0
IMSF POLITECNICA D(S)//C

DE VﬂL E NC] Al DEPARTAMENT DE SISTEMES

INFORMATICS | COMPUTACIO

UNIVERSITAT POLITECNICA DE VALENCIA

Dept. of Computer Systems and Computation

Analysis and improvement of a Kubernetes deployment of
the EUCAIM platform services

Master's Thesis

Master's Degree in Cloud and High-Performance Computing

AUTHOR: Montoliu Rico, Pablo
Tutor: Blanquer Espert, Ignacio
Experimental director: Lozano Lloret, Pau

ACADEMIC YEAR: 2023/2024

ACKNOWLEDGMENTS:

| would like to dedicate this work to all cancer patients, to whom | sincerely hope both my
work and the efforts of everyone involved in the EUCAIM project will be of use in the near
future.

Additionally, | would like to thank, first and foremost, Professor Ignacio Blanquer Espert and
my colleague Pau Lozano Lloret for their kindness, their patience in teaching me, and for
everything | have learned while working with them. | would also like to thank my family and
friends, without whom none of this would have been possible.

Lastly, | would like to give special mention to those who have dedicated their lives to study
and knowledge, to those who live their profession with absolute passion, and whose tireless
efforts and curiosity continually push the boundaries of knowledge beyond the known.

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Abstract

The present Master's Thesis will analyse the services deployed within the framework
of the EUCAIM platform, proposing improvements in accordance with best practice
guidelines for the creation of Kubernetes manifests and Dockerfiles, as well as the inclusion
of scripts for configuration automation. It will also explore the possibility of using a CI/CD
environment for the verification and deployment of solutions, integrated with the GitHub
platform.

Keywords: Kubernetes, Orchestration, Containers, Helm, Deployment, Manifest,
EUCAIM, Platform, CI/CD, Federated repositories, Data repositories.

Table of Contents

1. Introduction 6
1.1 Motivation 7
1.2 Objectives 7
1.3 Methodology 8
1.4 Document Structure 9
1.5 Conventions 10

2 State of the Art 1"
2.1 Institutional Context (EUCAIM ECII Project Framework) 11
2.2 EUCAIM 12
2.3 Medical Data Situation in Europe 13
2.4 Examples of Current Federated Repositories 14
2.5 Tools 18

2.5.1 Kubernetes 18
2.5.1.1 Alternatives to Kubernetes 18
2.5.1.2 Object Modeling 19

2.5.2 Storage provisioning - NFS 22

2.5.3 Helm 24

2.6 Best Practices for Creating Recipes 26
2.7 Extern tools 28

3 Problem Analysis 33
3.1 Proposed Solution 33
3.2. Requirements Specification 34

3.2.1 Functional Requirements 36
3.2.2 Non-functional Requirements 44
3.2.2.1 Security 44
3.2.2.2 Performance 45
3.2.2.3 Availability 45
3.2.2.4 Usability 45
3.2.2.5 Interoperability 46
3.2.2.6 Maintainability 47
3.2.2.7 Legal and Regulatory 47

4 Solution Design 48
4.1 General Architecture 48
4.2 Security Model 50
4.3 Dashboard 53
4.4 Catalogue 54
4.5 Explorer 57
4.6 Negotiator 61
4.7 Monitoring 62

5 Solution Development 63

5.1 Environment Configuration
5.1.1 Vault
5.1.2 NFS (Network File System)
5.2 Kubernetes manifests
5.2.1 Molgenis
5.2.2 Dashboard
5.2.3 Federated-Search
5.2.4 Negotiator
5.4 Automation in a CI/CD environment
5.4.1 Self-hosted GitHub Actions configuration
6. Testing
6.1 Load Testing of Services
7. Conclusions and Future Plan
7.1 Future Plan
7.2 Contributions and Conclusion
8. Bibliography
8.1 Figures Index
8.2 Tools Documentation
Appendix 1. Relationship with the Sustainable Development Goals (SDGs)

63
63
65
67
67
68
69
71
71
73
78
78
85
85
88
90
91
91
92

1. Introduction

Over the past few years, the use of artificial intelligence tools has expanded into
numerous fields, causing a significant impact on how problems are addressed. In the clinical
domain, these tools have enabled the improvement of diagnostic procedures, treatment, and
response time in identifying the need for preventive medicine.

The enhancement and development of artificial intelligence tools require the use of a large
volume of data and infrastructures that are often unavailable for most users. Moreover, the
management of medical data imposes important restrictions that difficult access and transfer
of data.

Regarding the use of these Al tools in the fight against cancer, Europe faces a significant
challenge; our clinical data (especially medical imaging) is fragmented and underutilised.
Accessing clinical data volumes involves overcoming numerous obstacles, such as obtaining
the necessary authorizations or credentials to access data stored by clinical centres,
ensuring proper anonymization of images or data, obtaining data in the appropriate format,
ensuring that data is used appropriately and always within the legal framework, etc.

Regarding the necessary infrastructure for building Al tools against cancer, training Al
models within a reasonable time frame usually requires a significant computing infrastructure
with considerable computing capacity. This reality discourages most users from the
possibility of training their own models due to the enormous costs involved in accessing and
managing such infrastructures.

In this context, the EUCAIM project aims to create a federated infrastructure that brings
together all cancer images under a secure and compliant framework. This cancer image
atlas will drive the development of advanced Al tools. The central hub of the EUCAIM project
will govern and streamline the flow of information, and the project commitment to the FAIR
data principles will ensure that the data will be findable, interoperable, accessible, and
reusable. This infrastructure goal is to provide the necessary means for the validation and
development of artificial intelligence tools focused on precision medicine that will support
and enhance the diagnostic procedures, treatment, and identification of the need for
predictive medicine.

The federated infrastructure is governed by the federation core services that are run on the
Central Hub. These services are key for the findability, accessibility and reuse of the data
shared in the infrastructure. Therefore, it is key to have a reliable and performant platform to
manage the services. The objective of this work will be to migrate and deploy these core
services to an environment that can provide the resilience and performance required, as well
as to facilitate operation and maintenance.

1.1 Motivation

The EUCAIM platform, consisting of a wide range of services and components within
a complex environment, requires a structured architecture for integration and ongoing
maintenance to ensure seamless operation. Software containers and container management
platforms are key to simplify the creation and management of these services. In this context,
tools like Kubernetes and Helm are invaluable. These tools benefit both developers and
platform managers by enabling efficient and scalable deployment and maintenance.

Now that we understand the utility of Kubernetes and Helm, it's important to highlight two key
aspects: good practices and automation. The importance of good practices in creating
Kubernetes manifests is crucial to ensuring deployments are efficient, scalable, and reliable.
Automation plays a vital role in maintaining consistency across environments like EUCAIM,
accelerating deployment processes, facilitating scalability, and enhancing overall system
reliability. Automatic validation is another critical element, ensuring that all Kubernetes
configurations meet the required standards before deployment. This validation process helps
to avoid configuration errors and potential disruptions in service, making it an essential step
in the CI/CD pipeline.

Furthermore, Kubernetes offers the potential for managing multiple deployments, enabling
the EUCAIM platform to effectively manage and scale its diverse services. These multiple
deployments can cater to various aspects of the platform, ranging from testing and
development environments to production deployments, each tailored to specific
requirements. This flexibility ensures the platform can continue to evolve, allowing for the
addition of new services or the updating of existing ones without disrupting overall
operations.

1.2 Objectives

In this work, we aim to improve various aspects of the previous deployments of the
platform. The improvements we have proposed for our new deployment of the EUCAIM Core
Services are:

1. Increasing automation and facilitating the deployment of the platform.

2. Achieving reproducibility of the environment to obtain the same results regardless of
the machine on which the platform is deployed.

3. Enhancing the security of the deployment by applying best practices in the
development of the Infrastructure as code recipes.

4. Overall optimization of deployment processes, ensuring efficient, reliable, and secure
updates to the platform.

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

1.3 Methodology

To achieve a solution that best meets the objectives outlined in the previous section,
a classic work methodology was followed. This methodology consisted of the following
points or sections:

1. Analysis

First, a detailed analysis of the previous infrastructure and all its components was
carried out.

2. Architectural design

Once the previous deployment was analysed, its functionality and architecture were
documented to serve as a basis for future deployments.

3. Study of best practices

A study of best practices for managing the Kubernetes environment and creating new
manifests for deployments was conducted.

4. Proposal of improvements

Defects or areas for improvement in previous deployments were identified, and
various changes were proposed to enhance the security of the configurations and
automate the environment.

5. Deployment

In this phase, the updated configurations were created and deployed in the new
environment.

6. Validation

Load tests, usage tests, and analysis of the results were performed.

In the next Figure 0 you can see the Gantt chart derived from this planning.

Adaptation of a Multi-Servi... 99%

Analysis 100% [E—
Infrastructure general analysis 100% [
Dashboard analysis 100% [|
Explorer analysis 100% [
Negotiator analysis 100% |
Catalogue analysis 100% T
Improvement proposals 100% f]
Dashboard changes 100%
Explorer changes 100%
Negotiator changes 100%
Catalogue changes 100%
Best practices 99% | |
Kubernetes best practices analysis 99%
Architectural design 99% f 1
Dashboard structure 99% h
Explorer structure 99%
Negotiator structure 99%
Catalogue structure 99%
Deployment 99% I 1
Dashboard deployment 99% ‘
Explorer deployment 99%
Negotiator deployment 99%
Catalogue deployment 99% “ Jl
Monitoring 99% ‘ d
MM3 milestone 100%
Redeploy in production cluster 100%
Validation 99% [—
Load test 99%
Autoscaling test 99%
New cluster deployment 100% ~|_
Project upload 100%

Figure 0. Projects Gantt Chart

1.4 Document Structure

The following document is divided into the following sections:

State of the Art

In this section, the reader will find a brief introduction to the core technologies and
methodologies used in this project, as well as the institutional context from which this project
originated.

Problem analysis

This section provides a detailed analysis of the problem at hand and establishes the
requirements that the application must meet to address the identified needs. Additionally, it
includes the specification of requirements along with a detailed explanation of the proposed
solution.

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Solution Design

Throughout this section, the reader will find aspects such as the architecture of the solution,
the components it consists of, and a more detailed explanation of the application's design.

Solution Development

In the section dedicated to the development of the proposed solution, there is a summary of
the configuration necessary for the system to function correctly. In addition to this
configuration, the reader can find code snippets that have been deemed most relevant,
accompanied by various explanations regarding their importance and structure.

Testing

This section includes the load tests carried out to verify the correct behaviour of the
application under high load situations, as well as a brief explanation of how to perform these
load tests.

Conclusions and Future Plan

This section presents the conclusions drawn from this work, the relationship between the
work and the studies undertaken, and a thorough analysis of aspects that could be improved
in future revisions of the work, which will be addressed in the workspace.

1.5 Conventions

- The source code is written in Courier New font.

- All recipes mentioned are available at: https://github.com/EUCAIM/k8s-deployments.

- Direct quotes from external works will appear in quotation marks.

- References to documents will be cited.

- References to official web pages will include only the access date and will be noted
as footnotes.

10

https://github.com/EUCAIM/k8s-deployments

2 State of the Art

2.1 Institutional Context (EUCAIM ECII Project Framework)

In 2021, the European Commission presented Europe's Beating Cancer Plan’, a
project aimed at leveraging the latest technologies, research, and innovation for patient
benefit. [1]

This project can be divided into a series of sub-projects or initiatives, among which is the
European Cancer Imaging Initiative %(ECII). ECII's objective is to make the most of the
potential of data and digital technologies such as Artificial Intelligence (Al) or
High-Performance Computing (HPC) to combat cancer. The cornerstone of the European
Cancer Imaging Initiative will be a federated European infrastructure for cancer image data,
developed by the European Federation for Cancer Images (EUCAIM®).

m=EUC! M

CANCER [MAGE EURDPE

EUCAIM Data Providers

MUW, Vienna El c Lisbon
GOC, Limassol CHUdSA, Porto
uoc, Coimbra

= HULAFE, Valencia

‘ Eurmpean
Commission

European Cancer Imaging Inftiative

MUNI, Brno

r-u

l ' APHP, Paris HCB, Barcelona

B Charite, Berlin SAS, Sevilla
TUM, Munich SERMAS, Madrid

i= HCs, Athens EE UMU, Umea

B § (FO-IRE, Rome KI, Stockholm
IFOM, Milan RegVB, Umea
MNeuromed, Isernia
PSD, Milan Bl csvRi-ERIC
Saplenza, Rome CHAIMELEON
UMNIPI, Pisa EuCanimage

NKI, Amsterdam
UM, Maastricht
RUMC, Radboud

GUMed, Gdansk
PORT, Wroclaw

Eurobioimaging
INCISIVE
PRIMAGE
ProCancer-I

Figure 1. EUCAIM Data Providers

1

https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/promoting-our-european-way-li

fe/european-health-union/cancer-plan-europe_en

2 hitps://digital-strategy.ec.europa.eu/en/policies/cancer-imaging

3 https://cancerimage.eu/

11

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_pvk8s
https://digital-strategy.ec.europa.eu/en/policies/cancer-imaging

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

This project, composed of 76 partners, started with 21 clinical sites from 12 countries and
aims to have at least 30 distributed data providers from 15 countries by the end of the
project. The project will provide a central hub that will link EU-level and national initiatives,
hospital networks, as well as research repositories with cancer images data. Clinicians,
researchers, and innovators will have cross-border access to an interoperable,
privacy-preserving, and secure infrastructure for federated, distributed analysis of cancer
imaging data.

2.2 EUCAIM

The project EUropean Federation for CAncer IMages (EUCAIM), started in 2023, is
the cornerstone of the European Commission-initiated European Cancer Imaging Initiative,
and a crucial element of the Europe’s Beating Cancer Plan (EBCP), which as we previously
said aims to foster innovation of digital technologies in cancer treatment and care to achieve
more precise and faster clinical decision making, diagnostics, treatment and predictive
medicine for cancer patients.

Health data, including medical images, are highly distributed and fragmented in Europe.
Artificial Intelligence (Al) offers a paradigm shift towards data-driven decision making that is
revolutionising medicine. In medical imaging, an increasing number of studies are appearing
in which Al tools are making important contributions towards a more accurate diagnosis or a
more reliable treatment response and prognostic prediction. However, there can be a
significant difference between the design and the real-world performance of algorithms,
leading to ethical and safety issues. The aim of EUCAIM is to address this issue: to deploy
a federated, pan-European research infrastructure in order to address the fragmentation
of the health data and medical images in Europe.

This research infrastructure will support the development and validation of Al tools toward
Precision Medicine. Such Al tools will support and enhance the (cancer) diagnosis
procedure, treatment and the identification of the need for predictive medicine. Overall, this
infrastructure will provide a platform for developing Al tools that aim to enhance cancer
treatment and the diagnosis procedure for patients.

EUCAIM is building on the already existing, but fragmented data repositories of cancer
images developed through the projects of the Al4HI initiative. Furthermore, it is also defining
the legal grounds for the operation of the federated data repository on the European scale by
adapting to the particularities of the data management regulations of the different European
countries. Preserving the data sovereignty of the data providers is a high priority in EUCAIM.

12

2.3 Medical Data Situation in Europe

If we talk about data regulations in Europe, we are inevitably talking about the Data
Act*. In February 2022, the European Union introduced a proposal for the Data Act, a
cornerstone of Europe's Digital Decade vision for 2030. The Data Act is expected to
significantly impact data holders and third parties handling data—both personal and
non-personal—from users of connected products and related services, particularly those
generated by Internet of Things (IoT) devices. [2]

The Data Act aims to specify who can access, transfer, and use EU users data, with the goal
of boosting competitiveness and innovation within the Union, as well as ensuring sustainable
economic growth. Key features of this new regulation include:

- Legal Security: The Data Act provides legal certainty by establishing the rights and
obligations of users and data holders concerning access, use, and sharing of data
from products and services, including necessary metadata.

- Service Switching and Interoperability: It facilitates switching data processing
services, particularly among cloud service providers, and enhances data
interoperability and data exchange mechanisms.

- Intellectual Property and Confidentiality Protection: The act ensures the
protection of intellectual property and trade secrets, as well as safeguarding data that
could expose companies to vulnerabilities, such as cybersecurity incidents.

- Regulated Data Sharing: It governs the conditions under which data holders may
share data with third-party recipients, including measures to prevent unauthorised
use and disclosure of data, and outlines possible compensations agreements.

- Abusive Clauses: The regulation identifies clauses that are always considered
abusive and those presumed abusive in business relationships concerning data
access and usage.

- Data for Public Bodies: It allows the provision of data to public bodies and certain
authorities under specific exceptional circumstances.

Additionally, the Data Act complements the Data Governance Act, which promotes the
creation and development of European common data spaces in strategic sectors such as
health, energy, and finance, involving both public and private entities.

The Data Governance Act sets up rules to help share data between different sectors and
countries, while making sure everything follows EU laws. It aims to make more and better
data available, encouraging new ideas and decisions based on data. By providing clear
guidelines for handling data, the act supports transparency, security, and responsible use of
data across the European Union.

* https://digital-strategy.ec.europa.eu/es/policies/data-act

13

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

2.4 Examples of Current Federated Repositories

The EU views data in its strategy not only as a source of wealth but also as a key
geostrategic element, particularly when discussing the concept of "digital sovereignty." Being
relevant in the world involves controlling and exploiting your own data (at least your own).
This strategic interest is also reflected in legislation on data protection, interoperability, and
the directive on open data and the reuse of public sector information.

In recent years, various European projects, such as EUCAIM, have been created with the
objective of providing practical solutions to the digital sovereignty problem and to achieve
better data utilisation.

Some examples of these projects are:

GAIA-X

Gaia-X° is a European initiative designed to create a secure, federated data infrastructure,
promoting digital sovereignty and interoperability. Here’s a brief overview:

Objective: Foster European digital sovereignty and reduce dependency on
non-European cloud providers.

- Federated Services: Connects various cloud service providers and users through a
common framework, ensuring interoperability.

- Data Sovereignty: Empowers data owners with control over their data, ensuring
privacy and compliance with European regulations like GDPR (General Data
Protection Regulation). [3]

- Interoperability and Standards: Establishes common standards for data exchange,
security, and compliance.

5 https://gaia-x.eu/

14

https://gaia-x.eu/

Open Source and Transparency: Promotes open-source technologies and
operational transparency to build trust.

GAIA-X is one of the providers for the middleware that will be used to implement the
Common European Data Spaces, an initiative to foster data sharing among industries to
boost innovation. Data Spaces are being build to facilitate the transactions and accessibility
to data generated mainly in the European industry, or data that is key for the development of
innovative products. [4]

EOSC (European Open Science Cloud)

The EOSC (European Open Science Cloud)® is an initiative by the European Commission
aimed at creating a digital environment where European researchers can store, manage,
analyse, and reuse scientific FAIR (Findable, Accessible, Interoperable, Reusable) data. [5]
Here are the key aspects of EOSC:

Objective: Facilitate access to and reuse of scientific data in Europe, promoting
open science and innovation.

Federated Services: Provide a federated and secure infrastructure for storing,
analysing, and reusing scientific data, integrating various data infrastructures and
services across Europe.

Interoperability: Ensure that research data and services are interoperable, following
common standards to facilitate information exchange and collaboration across
disciplines and countries.

Open Science: Promote open access to scientific data and publications, aligned with
the FAIR principles (Findable, Accessible, Interoperable, Reusable), so Open
Science become the “new normal’.

Collaboration and Community: Foster collaboration among researchers,
institutions, and sectors, creating an active community that contributes to and uses
the EOSC, ensuring the recognition and rewarding of open science practices.

Governance and Sustainability: Establish a clear and sustainable governance
framework for the EOSC, ensuring its long-term maintenance and evolution for the
benefit of the European scientific community.

6 https://www.csic.es/es/internacional/eosc

15

https://digital-strategy.ec.europa.eu/en/policies/data-spaces
https://www.csic.es/es/internacional/eosc

- Innovation and Competitiveness: Drive scientific and technological innovation in
Europe, enhancing the continent's research competitiveness and capacity.

In essence, the EOSC aims to create a federated, collaborative, and open digital ecosystem
for European research, facilitating data sharing and promoting scientific advancements.

Dataspace INE + AEAT + GISS + BDE + SEPE

The officials of the National Institute of Statistics (INE)’, the State Tax Administration Agency
(AEAT)?, the Social Security (General Treasury, National Institute of Social Security, Social
Institute of the Navy, and IT Management), the Bank of Spain, and the State Public
Employment Service (SEPE®) have signed an agreement to allow combined and integrated
access to the records and databases they manage. This access will be granted to
researchers conducting scientific work in the public interest. [6]

Access to the data will be carried out using procedures that ensure the confidentiality of the
information, the protection of personal data, compliance with current legislation, and
statistical secrecy at all times, guaranteeing that it is impossible to directly identify any
individuals or units whose information is contained in the databases.

In this way, the Spanish administration takes a significant qualitative leap, aligning itself with
the most advanced countries in the management of public data, by making one of its main
assets, data, available to researchers. This is intended to be used in analytical projects that
can inform decision-making processes as well as the design and implementation of public
policies.

The reuse of data provided by citizens, companies, and entities to public institutions for
scientific research purposes enhances its added value, significantly contributing to the
economic and social progress of countries. Access to cross-referenced information from
different institutional databases also maximises the value that this information can bring to
research.

European Health Research Infrastructures (Rls)

" https://www.ine.es/en/
8 https://sede.agenciatributaria.gob.es/Sede/en_gb/inicio.html

% https://www.sepe.es/HomeSepe/es/

16

Research Infrastructures (RIs) are European structures aimed at facilitating networked
research within the European Research Area. They concentrate knowledge and innovation
and are positioned at the centre of the research-innovation-education triangle. Recognized
as a key aspect for European competitiveness, they enable researchers to enhance their
work by providing access to updated and sophisticated services that would otherwise be
difficult to obtain. Additionally, they promote the creation of international collaboration
networks.

The Instituto de Salud Carlos Il (ISCIII)" acts as the central coordinator and manager of
national participation, representing Spain in six European biomedical research
infrastructures.

These infrastructures provide services and resources to the research community to enhance
their international visibility, support the European Research Area'?, and foster innovation.

Some examples of these infrastructures are:

1. ELIXIR": A distributed infrastructure for life-science information, supporting research
data management, analysis, and interoperability.

2. BBMRI'*: The Biobanking and Biomolecular Resources Research Infrastructure,
which provides access to quality-controlled human biological samples and associated
data.

3. EURO-BIOIMAGING': A research infrastructure offering open access to imaging
technologies in biological and biomedical sciences.

4. EATRIS': The European Infrastructure for Translational Medicine, facilitating access
to high-quality services and expertise to advance medical discoveries into patient
benefits.

5. ECRIN': The European Clinical Research Infrastructure Network leverages
federated data to enhance multinational clinical research in Europe, supporting data
integration, privacy, interoperability, collaborative research, resource sharing, quality
assurance, and scalability.

10

https://research-and-innovation.ec.europa.eu/strategy/strategy-2020-2024/our-digital-future/european-
research-infrastructures_en

" https://www.isciii.es/Paginas/Inicio.aspx

12

https://research-and-innovation.ec.europa.eu/strategy/strategy-2020-2024/our-digital-future/european-
research-area_en

'3 https://elixir-europe.org/

4 https://www.bbmri-eric.eu/

'8 https://www.eurobioimaging.eu/
16 https://eatris.eu/

7 https://ecrin.org/

17

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

These Research Infrastructures (RIs) support the research community by providing
cutting-edge resources and fostering collaboration across Europe. They enable researchers
to effectively leverage these infrastructures to advance their work and contribute to the
global scientific community. Spain's commitment to these infrastructures is evident, with
active participation throughout the entire process of identifying and developing biomedical
products.

2.5 Tools

2.5.1 Kubernetes

As of today, Kubernetes'® has a large developer community that supports the tool
and makes up a large and rapidly growing ecosystem.

Kubernetes (k8s) is an open-source system for automating deployment, scaling, and
management of containerized applications. It provides a container-centric management
environment, orchestrating computing, network, and storage infrastructure so that user
workloads don't have to. This offers the simplicity of Platform as a Service (PaaS) with the
flexibility of Infrastructure as a Service (laaS) and enables portability across infrastructure
providers.

2.5.1.1 Alternatives to Kubernetes

While Kubernetes has become the de-facto standard for the orchestration of container
orchestration, there are other popular tools in this space. Next you can find a brief list of
other Container Orchestration Tools:

Docker Swarm

Docker Swarm' is native to Docker and turns a pool of Docker engines into a single virtual
Docker engine. It is easy to set up and manage, and it features native clustering, a
decentralised design, and load balancing. However, it lacks the extensive feature set and
community support of Kubernetes.

Apache Mesos

Apache Mesos? is a high-performance cluster manager that offers efficient resource
isolation and sharing for distributed applications. It supports both containerized and

'® https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/

19 https://docs.docker.com/engine/swarm/

2 https://mesos.apache.org/

18

traditional applications, making it versatile. Mesos can scale to tens of thousands of nodes
but is more complex to set up and manage compared to Kubernetes.

Red Hat OpenShift

Red Hat OpenShift?" is built on Kubernetes and extends its features with additional
developer and operational tools. It provides an integrated development environment,
automated installation and upgrades, a container image registry, and advanced networking
features. OpenShift is particularly strong in hybrid cloud environments but can be more
complex to manage.

Nomad

Nomad by HashiCorp?** is a flexible and modern orchestrator that supports both
containerized and non-containerized applications. It is known for its simple and unified
workflow, scalability to thousands of nodes, and support for diverse workloads. While it is
versatile, it does not have as extensive a community or as many features specifically for
containers as Kubernetes.

2.5.1.2 Object Modeling

Kubernetes offers us persistent entities called objects. These entities are used to represent
the state of your cluster. Specifically, they can describe:

- What containerized applications are running (and on which nodes)

- The resources available to those applications

- The policies around how those applications behave, such as restart policies,
upgrades, and fault-tolerance

These objects will be the foundation of our development and can be classified into eleven
different types:

1. Pod

Firstly, a Pod in Kubernetes is the smallest deployable unit that can be created, managed,
and scaled. It serves as a container for one or multiple closely related containers that are
deployed on a single worker node. Pods facilitate faster communication and easier data
sharing between containers. Despite their importance in managing containerized
applications, Pods are ephemeral, meaning they can be frequently created, destroyed, and
recreated as needed within the Kubernetes cluster. [7]

2. Deployment

21 https://lwww.redhat.com/en/technologies/cloud-computing/openshift

2 https://www.nomadproject.io/

19

https://kubernetes.io/es/docs/concepts/workloads/pods/pod/

In Kubernetes, a Deployment object is used to manage the lifecycle of one or more identical
Pods. It allows users to define the desired state of an application—such as the number of
replicas, the container images to use, and necessary resources—in a declarative manner,
without needing to specify the steps to achieve that state. Kubernetes autonomously handles
the process to match the actual state with the desired state as defined by the Deployment.
Deployments are particularly suited for managing stateless applications, where no persistent
data or state needs to be maintained across container restarts or replacements, making it
easy to replace containers without data preservation concerns. Examples of such
applications include web servers and load balancers. [8]

3. Persistent Volume

A Persistent Volume (PV) in Kubernetes is a piece of storage that remains independent of
the lifecycle of any particular Pod, ensuring that data persists even when a Pod is deleted.
PVs can be backed by various types of storage solutions, including local disks, network
storage, and cloud storage options. They are particularly useful for applications that require
durable storage, such as databases, where it's crucial to maintain data across Pod deletions
and restarts. By utilising PVs, users can ensure their data remains accessible and intact
regardless of the state of the Pods that consume the storage. [9]

4. Persistent Volume Claim

A Persistent Volume Claim (PVC) is a request for storage by a user in Kubernetes. PVCs
allow users to dynamically allocate storage as needed by specifying the desired size and
access mode. The Kubernetes system then matches the PVC to an available
PersistentVolume (PV) that meets the criteria. This abstraction simplifies storage
management by allowing users to work with storage resources without needing to know the
specifics of the underlying storage infrastructure. PVCs ensure that applications have the
necessary storage resources and can be easily transferred or resized as requirements
change.

5. ReplicaSet

In Kubernetes, Deployments manage the rollout and updating of applications by
automatically handling ReplicaSets. A ReplicaSet's purpose is to ensure that a specified
number of Pod replicas are running at any given time. This is achieved through reconciliation
loops, processes that continuously monitor and adjust the current state of the cluster to
match the desired state specified by the Deployment. For example, if a Deployment is
configured to maintain 3 replicas of a web server Pod and only 2 are currently running, the
reconciliation loop will detect this discrepancy and launch an additional Pod to meet the
desired state, thus ensuring reliability and availability of the application. [10]

6. StatefulSet

A StatefulSet in Kubernetes is designed to manage stateful applications, which are those
that maintain data or state across Pod restarts or replacements. Unlike stateless

20

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/es/docs/concepts/workloads/controllers/replicaset/

applications, stateful ones require a persistent storage mechanism to retain data, typically
using disks or databases. StatefulSets provide unique, consistent identifiers for each Pod,
starting from zero, which helps in maintaining a stable, persistent identity for each Pod and
its associated resources. This feature is crucial for ensuring that when a Pod needs to be
replaced—due to reasons like node failure—the new Pod inherits the same identifier and
attaches to the same persistent volume as its predecessor. This mechanism allows stateful
applications to preserve data and state, ensuring continuity and reliability of service, even in
the face of Pod recreation or replacement. [11]

7. DaemonSet

A DaemonSet in Kubernetes is used to ensure that a specific Pod runs on all or a selected
subset of nodes within the cluster. It is particularly useful for deploying system-level services
like logging or monitoring agents that need to operate on every node for comprehensive data
collection and analysis. Like ReplicaSets, DaemonSets are managed through reconciliation
loops, which continuously monitor the cluster to ensure the current state matches the
desired configuration. If a node is added to the cluster, the reconciliation loop automatically
deploys the necessary Pod to that node, and if a node is removed, the Pod is also removed,
maintaining consistent service operation across the cluster. [12]

8. Namespaces

Kubernetes namespaces are a feature that divides a single Kubernetes cluster into multiple
virtual clusters, enabling resource isolation between them. This is particularly useful for
managing different environments or versions of applications within the same physical cluster.
For instance, separate namespaces can be created for different versions of an application,
like "AppA-Namespace" and "AppB-Namespace", to deploy and manage their resources
without interference. This approach ensures that even if the applications are nearly identical
and use the same services or pod configurations, they remain logically isolated.
Namespaces make it possible to test new versions in the same cluster alongside older
versions, using the same resource definitions while preventing conflicts and interference,
effectively offering the benefits of multiple Kubernetes clusters without the need for additional
infrastructure. [13]

9. Service

A Kubernetes Service is a critical component that provides a stable and consistent point of
entry for accessing a set of Pods that offer the same functionality within a cluster. Since
Pods can be moved, recreated, or their IP addresses can change, directly connecting to
them is impractical for clients due to the instability of their locations. A Service solves this
problem by having a stable IP address through which clients can connect, with the Service
then routing requests to the appropriate Pods. This not only ensures a stable endpoint for
client connections but also facilitates simple load balancing by distributing incoming requests
across all Pods evenly, preventing any single Pod from being overloaded while others
remain idle. This mechanism simplifies application maintenance and update processes, as
clients do not need to track changing IP addresses of individual Pods. [14]

21

https://kubernetes.io/es/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/es/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/es/docs/concepts/services-networking/service/

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

10. Job

A Kubernetes Job is designed to execute short-lived, one-off tasks that must be run to
completion, ensuring the task is successfully finished. This is particularly useful for tasks like
database backups, which are not ongoing but need to be executed fully and correctly once
initiated. Jobs are responsible for initiating one or more Pods to perform the task, monitoring
their execution, and, if necessary, restarting Pods to ensure the task reaches successful
completion. Kubernetes will manage these Jobs, automatically retrying failed tasks by
creating new Pods until the job is completed successfully. For tasks that need to be
executed periodically, Kubernetes offers CronJobs, which schedule Jobs to run at specified
intervals. Jobs can vary in their requirements, with some needing just a single Pod to
complete the task, while others may require multiple Pods working in parallel and completing
successfully to consider the job done. [15]

11. ConfigMaps

Configuring apps refers to setting various parameters or options that control the behaviours
of the apps. In Kubernetes, a ConfigMap is nothing more than a key/value pair. A ConfigMap
store’s non-confidential data, meaning no passwords or API keys and are used for:

- Kubernetes ConfigMap environment variables
- Kubernetes command-line arguments
- Configuration files in a volume

By using ConfigMaps and Secrets, you decouple the applications running in your Pods from
their configuration values. This means you can easily update the configuration of your
applications without having to rebuild or redeploy them. [16]

12. Secrets

Secrets are meant to hold sensitive configuration values, such as database passwords, API
keys, and other information that only authorised apps should be able to access.

Secrets can be injected into Pods with the help of environment variables, command-line
arguments, or configuration files included in the volumes attached to those Pods. [17]

2.5.2 Storage provisioning - NFS

The Network File System (NFS) is a mechanism for storing files on a network. It is a
distributed file system that allows users to access files and directories located on remote
computers and treat those files and directories as if they were local. [18][19]

For example, users can use operating system commands to create, remove, read, write, and
set file attributes for remote files and directories.

22

https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/es/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://www.ibm.com/docs/es/i/7.5?topic=security-network-file-system-nfs
https://debian-handbook.info/browse/es-ES/stable/sect.nfs-file-server.html

Why We Need NFS

We need NFS because we have multiple nodes, and the PV (Persistent Volumes) does not
have to be on the same machine as the pods pointing to it. Additionally, NFS provides the
possibility of automatic scaling, which a local PV does not offer, and shared access.

Shared Access: NFS allows multiple pods to read and write to the same filesystem
simultaneously. This is particularly useful for applications that need a common data source
or for sharing files between different components of an application.

Scalability: NFS servers can be scaled to handle increased load by adding more resources
or optimising configurations. This scalability helps in accommodating growing storage
demands without significant changes to the underlying infrastructure.

In the context of Kubernetes, the Network File System (NFS) can be utilised in a more
effective way through the concepts of storage provisioning and StorageClasses. Here’s how
NFS relates to these concepts and why it was our choice for our Kubernetes environment:

Storage Provisioning and NFS

Kubernetes can dynamically provision NFS volumes using an NFS provisioner. The NFS
provisioner runs as a Pod that owns a pool of NFS volumes and handles the creation and
deletion of volumes as needed by the Kubernetes environment. This setup simplifies
managing shared resources in a distributed environment, which is often tedious with
traditional storage solutions. [20]

This nfs provisioner deployment, which manages the automation of creating and deleting
volumes as needed by Kubernetes, can be easily deployed using Helm or kubectl in case

you need to edit some parameters. [21]

StorageClasses and NFS

In Kubernetes, a StorageClass allows administrators to define how a volume should be
provisioned based on the characteristics of the underlying storage. By defining an NFS
StorageClass, you can specify that certain types of workloads should be allocated storage
that is provisioned from an NFS server. This makes it easy to manage and scale storage
independently of Pods and services. [22]

The StorageClass for NFS might look something like this:

apiVersion: storage.k8s.io/v1

23

https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/
https://github.com/kubernetes-sigs/nfs-subdir-external-provisioner
https://github.com/kubernetes-sigs/nfs-subdir-external-provisioner
https://github.com/kubernetes-sigs/nfs-subdir-external-provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

kind: StorageClass
metadata:
name: nfs-negotiator-db

provisioner: fuseim.pri/ifs #Specify the name given to the
provisioner that we previously created

reclaimPolicy: Delete
volumeBindingMode: Immediate

allowVolumeExpansion: false

2.5.3 Helm

Helm?® uses a packaging format called charts. A chart is a collection of files that
describe a related set of Kubernetes resources. A single chart can be used to deploy
something simple, like a Nginx pod, or something complex, like a full web application stack
with HTTP servers, databases, caches, etc.

Charts are created as files arranged in a specific directory tree. They can be packaged into
versioned files for deployment.

A Helm chart is organised as a collection of files within a directory. The name of the directory
is the name of the chart (without version information). Thus, a chart describing WordPress
would be stored in a wordpress/ directory.

Within this directory, Helm expects a structure that matches this:

wordpress/

- Chart.yaml # A YAML file that contains information
about the chart.

- LICENSE # OPTIONAL: A plain text file containing
the chart's license.

- README .md # OPTIONAL: A human-readable README file.

- values.yaml # The default configuration values for
this chart.

- values.schema.json # OPTIONAL: A JSON schema to impose a
structure on the values.yaml file.

- charts/ # A directory containing any charts upon
which this chart depends.
- crds/ # Custom Resource Definitions

23

24

templates/ # A directory of templates that, when
combined with values, will generate valid Kubernetes manifest
files.

templates/NOTES.txt # OPTIONAL: A plain text file containing
brief usage notes.

Helm reserves the use of the directories charts/, crds/, and templates/, and the filenames
listed. Other files will be left as they are.

Helm offers various advantages over Kubernetes like:

25

1.

Simplified Deployment

If for example you need to deploy a WordPress site with a MySQL database, without
Helm, you would need to manually create multiple Kubernetes manifests (YAML files)
for WordPress and MySQL, define their respective Services, configure persistent
volumes, and ensure they connect properly.

With Helm, you can use a single command to install a pre-configured WordPress
chart that includes all these components:

helm install my-wordpress stable/wordpress

Simplified Upgrades

Upgrading applications deployed with Helm is straightforward. When a new version
of a chart is available, you can upgrade your deployment with a single command.
Helm will manage the upgrade process, ensuring that resources are updated
correctly and in the right order:

helm upgrade my-wordpress stable/wordpress

Helm keeps a history of all releases, so if something goes wrong during the upgrade,
you can easily roll back to a previous version with another command:

helm rollback my-wordpress 1

3. Reproducible Builds

Helm charts can be versioned and stored in a chart repository, making it easy to
share them and ensure consistent deployments across different environments. This
versioning allows you to pin a specific version of a chart, ensuring that the same
configuration and application versions are used every time you deploy.

4. Dependency Management

Charts can define dependencies on other charts. For instance, a web application
chart might depend on a database chart. Helm handles the dependency
management automatically, ensuring that all required charts are installed in the
correct order.

2.6 Best Practices for Creating Recipes

The creation of well structured and secure Kubernetes manifests is crucial for
managing and deploying applications effectively in a Kubernetes environment. Here are
some good practices that we have applied while creating our manifests:

Use of Environment Variables

Using environment variables allows you to separate configuration data from the application
code. This means you can change the behaviour of your application without altering the
codebase.

Kubernetes has two different resources for managing data that can be accessed by
applications running in pods. These resources are ConfigMaps and Secrets.

- ConfigMaps

ConfigMaps are used to store non-confidential data that can be consumed by pod
containers or used to set environment variables. They are particularly useful for
keeping your containerized applications portable and configurable without rebuilding
your images.

- Secrets

Secrets are similar to ConfigMaps but are specifically intended for storing sensitive
information such as passwords, OAuth?* tokens, and SSH keys. The data in a Secret
is stored in Base64 encoding, which can provide basic obfuscation but should not be
considered secure on its own—access to Secrets should be tightly controlled.

2 https://auth0.com/es/intro-to-iam/what-is-oauth-2

26

To securely provide Secrets to pods, they should be mounted as volumes. Mounting
Secrets as volumes is generally safer than exposing them as environment variables.
Environment variables can inadvertently be exposed in crash dumps or logs, while
file-based Secrets can utilise filesystem permissions for better access control. This
approach minimises the risk of secret exposure and is a recommended practice over
granting broad RBAC permissions to a pod's service account to access Secrets
directly. To follow the good practices on kubernetes manifests, it is crucial to manage
sensitive information in the correct way, and that means using Secrets instead of
ConfigMaps for storing your most confidential data.

Use of Namespaces

Kubernetes namespaces are a fundamental concept used to organise and segregate cluster
resources within a single Kubernetes cluster. By using namespaces, you can divide cluster
resources between multiple users, applications, or environments.

Namespaces provide the following functionalities:

1. Resource Management: Namespaces help manage resources under a common
naming scheme. This is particularly useful in environments with many users and
teams.

2. Scoping: Namespaces provide a scope for naming resources, allowing you to reuse
names across different namespaces.

3. Access Control: With namespaces, you can implement access controls using
Kubernetes Role-Based Access Control (RBAC) more effectively. [22]

4. Resource Quotas and Limits: Administrators can apply resource quotas to
namespaces, restricting the amount of compute resources (like CPU and memory)
that can be consumed by resources in a specific namespace.

It's important to have in mind that even though the use of Namespaces provides a level of
isolation by segregating resources, they do not offer complete isolation. Network policies and
other security mechanisms should be used to enforce stricter isolation if needed.

Use of StatefulSets, ReplicaSets and Deployments

Using high-level controllers in Kubernetes, such as ReplicaSets, Deployments, and
StatefulSets, instead of directly managing individual Pods, offers several key advantages:

Automated Resilience: Controllers automatically handle the lifecycle of pods, ensuring that
the specified number of pods are always running. They replace failed pods without manual
intervention, enhancing the resilience and availability of applications.

27

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Simplified Scaling: Controllers allow for easy scaling of applications. You can increase or
decrease the number of pods dynamically, without needing to manage each pod individually.

Efficient Updates and Rollbacks: High-level controllers manage the rollout of updates and
can automatically rollback to a previous version if an issue arises during deployment,
ensuring continuous availability and minimising downtime.

Overall, using high-level controllers significantly simplifies the management of Kubernetes
resources, enhances application reliability, and provides robust tools for handling the
deployment and scaling of applications in a cluster.

Automating with Workflows

The use of workflows and CI/CD (Continuous Integration/Continuous Deployment)
processes substantially enhance the effectiveness, reliability, and security of software
development and deployment. [23]

In this project, we have utilised the GitHub Actions platform to achieve these purposes.
Thanks to this, in addition to facilitating testing and deployment of recipes, we have also
been able to implement automatic code quality reviews. These reviews inform us whether
the code we intend to publish on GitHub—and that will be automatically deployed to our
cluster—is truly ready, or if it needs to be revised in any way.

We achieve this using different tools provided by the GitHub Actions platform that would be
explained more in detail in the section 5.4 Automation in a CI/CD environment.

2.7 Extern tools

2.7.1 Required tools and images

This section mentions some of the main tools used to carry out this deployment. While they
are not indispensable, as they can be replaced by other tools performing similar tasks, their
functionality is absolutely necessary in our case because these tools enable us to perform
operations that are crucial for the correct functioning of our deployment. This tools are the
following:

HASHICORP VAULT

HashiCorp Vault is an identity-based secrets and encryption management system®. It
provides encryption services that are gated by authentication and authorization methods to

% https://developer.hashicorp.com/vault/docs/what-is-vault

28

https://www.redhat.com/es/topics/devops/what-is-ci-cd#:~:text=CI%2FCD%20es%20la%20sigla,vida%20de%20desarrollo%20del%20software.
https://developer.hashicorp.com/vault/docs/what-is-vault

ensure secure, auditable and restricted access to secrets.

A secret is anything that you want to tightly control access to, such as tokens, API keys,
passwords, encryption keys or certificates. Vault provides a unified interface to any secret,
while providing tight access control and recording a detailed audit log.

In this project, Vault has been used to generate, sign and store various certificates, providing
us with a secure authentication mechanism. In a distributed and federated environment like
ours, where multiple platforms coexist, this is essential to prevent potential attacks or fraud.

Upon initialization, Vault provides you with an access key that you must use from that point
forward to perform all configuration tasks for Vault and to carry out actions such as certificate
generation and signing. This key ensures that only authorised individuals have access to the
certificates. These features and some more are discussed in greater detail in section 5.1.1
Vault.

ELASTICSEARCH - ELK STACK

“Elasticsearch is a distributed RESTful search and analytics engine capable of addressing
an increasing number of use cases. As the core of the Elastic Stack, it centrally stores your
data for lightning-fast search, refined relevance, and powerful analytics that scale
effortlessly.”

Some of its key features include:

- Indexing and Search: ElasticSearch stores data in indexes and allows for complex
and fast searches on those indexes using a powerful search API.

- Scalability: It is designed to be horizontally scalable, meaning it can handle large
amounts of data distributed across multiple servers.

- Real-Time Analysis: It enables real-time data analysis and aggregations, which is
useful for use cases such as monitoring, log analysis, and time series analysis.

- High Availability: It supports data replication, ensuring high availability and fault
tolerance.

- RESTful API: It provides a RESTful interface for interacting with data, making it easy
to integrate with other systems and applications.

In our application Elasticsearch is used by Molgenis for indexing the data layer and by the
Monitoring service that provides an overview of the status of the different EUCAIM
components. The Monitoring service architecture is composed of 6 components of the
technological stack Elasticsearch-Logstash-Kibana (ELK stack), which are deployed in a

% https://www.elastic.co/es/elasticsearch

29

https://www.elastic.co/es/elasticsearch

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Kubernetes cluster using the operator pattern®’. More information about this deployment can
be found at the section 4.7 Monitoring

MOLGENIS

“MOLGENIS is a modular web application for scientific data.?®”. It has a frontend and a
backend. You can develop on them separately. If you want to develop an API and an App
simultaneously you need to checkout both?.

The MOLGENIS?* application is meant to provide researchers with user-friendly and scalable
software infrastructures to capture, exchange, and exploit the large amounts of data that is
being produced by scientific organisations all around the world.

In this project, we have used both (frontend and backend) Molgenis images to create our
image catalogue, where metadata is stored to provide descriptive information about the
available datasets to users. Both images can be found at: https://hub.docker.com/r/molgenis/

NEGOTIATOR

The Negotiator is another key tool within the core services of EUCAIM. Developed by
BBMRI-ERIC?', the Negotiator provides an efficient communication platform for biobankers
and researchers requesting samples and/or data. It substantially simplifies the
communication steps necessary to obtain information on the availability of relevant
samples/data, especially if researchers need to communicate with multiple candidate
biobanks. In our project it is in charge of allowing EUCAIM registered users to get an
overview of the previously selected datasets. You can find a description of the setup and the
latest versions of the Negotiator at:
https://qgitlab.bbmri-eric.eu/negotiator-deployment/negotiator-deployment-template/-/tree/mai
n

POSTGRESQL

PostgreSQL*, also known as Postgres, is a powerful, open source object-relational
database system that uses and extends the SQL language combined with many features
that safely store and scale the most complicated data workloads.

27 Kubernetes operator pattern: https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
2 https://molgenis.gitbook.io/molgenis

2 https://github.com/molgenis/molgenis

30 https://molgenis.org/

31 https://www.bbmri-eric.eu/

32 https://www.postgresgl.org/about/

30

https://hub.docker.com/r/molgenis/
https://gitlab.bbmri-eric.eu/negotiator-deployment/negotiator-deployment-template/-/tree/main
https://gitlab.bbmri-eric.eu/negotiator-deployment/negotiator-deployment-template/-/tree/main
https://www.postgresql.org/about/
https://www.bbmri-eric.eu/
https://molgenis.org/
https://github.com/molgenis/molgenis
https://molgenis.gitbook.io/molgenis
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

It is a crucial tool in our platform as it is responsible for managing the Negotiator and
Molgenis databases.

The image used in our deployment can be found at:
https://hub.docker.com/r/bithami/postgresal

SAMPLY BEAM

Samply.Beam® is a distributed task broker designed for efficient communication in strict
network environments. It offers commonly used communication patterns, end-to-end
encryption, and digital signatures, along with certificate management and validation, all
accessible via a user-friendly REST API. Besides task/response capabilities, Samply.Beam
supports high-performance applications through encrypted, low-level direct socket
connections.

Despite the obvious difficulties in configuring an environment like ours, combining Vault and
Samply Beam to achieve a federated search environment like the Explorer, we have
installed Samply Beam in our Explorer deployment. This is because it offers some of the
most notable features —end-to-end encryption and signatures, as well as certificate
management and validation— for building a federated environment like the Explorer.

GRAFANA

Grafana® is open-source software licensed under the Apache 2.0 licence, which allows for
the visualisation and formatting of metric data. It enables the creation of dashboards and
graphs from multiple sources, including time series databases such as Graphite, InfluxDB,
and OpenTSDB.

In this work, Grafana has been used to display the metrics of the load test results obtained
through Prometheus.

PROMETHEUS

Prometheus collects and stores its metrics as time series data, meaning that metrics
information is stored with the timestamp at which it was recorded, along with optional
key-value pairs called labels. It is an open-source systems monitoring and alerting toolkit
that was initially developed at SoundCloud. Prometheus is now an independent open-source
project, maintained separately from any company. To emphasise this and clarify the project's
governance structure, Prometheus joined the Cloud Native Computing Foundation in 2016
as the second hosted project, following Kubernetes.

For this project, we have used Prometheus to extract metrics from our Kubernetes cluster
and send them to Grafana for visualisation.

33 https://github.com/samply/beam

% https://grafana.com/

31

https://hub.docker.com/r/bitnami/postgresql
https://github.com/samply/beam

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Backend solutions

OPENSTACK

In this project we used OpenStack as a virtual machine management platform.

OpenStack is a cloud operating system that manages extensive pools of compute, storage,
and networking resources across a datacenter. It uses APIs with common authentication
mechanisms for management and provisioning. Additionally, it offers a dashboard that allows
administrators to control resources and enables users to provision them through a web
interface. Beyond the standard infrastructure-as-a-service capabilities, OpenStack includes
additional components for orchestration, fault management, and service management,
ensuring high availability for user applications®.

Deploy third party services such as Or use built in tools
OO O O O COE
Kubernetes CloudFoundry Terraform OpenStack 5DK Horizon Web Ul

~

Bare Metal Virtual Machines Containers

111l Shared networking and storage resources @

s openstack.

Figure 2. OpenStack schema

% https://www.openstack.org/software/

32

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_pvk8s
https://www.openstack.org/software/

3 Problem Analysis

3.1 Proposed Solution

The proposed solution to achieve the objectives outlined in section 1.2 Objectives
includes the following key aspects:

Firstly, to increase the level of automation in this project, a CI/CD solution has been
integrated using GitHub Actions. This will facilitate the tasks of the developers by providing
automated workflows for building, testing, and deploying the application. With GitHub
Actions, every change in the codebase will trigger a series of automated steps, ensuring that
code quality is maintained and deployments are consistent.

Secondly, by implementing best practices in our deployment processes, we ensure that our
infrastructure is not only reproducible but also secure. When we refer to best practices, we
mean:

Replacing environment variables in the manifests with ConfigMaps or Secrets.

Using Namespaces to ensure organisation and segregate cluster resources.
Replacing Pods with high-level controllers in Kubernetes, such as ReplicaSets,
Deployments, and StatefulSets, to ensure automated resilience, efficient updates and
rollbacks, and simplified scaling.

Apart from this, the aforementioned use of workflows will also substantially enhance the
effectiveness, reliability, and security of software development and deployment.

Lastly, the deployment process has been optimised, ensuring efficient, reliable, and secure
updates to the platform. To achieve this, the architectural solution known as blue-green
deployments has been applied, which allows us to gradually transfer user traffic from a
previous version of an app or microservice to a nearly identical or updated new
release—both of which are running in production.

All these aspects and changes have been introduced in the previous deployment of EUCAIM
and have been transferred to a new production machine.

All the details about the solution's architecture and its implementation are provided in the
following sections. Thank you very much, and | hope you enjoy the reading.

33

3.2. Requirements Specification

Due to the complexity of the platform and the wide range of actions that users can
perform, this section will provide a concise explanation of the most relevant actions users
can undertake. It will also include a brief distinction between the different types of users who
can access the platform and the roles corresponding to each based on their functions.

User Roles

Depending on their position and functionalities within the platform, a user can have the
following different roles:

1. Data Holder*®/Data Provider/Data Controller

EUCAIM Data holders are the entities with the right or ability to make data available,
such as research organisations, clinical centres, and biobanks. They can either set
up a federated node or upload anonymized data to Central Storage, adhering to
EUCAIM’s specifications and data sharing agreements. Data Holders must ensure
data quality, compliance with privacy regulations, and use standard schemas for
interoperability, supported by a Local Data Manager for operational tasks.

2. Software Provider:

A Software Provider in the EUCAIM platform refers to entities such as startups,
enterprises, research institutions, and nonprofits that contribute processing tools,
services, and applications for federated processing or data pre-processing. They
must ensure compliance with technical standards, GDPR, and risk analysis,
providing evidence of adherence to data protection and trustworthy Al guidelines.
Tools must include clear documentation, be compatible with federated data, and
respect privacy, security, and ethical standards. Providers must also comply with
terms related to intellectual property, licensing, and revenue sharing.

Example: A startup offering an Al explainability platform for real-time model analysis,
bias detection, and data validation.

3. Data User-Researcher:

EUCAIM Data User-Researchers are the individuals that explore the public catalogue
of available (meta)data and also can request access to data for processing with
platform tools or their own Al tools. Data access requests must be made under an
approved R&D project or an observational study proposal, both subject to evaluation

* Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the
European Health Data Space COM/2022/197 final

34

by the Access Committee. Data User-Researchers aim to generate new knowledge
in medicine and publish findings, often requiring specialised datasets or tools for
complex analysis. Data Scientists, a specific profile within this group, focus on
developing and testing statistical or machine learning models using specialised data
mining and analysis skills.

Example of a Data User-Researcher:

A researcher leading a project on prostate cancer, aiming to improve treatment
allocation based on baseline MR images, incorporating Al tools for result validation
and clinical application.

4. Research Communities

Research Communities refer to groups or entities with a common research goal,
typically formed through completed, ongoing, or newly emerging projects. They aim
to use EUCAIM’s research environment to continue and expand their initial research
efforts. Such communities, like consortia, must agree to share their collected data
and developed tools with EUCAIM’s Central Repository. This collaboration allows the
research community to remain connected via EUCAIM, furthering their work and
initiating new projects within a secure and interoperable environment. EUCAIM
includes these datasets in its catalogue, facilitating new collaborations with other
connected partners.

Example of Research Communities: Al4HI*” is a European group of researchers,
data scientists, and healthcare professionals focused on applying artificial
intelligence techniques to improve healthcare outcomes. As a Research Community
within EUCAIM, Al4HI contributes entire finished projects, such as PRIMAGE®, that
involve developing Al algorithms for medical image analysis, clinical decision support
systems, and predictive models for two types of paediatric cancer diagnosis,
prognosis, and therapies follow-up. Thus, the entire finished project could be
transferred to the Central Hub, so that the data can still be used and they can further
contribute to the project. They share their expertise, data, and tools with other
members of the EUCAIM federation, promoting collaboration and innovation in the
field of Al-driven healthcare solutions through new research projects, engaging new
partnerships.

Management Profiles

In addition to user roles, there are two management profiles that will interact with the
platform, described as follows:

1. EUCAIM Platform Manager:

The EUCAIM Platform Manager is a technical expert or team responsible for
operating the core services of the EUCAIM platform. This role includes managing

37 https://ai4hi.net/
3 https://www.primageproject.eu/

35

and maintaining the platform's technical infrastructure, such as central storage,
servers, databases, and other resources. Key responsibilities include:

User Management: Managing user accounts and access permissions.

Application Deployment: Deploying applications and services, uploading new
applications to the marketplace (provided by Software Providers), and ensuring their
proper integration.

Federated Processing Orchestration: Collaborating with Data Holders and
Software Providers to integrate metadata, tools, and services, and ensuring that Data
User-Researchers' queries are properly executed.

Support and Documentation: Providing user support, responding to inquiries,
providing documentation, and troubleshooting platform issues.

Example of an EUCAIM Platform Manager:

A system administrator employed by the institution operating the central storage,
possessing technical and project management skills, along with knowledge of data
management principles such as data storage, data integration, and data governance.
They understand data privacy and security regulations and have a basic
understanding of machine learning and artificial intelligence, including federated
learning principles. This enables them to support the orchestration of federated
learning processes.

2. Governing Body:

The Governing Body is a decision-making board within EUCAIM that plays a crucial
role in the coordination, governance, and operation of the federated infrastructure.
The composition and decision-making processes of the Governing Bodies may be
subject to modifications throughout the project's lifespan.

Example of a Governing Body: EUCAIM Access Committee, this committee is
responsible for accepting or rejecting data access requests from Data
Users-Researchers. For instance, when a request to access specific datasets from
the Atlas of Cancer Images is submitted, the Access Committee receives an email
notification via the Negotiator service. The committee then follows the established
procedure to evaluate the request, based on the type of agreement signed with the
Data Holder organisation. Any rejection by the Access Committee is thoroughly
justified in writing, following objective criteria defined in its internal procedures.

3.2.1 Functional Requirements

36

Within the functional requirements, we find the set of use cases that describe all the
interactions that users will have with the software. In these use cases, we identify all the
services that the system will need to provide once completed. As described in the previous
section, our system comprises a wide variety of users. The following sections explain the
use cases for Data User-Researchers and Access Committee users in the central core
services of EUCAIM platform.

Exploration of datasets from the Public Catalogue
Data User-Researcher
Preconditions:

- Valid user account, registered and validated through the authentication and
authorization service (AAl).
- Metadata datasets must have been uploaded by Data Holders onto the Public

Catalogue

Postconditions:

- Datasets meeting the specified criteria are successfully identified by using basic
search and filtering options.
- The available metadata from the exposed datasets can be visualised.

Use Case example:

Alice, a researcher from a research group, aims to prepare a research project based on
medical images of prostate cancer. As an anonymous user of the EUCAIM platform, she
explores diverse metadata datasets provided by federated Data Holders to perform an initial
evaluation of their relevance and suitability for her research.

1. Exploration:
o Alice navigates through the Public Catalogue within the EUCAIM platform,
using basic search and filtering options.
o She identifies datasets that align with her research interests, such as datasets
containing breast cancer cases where the cohort's age is between 40 and 50.
o She discovers that the INCISIVE* and CHAIMELEON*® datasets satisfy her
criteria.
2. Metadata and Access Conditions:
o Alice views the access conditions for each dataset offered by the Data
Holders.
3. Registration for Full Access:

% https://incisive-project.eu/
40 https://chaimeleon.eu/

37

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

o To view the complete metadata datasets available in the user’s catalogue,
Alice registers on the platform via the Life Science AAI and accepts the Terms
of Usage and Privacy.

This process allows Alice to assess the available datasets and determine their potential use
for her research project, ensuring efficient and streamlined access to relevant data. The
visual process of this action can be seen in Figure 3

® Data
User-Researcher
| l Request data
Login
Request
EduGain IdP —
LS AAI Accept /Deny Molgenis frontend
VO Group Entitlements

Membership f
verification Data

Manogement

Postgres DB —

—— Molgenis Backend

Elasticsearch

Figure 3. Exploration of datasets from the Public Catalogue.

Federated search of aggregated data in the datasets

Data User-Researcher

Preconditions:
- Valid user account, registered and validated through the authentication and

authorization service (AAl).

- Federated nodes, including the central repository, are interconnected and functional
through the mediator component.

Postconditions:

- Federated query is successfully performed over multiple sources.

38

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_pvk8s
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_pvk8s

- Aggregated results and a downloadable report are obtained based on the
hyperontology.

- Datasets meeting the specified criteria are successfully identified by using advanced
search and filtering options, through federated queries.

Use Case example:

After signing up on the EUCAIM platform, Alice logs into the EUCAIM Dashboard
(https://explorer.eucaim.cancerimage.eu/) to explore the complete metadata catalogue and
perform an advanced search using available filters like cancer type, imaging modality, and
annotation availability. She executes a federated query over various nodes, including the
central repository, based on hyperontology concepts. This detailed search allows her to
identify datasets and the number of cases that meet her criteria. For instance, Alice
searches for breast cancer datasets with a specific TNM stage and MR series from a specific
manufacturer, discovering 123 cases in the INCISIVE dataset and 400 cases in the
CHAIMELEON dataset. She downloads a report of these numeric aggregated results to
attach to her research proposal for the EUCAIM access board, which will include her study's
objectives and methodology. The schema of this flow can be seen in Figure 4:

Dot A
User-Researcher

| Search oggregated data

Login fequest
Edll'::jam LS AAl Accept /Deny Lens explorer
Entitie t
ntitlements Data
VO Group
Membership]
verification
spot Data Holder
searching Endpoint
I Auth keys]
J_I Mediator
Beam Proxy (focus)
Vault —
*]
r
Broker Beam Proay
Data holder ¥ Core services CHAIELEON
{Dota holder)

Figure 4. Federated search of aggregated data in the datasets schema.

39

https://explorer.eucaim.cancerimage.eu/
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_pvk8s
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_pvk8s

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Request access to the datasets from the User’s Catalogue

Data User-Researcher + Access Committee
Preconditions:

- Login is performed using the AAI (Authentication and Authorization Infrastructure).

- Datasets meeting some specified criteria have already been successfully identified.

- A research project approved by an Ethical Committee for submission to the Access
Committee, under which the requested data are to be used.

Postconditions:

- The access request application has been submitted correctly through to the
Negotiator.

- The Access Committee reviews the access request and makes a decision.

- Once the access request is approved, access to the federated data is granted to the
user of the data.

Use Case example:

In the EUCAIM platform, Alice and Leo, both Data Users-Researchers (with Leo having a
Data Scientist profile), need access to federated data for their research projects. They
identify relevant datasets through the user catalogue and federated queries. They then use
the Negotiator tool to submit access requests to the Access Committee. The committee
reviews these requests for compliance with the project's purpose, data privacy regulations,
and policies. Sometimes, the Data Holder must also approve the request. Upon approval,
Alice and Leo gain access to the federated data, enabling them to enhance their research
with diverse datasets.

40

‘ User-Researcher Access Committee
Accrss Request Follow Lig Diata Access Request Evaluation

EduGain I1dP
VO Group . .
Membership ‘export m{:’f:rom Cat::h'ngue
e under user “directory
verification

Sapi

Figure 5. Request access to the datasets from the User’s Catalogue.

Get an overview of the datasets to which they have been granted access

Access Committee

Preconditions:

- Login is performed using the AAI (Authentication and Authorization Infrastructure).
- Access request applications within the Negotiator have already been evaluated and
successfully granted.

Postconditions:

- Metadata and details of datasets granted access can be successfully reviewed, as
well as the information on any restrictions or conditions applicable to the datasets.

- Informed decisions regarding the selection and use of the available data resources
can be performed by the data user.

Use Case example:

41

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_pvk8s

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Leo, a Data Scientist and Data User-Researcher on the EUCAIM platform, aims to perform
image analysis and processing. She uses advanced search and filtering in the user’s
catalogue to find datasets that meet her research objectives. After gaining access approval,
Leo explores the datasets in the User's Area, selects the necessary subsets, and uses the
Processing Services to develop models, conduct detailed analysis, and obtain valuable
insights for her research.

User-Researcher
. Get an overview

Megotiator Postgres DB
Japi

Figure 6. Get an overview of the datasets to which they have been granted access

Evaluate and accept/reject datasets from Data Holders
Data User-Researcher + Access Committee

Preconditions:

- An application has been made by a Data Holder

Postconditions:

- The Access Committee accepts/rejects the application.

42

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_pvk8s

- If accepted, new data is incorporated into the EUCAIM federation.

Use Case example:

Raul sends an application for providing datasets to be incorporated within EUCAIM. The AC
makes a decision of acceptance or rejection, supported by the internal governance bodies
on ethics and legal compliance. Raul receives a reply as soon as possible.

Evaluate and accept/reject a data access request application

Data User-Researcher + Access Committee

Preconditions:

- An application has been made by a Data User-Researcher.

Postconditions:

- The Access Committee accepts/rejects the application.
- If accepted, a research project is carried out with data available from EUCAIM.

Use Case example:

Leo (a Data Scientist) or Alice (a Researcher) identifies specific datasets needed for their
research project using the Public Catalogue of the Atlas of Cancer Images. They log into the
User's Area, review the instructions for the required documents and the response time from
the Access Committee (AC). After preparing and submitting the necessary documentation,
the AC receives an email notification via the Negotiator service. The AC then follows an
established procedure to evaluate the request. If the request is rejected, the AC provides a
written justification based on objective criteria from their internal procedures. The AC
members are appointed by the EUCAIM Management Board for set terms and are
periodically renewed.

43

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Imaging Repositary Access Committes Access Committes Parmission
- o | Lire) TNE =i o] =} .
Researche Delegated Representative Sacretariat Body Manager
|]
. Purpose
Subrmit !)
{Scientific /
inmovation)
u |
Mark a5 Checking and ethical
Avaiiabifity Approve evaluation
AMork os
= , Avaifable
; Access
2 .
= Indicate Access canract
% Canditions sgiature
Accept Access =
Canditiomns Sel mocess permission
in node F LS-AAT
Sign Access ode /L3
Caicliticrs Grant Access o
rEsouros

Figure 7. Evaluate and accept/reject a data access request application

3.2.2 Non-functional Requirements

3.2.2.1 Security
Authentication and Authorization

In our case, both user authentication and authorization for our platform are managed by
LS-AAl, an Authentication and Authorization Infrastructure (AAl) that allows developers to
largely delegate the tasks associated with ensuring authentication and authorization.
Detailed configuration of this tool in our environment can be found in section 3.2.2.1
Security.

In addition to the necessary authentication and authorization of platform users, it is also
crucial to authenticate and authorise data providers. Vault handles this process. By having
the certificates of other centres signed within it, Vault can verify whether the hosts attempting
to access our services are legitimate. This ensures that all nodes in our network of data
holders are who they claim to be, thereby preventing potential attacks.

Monitoring

The Monitoring EUCAIM service provides an overview of the status of the different EUCAIM
components by making requests to the associated web services at certain periods of time. In
addition to this, the service is also capable of sending notifications to the person in charge of

44

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_pvk8s

a EUCAIM component when one of the predefined rules is fulfilled. This service is explained
in more detail at 4.7 Monitoring

Apart from the Monitoring service, each of the EUCAIM core services has its own volume
where logs are stored. These logs enable audits to be conducted as needed to ensure
compliance with security policies and to detect potential incidents.

3.2.2.2 Performance
Scalability

Although our system resources do not scale automatically, which could be an improvement
to consider for future versions of the infrastructure, as seen in the load tests in section 6.1
Load Testing of Services, the computing capacity of the application meets the estimated
load, and if exceeded, it can be easily scaled horizontally by adding new replicas to the
Kubernetes deployment.

Response time

The system must respond within an appropriate time frame for usability. This feature is
tested in 6.1 Load Testing of Services.

3.2.2.3 Availability
High Availability*' and Resilience

Our infrastructure relies on the virtual machines where our Kubernetes nodes are running.
These Kubernetes nodes consist of 1 frontend node and 2 working nodes. While a failure in
any of these virtual machines or the physical node hosting them would result in a connection
loss due to the centralised architecture, it would not be costly to restart our infrastructure on
any other physical node or cloud alternatives such as AWS*? or Azure®.

For these reasons, a deployment test on AKS Azure Kubernetes Services is proposed for
future work.

3.2.2.4 Usability

User Interface

41 hitps://www.redhat.com/es/topics/linux/what-is-high-availability
42 https://aws.amazon.com/es/

4 https://azure.microsoft.com/es-es

45

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

The dashboard interface is designed to be as intuitive as possible, allowing users to navigate
and find the information they need quickly. The interfaces of the other services are still being
improved for upcoming project milestones.

Key usability aspects such as clearer feedback and greater customization options are also
being worked on.

Documentation and Support

The platform is compiling a substantial amount of documentation at each milestone,
explaining the functioning of each component in detail. Additionally, each participating
association or company offers constant support for their respective tools.

3.2.2.5 Interoperability
Compatibility

This platform is highly compatible. As can be seen in its composition, it comprises a wide
variety of applications and technologies that integrate efficiently and function together
seamlessly.

The platform's metadata must follow the health specification of DCAT-AP* (Data Catalog
Vocabulary Application Profile for data portals in Europe) based on the W3C Data Catalog
Vocabulary*® (DCAT) standard. DCAT-AP is designed to facilitate the interoperability of data
catalogues published on the web, particularly in the context of open data portals in Europe
and provides guidelines and standards to ensure that data catalogues from different
organisations and countries can be easily discovered, accessed, and used. part from this,
the platform's data must adhere to the project's hyper-ontology*®, which serves as an
advanced and organised structure that integrates and manages large volumes of data
coherently and efficiently, thus facilitating the integration of data from multiple sources and
the interoperability of both data and applications from different providers and disciplines
through the use of common standards and protocols.

In addition to these aspects, the EUCAIM platform facilitates interoperability between various
research infrastructures and medical data across Europe. Its modular design allows the
incorporation of new systems and technologies without affecting the platform's stability or
performance, ensuring continuous evolution and adaptation to the changing needs of
research.

44

https://datos.gob.es/es/documentacion/dcat-ap-perfil-de-aplicacion-de-dcat-para-portales-open-data-e
uropeos

 https://www.w3.0rg/TR/vocab-dcat-2/

46 EUCAIM's Hyper-Ontology_V1.0 (zenodo.org)

46

https://zenodo.org/records/12583826

Integration

Integration is another strong point of EUCAIM. Its infrastructure allows researchers to access
a vast amount of information in a coherent and unified manner. This integration is achieved
through open standards and common protocols, ensuring that data and applications from
different providers and disciplines can interoperate smoothly.

3.2.2.6 Maintainability
Modularity

Thanks to the modular architecture (implemented with Kubernetes) of our platform and the
continuous integration and delivery (CI/CD) pipelines, we can update and improve individual
components without affecting the overall functioning of the platform, thereby facilitating the
implementation of new features and problem resolution.

Documentation

Throughout this work, various aspects of the functioning and composition of this
infrastructure are explained. Additionally, throughout the development of this project, each of
the applications that compose it and each of the functionalities have been thoroughly
documented, allowing future developers and users to interact with the platform more easily
and effectively.

3.2.2.7 Legal and Regulatory
Compliance with Regulations and Data Privacy

As mentioned in section 2.3 Medical Data Situation in Europe, this infrastructure is required
to comply with essential data protection requirements within the European community.

47

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

4 Solution Design

4.1 General Architecture

The general architecture of EUCAIM consists of the following core services:

e Dashboard

e Catalogue

e Federated Search
e Negotiator

e Monitoring

Although each of these services is accessible from its own URL, the main access point to
the platform is the Dashboard (https://catalogue.eucaim.cancerimage.eu/#/).

EUCAIM Platform Central Storage

Core Services —>
Data User ’

Federated node

.

Federated node

2%% L[

1
l
|
l
|
|

6
T
s —4

User Workspace

Figure 8. EUCAIM Core Services Architecture

To be able to perform tasks on the platform, users must be registered, for which they will
need to authenticate via the Life Science Login (LS LOGIN). The Life Science Login enables
researchers to use their home organisation credentials or community or other identities (e.g.,
Google, LinkedIn, LS ID) to sign in and access the data and services they need. It also
allows service providers (both in academia and industry) to control and manage access
rights of their users and create different access levels for research groups or international
projects.

48

https://catalogue.eucaim.cancerimage.eu/#/
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_pvk8s

Apart from this, it is important to note technical requirements for integration into the
federated infrastructure rely on the model of tiers:

Tier 1: Compliance with the metadata model for the datasets.

Tier 2: Direct (through adoption) or indirect (through a mediator component) compliance with
the data model for searching purposes.

Tier 3: Direct (through adoption) or indirect (through a mediator component) compliance with
the data model for processing purposes.

Figure 9 shows the diagram of the general architecture as well as the interactions between
each of its components.

LS-Aal —
Core services
| User access
1 1
Federated
Dazhboard Catalogue search Megotiator
: o
Federated FAIR Data Point Query Materializator :
Made harvester Mediator E
Local Se:::llng Local Access I
Catalogue Seryice Service i
| ; | 4
Local
Local Data Processing
Environment

Figure 9. EUCAIM Core Services detailed schema

If we analyse the architecture in greater detail, it can be observed in Figure 10 that each of
these components is composed of two simultaneous deployments. This technique or
application release model is known as Blue-Green Deployment and allows us to gradually
transfer user traffic from a previous version of an app or microservice to a nearly identical or
an updated new release—both of which are running in production. The old version can be
referred to as the blue environment, while the new version can be known as the green
environment. So, whenever we have a new version of any service we wish to deploy, we
simply need to scale down the old deployment and add the necessary replicas to the
deployment that contains the new version.

49

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_pvk8s

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Once production traffic is fully transferred from blue to green, the blue environment can
stand by in case of a rollback, or be removed from production and updated to become the
template upon which the next update is made. [24]

Blue

—— Blue pod
deployment
User —, Ingress | ; PVC / PV
Controller Service < > /
Green
deployment

Staled to 0

Figure 10. Green-Blue Deployment

4.2 Security Model

This section briefly describes how we handle the login process on our platform.
EUCAIM services have public (anonymous) and restricted (requiring authorisation) services.

Public services can be accessed without an account. Access to restricted services requires
valid and duly authorised credentials.

User authentication and authorization are two key aspects when it comes to accessing
sensitive data. In EUCAIM, these two aspects are managed by the LS AAI endpoint. LS-AAl
is the commonly agreed AAI (Authorization and Authentication Infrastructure) framework for
Life Sciences Research Infrastructures. It relies on the AARC blueprint and supports the
eduGAIN Federation (which serves most academic and research organisations in Europe),
as well as other public Identity Providers. Authentication is performed through membership
in the EUCAIM VO Group®'.

As mentioned in the previous paragraph, a EUCAIM user will need to create a LS-AAl
account and to request membership to the EUCAIM group. This process has to be
performed only once and can be initiated through the EUCAIM Platform Dashboard
(https://dashboard.eucaim.cancerimage.eu).

50

https://www.redhat.com/en/topics/devops/what-is-blue-green-deployment
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_pvk8s
https://signup.aai.lifescience-ri.eu/fed/registrar/?vo=lifescience&group=communities_and_projects:EUCAIM

Researcher

Authentication

EduGain IdP

Service X

VO Group
Membership
verification

Figure 11. Security Model Schema

The Dashboard and the Catalogue allows anonymous access. These services provide
access to general information, onboarding processes and aggregated data, and for this
reason, access requires authentication and authorization.

As shown in Figure 11, each service interacts with the LS-AAI endpoint which delegates the
authentication to the institutional IdPs. Along with the acceptance of an authentication
request, the LS-AAI service performs the validation of the membership of the users to the
EUCAIM VO Group). The LS-AAl service also returns the Entitlements (additional
authorisation attributes) of the user including the VO groups membership and roles, which
are used in the authorisation process by the Service.

Services in the development platform are authenticated through the same services to
facilitate the roll-out of services into production. Figures 12 and 13 shows the management
dashboard for the EUCAIM VO Group and the EUCAIM core services.

51

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_pvk8s
https://docs.google.com/document/d/1X8SIvx1ml0vjWTw4V2iKa_kkc6ZxMNdVvF1IkWcsRYY/edit#fig_lsaai_console

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Home
o -
Access management
Life Science Community EUCA|M #23560 V. |
communities_and_projects:EUC UUID: f9f493b4-1145-48f8-9eb1-682b4f51bdc2
AIM Group, Organization: Life Science Community, Description: EUCAIM
N This group is a subgroup of communities_and_projects
Overview
Members
Subgroups

Resources
Applications
Attributes

Statistics
Advanced settings > Members Subgroups Resources Applications
@B Facilities management
K My profile
E “
Attributes

Advanced settings >

Statistics

Main
Home

R it N
i My services
My requests

. Q Expression to find
Services

My services
Identifier Name Description ClientID/EntitylD Environment SAML/0IDC

New service

This is the service of the
Cancer Image Europe
Initiative, which provides a
robust, trustworthy platform
3950 EUCAIM Dashboard for r.esearchers, clinicians, 1f4a113a-1cbe-427b-8d3c- Production OIDC
and innovators to access ¢2820ec7d08a
diverse cancer images,
enabling the benchmarking,
testing, and piloting of Al-
driven technologies.
Service Description as it will
be displayed to end users
This is the catalogue of data
sets for the Cancer Image
Europe Initiative, which
EUCAIM Public provides a platform for 9a2a775¢-5¢1d-43e6-a59b-)
3951 researchers, clinicians, and Production OIDC
Catalogue . 5060a0918a0c
innovators to browse, explore
and request access to diverse
cancer images, enabling the

Figures 12 and 13. Snapshot of the management console of the LS AAl: VO-management
panel®® (up) and service management section* (down)

48 EUCAIM VO management: h

49 EUCAIM Services management page in LS-AAI:
https://services.aai.lifescience-ri. I th/faciliti

52

https://docs.google.com/document/d/1X8SIvx1ml0vjWTw4V2iKa_kkc6ZxMNdVvF1IkWcsRYY/edit#figur_lsaai_console
https://services.aai.lifescience-ri.eu/spreg/auth/facilities/myServices
https://perun.aai.lifescience-ri.eu/organizations/3345/groups/23560

4.3 Dashboard

As previously mentioned, Dashboard serves as the main entry point to the EUCAIM
environment. Figure 14 illustrates the schema of the Dashboard components, which is
comprised of four main components:

- Persistent Volumes (PVs): Two PVs are utilised for the application and database
files.

- A MongoDB database operates within a deployment, persisting database files via a
Persistent Volume Claim (PVC). It is internally accessible through a service, which is
used by the Dashboard application.

- Node.js Server: A Node.js server runs in a deployment, mounting the dashboard
application via a PVC and is exposed through the dashb-node-service.

- Ingress Controller: An ingress controller exposes the dashboard service at the root of
the dashboard.* DNS.

It is also important to mention that the kube-root-ca.crt ConfigMap is used to store the
Kubernetes root Certificate Authority (CA) certificate. This certificate is essential for various
internal communications within the Kubernetes cluster. Specifically, it allows Kubernetes
components and applications running in the cluster to verify the authenticity of the
Kubernetes API server when using internal endpoints such as the internal service IP or
Kubernetes service names.

These components collectively ensure the functionality and accessibility of the EUCAIM
Dashboard. The templates for a complete dashboard deployment can be found on GitHub®.

%0 https://github.com/EUCAIM/k8s-deployments/tree/main/dashboard

53

https://github.com/EUCAIM/k8s-deployments/tree/main/dashboard

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

https:fdashboard eucaimcancerimage.eu

dasb-node-
service
B0A0 /3001 27017
BOa0 27017

eucaim- eucaim-
dashboaard dashboard

node-vol-pyve

SlorageClass: StorageClass:
nis-node nfs-dashb-mongo
node-vol ey
mongo-vol
fmntinfs_shareZimockup/node Imntinfs_share2/mockup/dashboardmongs

. CaonfighMap . Ingress P . Service

Deployment Pod . PvC

Figure 14. Dashboard architecture

The previous components have been listed following the recommended deployment order.
To customise the deployment, the following changes should be applied:

- Change the hostname in the root-path-redirect ingress.
- Change the PV NFS endpoints in the node-vol and dashb-mongo-vol PVs

- The configuration of the endpoints should be provided in a file named settings.json
and the configuration of the AAI should be changed in the code (client/main.jsx,
structure LSConfig). The package should be compiled and uploaded into the
Dockerfile of the container images

The provisioning of a certificate for the domain where the service will be exposed is
automatically created through an annotation in the ingress controller. This annotation triggers
the creation and fetching of a certificate for the domain through Let’s encrypt service, which
is stored in a secret Kubernetes object.

4.4 Catalogue

54

The Molgenis catalogue stores the metadata, offering the researchers descriptive

information about the available datasets. The manifests that were used for the deployment of
the catalogue could be also find in GitHub®'.

The architecture of the solution could be found in figure 15 and figure 16. This deployment
consists of four elements:

1.

Molgenis deployment: This deployment is bounded to two ConfigMaps that
configure the service and two Persistent Volumes (PV) where we store logs from the
application (audit PV) and the backups and the necessary files for running the
application backend (app-data PV).

Frontend deployment: The frontend deployment runs the molgenis-frontend image.
This frontend is accessible via web at the url
https://catalogue.eucaim.cancerimage.eu/ thanks to the Ingress attached to it. It also
has a persistent volume bounded where are stored the necessary files for running
the Molgenis user interface.

3. Postgres database: A database, where the catalogue metadata is stored. The
Postgres database information is stored in the postgres-vol PV.

4. Elasticsearch: Molgenis uses Elasticsearch for indexing the data layer. This
deployment also comes with its own persistent volume, allowing elasticsearch to
keep the data.

ConfigMaps

As can be seen in Figure 16, the architecture of the federated search contains 5 distinct
ConfigMaps. Each of these ConfigMaps has been designed with the following purposes:

ConfigMap backend: Configures an Nginx server to act as a reverse proxy and
manage DNS resolutions within the cluster.

ConfigMap nginxconf: Contains the main settings for an Nginx server, including
worker processes and logging configurations.

ConfigMap tomcat-webxml: Sets up web application parameters for Tomcat,
focusing on file upload configurations and application metadata.

ConfigMap tomcat-serverxml: Provides detailed server settings for Tomcat,
focusing on HTTP connector configurations and user authentication.

ConfigMap Itsconf: Manages URL rewrites and redirects in Nginx to optimise
content delivery and application functionality.

51 https://github.com/EUCAIM/k8s-deployments/tree/main/Molgenis

55

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#fig_molgenis_k8sa
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#fig_molgenis_k8sb
https://catalogue.eucaim.cancerimage.eu/
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#fig_molgenis_k8sb
https://github.com/EUCAIM/k8s-deployments/tree/main/Molgenis

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

minic postares elasticsearch

SO0 G432 G601 9200

kibana-

rrinia postgres kibara alasticsearch dachboard

kiby

SlorageCiass: nls-minic SlorageClass: nls-poshyres SlorageCiass: nis-e5 Storaget
mirio- kibana-
vl postgres-vol es-yol ol
Jminbinfs_shareimotgeniaiminic /mntnfs_share/molgenis/posigres Imint'nfs_shara/molgenisielasticesarch fmntinfs_share/molkgy
. ConfigMap . Ingress P . Servica
Deployment Pad . PVC

Figure 15. Deployment schema of the postgres and elasticsearch deployments in the
catalogue

56

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_molgenis_k8sa

https:fcatalogue eucaim.cancernimage.eu =

Cancernmage-

frontend
INgress

BOAO

fromband port 228096 / 3001
a080 frontand

molaenis &0/8000

audit-log

app-data frontend- | (etcinginx/proxy.dibackend.cor

fetc/mginx/nginx. conf
vol fete/nginx/prosxy.dilts.conf
fhome/molgenisidata (home/malgenis/audit
StorageClass: nfs-frontend

SlorageClass: StorageClass:
nfs-molgenis-data nfs-malgenis-audit

. ConfigMap . Ingress Py . Service

Deployment Paod . PVC

Figure 16. Deployment schema of the Molgenis backend and frontend deployments.

Each deployment uses a service to make the services accessible and discoverable. Only the
frontend service is made available to outside of the platform through an ingress controller.
The catalogue application is available in the repository
https://qgitlab.com/radiology/infrastructure/projects/catalogue/eucaim-molgenis-a

4.5 Explorer

The explorer, also known as federated search, is responsible for obtaining and
displaying the datasets and the number of subjects that fulfil a specific filtering criteria
defined by the user. The software is available in https://github.com/samply/beam.

The architecture of the federated search is composed of six different elements that allows it
to manage the connections between the different data holders.

1. Lens: Lens is responsible for providing the graphical interface to the user, allowing
them to interact with the explorer in an efficient way. This deployment is linked to an
ingress that makes it accessible at the url: https://explorer.eucaim.cancerimage.eu/

57

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_molgenis_k8sb
https://gitlab.com/radiology/infrastructure/projects/catalogue/eucaim-molgenis-app
https://github.com/samply/beam
https://explorer.eucaim.cancerimage.eu/

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

2. Spot: Spot is the backend service of the federated search application and is
responsible for making the calls to the proxy for retrieving the data that the user
specified.

3. Beam-Proxy: The Beam-Proxy is responsible for connecting the application service
to the broker, thereby allowing the application to access data from other projects.

4. Broker: The Broker is in charge of linking all the projects together by managing the
requests from the proxies (each project has its own proxy).

5. Vault: A Vault meant to store and protect the access to tokens, passwords and
certificates. Vault services can be accessed through the Vault APl and we can also
use the vault for auditing due to it keeps a log of the access to secrets, allowing
security administrators to track who accessed which secrets and when. Detailed
Explanation in Section 5.1.1 Vault

6. Oauth 2.0 Proxy: This Oauth2 proxy acts as a reverse proxy and authentication
layer. It allows us to access the application via LifeScience AAI authentication without
having to implement a login application.

Figure 17 shows the deployment at the central service and Figure 18 shows the deployment
at the data holders, as well as the interaction among the components. As can be seen in
Figure 18, each data holder must have a beam proxy service deployed for connecting to the
beambroker of the central node, and a Focus service that acts as an intermediary with the
particular data service that each data holder has. To facilitate the understandability of both
figures, we have not included the pod objects associated with the deployments.

58

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#fig_lens
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#fig_fs_dholder
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#fig_fs_dholder

hitps:/fexplorer.eucaim.cancerimage. eu

broker-ingress

4160

beam-proxy-
deployment

B a0 BOBD a0s0 B0an agan BOB1 a0an 4180
lens- spot- beam-proxy- broker- oauth2-proxy-de
deployment deployment SENVICE deployment ployment

Storagellass: nis-vaull-audil

az00

federated-search-
vault-audit-py

vault-0

faderated-search-
vault-data-py

StorageClass: nfs-vault-data

. ConfighMap . Ingress Py . Service

Deployment Pod . PWC

Figure 17. Deployment schema of the federated search at the core services level

You can find the manifests and some more information about the deployment of this service
at: https://qgithub.com/EUCAIM/k8s-deployments/tree/main/federated-search/eucaim.

59

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_lens
https://github.com/EUCAIM/k8s-deployments/tree/main/federated-search/eucaim

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Data holder X Data holder Y

bearn- barm-pro
proey-dep wy-deploy

Legrmaznt ment

L.
nnnn
.

beam-pri
wy-deploy
ment

&_

Central

lens-depl spot-depl
ymerit nymEnt broker-de n Dde
ployrment
oauth-pr
axy-depla
yment

vault-0

/

Figure 18. Deployment schema of the federated search including the interactions with the
data holders

As in the previous core services, a Kubernetes service is created to provide a persistent
endpoint for lens, spot, beam-proxy, broker-service and vault. The application does not need
persistence except for the case of the access credentials, stored in Vault.

The authentication and authorisation is provided by the OAuth2 proxy ingress service and an
OAuth2 configuration in a secret, both available in the GitHub Repository®2. For the
deployment, the following attributes should be updated:

- OAuth2 ingress: the attribute host should include the DNS of the host for
discriminating Federated Search requests (explorer.eucaim.cancerimage.eu in the
case of EUCAIM production service.

- OAuth2 proxy deployment: The following arguments should be checked and updated:

- --redirect-url=https://explorer.eucaim.cancerimage.eu/oauth2/callback

- --oidc-issuer-url=https://proxy.aai.lifescience-ri.eu
- --scope="openid email profile eduperson_entitlement"

- --whitelist-domain=explorer.eucaim.cancerimage.eu
- OAuth2 secret: Client ID and Secret access key from the LS-AAIl console.

%2 hitps://aithub.com/EUCAIM/k8s-deployments/tree/main/federated-search im

60

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_fs_dholder
https://explorer.eucaim.cancerimage.eu/oauth2/callback
https://proxy.aai.lifescience-ri.eu
https://github.com/EUCAIM/k8s-deployments/tree/main/federated-search/eucaim

4.6 Negotiator

The negotiator component deployment manifests are available in GitHub®. It
comprises three main services that implement the Ul, the backend and the database.
Although the Ul is the only service that is directly accessible from users, the backend
exposes the API to the web browser application in the /api path. Therefore, the negotiator
application has two ingress services that expose the frontend and backend deployments. A
third deployment manages a postgres database that is accessible only through the internal
network. The persistence of the applications is fully managed through the database, that
includes the Ul forms. The persistence is provided by a PVC mounting a dedicated NFS PV
Volume. Figure 19 describes the names and interactions of the components.

—= https.negotiator eucaim cancerimage eu |: https:fnegotiator.eucaim.cancerimage.euapi

negotiator-
frontend-ingress

negaotiator-v3-db-

negatiator-v3

-service

negotiator- ingress

SErvice

Montend " fromiend %0 negotiator-v3 —— A e
5432
fbitnami/postgresgl
Deploymant . P ShorageChass:
iFs-rusgotislor-db 16909
Pod =

negotiator-v3-db

negotiator-db-val negotiator-v3- db

- FI WC

. Service . Ingrass

fmntinfs_sharemagotiatonids

Figure 19. Schema of Kubernetes manifests for the deployment of the Negotiator

The deployment should first create the PV and the PVC, and then deploy the database, the
backend and the frontend UlI.

The customisation of the deployment of the negotiator implies the following steps:
- Update the IP of the NFS service and the location of the NFS folder.

- Update the LS-AAIl details in the SPRING_* in the backend and the Molgenis
catalogue URL.

- Update the LS-AAIl configuration in the frontend (AUTH_URL, CLIENT_ID and
REDIRECT_URI).

%3 https://github.com/EUCAIM/k8s-deployments/tree/main/negotiator_v3

61

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#fig_k8s_negotiator
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator
https://github.com/EUCAIM/k8s-deployments/tree/main/negotiator_v3

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Update the hostname attributes in the Ingress objects.

The SSL certificate is automatically created by Kubernetes if the Let’s encrypt service
is installed along with the provisioner. First time the service is deployed a secret with
the certificate is created.

Important details to take into account:

The SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_ISSUERURI value
should en in a backslash (e.g. " //login.aai.lifescience-ri. idc/™)

The SPRING_SECURITY_OAUTH2_RESOURCESERVER_JWT_AUDIENCES
value should contain the client ID of the Ul rather than the URL (e.g.
"a15a95d1-b251-4f12-b608-76ec02c68010").

4.7 Monitoring

The monitoring service provides an overview of the status of the different EUCAIM

components by making requests to the associated web services at certain periods of time. In
addition to this, the service is also capable of sending notifications to the person in charge of
a EUCAIM component when one of the predefined rules is fulfilled.

The service’s architecture is composed of 6 components of the technological stack
Elasticsearch-Logstash-Kibana (ELK stack), which are deployed in a Kubernetes cluster
using the operator pattern, that is responsible for defining Kubernetes software extensions
that use custom resources to manage applications and their components.

1.

Elasticsearch: Search engine that stores the information corresponding to different
metrics in indexes and allows access to the data in a very fast way and with easy
scaling. In this case, an index has been defined with the name monitor-alerts, where
a document is written each time an alert occurs in one of the EUCAIM services.

Kibana: Software that allows the generation of different types of dashboards, making
it easier to visualise and interpret data of different types and origins.

Heartbeat: Functionality that periodically checks the status of a set of predefined
services and, based on the response received, is able to determine whether they are
available or not.

Logstash: It is responsible for collecting the metrics of the Elasticsearch
monitor-alerts index. Then, it filters the data collected and, depending on the service
that sends the message, it sends a notification email to the person in charge of that
service.

Elastic Agent and kube-state-metrics: These two components work together to
collect Kubernetes cluster state metrics and store them in an Elasticsearch index for
further analysis.

62

https://login.aai.lifescience-ri.eu/oidc/

Heartbeat

Email
Dashboard - Notification
Catalogue Obtains from
Federated Verifi 5 1 A= Send
erifies tores alert in ends to

Search > Rule N] »

. Elasticsearch Kibana
Negotiator

Stores in

A

Helpdesk ‘
=

kube-state-metrics

Elastic Agent

Figure 20. Elasticsearch working schema

5 Solution Development

5.1 Environment Configuration

To launch our services, it is necessary to pre-configure an environment that allows
their proper functioning. Without going into the low-level configuration details of the
environment (Kubernetes installation, OpenStack management, etc.), some of the
fundamental configurations required to deploy our services are outlined below.

5.1.1 Vault

In this section, we explain how we configured our Vault service. This configuration
may be replicated in other environments.

63

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

StorageClass

The first step in configuring our Vault is to create an nfs-vault StorageClass that is linked
to the automatic provisioner we mentioned earlier.

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

name: nfs-vault
provisioner: fuseim.pri/ifs
reclaimPolicy: Retain

volumeBindingMode: Immediate

Create necessary Persistent Volumes Claims

Next, we will proceed with creating the necessary PVCs (specified in the Helm chart
mentioned below). By specifying the StorageClass we created in the previous step, these
PVCs will create the persistent volumes needed to store our Vault's data.

Deploy HashiCorp Vault

The next step is to execute a Helm chart to deploy and configure Vault within our Kubernetes
cluster. The Helm chart and configuration used for this deployment can be found in the
EUCAIM GitHub repository.

The next three lines can be used for Vault installing and configuration:

helm repo add hashicorp https://helm.releases.hashicorp.com

helm search repo hashicorp/vault

helm install vault hashicorp/vault --values
vault-override-values.yml -n vault

This configuration allows us to inject Vault secrets into other pods. Additionally, readiness
and liveness probes are performed for health checks, and the storage type to be used is
configured.

64

Vault Configuration

Next, you need to unseal the Vault to manage our secrets. Once unsealed, it will return a key
that we have to use to authenticate and authorise access to Vault's functionalities. It is
important to note that this key is only generated once, so better store it in a safe place.

Once unsealed, using the script available in:
https://github.com/EUCAIM/k8s-deployments/tree/main/federated-search/eucaim/conf-vault,
proceed to create a Public Key Infrastructure (PKI), generate intermediate certificates and a
root certificate, and create a new role to manage control and access to our Vault. (All these
instructions must be executed within the Vault).

Create a certificate for Beam Broker

After this, we will obtain a certificate issued by Vault for our broker. This allows us to secure
communications and ensure the authenticity and integrity of the data. With a certificate,
broker clients can be assured that they are connecting to the legitimate broker and not a
malicious replica.

Sign the Beam Proxy Certificate

Finally, once the certificate for the Beam Broker is created, we need to sign a certificate for
our Beam Proxy. This signed CSR becomes a certificate that authenticates the identity of the
Beam Proxy to the broker. Without a valid certificate, the broker cannot verify the authenticity
of the Beam Proxy. Additionally, the certificate contains a public key used to establish an
encrypted connection between the Beam Proxy and the broker. Without this certificate,
communications would not be encrypted, exposing the data to potential interception and
attacks. This certificate must be included in the Beam Proxy of each Data Host that wishes
to be part of the federated infrastructure.

5.1.2 NFS (Network File System)

The storage scheme implemented in our solution can be seen in Figure 21. NFS solution. To
operationalize this solution, it is necessary to carry out a series of steps on a pre-configured
infrastructure to meet certain requirements.

The steps to configure NFS in our cluster are as follows:

1. NFS installation

sudo apt update

sudo apt install -y nfs-kernel-server

65

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

2. Create NFS directory

sudo mkdir -p /mnt/nfs_share #Create the directory for NFS
share

sudo chown -R nobody:nogroup /mnt/nfs_share/ #Set ownership of
the directory

sudo chmod 777 /mnt/nfs_share/

3. Edit /etc/exports file to define the directories to be shared via NFS and specify the
permissions and access control for each shared directory.

/pv *.localdomain(rw, async, no_root_squash,no_subtree_check, insecure)

/mnt/nfs_share *.localdomain(rw, sync,no_subtree_check,no_root_squash)

4. Restart the NFS server

sudo systemctl restart nfs-kernel-server

5. If you want to automate the creation and management of Persistent Volumes (PVs)
you can install an external provisioner:

S helm repo add nfs-subdir-external-provisioner
https://kubernetes-sigs.github.io/nfs-subdir-external-provisio
ner/

$ helm install nfs-subdir-external-provisioner
nfs-subdir-external-provisioner/nfs-subdir-external-provisione
ro\

--set nfs.server=x.x.x.x \

--set nfs.path=/exported/path

66

kés

Coos s B
el

EUCAIM virtualization layer

frontend node

BT

ceph/irados

Figure 21. NFS solution

5.2 Kubernetes manifests

The Kubernetes manifests presented below are available in the EUCAIM project’s
GitHub repository®. The following sections provide a brief description of their content and
highlight some key configuration aspects to consider for future deployments.

5.2.1 Molgenis

Within the Molgenis GitHub repository, you will find the YAML files for deploying EUCAIM
Molgenis in Kubernetes. These deployment files are customised for UPV's deployment, and
they are all necessary for the correct functioning of this version of Molgenis.

The manifests found within the Molgenis repository are as follows:

backend.yaml

% https://github.com/EUCAIM/k8s-deployments

67

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

Composed by five ConfigMaps, it configures an Nginx server as a reverse proxy and
manage DNS resolutions (backend), define main settings for Nginx (nginxconf), set up web
application parameters for Tomcat (tomcat-webxml), provide detailed server settings for
Tomcat (tomcat-serverxml), and manage URL rewrites and redirects in Nginx to optimize
content delivery (ltsconf).

deployment-molgenis.yaml

This Kubernetes manifest sets up a federated search architecture by deploying a total of
eight deployments. The deployments include PostgreSQL, Elasticsearch, Kibana, Kibana
Dashboard, OpenCPU, MinlO, Molgenis, and the Molgenis front-end. Each component
needs to be configured with the proper environment variables, persistent storage, and
exposed services. Additionally, it includes an Ingress configuration for front-end access
through a specified domain, utilising Nginx and Let's Encrypt for TLS certificates.

deployment-nfspvc.yaml

In this YAML document, the necessary persistent volume claims for our deployment are
declared. For more details, see 4.4 Catalogue.

deployment-nfsvols-template.yaml

In the deployment-nfsvols-template.yaml document, the persistent volumes to
which the previously mentioned persistent volume claims are bound are declared. It is
important to note that if you want to perform deployments using this template, you will need
to configure both the NFS address and the mount path to adapt them to your specific
environment.

5.2.2 Dashboard

dashb-mongo-deployment.yaml

This Kubernetes manifest deploys a MongoDB instance for the dashboard namespace. It
includes a single replica running the eucaim.cancerimage.eu:10443/library/mongodb image,
exposing port 27017. The deployment uses a persistent volume claim for data storage and
mounts necessary Kubernetes APl access secrets.

eucaim-dashboard-deployment.yaml

68

This Kubernetes manifest contains the deployment of the eucaim-dashboard application
using a Node.js image. It configures the container to run a script (/data/runApp.sh), exposes
port 8080, and mounts a persistent volume claim (node-vol-pvc) for data storage.

It's important to note that it is necessary to previously include all the data required by the
dashboard application in the persistent volumes to allow this application to run.

dash_and_mongo_pvc_and_vols-template.yaml

This YAML defines the necessary persistent volume claims and the persistent volumes
bound to them that are required for the previously mentioned deployments to function
correctly.

dashboard-service.yaml

Necessary service to expose the pods functionalities.

dashboard-ingress.yaml

Ingress to allow access to the dashboard application via HTTP.

root-path-redirect-ingress.yaml

This ingress is in charge of redirecting all HTTP traffic from eucaim.cancerimage.eu to
https://dashboard.eucaim.cancerimage.eu permanently.

5.2.3 Federated-Search
beam-proxy.yml

This manifest contains the deployment of the image: samply/beam-proxy:develop as
well as the creation of the secret for storing the private key of the beam proxy, which is
necessary for its connection to the broker and for the proper functioning of the explorer
service.

Additionally, this manifest also includes a service for exposing the deployment services to
other services. It is important to adapt the configuration of this YAML to the needs of each
deployment, particularly the environment variables: PROXY_ID and BROKER_URL, which
may vary depending on the configured environment.

69

broker.yaml

This file contains the ingress that makes the broker service accessible both externally and
internally to manage requests from the data holders.

Additionally, it includes the deployment of the Beam Broker using the image:
samply/beam-broker :main, a service (broker-service), and a secret (pki-secret).

It is important that the necessary secrets (pki-secret: Vault token; root-crt-pem:
platform certificate generated in Vault; broker-priv-pem: broker's private key) are
correctly generated to ensure proper connection.

common.yaml

This file contains the secrets that store the access token for Spot and the root certificate
used to manage the other certificates.

lens.yaml

This manifest includes an ingress to allow users to connect to the Explorer (remember that
the lens service is the frontend of the Explorer), a service, and a deployment of the Lens

image: docker .verbis.dkfz.de/eucaim/lens:eucaim.

oauth2-proxy.yml

This manifest deploys an ingress to redirect authentication via OAuth, a service to access
the deployment, and an OAuth proxy with the image:
quay.io/oauth2-proxy/oauth2-proxy:latest.

For the configuration of the proxy, it is crucial to properly configure the environment variables
and include the necessary secrets.

spot.yml

This manifest is responsible for deploying the ingress and the Spot deployment
(docker.verbis.dkfz.de/eucaim/spot:eucaim), the backend of the Explorer.

vault-override-values.ymi

This YAML file is essential for the correct installation of Vault.

70

http://docker.verbis.dkfz.de/eucaim/lens:eucaim

(helm install vault hashicorp/vault --values
vault-override-values.yml -n vault).

5.2.4 Negotiator
negotiator-db-deployment.yaml

Deployment of the SQL database (bitnami/postgresql:14) that will serve as storage
for our Negotiator.

negotiator-deployment.yaml

Deployment of the Negotiator. It is crucial for the user to enter the corresponding URLs for
their deployment and provide the necessary passwords and tokens. Please check that the
image of the Negotiator is up to date.

negotiator-frontend.yaml

Manifest that sets up the user interface through which the user will access the Negotiator
service. It is also important to enter a CLIENT_ID that corresponds to what the user has in
their LSAAI account.

negotiator-ingress.yaml

Ingress through which the negotiator's services will be exposed. In our case, it is available
at: https://negotiator.eucaim.cancerimage.eu/.

5.4 Automation in a CI/CD environment

CI/CD stands for Continuous Integration and Continuous Delivery or Deployment,
aimed at improving and accelerating the software development lifecycle.

Continuous Integration (Cl) is a practice of automatically and periodically incorporating code
changes into a shared source code repository. Continuous Delivery and Continuous
Deployment (CD) are a two-part process in which code changes are integrated, tested, and
delivered. While Continuous Delivery does not automatically deploy changes to production,
Continuous Deployment does automatically release updates to this environment.

71

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

CONTINUOUS CONTINUOUS CONTINUOUS
INTEGRATION DELIVERY DEPLOYMENT

AUTOMATICALLY AUTOMATICALLY
RELEASE TO DEPLOY TO

REPOSITORY PRODUCTION

Figure 22. CI/CD Flow

CI/CD prevents errors and code failures in companies without disrupting the ongoing cycle of
software development and updates. lts features can help reduce complexity, increase
efficiency, and optimise workflows as applications grow.

In this project, we are using GitHub Actions. GitHub Actions is a continuous integration and
continuous delivery (CI/CD) platform that allows you to automate your build, test, and
deployment pipeline. This has enabled us to test future deployments in our cluster in a safe
environment and to prevent future coding mistakes or inconsistencies. By doing this, we
ensure significant time savings in error corrections and repository updates, and we verify
that we are using good programming practices in our manifests by checking them every time
we push them into the repository. The architecture of our GitHub Actions integration would
consist of a series of different services that will work together and allow us to execute our
GitHub code on our own cluster. This architecture can be seen in Figure 23. [25][26]

Github

Github Repository

Running Deploymenis on a self hosted k8s runner

Figure 23. GitHub Actions Self Hosted Runner Schema

72

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator
https://docs.github.com/es/actions
https://docs.github.com/en/actions/learn-github-actions/finding-and-customizing-actions
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

5.4.1 Self-hosted GitHub Actions configuration

To set up a CI/CD environment that allows us to launch processes on our own cluster, the
following configuration must be performed:

1. Install cert-manager

By default, actions-runner-controller uses cert-manager for certificate management of
admission webhook, so we have to make sure cert-manager is installed on Kubernetes
before we install actions-runner-controller.

You can install cert-manager with the next Helm CLI command:

helm install \
cert-manager jetstack/cert-manager \
--namespace cert-manager \
--create-namespace \
--version v1.15.0 \

--set crds.enabled=true

2. Setting Up Authentication for Hosted Runners

There are two ways for actions-runner-controller to authenticate with the GitHub API (only 1
can be configured at a time, however):

- Using a GitHub App (not supported for enterprise-level runners due to lack of support
from GitHub.)
- Using a PAT (personal access token)

To authenticate an action-runner-controller with the GitHub API, we will use a GitHub App
with the action-runner-controller to register our self-hosted runner.

To do this, you can enter your Github and then go to Account > Settings > Developers
settings > GitHub Apps > New GitHub App. Then you can configure your new GitHub
App with the necessary parameters.

After creating the new GitHub App, you have to copy the generated ids to the bash and run
the below commands to create a Kubernetes secret, this secret will be used by
action-runner-controller deployment.

73

https://cert-manager.io/docs/

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

kubectl create ns actions-runner-system

kubectl create secret generic controller-manager -n actions \

- from-literal=github_app_id=YOUR_GITHUB_APP_ID \

- from-literal=github_app_installation_id=YOUR_INSTALLATION_ID \
- from-literal=github_app_private_key=YOUR_PRIVATE_KEY

3. Install action runner controller (ARC) on the Kubernetes cluster

ARC is a Kubernetes controller that creates self-hosted runners on your Kubernetes cluster.

To instal the Action Runner Controller you can use the Helm following CLI command:

helm repo add actions-runner-controller

helm repo update

helm upgrade --install --namespace actions-runner-system
--create-namespace --wait actions-runner-controller
actions-runner-controller/actions-runner-controller --set
syncPeriod=1m

4. Create a Repository Runner

This repository runner will be a RunnerDeployment Kubernetes object, which will create a
self-hosted runner for the desired GitHub repository.

The RunnerDeployment manifest file would look like the next template.

apiVersion: actions.summerwind.dev/vlalpha1
kind: RunnerDeployment
metadata:

name: k8s-action-runner

namespace: actions-runner-system

spec:

74

https://actions-runner-controller.github.io/actions-runner-controller
https://actions-runner-controller.github.io/actions-runner-controller

replicas: 2
template:
spec:

repository: yourGitHub/repository

If everything has worked correctly, we should see the two action runners running in our
cluster, and we should also be able to see them in the Actions section of the GitHub website.

<> Code (O Issues 1) Pullrequests 10 (Actions [0 Projects @ Security | Insights & Settings

Actions New workflow Runners New runner
All workflows

Deploy Update GitHub-hosted runners Self-hosted runners
d

Kubernetes Deployment Test Repository runners
Management 2 available runners

€ Caches

@ k8s-action-runner-87rhx-k9h2h

@ Attestations

) Qs @ k8s-action-runner-87rhx-mnpst

Figure 24. Two runners running

Once this configuration is complete, our GitHub repository will be integrated with our cluster,
allowing us to execute workflows from the GitHub website.

5. Create a workflow

To create a workflow in our GitHub repository, the first thing we need to do is create the
.github/workflows/ folder in the repository where we want to execute the workflow.

Once this folder is created, we can create our first workflow. In our case, this is what the
workflow we used to automate the deployment and testing of Kubernetes manifests in our
cluster looks like:

name: Object Update

on:
push:

branches: [main]

75

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

paths:
- 'k8s/**/* yaml'
pull_request:
branches: [main]
paths:
- 'k8s/**/* yaml'

jobs:
deploy:
name: Deploy to Kubernetes

runs-on: self-hosted

steps:

- name: Checkout
uses: actions/checkout@v2

- name: Kubeval Validation
uses: instrumenta/kubeval-action@master
with:

files: 'k8s/'

- name: Count and Print Commits for 'k8s' Folder
run: |
COMMIT_COUNT=$(git log --oneline -- k8s/ | wc -1)
echo "Number of commits affecting 'k8s/' folder: SCOMMIT_COUNT"
shell: bash

- name: Install kubectl
run: |

curl -LO
"https://storage.googleapis.com/kubernetes-release/release/ curl -s
https://storage.googleapis.com/kubernetes-release/release/stable.txt /bin/1
inux/amd64/kubectl"”

chmod +x ./kubectl

76

sudo mv ./kubectl /usr/local/bin/kubectl

- name: Kubectl Syntax Check
run: |

find k8s/ -type f -name '*.yaml' -exec kubectl apply
--dry-run=client -f {} \;

- name: Apply Kubernetes Manifests

if: ${{ github.event_name == 'push' && github.ref ==
'refs/heads/main' }}

run: |
echo "Applying Kubernetes manifests from pushed files..."

find k8s/ -type f -name '*.yaml' -exec kubectl apply -f {} \;

If we break down each part of the file, we get the following sections:

Workflow Triggers:

e on: push: The workflow is triggered when a push is made to the main branch, but
only if the changes include files within the path k8s/**/*.yaml. This means that any
changes to YAML files within the k8s folder (and its subfolders) will activate this
workflow.

e on: pull_request: Similarly, the workflow is triggered for pull requests to the main
branch that affect the same paths.

Jobs

Our workflow consists of a single job that contains the following steps to execute:

Checkout: Uses the actions/checkout@v2 action to obtain the repository code on the
runner.

Kubeval Validation: Uses the instrumenta/kubeval-action@master action to
validate the Kubernetes YAML files found in the k8s/ folder. This helps ensure that the files
are syntactically correct and valid according to Kubernetes specifications.

Count and Print Commits for 'k8s' Folder: Runs a script that counts and displays the
number of commits affecting the k8s/ folder. This is useful for tracking changes.

7

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Install kubectl: Instals kubectl, a command-line tool for interacting with Kubernetes clusters,
on the runner. This is necessary for executing Kubernetes commands later on.

Kubectl Syntax Check: Alternatively to using Kubeval, we can use kubectl apply
--dry-run=client to perform a syntax check on the Kubernetes YAML files. This ensures
that the files are applicable in Kubernetes without actually applying the changes.

Apply Kubernetes Manifests: This step runs only if the event was a push to the main
branch. This ensures that changes are applied only when they are definitely accepted in the
main branch via push, and not during pull requests or in other branches. It then executes
kubectl apply to apply the changes specified in the YAML files to Kubernetes, thereby
updating the cluster state as necessary.

Once our workflow is created, we just need to create a manifest in the indicated path and
execute a pull request. This will trigger our workflow and return a result. If the workflow fails,
we can check the logs from the GitHub Actions tab. If the workflow runs successfully, we will
be able to see the deployment result in our Kubernetes cluster.

6. Testing

6.1 Load Testing of Services

To verify the proper functioning and load tolerance of our services under high load
levels, we have conducted various load tests using the Apache JMeter tool®°.

JMeter is a free software tool that can be used to perform load and performance testing on
web applications and services. Additionally, it allows for simulating multiple users and
analysing response times and performance under different conditions.

In our case, we have configured various tests in JMeter to check the response times of our
different endpoints:

- Dashboard: https://dashboard.eucaim.cancerimage.eu/

% https://jmeter.apache.org/index.html

78

https://dashboard.eucaim.cancerimage.eu/
https://jmeter.apache.org/index.html

- Explorer: https://explorer.eucaim.cancerimage.eu/
- Catalogue: https://catalogue.eucaim.cancerimage.eu/

For each of these endpoints, a test has been designed to simulate access by 5000 users
spread over a period of 30 seconds. These tests were accompanied by monitoring the load
handled by each of the pods serving those services.

In parallel to these tests, additional tests have been conducted using the load testing tool
k6%. This tool has been particularly useful for load testing the Negotiator, as it was really
challenging to bypass the authentication proxy from JMeter, so it was decided to perform the
tests from within the cluster.

To achieve this, a Dockerfile was created and published on Docker Hub®*" containing the
grafana/ké image®®, a test script defining the load test, and the command that will be
executed when the container starts.

FROM grafana/k6

COPY load-test.js /load-test.js

ENTRYPOINT ["k6", "run", "/load-test.js"]

Dockerfile

import http from 'k6/http’;

import { sleep, check } from 'ké6';

export let options = {

stages: [

% https://k6.io/
57 https://hub.docker.com/

%8 https://hub.docker.com/r/grafana/ké

79

https://explorer.eucaim.cancerimage.eu/
https://catalogue.eucaim.cancerimage.eu/

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

{ duration: '3@s', target: 5000 }, // Ramp-up to 5000 users over 30
seconds

{ duration: '1m', target: 20 }, // Stay at 20 users for 1 minute

{ duration: '3@s', target: @ }, // Ramp-down to O users over 30
seconds

1,
s

export default function () {
let res = http.get('http://<yout-service>:8080");
check(res, { 'status was 200': (r) => r.status == 200 });

sleep(1);

K6 Script

This k6 image that we uploaded to Docker Hub is used as the base in the Kubernetes job of
our cluster to carry out a load test, from which we can also obtain graphical results thanks to
the use of Prometheus and Grafana.

The results of these load tests are shown below:

Dashboard Load Test

For the dashboard load tests, we used both of the mentioned alternatives. First, we executed
the Kubernetes job with k6 and 5000 simulated users making simple requests to observe the
deployment's performance under such user load and requests. Secondly, we conducted a
test for 7000 users over a 30-second period using JMeter, and the results were almost
identical, as can be seen in the peaks of the graph.

While these load tests do not guarantee the application's correct response in a real
environment (with a wide variety of requests of different loads and involving other system
elements), they do provide an indicative idea of the load capacity our application can handle.

For example, in the case of the Dashboard and in the other cases presented below, it can be
seen that the system easily supports what would correspond to a fairly high load volume for
an application of these characteristics.

The following images correspond to:
- Figures 25 and 26: K6 load test
- Figure 27: Load Peaks as Results of JMETER Tests (14:00) y K6 (~17:30)

80

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

- Figures 28 and 29: JMeter Load Test Results for Dashboard

root@kubeserver:/opt/cloudadm/tfmtst# kubectl logs k6-load—test-d89dp —n mockup

execution:
script: /load-test.js
output: -

scenarios: (100.00%) 1 scenario, 5000 max VUs, 2m30s max duration (incl. graceful stop):
* default: Up to 5000 looping VUs for 2m@s over 3 stages (gracefulRampDown: 30s, gracefulStop
1 30s)

running (GmOO.3s), 06043/5000 VUs, O complete and @ interrupted iterations
default [0%] 0043/5000 VUs 0Om@@.3s/2me0.0s

running (6m@l1.3s), 0210/5000 VUs, 43 complete and @ interrupted iterations
default [1%] 0210/5000 VUs 0Om0l.3s/2m00.0s

Figure 25. K6 start

: 100.00% v 88392 X0
data_received : 234 MB 1.9 MB/s
data_sent : 7.9 MB 66 kB/s
http_req_blocked 1 avg=99.55us min=1.26us med=3.82us max=60.93ms p(90)=12.31us
p(95)=6U8.73us
http_req_connecting : avg=80.61lps min=0s med=0s max=60.21ms p(90)=0s
p(95)=199.03pus
http_req_duration 1 avg=l.62s min=1.3ms med=1.65s max=4.01s p(90)=2.82s
p(95)=2.98s
{ expected_response:true }...: avg=1.62s min=1.3ms med=1.65s max=4.01s p(96)=2.82s
p(95)=2.98s
http_req_failed : v o X 88392
http_req_receiving : avg=509.56ms min=35.4ps med=490.73ms max=1.66s p(96)=1.03s
p(95)=1.25s
http_req_sending 1 avg=3.23ms min=5.17us med=29.9us max=277.66ms p(90)=8.uU48ms
p(95)=12.98ms
http_req_tls_handshaking : min=0s med=0s LEVEIH p(90)=0s
p(95)=0s
http_req_waiting : avg=l.1ls min=961.58us med=1.1s max=3.0uUs p(96)=2.08s
p(95)=2.2us
http_reqs : 88392 736.113265/s
iteration_duration.. 1 avg=2.62s min=1s med=2.65s max=5.01s p(90)=3.82s
p(95)=3.98s
iterations : 88392 736.113265/s
g db min=1 max=5000
: 5000 min=5000 max=5000

running (2m@0O.1s), 0000/5000 VUs, 88392 complete and © interrupted iterations
default v [100%] 0000/5000 VUs 2mOs

Figure 26. K6 Dashboard test results

81

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

CPU % USAGE

0.6

12:00 13:00 14:00 15:00 16:00 17:00

== sum(rate(container_cpu_usage_seconds_total{pod="eucaim-dashboard-deployment-6577cd5f6

Figure 27. Grafana dashboard graphics

Throughput
7000 94 2491

7000 9: 249.1

Figure 28. Jmeter summary | Dashboard

Throughput

Figure 29. Jmeter summary Il Dashboard

Explorer

For the Explorer case, we made requests from JMeter simulating 5000 users over a period
of 20 seconds, and as can be seen (by observing the load from within the pod itself), the
load received by the system barely reached 1% of the total capacity.

82

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

Mem: 21834720K used, 1025uU872K free, 1163uuUK shrd, 10792uUK buff, 16989796K cached
CPU: 36% usr 15% sys 0% nic 0% idle 38% io 0% irq 10% sirq
Load average: 21.10 19.79 18.65 3/1344 78
35 1 nginx S 8172 0% 1% nginx: worker process
nginx

36 1 S 8172 1% nginx: worker process
38 1 nginx S 8156 1% nginx: worker process
37 1 nginx S 8148 nginx: worker process
1 0 root S 7656 nginx: master process nginx —g daemon off;
72 0 root 5 1700 /bin/sh
78 72 root R 1628 top

Label # Samples Average Throughput
HTTP Request 5000
TOTAL 5000

Figure 31. Jmeter Summary | Explorer

Labe Received KB/sec Sent KB/fsec Throughput

HTTP Request 1194.54 43.53 7465.0 163
TOTAL 119454 43.53 7465.0 1

Figure 32. Jmeter Summary Il Explorer

Catalogue

For the Catalogue, we repeated the same tests as for the Explorer (simulating requests from
5000 users over a period of 20 seconds), and the results are practically identical, as can be
seen in the load graph in Figure 33 and in the results of the tables generated by JMeter.

CPU % USAGE

0.06

0 S S| —

07-00 07:30 08:00 09:00 09:30 10:00 10:30 11:00 11:30 12:00
== Value

Figure 33. Grafana Catalogue Graphics

83

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

Label # Samples Average Throughput Error %

HTTP Request 5000 1
TOTAL 5000 166

Figure 34. Jmeter Summary | Catalogue

Label s Sent KB/sec T Throughput
HTTP Request 1307 1
1

Figure 35. Jmeter Summary Il Catalogue

Negotiator

Since the Negotiator application is behind a proxy, and it was really complex to bypass that
proxy from JMeter, we opted to perform load tests using K6 only. As can be seen in both the
K6 test results and the Grafana graph, the generated load volume does not even consume
1% of the computing capacity of our application, and all requests are responded to
satisfactorily.

running (2m@0.6s), 01/20 VUs, 1818 complete and @ interrupted iterations
default [100%] 01/20 VUs 2m@0.0s/2m0e.0s

J/ status was 200

: 100.00% / 1819 X0
data_received.. : 12 MB 98 kB/s
data_sent : 164 kB 1.4 kB/s
http_req_blocked. 1 avg=32.93us min=2.27us med=9.39us max=3.89ms p(90)=12.78us p(95)=19.2us
http_req_connecting : avg=17.07us min=0s med=0s max=3.31ms p(90)=0s p(95)=6s
http_req_duration 1 avg=2.08ms min=865.61pys med=1.97ms max=14.83ms p(96)=2.62ms p(95)=2.9ms
{ expected_response:true }...: avg=2.08ms min=865.61us med=1.9Tms max=14.83ms p(90)=2.62ms p(95)=2.9ms
http_req_failed : 0.00% J O X 1819
http_req_receivin : avg=188.14us min=26.02us med=146.55us max=4.68ms p(90)=273.91us p(95)=u24.36us
http_req_sending :avg=ul.29us min=7.47us med=34.99us max=1.02ms p(90)=61.13ps p(95)=82.27us
http_req_tls_handshak : avg=0s min=0s med=0s max=0s p(98)=0s p(95)=6s
http_req_waiting : avg=1.85ms min=712.23ps med=1.75ms max=14.75ms p(90)=2.36ms p(95)=2.61ms
http_reqgs : 1819 15.103663/s
iteration_duratio : avg=ls min=1s med=1s max=1.02s p(908)=1s p(95)=1s
: 1819 15.103663/s
g min=1 max=20
min=20 max=20

running (2m@0.4s), 00/20 VUs, 1819 complete and @ interrupted iterations
default v [100%] 00/20 VUs 2mOs

Figure 36. K6 Negotiator test results

84

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

CPU % USAGE

10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

Figure 37. Grafana Negotiator results

Due to the difficulty of logging into this service from JMeter and being able to perform load
tests, in this work we have opted to create jobs within our own infrastructure that make direct
calls to the Negotiator service and observe its response under load. In previous tests, we
have already verified that the network can handle a high load of requests, so we believe it is
not necessary to simulate a large number of users in this test as we did in the previous ones
to determine if the system will respond correctly. From the previous tests, we can conclude
that it will.

/. Conclusions and Future Plan

7.1 Future Plan

During the final drafting of this work, various ideas or proposals not previously
considered have emerged. We believe that these ideas could be added in the future to
improve the documentation and depth of this work. Therefore, we leave the reader with
some of these improvement proposals:

Scalability of CI/CD

By configuring the number of Runner Deployments to automatically adjust based on
demand, we could automatically scale up or down the number of runners running on a given
machine. This would facilitate future deployments, ensuring that developers do not need to
worry about whether they have enough Runner nodes to execute the tasks of the Actions, as
well as saving resources when those pods are underutilised

85

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

Webhook Event for
workflow_job

Action Runner
Controller

» | WebHook Endpoint

Register the Runner

Y

HRA(Runner
—® <—[Runner Deployment Autoscaler)

K8s Pod

Figure 36. GitHub Actions WebHook Flow

This improvement can be easily implemented by adding a Webhook endpoint to our model.
Webhooks allow you to subscribe to events occurring within a software system and
automatically receive data delivery to your server whenever those events happen. [26][27]

Unlike polling an API, where you intermittently check for new data, webhooks push data to
your server in real-time as events occur. This means you only need to register your interest
in an event once, when you create the webhook, and you'll receive updates automatically.

Azure Kubernetes Service (AKS) Implementation

This improvement would be truly interesting from the perspectives of scalability, availability,
and compatibility (three non-functional requirements mentioned in section 3.2.2
Non-functional Requirements). By exploring the possibility of deploying our recipes on
Azure, we could achieve increased scalability, as we could scale quickly and easily in cases
of sudden demand spikes. This would also protect the continuity of our service by extending
beyond our physical infrastructure, thus ensuring high availability. Finally, we could ensure
the compatibility of our deployment beyond the environments in which it has been tested
(OpenStack® and OpenNebula®).

Replacing NFS with CephFS

As discussed in section 5.1.2 NFS (Network File System), our deployment uses NFS as the
file management system. This improvement proposes replacing NFS with CephFS, thereby

% https://www.openstack.org/
80 https://opennebula.io/

86

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator
https://www.redhat.com/en/topics/automation/what-is-a-webhook
https://docs.github.com/en/webhooks/about-webhooks

avoiding several intermediate connections between the pod's persistent volume and the
physical storage managed by Ceph. [29]

ks
pod pod — pv
warker frontend node
node
worker
node

Openstack

cephfs __ ceph/frados

S

Figure 37. NFS Proposal

Improving the Reliability of Load Testing

It would be interesting to conduct more exhaustive load tests that encompass the overall
functionality of the application. It would be beneficial to perform load tests that involve
access requests to some of the different databases to see how our infrastructure behaves
under a high volume of requests to the database systems.

7.2 Contributions and Conclusion

Once this work is completed, along with the Master's Degree in Cloud and
High-Performance Computing, | would like to briefly review the contributions of this work as
well as its relationship with everything learned during the master's program.

87

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

This work, which is currently in production at dashboard.eucaim.cancerimage.eu, has
improved the deployments of this platform in the following aspects:

1.

3.

4.

Firstly, as mentioned in the objectives, the automation of this environment has been
significantly improved by integrating the CI/CD (Continuous Integration/Continuous
Deployment) pipeline. This has allowed for the seamless deployment of updates,
reducing manual intervention and ensuring that the platform remains up-to-date with
the latest features and security patches. The CI/CD pipeline has automated the
building and deployment processes, and it has also automated part of the testing,
ensuring that the YAML files we were using are fully correct. This has significantly
decreased the time required for these tasks and minimised the risk of human error.
Secondly, this work has implemented a blue-green deployment architecture,
improving the deployment process in several aspects:

a. Zero Downtime: Blue-green deployment allows for seamless updates without
any downtime. The new version of the application is deployed to a separate
environment (the "green" environment) while the current version continues to
run in the "blue" environment. Once the new version is verified, traffic is
switched to the green environment, ensuring continuous availability of the
application.

b. Safe Rollback: If any issues are detected in the new version, traffic can be
quickly switched back to the blue environment, allowing for an immediate
rollback. This ensures a higher level of reliability and reduces the risk
associated with deployments.

c. Improved Testing: The green environment can be thoroughly tested with
production-like traffic before going live. This helps in identifying and resolving
issues that might not be apparent in a staging environment, leading to a more
stable and reliable application.

After applying best practices for creating recipes, we can say now that our application
is more secure and less exposed to human errors.

Finally, after transferring our deployment to another machine and getting it back into
production, we can say that our understanding of the deployment needs and relevant
configuration aspects has greatly increased. This improved understanding, along with
thorough documentation of these configurations, will facilitate future deployments on
other machines.

As can be observed, these improvements, as well as all the work presented in this
document, are closely related to everything | learned during my time in the Master's Degree
in Cloud and High-Performance Computing.

Practically everything discussed and developed in this work, from the concept of containers,
the use of NFS, the creation of Kubernetes recipes, the management of the cluster using
kubectl, the use of Docker, etc., has been explained and developed in some of the courses
of this master’s program. Special mention goes to the course "Container Management

88

https://dashboard.eucaim.cancerimage.eu/

Platforms" (PGC) taught by Professor Ignacio Blanquer Espert, who is also the advisor of
this thesis.

89

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

8. Bibliography

[1] https://health.ec.europa.eu/system/files/2022-02/eu_cancer-plan_en_0.pdf
[2]

https://www.cuatrecasas.com/es/spain/propiedad-intelectual/art/consejo-ue-aprueba-data-ac

[3] hitps://www.consilium.europa.eu/en/policies/data-protection/data-protection-regulation/

[4] hitps://digital-strategy.ec.europa.eu/en/policies/data-spaces

[5] https://www.go-fair.org/fair-principles/

uridad-social--el-banco-de-espana-y-el-sepe-firman-un-acuerdo-para-permitir-el-acceso-conj
i ientifi i i ion-de-interes- lico.html

[7] hitps://kubernetes.io/es/docs/concepts/workloads/pods/pod/

[8] https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
[9] hitps://kubernetes.io/docs/concepts/storage/persistent-volumes/

[10] https://kubernetes.io/es/docs/concepts/workloads/controllers/replicaset/
[11] https://kubernetes.io/es/docs/concepts/workloads/controllers/statefulset/

[12] https://kubernetes.io/es/docs/concepts/workloads/controllers/daemonset/

[13] hitps://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

[14] hitps://kubernetes.io/es/docs/concepts/services-networking/service/
[15] https://kubernetes.io/docs/concepts/workloads/controllers/job/

[16] hitps://kubernetes.i ncept nfiguration/configm

[17] https://kubernetes.io/docs/concepts/configuration/secret/
[18] https://www.ibm.com/docs/es/i/7.5?topic=security-network-file-system-nfs

[19] hitps://debian-handbook.info/browse/es-ES/stable/sect.nfs-file-server.html
[20] https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/

[21] hitps://github.com/kubernetes-sigs/nfs-subdir-external-provisioner
[22] hitps://kubernetes.io/docs/reference/access-authn-authz/rbac/

90

https://www.consilium.europa.eu/en/policies/data-protection/data-protection-regulation/
https://digital-strategy.ec.europa.eu/en/policies/data-spaces
https://www.go-fair.org/fair-principles/
https://www.bde.es/wbe/es/noticias-eventos/actualidad-banco-espana/el-ine--la-aeat--la-seguridad-social--el-banco-de-espana-y-el-sepe-firman-un-acuerdo-para-permitir-el-acceso-conjunto-a-sus-bases-de-datos-para-trabajos-cientificos-de-investigacion-de-interes-publico.html#
https://www.bde.es/wbe/es/noticias-eventos/actualidad-banco-espana/el-ine--la-aeat--la-seguridad-social--el-banco-de-espana-y-el-sepe-firman-un-acuerdo-para-permitir-el-acceso-conjunto-a-sus-bases-de-datos-para-trabajos-cientificos-de-investigacion-de-interes-publico.html#
https://www.bde.es/wbe/es/noticias-eventos/actualidad-banco-espana/el-ine--la-aeat--la-seguridad-social--el-banco-de-espana-y-el-sepe-firman-un-acuerdo-para-permitir-el-acceso-conjunto-a-sus-bases-de-datos-para-trabajos-cientificos-de-investigacion-de-interes-publico.html#
https://www.bde.es/wbe/es/noticias-eventos/actualidad-banco-espana/el-ine--la-aeat--la-seguridad-social--el-banco-de-espana-y-el-sepe-firman-un-acuerdo-para-permitir-el-acceso-conjunto-a-sus-bases-de-datos-para-trabajos-cientificos-de-investigacion-de-interes-publico.html#
https://kubernetes.io/es/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/es/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/es/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/es/docs/concepts/configuration/configmap/
https://debian-handbook.info/browse/es-ES/stable/sect.nfs-file-server.html
https://github.com/kubernetes-sigs/nfs-subdir-external-provisioner
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

[23]
https://www.redhat.com/es/topics/devops/what-is-ci-cd#:~:text=Cl%2F CD%20es%201a%20si
dla.vida%20de%20desarrollo%20del%20software.

[24] https://www.redhat.com/en/topics/devops/what-is-blue-green-deployment

[25] https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
[26] https://docs.github.com/en/actions/learn-github-actions/finding-and-customizing-actions
[27] hitps://www.redhat.com/en/topics/automation/what-is-a-webhook

[28] https://docs.github.com/en/webhooks/about-webhooks

[29] https://docs.ceph.com/en/latest/cephfs/

[30] https://docs.ceph.com/en/reef/architecture/

[31] hitps://docs.ceph.com/en/latest/

8.1 Figures Index

Figure 0: Projects Gantt Chart

Figure 1: EUCAIM Data Providers
https://digital-strategy.ec.europa.eu/es/policies/cancer-imaging

Figure 2: OpenStack schema

Figure 3: Exploration of datasets from the Public Catalogue.

Figure 4: Federated search of aggregated data in the datasets schema.

Figure 5: Request access to the datasets from the User’s Catalogue.

Figure 6: Get an overview of the datasets to which they have been granted access
Figure 7: Evaluate and accept/reject a data access request application

Figure 8: EUCAIM Core Services Architecture

Figure 9: EUCAIM Core Services detailed schema

Figure 10: Green-Blue Deployment

Figure 11: Security Model Schema

Figure 12: Snapshot of the management console of the LS AAl: VO-management panel
Figure 13: Service management section
Figure 14: Dashboard architecture

Figure 15: Deployment schema of the postgres and elasticsearch deployments in the
catalogue.

Figure 16: Deployment schema of the Molgenis backend and frontend deployments.
Figure 17: Deployment schema of the federated search at the core services level.

Figure 18: Deployment schema of the federated search including the interactions with the
data holders.

Figure 19: Schema of Kubernetes manifests for the deployment of the Negotiator.

91

https://www.redhat.com/es/topics/devops/what-is-ci-cd#:~:text=CI%2FCD%20es%20la%20sigla,vida%20de%20desarrollo%20del%20software
https://www.redhat.com/es/topics/devops/what-is-ci-cd#:~:text=CI%2FCD%20es%20la%20sigla,vida%20de%20desarrollo%20del%20software
https://www.redhat.com/en/topics/automation/what-is-a-webhook
https://docs.ceph.com/en/latest/cephfs/
https://docs.ceph.com/en/latest/
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator
https://digital-strategy.ec.europa.eu/es/policies/cancer-imaging
https://docs.google.com/document/d/1X8SIvx1ml0vjWTw4V2iKa_kkc6ZxMNdVvF1IkWcsRYY/edit#figur_lsaai_console

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Figure 20: Elasticsearch working schema
Figure 21: NFS solution
Figure 22: CI/CD Flow

Figure 23: GitHub Actions Self Hosted Runner Schema
Figure 24: Two runners running

Figure 25: K6 start.

Figure 26: K6 Dashboard test results.
Figure 27: Grafana dashboard graphics .
Figure 28: Jmeter summary | Dashboard
Figure 29: Jmeter summary Il Dashboard
Figure 30: Top Command from Explorer pod
Figure 31: Jmeter Summary | Explorer
Figure 32: JmeterSummary Il Explorer
Figure 33: Grafana Catalogue Graphics
Figure 34: JmeterSummary | Catalogue
Figure 35: JmeterSummary Il Catalogue
Figure 36: GitHub Actions WebHook Flow

8.2 Tools Documentation

Apache JMeter. (n.d.). https://jmeter.apache.org/

GitHub Actions. (n.d.). https://github.com/features/actions
Kubernetes Documentation. (n.d.). https://kubernetes.io/docs/home/
Prometheus. (n.d.). https://prometheus.io/

Grafana. (n.d.). https://grafana.com/

Docker Hub. (n.d.). https://hub.docker.com/

k6 Load Testing Tool. (n.d.). https://k6.io/

CephFS. (n.d.). https://docs.ceph.com/en/latest/cephfs/

OpenStack. (n.d.). https://www.openstack.org/

OpenNebula. (n.d.). https://opennebula.io/

92

https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator
https://docs.google.com/document/d/1KLGVuLq67Bny1lSLohWDNoqe5-cng-d9OIH_pX82OMw/edit#figur_k8s_negotiator

93

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Appendix 1. Relationship with the
Sustainable Development Goals (SDGs)

On September 25, 2015, world leaders adopted
17 Sustainable Development Goals (SDGs) to
protect the planet, combat poverty, and strive to
eradicate it, with the aim of building a more
prosperous, just, and sustainable world for future
generations. These goals were set within the
2030 Agenda for Sustainable Development.

OBJETIV)S
DE DESARROLLO
SOSTENIBLE

The 17 SDGs aim to involve governments,
businesses, civil society, and individuals. Each
goal includes various targets, each with its own indicators to determine whether the objective
is being met. Among the set of SDGs are goals focused on the advancement of clean
energy, decent work and economic growth, responsible consumption and production, climate
action, industry, innovation, and infrastructure.

Degree of Relation of the Work with the Sustainable Development Goals (SDGs)

Sustainable Development Goals High Medium Low Not Applicable
SDG1. No Poverty X
SDG 2. Zero Hunger X
SDG 3. Good Health and X

Well-Being
SDG 4. Quality Education X
SDG 5. Gender Equality X
SDG 6. Clean Water and X
Sanitation
SDG 7. Affordable and clean X
energy

94

SDG 8. Decent work and X
economic growth

SDG 9. Industry, Innovation X

and Infrastructure
SDG 10. Reduced inequality X
SDG 11. Sustainable cities and X

communities

SDG 12. Responsible X
consumption and
production
SDG 13. Climate action X
SDG 14. Life below water X
SDG 15. Life on land X
SDG 16. Peace, justice and X

strong institution

SDG 17. Strengthen the means of X
implementation and
revitalise the global
partnership for
sustainable development
goals

In this section, it is mentioned which of the previously mentioned SDGs are related to this

GOODHEALTH : N
AND WELL-BEING v

project.

95

Analysis and improvement of a Kubernetes deployment of the EUCAIM platform services

Objective 3: Ensure healthy lives and promote well-being for all at all ages

Being a project with direct application in the health field, this project aims to directly improve
aspects related to achieving a healthier life for everyone at all ages. The facilities offered in
data processing as well as in their accessibility can be of great help both for professionals in
this field and for patients.

96

