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Abstract 

Natural catastrophes pose significant threats to life and property, requiring advanced risk 

analysis for effective mitigation and preparedness. This work applies statistical 

techniques to enhance the understanding and prediction of the impact of natural disasters, 

where the data of study was earthquake-induced losses in Morocco. Specifically, by 

simulating 13 different earthquake events with varying magnitudes, we employ machine 

learning models to predict the financial losses each might cause. Additionally, this 

research proposes a hybrid operational model for seismic risk transfer which combines 

the cat-in-a-grid and ground motion index methodologies to leverage the advantages of 

both, enhancing decision-making tools for community resilience. The cat-in-a-grid 

approach determines payouts under conditions of low to moderate uncertainty, such as 

extremely large or small magnitudes, while the ground motion index, based on USGS 

ShakeMaps data, provides additional accuracy for events requiring detailed analysis due 

to complex geological environments or high variability in exposure. This approach not 

only yields greater precision in predictions but also offers a strategic means to reduce 

overall transaction costs, significantly enhancing the efficacy and cost-efficiency of 

seismic risk mitigation strategies. 
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Resumen 

Las catástrofes naturales suponen importantes amenazas para la vida y la propiedad, por 

lo que requieren un análisis de riesgos avanzado para una mitigación y preparación 

eficaces. Este trabajo aplica técnicas estadísticas para mejorar la comprensión y 

predicción del impacto de las catástrofes naturales, donde los datos de estudio fueron las 

pérdidas inducidas por terremotos en Marruecos. En concreto, mediante la simulación de 

13 terremotos diferentes con distintas magnitudes, empleamos modelos de aprendizaje 

automático para predecir las pérdidas económicas que podría causar cada uno de ellos. 

Además, esta investigación propone un modelo operativo híbrido para la transferencia del 

riesgo sísmico que combina las metodologías de catástrofe en una red y de índice de 

movimiento del suelo para aprovechar las ventajas de ambas, mejorando las herramientas 

de toma de decisiones para la resiliencia de la comunidad. El enfoque cat-in-a-grid 

determina los pagos en condiciones de incertidumbre baja a moderada, como magnitudes 

extremadamente grandes o pequeñas, mientras que el índice de movimiento del terreno, 

basado en los datos de USGS ShakeMaps, proporciona una precisión adicional para los 

eventos que requieren un análisis detallado debido a entornos geológicos complejos o una 

alta variabilidad en la exposición. Este enfoque no sólo aporta una mayor precisión en las 

predicciones, sino que también ofrece un medio estratégico para reducir los costes 

generales de transacción, mejorando significativamente la eficacia y la rentabilidad de las 

estrategias de mitigación del riesgo sísmico. 
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Resum 

Les catàstrofes naturals suposen importants amenaces per a la vida i la propietat, per la 

qual cosa requerixen una anàlisi de riscos avançat per a una mitigació i preparació 

eficaces. Este treball aplica tècniques estadístiques per a millorar la comprensió i 

predicció de l'impacte de les catàstrofes naturals, on les dades d'estudi van ser les pèrdues 

induïdes per terratrèmols al Marroc. En concret, mitjançant la simulació de 13 

terratrèmols diferents amb diferents magnituds, emprem models d'aprenentatge automàtic 

per a predir les pèrdues econòmiques que podria causar cadascun d'ells. A més, esta 

investigació proposa un model operatiu híbrid per a la transferència del risc sísmic que 

combina les metodologies de catàstrofe en una xarxa i d'índex de moviment del sòl per a 

aprofitar els avantatges d'ambdues, millorant les ferramentes de presa de decisions per a 

la resiliència de la comunitat. L'enfocament cat-in-a-grid determina els pagaments en 

condicions d'incertesa baixa a moderada, com a magnituds extremadament grans o 

xicotetes, mentres que l'índex de moviment del terreny, basat en les dades de USGS 

ShakeMaps, proporciona una precisió addicional per als esdeveniments que requerixen 

una anàlisi detallada a causa d'entorns geològics complexos o una alta variabilitat en 

l'exposició. Este enfocament no sols aporta una major precisió en les prediccions, sinó 

que també oferix un mitjà estratègic per a reduir els costos generals de transacció, 

millorant significativament l'eficàcia i la rendibilitat de les estratègies de mitigació del 

risc sísmic. 
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1. Introduction 

1.1 Motivation 

The vulnerability of modern societies to natural disasters has increased 

significantly, driving the need for efficient and robust risk management strategies. Over 

the past two decades, according to the Emergency Events Database or EM-DAT (Centre 

for Research on the Epidemiology of Disasters, 2022), 7,348 natural hazard-related 

disaster events have been recorded worldwide. These events have had devastating 

consequences, claiming the lives of approximately 1.23 million people, with an annual 

average of 60,000 deaths. In addition, these disasters have affected more than 4 billion 

people, many of them repeatedly, and have generated economic losses estimated at 2.97 

trillion dollars, adjusted for 2019 inflation as can be seen in Figure 1, from the report “The 

human cost of disasters: an overview of the last 20 years (2000-2019)”. This increase in 

the frequency and severity of natural disasters compares significantly with the records of 

the previous two decades. Between 1980 and 1999, there were 4,212 disasters that 

resulted in approximately 1.19 million deaths and affected more than 3 billion people, 

with total economic losses of about 1.63 trillion dollars. The upward trend is largely 

attributable to an increase in weather-related disasters, such as meteorological, 

climatological, and hydrological events. 

 

Figure 1. Disaster Impacts. 

 
Earthquakes, together with tsunamis, have positioned themselves as the most 

lethal catastrophes, accounting for 58% of all recorded deaths. However, unlike other 

types of disasters, the impacts of earthquakes show great variability. According to EM-



 
 

DAT data, there have been years in which earthquakes have caused fewer than 1,000 

deaths globally, while in other years, these events have killed more than 100,000 people. 

In the most recent period, from 2014 to 2019, there have been no earthquakes that have 

caused more than 10,000 deaths. However, earthquakes in Nepal in 2015, which caused 

8,969 deaths, and in Palu, Indonesia, in 2018, with 4,340 deaths, have reminded the world 

of the destructive potential of these phenomena. Additionally, earthquakes can cause 

massive damage to infrastructure, as demonstrated by the 2011 earthquake and tsunami 

in Japan, which resulted in economic losses of approximately 239 billion dollars, the 

highest figure on record for a catastrophic event. 

During the period from 2000 to 2019, 8% of the recorded disasters corresponded 

to earthquakes, totaling 552 events, and affecting approximately 118 million people. As 

illustrated in Figure 2, these earthquakes accounted for 21% of the total economic losses 

caused by natural disasters, amounting to US$636 billion. This figure underscores the 

significant threat that earthquakes represent at a global level, not only highlighting the 

direct impact on affected populations, but also emphasizing the profound global economic 

repercussions, reinforcing the need for comprehensive strategies to mitigate these risks. 

 

Figure 2. Recorded economic losses per disaster type (2000-2019).  

 
As for today, global economic losses due to disasters reached 250 billion dollars 

in 2023, equivalent to the total GDP of countries such as New Zealand or Portugal, (Data 

gaps hide the true human impacts of disasters in 2023). This figure is slightly lower than 

the previous estimate of 270 billion dollars by 2022. However, these numbers barely 

outline a portion of the real impact that disasters impose in terms of human lives and 

economic, developmental, and social effects. The severity of this impact is further 



 
 

underscored by the fact that disasters resulted in 74,000 deaths during the year, 

significantly above the average for the past five years, with approximately 63,000 of these 

deaths caused by major earthquakes in Turkey, Syria, Afghanistan, and Morocco. These 

estimates only partially illustrate the true magnitude of the damage caused by disasters. 

Many of the impacts of disasters are simply not included in these estimates, such as those 

associated with slower and smaller-scale development events, and the secondary effects 

of supply chain issues, which reduce productivity, harm health, and disrupt education in 

the long term. All these factors contribute to an invisible burden of disasters far greater 

than the economic estimates provided by insurers. 

Given the magnitude of economic losses caused by earthquakes and the 

devastating impact on affected populations, the critical need for insurers to provide 

coverage for these catastrophic events is evident. The high cost involved underscores the 

importance of a robust insurance infrastructure not only for post-disaster economic 

recovery, but also as an essential risk transfer mechanism. 

Since the 1990s, the insurance industry has implemented parametric earthquake 

solutions to improve the resilience of communities to seismic risk. These products ensure 

quick and transparent compensation, without the time-consuming processes of traditional 

claims assessment. Instead, they pay a pre-set amount if the seismic event meets specific 

physical and measurable characteristics. This introduction builds on previous studies 

highlighting the effectiveness of such parametric mechanisms for seismic risk transfer, as 

demonstrated by the research of Guidotti et al. (2024).  

In more detail, parametric insurance represents a type of insurance coverage that 

is triggered upon the fulfillment of pre-established and quantifiable conditions, called 

parameters, included in the insurance contract. Unlike traditional insurance, which 

requires an assessment of physical damage in order to proceed to indemnity, parametric 

insurance is designed around objective variables such as the magnitude of an earthquake, 

ground acceleration data or the intensity of a hurricane. This type of insurance is 

particularly useful for rapid disaster response, as it allows for automatic payouts once the 

agreed-upon parameters are verified, thus facilitating immediate economic recovery 

without the need for lengthy loss adjustment processes (Desmond, 2023). Furthermore, 

parametric insurance is characterized by its ability to cover both direct and indirect losses 

related to catastrophic events. This includes, for example, loss of profits that may happen 

even though there is no direct physical damage to the insureds’ property. The 



 
 

configuration of these insurances is based on a deep understanding of the clients’ needs 

and on advanced models that predict the probability and impact of specific events. 

This type of insurance is especially beneficial for governments that need to deploy 

resources quickly for disaster response and recovery. By providing immediate liquidity, 

parametric insurance allows governments to act efficiently in relief and reconstruction 

operations, thus minimizing the economic and social impact of disasters. In addition, 

parametric insurance provides an incentive for governments to invest in disaster 

mitigation and preparedness measures, as premiums can be adjusted according to the level 

of risk that existing policies and infrastructure are able to mitigate. 

To find and guide parametric solutions, this work addresses the integration of a 

tool such as Machine Learning. Machine Learning (ML) is a branch of artificial 

intelligence focused on developing algorithms and statistical models that enable 

computers to perform tasks without explicit programming, explained by Linardos et al. 

(2022). By leveraging large datasets, these models identify patterns and make predictions 

or decisions based on new data. In the context of natural disasters, ML has become a 

relevant tool for guiding parametric solutions. Recent advances in artificial intelligence 

have proven effective in addressing the severe impacts of disasters, enabling the use of 

extensive datasets to develop systems that can predict disasters and assist in response and 

recovery efforts (Singh C. R., 2024). ML applications in disaster management span 

several phases, from prediction and early detection to damage assessment and post-

disaster response. ML models process meteorological and geospatial data to predict the 

occurrence of hurricanes, floods, or earthquakes with greater accuracy. During and after 

a disaster, ML analyzes satellite images and sensor data to evaluate impact and coordinate 

aid efforts more efficiently. Additionally, ML is valuable in creating early warning 

systems and assessing risks and vulnerabilities, allowing for adequate preparation and 

timely response. These systems identify patterns in historical data to foresee adverse 

events and issue alerts in advance. ML enhances the accuracy of predictions and 

streamlines decision-making processes by analyzing data from several sources, such as 

satellite images, social media, sensors, and geographic information systems, Sahai et al. 

(2023). By integrating and processing these data, ML models deliver detailed and precise 

information that supports informed and effective decision-making. Furthermore, ML 

enables more accurate damage assessments, facilitating better resource distribution and 

more effective planning of rescue and reconstruction operations. For instance, ML 



 
 

algorithms can analyze aerial and satellite images to identify affected areas, assess the 

degree of destruction, and prioritize zones requiring immediate attention. The capability 

of ML to handle and analyze large volumes of data from multiple sources in real-time 

enhances the effectiveness of disaster responses. ML systems can process social media 

data to quickly identify the most impacted areas and efficiently coordinate aid delivery. 

They can also predict future needs based on historical patterns, allowing authorities to 

anticipate events and mitigate negative impacts. 

Globally, earthquake and catastrophe insurance remain limited. By 2022, only 

about 42% of economic losses from natural catastrophes were insured, leaving a 58% 

protection gap (AON, 2023). Moreover, risk is increasing faster than insurance coverage, 

widening the gap between exposure and protection. The insurance and reinsurance 

industry are addressing this challenge with a wide range of solutions. Homeowners can 

purchase earthquake insurance individually or through group mechanisms, which are 

often mandatory, such as catastrophe funds or group policies. Insurers pool risks and have 

access to both international reinsurance and new financial instruments, such as 

catastrophe bonds or derivatives, according to Franco (2014). These tools, which lie at 

the intersection between traditional insurance and financial markets, also allow 

governments to access reinsurance through a wider range of capital providers. 

Guy Carpenter & Company, founded in 1922, has transformed the reinsurance 

brokerage industry through its commitment to leveraging comprehensive data analytics. 

Guy Carpenter has pioneered the use of quantitative analytics to improve risk prediction 

and management, offering customized solutions adapted to the unique challenges faced 

by its clients. These services are particularly important in the structuring and placement 

of reinsurance and in the development of parametric insurance solutions, helping to 

manage risks associated with natural catastrophes, financial market fluctuations and other 

global challenges. Today, Guy Carpenter is a prominent leader in the reinsurance 

industry, known for its strong risk assessment capabilities and strategic reinsurance 

placement. The company plays a key role in advising governments, especially in 

catastrophe bond issuance, where it acts as broker of record. Its services encompass risk 

quantification, global reinsurance structuring and customized development of parametric 

solutions, enhancing clients' ability to effectively manage severe risks and ensuring 

sustained growth and resilience in an ever-changing world, (Guy Carpenter, s.f.).  



 
 

Given the seismic vulnerabilities noted above, this study is based on the 

development of a parametric insurance solution, in collaboration with Guy Carpenter, 

specifically adapted to Morocco. Located at the confluence of major tectonic boundaries, 

Morocco is inherently in a high seismic risk zone. This geographic predisposition, 

compounded by a history of devastating seismic events, underscores the urgent need to 

improve the resilience of Moroccan communities and infrastructure to potential 

earthquakes. Addressing this critical requirement calls for effective risk management 

strategies that can provide rapid response capabilities and mitigate the economic 

ramifications of such disasters. In response, Guy Carpenter is leveraging its extensive 

experience in risk analysis and reinsurance to devise parametric insurance solutions 

designed to respond to the unique seismic challenges facing Morocco. This initiative is 

particularly important considering that the seismic landscape of the Mediterranean region 

is largely determined by interactions between the African and Eurasian plates, along with 

microplate dynamics, reported by Herman et al. (2015). These interactions give rise to 

varied and intense seismic activity throughout the area, which has been the cause of 

several devastating earthquakes and tsunamis over the centuries. Due to this complex 

tectonic configuration, regions such as Morocco, which are directly influenced by these 

geodynamic processes, shown in Figure 3 from (United States Geological Survey, n.d.), 

face a pressing need for effective risk management strategies to mitigate the impact of 

potential seismic events. 

 

Figure 3. Map of tectonic configuration of Mediterranean region. 

 
The convergence of the African plate with the Eurasian plate at rates between 4 

and 10 mm/year has been a continuous process over the last 50 million years, significantly 



 
 

shaping the seismic activity in the region. This process was initially associated with the 

closure of the Tethys Sea, the remnants of which now form the Mediterranean Sea. High 

rates of seismicity in Morocco can be attributed to these plate dynamics, including the 

nearby subduction and transform fault zones. The isoseismic contours over Morocco, also 

depicted in Figure 3, provide a detailed visualization of the intensity distribution of 

seismic activity throughout the region. Through this map, the areas’ most susceptible to 

seismic forces are identified based on historical data and predictive models. In other 

words, it constitutes a tool to better understand the seismic risk profile of Morocco, 

allowing for more targeted and effective risk management strategies. By integrating this 

geospatial data, the areas’ most likely to be significantly impacted in the event of an 

earthquake can be better anticipated, thus prioritizing mitigation efforts and resource 

allocation to improve safety and preparedness. 

Having defined the seismic risks facing Morocco, the operational simplified 

mechanism of risk transfer are then specified, shown in Figure 4. The figure illustrates a 

comprehensive process for the development and implementation of a parametric 

insurance solution for Morocco, provided by Guy Carpenter. The process begins with 

Guy Carpinters’ assessment of the seismic risks specific to Morocco. This involves a 

thorough analysis and quantification of the seismic data, which is used to define the 

parameters that will trigger the insurance payout. These parameters are carefully chosen 

based on historical seismic activity and potential impacts to ensure accuracy and 

relevance. Once the risk parameters are established, Guy Carpenter develops the 

parametric insurance coverage. This coverage is designed to automatically trigger a 

payout when the predefined seismic parameters are met, ensuring swift financial response 

without the need for traditional claims processing. A Special Purpose Vehicle (SPV) is 

established for the issuance of catastrophe bonds because the risk is significant. This 

vehicle is independent of the insurance company and protects investors from the 

insolvency of the insurer. These bonds are a financial instrument to transfer the risk from 

Morocco to the capital markets. The SPV cedes the risk to the capital markets, which in 

return provide the necessary funds to cover possible losses. Investors buy these bonds, 

investing in the risk with the expectation of a return, influenced by the occurrence of the 

defined seismic event. In the event of a seismic occurrence that meets the defined 

parameters, the parametric insurance is activated. This activation is based on the data 

provided by recognized and reliable seismic monitoring systems. The direct release of 



 
 

funds from the SPV to Morocco ensures that financial aid is promptly available to address 

the damages and initiate recovery processes. Throughout this process, Guy Carpenter acts 

as the broker of record, overseeing the risk assessment, development of the parametric 

solution, and the management of the insurance product. They coordinate between the 

client (Morocco), the SPV, and the capital markets to ensure that all aspects of the 

insurance solution are properly managed and executed. 

 

Figure 4. Operational mechanism of risk transfer. 

 

1.2 Objectives 

The main objective of this project is the development of statistical and Machine 

Learning models to predict economic losses derived from simulated earthquakes in 

Morocco. This process involves the design and implementation of several statistical 

models and ML algorithms in order to quantify the economic losses associated with 

simulated seismic events. The development of these models requires the integration of 

data sets representing seismic and geologic variables, with the objective of building 

robust models that can identify meaningful patterns and correlations between earthquake 

characteristics and economic consequences. Different model architectures and regression 

techniques will be explored to determine which provide the best predictions under diverse 

conditions. 

To ensure the accuracy and applicability of these models, robust statistical 

methods such as cross-validation or splitting of data into training and test sets will be 



 
 

implemented to assess the ability of the models to generalize to new data. This approach 

will detect overfitting and assess the reliability of the models in the face of variations in 

the input data.  

Finally, a detailed comparative analysis of the developed models will be carried 

out to select the most suitable one in terms of predictive accuracy and computational 

efficiency. This analysis will be based on established performance metrics, such as the 

mean square error or the coefficient of determination, complemented by an evaluation of 

the computational complexity of each model. The selection of the optimal model will be 

oriented not only to technical accuracy but also to the practicality of its implementation 

in real seismic risk management scenarios. 

 

1.3 Contribution to the Sustainable Development Goals 

This section addresses the interaction between the developments presented in this 

study and the Sustainable Development Goals (SDGs) established by the United Nations 

in 2015. The SDGs constitute a set of 17 global goals, designed to be a “blueprint for 

action” towards sustainable development encompassing economic, social, and 

environmental dimensions (United Nations, 2023). These goals aspire to guide nations 

towards a future where poverty is eradicated, inequality is reduced, and the environment 

is protected, fostering peace and prosperity for all. 

The research presented in this thesis contributes directly to several of these goals, 

with a particular focus on improving resilience to natural disasters and strengthening the 

capacities of communities and cities to respond to emergencies. The proposed innovative 

solutions, based on data science for natural disaster risk analysis, have the potential to 

positively impact 5 of the 17 SDGs described in Table 1.  

 

 

 

 

 



 
 

Sustainable Development Goals High Medium Low Not applicable 

SDG 1. No poverty  X   

SDG 2. Zero hunger    X 

SDG 3. Good health and well-being    X 

SDG 4. Quality education    X 

SDG 5. Gender equality    X 

SDG 6. Clean water and sanitation    X 

SDG 7. Affordable and clean energy    X 

SDG 8. Decent work and economic growth    X 

SDG 9. Industry, innovation, and infrastructure  X   

SDG 10. Reduced inequalities    X 

SDG 11. Sustainable cities and communities X    

SDG 12. Responsible consumption and 

production 

   X 

SDG 13. Climate action  X   

SDG 14. Life below water    X 

SDG 15. Life on land    X 

SDG 16. Peace, justice, and strong institutions    X 

SDG 17. Partnerships for the goals   X  

 

Table 1. Contribution to the SDG. 

 
 

 

 

 

 

 



 
 

The contribution of this work to each of the SDGs mentioned in Table 1 is described 

below in Figure 5. 

 

 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 

 

Figure 5. Detailed analysis of the studys' contribution to the main SDGs. 

 

The research develops predictive models that estimate economic losses 
from natural disasters more accurately. These models can be used by 
insurers to design parametric insurance products that accelerate 
compensation payments following a disaster. By receiving funds 
quickly, vulnerable communities have immediate resources for 
reconstruction and recovery, thus avoiding prolonged falls into poverty. 
This rapid response capability is key to post-disaster economic 
stabilization and to maintaining social cohesion in affected areas. 
 

Introducing advanced predictive models into the insurance industry not 
only drives technological innovation but also improves the viability and 
efficiency of insurance policies. These models enable insurers to assess 
risks more accurately and offer products that are better tailored to their 
customers' needs, which can encourage greater acceptance and use of 
insurance. Insurance innovation can lead to greater financial stability 
and operational continuity, especially in critical sectors during and after 
natural disasters. 

This work promotes the incorporation of scientific data analysis in urban 
planning and the construction of resilient infrastructure. Through 
advanced risk assessments, it facilitates the design of urban 
environments that minimize the impacts of natural disasters. This 
includes everything from the strategic placement of key structures to the 
implementation of enhanced building standards, contributing to faster 
recovery and enhancing the long-term sustainability of communities. 

The ability to predict the economic impacts of extreme weather events 
facilitates the implementation more accurately of more effective risk 
management and climate change adaptation strategies. While the study 
focuses more on mitigating economic impacts and less on directly 
reducing emissions, it strengthens community resilience to climate 
change by enabling more agile preparedness and response to its 
consequences, thus supporting global efforts to manage and adapt to 
changing climatic conditions. 

By developing and disseminating knowledge and technologies that 
facilitate disaster risk assessment, the work promotes collaboration 
between academia, industry, and policy makers. However, the success 
and scale of these partnerships depends on external factors, such as 
political interest and market acceptance of these new technologies. 



 
 

1.4 Structure of the Project 

After the presentation of the motivation for this project, the description of the 

objectives and the contribution to the SDGs, the rest of the project is structured as follows. 

Section 2 describes the literature review on loss prediction models for natural 

disasters, with a particular focus on earthquakes. This section establishes the theoretical 

framework and methodological basis necessary for the understanding and application of 

the modeling techniques used in this research. 

In Section 3, the databases and variables used for the development of the 

predictive models are described in detail. This part is key to understanding the nature and 

origin of the data that support the analysis performed. 

Section 4 outlines the methodology applied for the construction and validation of 

the predictive models. It details the statistical techniques and modeling approaches used 

to ensure that the models are robust and applicable in seismic risk management contexts. 

Section 5 is focused on the analysis and comparison of the results obtained from 

the different models implemented to select the optimal one, based on several metrics. 

Lastly, Section 6 highlights the findings of this study and outlines potential 

directions for future research. 

 

  



 
 

2. Theoretical Framework 

2.1 Parametric Insurance and Solutions for Seismic Risks 

In the context of parametric insurance for seismic risks, the main problem lies in 

the basis risk, that is, the difference between the actual losses and the calculated 

compensations based on a predetermined index. The study by Gu et al. (2023) addresses 

this problem by proposing, mainly, a quantile regression forest method, which considers 

exposure in terms of human losses, magnitude, population density and GDP, among 

others, as latent variables, influenced by the geographical location of the epicenter. It is 

argued in their study that this approach is particularly useful for capturing risks associated 

with the extremes of the distribution, which is an advantage in the context of natural 

disasters. On the other hand, Pucciano et al. (2017) opted for the use of strong motion 

sensor data to estimate losses. The methods used in their estimation vary from simple 

approaches, which apply third-order polynomials to calculate losses from the closest 

ground motion measurements or from all available stations to more advanced methods 

that include detailed estimates of ground motion at asset sites and use damage functions 

and ground motion prediction equations.  Research shows that while simple methods may 

be sufficient in areas with high sensor density, more sophisticated approaches are needed 

in areas where sensors are more dispersed or farther away from secured assets. 

There is no extensive research literature on the reduction of losses caused by 

seismic events by means of statistical or Machine Learning models. Different research 

addresses the accuracy of loss estimation through the calibration of triggering 

mechanisms for parametric catastrophe bonds (CAT bonds), such as the study by Pai et 

al. (2022) on obtaining the estimation of the trigger parameters using the Bayesian 

quintile regression model. These financial instruments serve to transfer seismic risk to the 

capital market, using triggers based on the physical characteristics of the earthquake, such 

as magnitude and location. Goda (2014) explains in his study the calibration of these 

mechanisms through the use of logistic regression and direct ground motion observations, 

whereby the basis risk, specifically the trigger risk, can be significantly reduced. This 

improvement allows for more flexible adoption of various payoff structures for CAT 

bonds, facilitating financial risk management and improving resilience to seismic 

disasters. 



 
 

This review of strategies for addressing basis risk in parametric insurance for 

seismic risks underscores an approach predominantly focused on improving trigger 

mechanisms and not directly on loss prediction. This orientation highlights a critical need 

to innovate beyond simple trigger calibration and move toward a more holistic model that 

also includes effective loss prediction and mitigation. 

 

2.2 Estimation of Seismic Losses through Traditional 
Approaches  

The estimation of earthquake losses within the context of parametric insurance is 

addressed, on the other hand, through models that integrate a wide range of 

macroeconomic data together with probabilistic methodologies. These models are 

designed to assess and manage the risks associated with catastrophic events, focusing on 

estimating the probability of occurrence of these events and their potential impacts. 

Unlike the approaches described above, which seek to predict exact post-disaster losses 

to guide the parametric insurance solution, parametric insurance models themselves aim 

to establish trigger thresholds based on predefined parameters, allowing for a rapid and 

effective response when these conditions are met, according to the study by Salgado-

Gálvez et al. (2023). 

Erdik (2017) highlights in their research that in the analysis of risks associated 

with earthquakes, most assessment schemes are based on the quantification of seismic 

shaking, using ground motion intensity parameters as part of probabilistic or seismic 

hazard models. These models determine direct physical damage through fragility or 

vulnerability relationships, which calculate the probability of damage or loss as a function 

of the observed intensity level. These relationships not only estimate direct losses as 

repair or reconstruction costs, but also consider the loss ratio, i.e., the cost of repair in 

relation to the replacement value of the affected asset. 

Expanding upon these methodologies, the HAZUS software, as detailed in the 

study by Kircher et al. (2006), offers a comprehensive approach for modeling and 

assessing earthquake impacts. HAZUS uses geospatial data to create detailed scenarios 

that predict physical and economic losses from seismic events. The software employs 

sophisticated engineering models within its Advanced Engineering Building Module 

(AEBM) to assess damage based on varying seismic intensities, providing insights into 



 
 

structural vulnerabilities and potential repair costs. This detailed loss estimation 

facilitates more accurate predictions, aligning closely with the needs of parametric 

insurance models to establish effective and responsive strategies for disaster risk 

management. The integration of HAZUS in parametric insurance planning allows 

insurers and policymakers to fine-tune their thresholds and ensure that payouts are 

triggered precisely, thereby optimizing disaster response and recovery efforts. 

Such developments underscore the importance of continued innovation and 

integration of technology in the insurance industry, aiming to mitigate the economic and 

social impacts of natural disasters on vulnerable communities. 

 
  



 
 

3. Data Description 

In this section, a detailed description of the datasets, supplied by the company, to 

be used in the study is given. The composition of each dataset is explained, identifying, 

and describing the specific variables they contain. The datasets have been derived from 

the simulation of 13 seismic events over 10,000 years of seismicity in Moroccan territory 

and consists of three main files in a .csv format: the Event Loss Table file, The Exposure 

by Station file, and the Intensity Measure by Event by Station file. 

1. Event Loss Table 

The Event Loss Table file is generated by running a catastrophe model for the 

region of interest, using a reference exposure and contains 26,867 observations. This file 

provides data on the set of stochastic events used in the catastrophe model, including 

details such as the location and intensity of each event, and the economic losses they 

cause to the exposure under analysis. Each row of Event Loss Table file corresponds to a 

simulated event and has 7 columns detailed in Table 2. 

 
Feature Description Units Type 

Event ID Event identifier N/A Numerical 

Magnitude Earthquake strength Moment 

Magnitude 

Numerical 

Loss Monetary losses USD Numerical 

Centroid 
Depth 

Mean depth of the dislocation earth 

crust area during an earthquake 

Kilometers Numerical 

Longitude Longitude of epicenter Decimal 

Degrees 

Numerical 

Latitude Latitude of epicenter Decimal 

Degrees 

Numerical 

Rate Annual rate of occurrence N/A Numerical 

 

Table 2.  Event Loss Table dataset features. 

 



 
 

2. Exposure by Station 

The Exposure by Station file is created by discretizing the exposure into an 

ordered grid of cells. The exposure is distributed on a regular grid of cells, each with a 

defined resolution, this is the size of each cell can be 0.05, 0.1, 0.25 or 0.5 decimal degrees 

(dd). Each grid size corresponds to a different file. The 0.05 decimal degree file contains 

22,146 observations, indicating high resolution and detail. In contrast, the 0.5 decimal 

degree file includes only 327 observations, suitable for less detailed analysis. 

Intermediate sizes, such as the 0.1 decimal degree file with 6,073 observations and the 

0.25 decimal degree file with 1,100 observations, offer moderate resolution suitable for 

different types of spatial analysis. 

 The exposure corresponding to each cell is concentrated at the centroid of the 

cell, known as a station. The numerical value of the exposure at each station is 

transformed into a weight by a scaling process, so that the sum of the weights of all 

stations is equal to 1. Each row of the Exposure by Station file contains five columns, 

which are detailed in Table 3. 

 
Feature Description Units Type 

Station ID Station identifier N/A Numerical 

Exposure Exposure by station, buildings 

which are exposed to the damage. 

USD Numerical 

Weight To each station is assigned a 

weight, proportional to the 

exposure associated to the station 

N/A Numerical 

Longitude Longitude of station Decimal Degrees Numerical 

Latitude Latitude of epicenter Decimal Degrees Numerical 

 

Table 3. Exposure by Station dataset features. 

 
3. Intensity Measure by Event by Station file 

The Intensity Measure by Event and by Station file is generated by assigning the 

intensity measure corresponding to each simulated event to the stations within its area of 



 
 

influence. To perform this assignment, a linear sparse interpolation algorithm that does 

not perform extrapolations is used, allowing to associate to each station within the area 

of influence of a simulated event a specific Intensity Measure. Each row of this file 

contains three columns, and the specific details of each one are presented in Table 4. 

 
Feature Description Units Type 

Event ID Event identifier N/A Numerical 

Station 
ID 

Station identifier N/A Numerical 

Intensity 

Measure 

Measurement of 

ground shaking 

Pseudo Spectral Acceleration 

at 0.3s [%g]1 

Numerical 

 

Table 4. Intensity Measure by Event by Station dataset features. 

 
In order to align the data set with the objectives of the study and due to the 

existence of overlapping data, the three files have been merged as explained below for 

each size of grid.  

To provide a coherent synthesis of these data, a matrix is constructed where the 

index is composed of the event ID and the columns represent the individual stations. The 

values within the matrix are the intensity measurements for each event at each station.  

Considering that each station has an assigned weight, the next step is the application of 

these weights to create the WIM (Weighted Intensity Measure) parameter. This weighted 

measure aggregates the intensity measurement information at each station, reflecting the 

proportional contribution of each station based on its exposure to risk. By applying the 

weights to the recorded intensity measures, we obtain WIM, a value that effectively 

represents the overall earthquake intensity over the analyzed region, considering the 

variations in the exposure of each station. This ensures that stations with higher exposure 

have a corresponding influence on the overall assessment of earthquake impact. In the 

development of the final database for this study, apart from calculating the WIM, higher 

powers of the WIM are also generated, specifically WIM squared, and WIM cubed. These 

 
1 Spectral acceleration is a unit measured in g (the acceleration due to Earth's gravity, equivalent to g-force) 
that describes the maximum acceleration in an earthquake on an object – specifically a damped (USGS).  



 
 

transformations are performed with the objective of capturing nonlinear effects of 

earthquake intensity on economic losses. The inclusion of WIM squared, and WIM cubed 

allows the model to consider how increases in earthquake intensity can have 

disproportionately larger impacts on losses, thus facilitating a more accurate and nuanced 

understanding of the relationships between earthquake intensity and economic 

consequences. In addition, it is important to note that each ground shaking record is 

associated with estimated economic losses, which are key to the analysis in this study. 

Therefore, the losses associated with each seismic event are also included in the final 

dataset. Two other variables, Centroid Depth and Magnitude, are also incorporated in the 

dataset.  The resulting datasets are shown in Table 5. 

 
Grid Size (dd) Dataset Size Features 

0.05 24,648 rows and 6 columns Loss, Centroid Depth, Loss, 

Magnitude, WIM, !"#! and 

!"#" 
0.1 24,652 rows and 6 columns 

0.25 24,115 rows and 6 columns 

0.5 22,061 rows and 6 columns 

 

Table 5. Resulting datasets. 

 

 

  



 
 

4. Solving Methodology 

4.1 Parametric Problem Formulation 

The parametric problem formulation in the field of seismic risk analysis focuses 

on the creation of predictive models that automatically trigger financial compensation 

based on objective and measurable criteria. This approach is key in the field of parametric 

insurance, which is distinguished by its ability to provide rapid and transparent responses 

following seismic events, without the need for traditional damage assessment processes 

(Marsh, s.f.). 

The main objective of a parametric model is to establish a direct and clear 

relationship between the physical characteristics of a seismic event, such as magnitude 

and location, and the estimated economic losses. This allows insurance payments to be 

made quickly, significantly reducing the time and complexity associated with damage 

assessment and claims processing. In post-disaster situations, where access to rapid 

resources is important for recovery and reconstruction, the efficiency of these models 

offers support to affected communities. 

These parametric models are generally based on the results of an existing 

catastrophe model. Catastrophe models, in their broadest form, use multiple layers or 

components to estimate asset losses in each region. In the context of seismic risk models, 

the hazard component is usually composed of a large number of simulated stochastic 

events, for which both primary parameters (hypocenter locations and magnitude) and 

simulated ground motion values at exposed locations are available. These values are 

usually derived from a set of ground motion prediction equations integrated into the 

model. A vulnerability component probabilistically assesses the expected damage at a 

given exposure based on the simulated measured intensity values, and a financial module 

converts the physical damage into economic loss, Guidotti et al. (2024). 

Ultimately, the objective of a parametric solution based on the cat-in-a-grid model 

is to determine an optimal relationship between the magnitude and location of an 

earthquake and the losses it causes. On the other hand, the objective of an index-based 

parametric solution is to establish an optimal relationship between the ground motion at 

a location and the losses it generates. This comprehensive approach allows insurers to 



 
 

offer products that can be quickly activated, providing affected communities with 

effective and rapid means to initiate their recovery, as mentioned in previous sections. 

4.1.1 Cat-in-a-grid Parametric Model 

The parametric Cat-in-a-grid solution begins with the division of the region of 

interest into an organized structure of hexahedra. This process, known as discretization, 

is used to ensure that each segment of the studied area is properly monitored and evaluated 

in terms of seismic risk. The underlying catastrophe model provides a solid basis for 

effectively assigning both risk level and response rate to each hexahedron in the grid. The 

key component in the Cat-in-a-grid design is the determination of specific magnitude 

thresholds for each hexahedron. These thresholds are critical because they establish the 

conditions under which an earthquake will be considered to have reached a significant 

level of hazard. The selection of these thresholds involves careful analysis of historical 

earthquake data, geologic characteristics of the region, and structural damage potential. 

The optimization problem in the Cat-in-a-grid model seeks to maximize the risk 

transferred without exceeding a predetermined activation rate, which is directly linked to 

the insurance policy premium. This objective is mathematically formulated as: 

max' = ∑ ∑ '##$ 		+. -.		 ∑ ∑ .##$ ≤ .0                                            (1) 

Here '# represents the risk transferred for each stochastic event 1 in the 

hexahedron 2, and .#  is the rate associated with that risk or the activation rate, or the 

probability that event 1 in hexahedron 2 activates the policy. This value is directly 

associated with the frequency and magnitude of the stochastic event and its relation to the 

thresholds established to activate the payments. .0	is the maximum acceptable trigger rate, 

linked to the policy premium. This means that the cost of the policy can cover risks up to 

this limit without the insurance company incurring losses. This approach effectively 

balances risk coverage with the financial sustainability of the policy.  

Once the thresholds are established and the insurance policy is in place, the model 

allows for a rapid post-event assessment to determine whether a payout should be made. 

This is done by analyzing the primary parameters of the seismic event, such as magnitude 

and hypocenter location, reported in near real-time by seismic monitoring entities such as 

the USGS. The ability to respond quickly not only improves the efficiency of disaster 



 
 

management but also reinforces policyholder confidence in the robustness of the 

insurance system. 

4.2.2 Ground Motion Index Parametric Model 

In the parametric formulation based on ground motion rates, the design problem 

is centered on minimizing an error function g, which evaluates the discrepancies between 

the losses triggered by the parametric model (Parametric Losses, 4%) and the losses 

predicted by the model (Modeled Losses, 4& ). This approach is mathematically stated as 

an optimization problem: 

min∑ g' (4'% − 4'&)                                                         (2) 

Where index e denotes a stochastic event in the catastrophe model that 

encompasses all possible events within the stochastic catalog, with 4'% and 4'& 

representing the losses resulting from the parametric model and the stochastic model 

associated with that stochastic event :, respectively.  

In its general form, the parametric loss 4'% is expressed as a function ; of the N 

considered parameters of the event, of the form: 

4'% = ;(<(,' , …	 , <*,')                                                      (3) 

In the context of catastrophe modeling and parametric solutions in insurance, a 

stochastic event refers to a possible but uncertain event, whose occurrence and 

characteristics are modeled from probabilistic distributions based on historical data and 

statistical analysis. These events are not predicted at a specific time and place but are 

considered as part of a broader set of possible scenarios that could occur at any time 

within the model simulations. Stochastic events are fundamental to understanding and 

preparing insurance risk and financial models, as they allow insurers and risk planners to 

assess the potential impacts and costs of natural disasters or claims within a probability 

framework and to make informed policy and coverage decisions. 

The design problem for the index-based solution involves determining and 

calibrating the optimal function ; that minimizes the presented objective function. The 

methodology can be broken down into three steps: 

 

 



 
 

1. Exposure Discretization 

Exposure discretization involves dividing the study region into a series of 

uniformly distributed virtual points or stations. This process is key because it allows for 

a detailed and accurate representation of the terrain and its seismic characteristics. Each 

of these virtual stations becomes a node where specific ground motion data are collected 

and analyzed. For each station, a weight ?+ is assigned, which is proportional to the 

exposure associated with that station. The exposure refers to the population density, 

critical infrastructure, or economic value of the area covered by the virtual station. The 

sum of all weights assigned to stations should add up to one (∑ ?+ = 1)+ 	ensuring that the 

distribution of weights is equitable and representative of the total risk across the region. 

Figure 6 represents an example of the weight assignment. In this example: 

- The station near Agadir has a weight A = B. BCD 

- The station around Fez has a weight of A = B. BEC 

- The station near Casablanca has a weight of A = B. FGH 

 

Figure 6. Weights assigned by station. 

 

2. Integration of Catastrophe Model Results 

This step directly links seismic hazard parameters to anticipated economic losses 

using a catastrophe model that simulates thousands of years of potential seismic activity. 



 
 

In this context, each stochastic event generated by the model is analyzed to determine not 

only the magnitude of the event but also its ground motion intensity fingerprint, such as 

Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Spectral Acceleration. For 

each stochastic event, estimated losses and intensity measure (IM) values are extracted 

and recorded at each virtual station. This process involves evaluating how each event 

would specifically affect the locations represented by the virtual stations, considering the 

geological and constructive characteristics of the area. 

This step uses a catastrophe model to simulate 10,000 years of seismic activity in 

the Morocco region. The model provides representative data on possible seismic events 

and their impacts, essential for analyzing and preparing risk mitigation strategies. For 

each stochastic event, IM footprints of interest are extracted. These footprints indicate 

how the intensity of ground motion varies across the region for each simulated seismic 

event. Each virtual station in the discretized network receives information on the MI value 

and estimated economic losses associated with its specific location. This includes: (1) 

Each station is assigned the MI value observed at its location during each stochastic event, 

reflecting the level of seismic risk at the location and (2) the economic losses that each 

event would cause in the Morocco exposure are calculated and assigned to the 

corresponding stations. 

In the example of three virtual stations located in Casablanca, Agadir, and Fes, 

represented in Figure 7: 

- The station near Agadir records the Intensity Measurement for Stochastic Event 

1 only. 

- The station near Fes records the Intensity Measurement for Stochastic Event 2 

only. 

- The station near Casablanca records the Intensity Measurement for both 

stochastic events. 

This example shows how different stations can record different exposures to 

specific events, highlighting the need for a network that effectively captures variability in 

seismic intensity and its economic impacts. 



 
 

 

Figure 7. IM footprints. 

 
3. Index Optimization 

The third step in the parametric design based on ground motion indices, it involves 

the calibration of a mathematical function that models the relationship between the IM 

and the economic losses at each virtual station. This optimization process seeks to adjust 

this relationship so that the calculated losses match as closely as possible the actual or 

modeled losses during seismic events. 

The function relating MI to losses, denoted here as ; is typically defined as a 

polynomial combination of the form: 

;("#+) = ?	 ∙ 	 "#+" + K ∙ "#+! + L ∙ "#+                                        (4) 

In the equation, "#+ represents the intensity of ground motion measured at station 

s, and ?, K, L are model parameters that need to be determined through optimization. 

Optimization is performed by adjusting parameters ?, K, L so that the calculated 

loss rate 4+ or ;("#+)	for each virtual station reflects as closely as possible the losses 

estimated by the catastrophe model for relevant events. Mathematically, we seek to 

minimize the weighted sum of the differences between the calculated parametric losses 

and the modeled losses. 



 
 

Figure 8 illustrates the correlation between the Ground Intensity Measure, 

specifically the Pseudo-Spectral Acceleration at 0.3 seconds (PSA 0.3s), and the 

estimated economic losses for the station located in proximity to Fes. This plot is 

fundamental to understand how variations in seismic intensity economically affect the 

specific region. Through a loss function 4+ = ;("#+)	, it is observed how increases in 

PSA translate into an exponential increase in losses, underscoring the importance of 

incorporating accurate ground motion intensity measurements into seismic risk and 

disaster response planning. This visualization provides a clear basis for the calibration of 

the loss model used in the study, highlighting the direct relationship between the physical 

parameters of the earthquake and its economic consequences. 

 
Figure 8. Intensity-Loss ratio at Fes. 

 

4.2 Parametric Solution Based on Hybrid Model 

Effective seismic risk management in regions with high tectonic activity, such as 

Morocco, requires innovative approaches that not only improve community resilience but 

also optimize the cost and efficiency of post-disaster response. As mentioned above, 

traditionally, parametric solutions have focused on models that use either direct physical 

characteristics of earthquakes, such as location and magnitude, or ground motion-based 



 
 

indices. Each of these approaches has its advantages and limitations, which may influence 

their applicability depending on the specific nature of each seismic event and the needs 

of the stakeholders. 

In this context, a hybrid parametric solution that integrates Cat-in-a-Grid and 

Ground Motion Indices models has been developed to comprehensively address seismic 

risk in Morocco. This hybrid solution seeks to combine the strengths of both approaches: 

the simplicity and speed of the Cat-in-a-Grid model and the accuracy and detail of the 

Ground Motion Indices-based model. This dual approach not only increases the accuracy 

of loss estimation, but also allows for a more flexible and tailored response to the 

complexities of seismic events, from large magnitude earthquakes to those that, without 

causing major shaking, generate significant damage due to their location or specific 

geological characteristics. 

This section details the application of this hybrid model in Morocco, describing 

the methodologies used to integrate and calibrate both models into a unified system that 

improves the capacity for forecasting and management of natural disasters. The specific 

predictive models developed to estimate losses based on this hybrid approach will then 

be presented, highlighting how this integration not only reflects an advance in technical 

accuracy, but also in the practical implementation of insurance and seismic risk mitigation 

solutions. 

4.3.1 Quadratic Ordinary Least Squares Regression Model 

The implementation of a quadratic model in seismic risk management in Morocco 

is part of a broader approach to develop parametric solutions that can respond more 

accurately and efficiently to the complex dynamics of natural disasters. This statistical 

model is designed to capture the nonlinear relationship between WIM and the resulting 

economic losses, allowing a more refined loss estimation than that provided by linear 

models, Chatterjee and Olkin (2006). The main reason behind running this quadratic 

model is to address the inadequacy of linear models in capturing the exponential increase 

in losses as the intensity of ground motion intensifies. In large magnitude events, it is 

critical to have a model that adequately reflects how small increases in intensity can result 

in disproportionately large increases in damage and losses, a phenomenon that a linear 

model may significantly underestimate. 



 
 

The adjustment of the model has been made using Ordinary Least Squares (OLS) 

regression. This method works by minimizing the sum of squares of the differences 

between the observed values and those predicted by the linear model. In other words, it 

attempts to reduce the squared error between the prediction and the actual data. The model 

uses as independent variables the WIM and its squared term (!"#!). This model seeks 

to capture the nonlinear relationship between the intensity of ground movement and the 

resulting economic losses, a relationship that simple linear models cannot adequately 

represent. 

The quadratic model is defined as follows: 

4M++ = ? ∙ !"# + K ∙ !"#!                                             (5) 

where ?, K are coefficients that OLS estimates. 

Given the specific behavior of quadratic regression, whose function adopts a U-

shape, the OLS model tends to fit the point density close to zero efficiently. This is 

because most seismic events record relatively low magnitudes and economic losses, 

which is a recurrent phenomenon in historical records. Events that generate significant 

losses are, in comparison, much less frequent. The U-shape of the quadratic model 

assumes that, to encompass both low and high loss magnitudes, the OLS-estimated curve 

must descend toward negative values before ascending to fit the higher values. It is this 

dip in the curve that produces negative predicted loss values, which are physically and 

conceptually unacceptable in this context. To correct this limitation of the OLS model 

and avoid the generation of negative predicted loss values, a variant called non-negative 

least squares quadratic regression (NNLS) is used. NNLS modifies the traditional OLS 

algorithm to impose the additional constraint that all predictions must be non-negative. 

This means that during the optimization process, the NNLS algorithm adjusts the loss 

function surface to ensure that all estimated values and their corresponding coefficients 

remain within realistic, i.e., non-negative, bounds, as explained by Slawski and Hein 

(2013). The implementation of NNLS in this study addresses the skewness of data 

concentrated near the origin, avoiding the generation of negative estimates that are 

conceptually unacceptable. This constraint ensures that all loss estimates remain within a 

plausible and physically consistent range. 



 
 

4.3.2 Cubic Ordinary Least Squares Regression Model 

The cubic model incorporates a third polynomial term, the !"#", which allows 

for a more complete mathematical representation of how economic losses relate to the 

WIM. By including this cubic term, the model can capture possible asymmetry in the 

response of losses to variations in intensity, which might not be evident with linear or 

quadratic models. Once again, the model is fitted with OLS. By expanding the model to 

include the cubic term, it seeks to address the shortcomings of lower degree models in 

representing more complex behavior, such as rapid loss escalation beyond certain points 

of ground motion intensity. 

The structure of the cubic model is described by the equation: 

4M++ = ? ∙ !"# + K ∙ !"#! + L ∙ !"#"                                             (6) 

where the coefficients ?, K, L represent the incremental influence of each increase in WIM 

power on losses. This model offers several technical advantages: (1) As the WIM 

increases, especially at high values typical of severe seismic events, the cubic term allows 

modeling an exponential increase in losses, which is more aligned with actual 

observations where small variations in intensity can have large impacts on damage and 

losses. (2) The inclusion of a third-degree term facilitates the detection of points where 

the relationship between intensity and losses changes significantly. These points, which 

may indicate critical damage thresholds, are important for disaster mitigation planning. 

(3) By modeling curvature and changes in the rate of loss increase more effectively, the 

cubic model can reduce the model residual and improve the overall fit, resulting in more 

accurate and reliable predictions. 

As in the case of quadratic regression, when fitting the cubic regression, negative 

predicted values are generated. Therefore, the NNLS model is also applied to restrict such 

behavior. 

4.3.3 Piecewise Model 

Given the nonlinear relationship between losses and intensity measure, depicted 

in the example in Figure 8, the piecewise model has been carried out to better capture this 

complexity. The piecewise model is a technique that allows fitting different sections of 

the data with different polynomial functions. This offers greater flexibility to capture the 

nonlinear relationships between the explanatory variables and the dependent variable. 



 
 

The technique of regression by sections has been studied in several fields such as 

computational geometry, statistics, and machine learning, according to Lokshtanov, Suri 

and Jie (2021). In statistics and machine learning, slice approximation refers to the 

technique of dividing the data set into several sections (or slices) and fitting a simple 

polynomial function to each section of the data. Unlike other approaches where the fitted 

functions must be continuously connected over the entire range of data, in the slice 

approximation each segment can be fitted independently. This means that the functions 

in each span do not necessarily have to coincide at their junction points. The main idea 

behind the slice approximation is to facilitate the capture of local behaviors of the data 

that may vary significantly from one region to another. This is particularly useful in 

situations where the relationship between variables does not follow a simple global 

pattern and can change dramatically over different ranges of the data set. 

The motivation for using a piecewise model lies in the need to address the 

nonlinearities evident in the data. In the context of earthquakes and economic losses, the 

relationship between earthquake intensity measures and losses is not linear across the 

range of data. Losses may increase disproportionately with magnitude and other measures 

of intensity in certain ranges. For example, small increases in intensity could have 

minimal impact on economic losses at low intensities but cause dramatic increases at 

higher intensities. The piecewise model allows these variations to be captured by fitting 

different sections of the model to different data behaviors. 

For this analysis, both quadratic and cubic piecewise regression models have been 

applied. For both models, limits have been implemented for clamping or restrict the 

predicted losses to observed minimum and maximum values, preventing the model from 

producing unrealistic predictions outside the observed range. 

4.3.4 Random Forest Regression Model 

In this study, the Random Forest (RF) regression model was also implemented 

because of its robustness and ability to model complex nonlinear relationships between 

variables, as described by Borup et al. (2023), such as those between WIM and economic 

losses resulting from earthquakes. This algorithm, from the supervised machine learning2 

 
2 Supervised learning is an approach in the field of machine learning in which a model learns from a set of 
labeled data, where the correct answers are provided during training. This method allows the model to 
generate predictions based on the association between input features and known outputs, as defined by 
Singh et al. (2016). 



 
 

branch, builds multiple decision trees from randomly generated subsets of data and 

combines them to improve the accuracy and stability of the predictions, as shown in 

Figure 9, from Hunter (2022). Each tree is generated through a bootstrapping process and 

randomly selects features at its split points, which enriches the diversity among trees and 

minimizes their correlation. At each node of the tree, a subset of features (e.g., earthquake 

magnitude, depth, intensity measured at different stations, etc.) is selected and the best 

split at that node is determined based on a criterion such as maximum variance reduction. 

This approach is beneficial because it reduces the risk of overfitting (individual trees may 

have high variance, but the average of many trees is more stable and accurate) and is quite 

robust to outliers and noise in the data. When talking about overfitting, it means that the 

model fits the training data too closely to the point of capturing the noise or random 

fluctuations present in that data rather than the underlying trend or true pattern. This 

means that the model performs very well on the training data, but its ability to generalize 

to new data or data not seen during training is poor.  

 
Figure 9. Structure of Random Forest Model. 

 
The accuracy in prediction using multiple decision trees in models such as RF 

comes from the diversity in the responses of individual trees. This is due to the complexity 

and subtle characteristics of the data, which may not be captured by a single tree. 

However, by combining the predictions of all the trees in the model, a final estimate is 

achieved that is not only more accurate, but also more stable than that provided by any 

single tree. 



 
 

Unlike the linear and quadratic regression models used previously, which clarify 

the direct relationship between the predictor variables and the target variable, RF is 

considered a “black box” model. This type of model, while providing estimates of the 

relative importance of each variable, does not provide a transparent explanation of how 

exactly the inputs are transformed into the final output. Despite this lack of transparency, 

RF can capture complex patterns in the data, especially in situations where responses to 

ground motion intensities are highly nonlinear and varied. In any case, in later sections, 

the ability of this model to predict losses following different events will be validated or 

determined. The use of RF in seismic risk assessment seeks a balance between the need 

for accuracy in modeling and the limitations in model interpretability. 

4.3.5 XGBoost Regression Model  

The XGBoost model is another approach used in this study to predict economic 

losses resulting from earthquakes. The XGBoost model, short for eXtreme Gradient 

Boosting, is used in machine learning to make accurate predictions in both regression and 

classification problems. Its operation, described by Friedman (2001), is based on the 

sequential construction of decision trees, where each tree tries to correct the errors of the 

previous one. This process is carried out by means of gradient boosting, a technique that 

minimizes a specific loss function in each iteration. Initially, a simple decision tree is 

constructed that performs basic predictions. The errors in this tree are calculated and used 

to adjust the next tree in the sequence. This process is repeated, with each new tree 

attempting to correct the accumulated errors of the previous trees. The sum of the 

individual models generates a final model that is more robust and accurate. 

XGBoost employs regularization techniques, which penalize model complexity 

and help prevent overfitting. This ensures that the model not only fits the training data 

well, but it also performs well on new and unseen data. Furthermore, XGBoost efficiently 

handles missing values and performs parallel computations, which speeds up the training 

process and allows handling large volumes of data (Nguyen, 2023).  

4.3.6 Hyperparameter tunning method: Grid Search Cross Validation 

Grid Search Cross-Validation is a technique used for hyperparameter optimization 

in black box predictive models. This systematic and exhaustive method seeks to identify 

the optimal combination of hyperparameters that maximizes model performance. The 

technique involves defining a set of possible values for each hyperparameter and 



 
 

evaluating all possible combinations by cross-validation, as defined by Huang, Mao, and 

Liu (2012) . This approach is broken down into several steps, each important to ensure a 

complete and efficient exploration of the hyperparameter space. 

The process begins with the definition of the hyperparameter space. The 

hyperparameters to be optimized are selected and the possible values they can take are 

specified (Budiman, 2019). For each hyperparameter, a range of discrete values to be 

explored is established, which creates a “grid” of all possible combinations of these 

values. Once the hyperparameter space is defined, all possible combinations of these 

values are generated. Each combination represents a unique configuration of the model. 

For example, if two hyperparameters with three possible values each are being optimized, 

there will be a total of nine combinations to evaluate (3x3=9). This approach ensures that 

all possible configurations of the model are explored, providing an exhaustive search for 

the best set of hyperparameters. 

To evaluate each hyperparameter combination, cross-validation is used. In this 

context, K-Fold Cross-Validation is usually employed, where the data set is divided into 

K subsets. For each hyperparameter combination, the model is trained K times, using K-

1 subsets for training and one for validation in each iteration. The average performance 

of the model over the K validation subsets is calculated, providing a robust estimate of its 

generalization ability for that specific hyperparameter configuration. During this process, 

performance metrics, such as mean square error or coefficient of determination, explained 

in following sections, are recorded for each hyperparameter combination. At the end of 

the evaluation of all combinations, the hyperparameter configuration that maximizes 

model performance on the validation sets is selected. This optimal configuration is the 

one that best balances the accuracy and generalization capability of the model, avoiding 

both underfitting and overfitting. 

4.3.7 Validation Models 

This section is focused on the description of the validation methods applied to the 

predictive models developed. Techniques such as split validation, K-Fold cross-

validation, bootstrapping, and Grid Search CV, among others, will be discussed. Each 

method will be explained in detail, highlighting how they contribute to evaluate the 

robustness, accuracy, and generalization of the models against different data sets.  

 



 
 

1. K-Fold Cross Validation 

K-Fold Cross-Validation is a widely used technique to evaluate the generalization 

capability of a predictive model. As Mahmood and Khan (2009) explain, this technique 

is performed by dividing the data set into K subsets or “folds” of approximately equal 

size. The validation process consists of dividing the data set into K subsets randomly, 

where in each iteration one of these subsets is used as the validation set and the remaining 

K-1 are used to train the model. This process is repeated K times, using a different fold 

for validation in each iteration. Upon completion, the average performance of the model 

across the K iterations is calculated, providing a more accurate estimate of its 

generalizability. This method is effective in reducing variance in model evaluation and is 

especially useful when a limited data set is available. However, the computational cost 

can increase significantly with increasing K. 

Figure 10 represents the process followed in the validation. It should be noted that 

each validation iteration has an associated error and because of the errors resulting from 

all iterations the average error is calculated. This average provides a more accurate 

estimate of the generalization capability of the model compared to a single training and 

validation partition. 

 
Figure 10. K-Fold Cross Validation process. 

 
2. Bootstrapping 

Bootstrapping is a statistical technique for estimating the distribution of a statistic 

by repeated sampling of the original data set with replacement. This approach is 

particularly useful for assessing the accuracy and uncertainty of predictive models. 

According to Egbert and Plonsky (2021), the methodology begins with the generation of 



 
 

multiple subsets from the original data set. Each subset is created by sampling with 

replacement, which means that the same observation can be selected more than once to 

be part of the subset. The size of each subset is equal to the size of the original data set, 

thus ensuring that the structure of the data is maintained. 

For each subset generated, the predictive model is trained using all the data in the 

subset. This allows the model to learn from different combinations of data, capturing the 

variability present in the original data set. After training the model with each subset, its 

performance on observations that were not selected for the specific subset, known as “out-

of-bag” samples, is evaluated. This evaluation provides a measure of the models’ 

accuracy and allows estimating the prediction error in a robust manner. 

3. Split Validation  

The split validation method, often known as holdout validation, is a simple and 

widely used technique for evaluating the performance of machine learning models. This 

method involves dividing the available dataset into two distinct subsets, as described by 

Yadav and Shukla (2016). The first subset is the training set, which is used to train the 

machine learning model. It typically comprises a significant portion of the original 

dataset, often around 70-80%. The second subset is the validation set, which is used to 

evaluate the performance of the model after it has been trained. It helps in tuning model 

parameters and selecting the best model, and usually comprises about 20-30% of the 

dataset.  

The process of split validation involves several steps. First, the dataset is randomly 

split into the training and validation sets. This splitting can be done using various 

methods, such as simple random sampling or stratified sampling to ensure class 

distribution is maintained in classification problems. Next, the model is trained using only 

the training set, where the training process involves learning the parameters or weights 

from the data, minimizing a loss function, and applying any optimization techniques. 

After the model is trained, it is validated on the validation set. 

 

 

 

  



 
 

5. Results 

5.1 Descriptive Analysis  
First of all, in order to avoid congestion in the analysis and due to the similarity 

of the data sets and the behavior between variables, the descriptive analysis will be 

performed using the files corresponding to the 0.05dd cell size. This approach will allow 

to obtain a detailed and representative view of the data without excessive redundancies. 

Secondly, the execution of the codes has been carried out with Python 3. 11.  

To start with the descriptive analysis of the data, it is necessary to import and load 

the data sets to be used in this study. Using the pandas library in Python, these files are 

read and converted to DataFrames as shown in Figure 11.  

 
Figure 11. File reading. 

 
Pandas is an open-source Python library widely used for data manipulation and 

analysis. With pandas, it is possible to perform a wide range of operations, such as 

reading, cleaning, exploring, or transforming data, among others. On the other hand, a 

DataFrame consists of a two-dimensional data structure provided by the pandas library in 

Python. It can be considered similar to a table in a database, a spreadsheet in Excel or a 

matrix in mathematics, but with additional functionalities that facilitate data manipulation 

and analysis. 

As described in Section 3 of this work, data transformation is performed to avoid 

overlapping. Once the data is loaded, the rows of the event_loss DataFrame are filtered 

to keep only those that correspond to events whose IDs are present in the IM DataFrame. 

This ensures that only events for which complete intensity information is available are 

analyzed. Subsequently, the rows of the event_loss DataFrame are sorted by the 'EventID' 

column and the DataFrame index is reset. This facilitates the organization and access to 

the data during analysis. To provide an overview of economic losses, the average of the 

'Loss' column of the DataFrame event_loss is calculated and printed. This basic statistic 

helps to understand the average magnitude of the estimated economic losses. Finally, the 

shape of the DataFrame event_loss is shown, indicating the number of rows and columns 



 
 

it contains. This information is useful to understand the dimension of the dataset after 

applying filters and sorting.  

The process is described in Figure 12, where the average earthquake losses are 

around 67 million USD, and that the dataset has a size of 24,648 rows and 8 columns. 

 
Figure 12. Shape analysis. 

 
Next, a matrix is created that represents the intensity of seismic motions (MI) 

recorded at various stations for different seismic events. The resulting matrix is structured 

so that the events are the rows, and the stations are the columns, with the intensity values 

of the seismic motions as the matrix data. 

First, the matrix is set up using the pandas pivot function. This function transforms 

the DataFrame IM by setting Event_ID as the index (rows), Station_ID as the columns, 

and IM as the matrix values. The result is a matrix where each row represents a seismic 

event and each column represents a station, with the cells containing the intensity values 

of the recorded seismic motions. 

Then, the set of unique Station_ID values in the exposure DataFrame that are not 

present in the IM DataFrame are identified. For these stations that do not have seismic 

motion intensity records in IM, the corresponding value in the Matrix matrix is set to 0. 

This ensures that all stations present in exposure are included in the matrix, even if they 

have no data in IM. 

Finally, the rows of the matrix are sorted based on the Event_ID index and the 

index is reset. Then, the 'Event_ID' column is removed from the DataFrame, as it is no 

longer needed for the subsequent analysis. The result is a clean and organized matrix 

ready for further analysis. The resulting matrix contains the seismic intensity values 

organized in a way that facilitates comparative analysis between different stations and 

seismic events. 



 
 

 
Figure 13. Matrix formation. 

 
The following step is to create a Weighted IM (Weighted IM, or WIM) parameter 

that reflects the overall impact of an earthquake on an entire region. To do this, 

DataFrames are converted into NumPy arrays. An array is a data structure containing a 

collection of elements, and NumPy is a fundamental Python library for scientific 

computing that provides support for arrays and efficient mathematical operations. 

Functions are defined to compute the weighted sum of motion intensity (MI) values. 

These functions allow different forms of weighted sums to be calculated: basic, squared, 

and cubed. Then a new DataFrame df containing the simulated event parameters is 

created, and the weighted sum functions are applied to each row of the motion intensity 

columns in the Matrix matrix. The results are added as new columns in the DataFrame 

df. The columns of the DataFrame df are renamed for clarity. The column 'Magnitude' is 

renamed to 'M' and 'centroid_depth' is renamed to 'D'. 

 



 
 

 
Figure 14. WIM creation. 

 
The output shown in Figure 15 is a pandas DataFrame containing the processed 

seismic event data, specifically, earthquake magnitude and depth values, associated 

losses, and WIM measurements. This DataFrame has 24,648 rows and 6 columns.  

 

Figure 15. Output, earthquake event summary. 

 



 
 

Once the dataset is prepared, the descriptive process begins. For this, the first step 

is to generate summary descriptive statistics of the numeric columns in the DataFrame. 

Using the describe() function of pandas, we obtain a summary statistic for each column, 

which includes the count, mean, standard deviation (std), minimum values (min), and the 

25%, 50% (median) and 75% percentiles, as well as the maximum values (max). 

 
Figure 16. Descriptive statistics. 

 
To better understand the distribution of data and visualize how different variables 

are distributed, it is useful to create distribution and density plots. These plots allow you 

to observe not only how the data is distributed, but also to identify possible anomalies, 

biases, and underlying patterns that might not be evident from basic descriptive statistics. 

Below, in Figure 17, is code that generates these plots for several key variables in a 

DataFrame. First, the necessary libraries are imported: matplotlib.pyplot as plt and 

seaborn as sns. matplotlib is a Python 2D graphics library that produces quality figures in 

a variety of formats. On the other hand, seaborn is a matplotlib-based data visualization 

library that provides a high-level interface for creating attractive and statistically 

informative plots. 

The style of the graphs is then set using seaborn with sns.set(style=“whitegrid”). 

The “whitegrid” style adds a white grid to the graphs, making it easier to read and visually 

interpret the data. This setting establishes the visual environment for all plots that will be 

created later. Then, a function called plot_distribution is defined that creates a histogram 

and a density plot for a given variable of the DataFrame df. The function takes as 

parameters the variable to be plotted, the title of the plot, the number of bins for the 

histogram and the color of the plot. 



 
 

Within the function, plt.figure(figsize=(10, 5)) sets the figure size to 10 by 5 

inches. The sns.histplot(df[variable], kde=True, color=color, bins=bins) line creates a 

histogram with a density line using seaborn. plt.title(title), plt.xlabel(variable) and 

plt.ylabel('Frequency') set the title of the plot and label the X and Y axes, respectively. 

Finally, plt.show() displays the graph. The code then defines three lists: variables, titles, 

and colors. The variables list contains the names of the DataFrame df columns to be 

plotted, titles contain the titles to be assigned to each graph and colors contains the colors 

to be used for each graph. A for loop iterates over these lists using the zip function, which 

allows iterating in parallel over multiple lists. On each iteration, the plot_distribution 

function is called with the current values of var, title and color, thus creating a distribution 

and density plot for each specified variable. 

 
Figure 17. Visualization of the distribution of variables. 

 
The generated graphs provide a visual representation of the distribution and 

density of the DataFrame features. Figure 18 shows the distribution of earthquake 

magnitude. A histogram with a superimposed density line indicates that most of the 

seismic events have a magnitude between 4.5 and 5.5. The distribution presents a clear 

decreasing trend as the magnitude increases, with a long tail to the right indicating the 

presence of some higher magnitude earthquakes, although they are less frequent. This 

pattern suggests that the most common earthquakes are of low to moderate intensity, with 

a few more intense events. 

 



 
 

 
Figure 18. Magnitude distribution. 

 
Continuing with the depth of the earthquake centroid, the second plot reveals 

pronounced peaks at specific depths, particularly around 5, 15, 25 and 35 kilometers. This 

concentration at certain depths suggests the existence of subduction zones or geological 

faults where earthquakes tend to occur more frequently, as explained above. 

 
Figure 19. Centroid depth distribution. 

 
The distribution of the estimated economic losses is presented in Figure 20. For 

better visualization, the X-axis has been delimited from 1	:(,		to 1	:-,	which allows a 

clearer representation of the data. Most of the losses are concentrated at low values, with 

a very high frequency at the left end of the plot. This indicates that most events result in 



 
 

minor economic losses, although there is a long tail to the right suggesting some events 

with significantly higher losses. This non-uniform distribution highlights the potentially 

devastating but rare nature of the more severe earthquakes. 

 
Figure 20. Loss distribution. 

 
Finally, the fourth plot shows the distribution of the weighted intensity measure. 

Most of the WIM values are very small, concentrating near zero, with the density line 

decreasing rapidly as the values move away from this point. This distribution indicates 

that weighted earthquake intensities are generally low, with few events recording 

significantly higher intensities, as previously shown with the Loss feature. 

 
Figure 21. WIM distribution. 



 
 

To complement the density figures and provide a more complete visual 

representation, boxplots have been generated. Boxplots are particularly useful for 

identifying median, quartiles and outliers in a data set, adding an additional layer of 

information that is not always evident in density figures. The code in Figure 22 generates 

boxplots for the DataFrame features using matplotlib and seaborn. 

The for loop iterates over two lists: variables and titles, which contain the column 

names of the DataFrame and the titles for each graph, respectively. At each iteration, a 

new figure is created with plt.figure(figsize=(8, 5)) to set the size of the graph, a boxplot 

is generated for the current variable var using sns.boxplot(x=df[var]), a title is assigned 

to the graph with plt.title(title), and the graph is displayed with plt.show(). This process 

is repeated for each variable in the lists, producing an individual boxplot showing the 

distribution of each specified feature.  

 
Figure 22. Boxplot generation. 

 
The output obtained consists of a figure in which the central box represents the 

interquartile range (IQR), which is the distance between the first quartile (Q1) and the 

third quartile (Q3). The IQR contains the central 50% of the data. The line inside the box 

indicates the median (Q2) of the data set. The boxplot “whiskers” extend from the 

quartiles to the maximum and minimum values that are not considered outliers. Outliers 

are typically identified as points that are more than 1.5 times the IQR above the third 

quartile or below the first quartile. These points are represented by circles or dots outside 

the whiskers. 

Figure 23 shows the boxplots of the dataset variables. Regarding the magnitude 

variable, numerous outliers are observed on the right, which are significantly larger 

magnitudes. No treatment of these values has been performed since they represent real 

events of higher magnitude earthquakes, which, although rare, can occur and have a large 

impact. In contrast to the magnitude, no outliers are observed in the depth distribution. 

This is because the depth of the earthquakes does not show extreme variations that are 

considered anomalous in this context, since there will always be losses when the epicenter 

is close to areas with exposure, which stabilizes the depth distribution.  



 
 

Regarding losses, the central box is much smaller compared to the other variables, 

indicating that the interquartile range (IQR) of economic losses is relatively narrow. This 

suggests that the central 50% of the economic loss data is highly concentrated at low 

values. However, a large number of outliers are observed to the right, representing events 

with significantly higher economic losses. These outliers are more numerous than in the 

magnitude variable because, although extreme loss events are rare, they can have very 

high economic impacts. The presence of these outliers reflects the reality that some 

earthquakes can cause extremely high losses. 

Lastly, many outliers are observed in the WIM variable on the far right, indicating 

that some events have significantly higher intensities. Although these events are rare, as 

mentioned, they represent situations where an earthquake has a much greater impact due 

to its location and the specific characteristics of the affected region. 

  

  

Figure 23. Boxplot of the features. 

 
Continuing with the analysis, the correlation matrix was represented and 

visualized by means of a heat map using the code shown in Figure 24.  Before describing 

the code, a correlation matrix is a table that shows the correlation coefficient between 

multiple variables, providing a measure that indicates the strength and direction of a linear 



 
 

relationship between two variables. Correlation coefficient values range from -1 to 1, 

where -1 indicates a perfect negative correlation, 1 indicates a perfect positive correlation, 

and 0 indicates no correlation. 

 
Figure 24. Correlation matrix generation. 

 
The first step of the code is to create the correlation matrix using the corr() 

function of the DataFrame df, which calculates the Pearson correlation coefficient for all 

combinations of numeric columns in the DataFrame (Faizi, 2023). Next, the size of the 

figure is configured. To create the heatmap, the seaborn heatmap function is used, passing 

as parameters the calculated correlation matrix, the option annot=True to display the 

correlation values in each cell, and the color palette 'coolwarm' to visually represent the 

correlation values. In addition, the format of numbers displayed to two decimal places is 

specified by fmt=“.2f”, and the X and Y axis labels corresponding to the DataFrame 

columns are included. The X-axis labels are set to be rotated 45 degrees and aligned 

horizontally to the right, while the Y-axis labels are kept vertical, making the graph easier 

to read. Once the heatmap is set up, the title of the graph is set with plt.title() and the 

graph is displayed using plt.show(). 

The results of the correlation matrix show the relationships between the 

DataFrame variables: magnitude, depth, loss, and the weighted intensity measures. 

Magnitude and WIM have a moderate positive correlation (0.54), suggesting that an 

increase in earthquake magnitude is associated with an increase in the weighted intensity 

measure. Magnitude and loss have a low positive correlation (0.29), indicating that 

economic losses increase slightly with earthquake magnitude. WIM and loss have a 

moderate positive correlation (0.59), suggesting that higher weighted intensities are 

associated with higher economic losses. !"#! and loss have a very high correlation 

(0.95), and !"#"and loss also show a high correlation (0.84), indicating a strong 

relationship between these variables. Depth shows very low or close to zero correlations 

with the other variables, indicating little relationship with the magnitude, loss, and 

weighted intensity measures. 



 
 

 

Figure 25. Correlation matrix 

 
Continuing with the analysis, a bivariate analysis was carried out to explore the 

relationships between the variable 'Loss' and the others. Bivariate analysis, also known as pairwise 

variable analysis, is a graphical technique that allows visualizing possible correlations and 

patterns between two continuous features. According to the code shown in Figure 26, a list of 

variables to be compared with 'Loss' has been defined, including M, D, WIM and their squared 

and cubed versions. Using a for loop, scatter plots are generated for each of these variables. In 

each graph, the X-axis represents the variable in question and the Y-axis represents 'Loss'. 

 
Figure 26. Bivariate analysis. 

 
The output of the code is a set of scatter plots where the relationships between 

Loss and the rest of the variables as mentioned above can be seen in Figure 27. The first 

figure shows the relationship between economic losses and the magnitude of the 

earthquake. In this graph, there is no clear linear correlation between these two variables. 

However, some scattered points can be identified, suggesting that events of greater 



 
 

magnitude do not necessarily result in greater losses, although there are some cases that 

do show a more significant relationship. 

The second figure presents the relationship between economic losses and the 

depth of the earthquake centroid. This graph shows a large scatter in the data, indicating 

that earthquake depth does not have a direct and strong relationship with economic loss. 

The scatter suggests that both shallow and deep earthquakes can cause a wide range of 

economic losses. 

The third figure shows the relationship between economic losses and WIM. An 

upward trend can be observed here, indicating that as the weighted intensity measure 

increases, economic losses also tend to increase. In addition, the values are clustered near 

0, indicating that small magnitudes do not usually cause significant havoc, but the 

presence of a weighted intensity measure does not always imply that there will be 

considerable losses. This graph suggests a moderate positive relationship between these 

two variables. 

The fourth figure presents the relationship between economic losses and !"#!. 

Similar to the previous figure, a more pronounced upward trend is observed. As WIM is 

squared, the relationship appears to be stronger, indicating that the impact of weighted 

intensity on economic loss increases in a non-linear fashion. This transformation 

highlights the effects of extreme values, making the relationship between the variables 

more evident and stronger. 

The fifth and final figure shows the relationship between economic losses and 

!"#". This graph shows an even clearer and stronger upward trend. As WIM is raised 

to the cube, the relationship intensifies, suggesting that economic losses increase 

significantly with increases in weighted intensity. This cubic transformation further 

accentuates the extreme values, showing a very strong relationship between the variables, 

indicating that this variable is highly influential on economic losses.  



 
 

 

Figure 27. Scatter plots. 

 
In the descriptive analysis performed, it was observed that the Depth variable does 

not show a significant correlation with the target variable, while WIM and its derived 

variables, as well as Magnitude, do show a high correlation. However, despite this high 

correlation with Magnitude, it was decided to exclude both this variable and Depth from 

the final model. According to Erdik et al. (2011), 88% of earthquake damage is attributed 

to ground shaking, a phenomenon that is effectively captured by the MI variable. In this 

context, Guy Carpenter chooses to model exclusively with WIM and its variants together 



 
 

with Loss, since WIM already indirectly integrates magnitude information through data 

collected by sensors covering a specific ground size (0.05, 0.1, 0.25 and 0.5dd). In this 

way, using only ground shaking as a variable, the model not only collects the most critical 

information to assess the impact of earthquakes, but also avoids redundancies by 

excluding Depth and Magnitude. The goal of the project is to understand how earthquakes 

affect structures and systems, not simply to collect or consider data that is more indicative 

of geographic features than direct impact. 

 

5.2 Model Performance  

This section discusses the performance of the models developed to forecast 

economic losses resulting from simulated events in the territory of Morocco. This 

evaluation is carried out in order to understand the methodology with which each model 

processes data and its ability to project results in divergent situations.  

The analysis will focus on technical aspects of model fitting and parameter 

selection, providing a comprehensive view of the configuration and optimization of each 

implemented model. This study is an important step to validate the applicability of the 

models in the estimation of economic impacts derived from earthquakes and to ensure 

that the selected models offer a reliable and effective representation of the reality they 

attempt to model.  

Before explaining the results of the model, some more libraries are imported that 

will be used and explained throughout the code and are represented in Figure 28. 

 
Figure 28. Imported libraries. 

 



 
 

A series of control parameters are also defined, as shown in Figure 29.  

 
Figure 29. Control parameters. 

 
In the context of earthquake loss modeling, the starting year has been set to 10 to 

avoid the inclusion of initial outliers or extreme values that do not adequately represent 

the general behavior of seismic events, which tend to have very long recurrence cycles.  

On the other hand, the maximum loss value has been set at 30 billion, which corresponds 

to the maximum loss observed in the historical data, allowing a realistic evaluation 

framework for worst-case loss scenarios. 

5.2.1 Quadratic Ordinary Least Squares Regression Model Performance 

The code segment in Figure 30 illustrates the initial process with the quadratic 

regression model, fitting the entire dataset without previous splitting, and how the model 

is fitted using OLS with the “X” and “y” variables already defined, and then a statistical 

summary of the model is printed. This summary provides valuable information that helps 

interpret the effectiveness and accuracy of the model in terms of its ability to explain the 

variability in observed losses due to earthquakes. 

 
Figure 30. OLS fitting for quadratic model. 

 
The most relevant details of the analysis are depicted in Figure 31. The coefficient 

for the linear WIM term is significantly negative (-4.99e+09), which might initially seem 

counterintuitive. However, this result suggests that there is a threshold effect at lower 

intensities of ground motion, where further increases in WIM are not associated with an 

increase in losses, possibly due to the initial resistance of the structures to minor damage. 

In contrast, the coefficient for the quadratic term !"#! is positive (1.28e+11) and highly 

significant. This result indicates that as WIM increases, the impact on losses grows 



 
 

exponentially, reflecting the nonlinearity of losses in response to higher intensities of 

ground motion. This is typical in situations where small increases in ground motion 

intensity can lead to disproportionate increases in damage when certain structural strength 

thresholds are exceeded. 

The F-statistic value is extremely high (1.388e+05), and the associated p-value is 

0, indicating that the model is statistically significant at the global level and that the terms 

included in the model contribute significantly to the explanation of losses. The Durbin-

Watson statistic is 1.890, which is close to the ideal value of 2, suggesting that there is no 

significant correlation between consecutive residuals in the data. This is important to 

validate the independence assumptions in the regression model. Regarding the Jarque-

Bera test it has an extremely high value and a p-value of 0, indicating that the residuals 

do not follow a normal distribution. This could be a sign that there are other factors or 

relationships not captured by the current model or possible outliers or extreme influences 

in the data. 

Finally, to measure the effectiveness of the model, we use the R-squared or also 

known as the coefficient of determination, which is a statistical measure used to assess 

the goodness of fit of a regression model. This indicator quantifies the proportion of the 

variability in the dependent variable that is predictable from the independent variables. In 

other words, the R-squared shows how well the data fit the proposed statistical model. 

The model has an R-squared of 0.918, indicating that the model explains approximately 

91.8% of the variability in observed losses. This is an extremely high level of model fit, 

suggesting that the inclusion of linear and quadratic WIM terms provides a very accurate 

approximation for predicting losses based on soil movement intensity. 



 
 

 
Figure 31. Quadratic regression model results. 

 
Continuing with the analysis, the next step involves implementing a quadratic 

regression model on the entire dataset. This process is illustrated in the Figure 32, which 

demonstrates the fitting of the quadratic regression model, the evaluation of its 

coefficients, and the calculation of several performance metrics to assess its accuracy and 

reliability. 

First, the quadratic regression model is fitted to the complete dataset. Once the 

model is trained, y_pred_quadratic predictions are generated for the entire data set. This 

allows the model to capture the underlying relationships between intensity measures and 

economic losses. After fitting, the coefficients of the quadratic model are extracted and 

displayed. The coefficients a and b represent the weights associated with the independent 

variables in the fitted quadratic equation. These coefficients provide information on the 

influence of each variable in the prediction of economic losses. In particular, a is the 

coefficient associated with 'WIM' and b is the coefficient associated with 'W*IM^2'. 

To evaluate model performance, standard metrics are calculated in ML, such as 

the Mean Squared Error (MSE), which is the mean square of the differences between the 

observed and predicted values and provides a measure of the quality of the estimator, with 

lower values being indicative of a better fit, and the R-squared. Next, a DataFrame is 

created to analyze the percentage differences (Gap) between the actual losses and the 

predictions of the quadratic model. The computation of the gap_quadratic allows 

measuring the percentage difference between the predicted and actual losses for each 

observation, providing an additional measure of the model's accuracy. This DataFrame 



 
 

facilitates detailed analysis of the models’ performance in terms of the accuracy of its 

predictions. 

Finally, the predictions of the quadratic model are statistically described. The 

mean and standard deviation of the predicted losses are printed to provide an overview of 

the distribution of the model predictions. In addition, the average gap gives an indication 

of the overall accuracy of the model. 

 
Figure 32. Performance metrics of quadratic regression model. 

 

The output of the quadratic regression model, shown in Figure 33, provides detailed 

information on its performance and accuracy in predicting economic losses. The coefficients of 

the model, which indicate the influence of the independent variables in predicting losses, are 

presented first. The coefficient a is negative for the linear WIM term, suggesting that at low 

intensities, increases in WIM are not associated with an increase in losses, probably due to the 

initial strength of the structures. In contrast, the coefficient b for the quadratic WIM term is 

positive and significantly larger, indicating that at higher intensities of ground motion, losses 

grow exponentially. 

The performance of the model is evaluated by MSE and R-squared. The MSE is 1.01e+16, 

which may not be a reliable indicator of accuracy in this context because the observed losses reach 

very high values, around 3.0e+10. In situations with such high values, the MSE may be 

disproportionately influenced by outliers. The R-squared is 0.915, indicating that the model 



 
 

explains approximately 91.5% of the variability in observed losses. This suggests that the model 

has an adequate level of fit. The resulting DataFrame shows the loss predictions (Lp_quadratic) 

and the percentage difference (Gap quadratic) between the predictions and the actual values. For 

example, the first row shows a predicted loss of 1.06e+08 and a gap of 37.74%, indicating that 

the prediction was 37.74% greater than the actual loss. This type of analysis helps to identify the 

accuracy of the model at each data point individually. In addition, a statistical description of the 

model is provided with the mean and standard deviation (variability in model predictions). 

 

Figure 33. Performance metrics and statistical summary of quadratic regression model. 

 
Following the detailed analysis of economic loss prediction models, a code is presented 

that calculates and compares return period curves for both observed losses and losses predicted 

by the quadratic regression model, shown in Figure 34. An EP curve (Exceedance Probability 

Curve) is a graphical tool used to represent the probability of losses exceeding a certain value in 

a specific time, as explained by Grossi and Windeler (2005). This curve is used in risk assessment, 

especially in sectors such as earthquake engineering, insurance planning and natural disaster 

management. 

First, the maximum return period is determined as the inverse of the rate of the first event 

in the loss table. Subsequently, return period ranges are generated for each event based on its 

position. The next step is to calculate the ordered losses along with their corresponding return 

periods for both the original events and those predicted by the quadratic model. An original_ep 

DataFrame is created to store the return periods and the original losses, sorting them from highest 

to lowest. Similarly, a quadratic_ep DataFrame is created to store the return periods and losses 

predicted by the quadratic model, also sorted from highest to lowest. To fit the analysis to a 

specific range of years, the data is filtered according to the start_year and finish_year values.  



 
 

Finally, the EP curves are plotted to compare the original losses with those predicted by 

the quadratic model. This visual comparison shows how the model predictions align with the 

observed losses as a function of return periods. This analysis is necessary to understand how the 

model handles variability in the data and to ensure that the predictions are consistent with the 

observed reality. By visualizing these EP curves, it is easier to identify possible discrepancies. 

 
Figure 34. EP curve generation. 

 
The output is a plot, represented in Figure 3, which shows the comparison between the 

return period curves of the observed economic losses (Original EP) and the losses predicted by 

the quadratic regression model (Quadratic EP). The horizontal (x) axis represents the years, which 

indicate the return periods, while the vertical (y) axis shows the economic losses in values up to 

4 billion (1e9) dollars. 

The “Original EP” curve, represented by a blue dotted line, shows the observed losses 

ordered from highest to lowest over the different return periods. This curve serves as a reference 

to evaluate the accuracy of the predictive model. The “Quadratic EP” line, represented by a 

continuous orange line, shows the losses predicted by the quadratic regression model, also ordered 

from highest to lowest. 



 
 

Comparing both curves, the “Quadratic EP” closely follows the trend of the “Original 

EP”, although with some differences. For shorter return periods (less than 50 years), the predicted 

losses are slightly lower than the observed losses. As the return period increases, the difference 

between the curves narrows, and the model-predicted losses align more closely with observed 

losses. However, at longer return periods (greater than 250 years), model-predicted losses tend to 

be slightly less than observed losses. 

This visual comparison suggests that the quadratic regression model largely captures the 

relationship between economic losses and return periods, albeit with some discrepancies at the 

extremes of the data range. The proximity between the two curves indicates that the model is able 

to replicate patterns observed in the historical data, which is important for model validation. 

 
Figure 35. Actual vs quadratic EP curve. 

  
Following quadratic regression, NNLS quadratic regression model was applied 

for the complete data set. The results of this model are presented below using the code 

represented in Figure 36. There is only one difference in the code and that is that the non-

negative least squares optimization is applied using the nnls function of the scipy3 library. 

 

 
3 SciPy (Scientific Python) is an open-source Python library for mathematics, science and engineering. It 
provides many useful functions for handling numerical data and performing scientific calculations. 



 
 

 
 

Figure 36. Performance metrics of NNLS quadratic model. 

 
The NNLS results show, in Figure 37, some important differences compared to 

the OLS model. The OLS model has a better fit to the data, reflected in a higher R-

squared, indicating that it explains a greater proportion of the variability in observed 

losses. In addition, the MSE of the OLS model is lower than that of the NNLS model, 

suggesting higher prediction accuracy. The NNLS model, on the other hand, ensures that 

the coefficients are non-negative, which is an advantage in this context where the 

predictor variables are expected to have a positive impact. However, this restriction has 

affected its ability to fully capture the relationship between predictor variables and losses, 

resulting in a slightly inferior fit compared to OLS. 

In terms of variability and accuracy of individual predictions, the OLS model also 

shows better performance, with smaller differences between predictions and actual 

values. In conclusion, although the NNLS model provides a valid alternative with specific 

constraints, the OLS model fits the data better and provides more accurate predictions in 

this case. 



 
 

 
 

Figure 37. Performance metrics and statistical summary of NNLS quadratic model. 

 
On the other hand, with respect to the EP curve shown in Figure 38, the NNLS 

quadratic model, although following the general trend, presents a lower accuracy than 

OLS, especially in the longer return periods, where it tends to underestimate losses. 

 
Figure 38. Actual vs NNLS quadratic EP curve. 

 

5.2.2 Cubic Ordinary Least Squares Regression Model Performance 

The cubic model analysis follows a similar procedure to the quadratic model, 

except for the model formulation. Figure 36 shows the code on how a cubic model is 

fitted using the variables 'WIM', 'WIM^2' and 'WIM^3' as predictors, and 'Loss' as the 

dependent variable. The procedure starts by defining the feature set X and the target 



 
 

variable y. The model is formulated using OLS applied to cubic transformations of the 

WIM. Once the model is fitted, a summary statistic is generated that provides information 

on model performance. 

 
Figure 39. OLS fitting for cubic model. 

 
The results of the cubic model applied to the full data set are presented below in 

Figure 37. The coefficient for the linear WIM term is significantly negative (-1.159e+10), 

which might seem contradictory at first. However, this result suggests that there is a 

threshold effect at low intensities of ground motion, where further increases in WIM are 

not associated with an increase in losses, possibly due to the initial resistance of structures 

to minor damage. In contrast, the coefficient for the quadratic term WIM^2 is positive 

(2.044e+11) and highly significant. This indicates that as WIM increases, the impact on 

losses grows exponentially, reflecting the nonlinearity of losses in response to higher 

intensities of ground motion. The coefficient for the cubic term WIM^3 is negative (-

4.288e+10), introducing additional curvature that may better capture extreme variations 

in the data. 

The F-statistic value is extremely high (1.304e+05), and the associated p-value is 

0, indicating that the model is statistically significant at the global level and that the terms 

included in the model contribute significantly to the explanation of the losses. The 

Durbin-Watson statistic is 1.878, which is close to the ideal value of 2, suggesting that 

there is no significant correlation between consecutive residuals in the data, thus 

validating the assumptions of independence in the regression model. As for the Jarque-

Bera test, the extremely high value, and a p-value of 0 indicate that the residuals do not 

follow a normal distribution. 

The cubic model has an R-squared of 0.941, indicating that the model explains 

approximately 94.1% of the variability in observed losses. This high level of fit suggests 

that the inclusion of linear, quadratic, and cubic WIM terms provides a very accurate 

approximation for predicting losses based on ground motion intensity. 



 
 

 
Figure 40. Cubic regression model results. 

 
The cubic model analysis is carried out by applying the same method as in the 

quadratic model but including a cubic term in the formulation. The model is fitted to the 

complete data using WIM, WIM^2 and WIM^3 as predictors and 'Loss' as the dependent 

variable. The results obtained are detailed in Figure 38. 

The coefficients of the cubic model are a = -11628459971.69707, b = 

204510337933.63693, and c = -42909452852.49185. This suggests a nonlinear 

relationship between losses and intensity measurements, with the negative linear term, 

the positive quadratic term, and the negative cubic term reflecting a complex relationship. 

The MSE is 7.33e+16, reflecting the magnitude of the modeled losses. The R-squared of 

the cubic model is 0.93, indicating that approximately 93.8% of the variability in observed 

losses is explained. The resulting DataFrame shows the loss predictions (Lp_cubic) and 

the percentage difference between the predictions and the actual values. For example, a 

predicted loss of 1.21e+08 with a gap of 58.07% suggests a prediction greater than the 

actual loss by that percentage. In short, the cubic model shows a high R-squared, 

suggesting a good fit to the data and effectively capturing the variability in economic 

losses due to earthquakes. 



 
 

 
 

Figure 41. Performance metrics and statistical summary of cubic regression model. 

 
Regarding the EP curve, Figure 39 shows that the cubic model closely follows the 

trend of the observed losses, similar to the quadratic model. However, the comparison 

shows some important differences. At the shortest return periods (less than 50 years), the 

cubic model predictions are closely aligned with the observed losses, fitting slightly better 

than the quadratic model in this range. 

As return periods are extended, both the cubic and quadratic models maintain 

close alignment with observed losses. However, the cubic model shows a slight 

superiority in prediction accuracy in the intermediate periods (between 50 and 200 years). 

This higher accuracy is due to the ability of the cubic term to capture the additional 

complexities in the relationship between ground motion intensity and economic losses. 

At longer return periods (greater than 250 years), both cubic and quadratic curves 

tend to converge, although the cubic model has a slight advantage in reflecting extreme 

variations in the observed data. In general, the cubic model provides a more accurate 

approximation over various return period ranges, suggesting its better ability to handle 

nonlinearity in the data. 



 
 

 
Figure 42. Actual vs cubic EP curve. 

 
As in the quadratic model, the NNLS cubic regression model has also been carried 

out in the cubic model. When comparing the results of the cubic OLS model with the 

cubic NNLS, there are also clear differences in terms of performance. As shown in Figure 

43, the MSE of the NNLS model is slightly higher than that of the OLS model, indicating 

that the latter has a better fit. In addition, the R-squared of the NNLS model is 0.89 as 

opposed to OLS which is 0.93, which leads to a better explanation of the variability of 

the observed losses by the OLS model.  

 

Figure 43. Performance metrics and statistical summary of NNLS cubic model. 

 



 
 

On the other hand, if the EP curve in Figure 44 is observed, it can also be seen 

that the cubic OLS model follows more closely the observed losses, while the cubic 

NNLS model presents a lower accuracy, especially in the longer return periods. 

 
Figure 44. Actual vs NNLS cubic EP curve. 

 

5.2.3 Piecewise Model Performance 

In this section, the performance of the piecewise model in predicting economic 

losses due to seismic events is analyzed. As mentioned above, the piecewise model is 

employed to capture complex nonlinearities in the relationship between earthquake 

intensity measurements and economic losses, providing a more accurate and adaptive 

approximation to extreme variations in the data. In this study, two versions of the 

piecewise model are implemented and compared: a quadratic and a cubic model, to 

evaluate which of these approaches offers a better predictive capability. 

1. Piecewise Quadratic Regression 

For the implementation of this model, the code in Figure 45 starts with the 

definition of a prediction function for a piecewise quadratic model. The 

pw_quadratic_model_predict function is used to predict the economic loss values using 

the fitted quadratic model, applying minimum and maximum bounds for the predictions, 

thus ensuring that the predicted losses remain within a realistic range based on the 

observed losses. The pw_quadratic_model_predict function uses the previously trained 

quadratic spanwise model (pw_quadratic_model) to make predictions on the X data set. 

Within this function, y_predict predictions are generated using the fitted quadratic model. 

Subsequently, a clamping process is applied, which adjusts the predicted losses so that 



 
 

they are neither less than the minimum observed value (min_loss) nor greater than the 

maximum observed value (max_loss). This ensures that the predictions remain within a 

realistic range and avoids the generation of implausible predicted values that could disrupt 

the analysis. 

 
Figure 45. Piecewise quadratic model definition. 

 
In addition to the definition and prediction of the piecewise quadratic model, the 

model is fitted to the entire data set, the coefficients are calculated, and its performance 

is evaluated in terms of MSE and R-squared. As shown in Figure 46, The quadratic 

piecewise quadratic model is fitted by a process similar to that followed in the quadratic 

and cubic models. First, the model is trained with the predictor variables X and the 

dependent variable y. Then, predictions are made by fitting the values within a realistic 

range and coefficients are extracted to interpret the relationship between the variables and 

the losses. A DataFrame is also created with the predicted losses and the percentage 

difference with respect to the real values. 



 
 

 
Figure 46. Performance metrics of piecewise quadratic model. 

 
The output of Figure 47 corresponds to the quadratic piecewise model. When 

comparing the results of this model with those of the quadratic model and the quadratic 

NNLS model, it is observed that the quadratic piecewise model presents an R-squared 

close to the standard quadratic model, indicating a high explanatory capacity of the 

variability in the observed losses. However, the MSE of the quadratic piecewise model is 

comparable to that of the quadratic model, but lower than that of the quadratic NNLS 

model, suggesting better prediction accuracy. 

On the other hand, the average gap of the quadratic piecewise model is larger than 

that of the quadratic model, indicating greater variability in individual predictions. 

Compared to the quadratic NNLS, which also had a significant average gap, the quadratic 

piecewise offers intermediate performance, better capturing nonlinear relationships but 

with greater dispersion in predictions. 

In comparison with the quadratic NNLS, the quadratic piecewise model shows a 

high predictive power similar to the standard quadratic model and improved accuracy, 

although with a higher variability in individual predictions. 



 
 

 

Figure 47. Performance metrics and statistical summary of piecewise quadratic model. 

 
As for the return period curves, the quadratic piecewise model closely follows the 

observed losses, Figure 48, although with a slightly lower accuracy than the standard 

quadratic model. The EP curve of the quadratic OLS model shows a more accurate fit 

over all periods, while the quadratic NNLS model underestimates the losses, especially 

at the longer return periods. The quadratic piecewise model, on the other hand, provides 

a balanced approximation, capturing the general trends but with some underestimation in 

the longer return periods. 

 
Figure 48. Actual vs piecewise quadratic EP curve. 



 
 

2. Piecewise Cubic Regression 

In this subsection, the performance of the cubic piecewise model is examined, 

following a process close to that of the quadratic piecewise model. The only significant 

difference is the inclusion of the cubed WIM term in the model, therefore, only the results 

obtained will be reviewed. 

The results of the cubic piecewise model, represented in Figure 49, show an R-

squared of 0.938, close to the cubic OLS model, indicating that both models have a high 

explanatory power. However, the MSE of the cubic piecewise model is comparable to 

that of the cubic OLS model, suggesting similar prediction accuracy. The average gap of 

the cubic piecewise model is larger than that of the cubic OLS model, indicating greater 

variability in individual predictions. Despite this, the inclusion of the cubic term allows 

capturing more complex relationships, which may be advantageous in certain contexts.  

 

Figure 49. Performance metrics and statistical summary of piecewise cubic model. 

 
In terms of return period curves, the cubic piecewise model fits closely to observed 

losses, as does the cubic OLS model, although it shows some differences at longer return 

periods. Compared to the cubic NNLS model, the cubic piecewise provides superior fit 

and accuracy in loss prediction, avoiding the tendency to underestimate observed in the 

cubic NNLS. 



 
 

 

Figure 50. Actual vs piecewise cubic EP curve. 

 

5.2.4 Random Forest Regression Model Performance 

In this section, the performance of the Random Forest regression model for 

predicting economic losses from seismic events is analyzed. Again, the code is quite 

common to the previous ones already implemented in the different models developed. As 

shown in Figure 51, the notable differences are that, in this case, a series of 

hyperparameters is defined in order to optimize them later through the GridSearchCV 

technique. The hyperparameters considered are: n_estimators, which indicates the 

number of trees in the forest; max_depth, which is the maximum depth of each tree; 

min_samples_split, which represents the minimum number of samples required to split a 

node; min_samples_leaf, which is the minimum number of samples in a leaf; and 

max_features, which defines the maximum number of features to be considered for the 

best split. 

This search evaluates multiple combinations of hyperparameters to find the best 

configuration. The best parameters are used to train the model again. Once trained, 

predictions are made on the entire data set and MSE and R-squared are calculated to 

assess the accuracy and explanatory performance of the model. 



 
 

 
Figure 51. Performance metrics of Random Forest Regression model. 

 
The results of the RF regression model, represented in Figure 52, show that the 

best parameters found are max_depth of 30, max_features set to 'sqrt', min_samples_leaf 

of 1, min_samples_split of 2, and n_estimators of 80. These optimized parameters were 

determined by a grid search with cross validation, which ensures that the model is 

efficiently configured for the specific data set. 

Most representative of the rest of the output is that the RF model presents both an 

MSE and an average gap much lower than the previous models and, in turn, presents an 

R-squared that is well above reaching 0.984, indicating an extremely accurate fit. 



 
 

 
Figure 52. Performance metrics and statistical summary of random forest regression model. 

 
For this model, the EP curve is also obtained and is plotted in Figure 53. In general, 

the RF curve closely follows the Original EP curve, indicating a good model fit. At the 

shortest return periods, the model predictions are closely aligned with observed losses, 

suggesting that the RF model is effective in predicting losses in more frequent events. As 

return periods increase, the differences between the curves remain minimal, although 

small deviations can be observed. 

These observations confirm that the RF model not only offers a high R-squared 

and low MSE, but also maintains its accuracy and consistency over different time 

horizons. 

 
Figure 53.  Actual vs random forest EP curve. 



 
 

5.2.5 XGboost Regression Model Performance 

As in the previous model, some parameters have been introduced to optimize the 

XGBoost model, which are represented in Figure 54. In this case these are n_estimators, 

which is the number of trees in the model, max_depth, which represents the maximum 

depth of the trees), learning_rate, which is the learning rate, subsample, which consists of 

a fraction of samples used to train each tree and colsample_bytree, which is a fraction of 

features used for each tree. 

Once the parameters are defined, the XGBRegressor model is initialized, and grid 

search is performed using GridSearchCV with 5-fold cross-validation. This search 

evaluates different combinations of parameters to identify the configuration that 

minimizes the negative mean squared error (neg_mean_squared_error). Once the best 

parameters are obtained, the XGBoost model is trained with these optimal parameters and 

the trained model is used to make predictions on the entire dataset. 

 
Figure 54. Performance metrics of XGBoost Regression model. 

 

The XGBoost model has been fine-tuned using GridSearchCV, which identified 

the optimal parameters as follows, represented in Figure 55: colsample_bytree of 1.0, 



 
 

learning_rate of 0.1, max_depth of 6, n_estimators of 60, and subsample of 0.6. These 

parameters were chosen because they provided the best performance on the training data 

during cross-validation. As the RF, XGBoost shows a very high performance with an R-

squared of 0.97 and a lower MSE than the OLS and NNLS models. 

 
Figure 55. Performance metrics and statistical summary of XGBoost regression model. 

 

Likewise, it can be seen in Figure 56 that in the shorter return periods, the 

XGBoost predictions are closely aligned with the observed losses, demonstrating its 

effectiveness in predicting more frequent events. As return periods are extended, the 

XGBoost curve maintains remarkable proximity to the original curve, suggesting that the 

model handles both frequent and rare events well. 

 
Figure 56. Actual vs XGBoost EP curve. 

 



 
 

5.3 Validation Models Performance 

This section will evaluate the results obtained from the application of different 

validation techniques previously described: K-Fold Cross Validation, bootstrapping and 

split validation. The main objective of this evaluation is to compare the effectiveness of 

each technique in estimating model performance, providing a complete view on the 

robustness and reliability of the predictions generated. Through the analysis of these 

techniques, the aim is to identify which of them offers a better approximation to the real 

performance of the model on unseen data, thus facilitating the choice of the most 

appropriate validation method for the specific context of the study. 

For clarity and conciseness, only the codes implemented for one model, for 

example random forest, will be presented, since the codes are quite similar and vary only 

in specific libraries or hyperparameters. 

1. K-Fold Cross Validation Performance 

The code depicted in Figure 57 implements the K-Fold Cross Validation technique 

to evaluate a RandomForestRegressor model’s performance. It begins by importing the 

necessary KFold class from sklearn.model_selection for setting up cross-validation. The 

setup for K-Fold Cross Validation is defined with five splits (n_splits=5), and the data is 

shuffled before splitting (shuffle=True) to ensure each fold is a representative sample of 

the dataset, with random_state=1 ensuring the shuffling process is consistent across 

different runs. 

An empty list, mse_scores, is initialized to store the Mean Squared Error (MSE) 

values from each fold, and another list, r2_scores, to store the R-squared values. In the 

loop that iterates over training and testing indices generated by kf.split(X), the dataset is 

partitioned into training (X_train, y_train) and testing (X_test, y_test) subsets according 

to the current fold’s indices. 

Within this loop, a RandomForestRegressor model is instantiated with 

predetermined parameters and a fixed random state for reproducibility. The model is 

trained using the fit method on the X_train and y_train subsets. Predictions are then made 

on the X_test subset using the predict method, and the predictions are stored in y_pred. 

Following the prediction, the MSE is computed between y_pred and the actual 

test values y_test, and this value is appended to mse_scores. Similarly, the R-squared 



 
 

value is computed and added to r2_scores. After completing all iterations, the average 

MSE and average R-squared values are calculated across all folds, providing an 

assessment of the models’ performance across multiple subsets of the dataset. The 

average R-squared value is about 0.8738, indicating that approximately 87.38% of the 

variance in the dependent variable is predictable from the independent variables. This is 

a strong score, suggesting that despite the large MSE, the model does quite well in terms 

of explaining the variability of the response data around its mean. 

 
Figure 57.  K-Fold Cross Validation set up. 

 

2. Bootstrapping Performance  

The code in Figure 58 shows the bootstrapping validation method. In this code, 

the process begins with setting the number of bootstrap iterations to 1000. For each 

iteration, indices are randomly sampled to create a bootstrap sample of the original 

dataset. This sampling allows each iteration to potentially include multiple copies of the 

same data point, mimicking the effects of sampling from an underlying population. The 

selected indices determine the training and testing datasets for that bootstrap iteration. 

The RandomForestRegressor model is then initialized with specific parameters 

and a fixed random state to ensure that the results are consistent across different runs. It 

is trained on the bootstrap sample and subsequently makes predictions on the 

corresponding test subset. This helps to evaluate the models’ performance in terms of 

prediction accuracy and generalizability. 



 
 

The bootstrapping results yield an average MSE of approximately 1.788 billion 

and an R-squared of about 0.8683. Compared to the previous K-Fold Cross Validation 

results, which showed an MSE of about 1.668 billion and an R- squared of 0.8738, the 

bootstrapping approach exhibits slightly higher MSE and slightly lower R-squared. 

These differences suggest that while the model remains robust and effective in 

predicting outcomes, the variability introduced by the random sampling with replacement 

in bootstrapping may lead to marginally less precise predictions than those observed with 

K-Fold Cross Validation. This implies that the model’s performance can slightly fluctuate 

depending on the sampling technique used, with bootstrapping potentially capturing more 

variability and real-world uncertainties in the dataset. 

 
Figure 58. Bootstrapping set up. 

 

3. Split Validation Performance 

The code in Figure 59 shows a detailed approach to optimize and evaluate a 

RandomForestRegressor using Pythons’ scikit-learn library. Initially, the dataset is 

prepared by splitting it into features (X) with 'WIM' and target (y) with 'Loss', followed 

by splitting into an 80% training set and a 20% test set using a random state to ensure 

reproducibility. A parameter grid is set for GridSearchCV to find the best settings for the 

RandomForestRegressor, focusing on key hyperparameters such as n_estimators, 

max_depth, min_samples_split, min_samples_leaf and max_features. GridSearchCV 

then performs an exhaustive search for these parameters using 5-fold cross-validation, 

with the goal of minimizing the negative mean square error. 



 
 

Once the optimal parameters are identified, the RandomForestRegressor is 

retrained and used to make predictions on the training and test data sets. Model 

performance is quantified by an MSE of approximately 2.34 trillion for training and 696 

billion for testing, with R-squared values of 0.981 and 0.926 respectively. 

Compared to previous models using bootstrapping and K-Fold cross-validation, 

this GridSearchCV approach potentially offers a more robust and fine-tuned model. This 

is evidenced by higher R-squared values, indicating higher predictive accuracy and better 

fit to the data. This model, by systematically exploring a range of parameter settings and 

validating performance on multiple subsets of data, likely ensures better generalization to 

unobserved data and provides a more reliable and well-optimized forecasting tool than 

simpler models or those with less rigorous parameter tuning. 

 
Figure 59. Split validation set up. 

 
4. Split Validation Performance 

Another method for evaluating the performance of a model, particularly in 

regression tasks such as those discussed above, is by examining residual plots. Residuals, 



 
 

which represent the discrepancies between the observed values of the target variable and 

the model's predictions, provide significant information about the accuracy and efficiency 

of a model. A residual plot facilitates the visualization of a models’ prediction accuracy 

across the entire observed data spectrum. Ideally, the residuals are randomly distributed 

around the horizontal (zero) axis, indicating that the models’ predictions are generally 

accurate over the entire data set. If the residuals show systematic patterns or deviations 

from this random distribution, they could suggest problems such as nonlinearity, the 

influence of outliers, or other underlying characteristics of the data that the model may 

not fully address. 

Figure 60 shows the residual plots corresponding to the split validation model of 

all the models implemented in the study. The figure shows a series of graphs comparing 

the predicted values with the actual values of several models, each representing a different 

model or model configuration. The diagonal red line in each graph symbolizes perfect 

prediction accuracy, where the predicted values exactly match the actual values. In 

examining the graphs, it is evident that most of the data points tend to cluster near this 

diagonal line, indicating a general trend of good model performance. However, the degree 

of clustering and the spread of data points vary from plot to plot, indicating differences 

in the prediction of the data by each model. The difference is notable in the last row of 

plots where the RF and XGBoost models are perceived to have better performance.  

 



 
 

 

 
 

 
Figure 60. Residual plots. 

 

5.4 Discussion of the Results 

The comprehensive evaluation of several predictive models across different grid 

sizes and validation techniques has provided significant insights into their performance, 

particularly concerning Mean Squared Error and R-squared metrics. This discussion 



 
 

section aims to synthesize these findings, highlighting the models that demonstrated 

optimal performance in specific settings as indicated by the red cells in the provided table. 

The study assessed multiple regression models such as quadratic OLS regression 

model, cubic OLS regression model, piecewise model, RF and XGboost. These models 

were tested under varying grid sizes of 0.50, 0.25, 0.10, and 0.05, using validation 

methods that spanned K-fold Cross-Validation, Bootstrap, and Split techniques. This 

diverse approach allowed for a mapped analysis of each models’ ability to handle 

different data complexities and partitioning strategies. 

Figure 61 presents the final consolidated results of all the models analyzed in the 

study. It is important to note that the most outstanding values in terms of predictive 

efficiency are represented in red, denoting the lowest values of MSE and the highest 

values of R-squared for each validation method used. This coloring facilitates the rapid 

identification of the models with the most optimal performance. From the analysis of the 

figure, as the grid size increases, the accuracy of the models tends to decrease. This 

suggests that models face greater challenges in capturing and modeling data variability at 

a reduced level of granularity. Therefore, it can be deduced that the accuracy of 

predictions is inversely proportional to the grid size used in this study context. 

Furthermore, it is observed that the model that consistently shows the highest 

accuracy is the Random Forest model. The Random Forest model, known for its ability 

to handle large volumes of data and capture nonlinear complexities without overfitting, 

proved to be particularly robust across multiple validation configurations and grid sizes. 

 



 
 

 
Figure 61. Performance comparison of predictive models according to grid size and validation 

method. 

 

If a more detailed analysis is performed for each grid size, significant conclusions 

about the performance of the different models can be derived. In deepening the 

comparative analysis of the different models and validation methods according to the size 

of the grid, it is important to emphasize that the main parameter for the evaluation is the 

coefficient of determination. This approach is especially justified in this study since the 

target variable is economic losses. In contexts where loss data are handled, the MSE may 

present numerically large and similar values between different models, which 

complicates direct comparisons and makes differences in performance less evident. 

For the grid of size 0.50 represented in Figure 62, it is noticed that the Split 

validation method generally offers the best results, except for the Random Forest and 

XGBoost models, where the K-Fold CV method stands out as the most effective. In this 

context, the Cubic OLS model stands out under the Split validation method as the one 

with the best performance (74.5%). 



 
 

 
Figure 62. Performance of grid models at grid 0.50dd. 

 
At grid size 0.25, shown in Figure 63, the K-Fold CV technique gains relevance, 

followed by the Bootstrap method. However, the model that exhibits superior 

performance is the Piecewise Cubic (80.8%), again under the Split validation method, 

underlining the consistency of this model in different configurations. 

 

Figure 63. Performance of grid models at grid 0.25dd. 



 
 

 
When analyzing the 0.10 grid, in Figure 63, the results between the models are 

quite competitive, but the Piecewise Cubic model again demonstrates superior 

performance (89.2%). This is evidence of the robustness of this model in effectively 

capturing and modeling the variability in the data despite the decrease in grid size. 

 
Figure 64. Performance of grid models at grid 0.10dd. 

 
For the smallest grid of 0.05, in Figure 64, a considerable increase in accuracy is 

observed compared to the larger grids. The models that stand out in this scenario are the 

Cubic regression model (93.1%) under the Bootstrap validation method and the Random 

Forest model (92.4%) under the Split method. 



 
 

 
Figure 65. Performance of grid models at grid 0.05dd. 

For parametric insurance in Morocco, the cubic model with a grid granularity of 

0.10 was selected. This decision was influenced by several strategic and technical 

considerations. Guy Carpenter chose to avoid including a black box model in the contract, 

since the lack of transparency in its operation could complicate the explanation and 

justification of decisions based on its predictions. Instead, the cubic model, being more 

interpretable and showing outstanding accuracy in the tests, was presented as the most 

suitable option. 

The choice of a granularity of 0.10 for the cubic model was also based on cost-

effectiveness considerations. Although a finer grid of 0.05 could theoretically offer 

greater accuracy, the associated increased costs are not justified by marginal 

improvements in performance. Therefore, the 0.10 granularity was selected as offering 

an optimal balance between accuracy and cost, resulting in an efficient and economically 

viable solution for parametric insurance. This configuration guarantees very good results, 

providing a robust and reliable model without incurring excessive costs. 

  



 
 

6. Conclusions and Future Work 

In this project, a detailed investigation into the financial impacts of seismic events 

in Morocco was undertaken, employing a combination of parametric insurance 

mechanisms and advanced statistical and machine learning models. The primary 

accomplishment of this research lies in its methodological innovation, which integrates 

robust predictive modeling techniques to enhance both accuracy and efficiency in seismic 

risk management. 

The study highlighted several key findings. Initially, simpler regression models 

such as quadratic and cubic ordinary least squares provided insights into the nonlinear 

relationships between ground motion intensity and economic losses. However, their 

limited complexity often failed to capture the intricate dynamics of more significant 

seismic events. In contrast, piecewise regression models—both quadratic and cubic—

demonstrated greater flexibility and effectiveness in modeling variable impacts across 

different seismic magnitudes. Among the ensemble methods tested, Random Forest and 

XGBoost models were particularly notable for their robust performance, adeptly handling 

the complex and nonlinear patterns inherent in seismic data, which simpler models could 

not adequately address. 

These insights are essential for advancing parametric insurance solutions in 

Morocco, offering a sophisticated framework that merges rapid financial decision-making 

with comprehensive risk assessment. This integrated approach not only helps mitigate 

financial risks but also enhances the resilience of communities to future seismic events. 

Looking ahead, the methodology developed here lays a solid groundwork for 

extending the scope of natural disaster risk analysis to encompass other catastrophic 

events, such as hurricanes. Future research will focus on adapting these models to the 

unique challenges posed by hurricanes, which differ significantly from seismic risks. This 

will include adjusting the models to better capture hurricane-specific attributes like wind 

speed, trajectory, atmospheric pressure changes and so on. Future efforts will also explore 

the use of more sophisticated machine learning techniques capable of more effectively 

managing the spatial and temporal dimensions of hurricane data. 

These developments aim to not only extend the application of the methodologies 

established in this thesis but also to contribute substantially to global efforts in managing 

and mitigating risks associated with diverse natural disasters. The goal is to develop a 



 
 

more comprehensive, adaptable, and resilient framework for disaster risk management 

and financial mitigation on a global scale.  
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