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Abstract

According to the World Health Organization (WHO), cancer is a leading cause of
death worldwide, accounting for nearly 10 million deaths in 2020, or about one in six
deaths. To prevent and decrease this huge amount of death, an accurate cancer diag-
nosis is necessary. Deep Learning (DL)-based techniques have advanced Computer-
Aided Diagnosis (CAD) to assist doctors with their diagnosis. High-resolution im-
ages, such as histopathological slides and medical scans, enhance these techniques.
This thesis mainly focuses on histopathological images scanned by the Whole Slide
Image (WSI) scanners, aiming to minimize human errors in cancer diagnosis. In this
thesis, we propose three Content-Based Medical Image Retrieval (CBMIR) frame-
works on histopathological images with two DL-based techniques presented in dif-
ferent scenarios. SICAPv2, BreaKHis, Camelyon 17, Arvaniti, and Spitziod are the
main data sets that the experiments are conducted on. These data sets are patches
of prostate, breast, breast, prostate, and skin cancer, respectively. Our studies are
categorized into three classes based on learning types. Initially, we develop an un-
supervised Feature Extractor (FE) for extracting meaningful features from prostate
and breast cancer datasets, achieving 70% and 91% accuracy in prostate (SICAPv2)
and breast cancer (BreaKHis) datasets, respectively, at the top 5.

In the other contribution of this class of study, we mainly focused on Color
Normalization (CN) as a pre-processing step in a Content-Based Histopathologi-
cal Image Retrieval (CBHIR) framework. The obtained results reported that as the
effectiveness of color normalization techniques in reducing intra-center variance im-
proved, the CBHIR results exhibited higher performance levels. The state-of-the-art
color normalization technique employed on the patches provides an 18% improve-
ment in accuracy.

In the first class of our studies, we identified potential obstacles that a CBMIR in
digital pathology could encounter, including limited power of GPU resources, lack
of enough data set, strict data privacy regulations for data sharing, etc.

Regarding these complexities, we focus on federated-based learning in the sec-
ond class of our research. We combine the concepts of Federated Learning (FL)
with a CBMIR framework to mimic a worldwide Federated CBMIR (FedCBMIR)
on histological images of breast cancer. This research explores three scenarios. In
the first scenario, two medical centers have different breast cancer datasets (Came-
lyon 17 and BreaKHis 400x) and cannot share their images due to data privacy. This
scenario meets pathologists’ needs and speeds up training for engineers, reducing
training time by 11.44 hours. Pathologists can achieve 97.8% accuracy for BreaKHis
and 98.1% for Camelyon 17.

The assumption behind the second scenario is that there are four data sets of
breast cancer, and the centers don’t have any agreement to share their data sets.
Therefore, four well-trained FEs are trained more generalized and in 32.36 hours
shorter time than training four distinct models. The proposed FedCBMIR frame-
work can overpass the accuracy of the CBMIR that is training locally with 96%, 92%,
89%, and 94% precision respectively for BreaKHis at 40x, 100x, 200, and 400x.
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The last scenario in this class of study focuses on the condition that pathologists
need to measure some important patterns at different magnifications of their tissue
although they don’t have access to high-level scanners. This can army the pathol-
ogist with a tool that they can see the patterns of their query in the other similar
retrieved patches at different levels of magnification.

In the last contribution of this thesis, the main focus is a contrastive learning-
based strategy. We propose a CBMIR framework that can overpass the previous
techniques with top K (K > 1) and excels in retrieving images at the top first.
This can be a more reliable framework for pathologists since it can provide similar
patches to their query even at the first top. It is the first CBHIR framework pro-
posed for Spitzoid cancer, achieving 70% and 81% F1 score in BreaKHis at 400x and
skin cancer, respectively. The proposed technique’s precision at the top rank for skin
cancer is 67% higher than previous methods.

Furthermore, this class of study solves the challenges that pathologists have in
grading Spitzoid Tumors of Uncertain Malignant Potential (STUMP). STUMP cases
require careful assessment to determine their true nature. To assist pathologists in
coping with this complexity, the framework can provide top K similar patches for
them with their corresponding labels. Our framework assists pathologists by pro-
viding top K similar patches with corresponding labels, allowing them to grade their
STUMP query by examining the retrieved images and their histological patterns.

To conclude, the proposed CBMIR and CBHIR frameworks in this thesis con-
tribute to the diagnosis of prostate, breast, and skin cancer from histopathological
images by making use of DL-based FEs under different scenarios. These not only
enhance the accuracy and efficiency of cancer diagnosis but also hold promise for
facilitating early detection and personalized treatment strategies. Leveraging these
frameworks in the current cancer diagnosis could ultimately lead to improved pa-
tient outcomes, reduced healthcare costs, and enhanced quality of life for individuals
affected by prostate, breast, and skin cancer. These advancements have the potential
to drive positive societal change and contribute to the global fight against cancer.
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Resumen

Segtin Organizacién Mundial de la Salud (WHO), el cancer es una de las principales
causas de muerte a nivel mundial, con cerca de 10 millones de fallecimientos en 2020,
aproximadamente una de cada seis muertes. Para prevenir y disminuir esta enorme
cantidad de muertes, es necesario un diagndstico preciso del cdncer. Las técnicas
basadas en Deep Learning (DL) han avanzado el Diagnoéstico Asistido por Com-
putadora (CAD) para ayudar a los médicos con su diagnéstico. Las imagenes de alta
resolucién, como las laminas histopatoldgicas y las exploraciones médicas, mejoran
estas técnicas. Esta tesis se centra principalmente en imédgenes histopatoldgicas es-
caneadas por escaneres de Whole Slide Image (WSI), con el objetivo de minimizar los
errores humanos en el diagndstico del cdncer. En esta tesis, proponemos tres marcos
de Recuperacion de Imagenes Médicas Basada en Contenido (CBMIR) sobre ima-
genes histopatoldgicas con dos técnicas basadas en DL presentadas en diferentes es-
cenarios. SICAPv2, BreaKHis, Camelyon 17, Arvaniti y Spitziod son los principales
conjuntos de datos en los que se realizan los experimentos. Estos conjuntos de datos
son parches de cancer de prdstata, mama, mama, prostata y piel, respectivamente.
Nuestros estudios se categorizan en tres clases segtn los tipos de aprendizaje. Ini-
cialmente, desarrollamos un Extractor de Caracteristicas (FE) no supervisado para
extraer caracteristicas significativas de los conjuntos de datos de cdncer de préstata
y mama, logrando una precisiéon del 70% y 91% en los conjuntos de datos de cancer
de prostata (SICAPv2) y mama (BreaKHis), respectivamente, en el top 5.

En la otra contribucién de esta clase de estudio, nos centramos principalmente en
la Normalizacién del Color (CN) como un paso de preprocesamiento en un marco
de Recuperacion de Imégenes Histopatolégicas Basada en Contenido (CBHIR). Los
resultados obtenidos informaron que a medida que la efectividad de las técnicas de
normalizacién del color en la reduccién de la variabilidad intra-centro mejord, los
resultados del CBHIR mostraron niveles de rendimiento mads altos. La técnica de
normalizacién del color de dltima generacién empleada en los parches proporciona
una mejora del 18% en la precision.

En la primera clase de nuestros estudios, identificamos obstdculos potenciales
que un CBMIR en patologia digital podria encontrar, incluida la limitacién del poder
de los recursos de GPU, la falta de suficientes conjuntos de datos, las estrictas regu-
laciones de privacidad de datos para el intercambio de datos, etc.

En cuanto a estas complejidades, nos centramos en el aprendizaje federado en
la segunda clase de nuestra investigaciéon. Combinamos los conceptos de Federated
Learning (FL) con un marco CBMIR para imitar un CBMIR Federado Mundial (Fed-
CBMIR) en imagenes histologicas de cancer de mama. Esta investigacion explora
tres escenarios. En el primer escenario, dos centros médicos tienen diferentes con-
juntos de datos de cancer de mama (Camelyon 17 y BreaKHis 400x) y no pueden
compartir sus imdgenes debido a la privacidad de los datos. Este escenario satisface
las necesidades de los pat6logos y acelera el entrenamiento para los ingenieros, re-
duciendo el tiempo de entrenamiento en 11,44 horas. Los patélogos pueden lograr
una precision del 97,8% para BreaKHis y del 98,1% para Camelyon 17.

La suposicion detrds del segundo escenario es que hay cuatro conjuntos de datos
de cancer de mama y los centros no tienen ningtin acuerdo para compartir sus con-
juntos de datos. Por lo tanto, se entrenan cuatro FEs bien entrenados de manera
maés generalizada y en 32,36 horas menos que entrenar cuatro modelos distintos.
El marco FedCBMIR propuesto puede superar la precision del CBMIR que se en-
trena localmente con un 96%, 92%, 89% y 94% de precisién respectivamente para
BreaKHis en 40x, 100x, 200x y 400x. El altimo escenario en esta clase de estudio
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se centra en la condicién de que los patélogos necesitan medir algunos patrones im-
portantes a diferentes aumentos de su tejido aunque no tengan acceso a escéneres
de alto nivel. Esto puede armar al pat6logo con una herramienta que les permita ver
los patrones de su consulta en los otros parches similares recuperados a diferentes
niveles de aumento.

En la dltima contribucién de esta tesis, el enfoque principal es una estrategia
basada en aprendizaje contrastivo. Proponemos un marco CBMIR que puede su-
perar las técnicas anteriores con el top K (K > 1) y sobresale en la recuperacion de
imdagenes en el top primero. Esto puede ser un marco més confiable para los patélo-
gos ya que puede proporcionar parches similares a su consulta incluso en el primer
top. Es el primer marco CBHIR propuesto para el cancer de Spitzoid, logrando un
70% y 81% de puntuacién F1 en BreaKHis a 400 y cancer de piel, respectivamente.
La precisién de la técnica propuesta en el rango superior para el cdncer de piel es un
67% mads alta que los métodos anteriores.

Ademas, esta clase de estudio resuelve los desafios que los patélogos tienen al
clasificar los Tumores Spitzoides de Potencial Maligno Incierto (STUMP). Los casos
de STUMP requieren una evaluacién cuidadosa para determinar su verdadera nat-
uraleza. Para ayudar a los patélogos a enfrentar esta complejidad, el marco puede
proporcionar los parches similares del top K para ellos con sus etiquetas correspon-
dientes. Nuestro marco ayuda a los patélogos proporcionando los parches similares
del top K con las etiquetas correspondientes, permitiéndoles clasificar su consulta
de STUMP examinando las imagenes recuperadas y sus patrones histolégicos.

En conclusién, los marcos CBMIR y CBHIR propuestos en esta tesis contribuyen
al diagnodstico del cancer de préstata, mama y piel a partir de imagenes histopa-
tologicas mediante el uso de FEs basados en DL en diferentes escenarios. Estos no
solo mejoran la precisién y eficiencia del diagnoéstico del cancer, sino que también
tienen el potencial de facilitar la detecciéon temprana y las estrategias de tratamiento
personalizado. Aprovechar estos marcos en el diagndstico actual del cdncer podria
conducir en tltima instancia a mejores resultados para los pacientes, menores costos
de atencién médica y una mayor calidad de vida para las personas afectadas por el
cancer de prostata, mama y piel. Estos avances tienen el potencial de impulsar un
cambio social positivo y contribuir a la lucha global contra el cancer.
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Resum

Segons 1’Organitzacié Mundial de Salut (WHO), el cancer és una de les principals
causes de mort a nivell mundial, amb prop de 10 milions de defuncions en 2020,
aproximadament una de cada sis morts. Per a prevenir i disminuir aquesta enorme
quantitat de morts, és necessari un diagnostic precis del cancer. Les tecniques basades
en Deep Learning (DL) han avangat el Diagnostic Assistit per Computadora (CAD)
per a ajudar els metges amb el seu diagnostic. Les imatges d’alta resolucid, com les
lamines histopatologiques i les exploracions mediques, milloren aquestes técniques.
Aquesta tesi se centra principalment en imatges histopatologiques escanejades per
escaners de Whole Slide Image (WSI), amb 1’objectiu de minimitzar els errors hu-
mans en el diagnostic del cancer. En aquesta tesi, proposem tres marcs de Recu-
peraci6é d'Imatges Mediques Basada en Contingut (CBMIR) sobre imatges histopa-
tologiques amb dues tecniques basades en DL presentades en diferents escenaris.
SICAPv2, BreaKHis, Camelyon 17, Arvaniti i Spitziod sén els principals conjunts
de dades en els quals es realitzen els experiments. Aquests conjunts de dades sén
trossos de cancer de prostata, mama, mama, prostata i pell, respectivament. Els
nostres estudis es categoritzen en tres classes segons els tipus d’aprenentatge. Ini-
cialment, desenvolupem un Extractor de Caracteristiques (FE) no supervisat per a
extraure caracteristiques significatives dels conjunts de dades de cancer de prostata
i mama, aconseguint una precisi6 del 70% i 91% en els conjunts de dades de cancer
de prostata (SICAPv2) i mama (BreaKHis), respectivament, en el top 5.

En I'altra contribucié d’aquesta classe d’estudi, ens centrem principalment en la
Normalitzacié del Color (CN) com un pas de preprocessament en un marc de Re-
cuperacié d’'Imatges Histopatologiques Basada en Contingut (CBHIR). Els resultats
obtinguts van informar que a mesura que 1’efectivitat de les tecniques de normal-
itzaci6 del color en la reduccié de la variabilitat intra-centre va millorar, els resultats
del CBHIR van mostrar nivells de rendiment més alts. La técnica de normalitzacié
del color dtltima generacié emprada en els trossos proporciona una millora del 18%
en la precisio.

En la primera classe dels nostres estudis, identifiquem obstacles potencials que
un CBMIR en patologia digital podria trobar, inclosa la limitacié del poder dels re-
cursos de GPU, la falta de suficients conjunts de dades, les estrictes regulacions de
privacitat de dades per a l'intercanvi de dades, etc.

Quant a aquestes complexitats, ens centrem en 'aprenentatge federat en la seg-
ona classe de la nostra investigacié. Combinem els conceptes de Federated Learn-
ing (FL) amb un marc CBMIR per a imitar un CBMIR Federat Mundial (FedCB-
MIR) en imatges histologiques de cancer de mama. Aquesta investigacié explora
tres escenaris. En el primer escenari, dos centres medics tenen diferents conjunts
de dades de cancer de mama (Camelyon 17 i BreaKHis 400 ) i no poden compartir
les seues imatges a causa de la privacitat de les dades. Aquest escenari satisfa les
necessitats dels patolegs i accelera I’entrenament per als enginyers, reduint el temps
d’entrenament en 11,44 hores. Els patolegs poden aconseguir una precisié del 97,8%
per a BreaKHis i del 98,1% per a Camelyon 17.

La suposici6 darrere del segon escenari és que hi ha quatre conjunts de dades de
cancer de mama i els centres no tenen cap acord per a compartir els seus conjunts de
dades. Per tant, s’entrenen quatre FEs ben entrenats de manera més generalitzada
i en 32,36 hores menys que entrenar quatre models diferents. El marc FedCBMIR
proposat pot superar la precisi6 del CBMIR que s’entrena localment amb un 96%,
92%, 89% i 94% de precisi6 respectivament per a BreaKHis en 40x, 100x, 200x
i 400x. L'altim escenari en aquesta classe d’estudi se centra en la condicié que els



patolegs necessiten mesurar alguns patrons importants a diferents augments del seu
teixit encara que no tinguen accés a escaners d’alt nivell. Aixo pot armar el patoleg
amb una eina que els permet veure els patrons de la seua consulta en els altres trossos
similars recuperats a diferents nivells d’augment.

En I'dltima contribucié d’aquesta tesi, I’enfocament principal és una estrategia
basada en aprenentatge contrastiu. Proposem un marc CBMIR que pot superar les
técniques anteriors amb el top K (K > 1) i sobresurt en la recuperacié d’imatges en el
top primer. Aix0 pot ser un marc més fiable per als patolegs ja que pot proporcionar
trossos similars a la seua consulta fins i tot en el primer top. Es el primer marc CB-
HIR proposat per al cancer de Spitzoid, aconseguint un 70% i 81% de puntuacié F1
en BreaKHis a 400 i cancer de pell, respectivament. La precisi6 de la técnica pro-
posada en el rang superior per al cancer de pell és un 67% més alta que els metodes
anteriors.

A més, aquesta classe d’estudi resol els desafiaments que els patolegs tenen a
I'hora de classificar els Tumors Spitzoides de Potencial Maligne Incert (STUMP).
Els casos de STUMP requereixen una avaluacié acurada per a determinar la seua
veritable naturalesa. Per a ajudar els patolegs a afrontar aquesta complexitat, el
marc pot proporcionar els trossos similars del top K per a ells amb les seues etiquetes
corresponents. El nostre marc ajuda els patolegs proporcionant els trossos similars
del top K amb les etiquetes corresponents, permetent-los classificar la seua consulta
de STUMP examinant les imatges recuperades i els seus patrons histologics.

En conclusid, els marcs CBMIR i CBHIR proposats en aquesta tesi contribueixen
al diagnostic del cancer de prostata, mama i pell a partir d’imatges histopatologiques
mitjancant 1'ts de FEs basats en DL en diferents escenaris. Aquests no sols milloren
la precisi6 i eficiencia del diagnostic del cancer, siné que també tenen el potencial de
facilitar la detecci6 primerenca i les estratégies de tractament personalitzat. Aprofi-
tar aquests marcs en el diagnostic actual del cancer podria conduir en dltima instan-
cia a millors resultats per als pacients, menors costos d’atencié medica i una major
qualitat de vida per a les persones afectades pel cancer de prostata, mama i pell.
Aquests avancos tenen el potencial d’impulsar un canvi social positiu i contribuir a
la lluita global contra el cancer.
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2 Chapter 1. Introduction

1.1 Motivation

Artificial Intelligence (AI) was founded at a workshop held on the campus of Dart-
mouth College, USA in the summer of 1956 [1]. Since then, Al has been developed
in a wide diversity of research fields including medical purposes and finance to au-
tonomous vehicles and recommendation systems. Xu et al. in [2] declared that the
application of Al-based tools in healthcare can enhance human abilities and improve
the process of medical treatment. Since the 1970s, with the development of Al tools
for data collection and storage, plenty of hospitals have been provided with well-
equipped systems to gather and share a large amount of information. Despite these
advancements, many clinics and hospitals still suffer from digitalization problems
and do not have access to enough equipment to join the world of digital pathology.
However, the available amount of data can be useful for both clinicians and Al ex-
perts to train their models and provide methods with higher accuracy for clinicians.
Since then, a wide diversity of research has been dedicated to this area of study [3].
Over time, in the case of more complicated use cases, Deep Learning (DL)-based
techniques play a pivotal role in enhancing Al’s ability to automate tasks and an-
alyze the images to make predictions. So, this can advance Al’s problem-solving
capabilities. This feature of DL-based techniques can make a bridge between Al and
the medical domain. DL-based techniques leverage sophisticated neural network
architectures to automatically extract intricate patterns and features from complex
medical images, such as MRI scans, CT scans, and histopathological slides. By learn-
ing hierarchical representations directly from data, these tools enhance the accuracy
and efficiency of disease detection, aiding healthcare professionals in making in-
formed decisions. This can reduce the rate of human errors in cancer diagnosis.

Human errors can range from misinterpretations of subtle patterns to oversight
in extensive data sets, potentially leading to misdiagnoses. For instance, assume that
a pathologist has to review 100 WSIs in a day. The first 70 WSIs were benign and the
71th WSl is a tissue in grade 2 [4]. Since his eyes used to see normal biopsies, by
seeing the abnormalities he might grade the tissue as malignant although it is not.
This rate of human errors might be decreased by the experiences that pathologists
have. By harnessing human errors, patient care in the realm of cancer diagnosis can
be improved. In traditional cancer diagnosis, there is a reference book (a.k.a. Atlas
1) which contains some samples for cancer types and includes sections of risk factor
and taking action. In the cases where pathologists cannot conclude the grade of
cancet, they can refer to this book and compare the histopathological patterns of their
query with patterns in the images of Atlas [5]. Consequently, they can make up their
decision on the grade of their query. Although this assists pathologists, it is time-
consuming and it has limited cases that might not be enough for the pathologist.

An alternative approach in the current cancer diagnosis in complicated cases is
that pathologists send their tissue to other centers that might be located in different
countries or other cities to consult with their peers [6]. This workflow might increase
the accuracy of grading and diagnosis of cancer but it is time-consuming, expensive,
and risky. Some accidents might occur to the tissue such as breaking, losing, etc.
To prevent these troubles, a Content-Based Histopathological Image Retrieval (CB-
HIR) mechanism mimics this workflow by developing an accurate Feature Extractor
(FE) and a high-performance search engine [7]. CBHIR not only searches for images
but also compares the different types of histopathological images based on their pat-
terns.

Ihttps:/ /canceratlas.cancer.or
P g
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The main motivation of this thesis is to propose a CBHIR framework to increase
the accuracy of cancer diagnosis, speed up the searching workflow, and decrease
the workload of pathologists. In the current thesis, we propose some CBHIR frame-
works to assist pathologists in the diagnosis of prostate, breast, and skin cancer to
help pathologists in decision-making. The proposed models train with data sets that
were stained by Hematoxylin and Eosin (H&E) which provide pink and purple im-
ages [8]. In this Ph.D. thesis, we propose different cutting-edge DL-based CBHIR
frameworks that improve the accuracy of cancer diagnosis. To explore the potential
use case of the proposed methods in diagnostic imaging, we address several scenar-
ios to cover the challenges that pathologists face while analyzing the tissue.

In the second chapter of this thesis, we propose a novel CBHIR framework that
mainly focuses on prostate cancer and breast cancer as multi-class and binary data
sets. In Chapter 3, we propose to employ a CN technique as a pre-processing step in
a CBHIR framework as a result of analyzing the obtained results. With the advent
of running DL-based techniques on GPUs, a new range of promising possibilities
opened a new range of potential approaches that can increase the feasibility of using
DL techniques. In Chapter 4, we go further to tackle the difficulties related to stor-
age problems, resource limitations, and medical data privacy thanks to GPUs and
Federated Learning (FL). In the last chapter (Chapter 5) of this thesis, we propose a
novel FE capable of returning the top first similar patches with high accuracy. This
can provide a more confidential tool for the pathologist and there are no other stud-
ies that can have high performance at top first retrieved images. In this chapter, the
proposed CBHIR framework can assist pathologists in grading the STUMP tissue of
skin cancer data set which was not done in other studies.

1.1.1 Big players

In the world of digital pathology, doctors and researchers from different countries
come together to collaborate to improve the cancer diagnosis workflow. To do so, the
CBHIR framework brings computer scientists, doctors, and industry experts into
one room to solve complex medical puzzles. This represents a paradigm shift in
medical image analysis, particularly in the context of pathology. Companies and
research centers can leverage CBHIR to encourage collaboration and knowledge
sharing among researchers, clinicians, and data scientists, creating platforms that
facilitate collaborative efforts. CBHIR offers data management to companies by re-
ducing reliance on text-based queries and streamlining the retrieval process. Also,
the integration of cross-modal retrieval, where information is retrieved from dif-
ferent modalities, extends the advancement of CBHIR beyond conventional image
retrieval, offering innovative solutions for pathological diagnosis and research. This
integration and utilization of the histology foundation models underscore the po-
tential for groundbreaking advancements in medical imaging and pathology. So,
the interest in CBHIR is a driving force for both researchers and companies and it
makes an opportunity for the collaboration between academia and industry.

According to Scopus search results by considering content AND based AND
medical AND image AND retrieval as the keywords from 2013 to 2023 (a period
of 10 years), there are 921 journal and conference papers in English. We limited the
subject area to computer science, engineering, and medicine. This illustrates that
the recent impact of CBHIR is reflected in academia through the vast number of
publications.

CBHIR is a search engine for medical images which motivates big players in
the research world, such as top universities and institutes, to dive deep into this
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topic. Kimia lab 2 at the University of Waterloo, in Canada is one of the research
centers which dedicated many pieces of research to this topic [9, 10, 11, 12, 13, 14].
CBHIR is not just about finding similar patches but also about providing similar
histopathological patterns for pathologists for a better and faster cancer diagnosis.
This cross-disciplinary framework can deepen the understanding of diseases and
foster innovative solutions.

Philips ® and Google Health * are playing a role as a big player in this field aiming
to assist pathologists through DL-based techniques. The other important company
in the field of digital pathology is Bigpicture®. This company has a dedicated part in
the field of CBHIR and federated learning.

The interest in CBHIR extends to its practical applications in clinical settings, fa-
cilitating more accurate and efficient pathology diagnosis. Companies specializing
in medical imaging solutions, such as Siemens Healthineers® and GE Healthcare’,
recognize the transformative impact of CBHIR on streamlining diagnostic work-
flows.

1.2 Clinical use case

The primary data set of this thesis is cancerous images since according to the reports
from the World Health Organization (WHO), every year, the world is witness to
more than 6 million cancer deaths of the 10 million new cases each year. The point
is that more than half occurs in developing countries since the developing countries
succeed in achieving lifestyles similar to Europe, North America, Australia, New
Zealand, and Japan, they will also encounter much higher cancer rates, particularly
cancers of the breast, colon, prostate, and uterus (endometrial carcinoma) [15]. Based
on the estimations reported by WHO, these figures will only worsen in the next
twenty years; increasing to 10 million deaths and 15 million new cases annually.

Among men, prostate cancer is largely seen in more developed countries. Among
women, breast cancer is one of the most prevalent cancer types with 2.3 million
women diagnosed with this cancer and 685,000 deaths globally in 2020 [16]. In both
genders, over 1.5 million skin cancers are diagnosed every year as a result of the
ultraviolet radiation from the sun. This means that one in every three cancers diag-
nosed is a skin cancer and as ozone levels are depleted, it is estimated that a 10%
decrease in ozone level will result in an additional 300,00 non-melanoma and 4,500
melanoma skin cancer cases [17]. Based on these reports, breast, prostate, and skin
cancer are chosen as the main cancer types that this thesis focuses on [18]. We select
these cancer types since they are more prevalent and we want to focus on gender-
based and non-gender-based cancers. As far as the rate of patients struggling with
cancer is increasing, the role of digital pathology and CAD tools become more high-
lighted. So, in this thesis, we proposed CBHIR approaches with different frame-
works to assist pathologists and increase the diagnosis accuracy to decrease the rate
of death due to cancer [19].

The primary users of the proposed approach in this thesis are pathologists with
different levels of expertise, catering to their varied needs in diagnosing cancerous
tissues. In addition to the clinicians, this framework extends its benefits to society

Zhttps:/ /tizhoosh.com /labs /kimia-lab/

Shttps:/ /www.philips.com.au/healthcare/solutions/pathology
4https:/ /health.google/consumers/search /

Shttps:/ /www.linkedin.com /company /bigpicture-project/
bhttps:/ /www.siemens-healthineers.com/

https:/ /www.gehealthcare.com/
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and the patient indirectly. There are plenty of use cases to demonstrate how the
CBHIR enhances clinical workflows, supports decision-making, and contributes to
advancements in cancer diagnosis and treatment. Some of these use cases are as
follows:

¢ CBHIR assists pathologists in diagnosing cancer by retrieving top K images
with similar histopathological patterns. This helps pathologists, dermatolo-
gists, and radiologists identify the extent and nature of abnormalities.

¢ CBHIR facilitates medical research by providing quick access to a diverse set
of cancer images. This aims to assist clinicians in tracking disease progression
over time by comparing the query tissue with historical cases.

* CBHIR supports early detection of cancer by retrieving similar visual histopatho-
logical patterns.

* CBHIR allows pathologists to explain the condition of the tissue to the patient
with the aim of patient education.

¢ CBHIR promotes and facilitates the decision-making of multidisciplinary teams,
allowing experts from all over the world and in different centers to analyze the
images and contribute to patient care.

In addition to the above-mentioned benefits of CBHIR, retrieving top K similar
patches to the query is an automatic Atlas book while different medical centers can
adjust the amount of K based on their requirements. Furthermore, the flexibility
of CBHIR in retrieving K-similar patches makes it more comprehensive instead of
focusing on only one top result or resulting only with a label. The most powerful
property of this kind of approach is the transparency and feedback that it provides
to specialists instead of a categorical classification. This benefit might serve as an
educational tool for medical professionals, allowing professors to teach medical stu-
dents by providing some comparable cases with their queries.

It is noteworthy to mention that the expertise and experience of pathologists
play a significant role in the accuracy and reliability of cancer diagnosis and tissue
grading. So, newly graduated pathologists not only need more time to diagnose the
cancer grade and cancer type but also need more samples to be able to compare the
histopathological patterns from the Atlas book or any other reference books. CBHIR
offers similar patches to their query in a shorter time and from all the collaborative
centers. Therefore, it can transfer the knowledge and the guidance provided by
seasoned experts contributes to the continuous development of skills in the field.

Moreover, not only medical students can learn better and deeper under the um-
brella of CBHIR, but researchers can also reach a rich source of annotated images for
the development and validation of new CAD methods in order to improve diagnos-
tic methods and treatment options.

Apart from all the benefits of CBHIR in digital pathology, it brings some benefits
for the patients besides they can get better diagnosis and treatment. The anxiety
and stress that the person suffering from cancer is tolerating might affect his family,
society, his performance in his job, etc. The case that the time of diagnosis decreases
this stress and pressure on the person can be diminished and all the consequences.

In essence, the application of this CBHIR transcends individual medical prac-
tices, creating a ripple effect that positively influences broader healthcare dynamics
and societal well-being.
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1.3 Main objective

The main objective of this Ph.D. thesis is to research on deep learning strategies for
CBHIR. Several DL-based frameworks are designed, developed and validated to as-
sist experts in diagnosing and grading a tissue. We aim to address the challenges
that pathologists face during cancer detection and grading by offering a CBHIR
technique that works as an automatic Atlas book. In particular, we set our sights
on DL-based approaches to propose CBHIR frameworks for the searching task. This
thesis intends to frame these approaches covering different learning paradigms and
scenarios to reply to the demands of pathologists. In pursuit of this, we aim to pro-
pose new CBHIR frameworks based on DL algorithms to reach the deeper features
of tissue in order to find similar histopathological patterns for pathologists. To do
so, we categorize our investigations into unsupervised learning, federated learn-
ing, and contrastive learning methodologies. In this thesis, we conduct an extensive
comparison between these types of learning to reach the framework that excels in
terms of training time and accuracy, catering to the needs of both pathologists and
engineers. This framework provides clinicians with a search engine that assists them
in characterizing complicated and challenging cases.

In this thesis, we propose a search engine that can solve computer vision and
medical challenges using DL-based algorithms. We aim to provide CBHIR frame-
works for the clinician’s demands with more explainable DL-based methods in terms
of transparency, trustworthiness, and reliability for pathologists. In particular, the
main objectives of this thesis are as follows:

¢ Proposing an unsupervised approach for detection of similar patterns on bi-
nary and multi-class data sets;

¢ Studying a CBHIR framework with an unsupervised feature extractor that
takes Color Normalization (CN) into account as a pre-processing step. This
draws attention to the relevance of color variation and its impact on CBHIR;

* Proposing a novel international FL-based Content-Based Medical Image Re-
trieval (CBMIR). This is a decentralized and confidential unsupervised tech-
nique on varying data sets distributed among individual clients;

¢ Designing and implementing a custom-built Siamese network to address inter-
class variations and large intra-class variances by applying contrastive loss;

¢ Formulating a CBHIR approach to tackle the challenges in grading Spitzoid
Tumors of Uncertain Malignant Potential (STUMP) by providing deep insights
into the complexities.

To deal with these main objectives, we split the goals into four chapters. In each
of these chapters, a new CBHIR framework with different scenarios is presented.
The main cancer types that these frameworks target are breast, prostate, and skin
cancer.

Our investigations on unsupervised learning techniques propose a fully unsu-
pervised FE conducted on prostate and breast cancer to tackle the lack of annotated
data and provide top K similar images for pathologists. Then, these studies move
further to offer a pre-processing step on patches, aiming to assess and analyze the
effects of various CN techniques on the ultimate outcomes of CBMIR.

In the federated learning-based studies, a worldwide CBHIR framework is pro-
posed for breast cancer by leveraging FL into the CBHIR tool. Specifically, we pro-
pose a novel CBHIR framework that trains with distributed data sets to tackle the
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lack of enough annotated data sets and data storage. To the best of our knowledge,
there are no other studies that offer a Federated CBHIR on breast cancer.

Contrastive learning-based studies mainly focused on retrieving the first top sim-
ilar images with high accuracy for breast and skin cancer data sets. There are zero
studies with this high performance at the first top retrieval to the best of the author’s
knowledge. The second goal of contrastive learning-based techniques is to retrieve
similar histopathological patterns for the STUMP tissues of skin cancer which is the
first study in this area to the best of our belief.

In short, this thesis aims to propose a novel approach that can integrate CAD DL-
based systems into daily clinical practice. The novel proposed strategies were devel-
oped to facilitate cancer diagnosis and grading for pathologists without requiring a
huge search time or a laborious annotation process.

To achieve these objectives, each proposed approach in each chapter must un-
dergo a sequential protocol based on the CRISP-ML(Q) methodology [20] such as
below:

* Data understanding: An in-depth exploration of the histopathological pat-
terns of prostate, breast, and skin cancer is needed. Similarly, a deep analysis
of cancer diagnosis workflow in medical centers should be performed with the
aim of understanding the pathologists” challenges in daily work.

¢ Data pre-processing: Each of the data sets corresponding to each particular
cancer type should be pre-processed before feeding to the proposed DL-based
CBHIR tools. Histopathological images mainly suffer from color variation due
to the staining process. This might affect the final results of a DL-CBHIR which
has to be tackled.

* Modeling: This stage includes the cutting-edge design and development of
innovative DL-based CBHIR frames to reply to the demands of pathologists.
A wide diversity of paradigms should be taken into account to provide the
most sufficient technique according to the histopathological features of each
cancer type.

¢ Evaluation: In this stage to compare the performance of the proposed DL-
structures, the state-of-the-art methods should be explored in terms of quanti-
tative and qualitative.

Monitoring and Maintenance as the last steps of the CRISP-ML(Q) methodology
are not presented in this PhD thesis.

1.4 Main contributions

As mentioned above, our primary focus has been dedicated to prostate, breast, and
skin cancer within different scenarios to assist pathologists in the cancer diagnosis
process in terms of speed, accuracy, feasibility, decision-making, etc. These cancer
types were selected because prostate and breast cancer are two leading causes of
cancer death in men and women as the most common types of cancers in the entire
population [21, 22]. Also, according to the World Health Organization, nearly one in
three diagnosed cancers worldwide is a skin cancer [23]

CAMELYONT17 challenge (CAM17), BreaKHis, SICAPv2, and skin CLARIFY are
the histopathological images in the used data sets. The images in these data sets
were stained with H&E to clarify the histopathological patterns of the patches.
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In the course of this Ph.D., DL-based techniques are applied through these data
sets to propose different CBMIR frameworks. These histopathological images are
chosen because of their prevalence in cancerous patches.

In [24], we proposed an unsupervised CBHIR on prostate cancer using deep
learning approaches to find similar histopathological patterns to the query in the
largest pixel-annotated prostate data set [3]. In [25], we carried out a comparison be-
tween different evaluation techniques in the CBHIR studies to identify the best way
of performance evaluation of CBHIR tools. This study was conducted on prostate
and breast cancer data sets in order to report a promising comparison with the pre-
vious studies. In [26], our proposed unsupervised DL-CBHIR algorithm faces the ef-
fects of color variation of histopathological images on CBHIR performance. To do so,
three different color normalization techniques were employed in the pre-processing
stage to do some experiments on breast cancer data sets. In [27], we extended our DL
knowledge by leveraging FL concepts to the CBHIR framework, for the first time,
to train the DL-model with distributed breast cancer data sets. In [28] we conducted
our experiments with a self-supervised classification tool to tackle the challenges
of grading prostate cancer specifically into G3 and G4. Further on, we conducted
distance-based training of algorithms on breast and skin cancer data sets in [29]. As
a novelty in [29], for the first time, we explored the potential solution of grading
STUMP tissues as one of the most challenging cancer types of skin cancer.

In the following subsection, we are going to provide a condensed overview of
the technical contributions from each chapter, focusing on the learning strategies
addressed in each paper.

1.4.1 Unsupervised learning strategy

In Chapter 2, we propose an Unsupervised Content-Based Medical Image Retrieval
(UCBMIR) tool in an unsupervised manner for prostate and breast gradation prob-
lems that achieved comparable performance to fully supervised methods. We demon-
strate our experiments on the largest pixel-was annotated prostate data set [3], BreaKHis,
and Arvaniti. The proposed innovative approach addresses the problem of a lack of
a pool of annotated images in DL-CBHIR tools. To do so, a custom-built Convolu-
tional Auto Encoder (CAE) is developed to extract the meaningful and deep features
of the patches. Euclidean distance is the similarity measure function that is applied
to the extracted features to find similar patches and rank them. By reviewing the
state-of-the-art studies, we conclude that there are two widely used numerical tech-
niques in CBMIR and visual evaluations. Therefore, we measured the performance
of the proposed technique with the numerical techniques and the visual evaluations.
Furthermore, to determine if the retrieved images belong to the same cancer grade as
the query we made a comparison with some cutting-edge classification studies. The
main aim of this comparison was to evaluate the performance of the proposed CB-
HIR tool in discriminating different grades. To have a comprehensive evaluation, an
external evaluation demonstrated the performance and generalization of UCBMIR,
by training the model on SICAPv2 and testing it on the Arvaniti data set.

In Chapter 3, following the approach outlined in [30], three CN techniques in-
cluding classic and contemporary methods were employed on CAM17. These nor-
malized data sets were then fed into the proposed CAE as a distinct data set. This
work explores the influence of the performance of CN techniques on the final results
of a CBHIR framework through an extensive comparison between different results
of the framework with inputs from each CN technique.
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1.4.2 Federated learning based strategy

In Chapter 4, we mainly focus on breast cancer in distributed centers. Thanks to
the CLoud ARLtificial Intelligence For pathologY (CLARIFY) project we had a great
opportunity to distribute our data set into two countries and four centers includ-
ing companies and universities. These centers were TYris software company (TY),
Valencia, Spain, University van Amsterdam (UvA), Amsterdam, The Netherlands,
UPV Universitat Politecnica de Valéncia (UPV), Valencia, Spain, and University of
Granada (UGR), Granada, Spain.

This contribution is presented in three scenarios and two different breast cancer
data sets including BreaKHis and CAM17. In Chapter 4, we proposed to mimic a
WWifedCBMIR within 2 and 4 centers to train an unsupervised FE. One custom-
built CAE is introduced as an unsupervised FE to be trained under each scenario
of this chapter. First, we distributed CAM17 and BreaKHis at 400x into TY and
UvVA centers to train the model with two distinct data sets. In the second scenario,
we distributed each magnification of BreaKHis into a center to mimic the case that
four clients connect to the proposed FedCBMIR. In the last scenario of this study, we
assumed that pathologists need to retrieve similar patches to their query at different
levels of magnification. To do so, we assumed that centers have an agreement and
they can share similar patches. So, it is handy to retrieve similar patches at different
levels of magnifications to be able to analyze the patterns with more detail.

1.4.3 Contrastive learning based strategy

Breast and skin cancer are the two main data sets in Chapter 5. In this Chapter, a
Siamese network is presented for each data set and the obtained results overpassed
not only the previous CBHIR tools but also the the classifiers. These proposed
Siamese networks are robust to imbalanced data sets and address the shortcomings
of histopathological images.

In this work, we made an extensive evaluation and comparison between the pro-
posed CBHIR tool and the recently published techniques to compare the perfor-
mance of the proposed tool in retrieving top K similar patches. To the best of our
belief, it is the first CBHIR tool on breast and skin data set that can reach high per-
formance with top first retrieved patches. In the other part of the evaluation, we
compared our results with state-of-the-art classifiers to evaluate to what extent the
proposed CBHIR tool succeeds in retrieving patches with the same class label as the
query. The performance of the proposed CBHIR framework was extensively eval-
uated visually and numerically. We show the Gradient-weighted Class Activation
Mapping (Grad-CAM) figures as explainable Skin-twins to provide interpretability
to the uncifrable STUMP cases

The other challenge of pathologists that we considered in our study is grading
STUMP tissues in skin cancer. To the best of our knowledge, it is the first time that a
study dedicates its main objective to tackling this challenge and gives a hand to the
pathologist in grading this case.

1.5 Framework

This PhD thesis is framed within a research project named CLoud ARtificial Intelli-
gence For pathologY (CLARIFY)®. CLARIFY is an innovative, multinational, multi-
sectorial, and multidisciplinary research and training program that makes a bridge

Shttps:/ /www.clarify-project.eu/
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between engineering and medicine with a focus on digital pathology. The main
goal of this project is to increase the benefits of digital pathology and CAD to assist
pathologists in their daily workflow. To do so, it creates a research infrastructure
based on histopathological image processing, DL, and cloud computing to enable
pathologists to share their knowledge and reach better-informed decisions.

The CBHIR framework in CAD is based on DL and cloud-computing algorithms
to improve workflow efficiency, stimulate collaboration, and increase diagnostic
confidence at pathology labs without the dependencies on the lab’s locations.

1.6 Outline

This thesis comprises six chapters. The current chapter introduces the research mo-
tivation, defines the objectives, and highlights the primary contributions. Further-
more, this chapter provides an overview of the framework and outlines the structure
of the thesis. This thesis is structured by four journal papers into four chapters.

Chapter 2 corresponds to a paper titled Towards More Transparent and Accu-
rate Cancer Diagnosis with an Unsupervised CAE Approach which is published in
IEEE Access [25] belonging to the editorial IEEE. The paper was published in 2023,
but the following details in this journal correspond to 2022. This journal had an im-
pact factor of 3.9 in 2022 and 4.1 in the 5-year impact factor. The top ranking was in
the category of ENGINEERING, ELECTRICAL & ELECTRONIC with a percentile of
63.8 (Q2).

Chapter 3 corresponds to a paper titled Advancing CBHIR Pre-processing: Com-
parative Analysis of the Effects of Color Normalization Techniques on Content-
Based Histopathological Image Retrieval which is published in Applied Science
journal [26] belonging to the editorial MDPI. The paper was published in 2024. Ap-
plied science had an impact factor of 2.2 in 2022 and 2.9 in the 5-year impact factor.
Applied Science is considered a Q2 journal in 2022 by having a 53.9 JIF percentile in
the category of ENGINEERING, MULTIDISCIPLINARY .

Chapter 4 corresponds to the paper tittled WWFedCBMIR: World-Wide Feder-
ated Content-Based Medical Image Retrieval which was published in Bioengineer-
ing journal [27] belonging to the editorial MDPIL. The paper was published in 2023.
Bioengineering had an impact factor of 4.6 in 2022 and 3.900 in the 5-year impact
factor. The journal by having a 68.1 JIF percentile was counted as a Q2 journal in
2022.

Chapter 5 corresponds to the paper titled Siamese Content-based Search Engine
for a More Transparent Skin and Breast Cancer Diagnosis through Histological
Imaging which is under review by Computers in Biology and Medicine belonging
to the editorial Elsevier. The first draft of the paper was published in 2024 on Arxiv
[29]. Computers in Biology and Medicine journal had an impact factor of 7.7 in 2022
and 6.9 in the 5-year impact factor. The journal by having an 88.6 JIF percentile was
counted as a Q1 journal in 2022.

Note that Chapters 2, 3, 4, and 5 follow a consistent communication structure.
Initially, each chapter presents an abstract, followed by an introduction including a
review of the related literature and outlining the key contributions of the proposed
work. The subsequent sections of these chapters delve into a material section to illus-
trate the data sets used to train the proposed DL-based techniques which are detailed
in the methodology section. Subsequently, the proposed methods undergo evalua-
tion using specified methods outlined in the evaluation section. Then, an extensive
comparison is conducted to report the performance of the proposed frameworks in
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comparison with other state-of-the-art and classic methods. Each chapter concludes
with a succinct summary, recapping the main results and contributions. Finally, in
the final section, they provide some future lines according to the main contributions
for further investigations.

In Chapter 6, we align the findings of each chapter with the global aim of this
Ph.D. thesis. We provide a comprehensive synthesis of the results and suggest fu-
ture research lines. In the Merit section of this chapter, we highlight the academic
achievements, including journal publications, and participation in national and in-
ternational conferences. Finally, the Bibliography is presented.
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Abstract

According to the Global Cancer Observatory, 2020, breast cancer is the most
prevalent cancer type in both genders (11.7%), while prostate cancer is the second
most common cancer type in men (14.1%). In digital pathology, Content-Based Med-
ical Image Retrieval (CBMIR) is a powerful tool for improving cancer diagnosis by
searching for similar histopathological Whole Slide Images (WSIs). CBMIR empow-
ers pathologists to explore similar patches to their query, enhancing diagnostic reli-
ability and accuracy. In this paper, a customized unsupervised Convolutional Auto
Encoder (CAE) was developed in the proposed Unsupervised CBMIR (UCBMIR)
to replicate the traditional cancer diagnosis workflow, offering the potential to en-
hance diagnostic accuracy and efficiency by reducing pathologists” workload. Fur-
thermore, it provides a more transparent supporting tool for pathologists in cancer
diagnosis. UCBMIR was evaluated using two widely used numerical techniques in
CBMIR, visual techniques, and compared with a classifier. Validation encompassed
three data sets, including an external evaluation to demonstrate its effectiveness.
UCBMIR achieved 99% and 80% top 5 recalls on BreaKHis and SICAPv2 with the
tirst evaluation technique while using the second technique, it reached 91% and 70%
precision for BreaKHis and SICAPv2, respectively. Moreover, UCBMIR displayed
a strong capability to identify diverse patterns, yielding 81% accuracy in the top 5
predictions on an external image from Arvaniti. The proposed unsupervised CBMIR
tool delivered 83% accuracy in retrieving images with the same cancer type.
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2.1 Introduction

Cancer is a leading cause of death worldwide, with nearly 10 million deaths re-
ported in 2020, as per the World Health Organization (WHO) [31]. In 2020, breast
and prostate cancer affected 2.26 million and 1.41 million cases, respectively. Ac-
curate cancer diagnosis is critical for effective treatment because each cancer type
requires a specific treatment regimen. However, diagnostic errors are prevalent, af-
fecting approximately 5.08% of cases, which translates to around 12 million adults
in the United States [32]. This significant percentage of human error in a large num-
ber of cancer cases poses significant drawbacks for society and the quality of human
lives.

Moreover, there is a significant disparity in treatment availability between coun-
tries with varying income levels. In high-income countries, comprehensive treat-
ment is available in over 90% of cases, but this figure drops to less than 15% in
low-income countries [33]. In this context, there is an urgent need to develop reli-
able and accurate diagnostic tools that can assist medical professionals in making
accurate and timely diagnoses, regardless of their location or income level.

Computer-Aided Diagnosis (CAD) models play a vital role in reducing the inci-
dence of human errors and providing an inclusive worldwide platform for individ-
uals with varying incomes. CAD offers multiple approaches under the umbrella of
"digital pathology" to enhance conventional cancer diagnosis. Digital pathology has
garnered significant attention due to its ability to provide a definitive diagnosis at
the pathology level, taking into account factors such as size, complexity, and color
[13]. The challenges and opportunities presented in digital pathology are explained
in [34]. Despite the challenges, digital pathology can serve as a bridge toward the
discovery of histopathological imaging and enable more accurate prognostic predic-
tions for disease aggressiveness and patient outcomes.

The following subsections cover a brief literature review of digital pathology on
WSIs.

21.1 Segmentation

Automatic detection of irrelevant regions of tissue may bring a more reliable pre-
diction. In [35], they proposed a multi-scale model to detect invasive cancerous
area patterns in WSIs of bladder cancer. Similarly, [36] focuses on detecting blood
and damaged tissue as problematic artifacts in bladder tumors. In [37], the au-
thors apply the DenseRes-Unet model to multi-organ histopathological images to
segment overlapped/clustered nuclei. A binary threshold is set to detect the con-
tour of the extracted nuclei in the images, as the morphological characteristics of the
cells are critical to grading the cancers. Moreover, the two-stage nuclei segmenta-
tion strategy proposed in [38] based on watershed segmentation is used to distin-
guish between carcinoma and non-carcinoma recognition in the Bio-imaging 2015
data set. Additionally, [39] introduced a novel approach to detect nuclei in breast
cancer histopathological images using a stacked sparse Auto Encoder (AE).

Segmentation techniques have been studied extensively to quantify cell nucleus
form and dispersion, which may improve accuracy in classification and grading [40].
However, these methods do not offer direct benefits to pathologists. Though Deep
Learning (DL) has shown promise in improving segmentation, it relies heavily on
large annotated data sets [41], limiting its impact [42]. Innovative approaches are
needed to develop new techniques that can benefit pathologists and improve disease
diagnosis.
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2.1.2 C(Classification

Classification of input images is a critical task in medical image analysis, where an
optimal classifier is expected to provide accurate labels for each input [28]. This can
significantly aid pathologists in their daily analysis of tissue grading. For instance,
in the realm of cancer diagnosis, saliency maps computation has improved the diag-
nostic process, both in radiological [43] and histopathological [44] images.

[3] validated an end-to-end pixel-level prediction of Gleason grades and scored
the entire biopsy. Similarly, [45] proposed an AE using Siamese network aimed at
learning image features by minimizing the distance between input and output. An-
other approach was proposed by [46], who aimed to decrease the rate of diagnostic
errors by performing patch-based transfer learning. However, patch-level data sets
extracted from Whole Slide Images (WSIs) often contain mislabeled patches, which
may lead the classifiers to miss important information. To address this problem,
[47] proposed DenseNet121-AnoGAN, which employs unsupervised anomaly de-
tection with generative adversarial networks (AnoGAN) to prevent missing misla-
beled patches. This approach has been successfully applied to classify the BreaKHis
data set into benign and malignant.

The author in [48] fed an Inception Recurrent Residual Convolutional Neural
Network (IRRCNN) model with two breast cancer data sets to have binary and
multi-class classifiers. The authors in [49] conducted their experiments on DenseNet
with SENet IDSNet and BreaKHis data set. They fine-tuned DenseNet-121 to pro-
pose an accurate classifier. A deep Feature Extractor (FE) from a pre-trained network
and a classifier are used in [50] to classify BreaKHis. 16 pre-trained networks and 7
classifiers were tested in this paper.

In brief, classifier architectures have been proposed for use in diagnostic pathol-
ogy to aid pathologists in making more accurate cancer diagnoses. Many studies
have reported high classification accuracy, which has been validated in engineering
laboratories. However, despite their potential importance, these measurements have
not yet led to a significant change in diagnostic imaging.

While classification and segmentation have proven to be valuable tools, they
have not drastically transformed the diagnostic process. This may be attributed to
their inability to reduce ambiguity and boost the confidence of pathologists in their
diagnoses. In essence, these methods do not provide any additional information to
aid pathologists in their report writing during the diagnostic process. For instance,
CAMs and saliency maps provide clinicians with information exclusively about the
case under study. These are visual information from the input image that CNN5s are
paying attention to perform classification. While CBMIR goes deeper in providing
transparency and reliability to pathologists. It is retrieving similar cases from the
previously diagnosed cases. This approach is similar to the pipeline followed by
pathologists who consult with reference books in pathology, such as Atlas. So, CB-
HIR is a digital intelligent Atlas book that can speed up the search process and be
more accurate.

In regards to developing methods for specific applications, it is possible to achieve
higher results for the intended objective. However, creating and implementing unique
methods for each potential task of interest is impractical. As an alternative ap-
proach, CBMIR has established a reliable framework for quality control. While it
may have poorer accuracy than an application-specific instrument, having a multi-
purpose general-purpose tool like CBMIR can still be useful.
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2.1.3 Content-Based Medical Image Retrieval (CBMIR)

Automated medical imaging has been growing dramatically to improve clinical treat-
ment and intervention in medical diagnosis. This yields an exigent demand for de-
veloping highly effective CAD systems. CBMIR is an active area of research with
significant applications in routine clinical diagnostic aid, medical education, and re-
search. In CBMIR, the end user targets retrieving the most relevant images. So,
pathologists will trust this outcome easier because not only will they have a second
opinion on their tissue (label), but they can also look for the same patterns in the
previous tissues. In the classification task, they can get a label for their new tissue
without knowing the reason. But in CBMIR, they can see the similarity between
their tissues and the retrieved ones. Moreover, the explainable nature of CBMIR
allows clinicians to understand how the system arrived at a particular diagnosis or
recommendation, promoting transparency and trust in Al-assisted medical decision-
making. Most notably, CBMIR is pathologist-centric; in contrast to classification, it
is essentially an attempt to make decisions on behalf of the pathologists.

In DL, similar patterns mean similar features and representations. Humans can
properly describe and interpret image contents, while digital machines can provide
fewer semantic words for the same image. Machines provide a numerical descrip-
tion of the images with a wide gap compared to the human interpretation of the
same image. This gap is named "semantic gap," and this broadly limits the per-
formance of retrieval tasks [51]. The semantic gap is the main reason CBMIR has
not made it into the daily laboratories workflow, yet. Indeed, this is arguably the
paramount challenge in adopting CBMIR into the laboratories” workflow. Patholo-
gists face numerous challenges in the current diagnostic paradigm, with time being
a common factor. However, the impact of these challenges extends beyond just med-
ical professionals and patients; it can also affect society as a whole. This can lead to
emotional distress and other adverse effects on the well-being of patients and their
families. Digital pathology, through the use of CBMIR, can mitigate the impact of
these changes and enhance the accuracy of diagnoses.

CBMIR in virtual telepathology offers a reliable framework for achieving qual-
ity control through computational consensus-building, ensuring that diagnoses are
accurate and consistent across different pathologists and healthcare institutions. By
utilizing a vast database of reference images and advanced algorithms, CBMIR en-
hances the accuracy of diagnoses, potentially decreasing the need for additional
studies and speeding up the diagnostic process. This can lead to better patient out-
comes and a more efficient healthcare system. In recent years, CBMIR has gone
through a renaissance with the promise of revolution. In a previous study [52],
a CNN-based AE was applied to the BreaKHis data set with the aim of minimiz-
ing misinformation and evaluating the performance of CBMIR in a binary scenario.
However, the reconstructed images produced by this method were found to be
blurry, indicating that the extracted features by the AE were not robust enough to
reconstruct the original image. In addition, the scope of this study was limited to
detecting breast cancer using a two-class data set, without considering other dis-
eases. These limitations highlight the need for further research to improve the qual-
ity of feature extraction in CBMIR systems. In [10], the CBMIR performance was
improved in a supervised manner using a Hybrid feature-based ICNN model. The
model was trained by adding three Fully Connected (FC) layers to accommodate the
classification of cancer subtypes from TCGA. The researchers in [11] aimed to repli-
cate the process of detecting morphological features used by pathologists in cancer
diagnosis by incorporating different magnification levels into their CBMIR system.
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Specifically, they trained their system using a subset of TCGA data set in three mag-
nification levels: 20x, 10x, and 5x. To address the differences in features that might
exist at these different magnification levels, the last DenseNet-121 block [53] was
re-trained using 10x and 5x magnification patches. This supervised approach im-
proved the adaptability of the FE and resulted in better overall performance of the
CBMIR system. KimiaNet reported two types of image search: horizontal search
and vertical search. In the horizontal search, the query is applied to the entire data
set to find similar whole slide images (WSI) with a self-supervised model [12], while
in the study by Fashi et al. [54], the vertical search approach is designed to identify
similar types of malignancies in a specific organ. This is achieved by utilizing pre-
trained models with openly provided weights from the Keras library. The problem
with supervised CBMIR is that it requires a large amount of labeled data, which can
be time-consuming and costly to obtain. On the other hand, the problem with self-
supervised CBMIR is that it may not perform as well as supervised methods and
may require more complex models. Indeed, many researches [55, 56, 57, 58, 59, 60,
61, 62, 14, 63] have been dedicated to CBMIR, but the overall performance of the
existing systems is not high enough due to the growing medical images and digital
pathology.
The main contributions of this paper in proposing an Unsupervised CBMIR (UCB-

MIR) are:

* Proposing a new unsupervised approach for prostate and breast cancer gra-
dation problem using CBMIR that achieves performance comparable to fully
supervised methods.

¢ Extensively validating the proposed UCBMIR approach on three databases,
including BreaKHis for a binary scenario and SICAPv2, which is the largest
pixel-wise annotated prostate data set, and Arvaniti for multi-class grading
problem, which is more challenging.

¢ Conducting an external evaluation to demonstrate the performance and gen-
eralization of UCBMIR, by training the model on SICAPv2 and testing it on
the Arvaniti data set.

¢ A comprehensive evaluation of UCBMIR is presented, encompassing various
numerical and visual performance metrics.

In addition, the paper addresses two major problems in traditional cancer diagno-
sis: inexperienced pathologists requiring more ancillary studies for diagnosis and
the time-consuming process of differentiating between cancer grades. The UCBMIR
model proposed in the paper provides a vast database of images that pathologists
can use as a reference for diagnosis, allowing them to make more accurate diagnoses
even if they are inexperienced. Additionally, the proposed tool enables pathologists
to access annotated image databases instantly, leading to a faster diagnosis and skip-
ping time-consuming reading and searching processes in "ExpertPath" and "Patholo-
gyOutlines" or an Atlas book.

In order to reach the primary objective of this study we introduce an unsuper-
vised image search tool for pathologists to facilitate the efficient retrieval of similar
images from previous cases. The initial stage involves training a customized CAE
that includes a skip layer between the encoder and the decoder, as well as an atten-
tion block in the bottleneck. This CAE is trained to reconstruct images and learn
effective data representations while simultaneously ignoring the noise. The encoder
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with the bottleneck of the trained CAE serves as our FE in the search stage. We
represent the complete training set of the data set as in previous cases and carry
out patch-by-patch retrieval to obtain diagnosis-relevant patches for each query in
the test set. Our ranking algorithm, which utilizes Euclidean distance, identifies the
retrieved patches, which are then presented to the pathologists as the output of the
proposed UCBMIR. Our study showcases the practicality of our approach in enhanc-
ing the efficiency and accuracy of image retrieval for pathologists and engineers. As
a result, our method can accelerate cancer diagnosis for pathologists, and the deep
layers in the custom-built CAE can learn image features in an unsupervised manner,
circumventing the issue of insufficient training images.

2.2 Material

The study evaluates the performance of the UCBMIR on two of the largest labeled
histopathological images in breast and prostate cancer, namely BreaKHis and SICAPv2,
respectively. The Arvaniti data set is utilized as the third and an external data set in
order to validate the model performance. These two cancers, prostate and breast
cancer, are selected as they are prevalent in society.

BreaKHis: breast tissue biopsy slides were stained with Hematoxylin and Eosin
(H & E) and labeled by pathologists at the P&D medical laboratory in Brazil [64].
This data set is composed of 7909 microscopic images of breast tumor tissues col-
lected from patients using magnifying factors of 40, 100x, 200x, and 400 x in the
size of 224 x 224 x 3. This binary data set contains 588 benign and 1232 malignant
images in 400 x.

SICAPv2: prostate samples were sliced, stained in H &E, and digitized at 40x
magnification. Images were divided into 512 x 512x3 and down-sampled to 10x,
which is commonly used for evaluating images. This multi-class data set contains
155 WSIs in total: 4417 non-cancerous patches, of which 1635 are labeled as Grade
3 (G3), 3622 as Grade 4 (G4), and 665 as Grade 5 (G5), Table 1. Images labeled by
a group of expert urogenital pathologists at Hospital Clinico of Valencia. SICAPv2
is the largest publicly available data set that includes pixel-level annotations of Glea-
son grading, providing detailed information on the presence of cribriform patterns[3].

TABLE 1: SICAPv2 data set description.

| Grades | NC | G3 | G4 | G5 |
WSIs 37 60 69 16
Patches | 4417 | 1636 | 3622 | 655

In order to validate the generalization capability of the UCBMIR to find similar
images, Arvaniti, an external data set containing pixel-level annotations of Gleason
grades, is used.

Arvaniti: the data set was shared by Arvaniti et al. [65], which contains 625
patches of prostate histology images at 40 x magnification. Regarding a fair compar-
ison with SICAPvV2, in [3], some configurations were applied to re-sample images to
512 x 512 at 10x magnification. To normalize the color distribution of Arvaniti, the
author in [3] applied a histogram match to the re-sampled images and set the images
in SICAP and Panda[66] as the reference images. These re-sampled images are used
as the third data set and the external evaluations in this paper. Arvaniti is employed
for performance evaluation alongside normalization by both Panda and SICAPD, in
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FIGURE 1: an overview of the UCBMIR for retrieving similar cases
to a given query. The preprocessing stage involves extracting tissue
from the patient’s body and dividing the whole slide images (WSIs)
into patches of a specific size[3]. In the training stage, these patches
are used to train the proposed unsupervised CAE to extract feature
representations. The trained encoder and bottleneck layers are then
used to extract feature embeddings FEs that are used in the CBMIR
section. In the CBMIR stage, the search engine computes the em-
bedding features of the training set and stores them in a dictionary.
When a query image is selected from the test set, the FE computes
the embedding of that query and compares it with those in the dictio-
nary. The model then returns the K most similar patches based on the
pathologists” needs.

addition to the external evaluation. This is discussed in detail in the following sec-
tions of this journal paper.

2.3 Methodology

A CBMIR contains four subsections: 1. training, 2. indexing and saving, 3. search-
ing, and 4. evaluating. The search tool in CBMIR uses the contents within each
pixel of the images instead of using annotations or metadata. Consequently, similar
images are retrieved from a large data set that matches the contents of the queried
image. Also, it is often impractical to manually annotate images in a large data set,
thus an unsupervised FE is developed in this study to address this issue.

The four phases of the proposed UCBMIR are described in-depth in the follow-
ing subsections with Figure 2 and Figure 1, in accordance with SICAPv2, as it is a
complex multi-class data set.
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2.3.1 Training

The only training part of the proposed UCBMIR is training the proposed CAE. CAE
aims to reconstruct the output as equal to the input. CAE could learn effective fea-
tures with unlabeled data in an unsupervised manner. Using a CAE approach offers
several benefits, such as its ability to capture spatial information through convolu-
tional layers, which are well-suited for processing image data. Moreover, CAE em-
ploys multiple layers to extract advanced image representations, resulting in higher-
level feature recognition. These multi-layered models have fewer free parameters,
making them simpler and faster to train, reducing the cost and resources required
for training. Figure 2 exhibits an illustration of the proposed CAE architecture. It
contains three main parts:

¢ Encoder: it captures the structural attributes of the input images across a fea-
ture vector per image with 200 elements. The sizes of the convolutional filters
in the encoder are [16,32,64,128,256]. Histopathological images are highly
detailed; using operations such as pooling layers will cause them to lose lots
of information. Because of that, in the proposed CAE, the size of the images
decreases by passing through convolutional layers without any pooling layer.

* Bottleneck: it contains 200 extracted features per image. As can be seen in
Figure 2, a residual block in the bottleneck contains four filters in the size of
[64,32,1,256].

¢ Decoder: it reconstructs the input from its 200 intermediate feature vectors.
Consequently, to the encoder, the filters in the decoder part are in the size of
[128,64,32,16,3].

The main objective of the proposed CAE is to find the most discriminative fea-
ture vectors to describe the images without supervision. Briefly, it compresses input
image patches (of dimensions width x height x channels) into a fixed-length vector.
The performance of the FE is directly related to the depth of the learning model, as
deeper and more complex models might result in overfitting. To address this issue,
the proposed CAE employs a residual block in the bottleneck to increase the network
depth and improve end-to-end mapping.

To get better performance gain, inspired by highway networks[67] and deep
residual networks[68], we add a skip connection between two corresponding convo-
lutional and deconvolutional layers. When the network goes deeper, image details
can be lost, making deconvolution weaker at recovering the input. Skip connections
benefit by back-propagating the gradient to the bottom layers, making training a
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FIGURE 2: proposed CAE architecture with kernel size of 3 through-
out the model, the stride of 2 in the encoder and decoder, and 1 in the
bottleneck layer.



22 Chapter 2. Towards More Transparent and Accurate Cancer Diagnosis

deeper network much more accessible. In other words, skip connections pass gradi-
ents backward, which helps find a better local minimum.

Mean Square Error (MSE) is the loss function that updates the network weights
during the training phase. The minimum amount of MSE means more similarity
between the input and the output. The greater the similarity between the input
and the reconstructed images, the more meaningful features are in the bottleneck.
In practice, we find that using Adam with a learning rate 5 x 10(~?) can train the
model in 10 epochs. Then, the decoder part of the trained CAE is discarded, and the
remaining sections, including the encoder and the bottleneck, play a role as an FE.

2.3.2 Indexing and saving

The indexing and saving stage is a crucial step in CBMIR as it enables efficient stor-
age and organization of extracted features. This, in turn, enables fast and accurate
retrieval of relevant medical images during the search stage, thus improving the di-
agnosis and treatment of medical conditions. In our study, we used n images from
both the validation and train sets of each data set as input to the FE, resulting in n
feature vectors that represent each image in a 200— dimensional latent space. These
n feature vectors were then stored in a dictionary, D; = [Fy, F, ..., F,], where each F;
contains the features for a single image.

During the retrieval stage, we utilized this dictionary as a reference for compari-
son with the query image. For the SICAPv2 data set, there were 2122 query images.
By organizing and storing the extracted features in this manner, we aimed to im-
prove the efficiency and accuracy of our CBMIR system. This approach enabled us
to retrieve medical images that were relevant to a given query, thereby aiding in
faster and more accurate diagnosis and treatment of medical conditions. Figure 1
illustrates the process of organizing and storing the extracted features for efficient
retrieval of medical images during the search stage.

The extracted feature vectors of the database and the index of the related image
were stored in a pickle file with the columns of (“indexes” : indexes,” features” : features
by importing the pickle library in Python. Since extracting, indexing, and stor-
ing need high computational power, we implemented the work on GPU with the
NVIDIA GeForce RTX 3090.

2.3.3 Searching

The searching process in CBMIR involves three key steps: similarity calculation,
ranking and retrieval, and visualization and presentation. During similarity calcula-
tion, the search engine uses similarity measures such as Euclidean distance, cosine,
Manhattan, and Haversine to calculate the similarity between the query image and
other images in the database. The images in the database are then ranked based
on their similarity to the query image, and the top-ranked images are retrieved and
presented to the user for further analysis.

In this paper, we experimented with both Cosine and Euclidean distances, and
based on our results, we concluded that the Euclidean distance was the more suit-
able choice. We use Euclidean Distance to measure the similarity of two feature
vectors. Specifically, we calculate the distance by each query feature Fy with all the
feature vectors in D;, and the smaller Euclidean value corresponds to more similar
images. Our experimental findings suggest that Euclidean Distance is an effective
metric for measuring similarity in CBMIR systems. By accurately measuring the



2.3. Methodology 23

similarity between images, the search engine can more effectively retrieve relevant
medical images, leading to improved diagnosis and treatment outcomes.

2.3.4 Evaluation

It is worth considering what "accuracy" means in the context of a CBMIR. The accu-
racy of CBMIR depends on what we are looking for and what is displayed by the
search engine. The use case determines whether the search is looking for images
with the same stain, comparable stain intensity, same histologic feature, or similar
grade; hence, this objective is ambiguous. To address this lack of awareness of the
intent of the search engine, top K score at retrieving images of the same histologic
features and Gleason grades engaged in the prior research to determine the perfor-
mance of their experiments. To the best of the author’s knowledge, there are two
most-used strategies for calculating the top K score described in the recent articles:

1. If there is only one correct retrieved image, this has been shown as a correct an-
swer [24]. In this paper, we set K = 3,5,7, which evaluates the performance of
our model to correctly present at least one correct result in the top K retrieved
images. In this paper, we name this method as "EV 1" regarding the report of
the results in the following tables.

1 N
ACC@K = Zi:e((xi, TOP(ans[: K])) (2.1)

In this equation, N denotes the number of query patches, and «; represents the
label of the i-th query patch. The function TOP(ans;[: K]) retrieves the top k
most similar results for the query and outputs 1 if any of these results match
with the query and 0 otherwise. In other words, if TOP(ans;[: K]) belongs to
the set of labels of the i-th query, denoted by «;, the function €() returns 1.

2. Precision (2.2) and recall (2.3) are the two selected indicators to evaluate the
results. In this study;, this is termed "EV 2".

Precision = % (2.2)
R
Recall = Mv (2.3)

The relevancy of the query and retrieved images has to be measured by consider-
ing the provided labels for each patch in the ground truth. Herein, R, denotes the set
of retrieved images that are considered relevant, while 7 signifies the total number
of captured images. Moreover, the number of relevant images present in the data
set is explicitly annotated as M. The proposed UCBMIR is evaluated based on both
top-ranking image retrieval strategies to mimic the standard search process.

It is worth noting that this is the only place where the grand truth provided by
expert pathologists was used. In other words, the labels were exclusively used to as-
sess how effectively the model could retrieve images with similar histopathological
patterns.
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2.4 Discussion and results

Matching pairs to the image is the core of any search engine, in which an image
is compared to a database to determine similarities. Numerous studies have been
conducted on CBMIR in a binary manner, as it is more challenging with multi-class
data sets.

Breast cancer is a prevalent malignancy affecting women globally. In the domain
of CAD, the BreaKHis data set is a popular choice for evaluating the performance
of algorithms in CBMIR. In this study, we employed the BreaKHis to assess the effi-
cacy of our UCBMIR approach. Our method demonstrated superior performance in
matching image pairs, as evidenced by the results presented in Table 2. Specifically,
our approach outperformed two previously reported methods, namely [52] and [69],
with precision scores of 92% and 91%, respectively, for both evaluation criteria (EV1
and EV2). These results suggest that our approach is highly effective in accurately
identifying patterns in breast cancer images. Besides, according to the obtained re-
sults in Table 2, EV 1 works better in assessing the performance of a CBMIR tool
since it succeeds in reporting the recall while EV 2 suffers from a notable decrease in
measuring the recall. So, in the following experiments, EV 1 evaluates the CBMIR
performance for prostate cancer as the multi-class data set.

TABLE 2: comparative results on BreaKHis 400x at K = 5. We mea-
sure the precision and recall with both EV 1 and EV 2.

Type (.)f Method Precision | Recall
evaluation
EV1 UCBMIR 0.92 0.99
UCBMIR 0.91 0.50
EV 2 Minarno [52] 0.70 0.31
Gu [69] 0.63 -

In order to evaluate the effectiveness of our CBMIR method on a multi-class data
set, we utilized SICAPv2 and Arvaniti data sets, both containing four classes. Given
the global prevalence of prostate cancer, we selected this type of cancer for our exper-
iments and used SICAPvV2 as the largest pixel-wise annotated data set. The Arvaniti
data set was re-sampled by referencing Panda and SICADP, as stated in [3], and was
used in two experiments of this paper to demonstrate the robustness of our method-
ology. Table 3 presents the results obtained using our approach with K = 5 and
EV1 as the evaluation criteria. To demonstrate the efficacy of our methodology, we
conducted two experiments using the Arvaniti data set. In the first experiment, to
ensure a fair comparison, we trained the model using Arvaniti normalized based
on both SICAP and Panda. The results of these two trained models, obtained by
conducting the entire training and searching steps, are reported in Table 3. These
findings demonstrate the superior performance of our approach in accurately iden-
tifying and classifying prostate cancer images in multi-class data sets, thereby po-
tentially contributing to the development of improved diagnostic tools and clinical
decision-making processes.

In a study by Hegde [70], Scale-Invariant Feature Transform (SIFT) [71] was used
as a traditional FE, along with SMILY, to report the accuracy of retrieving images
with the correct Gleason patterns from prostate specimens in TCGA. Our UCBMIR,
as shown in Table 3, achieved an accuracy of 80%, surpassing SMILY’s accuracy of
73%.



2.4. Discussion and results 25

TABLE 3: model quality results on SICAPv2 with top 5 retrieved im-

ages. The reported results are obtained by EV 1. The metrics are

precision, recall, and accuracy. All other studies reported their results
at the top 5 images.

Method Dataset Precision Recall Accuracy
UCBMIR SICAPv2 0.79 0.80 0.79
Patches normalized
UCBMIR Arvaniti (SICAP) 0.71 0.75 0.80
UCBMIR Patches normalized 0.80 0.68 0.78
Arvaniti (Panda) : ’ )

Hegde [70]

(SMILY) TCGA - - 0.73
Hegde [70] ~ _

(SIFT) TCGA 0.62

VGG16
(ImageNet)) SICAPv2 0.80 0.80 0.80

To provide an interpretive perspective for the quantitative results, we incorpo-
rated a pre-trained VGG16 [72] (ImageNet) as a backbone to extract histological fea-
tures from the images. We added a GlobalMaxPooling2D (GMP) and two dense
layers [200, 4] to train the model as a classifier in a fully-supervised manner. After
training the model, we removed the last layer (Dense (4)) and used the remain-
ing layers as an FE to extract 200 features per image, which were then fed into the
search engine component of UCBMIR. Figure 3 illustrates how we integrated the
pre-trained VGG16 into our CBMIR. So, as can be seen in Figure 3, first, the VGG16
trained as a classifier by adding two dense layer with 200 and 4 nodes. Subsequently,
the well-trained VGG16, in conjunction with the dense layer with 200 features, was
moved to the offline and online sessions of the proposed CBMIR platform to extract
the features of the data set and the query. Following the retrieval of the top K images,
it is time to display and evaluate the performance of the CBMIR platform with a su-
pervised FE (VGG16). Comparing the results shown in Table 3, UCBMIR achieved a
comparable performance as the supervised method with EV1.

We conducted experiments using SICAPv2 and Arvaniti data sets to evaluate
and compare the effectiveness of our UCBMIR with respect to the fully-supervised
VGG16 in identifying and classifying prostate cancer images. As shown in Tables 3
our unsupervised method achieved similar results to the supervised VGG16, with a
slightly lower precision score in both EV 1 (by 0.01). This suggests that our unsuper-
vised method is a promising approach for CBMIR in the context of prostate cancer,
potentially reducing the need for manual annotation and supervision.

In this study, Figure 4a and Figure 4b were used to present the results of the
experiments. The bar charts were used to depict the number of similar images out of
K = 5 retrieved images for BreaKHis and SICAPv2, respectively. For the BreaKHis
data set, 545 images in the test set were used as query images. Based on Figure 4a,
the model failed to find at least one similar image for 29 queries, while it could find
three and four similar images for 114 and 170 queries, respectively. In the case of
SICAPvV2 data set, the model could retrieve one similar image among the top K for
628 image queries, according to the results shown in Figure 4b. The model was able
to retrieve two images out of 5 in the same class label as the query in 101 cases of
BreaKHis. In the case of SICAPv2, the model could retrieve two images with the
same class label for 628 queries out of the top 5 retrieved images. So, the proposed
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formance of the proposed unsupervised FE in extracting features with
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UCBMIR approach can correctly retrieve at least one sample belonging to the same
category as the query in 78.9% of cases for the SICAPv2 data set. In the BreaKHis
data set, this retrieval success rate is even higher at 94.7%. To the best of the authors’
knowledge, these results are very promising in the field of automatic atlases.
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FIGURE 4: evaluation of the UCBMIR at k = 5 on BreaKHis 4a and
SICAPv2 4b. From 2122 query images in SICAPv2, for 447 cases,
the model could not find at least one correct similar image accord-
ing to their labels, while it retrieved two similar images at 5 top for
641 cases.
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Due to the well-known variability between pathologists in Gleason grading and
variations in histology sample preparation, it is a difficult challenge to distinguish
between different grades of prostate cancer. These factors may contribute to the dif-
ferences in results. Differentiating between G3 and G4 in prostate cancer requires
highly experienced pathologists, takes time, and has limited inter-pathologist re-
peatability. However, Figure 5 demonstrates the impressive ability of our UCBMIR
to identify similar patterns between G3 and G4. Each row and column in Figure 5
corresponds to three different values of K in Arvaniti (Panda), SICAPv2, and Arvan-
iti (SICAP), respectively.

These results highlight the potential of our approach to aid in the accurate iden-
tification and CBMIR of prostate cancer images, thereby facilitating diagnosis and
improving patient outcomes. Further research is needed to validate these findings
on larger and more diverse data sets. Due to this, our model is also verified on an
external data set with the intention of evaluating the trained model’s capacity for
generalization.

2.4.1 Validation on an external data set

In order to validate the performance of our trained model on an external data set,
we utilized the SICAPv2-trained model to make predictions on the re-sampled Ar-
vaniti data set (normalized by SICAP). The results of this evaluation are reported in
Table 4. The obtained accuracy and precision results are slightly better than those
obtained from the test set on SICAPv2, while the recall is slightly lower by 0.07. It
is important to mention that this validation process is crucial in demonstrating the
generalization ability of our UCBMIR beyond the original training data set. These
results further confirm the robustness of our approach and its capability to provide
accurate retrieval results across multiple data sets. hl
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2.4.2 Visual evaluation

We have included three figures, Figure 6, Figure 7, and Figure 8, which showcase the
results of our experiments. These three figures illustrate the interpretability of the
proposed UCBMIR.

The purpose of these figures is to enhance comprehension of the comparison
by utilizing visual aids. Each of these figures comprises rows that correspond to a

RetrieveQ Retrievel Retrieve2 Retrieve3 Retrieved
i >~ PSRN
AN oL 3 5
%) eT AN - rrPia

Query Retrieve0

Retrieve2
0T A
AT

A7
7t

Retrieved
'~ A\ (I\\ in

b

Retrieve2

Retrievel
T
A \ f|\‘ L

o

Retrieved

FIGURE 6: the top 5 images retrieved from the BreakHis data set for
five randomly selected query images, with the true and false retrieval
results depicted in green and red boxes, respectively.
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random query from the test set of BreaKHis <400, SICAPv2, and Arvaniti, respec-
tively. The subsequent images in each row exhibit the top 5 retrieved images from
the training set of the relevant data set. We have implemented a color-coding scheme
to facilitate the interpretation of the results. In particular, a green border surrounds
the correct retrieved image, which possesses the same label as the query, whereas
a red border highlights the mis-retrieved images that have different labels than the

query.

Retrieve0 Retrievel

Retrieve3

FIGURE 7: the top 5 retrieved images from the SICAPv2 data set for
five query images selected at random, where true and false retrieval
results are respectively indicated with green and red boxes.

FIGURE 8: the top 5 images retrieved from the Arvaniti data set,

which have been normalized by SICAP, for five query images that

were randomly selected. The figure visually demonstrates the re-

sults of the external validation, utilizing a well-trained model with

the SICAPv2 data set and applying it in the search stage of Arvan-

iti. The green and red boxes, respectively, indicate the true and false
retrieval results.
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TABLE 4: results of Arvaniti (normalized by SICAP) as data set for
the external experiments with top K=3,5,and 7, EV 1

K | Precision | Recall | Accuracy
3 0.66 0.58 0.66
5 0.80 0.73 0.81
7 0.89 0.86 0.91

Figure 7 demonstrates that one of the challenges we encountered in our experi-
ments with SICAPv2 was the presence of a white background in the images. To de-
termine whether the patches in SICAPv2 contained meaningful patterns for pathol-
ogists to analyze, we enlisted the help of an expert pathologist to review them. Our
pathologist confirmed that despite the presence of a white background in the images,
there was still enough tissue for pathologists to evaluate and compare the patterns
in the query tissue with the retrieved patches. There are some bad cases as shown in
line 2 of Figure 7 which most of the retrieved images are not highlighted with the red
border. This means that the tool had challenges in retrieving similar patches for this
query. The reason is mainly due to the high similarity of histopathological features
of G3 and G4 of prostate cancer.

In addition to validating the approach of UCBMIR using an external data set and
demonstrating the generalization capability of our method, we selected the Arvaniti
data set for another reason: it does not have a white background. Figure 8 shows
the top 5 retrieved images resulting from our external validation experiment, where
a well-trained model with SICAPv2 was used to retrieve images for five random
queries from the Arvaniti data set. Our external validation experiment not only val-
idates our proposed UCBMIR for use with external data sets but also demonstrates
the generalization capability of our method.

Through our visual evaluation, we aim to present a clearer understanding of the
effectiveness of our approach. Observing the retrieved images alongside their labels
can be useful to evaluate the performance of our method and assess its strengths and
limitations. These figures are an essential component of our evaluation and will con-
tribute significantly to understanding our methodology. Overall, this evaluation can
provide valuable insights into the performance of our approach and make informed
judgments regarding its effectiveness.
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FIGURE 9: The confusion matrix presented in [3] is displayed in Fig-
ure 9a, while the matrix for the retrieved labels is shown in Figure 9b.
It can be observed that the UCBMIR model results in less conflict be-
tween the challenging grades (G3 and G4) compared to the classifier.
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2.4.3 Comparing UCBMIR with a classifier

CBMIR and classification are two different approaches in medical image analysis.
CBMIR aims to retrieve similar images from a database based on the content features
of a query image, while classification aims to categorize images into pre-defined
classes or labels. The only mutual output of the classification tool and CBMIR is
the output labels corresponding to the output patches. In the above sections, it is
mentioned that UCBMIR achieved comparable results with supervised CBMIR tech-
niques, proven by the reported accuracies in Table 3. Regarding comparing the pre-
dicted labels in terms of retrieving similar images belonging to the same cancer type,
we provide Table 5. This table compares the accuracy of UCBMIR with a classifier
in [3] in both the validation and the test set of SICAPv2.

The proposed unsupervised CBMIR model was found to be highly effective in
distinguishing between different cancer grades, especially between the challenging
Gleason grades G3 and G4. This observation was evident from the confusion matrix
shown in Figure 9. The proposed method’s success can be attributed to its ability to
identify and utilize subtle features and patterns in the images that may be missed by
human observers or conventional supervised models.

TABLE 5: shows a comparison between the performance of UCBMIR
with EV 1 and the classification introduced in [3]. SICAPv2 is the data
set under study.

Data set Model Accuracy
1 UCBMIR 0.83
Validation set Classification|3] 0.76
UCBMIR 0.79

Test set

Classification[3] 0.67

2.4.4 Limitations

The limitation of the pre-processing step and the medical session can directly af-
fect the final results of the DL-based UCBMIR. For instance, noisy images and low-
quality scanners can diminish the accuracy of the retrieval task. However, CAE was
chosen to tackle the noisy images while training; the low quality of images might still
affect the final results. Color variation as a result of different staining processes, dif-
ferent scanners, and laboratory conditions might fool the DL-based models. In this
paper, adding a histogram equalization technique during the image loading process,
could tackle this issue, and as can be seen in Figure 9b and Figure 6, the proposed
framework is robust against this issue. Due to the computational limitation, large-
scale retrieval is a limitation that hinders the performance of the CBHIR tools in
searching through a vast database of biopsies. The proposed tool can retrieve the
images at high speed. In the SICAPv2 experience, it can retrieve the top 5 images in
almost 0.28 seconds.

Although some challenges have been solved by the proposed tool, some chal-
lenges still remain such as semantic gap, scalability, cross-domain retrieval, privacy
and security, etc. For instance, medical images need high data protection due to the
personal information. This affects extending the CBMIR domain as a worldwide tool
across different hospitals. Another important limitation is the semantic gap between
the extracted features of the low-level histopathological features and high-level se-
mantic concepts. To address this issue, FEs have to train effectively to extract the
most representative features of the patches, fast and accurately. However, limitation
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or inconsistent annotations makes the well-training of the DL-based FEs difficult.
Despite all these limitations, the CBHIR tool provides a promising improvement in
cancer diagnosis, research, and treatment. Several pieces of research aim to address
many of these issues and further enhance the capability of the CBHIR tool and pro-
vide more transparency, robustness, and trustworthiness.

2.5 Conclusion

In summary, this paper introduces a highly qualified Unsupervised CBMIR (UCB-
MIR) model that can be used for both binary and multi-class data sets. The model
was evaluated on three different data sets, as well as an external validation set. Us-
ing the two most-used evaluation techniques, the proposed method achieved 79%
precision in EV 1 on SICAPv2 as a multi-class data set. Notably, the unsupervised
method was able to differentiate between challenging Gleason grades of prostate
cancer. In addition to numerical evaluation, visual assessments were conducted
to demonstrate the effectiveness of the UCBMIR. The results show that UCBMIR
has good generalizability and can be effectively applied to other types of cancer.
UCBMIR has the potential to improve laboratory productivity, increase pathologists’
diagnostic confidence, and contribute to the advancement of cancer diagnosis and
treatment.

The UCBMIR model not only addresses the needs and challenges of pathologists
but also addresses the problem of engineers who face a lack of sufficient images
for training models. Future research in this field could build on these findings and
further enhance the performance of CBMIR models for cancer diagnosis.

2.6 Future work

In the world of CBMIR, there is a vast range of possibilities for enhancing and opti-
mizing laboratory productivity. With a large archive of diagnosed patients and cor-
responding data, including images and treatment and monitoring reports, it should
be possible to identify and retrieve images that are either anatomically or patho-
logically similar to the biopsy sample of the patient being examined, as well as the
annotated data for each case. CBMIR has the potential to be applicable to many
types of cancer, which would increase its utility.

Furthermore, pathologists’ reports contain the medical knowledge of many other
pathologists for similar cases, making them a treasure trove of high-quality diagnos-
tic information. In the future of CBMIR, it may be possible to make the raw infor-
mation directly available to the pathologist or to merge the important information
in retrieved reports. This would make the diagnosis process more efficient, accurate,
and informative for both the pathologist and the patient. Additionally, expanding
the use of CBMIR to other types of medical imaging and diagnostic data could pro-
vide valuable insights for a range of medical specialties.

In order to integrate CAD tools into daily clinician routines, reliability, trustwor-
thiness, and transparency are the most critical needs. By incorporating eXplainable
AI (XAI) methodologies like filter activations, the decision of the DL-based tools can
be demystified. In regard to integrating these tools with the clinical workflows, it is
necessary to harmonize DL-based tools alignment with the diagnostic precision and
the quality of patient care.
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Abstract

Content-Based Histopathological Image Retrieval (CBHIR) is a searching tech-
nique based on visual content and histopathological features of Whole Slide Images
(WSIs). CBHIR tools assist pathologists to have faster and more accurate cancer
diagnosis. Stain variation between hospitals hampers the performance of the CB-
HIR tools. This paper explores the effects of Color Normalization (CN) in a recently
proposed CBHIR approach to tackle this issue. In this paper, three different CN
techniques were used on the CAMELYON17 (CAM17) data set, which is a breast
cancer data set. CAM17 was produced by different staining protocols and scanners
in five hospitals. Our experiments reveal that a proper CN technique, which can
transfer the color version into the most similar median values, has a positive impact
on the retrieval performance in the proposed CBHIR framework. According to the
obtained results, using CN as a pre-processing step can improve the accuracy of the
proposed CBHIR framework to 97% by 14% increasing, compared to working with
the original images.
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3.1 Introduction

Breast cancer is one of the most prevalent cancer types with 2.3 million women di-
agnosed with this cancer and 685,000 deaths globally in 2020 [22]. For this large
amount of patients, medication should be accurate with little to zero margins for
errors, otherwise, the consequence of a wrong diagnosis could be fatal [73]. Also,
since breast cancer is one of the leading causes of death for women globally, making
precise detection and ensuring timely treatment can enhance the chance of recovery
[74]. Computer Aided Diagnosis (CAD) provides some Deep Learning (DL)-based
techniques in digital pathology that can assist pathologists in more accurate cancer
diagnosis [28]. These techniques need to be trained by medical images such as Mag-
netic Resonance Imaging (MRI) [75] and histopathological images [76]. A unique
feature of histopathological images is that they are typically much larger than other
medical images [70].

Histopathological images play a crucial role in the realm of medical image pro-
cessing, allowing the integration of image information and pathologists” expertise to
improve diagnosis[77]. Medical images have witnessed a rapid expansion in quan-
tity, content, and dimension [36]. Due to an enormous increase in the number of
diverse clinical exams and the availability of a wide range of image modalities, de-
mand for efficient medical image data retrieval and management has increased [78].
Current approaches to medical image retrieval often rely on alphanumeric keywords
assigned by human experts, enabling retrieval at a conceptual level. However, this
text-based search methodology falls short in capturing the intricate visual features
inherent in image content [79].

Recent Content-Based Histopathological Image Retrieval (CBHIR) methods sup-
port full retrieval by visual content and histopathological patterns of the tissue.
These advanced CBHIR tools facilitate searching at a perceptual level [80]. It is note-
worthy to mention that a single pathology image may contain just basic patterns of
a tissue such as epithelium and connective tissue. However, the actual number of
patterns in the DL-based technique’s point of view is almost infinite.

CBHIR explores a database to find visually similar images to provide clinicians
with comparable lesions. In the diagnostic workflow, pathologists utilize this search
engine to reach top k similar to their queries to determine if a histological feature is
malignant or benign [59].

Mainly, CBHIR tools work on the extracted features of the images, including
color, texture, shape, etc. Color is a visual feature that plays an important role in
CBHIR techniques due to its invariance with respect to image scaling, translation,
and rotation [24]. The use of color improves the capturing of distinctive histopatho-
logical features. This provides valuable information about the distribution and ar-
rangement of different tissue components in histopathology [81].

In histopathology, tissues must be stained using various dyes, including Hema-
toxylin and Eosin (H&E), in order to be readable to pathologists [27], [36]. In digital
pathology, these tissues must be scanned as Whole Slide Images (WSIs)[35]. In addi-
tion to the use of different scanners and staining manufacturers, lab conditions and
temperatures may cause color variation in WSIs[82]. Color variation in WSIs can
arise from both inter- or/and intra- laboratory factors in the acquisition procedure
[81]. Fig 3.1 shows the color variation across five different collaborating hospitals
involved in the collection of CAMELYON17 challenge (CAM17) data set [83]. This
diverse color variation misleads the model and potentially deceives the Feature Ex-
tractors (FEs) into extracting erroneous features. Also, the performance of CAD tools
may be significantly influenced by these variations in WSIs [84].
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In this paper, we propose a CBHIR framework that includes Color Normaliza-
tion (CN) as a pre-processing step to address this issue. CN methods have been
developed with the aim of transferring the color interval of the WSIs in a data set to
a common color range [85, 82, 86].
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3.2 Related work

3.2.1 Content-Based Image Retrieval

There are different approaches to Content-Based Histopathological/Medical Image
Retrieval techniques in histopathology [87], which we briefly review here. [88] pro-
posed a framework for size-scalable query Regions Of Interest (ROI), including ep-
ithelial breast tumors of Motic data set. This work reached 96% precision in retriev-
ing the top 20 similar images. In [88], the authors applied the proposed technique
on the Motic database ! with the original color of 145 stained WSIs. Authors in
[63] applied a supervised kernel hashing technique on several thousand histopatho-
logical images from breast microscopic tissue. The precision results for the top 30
retrieved images were reported as 77.0%. In this study, they considered the gradient
of pixels around the detected regions to make the model robust to subtle changes in
the color of patches. A combination of Unsupervised Features Learning (UFL) with
the classical Bag-Of-Features (BOF) was introduced in [89]. Their proposed method
was evaluated in particular histopathological images to show that the learned rep-
resentation has a positive impact on the retrieval performance. A CBHIR based on
multi-scale, multichannel decoded local ternary pattern features and VLAD coding
was presented in [90]. The authors evaluated their method on KIMIA Path960 data
set [91] by retrieving top 10 matching images from the data set. The authors in
[24] presented a modified Convolutional Auto Encoder (CAE) to extract features of
patches from SICAPvV2 as the largest pixel-annotated prostate data set[3]. The exper-
imental results of this paper demonstrated 85% and 78% accuracy at top 7 and top 5,
respectively. However, one of the challenges that the author had with the SICAPv2
was the color variation of the images in the data set. To deal with this variation, they
applied a simple histogram equalization to the patches, but still, this issue affected
the results.

Among the previously mentioned studies, only [63] and [24] applied CN tech-
niques to tackle the color variation, while the rest did not address this issue. An-
other challenge CBHIR is the lack of annotated images, which the mentioned papers
above struggled with.

IMotic (Xiamen) Medical Diagnostic Systems Co. Ltd., Xiamen 361101, China.



3.2. Related work 39

3.2.2 Color normalization

CN is the most used technique to deal with color variation [82]. CN can standard-
ize images by referencing an image and simulating a chosen staining procedure.
CN methods normalize the images with different techniques, including histogram
matching, color transfer, and spectral matching [82]. Histogram matching disregards
stain separation, color transfer modifies colors based on statistical correspondences
between histological regions, and spectral matching estimates stain concentrations
and color properties [92].

Among a variety of CN techniques, some are more popular, such as those pro-
posed in [93] and [94]. The method proposed by Macenko et al. [93] introduced
the Mac ? technique in 2009, assuming that the amount of protein or nucleic acids
is a random variable. Mac utilizes Singular Value Decomposition (SVD) to separate
H&E channels. Within this technique, the concentration intensity of both source and
target images is scaled using the 99th percentile to compute a robust estimation of
the maximum.

Vahadane et al. [94] published the Vah 3 technique in 2016 to model the physical
phenomena that define tissue structures. In this technique, there is a preferable stain
color based on pathologists” point of view and a stain density map. Using an unsu-
pervised approach, the method decomposes images into stain density maps. When
Vah is applied to a specific image, it combines the relevant stain density maps based
on a pathologist’s preference for stain color. This process selectively modifies the
color while preserving the underlying structure as described by the maps.

The most recent techniques in CN are the Auto-Encoders (AE), Generative Ad-
versarial Networks (GAN), and Bayesian K- Singular Value Decomposition (BKSVD)
[95, 96, 30]. Bentaieb et al. [95] applied GAN to combine the color normalization and
classification of WSIs. In this method, the generator is employed as a stain transfer
network, while the discriminator separates the classes and original and normalized
images. In order to map unpaired images between two scanners, the cycleGAN
was used by StainGAN [92]. In [96], the authors used three different Convolutional
Neural Network (CNN) models for CN purposes: Variational Auto Encoder (VAE),
GAN, and Deep Convolutional Gaussian Mixture Model (DCGMM). In [97], a CN
network is fed by a heavily augmented data set and trained to reconstruct the orig-
inal appearance of WSIs. Notably, Pix2pix conditional GAN framework and Cycle-
GAN are the other noticeable CNN architecture.

BKSVD [30], a cutting-edge technique that was proposed in 2022, utilizes an un-
supervised estimation of the stain concentration that preserves histological struc-
tures with variational and empirical Bayes.

In this paper, we provide a deep understanding of the effects of CN on the ex-
tracted features in the proposed CBHIR tool. Our experiments were conducted by
applying three CN techniques in the pre-processing step in order to explore how CN
influences the extracted features within the CBHIR tool. Among CN techniques, Mac
[93] and Vah[94], were selected as the two most used CN techniques, and BKSVD
was applied as a recent CN technique. Furthermore, in this work, we applied an
unsupervised FE to tackle the need for a pool of histopathological images to train
the deep-learning model.

The main contributions of this paper are as follows:

1. Proposal of a new CBHIR framework with an unsupervised feature extractor
that takes color normalization into account as a pre-processing step;

2The proposed method in [93] is named Mac in this paper.
3The proposed method in [94] is named Vah in this paper.
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2. Analysis of CBHIR performance when using normalized images in compari-
son with original images;

3. We draw attention to the relevance of color variation and its impact on CBHIR

4. We provide a comprehensive performance assessment of the proposed method.
This evaluation employs a large breast cancer database scored from five dis-
tinct laboratories. This evaluation has a more restrictive K-top accuracy as-
sessment compared to the recent state-of-the-art studies and also involves an
in-depth analysis of retrieving patches with the same cancer label.

3.3 Methodology

This section introduces the three levels of the proposed CBHIR tool in detail. Fig
11 provides an overview of the proposed CBHIR tool, comprising three levels: pre-
processing, training, and searching.
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FIGURE 11: three main stages of CBHIR, including pre-processing,
training, and searching. The pre-processing was done, followed by
[30], [93], and [94]. The training stage contains the CAE training.
Here, each layer of the CAE is presented in a different color. Conv2D,
Dropout, Dense, and Flatten are shown with green, pink, blue, and
black, respectively. The searching stage contains extracting features,
indexing, searching, and displaying the top K similar retrieved im-
ages.
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3.3.1 Pre-processing

In this paper, Mac [93], Vah [94], and BKSVD [30] are three CN techniques spanning
from 2009-2022, that were investigated to normalize the data set. These three CNs
were applied to the original images of the CAM17, and the results were collected
as a separate data set. The aim is to gain insight into the effectiveness of these CN
techniques in tackling the effects of color variation on the results of the CBHIR tool.
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It is important to establish and maintain uniformity in color normalization through-
out the whole framework. As can be seen in Fig 11, the input query needs to undergo
the pre-processing step before feeding to the FE. Furthermore, a crucial considera-
tion is that the CN technique, which applies to the data set in the pre-processing
step, should match the CN technique employed in the query. Ensuring consistency
in the CN technique is imperative for accurate processing and analysis.

3.3.2 Feature extractor

In this paper, a CAE is utilized to extract the representative histopathological fea-
tures of the patches. The CAE aims to solve the back-propagation problem in an
unsupervised manner by only relying on the input image as a teacher by itself [98].
It has the in-built ability to compress the data efficiently by extracting the important
features and removing noise in the data [99]. These behaviors bring benefits to CB-
HIR, such as ignoring the noises in WSIs that might be noticeable due to the scanners
[100]. Also, it can reduce the demand for annotated images for training a FE, which
is expensive and time-consuming [101].

Fig 11 and Fig 12 illustrate the structure of the proposed custom-built CAE. In
this CAE, a skip connection between a layer in the encoder and the corresponding
layer in the decoder can improve the gradient propagation and increase the perfor-
mance of capturing complex patterns of the WSIs. The proposed CAE comprises
an encoder with three convolutional layers [16, 32, 64]. Moving to the bottleneck, an
attention block with the filter size of [32,16,1,64] is introduced to enhance the fea-
ture vectors by robustness to noise or occlusions. The decoder is made up of three
Conv2DTranspose with [32,16,3]. The kernel size in this structure was fixed to 3 in
all the layers.

The primary objective of the CAE is to reconstruct input images in the output
by minimizing the Mean Squared Error (MSE). The CAE workflow involves feeding
an input image (X) to the encoder, which compresses the input. Subsequently, the
bottleneck compresses the output of the encoder to obtain a feature vector with 200
meaningful features (F). Finally, the decoder reconstructs the output by receiving
the feature vector (Y = Decoder(F)). In an ideal CAE, the output is identical to the
input (ideal, X = Y). To achieve this ideal goal, the model endeavors to minimize the
MSE by comparing the input (X) and the output (Y) [28].

In this paper, the model was trained on GPU with the NVIDIA GeForce RTX 3090,
over 10 epochs, utilizing a batch size of 32 and a learning rate of 0.000001. By dis-
carding the decoder from the CAE, the well-trained FE can be yielded for further
experiments.
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FIGURE 12: the customized CAE which was utilized as a FE.
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3.3.3 Searching

The searching process in CBMIR involves three key steps: similarity calculation,
ranking and retrieval, and visualization and presentation. In this paper, at this stage,
the well-trained CAE extracts the features of the images of the validation and train-
ing sets. These feature vectors are subsequently indexed and saved as the features
of the database for the searching process [102].

Upon receiving an input query, the proposed CBHIR passes it to the same CN
technique, normalizing the whole database. For each query input, a feature vector
is required, encompassing representative features of the query. The feature vector’s
size is fixed at 200 features, aligning with the number of elements in the feature
vectors associated with the database.

After extracting the query’s features, the next step involves measuring the simi-
larity between the query feature vector and the indexed feature vectors of the database.
To achieve this, a distance function is required. In this paper, Euclidean distance was
selected as one of the most used distance functions in CBHIR [27]. In this context,
distance is inversely related to similarity. Therefore, the most similar images have
the smallest distance [24]. Consequently, the top K images with the smallest distance
are retrieved and displayed to the pathologists for further analysis.

3.4 Material

CAMELYONT17 challenge (CAM17) [83] is a breast cancer metastasis detection in
the lymph node sections. This contains WSIs from five different hospitals. Each
hospital contributes 20 patients and five slides per patient. The tissues were stained
with H&E. Following [30], only the train set of CAM17 was used in the conducted
experiments since the WSIs in the test set are not labeled yet.

For the experiments conducted in this paper, the first four hospitals of CAM17
were used as the train and validation set, while the 5th hospital, exhibiting a more
significant color difference, was used as the test set [30]. The total number of im-
ages for training and validating the FE is 48000 and 12000, respectively. Then, in the
search part, there are 25406 query images as the test set. Following [103], the ex-
periments in this paper were performed on non-overlapping patches extracted from
CAM17, each sized 224 x 224 pixels in RGB color space. The images were sampled
from WSIs containing at least 70% of tissue to represent enough histopathological
patterns.

3.5 Experiments and Results

In this section, the procedure is applied for each color version of the data set to report
and evaluate the performance of the proposed CBHIR framework.

3.5.1 Pre-processing

Fig 13 shows the Normalized Median Intensity (NMI) information for each hospital
and method, which is plotted as a violin plot. NMI is used for assessing the ef-
fectiveness of each CN technique in normalizing the data set. It involves calculating
the median intensity value of pixel values within an image and then normalizing this
value. NMI values were computed for individual images within the data set, and
metrics such as the Standard Deviation (NMI SD) and Coefficient of Variation (NMI
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CV) were employed. A lower NMI SD and NMI CV suggest a more consistent nor-
malization across the dataset. [30] presented numerical results for BKSVD, Mac, and
Vah across individual clinical centers as well as the entire CAM 17 dataset. In this
study, Fig 13 visually displays the distribution, variability, and potential outliers of
values across different groups, facilitating comparisons between these groups. [93]
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FIGURE 13: violin plots of NMI values for each center in different

color versions. The histogram of NMI values for each plot is repre-

sented by the blue shadow. Bars mark the maximum, median, and

minimum NMI values for each plot. The x-axis corresponds to the
hospital numbers.

and [94] could transfer the color of images in each hospital to a similar distribution
butin a larger inter/intra-center than the original images’ distribution. Among these
three CNs, BKSVD had the best performance of normalizing the images of all five
centers to the same NMI interval, approximately. This means BKSVD transforms
images of each hospital with the lowest intra-center variance and most similar me-
dian values, which makes its outputs more interpretable and reliable. To provide
a more detailed statistical analysis to strengthen the evidence for the effectiveness
of BKSVD compared with Vah and Mac Table 6 [30] provides a quantitative com-
parison, based on the Peak Signal to Noise Ratio (PSNR) which shows that BKSVD
outperforms the rest of methods obtaining a higher mean PSNR while requiring a
similar time to Vah methods.

TABLE 6: PSNR for the normalized CAM17 data set.
| CN techniques [ BKSVD [30] [ Vah [94] [ Mac [93] |

| PSNR | 1954 | 1274 [ 1380 |

Fig 14 provides visual information about the impact of each CN technique on
the color distribution of five random images. Randomly chosen images from all five
centers exhibit noticeable color variations, as depicted in the initial line showing the
original images. Notably, BKSVD effectively mitigated this color variation, achiev-
ing a harmonized and consistent color version that surpassed the performance of
Vah and Mac as the classical methods.

3.5.2 CBMIR results

The most usable strategy to measure the performance of the CBHIR tool is named
“top K accuracy." In this strategy, the CBHIR displays top K-matched patches. If
there are one or more correct retrieved images among them, the CBHIR tool per-
forms well [70].
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Original

BKSVD

Vahadane

Macenko

FIGURE 14: line 1 illustrates the original color version of CAM17.

Lines 2 — 4 contain five random images of CAM17 as a result of CN

techniques, BKSVD, Vah, and Mac. These images correspond to all
hospitals.

ACC =1 ,If any of the K-top retrieved images match with the query,
ACC=0 , Otherwise

It is noteworthy to mention that in this paper, the results are reported at the top
3,5, while in the recent papers [88], [13], and [104], K is 20,100, 200, and 400. While
the amount of K in this paper is notably lower compared to the other studies, it
shows the performance of the model to achieve impressive accuracy. This highlights
the model’s reliability for pathologists, as it can retrieve similar patches even with a
smaller set of retrieved images.

Table 7 reports the results when K = 3 and 5 for CAM17 in the four color versions.
As a result of matching Table 7 and Fig 13, less intra-center variance can improve
the search performance. According to Table 7, CN as a pre-processing might have
a negative impact on the final results. The obtained accuracy at top 3 and 5 for the
experiment on the original images is higher than the accuracy of the experiments
with the Vah and Mac versions of CAM17. This means that utilizing a non-sufficient
CN technique not only cannot improve the final results but also can decrease the
performance of the main model. Fig 27 illustrates four confusion matrices for the
four color versions of CAM17 at the top 5.

TABLE 7: the achieved top K accuracy in the proposed CBIR on color-
normalized images from the CAM17 data set. K = 3 and 5.

| K | Original | BKSVD | Vah [94] | Mac [93] |

3 0.73 0.91 0.66 0.68
5 0.83 0.97 0.79 0.81
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FIGURE 15: Confusion Matrices show the effects of BKSVD, Vah, and

Mac on the performance of a CBHIR in retrieving the patches with the

most similarity. "C" and "NC" stand for cancerous and non-cancerous
tissue

According to the obtained results, thanks to CN techniques, by reducing the neg-
ative impacts of color variation, the features focus on the texture, shape, and histo-
logic features of each patch. Therefore, the Euclidean function ranks the images
which are more similar in the sense of relevant features.

3.5.3 Visual evaluation

A visual evaluation with some sample queries and their retrieved patches provides
transparency and insight into the functioning of the CBMIR system. This allows
pathologists to understand how the CBMIR framework responds to different queries.
The results of feeding the proposed framework with the original and normalized im-
ages are presented in the four figures below.

Fig 16 illustrates four random queries in their original color space and the top 5
retrieved images. As can be seen, for each of the queries, the retrieved images have
different colors not only with the corresponding query but also among themselves.
This can highlight the need for color normalization as a pre-processing step for the
searching framework.

Fig 17 and 18 show the same random queries as Fig 16, but they were normalized
by Mac and Vah, respectively. These figures clarify the numerically reported results
and confirm that the effects of Vah as a CN technique can even decrease the accuracy
of retrieval.

Fig 19 corresponds to the same four queries as Fig 18 and their top 5 retrieved
patches from the data set. In this figure, images were normalized by BKSVD. As
can be understood from the figure, normalizing the images by BKSVD can enhance
the performance of the search engine in finding similar histopathological patterns
without the negative impact of color variation.

In these figures, the images were compared with their queries based on the la-
bels provided by expert pathologists in the ground truth of the data set. The re-
turned patches with the same label as the query were considered the correct re-
trieved patches. However, the images with different labels with the query were
surrounded by a red square in order to clarify the miss-retrieved patches based on
their labels.

3.5.4 Comparing the results of CBHIR with a classifier

Indeed, CBHIR and classification are two different CAD tools for pathologists. CB-
HIR provides similar patches for pathologists based on the content features of the
query and the database. However, the main objective of classification is categorizing
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FIGURE 16: For each random query, the 5 top similar patches were
presented. The red lines show the miss-retrieved patches. The
patches were in their original colors.

images into pre-defined labels. In CBHIR, in addition to the corresponding label of
the query, top K similar patches are shown to the pathologists. This enhances the re-
liability of CBHIR for pathologists as it avoids being a completely black box. CBHIR
gives pathologists an opportunity to compare the histological patterns of the query
with similar patches besides knowing the corresponding label.

Table 8 reports the amount of Area Under the Curve (AUC) of the unsupervised
CBHIR as a result of applying all CN techniques. These results are compared with
the results of applying VGG19 on CAM17 as a classifier, which is reported in [30].
Following [25], the main objective of this comparison with the supervised classifier
is to evaluate the unsupervised CBHIR performance in terms of retrieving images
belonging to the same cancer grade [25]. According to Table 8, BKSVD-VGG19 with
98.17% of AUC had the highest performance among (Vah, Mac, Original)-VGG19.
The unsupervised BKSVD-CBHIR with 96.31% of AUC has comparable performance
to the fully supervised.

TABLE 8: comparison between the performance of VGG19 as a clas-
sifier and the unsupervised CBHIR at top 5. The reported metric is
AUC.

Original | BKSVD | Vah [94] | Mac [93]

VGGI19
(supervised) 0.941 0.9817 0.7985 0.9499
CBHIR
(unsupervised) | 0.9631 0.9754 0.9429 0.9632
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FIGURE 17: Four random patches of breast cancer data set with their

corresponding top 5 retrieved images. The images were normalized

by Macenko and the red lines mention the non-similar patches based
on their labels.

3.6 Conclusion

In this paper, we have proposed a novel CBHIR framework for histopathological
images; based on an unsupervised feature extractor and color normalization. We
utilize a custom-built Convolutional-Auto Encoder (CAE) to extract the features in
an unsupervised manner to tackle the challenges of lack of annotated data sets. In
this feature extractor, a skip connection between a layer in the encoder with the
corresponding layer in the decoder and a residual block in the bottleneck provided
the meaningful features of the data set for the search engine.

The proposed framework is designed to work with data sets with intra- or inter-
laboratory color variation since it solves the dependency of CBHIR on the color vari-
ation of the data set. We analyzed the effect of using color-normalized images to
feed a CBHIR tool. We observed that as the effectiveness of color normalization
techniques in reducing intra-center variance improved, the CBHIR results exhibited
higher performance levels.

In this paper, we provided a visual evaluation in order to illustrate the results of
the proposed framework visually. With this type of assessment, users can visually
evaluate the quality of the retrieved patches, which might identify potential areas for
improvement. Furthermore, reporting these figures can be valuable for educational
purposes, enabling users to grasp the functionality and potential applications. It also
facilitates communication between developers, researchers, and end-users, fostering
collaboration and improving CBMIR technologies.

Finally, We have compared the results of the proposed unsupervised CBHIR
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FIGURE 18: Four random breast queries with their 5 top retrieved im-
ages. The images were normalized by Vahadane. The miss-retrieved
images are marked in red.
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FIGURE 19: Four random queries from the normalized data set by
BKSVD with their 5 top retrieved images.
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framework with VGG19 classifiers to evaluate the performance of the proposed un-
supervised CBHIR framework in order to retrieve images with the same cancer type.
The proposed framework was found highly effective in discriminating the grades of
the tissues. This observation clarifies the success of the proposed unsupervised CB-
HIR framework in identifying the correct histopathological features in the contents
of the images.

3.7 Future work

CBMIR, a recent framework in digital pathology proposed by CAD, plays a vital
role in reducing the incidence of human errors and provides an inclusive world-
wide platform for pathologists with varying levels of expertise. Acting as a bridge
between medicine and engineering, CBMIR fills the gaps between these two fields,
offering future opportunities in both realms. From an engineering perspective, de-
spite achieving high predictive accuracy, this study has its limitations. DL-based FEs
should be trained on an extensive database, prompting the need for future works
with more data and a prospective approach.

On the medical front, the entire framework can be tested in various hospitals and
integrated into traditional cancer diagnosis workflows to analyze its pros and cons
in real-world practice. This testing can provide a clearer understanding of a CBMIR
framework and serve as a guide for subsequent steps in training DL-based methods.
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Abstract

The paper proposes a Federated Content-Based Medical Image Retrieval (Fed-
CBMIR) tool that utilizes Federated Learning (FL) to address the challenges of ac-
quiring a diverse medical data set for training CBMIR models. CBMIR is a tool to
find the most similar cases in the data set to assist pathologists. Training such a tool
necessitates a pool of Whole Slide Images (WSIs) to train the feature extractor (FE) to
extract an optimal embedding vector. The strict regulations surrounding data shar-
ing in hospitals makes it difficult to collect a rich data set. FedCBMIR distributes an
unsupervised FE to collaborative centers for training without sharing the data set,
resulting in shorter training times and higher performance. FedCBMIR was evalu-
ated by mimicking two experiments, including two clients with two different breast
cancer data sets, such as BreaKHis and Camelyon17 (CAM17), and four clients with
BreaKHis data set at four different magnifications. FedCBMIR increases the F1-Score
(F1S) of each client from 96% to 98.1% in CAM17 and from 95% to 98.4% in BreaKHis,
with 11.44 hours less in training time. FedCBMIR provides 98%, 96%, 94%, and 97%
of F1S in the BreaKHis experiment with a generalized model and does so in 25.53
hours less training.
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4.1 Introduction

Breast cancer accounts for 25% of all cancers in women worldwide. According to the
American Cancer Society, a woman is diagnosed with breast cancer in the world ev-
ery 14 seconds. In the year 2020, approximately 2.3 million women were diagnosed
with breast cancer globally, and 685,000 lost their lives due to it[105]. Histopathology
is commonly used in the diagnosis and treatment of various diseases, including can-
cer. A biopsy, which is the removal of a small piece of tissue from the body, is usually
required for histopathological examination [106]. Human error in histopathology
refers to mistakes or inaccuracies made during the process of examining tissues or
cells under a microscope [107]. Some examples of human errors in histopathology
include, sampling errors, processing errors, technical errors, interpretation errors,
and reporting errors [108]. To minimize human errors in histopathology; it is essen-
tial to follow strict protocols and guidelines, perform regular quality control checks,
and ensure that all personnel involved in the process are properly trained and com-
petent [109]. Authors in [110] analyzed the accuracy of breast cancer diagnosis in
102 cases and found that there were diagnostic errors in 15.7% of cases. The most
common types of errors were misclassification of tumor type and misinterpretation
of pathology slides. Digital pathology could help pathologists to improve the accu-
racy and efficiency of cancer diagnosis, reduce the risk of errors, and enhance patient
care.

Digital pathology is a technology that uses digital images of tissues and cells to
aid in the diagnosis and management of diseases [111]. Deep Learning (DL) has rev-
olutionized Computer-Aided Diagnosis (CAD) in digital pathology and has opened
the door to improve cancer diagnosis while decreasing the pathologist’s workload
[35].

Content-Based Medical Image Retrieval (CBMIR) is a recent DL-based methodol-
ogy that allows pathologists for a quick and precise search in previously diagnosed
and treated cases [88]. In CBMIR, image features such as texture, shape, color, and
intensity are extracted from the query and data set; then, a similarity measure is
applied to compare the query features with the features of the database [112]. The
retrieved images are ranked according to their similarity to the query image, and the
most relevant images are displayed to the user.

To further illustrate the advantages and practicality of CBMIR in the field of
histopathology and cancer diagnosis, consider a scenario where a patient is diag-
nosed with cancer, and grading it accurately poses a challenge for pathologists. In

FIGURE 20: An overview of the use case of a worldwide CBMIR.

Pathologists send their Query (Q) to the worldwide CBMIR since they

need a second opinion to make a more confident decision. Then, the

model retrieved top K similar images (S-R), and the pathologists can
get a second opinion from whole over the world.
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traditional cancer diagnosis methods, the pathologist would need to physically send
the glass slide containing the tissue sample to another hospital, which could be lo-
cated in a different city or even a different country. This process is not only expensive
and time-consuming but also carries inherent risks, such as the loss or damage of the
glass slide during transportation. Moreover, it adds additional stress to the patient’s
already difficult situation.

By implementing a World-Wide Content-Based Medical Image Retrieval (WWCB-
MIR), these challenges can be effectively addressed, and the process of a cancer di-
agnosis can be significantly expedited without compromising accuracy. Through the
use of digital pathology, where Whole Slide Images (WSIs) are digitized and stored
electronically, pathologists can access and analyze the images remotely [106]. The
WWCBMIR enables pathologists to retrieve similar cases and relevant information
from a vast database of histopathological images without the need for the physi-
cal transfer of slides. This approach not only reduces costs and saves time but also
minimizes the potential risks associated with the transportation of delicate tissue
samples. Figure 20 shows how a WWCBMIR can provide unprecedented access to K
number of patches with the most similar patterns, allowing the pathologists to make
a more confident diagnosis.

One of the advantages of CBMIR from the pathologist’s (user) perspective is that
it is not a completely black box for them. CBMIR allows pathologists to find simi-
lar patterns among the retrieved images and the queries based on their knowledge.
This provides more reliable information than a label for pathologists, which makes
CBMIR more beneficial for pathologists than a classification.

An actual context needs a global CBMIR, which demands a generalized data
set with a variety of images of different quality, magnification, color, size, etc. The
performance of CBMIR relies on a vast amount of data, which is difficult to collect
in the medical field due to patient privacy and time costs. In order to create a vast
centralized data set, DL experts need to transfer their WSIs. However, these images
are gigapixels with high storage sizes. In addition to the challenges of transferring a
heavy data set for DL experts, patient privacy policies and other regulatory obstacles
on the medical side make it more challenging to create a sufficient data set.

Federated Learning (FL) represents a possible solution to tackle this problem
by collaboratively training DL models without transferring WSIs [113]. Multiple
institutions can safely co-train DL models in digital pathology using FL, achieving
cutting-edge performance with privacy assurances [114]. FL brings an opportunity
to share the weights for multi-institutional training without sharing patient data and
images. However, there are still some privacy risks since the training parameters and
model weights are distributed among collaborators [115].

DL models give information that goes beyond the scope of human vision, and
FL solves the problem of data sparsity by connecting international hospitals while
complying with the data privacy policies, irrespective of the country of origin. This
benefit can remedy the health care limitations due to the lack of facilities (staining
materials, scanners, etc.) and experience (students, recently graduated pathologists,
etc.). Moreover, it can tackle the lack of data sets of labeled WSIs because of data
privacy.

In this paper, we minimized the WWCBMIR to an international CBMIR by lever-
aging FL. The experiments were conducted through the collaboration of two coun-
tries and three cities to examine the feasibility and challenges associated with imple-
mentinga WWCBMIR. This international CBMIR was trained with the data collected
from different hospitals and answered the needs of clients. Clients might be expert
pathologists or a student. Our main contributions include the follows:
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* We proposed a novel international FL-based CBMIR, which is named FedCB-
MIR, to aid pathologists in breast cancer diagnosis.

¢ An unsupervised network was used as a Feature Extractor (FE) to extract the
features of the images for the tasks trained with scanty data sets.

¢ We proposed a custom-built Convolutional Auto Encoder (CAE) to learn the
dependencies and extract the features of the images with higher discriminating
values.

¢ In order to address patient data privacy concerns, we employed the privacy
preservation capability of FL. This approach ensures that the data in each insti-
tution remains decentralized and confidential, as there is no need to be shared
with a central server.

¢ Through extensive tests on varying data set distributions among individual
clients, we verified the robustness of our proposed solution. It proved to be
independent of the data quality held by each client.

4.2 Related work

Recently, researchers have directed their attention toward both FL and CBMIR and
have invested their efforts in exploring these fields. This section provides a succinct
overview of some of the notable studies.

421 Content-Based Medical Image Retrieval (CBMIR)

CBMIR has been a subject of extensive research since the advent of large-scale databases
nearly two decades ago, as noted by Wang [116]. Several studies have made signif-
icant contributions to this field. Tabatabaei [24] achieved an accuracy rate of 84%
in CBMIR using the largest patch-annotated data set in prostate cancer. Kalra [13]
proposed Yottixel, a method for representing The Cancer Genome Atlas Whole Slide
Images (TCGA WSIs) compactly to facilitate millions of high-accuracy searches with
low storage requirements in real-time. Conversely, Mehta [117] proposed a CBMIR
system for sub-images in high-resolution digital pathology images, utilizing scale-
invariant feature extraction. Lowe [118] utilized Scale-Invariant Feature Transform
(SIFT) to index sub-images and reported an 80% accuracy rate for the top 5 retrieved
images. Lowe’s experiments were conducted on 50 ImmunohHistoChemistry (IHC)
stained pathology images at eight different resolutions. Additionally, Hegde [70]
used a manually annotated data set pre-trained on a Deep Neural Network (DNN)
to achieve top 5 scores for patch-based CBMIR at different magnification levels. The
primary focus of recent studies has been on enhancing the performance of CBMIR
in different types of cancer; however, there are still several challenges that can im-
pede its effectiveness. These challenges include data privacy, as medical data is con-
fidential and subject to strict privacy regulations, making it arduous to share and
access large data sets for model training. FL can alleviate this issue by facilitating
distributed model training on local data without compromising privacy. Another
challenge is data distribution, as medical data is frequently dispersed across numer-
ous locations, it is difficult to train models on a centralized data set. FL enables
the training of models across multiple distributed data sets without aggregating the
data in a central location. In addition, medical data sets can be heterogeneous, vary-
ing in terms of imaging modalities, quality, and annotation protocols, which can
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impede the development of robust and accurate models. FL can mitigate this chal-
lenge by allowing models to be trained on diverse data sets in different qualities,
improving their performance and generalization ability. Furthermore, medical data
sets can be large and complex, necessitating significant computational resources to
train models. FL can distribute the computational workload across multiple devices
and locations, enhancing scalability and reducing training time.

4.2.2 Federated Learning (FL)

In recent years, FL has achieved impressive progress that enhances a wide adoption
of DL from decentralized data [113, 119, 120]. FL is a distributed machine learning
approach that can effectively handle decentralized data without raw data exchange
to train a joint model by aggregating and distributing local training. Many existing
algorithms can be adopted to aggregate updates from distributed clients. Typical ex-
amples include Federated Averaging -viz FedAvg [113], and adaptive federated op-
timization methods [120], e.g., FedAdagrad, FedYogi, and FedAdam. Some popular
FL frameworks such as TensorFlow Federated (TFF) !, PySyft [121], and Flower [122]
provides a set of the robust set of tools for building privacy-preserving ML models.
Besides, Jupyter Notebook-based tools such as [123] also help simplify the FL setup
and enable its deployment of a cross-country federated environment in only a few
minutes. Daniel Truhn in [124] employed Homomorphic encryption to protect the
model’s performance while training by encrypting the weight updates before shar-
ing them with the central server. Firas Khader in [125] presented a technique of
“learnable synergy”, where the model only chooses pertinent interactions between
data modalities and maintains an“internal memory” of key information. Micah J.
Sheller [115] investigated that FL among ten institutions is 99% as efficient as those
derived using centralized data. One recent work related to content-based image
retrieval is introduced in [126], where FLSIR was proposed, and it enables secure
image retrieval based on FL and additive secret sharing. Nevertheless, it is not for
clinical applications. Although the combination of CBMIR and FL is a relatively new
area of research, it has the potential to greatly improve healthcare outcomes. By of-
fering healthcare professionals quick access to accurate and relevant medical image
data while maintaining patient privacy, the integration of these techniques can have
a significant impact on the field.

The following sections address how the proposed FedCBMIR approach can rev-
olutionize how medical images are searched and utilized, leading to improved di-
agnoses and treatment plans.

4.3 Experiments

In this section, the proposed FedCBMIR tool is introduced along with the training
details and the two data sets used in our study. Figure 21 ? provides an overview
of the CBMIR workflow, starting from the initial stage at a hospital and concluding
with the presentation of the top K similar patches to the user. In the medical session,
a cancer patient’s tissue is obtained, scanned, and divided into patches for storage.
In the offline session, the FE is trained, and the extracted features from the database
are saved and indexed. In the online session, a pathologist uploads an image to
the CBMIR model, where the well-trained FE extracts its features. These features

11'1ttps:/ /www.tensorflow.org/federated
2BreaKHis images
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are then used by the search engine to retrieve the top K similar patches from the
stored database in the medical session. Finally, in the visual session, the pathologist
can reach similar patches and their corresponding labels for further investigation
based on their knowledge. In this paper, the proposed FedCBMIR, as shown in Al-
gorithm 1 3, addresses the described challenges and provides a second opinion for
pathologists in writing their reports for a cancer diagnosis. FedCBMIR is inspired
by a great vision of a WWCBMIR that effectively manages decentralized medical
images by utilizing local training for multiple tasks while avoiding the need for raw
data exchange. FedCBMIR takes advantage of FL since it can give CBMIR a higher
chance of generalizing its capabilities by accessing multi-central images from differ-
ent hospitals. A generalized CBMIR framework needs more effective content of the
images as the key factor in the field of CBMIR.

In this paper, we cope with the challenges of CBMIR with two different experi-
ments and evaluate it in three scenarios. In our first experiment (EXP 1), we mimic
a case of two institutions that have different breast cancer WSIs in completely dif-
ferent image preparation processes. This case occurs when two institutions have a
limited number of images, but they need a well-trained model to obtain a support-
ive idea on their query tissue. This experiment was assessed this experiment on
CAMELYON17 (CAM17) and BreaKHis at 40 x magnification. Then, in the second
experiment (EXP 2), we extended our work with patches at different magnifications
by feeding our FedCBMIR framework with BreakHis data set at 40x, 100, 200,
and 400 x magnification. The magnification problem in WSI analysis is the subject of
our second experiment. Algorithm 1 shows FedCBMIR step by step. The novelty of
this work relies on providing well-trained models that can retrieve similar patches
for each client in different countries. Regarding the use of FL in CBMIR, all clients,
regardless of their data privacy policies, can train the model with a limited num-
ber of patches and find similar patches to their queries more accurately than local
training.
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FIGURE 21: A comprehensive illustration of the entire process in a
CBMIR, demonstrating the utilization of DL models to acquire im-
ages from a hospital and offer a second opinion for pathologists.

3More information: https:/ /flower.dev/docs/framework /how-to-implement-strategies.html
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The performance of FedCBMIR was validated on histopathological images using
a CAE in a cross-institutional distributed environment. FL was used as a collabora-
tive learning paradigm, in which the CAE can be trained across different institutions
without explicitly sharing data sets.

4.3.1 Materials

Hematoxylin and Eosin (H&E) is a type of histopathological staining. H&E has been
popular for almost a century because it may indicate morphological changes [127].
The images in the used data sets in this paper were stained by H&E.

BreaKHis

BreaKHis contains 7,909 histopathological images of breast tumor tissues that were
provided by a collaboration with the P&D Laboratory—Pathological Anatomy and
Cytopathology, Parana, Brazil. This data set was collected from 82 patients at four
magnifications (40 x, 100x, 200 x, and 400 x) with 2,480 benign and 5,429 malignant
cases. As can be understood in Table 9, the number of images in benign and malig-
nant cases is imbalanced. The most considerable portion of the data set belongs to
the images at 100X magnification 4.

TABLE 9: The distribution of BreakHis data set.
| Magnification | Benign | Malignant | Total |

40x 625 1370 1995
100x 644 1437 2081
200x 623 1390 2013
400 x 588 1232 1820
Total 2480 5429 7909
CAMELYON17 (CAM17)

The CAM17 data set belonging to the CAMELYON17 challenge, as described by
[128], is designed to detect breast cancer metastasis in lymph node sections. It com-
prises 1000 WSIs obtained from five distinct hospitals. Each hospital contributed
data from 20 patients, with five slides per patient, and annotations for cancer regions
were provided for a subset of 50 WSIs. In this paper, images from four hospitals were
used for training and validating the model, and the images of Hospital 5 were fed
into the model as a test set. Non-overlapping 224 x224 (at 40x) pixel patches with
at least 70% tissue were used for experiments on this data set. In the experiments
of this paper, the data set was considered as a binary data set, including Cancerous
(annotated) and Non-Cancerous (not annotated).

4https:/ /www.kaggle.com/datasets/ambarish /breakhis
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4.3.2 Data distribution

CLoud ARtificial Intelligence For pathologY (CLARIFY) project ° has a multi-institutional
paradigm. In this work, according to the connections between different institutions

in CLARIFY, four institutions (three universities and one company) in three cities in

two countries gathered to mimic the practical situation of FL in CBMIR.

In EXP 1, in order to distribute the data into two nodes, we assume that Tyris
(TY)® and the Universiteit van Amsterdam (UvA) 7 have CAM17 and BreaKHis 40 x,
respectively. As can be seen in Table 10, TY caries out training the FedCBMIR on a
GPU resource in the type of NVIDIA GeForce RTX 3090. The used GPU in UVA is the
NVIDIA Tesla T4, which has fewer CUDA cores, slower memory clock speed, and
lower memory bandwidth compared to the used GPU in TY. These different GPUs
are chosen to mimic the real condition that different hospitals or research centers
have different GPU performances.

In EXP 2, regarding mimicking the real-world data limitation, the four magnifi-
cations of the data set were distributed into four nodes. To do so, each institution
(client) in this paper has BreakHis at only one magnification to train their model
(Table 11). Universidad de Granada (UGR)®, TY, UvA, and Universidad Politécnica
de Valencia (UPV)? trained the custom-built CAE with BreakHis 40x, 100x, 200,
and 400x, respectively. To replicate real-world conditions where clients may not
have access to high-performance GPUs, our experiment includes three distinct GPU
types across four institutions. This ensures alignment with practical scenarios and
provides a comprehensive evaluation of different GPU capabilities.

TABLE 10: Data distribution in EXP 1. The information of each in-

stitution participating in EXP 1, including their location, the name of

their center, the data associated with their data distribution, and the
GPUs employed by each client for training and searching tasks.

|C1ient| Region | Institution | Data set | GPU type |
1 Valencia, Spain TY CAM17 NVIDIA GeForce
RTX 3090
2 | Amsterdam, The UvA BreakHis 40x | NVIDIA Tesla T4
Netherlands

4.3.3 Training Convolutional Auto Encoder in each node

One of the most crucial elements of CBMIR that influences search engine results
is the FE. The objective of content-based image search is to efficiently compare an
extracted feature from a query image to every image in a database to identify the
matches that are most similar.

Lack of annotated images and bias are the two major challenges that need to
be considered in the integration of DL into cancer diagnosis. Three factors have the
potential to make bias in medical studies: data-driven, algorithmic, and human bias.
To tackle these obstacles, a custom-built CAE is configured as the FE in this paper
as a generative model where it is trained to reconstruct its input in an unsupervised

5http: / /www.clarify-project.eu/
6Spain, Valencia

"The Netherlands, Amsterdam
8Spain, Granada

9Spain, Valencia
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TABLE 11: Collects information on each client in EXP 2, including
their country and city, the name of the center, the related data due to
the data distribution, and the GPUs used for training and search tasks

by each client.
Client | Region | Institution | Magnification | GPU type |

NVIDIA GeForce

1 Granada, Spain UGR 40 x RTX 3090
NVIDIA GeForce

2 Valencia, Spain TY 100 x RTX 3090

Amsterdam,
3 The Netherlands UvA 200 x NVIDIA Tesla T4
4 Valencia, Spain UPV 400 % NVIDIA TITAN V

way. The proposed structure of CAE contains a skip layer to jump over the layers
to not only lead the model to converge faster and minimize the training errors but
also boost the representation power and tackle the vanishing problem. Also, it has
a residual block in its bottleneck to enable the training of deeper and more accurate
CAE.

Figure 22 shows its architecture with convolutional filters in the size of [32, 64, 128, 256|
in the encoder and, respectively, [128,64,32, 3] in the decoder. In this custom-built
CAE, a residual block with the filter size of [64, 32, 1, 256] takes place between the en-
coder and decoder. This takes the originally extracted features from the backbone as
its input and provides a new feature map that contains the context relations between
its feature input. In our experiments a skip layer connect a layer in the encoder to the
corresponding layer in the decoder. The bottleneck delivers one feature vector with
200 features (F; = {f1, f2, f3, .-, fa00}) from each encoded input image i. The model
aims to achieve the lowest Mean Squared Error (MSE) by comparing Input (I) and
Output (O) and is penalized if the reconstruction O differs from I. Once the unsuper-
vised training is completed by discarding the decoder part, a powerful automatic FE
is available to extract the desired features.

4.3.4 Local Training

Figure 2310 explains the whole pipeline of the proposed CBMIR that each institution
must follow to retrieve similar patches. In the offline session, images in the training
and validation set are fed into the FE to extract and save their features as in the

Encxder Bottlineck Deci)der

o~
R

SR NRE b
FIGURE 22: The structure of thé custom-built CAE. The stride in the
encoder = [1,2,2,2], in the bottleneck = [1,1,1, 1], in the decoder re-

lated to the encoder = [2,2,2,1]. The kernel size of the layers in all
parts of the structure and for each layer is 3.

10BreaKHis images are used to plot the figure.
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FIGURE 23: The pipeline of CBMIR. It contains three important sec-
tions such as 1) FE, 2) indexing and saving, and 3) similarity measure
and search.

previous cases. All the F;s are collected in a dictionary D = [F;, F, ..., F,| in the
middle of this figure.

In the online session, pathologists upload their patch as a query image (Q) and
expect to receive top K similar patches. In practice, each Q needs to feed to the FE
and map to its feature vector Fy. Then, Fj feeds to the distance metrics in order
to compare with the F;s saved in D. To do so, in our experiments, as soon as the
pathologists upload their Q, the Q image is fed to the FE to extract Fo with 200
features. Then, the Euclidean function applies on both Fp and the F;s in D to measure
their similarity and deliver top K similar patches.

4.3.5 Federated learning configuration

In order to train the CBMIR following a federated strategy, different experiments
have been conducted on FedAvg and FedAdagrad. In our cases, with some exper-
iments, it is found that Fed Avg performs better than FedAdagrad. Thus, this work
adopts FedAvg to aggregate distributed updates from local clients, as shown in Al-

gorithm 1:
M

Wry1 = Z n?mw;ﬁrl (4-1)
m=1
where M indicates the number of clients, r presents the communication round. For
a client m with n,, samples, the local updates are arbitrary w;", ;.

FLOWER [122] as a primary framework is applied to configure the FL experi-
ments. Two FL experiments were conducted, as shown in Figure 24a and Figure 24b.
The first experiment consists of two distributed training nodes located in TY and
UVA, respectively (see Figure 24a). In the two communication rounds, the learning
rate is set as 0.000001, 5 local epochs for CAM17 per round, and 100 local epochs
for BreakHis 40x. Also, FedCBMIR is extended with more clients, as shown in Fig-
ure 24b. The system consists of four separate nodes, each of which is trained us-
ing the BreaKHis data set at different magnifications. The training process involves
three communication rounds, a learning rate of 0.000001, and each client performs
100 local epochs per round. Table. 11 lists all four distributed processing nodes’
information in the training phase.
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(A) An overview of the FedCBMIR pipeline with two clients training fed with BreaKHis 40x and
CAM17 data sets, respectively.
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(B) An overview of the FedCBMIR pipeline with four clients training over clusters at universities and
companies with BreaKHis in four different magnifications.
FIGURE 24: The FedCBMIR pipeline consists of four main steps. Step
1: the server initializes weights, and then sends to client for local
training, step 2: client starts local training, step 3: client updates local
weights to the server side, and step 4: the server side aggregates and
updates the distributed weights.

4.4 Discussion and Results

44.1 Evaluation

To allow for an adequate comparison of the model’s performance, three metrics were
selected: Accuracy (ACC), Precision, and F1Score (F1S), in addition to presenting
the Confusion Matrix (CM). Accuracy assesses how well a model correctly retrieved
similar patches to the query [129]. Precision measures the accuracy of positive pre-
dictions, which is vital when false positives are costly. The F1S combines precision
and recall into a single metric [130]. In this paper, to evaluate the proposed FedCB-
MIR, each of the images in the test set was considered a query. Across the entire
training and validation set, the model is meant to detect similar patches.

It is worth considering what "accuracy" means in the context of a CBMIR. The
accuracy of CBMIR depends on what we are looking for and what is displayed by
the search engine. In order to determine the performance of the experiments top
K score at retrieving images of the same histologic features engaged in the prior
research. The evaluation method will consider a correct answer from the model
whenever it finds at least one correct image within the K set [24]. In this paper, we
set K = 5, which evaluates the performance of our model to correctly present at least
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TABLE 12: Provides a comparison in the test set between the perfor-

mance of CBMIR and FedCBMIR in the EXP 1 as a result of aggregat-

ing CAM17 and BreaKHis 40 x with 2 communication rounds. Hours

and seconds, respectively, are used to measure the periods of training
and searching.

Training | Searching
Data Model Accuracy | Precision | F1S time time
CBMIR 0.96 0.96 0.96 8.7h 0.28S
CANLL7 [~ FedTBMIR
(TY) (Fedavg) 0.981 0970 |0981| 621h 0295
FedCbMIK
(FedAdagrad) 0.98 0.97 0.98 792h 0.30S
BreaKHis CBMIR 0.93 0.94 0.95 9.33h 0.018 S
40 x FedCBbMIK
(UvA) (Fedavg) 0.978 0969 | 0984 | 659h 0.024 S
FedCbMIK
(FedAdagrad) 0.94 0.92 0.96 6.11h 0.04S

one correct result in the top K retrieved images.
1 N
ACCeK = ;s(ai, TOP(ans[: K])) (4.2)

In this equation, N denotes the number of query patches, and «; represents the label
of the i-th query patch. The function TOP (ans;[: K]) retrieves the top k most similar
results for the query and outputs 1 if any of these results match with the query, and
0 otherwise. In other words, if TOP (ans;[: K]) belongs to the set of labels of the i-th
query, denoted by «;, the function &() returns 1.

4.4.2 Results of EXP1

For this particular experiment, BreaKHis 40x and CAM17 data sets were aggre-
gated to train the model. As a result, each client (UVA and TY) could develop a
well-trained model to retrieve their respective images. The underlying assumption
made in this experiment is that neither client had an agreement in place for sharing
or accessing each other’s images. Table 12 provides a comprehensive view of the
model. As it is mentioned above, CAM17 was provided by five hospitals. To do this
evaluation, the CAM17 images from Hospital 5 were isolated from the images in the
other four hospitals that were utilized for the training and validating task. Each im-
age from Hospital 5 serves as a query in the testing assignment, and the platform’s
function is to seek patches with a similar pattern from the other four hospitals. Ta-
ble 12 illustrates that the accuracy of local training of CAM17 without aggregating
with BreaKHis is less than the FedCBMIR with aggregated data. This table indicates
that FedCBMIR using the Fedavg approach, achieved better results than FedCBMIR
using FedAdagrad. As a result, Fedavg was selected as the aggregation technique
for the subsequent experiments.

In terms of time and accuracy, local training of the CBMIR model on BreaKHis40 x
and CAM17 requires 9.33 and 8.7 training hours, resulting in an accuracy of 93%
and 96% in the test set, respectively. However, FedCBMIR was trained more effi-
ciently and achieved a higher accuracy level of 98.1% in retrieving similar patches
in CAM17, and 97.8% accuracy for UvA, with a reduction of 2.49 and 2.74 hours in
training time, respectively. In order to have two distinct models on both data sets
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separately, 18.04 hours is needed while FedCBMIR trains two generalized models
on both data sets in 6.59 hours (Max(6.21h,6.59h) = 6.59h). This means FedCBMIR
provides more generalized models for clients in 11.44 hours faster.

Training time and accuracy are essential factors for DL scientists in building an
optimal model, whereas accuracy and searching time are crucial for pathologists in
retrieving similar patches. The table shows that TY client can obtain a second opin-
ion with labels and similar patches in only 0.28 seconds per image. Upon examining
the "Training time" and "Searching time" columns, it becomes evident that the uti-
lization of FL has no noticeable impact on the searching time, while it substantially
influences in reducing the training time.

Figure 25 represents three random queries in the test set of CAM17 with their
top 5 retrieved images among the training and validation sets. Figure 26 represents
the comparison of image search results with two CMs in the test set of CAM17 as a
result of local training (CBMIR) and FedCBMIR.

4.4.3 Results of EXP 2

In EXP 2, the performance evaluation of the proposed framework was conducted
using two distinct scenarios. The first scenario, Senl, assumed that the clients did
not have access to images from other clients, and it was only allowed to share the
model weights during the training phase. This scenario was designed to test the per-
formance of the framework when the participating clients faced technical limitations
in sharing large amounts of medical imaging data. In this scenario, each client had
to train their model on their local data, and the models” weights were shared with
other clients. Then, the weights were combined and trained using the entire data set
from all participating clients. Finally, the model was evaluated on each client’s local
test set.

Sen1 mirrors the situation where clients can only obtain patches that are similar
to their Q at the same magnification. Because there is no explicit agreement among
the institutions, the model is obliged to search for similar cases in a few cases at that
particular magnification.

Table 13 summarizes the results of the proposed FedCBMIR on the BreaKHis
data set at all four magnifications. This table shows the accuracy and precision of

Query Retrievel Retrieve2 Retrieve3 Retrieve4

el o i

Query Retrievel
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FIGURE 25: Three random queries fr f CAM17 (test

set). Corresponding to each query, the top 5 images are shown from

four other hospitals with the most similar patterns to the query. The

green and red lines around the retrieved images explain the correct
and wrong retrieved images.
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CAMI7,K =5 CAMI17 FDL,K =5

True label
True label

1 0 1
Predicted label Predicted label

(A) (B)
FIGURE 26: (a) shows the results of local training on CAM17 in the TY
server. (b) is the result of the searching task in CAM17 by applying

the well-train FedCBMIR model from the first experiment.

the retrieved images at each magnification, achieved by each client after training
their models for 300 epochs within their server and without using FL. The highest
accuracy of 95% for the retrieved images at 40 x magnification was achieved by the
client at UGR in 9.37 hours, while client 3 spent 8.59 hours to achieve a minimum
accuracy of 89% and precision of 87%, which is the lowest among all the clients.

TABLE 13: Obtained results of CBMIR on 40x, 100, 200, and 400 x

at K = 5. We measure ACC, Precision, and F1S in the test set of

each client at their corresponding magnification. The FedCBMIR was

trained with the FedAvg strategy with 5 communication rounds in
EXP 1. Time is reported in hour.

Client Model Training time | Accuracy | Precision | F1S
1 CBMIR 9.37h 0.95 0.93 0.96
FedCBMIR 6.82 h 0.97 0.96 0.98

5 CBMIR 545h 0.90 0.88 0.94
FedCBMIR 578 h 0.94 0.92 0.96

3 CBMIR 8.59 h 0.89 0.87 0.93
FedCBMIR 6.65 h 0.92 0.89 0.94

4 CBMIR 8.95h 0.92 0.89 0.94
FedCBMIR 6.83 h 0.96 0.94 0.97

As demonstrated in Table 13, using the proposed approach, the four models were
trained in a federated setting, which took (Max(6.82h,5.78h,6.65h,6.83h) = 6.83h)
hours to complete the training process, is much faster than training one by one that
took 32.36 hours in total, thereby reducing the total training time around 25.53 hours.
This reduction in training time is particularly significant for large data sets and can
facilitate more rapid and accurate diagnoses and treatments of cancers.
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True label
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True label
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The proposed Sen2 approach can serve as an important tool for pathologists in
developing nations to overcome the limitations of their scanners by enabling them to
access tissue images at higher magnifications. FedCBMIR can facilitate cross-border
collaborations, where pathologists from different regions can share their knowledge
and expertise by analyzing similar patches at higher magnifications. In contrast to
CBMIR, FedCBMIR in Sen2 allows pathologists to retrieve similar cases at all four
magnifications, not just from the same magnification as their query (Q). However,
sharing images with a single server is not feasible due to storage and privacy con-
cerns. To address this issue, the proposed FedCBMIR can retrieve similar patches at
the same and higher magnifications.

Table 15 proves that the proposed FedCBMIR is highly robust to receive a query
at a specific magnification and retrieve the top 5 similar patches at all four magnifi-
cations. Each client fed the test set at the corresponding magnification and received
the top 5 retrieved patches at all four magnifications.

TABLE 15: The ACC, Precision, and F1S for the second scenario of the
EXP 2, Sen2 with K = 5.

| Client [ Accuracy | Precision | F1S |

1 0.94 0.92 0.95
2 0.95 0.93 0.96
3 0.95 0.93 0.96
4 0.95 0.92 0.96

The results of feeding the model with five random queries at 40 x magnification
by following (Sen2) are presented in Figure 30. The 40 is selected because it is the
lowest magnification in the data set, and it is easier to measure the number of mi-
toses in images with higher magnifications. By feeding the model with images at
40x, pathologists can receive top 5 similar images at 40x, 100x, 200x, and 400x,
which can significantly reduce the time and effort required to obtain a second opin-
ion. The proposed approach has the potential to improve the speed and accuracy of
cancer diagnosis and treatment. As such, it can serve as a user-friendly platform for
pathologists to address their concerns more. Furthermore, it has the potential to be
a valuable tool for telepathology in the future.

One of the challenges in collecting WSIs for use in DL models is the variability
in color distribution due to differences in the staining material used across differ-
ent hospitals and over time [134]. This variability can have a significant impact on
the accuracy and reliability of DL models. However, an important finding from
the results shown in Figure 30 is that the proposed approach, Sen2, is not affected
by differences in color distribution resulting from the staining process at different
hospitals. This is a noteworthy result, as it indicates that the proposed approach
can effectively overcome one of the major challenges associated with collecting and
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FIGURE 27: (a)-(d) show the CMs as a result of local training and

searching at the same magnification. e-h are the CMs of FL models.

The reported results are with top K retrieved images. In all CMs, "0"

and "1" indicate "Benign and "Malignant", respectively. "True labels"

and "Predicted labels" correspond to the query and the retrieved la-
bels, accordingly.

| Large

FIGURE 28: BreaKHis images at four different magnification levels
(40%, 100%, 200x, and 400x). The higher magnification offers in-
creased access to relevant information with a reduced field of view.
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FIGURE 29: An indirect comparison between the results of FedCBMIR
in both experiments and some recent methods at different amounts of
K.

Retrieval precision

Mehods

utilizing WSIs in telepathology. By eliminating the impact of color distribution vari-
ability, Sen2 provides a more robust and reliable platform for pathologists to obtain
accurate and consistent diagnoses, regardless of the specific staining materials used
at different centers.

The proposed approach can contribute significantly to improving the accuracy
and speed of disease diagnosis, particularly in regions where access to advanced
technology is limited. In this way, Sen2 has the potential to bridge the gap in health-
care and provide a more equitable and accessible healthcare system for all.

All the experimental results in both experiments and scenarios have verified that
the proposed FedCBMIR has covered both concerns of DL scientists and pathologists
with a fast-trained and accurate CBMIR, which is more generalized.
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FIGURE 30: Five lines of random histopathological WSIs with their
magnifications. The first column is the query, and the following
five columns show the retrieved images. This figure brings a proper
overview on Sen2. The retrieved image with the same and different
labels as the query is indicated by the green and red borders, accord-

ingly.
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4.5 Conclusion

The present study proposes a FedCBMIR approach that addresses two significant
challenges in digital pathology faced by pathologists and engineers. By retrieving
the top 5 similar images in a short amount of time, the proposed method reduces the
workload of pathologists and decreases the time and cost associated with develop-
ing a high-performing DL-based method.

To evaluate the proposed approach, two experiments (EXP 1 and EXP 2) were
conducted while EXP 2 contains two scenarios. EXP 1 aimed to provide a gener-
alized model with Camelyon17 (CAM17) and BreaKHis 40 x for clients that do not
have enough images to train a model effectively. FedCBMIR in EXP 1 provides pre-
cision of 97.0% and 96.9% with training an unsupervised feature extractor within
11.44 hours faster.

EXP 2 comprised two scenarios: Senl, where image institutions are not in agree-
ment for sharing images, and Sen2, where images are delivered in different magni-
fications for institutions that lack the equipment to scan tissues at higher magnifica-
tions. The proposed method reached 98%, 96%, 94%, and 97% F1S for each client in
Senl. In Sen2, the BreaKHis data set was distributed across four institutions, result-
ing in accuracy rates of 97%, 94%, 92%, and 96% for pathologists at magnifications
of 40x, 100x, 200x, and 400x, respectively. The average retrieval time was 13.84
seconds, and the well-trained models required 25.53 fewer hours to train four gen-
eralized models.

On one hand, WWCBMIR provides a chance to have a more accurate diagnosis
for less-developed countries.

On the other hand, FedCBMIR can be a valuable tool for new graduate patholo-
gists in their training and professional practice, offering benefits such as improved
education, decision-making, research, and time efficiency.

Overall, this work offers a promising tool for hospitals to enhance diagnostic ac-
curacy, medical education, and reduce the workload of pathologists by decreasing
training time and increasing accuracy in compared to CBMIR methods. FedCBMIR
aids in recognizing rare cases by connecting hospitals from the whole of the world.
Although FedCBMIR tackles the challenges of data privacy, limited clinical context,
and algorithm accuracy, the ongoing issues, such as dependence on image quality
and security concerns, are still challenging for both hospitals and Al experts. There-
fore, both hospitals and engineers must weigh the advantages and drawbacks while
considering WWFedCBMIR as a tool.

4.6 Future work

To further enhance the performance of FedCBMIR for breast cancer diagnosis, it may
be worthwhile to explore the use of additional data sets. This could include larger
data sets with a greater number of labeled images, as well as data sets that encom-
pass a wider range of malignancy levels and tumor subtypes. The incorporation of
these data sets into the FL process, it may be possible to improve the accuracy and
robustness of a CBMIR.

In addition to expanding the data sets used in Federated CBMIR, it may also be
valuable to incorporate other types of clinical data into the system. Patient demo-
graphic information and clinical history could provide additional context and help
to further refine the diagnostic process. Exploring the integration of these types of
data could be a promising avenue for future research.
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Abstract

Computer Aid Diagnosis (CAD) has developed digital pathology with Deep
Learning (DL)-based tools to assist pathologists in decision-making. Content-Based
Histopathological Image Retrieval (CBHIR) is a novel tool to seek highly correlated
patches in terms of similarity in histopathological features. In this work, we pro-
posed two CBHIR approaches on breast (Breast-twins) and skin cancer (Skin-twins)
data sets for robust and accurate patch-level retrieval, integrating a custom-built
Siamese network as a feature extractor. The proposed Siamese network is able to
generalize for unseen images by focusing on the similar histopathological features of
the input pairs. The proposed CBHIR approaches are evalua