (30%), 

Towers (13%), Small components (11%), Turbine assembly 

(4%), and Large fabrications (5%). 

Components & Structure 

(19%) 

Foundations (40%), Subsea cables (25%), Electrical systems 

(17%), Substation structures (11%), and Secondary steelwork 

(7%). 

Installation & 

Commissioning (12%) 

Turbine & foundation installation (41%), Installation equipment 

& support services (25%), Cable installation (20%), Onshore 

works (5%), Installation ports & logistics (5%), and Substation 

installation (4%). 

Operation & Maintenance 

(40%)  

Vessels and equipment (47%), Maintenance & inspection 

services (42%), and O&M ports (11%). 

Decommissioning (4%) Marine operations (93%), Salvage & recycling (1%), Project 

management (2%), and Ports and logistics (4%). 

 

Table 2. Cost distribution on a floating offshore wind farm (Source: (V. N. Dinh & Mckeogh, 

2019)) 
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3.2.6. Modelling components 

 
 Offshore wind farms are large infrastructures, composed of a multitude of interconnected 

pieces. This poses a challenge when it comes to modeling and assessing potential risks and 

situations because typically each piece is manufactured by different companies, and therefore 

their tests and potential trials are carried out independently among pieces. However, the reality is 

that these pieces are part of a larger ensemble, the wind farm, and therefore any phenomenon 

affecting the farm will cause interactions between the pieces, resulting in outcomes differing from 

the independently predicted behavior. Therefore, research is needed in the field of computational 

modeling of pieces as a whole, rather than unitarily. These types of models are called coupled 

models, and there are studies on how to carry out this computational coupling between pieces, 

although at the moment these models are very difficult to compute for current technology (V.-N. 

Dinh et al., 2013). 

 

3.3. SPECIFIC NEEDS ADDRESSED BY DTS 

 
 In the previous section, we have explored the inherent challenges in offshore wind 

turbines, ranging from the impact of the hostile ocean environment to the difficulties encountered 

in calculating investment costs. Many of these challenges needs technology that brings innovation 

and new solutions. By replicating the physical system in a virtual environment, DTs offer fresh 

perspectives in the realms of operation, functionality, and maintenance. Thus, the aim of using 

this technology is to minimize the levelized cost of energy for offshore wind farms and thereby 

compete with fossil fuels. In this subsection, we will delve into the specific requirements that DTs 

fulfill in the context of offshore wind energy, emphasizing their potential to revolutionize the 

industry. 

 

3.3.1. Maintenance 

 
 DTs (DT) are a recent development and they have proven to be very good tools in the 

operation and maintenance fields where intelligence decisions can be taken and optimised 

through use of these softwares. The potential of DT applications in operation and maintenance is 

underscored by (Errandonea et al., 2020) and (S. Khan et al., 2020). The implementation of 

condition monitoring as well as fault diagnosis through DT has been seen to reduce unnecessary 

maintenance tasks significantly.In this sub-section I will write about different strategies that can 

be applied at maintenance in every kind of systems. This division in five different strategies are 

seen in best part of the literature about DTs (Errandonea et al., 2020), (Xia & Zou, 2023), (Hanly, 

s. f.): 

a) Reactive Maintenance 
 
This first strategy is based on simply not having any strategy. Also known as corrective 
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maintenance or failure maintenance, this strategy involves acting only when necessary, 

which means waiting for some part of the system to fail and then taking action to fix it. 

This allows to minimize costs at its minimum, as there are no maintenance operations 

planned. This strategy is not typically used in systems or assets that a big failure may 

cause high costs in the business, for example when replacing a piece of the system is 

more expensive than doing regularly maintenance. For this reason, in offshore wind farms 

this kind of maintenance is not used. 

 
b) Preventive Maintenance 

 
This strategy, also known as time-base maintenance (Errandonea et al., 2020) or 

proactive maintenance (Swanson, 2001), is based on monitoring the deterioration of all 

equipment and applying small repairs to maintain optimal operating conditions. This way, 

the likelihood of an unexpected failure is reduced. In this type of maintenance, a series 

of inspections are scheduled so that after predetermined periods of operation, the system 

is repaired or checked. However, having scheduled inspections without knowing if they 

are necessary incurs costs that are usually unnecessary, so this strategy is far from 

optimal. 

 
 

c) Condition-based Maintenance 
 

Also known as descriptive maintenance or diagnostics-based maintenance, this strategy 

does not use a predefined scheme of maintenance operations. Instead, the real-time 

state of the system is evaluated to determine if maintenance is actually necessary, thus 

saving unnecessary inspections. For the first time in this list, we see the emergence of 

the Internet of Things or concepts of DT, albeit in a simpler form and without autonomy 

to apply solutions by itself (Nikolaev et al., 2019). These technologies are used in 

coordination with sensors installed in the system to determine possible failures, thereby 

applying solutions before they occur. With increasing research in the field of artificial 

intelligence, some authors developed algorithms based that could be used for continuous 

data acquisition and to provide a detailed status of the system (Mabkhot et al., 2018). 

 

d) Predictive Maintenance 
 
This type of strategy is in a premature phase because sufficient technology levels have 

not been reached to implement it regularly, although it plays a crucial role in the 

development of Industry 4.0. This strategy is based on analyzing large amounts of system 

operation data to detect patterns that may indicate potential future failures, as well as 

providing an estimation of the real-time remaining lifespan of the system. 

Using DTs, the system is modeled for all known machine states (normal and erroneous), 

collected by sensors installed in it, and deep learning algorithms are used to evaluate the 

state of the model to determine if the system is behaving properly (Zenisek et al., 2019). 
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e) Prescriptive Maintenance 
 
In this last strategy, we find the highest level of sophistication, as it not only predicts what 

will happen but also recommends what to do next. It utilizes advanced data analysis and 

algorithms to recommend specific actions to take before a failure occurs in the system. 

Like predictive analysis, it uses trend and pattern analysis on extensive datasets collected 

through sensors. In this case, we see parallels with DTs, as per the definition provided 

earlier in this work, where the ultimate goal was to act autonomously to predict failures 

and take independent action. To understand the difference between predictive 

maintenance and prescriptive maintenance a bit more, the former tells you WHEN the 

machine might fail, while the latter tells you WHICH part and WHY it will fail (Hanly, s. f.). 

In Fig. 11, we see reflected the information needed for each type of maintenance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Maintenance strategies diagram (Source: (Errandonea et al., 2020)) 

 

3.3.2. Design and Installation  

 
 Historically, during the design phase, simulations with estimated data have been used as 

input to calculate and size systems. With the growth of technology and the installation of sensors 

transmitting all kinds of data throughout the entire lifecycle of the systems, it is now possible to 

adopt DTs as a substitute for these simulations, using real data reused from machines as input. 

This increases the accuracy of pre-sizing calculations, thus reducing the safety coefficients 

previously adopted by engineers during the initial phases. The reduction of safety coefficients 
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used results in a decrease in design costs, as unnecessary over-sizing and material waste are 

eliminated. In this paper (Söderberg et al., 2017) we see an example of how a DT is used for 

optimization in the design phase of an arbor press. 

 On the other hand, we have the installation phase, in which various efforts have been 

made to reduce the complexity and challenges it entails due to the harsh environment. In Table 

3 we see some examples of applications of DTs for installation extracted from (Liu et al., 2023): 

 

Application Original work 

A monitoring system for a jacket platform 

is implemented to limit superstructure 

movement to a specific level by 

continuously monitoring and controlling it 

both before and during the float-over 

installation process 

(Tian et al., 2022) 

Accurate measuriement and analysis of 

multi-body systems’ response under 

complex loading conditions so that the 

construction can be executed correctly 

(Fugro’s QuickVision® Technology Supports 

Installation of Arcadis OST-1 Wind Farm from 

a Heavy Lift Vessel | Fugro Expertise, s. f.) 

Performiance of time-domain simulations 

on a multi-body system comprising a 

catamaran, spar, and wind turbine, aiming 

to analyze the system's motion response 

under different wind loads and wave 

conditions 

(Z. Jiang et al., 2018) 

Integrated matching method based on the 

installation vessel, numerically simulated 

with ANSYS-AQWA  

(Chen et al., 2020) 

Simulation of load transfer during the twin-

barge float-over installation and 

investigation of the dynamic response 

under impact loads 

(W. Tao et al., 2020)  

 

Table 3. Different works that applies DT technology to installation phase 

 

3.3.3. Workers’ safety 

 
 Another aspect to consider is the safety of the offshore wind farm operator. This new 

approach to safety management is called proactive, as opposed to the traditional (reactive) 

method, it continuously and in real-time alerts installation personnel of potential hazards that may 

occur (Bohn & Teizer, 2010). But for achieving this kind of security management, it is necessary 
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to collect loads of real-time data. Although in this field, DT and the IoT are in a very early stage, 

numerous experiments and studies have been conducted to demonstrate that this technology can 

also be used to enhance safety on the farms. One of the experiments conducted in a real 

installation using the DT as defined in this work is that of (W. Jiang et al., 2020). In this experiment, 

a safety management system is created by synchronizing risk data between a virtual space and 

a physical space, including scene reconstruction, data processing modules, and 

intercommunications. In Table 4 we find some more examples of them. 

 

Application Original work 

Positioning base stations to track 

personnel and positioning algorithms to 

collect data  

(Soltanmohammadlou et al., 2019) 

Stereo camera system within visual range 

for tracking  

(Y.-J. Lee & Park, 2019) 

Fusion of different sensors as radio 

frequency identification (RFID) and GPS 

(Ergen et al., 2007) 

Wearable insoles to recognize walking 

and advice from possible falls 

(Antwi-Afari et al., 2018) 

Camera-based health assessment for 

working posture 

(Zhang et al., 2018) 

 
Table 4. Different works that improves security management using DT or IoT 

 
 

3.3.4. Sustainability 

 
 DTs are not limited solely to enhancing the efficiency and design of OWFs, but they also 

have significant potential to make advancements in the sustainability and conservation of oceanic 

ecosystems. By replicating them, DTs enable scientists and engineers to simulate scenarios and 

assess environmental impacts, as well as design new conservation strategies. However, the 

majority of research on DTs is focused on the farm system itself, and the environment formed by 

the fauna, flora, and seabed is often overlooked. Therefore, this is one of the fields with the least 

investment currently.  

 As a reference DT in sustainability, we find the DT Ocean (DTO), a project undertaken 

by the European Commission, announced in 2022. Although this project has great potential, it is 

also affected by a lack of funding. “The DT Ocean is a consistent, high-resolution, multi-

dimensional and near real-time virtual representation of the ocean, combining ocean 

observations, artificial intelligence, advanced modelling operating on high-performance 

computers and accessible to all.” (DT Ocean, s. f.).  

 In general, DTs can be applied to sustainability in these fields: 
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a) Reducing overfishing: DTs present themselves as an interesting innovation for 

sustainable fisheries. They create virtual fishery systems that help in monitoring actual 

fish populations and fishing activities almost as they happen. In these virtual fisheries, 

autonomous agents can take notes of species abundance, suggest appropriate catch 

size and time to fisher folks. This could help for have a registration of fish populations 

near the OWFs. 

 

b) Modeling and predicting marine pollution: In coastal pollution and oil plus gas 

pollution, DTs help a lot. They include various sources of data in monitoring pollution 

through the use of autonomous agents that detect where the alerts should be sent and 

come up with oil spill scenarios: timely and nearly real-time. It also enhances coordination 

among response units towards research on underwater noise pollution, thus supporting 

efforts for wind farm sustainability — which is identified from the adverse environmental 

impact due to such coastal areas. 

 
c) Marine Spatial Planning: DTs are highly useful for Marine Spatial Planning (MSP) 

because they enable individuals to test different planning options in a virtual version of 

the ocean. We can use this to find the best locations to install wind farms and other 

facilities at sea while simultaneously protecting the animals and plants that live there, 

reducing noise, and preventing harmful substances from spreading. DTs help make 

offshore wind farms more sustainable by promoting nature-friendly construction and 

encouraging multiple uses of the ocean. 
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CHAPTER 4: MAIN CHALLENGES FACING DT 

NOWADAYS 

 
 
 Up to now, we've delved into the definition of DTs and the history of the concept, as well 

as the needs of the offshore wind energy industry and how DTs can address some of those 

existing challenges. However, as mentioned before, DTs are still a field under development and 

present significant hurdles and challenges to overcome through research. As Mark Halpern said 

in a PDT conference: “Transformation is on its Way, But Few Tools are Ready”. This is what the 

next chapter will address: the roadblocks that must be removed for DTs to be effectively applied. 

In Table 5 (Rasheed et al., 2020) we find some actual challenges that DT industry must confront 

and its respective enabling technology, but we only will go deep in some of them. 

 

Challenges Enabling Technologies 

Data management, data privacy and 

security, data quality 

Digital platforms, cryptography abd 

blockchain technologies, big data 

technologies 

Real-time communication of data and 

latency 

Data compression, communication 

technologies like 5G and IoT technologies 

Physical realism and future projections Sensor technologies, high fidelity physics-

based simulators, data-driven models 

Real time modelling  Hybrid analysis and modeling, reduced order 

modeling, multivariate data-driven models 

Continuous model updates Big data cybernetics, hybrid analysis and 

modeling, data assimilation, compressed 

sensing and symbolic regression 

Transparency and interpretability Hybrid analysis and modeling, explainable 

artificial intelligence 

Large scale computation Computational infrastructure, edge, fog and 

cloud computing 

Interaction with physical asset Human machine interface, natural language 

processing, visualization augmented reality 

and virtual reality 

 

Table 5. Challenges related with its respective enabling technology (Source: (Rasheed et al., 

2020)) 

4.1. HIGH COSTS 

 
 Even though the improvement of computational technology continues to drive down 
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costs, this aspect remains one of the major hurdles that DTs present to companies. This is 

because, ultimately, DTs are nothing but an investment, and their real benefit lies in saving money 

for the company rather than generating it, as could be the case with any other investment. 

Because of this, it's very difficult for companies to quantify the ROI and thus decide whether it's 

profitable or not (Mihai et al., 2022). 

  In (West & Blackburn, 2017), the authors analyze the economic challenges that the 

United States Air Force would need to overcome if they wanted to implement DTs in their weapons 

development system. Their conclusion: “The above analysis suggests the costs of Digital Thread 

and DT make the concepts impractical to fully implement. [...] DT development and sustainment 

could cost between $1 and $2 trillion—roughly equal to the combined Air Force/Navy RDT&E 

budget request for FY17” (West & Blackburn, 2017).  

 In 2018, at PDT Europe conference, Gartner’s analyst Marc Halpern said that, although 

there was a high level of knowledge regarding technology and structure, there was a common 

ignorance about the concepts of money and time when it comes to DTs: “It will take longer and 

will be more resource-consuming than anyone can imagine to get these solutions in place” (DTs, 

s. f.-b). 

 In conclusion, the economic considerations surrounding DTs underscore the need for 

careful evaluation and strategic improvement before implementation. 

 

4.2. FAITHFUL REPRESENTATIONS 

 
 Just as DTs have been created to make faithful virtual representations of a real object, 

this itself brings a great challenge in achieving high fidelity and quality. A DT without these 

characteristics will not correctly simulate scenarios during testing and will be useless. Knowing 

that there are two ways to build a DT, the first being a specification-based approach with 

engineering artifacts and the second using ML (Machine-Learning) methods, experts state that 

the best approach is a hybrid one combining both. This hybrid approach simultaneously eliminates 

the real-time data inconsistencies inherent to specification-based methods and provides the 

potential capability to model the correct behavior of the physical counterparts (Suhail et al., 2022). 

 

4.3. STANDARISATION 

 
 Not a few authors in the literature on DTs claim that one of the major problems in the 

implementation of this technology has its roots in the lack of standardization (Botín-Sanabria 

et al., 2022), (Harrison et al., 2021), (M. Singh et al., 2021). Being a technology in an early phase, 

there are many branches of research open at the same time, thriving in parallel, each operating 

differently due to the lack of a common starting base that an established technology has. Without 

a set of written regulations and standards to organize and unify all participants in the world of 

DTs, there can be understanding problems, as if each one were speaking their own language. 

 According to (S. Singh et al., 2018), what has happened is due to the development of 
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DTs following a proprietary format, that is, the format of small-scale industries. This model means 

that each company has its own way of communication, data acquisition, storage, etc.  

 This fragment from (SAE to Create Standards for IoT, Big Data and the DT in the 

Aerospace Industry, s. f.) perfectly summarizes the current state of standardization: “The status 

of IoT standardization is effectively an alphabet soup. Everyone has their own system for 

communicating, getting online and storing data. This might be fine and dandy if you want your IoT 

device to be exclusive to your partner devices. It may also be fine if you are making a consumer 

product. But when you start to look at the aerospace, automotive and manufacturing markets, 

then you need to follow standards”. 

 Using a large-scale project as an example, without the existence of formal 

standardization, communication and integration between different organizations would be 

impossible or would hinder cooperation in a way that would compromise the safety and quality of 

the final result. 

  For these reasons, it is necessary for the institutions responsible for drafting the 

standards to focus their efforts on this problem as soon as possible, although some are already 

working on it. Some of these are, for example, the Society of Automotive Engineers (SAE), which 

is in the process of standardizing IoT, focusing on issues related to data (ownership, governance, 

interoperability, management, security) (S. Singh et al., 2018), or ISO 23247 (DT Manufacturing 

Framework), which is focused on creating a generic development framework that can be used for 

specific use cases. This standard has proposed four parts: Overview and general principles, 

reference architecture, digital representation, and information exchange (Shao & Helu, 2020). 

 

4.4. DATA ISSUES 

 
 In this section where we will talk about the challenges we have to face related to data, 

and probably this will be the longest subsection of the challenges mentioned in the paper, since 

the DTs base their operation on the collection and exchange of data and therefore it is the biggest 

source of problems. 

 

4.4.1. Cybersecurity 

 
 Just as the field of DTs has expanded exponentially in recent years, so have the problems 

related to cybersecurity. DTs operate based on IoT, primarily relying on IoT sensors installed in 

the machinery. At this point, vulnerabilities become more noticeable for potential cyberattacks. 

These vulnerabilities give rise to the discussion that will be addressed in the following section. 

(MAPP, 2020) 

 

4.4.2. Public or Private Data? 

  

 With the aim of preventing security breaches and data theft, most companies choose to 
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store all their data in data silos and make them completely private. However, this leads us to the 

following problem: the lack of transparency. The creation of data silos to prevent breaches can 

be detrimental to the value chain, as these imply inconsistency and synchronization problems. 

This, combined with poor data privacy policies (which is very possible in a relatively immature 

field like DTs), leads to internal problems within the same company (M. Singh et al., 2021). If we 

look from the perspective of an external company trying to implement a DT in the company that 

owns the data, all these aggressive privacy policies are a real obstacle to efficiency (MAPP, 2020). 

This is a difficult debate to resolve because, while keeping data under lock and key affects the 

functioning of the DT, not doing so makes the DT much more vulnerable. 

 

4.4.3. Software Obsolescence and Updates 

 
 As we have seen, DTs are typically used for applications with long life cycles, such as 

offshore farms, aircraft, production systems, ships, etc. This brings about a problem: the physical 

product's life can exceed the designed lifespan of the DT (Confront Key Challenges To Boost DT 

Success, s. f.). This means that the software may become obsolete before the object ceases to 

be useful. Additionally, due to the nature of these assets, they will almost certainly evolve in some 

way (for example, a platform expansion), and the DT must do so as well to remain true to reality. 

As a result, the owner of the physical system may become permanently dependent on the 

software provider for updates to extend the life of the DT. This presents another challenge to 

overcome, requiring DT designers to plan for longer life cycles and some form of updating different 

from typical software. 

 

4.4.4. Data collection 

 
The fact that the asset has to be cloned identically in a virtual world results in an enormous amount 

of data to collect, store and send, and this poses several problems for the industry to overcome 

(Suhail et al., 2022): 

 

a) Find the optimal volume: This first aspect is about finding a balance: between including 

too much data, which can lead to information overload, and including too little data, which 

can result in inaccurate predictions. 

 

b) Frequency: Again, it's about finding the balance. For example, recording a series of 

vibrations at a frequency of once per minute will surely leave errors undetected, but 

sampling every half second can affect the quality of the transmission (F. Tao & Qi, 2019). 

 
c) Duration: This is about selecting which data is truly necessary to store, as storing large 

amounts of data is very expensive. However, some data must be stored because it helps 

to uncover behavior patterns and thus model more accurately (Kusiak, 2017). 
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4.5. REUTILIZATION 

 
 How to reuse twins for controlling various physical devices? (L. U. Khan et al., 2022). One 

way to make DTs more accessible could be their reuse, but we must first ask ourselves if this is 

possible and, if so, whether it will affect their performance in any way. By their nature, DTs require 

significant efforts to create exact replicas of the selected object, but with some learning methods, 

they can be trained to generally learn any type of data. However, as some authors (Emmert-Streib 

et al., 2020), (Pouyanfar et al., 2018) suggest, these learning methods may result in performance 

failures. 
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CHAPTER 5: FUTURE DIRECTIONS 

 

 In the previous chapters, the fundamental concepts of DTs were defined, the needs of 

the offshore industry were discussed, as well as the challenges to be overcome, and finally, the 

current obstacles to the real implementation of DTs were examined. In this chapter, we turn our 

attention to the future of DT development, examining its upcoming directions and the open 

research areas that exist. 

 DT technology can be divided into several sub-technologies, including IoT, AI, big data, 

simulation, and cloud computing, among others. It can be said that DTs follow a parallel path to 

all these technologies, advancing at a similar pace due to the global trend towards increased 

digitalization. This trend became particularly noticeable during the pandemic period from 2020 to 

2022, when digitalization not only became necessary but also evidently facilitated many 

processes and operations. Therefore, there is a clear latent potential behind DTs, which is 

highlighted by market estimates. Data from 2021 shows an expected growth rate of 58%, with the 

market value projected to reach 48.2 billion USD by 2026 (M. Singh et al., 2021). 

 In a 2018 article by IEEE Future Directions (DTs, s. f.-a), some experts argued that it is 

possible that in the not-too-distant future, a robot-DT symbiosis could exist, where each robot 

would have its own DT. When the physical asset becomes obsolete, it would be replaced by a 

new one that learns from the DT of its predecessor. Experts even see the possibility that this DT-

learning method could be applied to human workers as well. This would undoubtedly represent a 

total paradigm shift. 

 

5.1. Classification in levels 

 
 First of all, we will address some testimonies obtained in an interview with an essential 

part of the development of DTs: the industrial partners, that is, the companies that may end up 

using them. But before that, it is important to consider a classification (Fig. 12) that allows us to 

understand the different levels of DT according to their technical capabilities. This will be important 

as the companies mention these levels at various points during the surveys. Although there are 

numerous classifications of this type in the DT literature, in this work we chose the one adopted 

by (Stadtmann et al., 2023), (Sundby et al., 2021), (Elfarri et al., 2023): 

 

a) Level 0 (Standalone): This type of DT is not considered a DT in all definitions since it 

exists without the physical asset. It is typically used for pre-design purposes or to 

calculate costs and benefits. Specifically, for offshore farms, it could be used for 

positioning or climatic studies. 

 

b) Level 1 (Descriptive): At this level, data flow between the physical and virtual models 

comes into play. This DT simply duplicates the physical asset and displays data without 
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STANDALONE 
Standalone description 

of the asset 
disconnected from the 
real environment. The 
physical asset may not 

yet exist 

DESCRIPTIVE 
CAD-models and real-time 

stream of sensor data 
describe the up to date 
state of the asset at any 

point of time 

DIAGNOSTIC 
Can present diagnostic 

information which 
supports users with 

condition monitoring and 
troubleshooting 

PREDICTIVE 
Can predict the system’s 

future states or 
performance and can 

support prognostic 
capabilities 

PRESCRIPTIVE 
Can provide prescription 

or recommendations 
based on what if/risk 

analysis and uncertainty 
quantification 

AUTONOMOUS 
Can replace the user by 

closing the control loop to 
make decisions and 

execute control actions 
on the system 
autonomously 

drawing conclusions on its own. In other words, all data must be interpreted by a human. 

It can already generate value as it provides information without the need to collect it on-

site. 

 
c) Level 2 (Diagnostic): At this level of capabilities, the data collected by sensors is 

combined with data analysis tools, allowing the detection of certain behavior patterns. 

Thus, the DT can begin to draw some conclusions on its own based on the past 

performance of the asset. 

 
d) Level 3 (Predictive): Unlike the previous levels, this level of DT has the capacity to 

influence the future of the system. Through constant updates of the past and present 

state of the asset, this DT is capable of making continuous forecasts about its behavior. 

 
e) Level 4 (Prescriptive): This level incorporates what-if scenario analysis, providing 

recommendations based on these scenarios, as well as risk assessment and uncertainty 

quantification. 

 
f) Level 5 (Autonomous): This is the most sophisticated level of all. At this level, the DT 

can control the asset to redirect it to its optimal operating point if necessary, based on 

behavior analysis. Due to the limited maturity of this technology, there is still not full trust 

in this level of decision-making, leaving the final say to a human supervisor. 

 
 

 

 
 

 

 

 

 

 

 

 
 

 

 

Fig. 12. Levels of capability in DT (Adapted from (Sundby et al., 2021)) 

 

5.2. Perspective from industry partners 

 
 Here we can see a summary of the responses from some industrial partners of NorthWind 

(Norwegian Research Centre on Wind Energy) to a survey about DTs conducted in 2023 

(Stadtmann et al., 2023): 

1 2 3 4 5 0 
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a) 4SUBSEA: Although this company already extracts value from several DTs to determine 

strain and fatigue in some parts of an onshore wind farm, including a level 0 and a level 

4, it maintains that its DTs cannot be more complex at the moment due to a lack of time 

and effort in system identification and digital model tuning. They also state that for a 

similar DT for an offshore wind farm, much more time and complexity would be require 

 

b) ANEO: This company plans to use DTs to make decisions and predictions about the 

lifecycle of offshore farms. However, for now, they believe that human intervention is 

necessary before making the final decision. They maintain that many more daily 

operations that inspire confidence from the DTs are needed before entrusting them with 

any important decisions. 

 
c) COGNITE: The goal of this company is to improve decision-making for any type of 

industry through DTs by combining data and simulations. They believe that efforts should 

be focused on developing and enhancing what-if scenarios. 

 
d) DNV MARITIME: Although this company believes that in some cases it is sufficient to 

model only certain parts of the asset, they think that in the future it will be necessary to 

achieve more holistic digitalizations. They believe that the biggest challenge for DTs is 

end-to-end value chain support, as well as the lack of attractive business models for 

investors. 

 
e) EIDEL: This company, with its regular customers in the space and defense sectors, aims 

to adapt its data acquisition system to meet some of the needs of offshore wind energy. 

Not wishing to build a DT from scratch on its own, the company believes that collaboration 

between investors and researchers is key to achieving effective DT development, as it 

sees aggressive information ownership policies as a significant obstacle. 

 
f) FORCE TECHNOLOGY NORWAY: This company, capable of running what-if 

simulations but lacking real-time data streams, believes that the biggest challenges lie in 

the accuracy and reliability of automated finite element approaches and autonomous data 

processing. They believe that research should focus its efforts on hybrid modeling. 

 
g) KONGSBERG DIGITAL: This company has access to a level 3 DT that it uses for an oil 

and gas platform, and aims to use DT for offshore as well. They are interested in 

optimizing maintenance operations using existing data, as well as using DT for induction 

and training. They maintain that the most important challenges to overcome are data 

standardization and autonomy in DT. 

 
h) KONGSBERG MARITIME: At the moment, this company is focused on condition 

monitoring and condition-based maintenance, but they assert that predictive capabilities 
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are the most important technology. They emphasize that industry acceptance, market 

adoption, and insurance company acceptance are the biggest challenges. 

 
i) SNSK: This company is currently interested in DT for hybrid energy systems located in 

the Arctic and Antarctic, where besides cost reduction, minimizing maintenance trips to 

protect workers from the harsh conditions of these environments is crucial. Their proposal 

involves integrating wind turbines with other power production units and energy storage, 

with a focus on what-if scenarios. 

 
j) STATKRAFT: This renewable energy company, the largest in Europe, is primarily 

interested in the descriptive and diagnostic levels of DT. They believe that the greatest 

challenge is developing and disseminating knowledge about building good DT software. 

They propose that research should focus on the steps prior to DT implementation. 

 
k) TOTALENERGIES: This multi-energy company believes that it's not enough to model 

different parts of the asset separately; rather, it's necessary to unify the entire system into 

a single model, including drivetrain, electricity production, structural fatigue, and mooring 

tension. For them, the minimum level to generate value is level 1, although their goal is 

level 4. They also believe that it's necessary to minimize the number of sensors by 

optimizing their physical placement. From their perspective, the biggest challenge is 

integrating all the data from the different subsystems of the farm into one. 

 
l) EQUINOR: This international company, committed to environmental goals of reducing 

carbon usage, envisions the asset's DT as a set of interconnected DTs, each focused on 

a specific use. They see open architecture and complete interoperability of information 

among industry members as necessary to achieve the full potential of DTs. This, of 

course, requires standardization of industry practices related to DTs. 
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CONCLUSIONS 

  

 The first conclusion I can draw from the research conducted is that we are facing a 

technology that is here to stay and that will bring about a revolutionary change in many aspects 

of our lives in the coming years. The increasing number and trend of annual publications on Digital 

Twins highlight the potential and projection of this technology, along with the growing interest of 

large companies in investing in this field. In the first part of the work, the history and evolution of 

the term are presented, and we find, as evidence of the exponential growth of interest in this field, 

the proliferation of definitions over time. 

 Conversely, this work highlights the immaturity of the technology, as reflected in the first 

chapter, where there is currently no universally accepted definition of what a Digital Twin truly is. 

Similarly, although not to the same extent, it presents the need for solutions to the major 

challenges faced by the offshore wind power generation industry. For this reason, Digital Twins 

are proposed as a solution to most of these problems, and a superficial explanation of their 

application is provided. 

 Following this, we provide a detailed list of reasons why DT technology cannot yet be fully 

implemented, whether in the offshore industry or any other field. From this list, the most significant 

challenge highlighted is related to data, including the associated subproblems such as 

cybersecurity. Another major issue that companies also emphasize is the decision to make data 

public or private. Making data private largely addresses the cybersecurity problem, but it poses a 

significant obstacle for a developing technology like DT. Therefore, it is crucial for investors and 

the scientific community to reach a consensus to ensure the continued growth of the DT field 

without major issues. 

 Lastly, we review a 2023 survey conducted with 16 major companies related to Digital 

Twins and the offshore industry. From this survey, we can identify the problems that investors 

consider most significant, which is a crucial aspect of technological development. As mentioned 

earlier, data issues are the primary concern because they are essential for the accurate 

functioning and realism required to clone a wind farm. Another conclusion we can draw is the 

need for research into hybrid modeling, as physics-based models are impossible to run in real 

time, and data-driven models fall short in terms of generalizability and reliability. Additionally, it is 

evident that Digital Twins need to be significantly more powerful, as companies intend to clone 

an entire wind farm as a single system rather than cloning individual parts. This, however, is 

currently impossible to achieve. 
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