Índice

			Pág.
	Símbolos y abreviatu	ras	I
	Summary		V
1.	Introducción		
		spectiva actual del estrés	3
		de preocupación	4
		tratamiento de aguas	5
	1.2. Procesos de oxi	idación avanzada	7
	1.2.1. La fotoquímica		9
		como proceso de oxidación	11
	1.2.2.1. Fotocatalizado:	res orgánicos	12
	1.2.2.2. Fotocatalizado:	res inorgánicos	19
	1.2.2.3. Fotocatálisis he	eterogénea	21
2.	Objectives		29
Part	te I: Fotocatálisis Orgán	ica Heterogénea	33
Preá	ímbulo		35
3.	riboflavina para la o	or heterogéneo basado en xidación de contaminantes transferencia electrónica	37
	3.1. Introducción		39
	3.2. Resultados y d	iscusión	41
	3.2.1. Síntesis y co	aracterización del nuevo	41

3.2.2. Propiedades fotofísicas del fotocatalizador SiO ₂ -RF	46
3.2.2.1. Estudio del estado excitado singlete	46
3.2.2.2. Estudio del estado excitado triplete	47
3.2.2.3. Estudio de generación de ¹ O ₂ por el fotocatalizador SiO ₂ -RF	49
3.2.3. Adsorción de contaminantes en la superficie del fotocatalizador SiO ₂ -RF	50
3.2.4. Degradación fotocatalítica de contaminantes fenólicos	51
3.2.5. Participación de los estados excitados de SiO ₂ -RF / RFTA y participación del oxígeno singlete	56
3.2.6. Mecanismo fotocatalítico de degradación de contaminantes	64
3.3. Conclusiones	67
3.4. Experimental	68
3.4.1. Síntesis del fotocatalizador SiO ₂ -RF	68
3.4.2. Cuantificación de la RF en la superficie del catalizador	69
3.4.2.1. Cuantificación de la RF mediante absorbancia de UV-Vis	69
3.4.2.2. Cuantificación de la RF mediante análisis termogravimétrico (TGA)	71
3.4.3. Determinación del área ocupada por la RF en las partículas del fotocatalizador SiO ₂ -RF	72
3.4.4. Ensayos fotofísicos	74
3.4.4.1. Medidas de fluorescencia	74
3.4.4.2. Estudios de fotólisis de destello laser (LFP)	75
3.4.4.3. Medidas de oxígeno singlete	76
3.4.5. Degradación fotocatalítica de contaminantes fenólicos	76

	I: Fotocatálisis Heterogénea Basada en
Semicon	ductores
Preámbu	.lo
foto	timización del uso de la luz en ocatalizadores basados en TiO2 soportado: La evancia del espesor de corteza
4.1.	Introducción
4.2.	Resultados y discusión
4.2. los	1. Estudio de la morfología y composición de fotocatalizadores sintetizados
	2. Propiedades de la superficie de los aposites SiO ₂ @TiO ₂
	3. Cálculo del band gap para los ocatalizadores SiO2@TiO2
	4. Actividad fotocatalítica de los composites 2@TiO2
	5. Estudios de fotoluminiscencia y corriente binducida
4.3.	Conclusiones
4.4.	Experimental
4.4. (co	1. Síntesis de los fotocatalizadores SiO2@TiO2 mposites ST)
	2. Cálculo del tamaño de cristal mediante la ación de Scherrer
4.4.	3. Experimentos de adsorción
4.4.	4. Reacciones de degradación fotocatalítica
4.4.	5. Medidas de emisión de fotoluminiscencia
4.4.	6. Medidas de corriente fotoinducida
inn	aluación de fotocatalizadores basados en TiO2 novilizado para la descontaminación de aguas
	iduales

	5.2.	124	
	5.2.1. fotocat	Síntesis y caracterización de los talizadores SiO2@TiO2 y GW@TiO2	124
	5.2.2. sulfam	Eliminación fotocatalítica del netoxazol (SMX)	131
	5.3.	Conclusiones	134
	5.4.	Experimental	135
	5.4.1.	Síntesis del fotocatalizador SiO ₂ @TiO ₂	135
	5.4.2.	Síntesis del fotocatalizador GW@TiO ₂	135
	5.4.3.	Cálculos teóricos	136
		. Estimación teórica para la síntesis de la a de TiO2 en el fotocatalizador SiO2@TiO2	136
		. Estimación teórica para la síntesis de la a de TiO2 en el fotocatalizador GW@TiO2	138
	5.4.3.3 fotocat	. Estimación teórica del área del talizador SiO2@TiO2 y las esferas de SiO2	140
6	fotoca	o, síntesis y estudio de un nuevo talizador magnético SiO2@TiO2@Fe3O4 para sos fotooxidativos a pH 7	143
	6.1.	Introducción	145
	6.2.	Resultados y discusión	149
	6.2.1. fotocat	Síntesis y caracterización del talizador SiO2@TiO2@Fe3O4	149
		Estudios de adsorción de OPP en el talizador SiO2@TiO2@Fe3O4	160
		Estudio de la actividad fotocatalítica del talizador SiO2@TiO2@Fe3O4	160
	6.2.4. fotocat	Estudio de la reusabilidad del talizador SiO2@TiO2@Fe3O4	164
		Estudio de resonancia paramagnética	166

	6.2.6. Discusión del mecanismo fotocatalítico de eliminación del OPP
	6.3. Conclusiones
	6.4. Experimental
	6.4.1. Síntesis del fotocatalizador SiO2@TiO2@Fe3O4
	6.4.2. Estudios de adsorción del OPP sobre la superficie del fotocatalizador SiO2@TiO2@Fe3O4
	6.4.3. Estudios de la actividad fotocatalítica del fotocatalizador SiO2@TiO2@Fe3O4
	6.4.4. Estudio de reciclabilidad del fotocatalizador SiO2@TiO2@Fe3O4
	6.4.5. Estudios de resonancia paramagnética electrónica
7.	Nuevo fotocatalizador basado en TiO2 soportado para el tratamiento de aguas residuales en flujo continuo
	7.1. Introducción
	7.2. Resultados y discusión
	7.2.1. Síntesis y caracterización del composite de SiO ₂ -TiO ₂
	7.2.2. Estudio de la capacidad de adsorción del composite SiO ₂ -TiO ₂
	7.2.3. Evaluación de la capacidad fotocatalítica del composite de SiO ₂ -TiO ₂
	7.2.4. Mineralización de fenol mediante el composite SiO ₂ -TiO ₂ en un fotorreactor de flujo continuo
	7.3. Conclusiones
	7.4. Experimental
	7.4.1. Síntesis del composite SiO ₂ -TiO ₂
	7.4.2. Cálculos teóricos

	7.4.2.1. Estimación teórica para la síntesis de la capa de TiO ₂ sobre la GW	211
	7.4.2.2. Estimaciones teóricas para la decoración de la GW con las esferas de SiO ₂ @TiO ₂	212
	7.4.3. Análisis de la capacidad de adsorción-desorción del composite SiO ₂ -TiO ₂	214
	7.4.4. Evaluación de la Actividad Fotocatalítica del Compuesto SiO ₂ -TiO ₂	215
	7.4.5. Medidas de corriente fotogenerada	216
	7.4.6. Mineralización de fenol por el composite SiO ₂ -TiO ₂ en un fotorreactor SPS de flujo continuo	216
8.	Instrumentación	219
	8.1. Técnicas e instrumentos de caracterización	221
	8.2. Técnicas e instrumentación de análisis	229
	8.3. Fotorreactores	231
9.	Conclusions	235
10.	Bibliografía	239
	Anney I Dissemination of results	299