

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Dpto. de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil

Análisis del comportamiento a flexión a temperatura ambiente y en situación de incendio de vigas mixtas acerohormigón con conectores desmontables

Trabajo Fin de Máster

Máster Universitario en Ingeniería del Hormigón

AUTOR/A: Mora Moscoso, Paul Sebastian Tutor/a: Espinós Capilla, Ana Cotutor/a: Romero García, Manuel Luis CURSO ACADÉMICO: 2023/2024

DEPARTAMENTO DE INGENIERÍA DE LA CONSTRUCCIÓN Y DE PROYECTOS DE INGENIERÍA CIVIL

MÁSTER UNIVERSITARIO EN INGENIERÍA DEL HORMIGÓN

TRABAJO FIN DE MÁSTER CURSO ACADÉMICO 2023/2024

ANÁLISIS DEL COMPORTAMIENTO A FLEXIÓN A TEMPERATURA AMBIENTE Y EN SITUACIÓN DE INCENDIO DE VIGAS MIXTAS ACERO-HORMIGÓN CON CONECTORES DESMONTABLES

Autor/a:	Paúl Sebastián Mora Moscoso
Tutor/a:	Ana Espinós Capilla
Cotutor/a:	Manuel Luis Romero García

Valencia, julio de 2024

DEPARTAMENTO DE INGENIERÍA DE LA CONSTRUCCIÓN Y PROYECTOS DE INGENIERÍA CIVIL UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Resumen

En el presente Trabajo Fin de Máster se estudia mediante simulaciones numéricas y cálculos analíticos el comportamiento a flexión de vigas mixtas acero-hormigón con conectores de rasante desmontables, para cuyo fin se toman como referencia los estudios experimentales realizados a temperatura ambiente y elevada en el marco del proyecto de investigación FIREDUCE en la Universitat Politècnica de València, así como otros resultados experimentales previos disponibles en la bibliografía revisada.

Para su comportamiento como elementos mixtos, las vigas acero-hormigón requieren de elementos de conexión denominados conectores de rasante, siendo típicamente utilizados los pernos soldados al ala superior de la viga, garantizando un alto grado de conexión a rasante. Esto resulta favorable en términos de eficiencia estructural, sin embargo, dificulta la posibilidad de separar la losa de hormigón del perfil de acero cuando la estructura haya cumplido su vida útil o en caso de demolición. Una buena solución a este problema es un nuevo sistema de conectores desmontables recientemente introducido en el mercado y que se ha venido estudiando en los últimos años, consiguiendo buenos resultados. Este nuevo tipo de conectores atornillados, contribuyen al concepto de economía circular gracias a la reducción de emisiones de carbono por el reciclaje y/o posible reutilización de sus componentes.

Actualmente se cuenta con varios estudios sobre el comportamiento de vigas mixta acero-hormigón con conectores a rasante desmontables a temperatura ambiente, no obstante, se desconoce su comportamiento en condiciones de incendio. El acero pierde rápidamente sus propiedades mecánicas ante la acción del fuego, convirtiendo en importante el estudio a temperatura elevada de esta tipología de vigas mixtas, siendo necesario generalizar los resultados a diferentes grados de acero, resistencias del hormigón, dimensiones seccionales, diversas estrategias de protección, etc. Dado el elevado coste de los ensayos experimentales, resulta conveniente obtener estos resultados a través de simulaciones numéricas, capaces de proporcionar información detallada y precisa.

Para el desarrollo del modelo numérico objeto del presente trabajo, se emplea el programa comercial de análisis no lineal Abaqus, el cual emplea el método de los elementos finitos, permitiendo introducir el comportamiento mecánico de los materiales a diferentes temperaturas, así como los diferentes mecanismos de transmisión de calor, el modelado de los conectores de rasante a diferentes temperaturas, entre otros aspectos.

Tras la validación del modelo numérico por comparación con los ensayos experimentales de referencia, se comprueba la aplicabilidad de las ecuaciones de diseño descritas en la normativa europea y la bibliografía revisada, y se propone una extensión de las mismas para el cálculo a temperatura elevada de las vigas mixtas acero-hormigón con conectores desmontables, transferible a la industria de la construcción.

Palabras clave:

Vigas mixtas acero-hormigón, conectores de rasante desmontables, economía circular, simulación numérica, cálculo analítico, comportamiento a flexión, temperatura ambiente, temperatura elevada.

Abstract

In this Master's Thesis, the flexural behavior of steel-concrete composite beams with demountable shear connectors is studied through numerical simulations. The reference for this study is based on experimental research conducted at room and elevated temperature as part of the FIREDUCE research project at the Universitat Politècnica de València, along with other previous experimental investigations available in the literature.

For their composite behavior, steel-concrete beams require a connecting element known as shear connector, which is typically materialized by means of bolts welded to the upper flange of the beam, ensuring a high degree of shear connection. This proves advantageous in terms of structural efficiency; however, it difficult the separation of the concrete slab from the steel beam when the structure reaches the end of its service life or in the case of demolition. A viable solution to this problem is a recently introduced system of demountable shear connectors that has been under study in recent years, yielding positive results. This novel type of bolted connector contributes to the concept of circular economy through the reduction of carbon emissions via recycling and/or the potential reuse of its components.

Currently, there are several studies on the behavior of steel-concrete composite beams with demountable shear connectors at room temperature. However, their performance under fire conditions is unknown. Steel rapidly loses its mechanical properties when exposed to fire, making it crucial to study this type of composite beams at elevated temperatures, being much needed to generalize the results to different steel grades, concrete strengths, sectional dimensions, various protection strategies, etc. Due to the high cost of experimental tests, obtaining these results through numerical simulations is advisable, as they can provide detailed and precise information.

For the development of the numerical model aimed in this study, the commercial nonlinear analysis program Abaqus is employed. This program is makes use of the finite element method, allowing for the modeling of material constitutive behavior at different temperatures, various heat transfer mechanisms, and the behavior of shear connectors at different temperatures, among other aspects.

After validating the numerical model by comparison with the reference experimental tests, the applicability of the design equations described in the European standards and the revised literature is verified, and an extension is proposed for the elevated temperature design of steel-concrete composite beams with demountable shear connectors, which can be transferred to the construction industry.

Keywords:

Steel-concrete composite beams, demountable shear connectors, circular economy, numerical simulation, analytical calculation, flexural behavior, ambient temperature, elevated temperature.

Índice de contenido

R	esum	en		2
Α	Abstract			
Ír	ndice	de cont	tenido	4
Li	istado	o de fig	uras	7
Li	istado	o de tab	plas	17
1	In	troduce	ción	19
	1.1	Mot	ivación	19
	1.2	Obje	eto del trabajo	20
	1.3	Alca	nce y limitaciones	21
	1.4	Con	tribución del trabajo al cumplimiento de los ODS	21
2	Es	stado de	el Arte	23
	2.1	Tipc	os de conectores a rasante	23
	2.2	Con	ectores a rasante desmontables	24
	2.	.2.1	Conectores a rasante parcialmente desmontables	24
	2.	.2.2	Conectores a rasante totalmente desmontables	28
3	Er	nsayos e	experimentales existentes	30
	3.1	Ensa	ayos sobre conectores a rasante desmontables a temperatura ambiente	30
	3.2	Ensa	ayos sobre conectores a rasante desmontables a temperatura elevada	31
	3.3 tem	Ensa peratur	ayos sobre vigas mixtas acero - hormigón con conectores a rasante desmontables a ambiente	s a 33
	3.	.3.1	Curvas Fuerza-Desplazamiento	36
	3.	.3.2	Curvas Fuerza-Deslizamiento	38
	3.4 tem	Ensa peratur	ayos sobre vigas mixtas acero - hormigón con conectores a rasante desmontables a elevada	s a 41
	3.	.4.1	Temperatura de los materiales	45
	3.	.4.2	Curvas Desplazamiento-Tiempo	50
4	Si	mulacio	ones numéricas a temperatura ambiente	52
	4.1	Defi	nición geométrica	52
	4.2	Defi	nición de materiales	52
	4.3	Con	diciones de contorno	56

	4.4	Aplicación de carga	57
	4.5	Contacto entre superficies	58
	4.6	Modelado de conectores	58
	4.7	Tipo de elemento finito y malla	60
	4.8	Paso de carga y técnica de resolución	61
5	Simu	ulaciones numéricas a temperatura elevada	62
	5.1	Modelo térmico	62
	5.1.3	1 Definición geométrica	62
	5.1.2	2 Definición de materiales	62
	5.1.3	3 Pasos de carga y técnica de resolución	66
	5.1.4	.4 Condiciones de contorno térmicas	67
	5.1.	.5 Modelo de incendio	70
	5.1.0	.6 Contacto entre superficies	70
	5.1.	.7 Tipo de elemento finito y malla	72
	5.2	Modelo termo-mecánico	72
	5.2.2	1 Definición geométrica	72
	5.2.2	.2 Definición de parámetro termo-mecánico	73
	5.2.3	3 Ecuaciones constitutivas a temperatura elevada	73
	5.2.4	.4 Pasos de carga y técnica de resolución	78
	5.2.	5 Condiciones de contorno	79
	5.2.6	.6 Definición de campo de temperaturas	79
	5.2.	7 Aplicación de carga	79
	5.2.8	8 Modelado de conectores	79
	5.2.9	9 Otros	80
6	Valio	dación del modelo numérico y análisis de resultados	81
	6.1	Temperatura ambiente	81
	6.1.:	1 Curvas Fuerza-Desplazamiento	81
	6.1.2	2 Curvas de evolución de la fecha con la carga aplicada	82
	6.1.3	3 Curvas Fuerza-Deslizamiento	84
	6.1.4	.4 Gráfica de deformaciones	86
	6.1.	5 Curvas fuerza-deslizamiento de los conectores	89
	6.2	Temperatura elevada	90

	6.	2.1	Temperaturas seccionales	90
	6.	2.2	Curvas Desplazamiento-Tiempo	94
	6.	2.3	Temperatura de los conectores	
7	Pr	ropues	tas de cálculo analítico a temperatura ambiente	97
	7.1	Gra	ado de conexión a rasante	
	7.2	Ana	álisis elástico	99
	7.	2.1	Método 1	100
	7.	2.2	Método 2	104
	7.3	Ana	álisis plástico	107
	7.	3.1	Método general	109
	7.	3.2	Método simplificado	110
	7.4	Val	idación del método analítico a temperatura ambiente	112
	7.	4.1	Grado de conexión a rasante	113
	7.	4.2	Análisis elástico	113
	7.	4.3	Análisis Plástico	115
	7.	4.4	Resumen	116
8	Pr	ropues	tas de cálculo analítico a temperatura elevada	117
	8.1	Evo	olución de la temperatura de la viga de acero	118
	8.2	Dis	tribución de tensiones	120
	8.3	Mc	omento plástico resistente a temperatura elevada por el método analítico	124
	8.4	Mc	omento plástico resistente a temperatura elevada por el método numérico	127
	8.5	Val	idación del método analítico a temperatura elevada	129
9	A	plicabi	lidad práctica en el sector de la construcción	131
1(D	Concl	usiones y Recomendaciones	132
1:	1	Biblio	grafía	134

Listado de figuras

Figura 1.1: Modelo lineal vs modelo circular de la vida útil de una construcción [5] 19
Figura 1.2: Pirámide jerárquica de gestión de residuos [6] 20
Figura 2.1: Viga metálica sin conector [Fuente: Propia]23
Figura 2.2: Viga metálica con conector [Fuente: Propia]23
Figura 2.3: Esquema de ensayo Push-Out [Fuente: Propia]
Figura 2.4: Comportamiento típico carga-deslizamiento para conectores tradicionales [1] 24
Figura 2.5: Comportamiento típico carga-deslizamiento para conectores desmontables [23]
Figura 2.6: Modelo de conexión desmontable utilizada por Dallaman [10]
Figura 2.7: Modelo de conexión desmontable utilizada por Dedic y Klaiber [11]
Figura 2.8: Modelo de conexión desmontable utilizada por Sedlacek [12]
Figura 2.9: Sistema de conector desmontable P15 [Fuente: Propia]
Figura 2.10: Modelo de conexión desmontable utilizada por Marshall [18] 27
Figura 2.11: Modelo de conexión desmontable utilizada por Roik y Buerkner [19]
Figura 2.12: Modelo de conexión desmontable utilizada por Chen et al. [20]
Figura 2.13: Modelo de conexión desmontable utilizada por Becker [21]
Figura 2.14: Modelo de conexión desmontable utilizada por Krupp-Montex [22]
Figura 2.15: Sistema de conector desmontable P3 [Fuente: Propia] 29
Figura 3.1: Curvas Push-Out obtenidas experimentalmente a temperatura ambiente proyecto REDUCE (conector P3) [3]
Figura 3.2: Curvas Push-Out obtenidas experimentalmente a temperatura ambiente proyecto REDUCE (conector P15) [3]
Figura 3.3: Curvas Push-Out obtenidas experimentalmente a temperatura ambiente proyecto FIREDUCE (conector P3) [23]
Figura 3.4: Curvas Push-Out obtenidas experimentalmente a temperatura ambiente proyecto FIREDUCE (conector P15) [23]
Figura 3.5: Comportamientos Push-Out idealizados típicos [24] 31
Figura 3.6: Curvas Push-Out a temperatura elevada conector P3 [23]
Figura 3.7: Curvas Push-Out a temperatura elevada conector P15 [23]
Figura 3.8: Esquema de ensayo a flexión a cuatro puntos
Figura 3.9: Ensayo a flexión a cuatro puntos proyecto FIREDUCE

Página 7 de 136

Figura 3.10: Configuración geométrica proyecto FIREDUCE a temperatura ambiente [Fuente: Propia]
Figura 3.11: Sección transversal tipo proyecto FIREDUCE a temperatura ambiente [Fuente: Propia] . 34
Figura 3.12: Rigidizadores y sección transversal de vigas ensayadas para el proyecto FIREDUCE 35
Figura 3.13: Conectores P3 usados en el proyecto FIREDUCE
Figura 3.14: Configuración geométrica proyecto REDUCE a temperatura ambiente [Fuente: Propia]. 35
Figura 3.15: Sección transversal tipo proyecto REDUCE a temperatura ambiente [Fuente: Propia] 35
Figura 3.16: Curva fuerza-desplazamiento proyecto FIREDUCE conector P3 [Fuente: Propia]
Figura 3.17: Curva fuerza-desplazamiento proyecto REDUCE conector P3 [3]
Figura 3.18: Curva fuerza-desplazamiento proyecto FIREDUCE conector P15 [Fuente: Propia]
Figura 3.19: Curva fuerza-desplazamiento proyecto REDUCE conector P15 [3]
Figura 3.20: Fuerzas actuantes en una viga compuesta con conectores desmontables [3]
Figura 3.21: Esquema de instrumentación para obtención de curva fuerza-deslizamiento para el proyecto FIREDUCE
Figura 3.22: Curva fuerza-deslizamiento relativo proyecto FIREDUCE conector P3 [Fuente: Propia] 40
Figura 3.23: Curva fuerza-deslizamiento relativo proyecto FIREDUCE conector P15 [Fuente: Propia]. 40
Figura 3.24: Curva fuerza-deslizamiento viga proyecto REDUCE [3] 41
Figura 3.25: Cajeado de protección conector P3 42
Figura 3.26: Cajeado de protección conector P15 42
Figura 3.27: Configuración geométrica a temperatura elevada [Fuente: Propia]
Figura 3.28: Sección transversal tipo a temperatura elevada [Fuente: Propia]
Figura 3.29: Descripción gráfica del montaje de la protección de las vigas para el proyecto FIREDUCE
Figura 3.30: Secciones de medición45
Figura 3.31: Posicionamiento de termopares en sección tipo para conector P3
Figura 3.32: Posicionamiento de termopares en sección tipo para conector P15
Figura 3.33: Curva temperatura-tiempo madera conector P3 [Fuente: Propia]
Figura 3.34: Curva temperatura-tiempo lana de roca conector P3 [Fuente: Propia]
Figura 3.35: Curva temperatura-tiempo madera conector P15 [Fuente: Propia]
Figura 3.36: Curva temperatura-tiempo lana de roca conector P15 [Fuente: Propia]
Figura 3.37: Curva temperatura-tiempo hormigón conector P3 [Fuente: Propia]

Figura 3.38: Curva temperatura-tiempo hormigón conector P15 [Fuente: Propia]
Figura 3.39: Curva temperatura tiempo-ala superior de viga conector P3 [Fuente: Propia] 48
Figura 3.40: Curva temperatura-tiempo ala superior de viga conector P15 [Fuente: Propia]
Figura 3.41: Curva temperatura-tiempo alma viga conector P3 [Fuente: Propia]
Figura 3.42: Curva temperatura-tiempo alma viga conector P15 [Fuente: Propia]
Figura 3.43: Curva temperatura-tiempo ala inferior de viga conector P3 [Fuente: Propia]
Figura 3.44: Curva temperatura-tiempo ala inferior de viga conector P15 [Fuente: Propia]
Figura 3.45: Desprendimiento del material de protección lana de roca en la viga con conector P1550
Figura 3.46: Punto de medición de curva desplazamiento-tiempo50
Figura 3.47: Curva desplazamiento-tiempo [Fuente: Propia]51
Figura 4.1: Curva tensión-deformación del acero implementada para reproducir los ensayos del proyecto REDUCE a temperatura ambiente [3]
Figura 4.2: Curva tensión-deformación del acero implementada para reproducir los ensayos del proyecto REDUCE a temperatura ambiente
Figura 4.3: Curva tensión-deformación del hormigón implementada para reproducir los ensayos del proyecto REDUCE a temperatura ambiente [3]
Figura 4.4: Curva tensión-deformación del hormigón implementada para reproducir los ensayos del proyecto FIREDUCE a temperatura ambiente
Figura 4.5: Ley de tracción en el hormigón [31]55
Figura 4.6: Curva tensión-abertura de fisura del hormigón en el modelo numérico a temperatura ambiente
Figura 4.7: Condiciones de contorno para un cuarto de viga del proyecto REDUCE [27] 56
Figura 4.8: Condiciones de contorno para un cuarto de viga del proyecto FIREDUCE [27] 57
Figura 4.9: Aplicación de carga del modelo de elementos finitos para un cuarto de viga [27]57
Figura 4.10: Conexión de tipo "Slot" [Fuente: Propia]58
Figura 4.11: Conexión de tipo "Align" [Fuente: Propia]58
Figura 4.12: Modelo de una conexión de tipo "Slot+Align" [Fuente: Propia]
Figura 4.13: Curva Push-Out linealizada a temperatura ambiente proyecto REDUCE (conector P3) [3]
Figura 4.14: Curva Push-Out linealizada a temperatura ambiente proyecto REDUCE (conector P15) [3]59
Figura 4.15: Curvas Push-Out linealizadas con rama descendente usadas para reproducir el modelo

Página 9 de 136

numérico a temperatura ambiente proyecto REDUCE [3] 59

Figura 4.16: Curva Push-Out linealizada para reproducir el modelo numérico a temperatura ambient proyecto FIREDUCE (conector P3)	e 0
Figura 4.17: Curva Push-Out linealizada para reproducir el modelo numérico a temperatura ambient proyecto FIREDUCE (conector P15)	e 0
Figura 4.18: Mallado de viga mixta proyecto REDUCE [27]60	0
Figura 4.19: Mallado de viga mixta proyecto FIREDUCE [27]6	1
Figura 5.1: Calor específico del acero en función de la temperatura6	3
Figura 5.2: Conductividad térmica del acero en función de la temperatura6	3
Figura 5.3: Calor específico del hormigón en función de la temperatura64	4
Figura 5.4: Conductividad térmica del hormigón en función de la temperatura	4
Figura 5.5: Densidad del hormigón en función de la temperatura64	4
Figura 5.6: Conductividad térmica de la madera en función de la temperatura6	5
Figura 5.7: Calor específico de la madera en función de la temperatura6	5
Figura 5.8: Densidad de la madera en función de la temperatura6	6
Figura 5.9: Conductividad térmica de lana de roca en función de la temperatura 6	6
Figura 5.10: Viga mixta con conector P15 y desprendimiento del material lana de roca 6	7
Figura 5.11: Modelo de un cuarto de viga en análisis térmico [27]6	7
Figura 5.12: Superficie en contacto con el aire a temperatura ambiente [27]	8
Figura 5.13: Superficie expuesta al fuego [27] 66	8
Figura 5.14: Superficie interior para radiación [27]	9
Figura 5.15: Posicionamiento de termopares para medición de temperatura horno	0
Figura 5.16: Comparación de medición termopares horno con curva ISO-834	0
Figura 5.17: Superficies en contacto entre forjado y demás materiales [27]	1
Figura 5.18: Superficies en contacto entre madera y lana de roca [27]	1
Figura 5.19: Superficies en contacto entre viga y lana de roca [27]7	1
Figura 5.20: Mallado de la viga mixta a temperatura elevada [27]7	2
Figura 5.21: Esquema de flujo para simulación de modelo termo-mecánico	2
Figura 5.22: Elongabilidad térmica del acero	3
Figura 5.23: Coeficiente de expansión térmica del acero7	3
Figura 5.24: Elongabilidad térmica del hormigón7	3
Figura 5.25: Coeficiente de expansión térmica del hormigón7	3

Página 10 de 136

Figura 5.26: Factores de reducción para curva tensión-deformación de acero estructural a temperatura elevada [2]
Figura 5.27: Ecuaciones para curva tensión-deformación del acero a temperatura elevada [2]75
Figura 5.28: Curvas tensión-deformación del acero a temperatura elevada
Figura 5.29: Factores de reducción para curva tensión-deformación de hormigón a compresión a temperatura elevada [2]
Figura 5.30: Ecuaciones para curva tensión-deformación del hormigón a compresión a temperatura elevada [2]
Figura 5.31: Curva tensión-deformación del hormigón a compresión a diferentes temperaturas 77
Figura 5.32: Curva tensión-deformación del hormigón a tracción a diferentes temperaturas
Figura 5.33: Curvas Push-Out implementadas en el modelo numérico a temperatura elevada (conector P3)
Figura 5.34: Curvas Push-Out implementadas en el modelo numérico a temperatura elevada (conector P15)
Figura 6.1: Comparación de las curvas fuerza-desplazamiento numéricas y experimentales proyecto REDUCE conector P3
Figura 6.2: Comparación de las curvas fuerza-desplazamiento numéricas y experimentales proyecto REDUCE conector P15
Figura 6.3: Comparación de las curvas fuerza-desplazamiento numéricas y experimentales proyecto FIREDUCE conector P3
Figura 6.4: Comparación de las curvas fuerza-desplazamiento numéricas y experimentales proyecto FIREDUCE conector P15
Figura 6.5: Comparación de la evolución de la flecha numéricas y experimentales proyecto FIREDUCE conector P3
Figura 6.6: Comparación de la evolución de la flecha numéricas y experimentales proyecto FIREDUCE conector P15
Figura 6.7: Comparación de las curvas fuerza-deslizamiento numéricas y experimentales proyecto REDUCE conector P3
Figura 6.8: Comparación de las curvas fuerza-deslizamiento numéricas y experimentales proyecto REDUCE conector P15
Figura 6.9: Comparación de las curvas fuerza-deslizamiento numéricas y experimentales proyecto FIREDUCE conector P3
Figura 6.10: Comparación de las curvas fuerza-deslizamiento numéricas y experimentales proyecto FIREDUCE conector P15
Figura 6.11: Valores de deslizamiento a diferentes niveles de carga

Página 11 de 136

Figura 6.12: Deformaciones en perfil metálico hasta un 50% de carga máxima conector P3
Figura 6.13: Deformaciones en perfil metálico para un 75% de carga máxima conector P3 87
Figura 6.14: Deformaciones en perfil metálico hasta un 50% de carga máxima conector P15
Figura 6.15: Deformaciones en perfil metálico para un 75% de carga máxima conector P15 88
Figura 6.16: Fuerza-deslizamiento de cada perno para conector tipo P3
Figura 6.17: Fuerza-deslizamiento de cada perno para conector tipo P15 89
Figura 6.18: Comparación de las temperaturas en la madera numéricas y experimentales proyecto FIREDUCE conector P3
Figura 6.19: Comparación de las temperaturas en la madera numéricas y experimentales proyecto FIREDUCE conector P15
Figura 6.20: Comparación de las temperaturas en lana de roca numéricas y experimentales proyecto FIREDUCE conector P3
Figura 6.21: Comparación de las temperaturas en lana de roca numéricas y experimentales proyecto FIREDUCE conector P15
Figura 6.22: Comparación de las temperaturas en el hormigón numéricas y experimentales proyecto FIREDUCE conector P3
Figura 6.23: Comparación de las temperaturas en el hormigón numéricas y experimentales proyecto FIREDUCE conector P15
Figura 6.24: Comparación de las temperaturas en el ala superior de la viga numéricas y experimentales proyecto FIREDUCE conector P3
Figura 6.25: Comparación de las temperaturas en el ala superior de la viga numéricas y experimentales proyecto FIREDUCE conector P15
Figura 6.26: Comparación de las temperaturas en el alma de la viga numéricas y experimentales proyecto FIREDUCE conector P3
Figura 6.27: Comparación de las temperaturas en el alma de la viga numéricas y experimentales proyecto FIREDUCE conector P15
Figura 6.28: Comparación de las temperaturas en el ala inferior de la viga numéricas y experimentales proyecto FIREDUCE conector P3
Figura 6.29: Comparación de las temperaturas en el ala inferior de la viga numéricas y experimentales proyecto FIREDUCE conector P15
Figura 6.30: Comparación de las curvas desplazamiento-tiempo numéricas y experimentales proyecto FIREDUCE conector P3
Figura 6.31: Comparación de las curvas desplazamiento-tiempo numéricas y experimentales proyecto FIREDUCE conector P15

Página 12 de 136

Figura 6.32: Puntos para la definición de temperaturas en el conector
Figura 6.33: Curva temperatura-tiempo para conector 1 tipo P3
Figura 6.34: Curva temperatura-tiempo para conector 2 tipo P395
Figura 6.35: Curva temperatura-tiempo para conector 3 tipo P395
Figura 6.36: Curva temperatura-tiempo para conector 4 tipo P395
Figura 6.37: Curva temperatura-tiempo para conector 1 tipo P1595
Figura 6.38: Curva temperatura-tiempo para conector 2 tipo P15
Figura 6.39: Curva temperatura-tiempo para conector 3 tipo P1596
Figura 6.40: Curva temperatura-tiempo para conector 4 tipo P1596
Figura 7.1: Algoritmo simplificado propuesto para diseño de vigas mixtas acero-hormigón
Figura 7.2: Definición de grado de conexión a rasante [Fuente: Propia]
Figura 7.3: Disposición de conectores según la solicitación cortante [3]100
Figura 7.4: Sección transversal de una viga mixta 101
Figura 7.5: Diagrama carga, deslizamiento, momento para una viga mixta con conector desmontable y carga tipo coseno [3]
Figura 7.6: Comparación de momentos por carga tipo coseno y carga uniforme distribuida [3] 102
Figura 7.7: Diagrama de deformaciones de una sección mixta con conexión flexible a rasante [Fuente: Propia]
Figura 7.8: Diagrama de deformaciones de una sección mixta con conexión rígida a rasante [Fuente: Propia]
Figura 7.9: Algoritmo para la determinación del momento elástico resistente de vigas mixtas con conectores no lineales (Método 2), conocido deslizamiento final
Figura 7.10: Esquema para determinación de carga aplicada105
Figura 7.11: Determinación del esfuerzo cortante a partir de la distribución de deslizamiento con ayuda de la curva fuerza-deslizamiento [3]106
Figura 7.12: Distribución de tensiones plásticas para una viga mixta en flexión positiva y negativa [1]
Figura 7.13: Posibles distribución de tensiones para conexión total [3] 107
Figura 7.14: Posibles distribución de tensiones para conexión parcial [3]108
Figura 7.15: Algoritmo para la determinación del momento resistente de vigas mixtas con conectores no lineales (Método general)
Figura 7.16: Factor de reducción k _{flex} en función del número de conectores a rasante a lo largo de la viga [3]

Figura 7.17: Algoritmo para la determinación del momento resistente de vigas mixtas con conectores no lineales (Método simplificado)
Figura 7.18: Curva momento-desplazamiento de la viga simulada numéricamente en el proyecto FIREDUCE (conector tipo P3)
Figura 7.19: Curva momento-desplazamiento de la viga simulada numéricamente en el proyecto FIREDUCE (conector tipo P15)
Figura 7.20: Comparación de las curvas momento-desplazamiento numéricas y analíticas (proyecto FIREDUCE conector P3)
Figura 7.21: Comparación de las curvas momento-desplazamiento numéricas y analíticas (proyecto FIREDUCE conector P15)
Figura 7.22: Comparación de las curvas momento-desplazamiento numéricas y analíticas método 2 (proyecto FIREDUCE conector P3)
Figura 7.23: Comparación de las curvas momento-desplazamiento numéricas y analíticas método 2 (proyecto FIREDUCE conector P15)
Figura 7.24: Momento plástico para conexión parcial y total (conector P3 proyecto FIREDUCE) 116
Figura 7.25: Momento plástico para conexión parcial y total (conector P15 proyecto FIREDUCE) 116
Figura 7.26: Comparación de resultados numéricos y analíticos , conector P3 a temperatura ambiente
Figura 7.27: Comparación de resultados numéricos y analíticos, conector P15 a temperatura ambiente
Figura 8.1: Algoritmo para la determinación del momento resistente de vigas mixtas sometida a fuego con conectores tradicionales o desmontables
Figura 8.2: Factor de sección para perfiles con protección de tipo cajeado [37] 119
Figura 8.3: Evolución de la temperatura de la viga de acero120
Figura 8.4: Comparación del calentamiento del perfil metálico (numérico frente a analítico), conector P3120
Figura 8.5: Comparación del calentamiento del perfil metálico (numérico frente a analítico), conector P15120
Figura 8.6: Distribución de tensiones asumiendo que el ENP está en el forjado y es conexión total [2]
Figura 8.7: Temperaturas asumidas según aproximaciones del 80 % y 40 % para el conector y forjado respectivamente
Figura 8.8: Comparación temperaturas analíticas y simuladas en el plano de los conectores (Conector
P3)

Análisis del comportamiento a flexión a temperatura ambiente y en situación de incendio de vigas mixtas acero-hormigón con conectores desmontables

Figura 8.9: Comparación temperaturas analíticas y simuladas en el plano de los conectores (Conector P15)
Figura 8.10: Comparación temperaturas analíticas y simuladas para el forjado (Conector P3) 123
Figura 8.11: Comparación temperaturas analíticas y simuladas para el forjado (Conector P15) 123
Figura 8.12: Momento resistente numérico para un tiempo de exposición al fuego de 30 minutos (Conector P3)
Figura 8.13: Momento resistente numérico para un tiempo de exposición al fuego de 60 minutos (Conector P3)
Figura 8.14: Momento resistente numérico para un tiempo de exposición al fuego de 90 minutos (Conector P3)
Figura 8.15: Momento resistente numérico para un tiempo de exposición al fuego de 120 minutos (Conector P3)
Figura 8.16: Momento resistente numérico para un tiempo de exposición al fuego de 30 minutos (Conector P15)
Figura 8.17: Momento resistente numérico para un tiempo de exposición al fuego de 60 minutos (Conector P15)
Figura 8.18: Momento resistente numérico para un tiempo de exposición al fuego de 90 minutos (Conector P15)
Figura 8.19: Momento resistente numérico para un tiempo de exposición al fuego de 120 minutos (Conector P15)
Figura 8.20: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 30 minutos (conector P3)
Figura 8.21: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 60 minutos (conector P3)
Figura 8.22: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 90 minutos (conector P3)
Figura 8.23: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 120 minutos (conector P3)
Figura 8.24: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 30 minutos (conector P15)
Figura 8.25: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 60 minutos (conector P15)
Figura 8.26: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 90 minutos (conector P15)

Figura 8.27: Comparación de resultados numéricos y analíticos para tiempo de exposición a fueg	go de
120 minutos (conector P15)	. 130

Listado de tablas

Tabla 3.1: Parámetros de ductilidad de las conexiones a rasante ensayadas 31
Tabla 3.2: Materiales proyecto FIREDUCE 35
Tabla 3.3: Materiales proyecto REDUCE 36
Tabla 3.4: Resumen de resultados de las curvas fuerza-desplazamiento 38
Tabla 3.5: Criterios de parada en ensayo de resistencia a fuego 41
Tabla 3.6: Carga de aplicación en ensayo de fuego 51
Tabla 4.1: Datos del acero procedente del proyecto REDUCE
Tabla 4.2: Datos del acero procedente del proyecto FIREDUCE 53
Tabla 4.3: Datos del hormigón procedente del proyecto REDUCE
Tabla 4.4: Datos del hormigón procedente del proyecto FIREDUCE
Tabla 4.5: Datos del hormigón procedentes del REDUCE 55
Tabla 4.6: Datos del hormigón procedentes del FIREDUCE 55
Tabla 4.7: Magnitud y distancia de carga usada para validación de modelos numéricos
Tabla 5.1: Conductividad térmica de la madera en función de la temperatura
Tabla 5.2: Calor específico de la madera en función de la temperatura
Tabla 5.3: Densidad de la madera en función de la temperatura66
Tabla 5.4: Valores en módulo "Step" para el análisis térmico considerando cada tipo de conector 67
Tabla 5.5: Parámetros definidos en el paso de carga "sin protección"
Tabla 5.6: Valores definidos para interacción entre superficies 71
Tabla 5.7: Valores ingresados en la simulación numérica para el comportamiento elástico del acero 74
Tabla 5.8: Valores en módulo "Step" para el análisis termo-mecánico considerando cada tipo de conector
Tabla 5.9: Cargas aplicadas en la simulación numérica para el modelo térmo-mecánico
Tabla 7.1: Grado de conexión a rasante 113
Tabla 7.2: Resultados para obtención de momento elástico resistente y flecha elástica por método 1
Tabla 7.3: Valores de N_c para cada uno de los conectores del proyecto FIREDUCE 115
Tabla 7.4: Momento plástico para conexión parcial y total
Tabla 8.1: Valores generales para la determinación del momento plástico resistente a temperatura elevada

Página 17 de 136

Análisis del comportamiento a flexión a temperatura ambiente y en situación de incendio de vigas mixtas acero-hormigón con conectores desmontables

Tabla 8.2: Valores específicos para la determinación del momento plástico resistente a temperatura elevada (Conector P3)
Tabla 8.3: Valores específicos para la determinación del momento plástico resistente a temperatura elevada (Conector P15)
Tabla 8.4: Propiedades mecánicas para la obtención de momento plástica resistente de manera numérica

1 Introducción

1.1 Motivación

Cada vez a nivel mundial toma más fuerza el concepto de "desarrollo sostenible" centrándose principalmente en la gestión de residuos. El Ministerio de Agricultura, Alimentación y Medio Ambiente de España a través del PEMAR (Plan Estatal Marco de Gestión de Residuos) [4] promueve la sustitución de una economía lineal por una economía circular para el sector de la construcción.

1 - In situ or relocation reuse; 2 - new materials; 3 - reconditioned component reuse; 4 -component reuse

Figura 1.1: Modelo lineal vs modelo circular de la vida útil de una construcción [5]

Para el caso de construcciones solo de hormigón armado el concepto de economía circular funciona en término bajo ya que lo máximo que se consigue es reutilizar una parte del árido grueso y el resto es desechado. Para el caso de estructuras metálicas funciona bastante bien el concepto de economía circular debido a que el acero es totalmente reciclable y se puede usar infinitas veces, sin embargo, los forjados de una estructura metálica son de hormigón dando como resultado una estructura mixta.

Este tipo de estructuras con los métodos tradicionales de conexión acero-hormigón le quita todas las ventajas a una estructura metálica de ser "totalmente reciclable" detalle por el cual varios años se han estudiado los llamados "conectores desmontables" siendo la solución al problema antes mencionado.

Los conectores desmontables una vez que la estructura mixta haya llegado a su vida útil permiten separar el forjado de la viga permitiendo que toda la estructura metálica recupere el concepto de "totalmente reciclable".

Otra ventaja muy importante que también otorgan estos conectores es la reutilización, es decir, cuando la estructura todavía no haya llegado a su vida útil y por alguna razón se quiere cambiar el lugar de emplazamiento, mediante estos conectores se puede separar el forjado de la viga y conservar intactos los elementos garantizando así el traslado de la estructura de un lugar a otro.

Como se ha visto los "conectores desmontables" garantizan reutilización y/o reciclaje permitiendo que subamos tres o dos niveles de familiaridad con el medioambiente en comparación con una estructura mixta con conectores tradicionales.

Figura 1.2: Pirámide jerárquica de gestión de residuos [6]

El estudio de los conectores desmontables no solo beneficia el tema de sostenibilidad, además se consigue otras muchas ventajas como es el caso de un análisis de tipo no lineal, es decir, puesto que es indispensable conocer el comportamiento prestacional de los conectores (curva fuerza-deslizamiento) permitimos ingresar a un programa comercial no solo la no linealidad de los materiales y la no linealidad geométrica sino también la curva antes dicha, con lo cual conseguimos optimizar al máximo la estructura y así ahorrar costes.

Hoy en día el acero tiene un costo muy elevado por lo cual realizar un diseño estructural no lineal es la mejor opción adicionalmente la normativa EN 1994-1-1 [1] lo da por válido ya que propone para el caso de estructuras mixtas tres tipos de análisis (elástico lineal, rígido plástico, no lineal).

Adicionalmente, el comportamiento a flexión de vigas mixtas acero-hormigón con conectores desmontables en situación de incendio es un estudio innovador pionero el cual permite conseguir dos aspectos muy importantes. El primero identifica el tiempo que resiste nuestra estructura en situación de incendio y como segundo aspecto abre puertas para que se desarrollen nuevos estudios modificando variables como pueden ser el tipo de forjado (chapa colaborante, nervados, etc), la forma de protección de la viga metálica, entre otros.

Finalmente, la falta de estudios principalmente en vigas mixtas acero-hormigón con conectores desmontables en situación de incendio ha retrasado la implementación en el sector de la construcción ya que no se cuenta con normativa que respalde la aplicabilidad.

1.2 Objeto del trabajo

El presente Trabajo Final de Máster tiene como objeto, el análisis del comportamiento a flexión de vigas mixtas acero-hormigón con conectores desmontables a temperatura ambiente y elevada por medio de ensayos experimentales, simulaciones numéricas y cálculos analíticos. Con respecto a los ensayos

experimentales, el trabajo integra los resultados obtenidos en el Instituto Universitario de Investigación de Ciencia y Tecnología del Hormigón (ICITECH) y otros realizados en la Universidad de Luxemburgo.

Este trabajo pretende aplicar conocimientos adquiridos en el Máster Universitario en Ingeniería del Hormigón, cursado en la Universitat Politècnica de València. En concreto se pondrán en práctica los conocimientos adquiridos en el ámbito de cálculo estructural, como son los obtenidos en las asignaturas "Acciones extraordinarias en estructuras de hormigón: sismo y fuego" y "Análisis no lineal de estructuras mediante el método de los elementos finitos".

Como valor añadido, este trabajo confirma la gran eficiencia de los conectores desmontables a temperatura ambiente y en situación de incendio, permitiendo la aplicabilidad en el sector de la construcción, detalle que es factible ya que el diseño estructural puede ser desarrollado mediante las ecuaciones descritas en la normativa europea EN 1994-1-2 [2].

1.3 Alcance y limitaciones

En el presente trabajo se realiza el modelado de una viga mixta acero-hormigón con conectores desmontables a temperatura ambiente y en situación de incendio mediante un software de cálculo que emplea el método de los elementos finitos, donde se busca conocer el comportamiento a flexión para su posterior comparación con los ensayos experimentales desarrollados en el marco del proyecto de investigación FIREDUCE en la Universitat Politècnica de València, así como otros resultados experimentales desarrollados en la Universidad de Luxemburgo.

Una vez validado el modelo numérico por comparación con los ensayos experimentales, se aplican las ecuaciones descritas en la normativa europea EN 1994-1-1 y EN 1994-1-2 [1,2] y la tesis doctoral de Kozma [3] para verificar su empleo en el diseño de esta tipología de vigas mixtas con conectores desmontables.

Las normativas europeas EN 1994-1-1 y EN 1994-1-2 [1,2] proponen ecuaciones las cuales están limitadas a conectores tradicionales (soldables). Es por ello que se recure a la tesis doctoral de Kozma [3], la cual propone ecuaciones para conectores con comportamiento carga-deslizamiento no-lineal, que según el autor, son aplicables para las siguientes condiciones, vigas mixtas de acero-hormigón simplemente apoyadas con secciones transversales de Clase 1 y Clase 2 según EN 1993-1-1 [7].

En dicha bibliografía sólo se consideran casos de carga simétrica: carga sinusoidal distribuida uniformemente y cargas concentradas en uno o dos puntos. Los casos de carga no simétricos pueden considerarse de forma análoga. Es importante destacar que las cuestiones de estabilidad, los efectos de la fatiga o los efectos del pretensado no se consideran.

1.4 Contribución del trabajo al cumplimiento de los ODS

La asamblea general de la Organización de las Naciones Unidas (ONU) adoptó en Septiembre de 2015 la agenda 2030, la misma que plantea 17 objetivos con 169 metas las cuales tienen como intención un plan de acción a favor de las personas, el planeta y la prosperidad, la paz universal y el acceso a la justicia.

Este trabajo aporta al cumplimiento de los objetivos de desarrollo sostenible (ODS), en concreto con los objetivos:

- ODS 9: Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación.
- ODS 11: Lograr que las ciudades y los asentamientos urbanos sean inclusivos, seguros, resilientes y sostenibles.
- ODS 12: Garantizar modalidades de consumo y producción sostenibles.
- ODS 13: Adoptar medidas urgentes para combatir el cambio climático y sus efectos.

La soldadura de los conectores tradicionales es realizada por personal especializado en el tema, razón por la cual, limita a generar fuentes de trabajo, sin embargo, los conectores desmontables no requieren de mano de obra calificada, ya que solo implica dar cierto apriete al tornillo. De esta manera se está ampliando las fuentes de trabajo.

La propuesta de conectores desmontables es un tema que innova al sector de la construcción, consiguiendo promover la industrialización y sobre todo industrialización sostenible.

La construcción mixta acero-hormigón cada vez toma más fuerza por la rapidez que se consigue al construir edificaciones. Esto ayuda mucho para lograr que haya un crecimiento urbano a igual ritmo que crece la población.

La reutilización de los elementos (forjado o viga) que otorgan los conectores desmontables aportan considerablemente al cambio climático ya que evita la creación de nuevos productos y hace que estos puedan ser utilizados en otro emplazamiento.

2 Estado del Arte

Hoy en día en el sector de la construcción cuando la obra exige rapidez las estructuras más adecuadas son las metálicas, sin embargo, los forjados siguen siendo de hormigón, lo cual no significa un problema a la hora de dimensionar o comprobar la estructura, más bien es una ventaja ya que se aprovecha solidarizando los dos materiales hormigón – acero consiguiendo que los dos materiales sean capaces de soportar las solicitaciones permitiéndonos ganar inercia sin aumentar el canto de la viga metálica y ahorro en costes, esto es el concepto de estructura mixta (ver Figura 2.2).

Figura 2.1: Viga metálica sin conector [Fuente: Propia]

Las estructuras mixtas obligadamente requieren la presencia de un conector el cual tiene la función de solidarizar los dos materiales haciendo que estos trabajen como uno solo.

2.1 Tipos de conectores a rasante

En lo que a conectores respecta se tiene conectores desmontables y conectores soldables (método tradicional) los dos son muy eficientes estructuralmente garantizando que cada material trabaje donde mejor se desempeña a compresión para el caso del hormigón y tracción para el acero.

Los dos tipos de conectores cumplen una misma función, sin embargo, el comportamiento es diferente. El comportamiento de un conector a rasante es determinado mediante un ensayo Push-Out (POT), siguiendo lo descrito en EN 1994-1-1 [1] anexo B similar a como se esquematiza en la siguiente figura.

Figura 2.3: Esquema de ensayo Push-Out [Fuente: Propia]

Página 23 de 136

Existen dos principales diferencias entre los conectores soldables y desmontables, la primera de ellas es la pretensión que tienen los conectores desmontables generando una resistencia de fricción en la curva fuerza – deslizamiento, aspecto que no se tiene en los conectores tradicionales (ver Figura 2.5); y la segunda diferencia es el deslizamiento que puede haber si un conector desmontable está protegido o no a través de un cilindro metálico (ver Figura 2.15).

Figura 2.4: Comportamiento típico cargadeslizamiento para conectores tradicionales [1]

Figura 2.5: Comportamiento típico cargadeslizamiento para conectores desmontables [23]

Estas diferencias están gobernadas directamente con la ductilidad del conector, según EN 1994-1-1 [1] son conectores dúctiles aquellos que tienen una capacidad de deslizamiento de al menos 6 mm. Sin embargo, esto está pensado en los conectores tradicionales ya que estos alcanzan su fuerza máxima con un deslizamiento entre 1-2 mm y la mantienen a este nivel durante al menos 6 mm, lo cual significa que tienen una rama de plastificación de al menos 5 mm (ver Figura 2.4). Si bien los conectores desmontables analizados en este trabajo (como se verá posteriormente) superan los 6 mm, estos no poseen la rama de plastificación antes mencionada, por lo cual no es posible evaluar según este criterio la ductilidad de los conectores desmontables.

Existe formulaciones como la de Sause y Fahnestock [8] para caracterizar la ductilidad de un conector en general (D), la cual se basa en el deslizamiento elástico (δ_{el}) y deslizamiento último (δ_{u}).

$$D = \frac{\delta_u - \delta_{el}}{\delta_{el}} \tag{2.1}$$

El deslizamiento elástico (δ_{el}) según EN 1994-1-1 [1] Anexo A.3 corresponde al obtenido a 0.7 P_{Rk}, donde P_{Rk} es 0.9 * Fuerza máxima (Pu) obtenida según ensayo, el deslizamiento último (δ_u) corresponde al obtenido según el ensayo con fuerza igual a P_{Rk}, ciertos autores como por ejemplo Oehlers y Bradfrod [9] indican que un grado aceptable de ductilidad (D) es entre 3 a 5 mm.

2.2 Conectores a rasante desmontables

2.2.1 Conectores a rasante parcialmente desmontables

Se llaman conectores parcialmente desmontables aquellos que solo permiten que sea reutilizable la viga ya que no es posible desprender el perno del forjado debido a que este está embebido. Esta dificultad provoca que, al transportar el forjado de un lugar a otro, la parte saliente del perno (sobre

todo la rosca) sea muy vulnerable a daños resultando ser como se mencionó al inicio del párrafo solo reutilizable la viga.

2.2.1.1 Conectores a rasante parcialmente desmontables (embebidos)

Las primeras investigaciones sobre conectores embebidos parcialmente desmontables fueron realizadas por Dallaman [10] en 1968 utilizando el siguiente modelo de conexión. En éstese observa que los pernos son sujetos por un posicionador (*"wire spring"*), el cual hace que al momento de verter el hormigón in situ los pernos no sufran movimiento.

Figura 2.6: Modelo de conexión desmontable utilizada por Dallaman [10]

Posterior a Dallaman existe la investigación por Dedic y Klaiber [11] en 1984 el cual tiene como innovación la utilización de forjados prefabricados. El primer modelo constó de huecos en el forjado prefabricado, por el cual se instalan a posteriori los pernos y luego se rellena con grout, dejando al perno embebido (ver Figura 2.7 izquierda). El segundo modelo el perno está embebido dentro del forjado prefabricado, pero en la parte superior se deja un hueco, el cual será apretado a posteriori y rellenado con grout (ver Figura 2.7 derecha).

Figura 2.7: Modelo de conexión desmontable utilizada por Dedic y Klaiber [11]

Sedlacek [12] en 2003 también contribuyó a la investigación de conectores desmontables embebidos, siendo su principal objetivo mejorar la capacidad de resistencia a rasante con la inclusión de una placa metálica. Se comprobó en las pruebas push-out que la resistencia a rasante mejoró totalmente en

Página 25 de 136

comparación con las otras investigaciones que se tenía hasta la actualidad lo cual permitió describir ecuaciones.

Figura 2.8: Modelo de conexión desmontable utilizada por Sedlacek [12]

Los proyectos de investigación FIREDUCE (en la Universitat Politècnica de València) y REDUCE, realizado en la Universidad de Luxemburgo (respaldado por la tesis doctoral de Kozma [3]) utilizaron el siguiente conector (Sistema P15), el cual consta de dos pernos uno superior embebido y otro inferior desmontable unidos por un acoplador mecánico integrado. Es importante que el grado del acoplador mecánico sea superior al de los tornillos para garantizar que, si hay un daño en la rosca al instante del pretensado, este se genere en el tornillo inferior el cual es remplazable y no en el acoplador, el sistema también consta de un perfil metálico en L sin soldar al acoplador.

El apriete de este sistema se realiza por la parte de inferior.

Figura 2.9: Sistema de conector desmontable P15 [Fuente: Propia]

Existen otras investigaciones como Pavlovic [13] en 2013, Moynihan y Alwood [14] en 2014, Lam et al. [15] en 2015, Rehaman et al. [16] en 2016 y Wang et al. [17] en 2017 las cuales han contribuido con el desarrollo del conocimiento sobre el comportamiento de conectores desmontables embebidos.

2.2.1.2 Conectores a rasante parcialmente desmontables (pasantes)

Las primeras investigaciones sobre conectores parcialmente desmontables pasantes fueron realizadas por Marshall [18] en 1971 utilizando el siguiente modelo:

Figura 2.10: Modelo de conexión desmontable utilizada por Marshall [18]

Roik y Buerkner [19] con un modelo de conexión desmontable pasante estudiaron a profundidad el coeficiente de fricción entre el acero y hormigón prefabricado con un modelo de conexión desmontable pasante, obteniendo una variación del coeficiente entre 0.501 y 0.555.

Figura 2.11: Modelo de conexión desmontable utilizada por Roik y Buerkner [19]

Chen et al. [20] incluyeron tubos de PVC en su modelo de conexión desmontable pasante y describieron el comportamiento de un conector desmontable, indicando que está compuesto por tres ramas:

- a) La primera es la interacción completa entre el acero y hormigón hasta que se logra romper la resistencia de fricción.
- b) La segunda se produce el deslizamiento del perno hasta que entra en contacto con la superficie interna del orificio del perno.
- c) La tercera corresponde a la deformación por cortante hasta que se alcance la máxima resistencia de cortante.

Figura 2.12: Modelo de conexión desmontable utilizada por Chen et al. [20]

2.2.2 Conectores a rasante totalmente desmontables

Los conectores a rasante totalmente desmontables son aquellos que permiten hacen a la estructura mixta completamente reutilizable, ya que el perno puede también desprenderse del sistema.

Becker [21] fue el pionero en conectores a rasante totalmente desmontables desarrollando el siguiente modelo e indicando como una posible conexión para aparcamientos.

Figura 2.13: Modelo de conexión desmontable utilizada por Becker [21]

La empresa Krupp-Druckenmüller GmbH en Alemania desarrolló un sistema similar, al cual lo llamó Krupp-Montex [22], este modelo fue aplicado en aparcamientos en la década de 1970.

Figura 2.14: Modelo de conexión desmontable utilizada por Krupp-Montex [22]

Los citados proyectos de investigación FIREDUCE y REDUCE, utilizaron también el conector P3, el cual utiliza un cilindro metálico, evitando así el contacto con el hormigón para no obtener pérdidas de pretensión por los efectos de fluencia y retracción del hormigón. El perfil metálico en L soldado al

Página 28 de 136

cilindro proporciona protección a los bordes del forjado durante toda su vida útil. La placa superior (también soldada al cilindro) sirve de ayuda para colocar los moldes para generar el vacío en el hormigón y así evitar que la cabeza del perno quede fuera del forjado.

Este sistema es más seguro que el sistema P15 (ver Figura 2.9) ya que el apriete se hace desde la parte de arriba, sin embargo, la elaboración es más compleja y suele ser aplicado en la industria de prefabricación, pero se debe tener mucho cuidado con las tolerancias.

Figura 2.15: Sistema de conector desmontable P3 [Fuente: Propia]

3 Ensayos experimentales existentes

3.1 Ensayos sobre conectores a rasante desmontables a temperatura ambiente

Como se vio en el capítulo 2.2, existen varios tipos de conectores a rasante desmontables y cada uno de ellos con sus ensayos experimentales, sin embargo, para este trabajo enfocamos las investigaciones pertenecientes al proyecto FIREDUCE en la Universitat Politècnica de València y al proyecto REDUCE, realizado en la Universidad de Luxemburgo, respaldado por la tesis doctoral de Kozma [3]. Los tipos de conectores ensayados en estos proyectos son los sistemas P3 y P15 (ver Figura 2.15 y Figura 2.9).

Los resultados de los ensayos Push-Out (ver Figura 2.3), necesarios para caracterizar el comportamiento a rasante de estos conectores, se presentan a continuación:

Figura 3.1: Curvas Push-Out obtenidas experimentalmente a temperatura ambiente proyecto REDUCE (conector P3) [3]

Figura 3.3: Curvas Push-Out obtenidas experimentalmente a temperatura ambiente proyecto FIREDUCE (conector P3) [23]

Figura 3.2: Curvas Push-Out obtenidas experimentalmente a temperatura ambiente proyecto REDUCE (conector P15) [3]

Figura 3.4: Curvas Push-Out obtenidas experimentalmente a temperatura ambiente proyecto FIREDUCE (conector P15) [23]

De las curvas fuerza-deslizamiento se puede obtener la fuerza rasante máxima que soportan los conectores, la resistencia de fricción, el deslizamiento interior y el deslizamiento máximo que alcanza cada conector (ver Figura 2.5).

Conocidos los resultados, se obtiene la media y se aplica la ecuación **¡Error! No se encuentra el origen d e la referencia.**, determinando se la capacidad de ductilidad de los conectores.

Página 30 de 136

Prueba	Pu (kN)	0.9*Pu (kN)	0.9*0.7*Pu (kN)	δ _{el} (mm)	δ _u (mm)	D
P3-FIREDUCE	148.2	133.4	93.4	4	7.9	1
P3-REDUCE	144.4	129.9	91	5.8	9.5	0.6
P15-FIREDUCE	159.7	143.7	100.6	1.7	6.3	2.8
P15-REDUCE	141.6	127.4	89.2	3.9	7.6	1

Tabla 3.1: Parámetros de ductilidad de las conexiones a rasante ensayadas

Como se puede ver, la ductilidad en ningún caso está dentro del rango de los valores mencionados anteriormente (3-5 mm), por lo que no se pueden considerar como conectores dúctiles. Sin embargo, y según la categorización propuesta por Bartschi [24], pertenecen a "conectores flexibles-frágiles". Cabe mencionar que los conectores tradicionales según esta categorización pertenecen a "rígidos-dúctiles".

Figura 3.5: Comportamientos Push-Out idealizados típicos [24]

3.2 Ensayos sobre conectores a rasante desmontables a temperatura elevada

El comportamiento de los conectores a temperatura elevada se obtiene primeramente calentando la cámara de ensayo hasta que los pernos alcancen una temperatura objetivo en la interfaz donde se une el forjado y el perfil. A continuación, se aplica la carga con el mismo ensayo Push-Out (POT) descrito a temperatura ambiente.

La investigación perteneciente al proyecto FIREDUCE en la Universitat Politècnica de València [23] obtuvo los siguientes resultados.

Análisis del comportamiento a flexión a temperatura ambiente y en situación de incendio de vigas mixtas acero-hormigón con conectores desmontables

Figura 3.6: Curvas Push-Out a temperatura elevada conector P3 [23]

Figura 3.7: Curvas Push-Out a temperatura elevada conector P15 [23]

* Cabe mencionar que el resultado obtenido a 500 °C para el conector P3 se ha considerado como fallido ya que su comportamiento es diferente al esperado, es decir, hubo un fallo prematuro durante la realización del ensayo.

Se observó en la Figura 3.6 y Figura 3.7 que la fuerza rasante experimenta una disminución significativa a medida que aumenta la temperatura especialmente cuando se alcanza una temperatura de 500 °C, esta disminución de fuerza provoca un mayor deslizamiento haciendo que el conector tengo un fallo más dúctil.

3.3 Ensayos sobre vigas mixtas acero - hormigón con conectores a rasante desmontables a temperatura ambiente

Una vez caracterizado el comportamiento de los conectores a temperatura ambiente y elevada (capítulos 3.1 y 3.2) se comprueba el desempeño de éstos en las vigas. Para ello se realiza un ensayo a flexión a cuatro puntos en elementos de 4 m aproximadamente.

Figura 3.8: Esquema de ensayo a flexión a cuatro puntos

Figura 3.9: Ensayo a flexión a cuatro puntos proyecto FIREDUCE

Existen muchas investigaciones sobre el comportamiento a flexión de vigas mixtas acero-hormigón con conectores desmontables a temperatura ambiente. Sin embargo, este trabajo se enfoca en las mismas investigaciones descritas en los conectores. Por un lado, utilizando los resultados del proyecto de investigación FIREDUCE en la Universitat Politècnica de València y por otro del proyecto REDUCE, realizado en la Universidad de Luxemburgo y respaldado por la tesis doctoral de Kozma [3].

La configuración geométrica y de materiales usados en cada proyecto se muestra a continuación.

Análisis del comportamiento a flexión a temperatura ambiente y en situación de incendio de vigas mixtas acero-hormigón con conectores desmontables

Figura 3.10: Configuración geométrica proyecto FIREDUCE a temperatura ambiente [Fuente: Propia]

Figura 3.11: Sección transversal tipo proyecto FIREDUCE a temperatura ambiente [Fuente: Propia]

Análisis del comportamiento a flexión a temperatura ambiente y en situación de incendio de vigas mixtas acero-hormigón con conectores desmontables

Figura 3.12: Rigidizadores y sección transversal de vigas ensayadas para el proyecto FIREDUCE

Figura 3.13: Conectores P3 usados en el proyecto FIREDUCE

Tabla 3.2: Materiales proyecto FIREDUCE

Parámetro	Valor
Grado de acero del perfil metálico	S355
Conectores	M20 - grado 8.8
Resistencia de hormigón	HA-40

Figura 3.14: Configuración geométrica proyecto REDUCE a temperatura ambiente [Fuente: Propia]

Figura 3.15: Sección transversal tipo proyecto REDUCE a temperatura ambiente [Fuente: Propia]

Página 35 de 136

Tabla 3.3:	Materiales	provecto	REDUCE
10010 3.5.	materiales	proyecto	NEDOCE

Parámetro	Valor
Grado de acero del perfil metálico	S355
Conectores	M20 - grado 8.8
Resistencia de hormigón	HA-55

Las variables de análisis a la hora de evaluar el comportamiento a flexión de una estructura mixta son múltiples, sin embargo, se pueden destacar dos importantes: la curva fuerza-desplazamiento y la curva fuerza-deslizamiento de la viga mixta. Estos dos aspectos son clave a la hora de entender el comportamiento a flexión.

3.3.1 Curvas Fuerza-Desplazamiento

Las curvas fuerza-desplazamiento se obtienen a través del ensayo a flexión a cuatro puntos (ver Figura 3.8). A continuación, se presentan los resultados para cada proyecto con sus respectivos conectores.

Figura 3.16: Curva fuerza-desplazamiento proyecto FIREDUCE conector P3 [Fuente: Propia]

Figura 3.17: Curva fuerza-desplazamiento proyecto REDUCE conector P3 [3]

Figura 3.18: Curva fuerza-desplazamiento proyecto FIREDUCE conector P15 [Fuente: Propia]

Figura 3.19: Curva fuerza-desplazamiento proyecto REDUCE conector P15 [3]

Proyecto	Conector	Carga máxima LVDT 2 (kN)	Desplazamiento LVDT 2 (mm)
	Р3	987.43	75.78
FIREDUCE	P15	1056.63	88.06
	P3	600.36	196.14
REDUCE	P15	570.93	133.91

Tabla 3.4: Resumen de resultados de las curvas fuerza-desplazamiento

La curva fuerza-desplazamiento indica la carga máxima que soporta la estructura y el desplazamiento vertical (comúnmente llamada flecha). Esta variable (como se mencionó anteriormente) es muy importante ya que también muestra si algún conector llegó a fallar provocando la pérdida de rigidez a la estructura.

3.3.2 Curvas Fuerza-Deslizamiento

Debido al comportamiento no-lineal de los conectores desmontables y una vez superada la resistencia a fricción (ver Figura 2.5) el conector empieza a sufrir deslizamiento provocando que el forjado se deslice sobre la viga (ver Figura 3.20), este fenómeno puede ser determinado según lo indicado posteriormente.

Figura 3.20: Fuerzas actuantes en una viga compuesta con conectores desmontables [3]

Para la obtención de las curvas fuerza – deslizamiento simplemente se añade instrumentación al ensayo a flexión y se mide en los extremos del forjado el deslizamiento del forjado, de la viga o el relativo del forjado con respecto a la viga. Para el caso concreto del proyecto REDUCE se obtuvo el deslizamiento de la viga y para el caso del proyecto FIREDUCE se obtuvo el deslizamiento relativo del forjado con respecto a la viga (ver Figura 3.21)

Figura 3.21: Esquema de instrumentación para obtención de curva fuerza-deslizamiento para el proyecto FIREDUCE

A continuación, se presentan los resultados obtenidos:

Figura 3.22: Curva fuerza-deslizamiento relativo proyecto FIREDUCE conector P3 [Fuente: Propia]

Figura 3.23: Curva fuerza-deslizamiento relativo proyecto FIREDUCE conector P15 [Fuente: Propia]

Para el caso del proyecto REDUCE las curvas fuerza-deslizamiento corresponden a los valores medios de las cuatro mediciones (LVDT4, LVDT5, LVDT6, LVDT7)

Figura 3.24: Curva fuerza-deslizamiento viga proyecto REDUCE [3]

3.4 Ensayos sobre vigas mixtas acero - hormigón con conectores a rasante desmontables a temperatura elevada

El comportamiento de las vigas mixtas acero – hormigón con conectores a rasante desmontables a temperatura elevada se determina aplicando la norma UNE-EN 1363-1 [25], la cual consiste en realizar un ensayo a flexión a cuatro puntos similar a temperatura ambiente, sin embargo, es importante destacar dos consideraciones:

- a) El porcentaje de carga que se aplica previo a la exposición a fuego está especificado en la normativa EN 1991-1-2 [26] y varía en función de la relación entre cargas permanentes y variables pero nunca será superior al 70%.
- b) El criterio de parada del ensayo, el cual puede deberse al desplazamiento límite o a la velocidad de deformación límite.

Límite	Ecuación	Resultado
Desplazamiento (mm)	$D = \frac{L^2}{400 d}$	86.47
Velocidad (mm/min)	$\frac{dD}{dt} = \frac{L^2}{9000 d}$	3.84

Tabla 3.5: Criterios de parada en ensayo de resistencia a fuego

Donde:

L: Luz de la viga = 4200 mm d: Canto total = 510 mm

La única investigación realizada hasta la fecha para caracterizar el comportamiento a flexión de vigas mixtas acero-hormigón con conectores desmontables a temperatura elevada es la perteneciente al proyecto de investigación FIREDUCE, llevado a cabo en la Universitat Politècnica de València.

En dicha investigación se utilizaron los mismos conectores desmontables (P3, P15) e iguales materiales que en los ensayos a temperatura ambiente. A fin de mejorar el comportamiento frente al fuego de las vigas, se consideraron dos modificaciones:

La primera se añadió a la sección transversal un cajeado de protección, el cual consta de un panel de madera y un aislamiento de lana de roca (ver Figura 3.25 y Figura 3.26) y la segunda debido a la configuración particular del horno donde se realizaron los ensayos a temperatura elevada, la distancia entre apoyos aumentó de 4 m a 4.2 m.

Figura 3.25: Cajeado de protección conector P3

Figura 3.26: Cajeado de protección conector P15

Figura 3.28: Sección transversal tipo a temperatura elevada [Fuente: Propia]

La madera externa sirve como primera capa de protección a la viga metálica, con un espesor de 18 mm y longitudinalmente se extiende desde el centro de vano 2 m a cada lado. El material lana de roca es la segunda capa de protección y es el mejor aislante térmico, con un espesor de 30 mm, y al igual que la madera, se extiende desde el centro de vano 2 m a cada lado. La madera interior no colabora con el sistema de protección y solo sirve de sujeción para la madera exterior.

(a)

(b)

(c)

Figura 3.29: Descripción gráfica del montaje de la protección de las vigas para el proyecto FIREDUCE

Página 44 de 136

Las variables de análisis son limitadas debido a que la instrumentación usada para temperatura ambiente no puede emplearse a temperatura elevada, y por ende, la única instrumentación posible son los termopares. Éstos' proporcionan el dato de la evolución de temperatura con respecto al tiempo. Adicionalmente, se tiene las curvas Fuerzas-deslizamiento a diferentes temperaturas, y el desplazamiento del vano central con respecto al tiempo.

3.4.1 Temperatura de los materiales

La evolución de temperatura con respecto al tiempo se determinó a través de termopares en varias secciones de la viga, así como en cada sección en diversos puntos tal como se indican en el siguiente esquema:

Figura 3.30: Secciones de medición

Figura 3.31: Posicionamiento de termopares en sección tipo para conector P3

Figura 3.32: Posicionamiento de termopares en sección tipo para conector P15

A continuación, se presentan los resultados obtenidos que corresponden a la media de las dos mediciones a excepción de WU, WL, BFC y TL

Figura 3.33: Curva temperatura-tiempo madera conector P3 [Fuente: Propia]

Figura 3.35: Curva temperatura-tiempo madera conector P15 [Fuente: Propia]

Figura 3.36: Curva temperatura-tiempo lana de roca conector P15 [Fuente: Propia]

Figura 3.34 y Figura 3.36 (las cuales corresponden a la evolución de la temperatura en el material lana de roca) son idénticas a las Figura 3.33 y Figura 3.35 a partir de los 15 minutos aproximadamente. Esto significa que la madera únicamente actuó como material protector durante ese tiempo y a partir de ahí el único material protector fue la lana de roca.

Adicionalmente, los diferentes puntos y las diferentes secciones de medición tienen las temperaturas semejantes, lo cual permite concluir que tanto la madera como la lana de roca tienen la misma temperatura en toda su superficie.

Figura 3.37: Curva temperatura-tiempo hormigón conector P3 [Fuente: Propia]

'E®

Figura 3.38: Curva temperatura-tiempo hormigón conector P15 [Fuente: Propia]

Página 47 de 136

Como es conocido, el hormigón tiene muy baja conductividad térmica y esto se observa en las Figura 3.37 y Figura 3.38 (de la parte inferior del forjado) la cual es aquella que está expuesta a fuego y alcanza aproximadamente 400 °C pero la parte superior alcanza 100 °C. Esto sucede en tan solo 150 mm de canto de forjado.

La temperatura es semejante en las diferentes secciones, lo cual permite concluir que a lo largo del forjado la temperatura es la misma.

Los registros de temperatura en la viga se determinó en tres secciones alas superior, alma y ala inferior, a pesar que se conoce que el acero es un material altamente conductor lo cual hace que todo el perfil este a una temperatura uniforme. En estructuras mixtas acero-hormigón debido a la presencia del forjado esto no siempre es siempre generandose un gradiente de temperaturas.

> 900 800

Figura 3.39: Curva temperatura tiempo-ala superior

de viga conector P3 [Fuente: Propia]

A continuación se muestra el registro de temperaturas obtenidos:

Figura 3.40: Curva temperatura-tiempo ala superior de viga conector P15 [Fuente: Propia]

Figura 3.41: Curva temperatura-tiempo alma viga conector P3 [Fuente: Propia]

Figura 3.42: Curva temperatura-tiempo alma viga conector P15 [Fuente: Propia]

Figura 3.43: Curva temperatura-tiempo ala inferior de viga conector P3 [Fuente: Propia]

Figura 3.44: Curva temperatura-tiempo ala inferior de viga conector P15 [Fuente: Propia]

La temperatura del ala inferior es muy similar a la del alma para los dos casos tipos de conectores, pero existe una diferencia aproximada de 100 °C entre el alma y el ala superior debido a lo comentado anteriormente.

Página 49 de 136

Las temperaturas para el caso del conector P15 a partir de 100 minutos en la sección 3 sufren un incremento importante de temperatura. Esto se debe a que hubo desprendimiento del material de protección lana de roca provocando que el perfil entre en contacto directo con el fuego.

Figura 3.45: Desprendimiento del material de protección lana de roca en la viga con conector P15

Al igual que en el hormigón, la temperatura es semejante en las diferentes secciones, lo cual permite concluir que a lo largo del perfil metálico la temperatura es la misma.

3.4.2 Curvas Desplazamiento-Tiempo

El desplazamiento o flecha en el vano central de la viga con respecto al tiempo se obtuvo por la parte exterior del horno, es decir, en la parte superior de la viga mixta. Tal como se indica en la siguiente figura, esto es debido a que la instrumentación no pudo ser introducida en el horno de alta temperatura.

Figura 3.46: Punto de medición de curva desplazamiento-tiempo

A continuación, se presentan los resultados obtenidos:

Figura 3.47: Curva desplazamiento-tiempo [Fuente: Propia]

La curva desplazamiento-tiempo es muy útil para conocer el desplazamiento que tiene el sistema y el tiempo de exposición a fuego que resiste. El desplazamiento inicial corresponde al porcentaje de carga aplicado a temperatura ambiente (64% de carga máxima para el conector P3 y 66% de carga máxima para el P15) y el desplazamiento límite viene determinado según Tabla 3.5.

Tabla 3.6: Cargo	de a	aplicación	en	ensayo	de	fuego
------------------	------	------------	----	--------	----	-------

Conector	Carga máxima en frío (kN)	Carga en fuego (kN)	Desplazamiento inicial (mm)
Р3	1000.38	645.04	18.7
P15	1038.19	683	18.6

4 Simulaciones numéricas a temperatura ambiente

Las investigaciones vistas en los capítulos 3.2 y 3.4 se replicaron numéricamente mediante el software de elementos finitos Abaqus [27]. En este capítulo se detallan los pasos a seguir para la obtención de resultados, sin embargo, la validación del modelo numérico se describe en el capítulo 6.

El proyecto REDUCE realizado en la Universidad de Luxemburgo, respaldado por la tesis doctoral de Kozma [3] cuenta con simulaciones numéricas de los ensayos a temperatura ambiente, sin embargo, en este trabajo se tomaron como referencia dichas simulaciones que sirvieron como punto de partida para las simulaciones numéricas del proyecto FIREDUCE de la Universitat Politècnica de València.

4.1 Definición geométrica

En los dos proyectos se modeló únicamente un cuarto de viga ya que es simétrica en las dos direcciones. La geometría tanto de la sección transversal como el alzado de las vigas ensayadas para cada proyecto de investigación se presenta de la Figura 3.10 a la Figura 3.15.

4.2 Definición de materiales

La curva tensión-deformación del acero empleada para reproducir los ensayos del proyecto REDUCE consta de los valores de la tabla siguiente, los cuales fueron obtenidos a través del ensayo de tracción uniaxial.

Acero			
Propiedad	Valor	Unidades	
fy	381.8	MPa	
fu	467.7	MPa	
Es	188.5	GPa	
E	1.885	MPa	
ε _u	0.35		

Tabla 4.1: Datos del acero procedente del proyecto REDUCE

Figura 4.1: Curva tensión-deformación del acero implementada para reproducir los ensayos del proyecto REDUCE a temperatura ambiente [3]

El modelo constitutivo del acero para los ensayos del proyecto FIREDUCE se eligió a partir de un análisis de sensibilidad, donde se comparó el modelo propuesto por la normativa EN 1993-1-1 [7] y el modelo propuesto por Giuffre-Menegotto-Pinto [28].

El modelo que mejor se ajustó fue el de Giuffre-Menegotto-Pinto [28], el cual es descrito por la ecuación (4.1). Para ello se requiere conocer el valor de E_I (Módulo elástico endurecido) que según

Ádány [29] varía entre $E_s/100$ a $E_s/1000$ siendo E_s : Módulo elástico, y adicionalmente el exponente R (que es el radio de la curva) que varía entre 2.5 a 5 según los autores de la propuesta.

$$\sigma^* = (1-b) * \frac{\varepsilon^*}{(1+\varepsilon^{*R})^{\frac{1}{R}}} + b * \varepsilon^*$$
(4.1)

Donde:

$$\sigma^* = \frac{\sigma}{f_y} \qquad \varepsilon^* = \frac{\varepsilon}{\varepsilon_y} \qquad b = \frac{E_l}{E_s}$$

Tabla 4.2: Datos del acero procedente del

Figura 4.2: Curva tensión-deformación del acero implementada para reproducir los ensayos del proyecto REDUCE a temperatura ambiente

El comportamiento del hormigón se definió según el modelo de plasticidad de Abaqus "Concrete damaged plasticity (CDP)", donde los efectos de fluencia y retracción no se tuvieron en cuenta durante el análisis.

La curva tensión-deformación a compresión empleada para reproducir los ensayos del proyecto REDUCE siguió la formula dada por la normativa EN 1992-1-1 [30], ecuación (4.2), donde la rama descendente se describe por una relación lineal.

$$\frac{\sigma_c}{f_c} = -\left(\frac{k*\eta - \eta^2}{1 + (k-2)*\eta}\right) \tag{4.2}$$

Donde:

$$\eta = \frac{\varepsilon_c}{\varepsilon_{c1}} \qquad k = 1.05 * E_{cm} * \varepsilon_{c1} / f_c$$

Tabla 4.3: Datos del hormigón procedente del proyecto REDUCE

UNIVERSITAT

POLITÈCNICA De València

Hormigón			
Propiedad	Valor	Unidades	
fc	54.41	MPa	
Ecm	40	GPa	
ε _{c1}	0.00253		
€cu1	0.0032		

Figura 4.3: Curva tensión-deformación del hormigón implementada para reproducir los ensayos del proyecto REDUCE a temperatura ambiente [3]

La curva tensión-deformación a compresión empleada para reproducir los ensayos del proyecto FIREDUCE se basa en el CEB-FIP-Model Code 2010 [31] ,el cual sigue la misma ecuación (4.2) pero el valor de "k" es obtenido mediante la ecuación (4.3)(4.3).

La rama descendente fue descrita por una relación lineal.

$$k = \frac{E_{ci}}{E_{c1}} \tag{4.3}$$

Tabla 4.4: Datos del hormigón procedente del proyecto FIREDUCE

Hormigón			
Propiedad	Valor	Unidades	
fc	40	MPa	
Eci	36.3	GPa	
Ec1	20	GPa	
ε _{c1}	0.0024		
€ _{cu1}	0.0032		

Figura 4.4: Curva tensión-deformación del hormigón implementada para reproducir los ensayos del proyecto FIREDUCE a temperatura ambiente

El comportamiento a tracción del hormigón se basa en la propuesta de energía de fractura tal como describe el CEB-FIP-Model Code 2010 [31], ecuación (4.4).

$$\sigma_{ct} = f_{ctm} * \left(1 - 0.8 * \frac{w}{w_1}\right) para \ w \le w_1$$

$$\sigma_{ct} = f_{ctm} * \left(1 - 0.8 * \frac{w}{w_1}\right) para \ w \le w_1$$

$$\sigma_{ct} = f_{ctm} * \left(0.25 - 0.05 * \frac{w}{w_1}\right) para \ w_1 < w \le w_c$$

$$\sigma_{ct} = f_{ctm} * \left(0.25 - 0.05 * \frac{w}{w_1}\right) para \ w_1 < w \le w_c$$

$$\sigma_{ct} = f_{ctm} * \left(0.25 - 0.05 * \frac{w}{w_1}\right) para \ w_1 < w \le w_c$$

$$\sigma_{ct} = f_{ctm} * \left(0.25 - 0.05 * \frac{w}{w_1}\right) para \ w_1 < w \le w_c$$

Figura 4.6: Curva tensión-abertura de fisura del hormigón en el modelo numérico a temperatura ambiente

Tabla 4.5: Datos del hormigón procedentes del REDUCE

Hormigón			
Propiedad Valor Unidade			
f _{ctm}	4.31	MPa	
GF	0.15	N/mm	
W1	0.035	mm	
Wc	0.17	mm	

Tabla 4.6: Datos del hormigón procedentes del FIREDUCE

Hormigón			
Propiedad	Valor	Unidades	
f _{ctm}	3.51	MPa	
GF	0.147	N/mm	
W1	0.042	mm	
Wc	0.21	mm	

El modelo "Concrete damaged plasticity (CDP)" adicionalmente requiere la definición de los siguientes parámetros para un análisis de esfuerzos triaxiales :

- i. El ángulo de dilatancia se tomó como ψ =36° según lo recomendado por Pavlović [13]
- ii. La excentricidad del potencial de flujo se fijó en ε=0.1 recomendado por Abaqus [27]
- iii. La relación de la resistencia a compresión biaxial y uniaxial se tomó como σ_{b0}/σ_{c0} = 1.2 como se indica en CEB-FIP-Model Code 2010 [31]
- iv. El valor de la superficie de fluencia en el plano desviador K= 2/3 recomendado por Abaqus [27]
- v. El parámetro de viscosidad se definió como µ=0.001 recomendado por Abaqus [27]

4.3 Condiciones de contorno

Las vigas se modelaron como simplemente apoyadas. Para el caso del proyecto REDUCE esto se consiguió con la ayuda de un punto de referencia en el extremo y a la altura del centroide de la viga. Dicho punto de referencia corresponde a un apoyo articulado, es decir, restringiendo las traslaciones verticales, horizontales y la rotación alrededor del eje de la viga.

Adicionalmente, se incluyó simetría tanto en dirección longitudinal como transversal

Figura 4.7: Condiciones de contorno para un cuarto de viga del proyecto REDUCE [27]

Para el caso del proyecto FIREDUCE la condición de viga simplemente apoyada se consiguió mediante un apoyo rígido al que se restringió translaciones y rotaciones en todas las direcciones, al igual que el proyecto REDUCE se incluyó simetría en dirección longitudinal y transversal.

Figura 4.8: Condiciones de contorno para un cuarto de viga del proyecto FIREDUCE [27]

4.4 Aplicación de carga

Para la aplicación de carga se creó un punto de referencia a una distancia "x" del centro de vano, al cual se prescribió un desplazamiento "c" y finalmente se conectó el punto de referencia con la superficie superior de hormigón a través de un vínculo cinemático tipo "*coupling*" con distribución continua y radio de influencia de 100 mm.

Figura 4.9: Aplicación de carga del modelo de elementos finitos para un cuarto de viga [27]

Tabla 4.7: Magnitud y distancia de carga usada para validación de modelos numéricos

	REDUCE	FIREDUCE
c (mm)	180	100
x (mm)	750	700

4.5 Contacto entre superficies

El modelado de contacto entre superficies se aplicó "*General Explicit Contact*" opción la cual define que todas las superficies en contacto tengan una única interacción definida como "*Hard Contact*" en dirección normal. Esta interacción evita que haya penetración entre las superficies.

4.6 Modelado de conectores

Los conectores de rasante se modelaron utilizando elementos tipo "*wire feature*". A estos se les asignó una sección con comportamiento no lineal de tipo "*Slot+Align*", donde la conexión tipo "*Slot*" garantiza que el nodo "b" se desplace igual magnitud y dirección tal como lo hace el nodo "a" (ver Figura 4.10); mientras que la conexión tipo "*Align*" asegura que los ejes locales estén alineados (ver Figura 4.11).

Figura 4.10: Conexión de tipo "Slot" [Fuente: Propia]

Figura 4.11: Conexión de tipo "Align" [Fuente: Propia]

Figura 4.12: Modelo de una conexión de tipo "Slot+Align" [Fuente: Propia]

Página 58 de 136

El comportamiento no lineal de los conectores se basa en las curvas fuerza-deslizamiento obtenidas experimentalmente (ver Figura 3.1 a Figura 3.4). Estas curvas se han linealizado para facilitar la introducción en el modelo numérico.

Figura 4.13: Curva Push-Out linealizada a temperatura ambiente proyecto REDUCE (conector P3) [3]

Figura 4.14: Curva Push-Out linealizada a temperatura ambiente proyecto REDUCE (conector P15) [3]

Adicionalmente, en el modelado numérico del proyecto REDUCE se añadió una rama descendente hasta cero para modelar el fallo del conector a rasante. Las curvas de la figura siguiente son las usadas para reproducir las simulaciones numéricas del proyecto REDUCE.

Figura 4.15: Curvas Push-Out linealizadas con rama descendente usadas para reproducir el modelo numérico a temperatura ambiente proyecto REDUCE [3]

Figura 4.16: Curva Push-Out linealizada para reproducir el modelo numérico a temperatura ambiente proyecto FIREDUCE (conector P3)

Figura 4.17: Curva Push-Out linealizada para reproducir el modelo numérico a temperatura ambiente proyecto FIREDUCE (conector P15)

4.7 Tipo de elemento finito y malla

Tanto la viga de acero como la losa de hormigón se modelaron con elementos finitos tipo (C3D8R) que corresponde a un elemento finito sólido con 8 nodos e integración reducida. El tamaño de malla proviene de ser el que mejores resultados se obtuvo después de un análisis de sensibilidad de malla, por lo tanto, la malla general es de 50 mm, excepto para el caso del apoyo rígido (en el proyecto FIREDUCE) donde es de 10 mm.

Figura 4.18: Mallado de viga mixta proyecto REDUCE [27]

Figura 4.19: Mallado de viga mixta proyecto FIREDUCE [27]

4.8 Paso de carga y técnica de resolución

Se aplicó en los análisis un incremento máximo de 0.01. Esto significa que el desplazamiento impuesto irá incrementando 1.8 mm y 1mm hasta llegar al desplazamiento total descrito en la Tabla 4.7 (180 mm y 100 mm) para las vigas de REDUCE y FIREDUCE respectivamente.

El valor del incremento máximo permite captar con precisión el comportamiento no lineal de los materiales.

La metodología escogida de resolución fue "*Static, General*" y la técnica de resolución fue "*Full Newton*" la cual es usada generalmente por Abaqus/Standard para resolver las ecuaciones de equilibrio no lineales. La principal razón es la alta probabilidad de convergencia en comparación con otros métodos ("*modified Newton*" o "*quasi-Newton*") [27].

5 Simulaciones numéricas a temperatura elevada

La investigación vista en el capítulo 3.4 se replicó numéricamente mediante el software de elementos finitos Abaqus [27]. En este capítulo se detallan los pasos a seguir para la obtención de resultados, sin embargo, la validación del modelo numérico se describe en el capítulo 6.

Tal como se mencionó anteriormente, los ensayos tomados como referencia para el desarrollo del moldeo numérico a temperatura elevada son los del proyecto FIREDUCE, llevados a cabo en la Universitat Politècnica de València. Para simular los ensayos de esta investigación a temperatura elevada se realizaron dos submodelos: un modelo térmico y un modelo termo-mecánico, los cuales se explican con mayor detalle a continuación.

5.1 Modelo térmico

El modelo térmico tiene por objetivo ver cómo evoluciona la temperatura a través del tiempo en cada elemento de la estructura, considerando todas las propiedades térmicas de cada uno de los materiales definidas en las respectivas normativas.

Antes de la definición de los parámetros que se describen a continuación es importante definir en el modelo el coeficiente de Stefan-Boltzmann = 5.67E-08 [W / (m² x K⁴)] y la temperatura de cero absoluto = -273 °K, siendo las dos constantes universales.

5.1.1 Definición geométrica

Se modeló únicamente un cuarto de viga ya que es simétrica en las dos direcciones. La geometría en alzado es la misma que se usó a temperatura ambiente, sin embargo, en la sección transversal se añade el cajeado de las diferentes protecciones tanto de madera exterior como de lana de roca. Las dimensiones de cada una de las vigas son las detalladas al inicio del capítulo 3.4.

5.1.2 Definición de materiales

La definición de los materiales en el modelo térmico constó en la asignación de las siguientes propiedades térmicas: conductividad, calor específico y densidad, todas ellas variables con la temperatura (en la mayoría de los casos).

Para el caso del acero, el calor específico (c_a) se obtiene aplicando la ecuación (5.1). La conductividad térmica (λ_a) se obtiene aplicando la ecuación (5.2), donde las dos fórmulas están descritas en el capítulo 3.3.1 del EN 1994-1-2 [2]. La densidad (ρ_{aT}) también está descrita en la misma norma del capítulo 3.4 y corresponde a un valor constante de 7850 [kg/m³].

A continuación, se resumen los valores usados en la simulación numérica.

$$C_{a} = 425 + (7.73 * 10^{-1} * \theta_{a}) - (1.69 * 10^{-3} * \theta_{a}^{2}) + (2.22 * 10^{-6} * \theta_{a}^{3}) \text{ para } 20 \le \theta_{a} \le 600^{\circ}C$$

$$C_{a} = 666 - \left(\frac{13002}{\theta_{a} - 738}\right) \text{ para } 600 < \theta_{a} \le 735^{\circ}C$$

$$(5.1)$$

Página 62 de 136

Figura 5.1: Calor específico del acero en función de la temperatura

Para el caso del hormigón, el calor específico (c_c) se obtiene aplicando la ecuación (5.3), la cual está en función de la humedad que tenga el hormigón. Para la viga mixta que tiene el conector P3, la humedad fue de 6.38% y para el conector P15 la humedad fue de 5.3%. La conductividad térmica (λ_c) se obtiene aplicando la ecuación (5.4) correspondiente al límite superior, donde las dos fórmulas están descritas en el capítulo 3.3.2 del EN 1994-1-2 [2]. La densidad (ρ_{cT}) también está descrita en la misma norma del capítulo 3.4 y se aplica la ecuación (5.5).

A continuación, se resumen los valores usados de la simulación numérica.

$$C_{c} = 900 \qquad \text{para } 20 \le \theta_{c} \le 100^{\circ}C$$

$$C_{c} = \begin{cases} 2020 \ humedad = 3\% \\ 5600 \ humedad = 10\% \end{cases} \text{ para otras humedades se debe interpolar } 100 < \theta_{c} \le 115^{\circ}C \qquad (5.3)$$

$$C_{c} = rama \ descendente \ lineal \qquad para 115 < \theta_{c} \le 400^{\circ}C \qquad (5.4)$$

$$C_{c} = 1100 \qquad para 400 < \theta_{c} \le 1200^{\circ}C \qquad (5.4)$$

$$\lambda_{c} = 2 - 0.2451 * \left(\frac{\theta_{c}}{100}\right) + 0.0107 * \left(\frac{\theta_{c}}{100}\right)^{2} \quad para 20 \le \theta_{c} \le 1200^{\circ}C \qquad (5.4)$$

$$\rho_{c} = 2300 - 23.47 * \left(\frac{\theta_{c}}{100}\right) \qquad para 20 \le \theta_{c} \le 1200^{\circ}C \qquad (5.5)$$

Página 63 de 136

Figura 5.3: Calor específico del hormigón en función de la temperatura

Figura 5.4: Conductividad térmica del hormigón en función de la temperatura

Figura 5.5: Densidad del hormigón en función de la temperatura

Para el caso de la madera, las propiedades térmicas variables con la temperatura se toman del Anexo B del EN 1995-1-2 [33]. La conductividad térmica (λ_w) se basa en la Tabla 5.1 y el calor específico (c_w) se basa en la Tabla 5.2. Por su parte, la densidad (ρ_w) es la multiplicación del ratio de pérdida de densidad (r_w) (Tabla 5.3) por la densidad de referencia de la madera (T_{refw}) a 20°C, la cual corresponde a un valor de 450 kg/m³ para madera dura *"Hardwood"*, según lo indicado en la publicación *"Performance-based fire engineering of structures"* [32].

Tabla 5.1: Conductividad térmica de la madera en función de la temperatura

λ _w (W/mK)	T (ºC)
0.120	20
0.150	200
0.070	350
0.090	500
0.350	800
1.500	1200

Figura 5.6: Conductividad térmica de la madera en función de la temperatura

Tabla 5.2: Calor específico de la madera
en función de la temperatura

c _w (J/kgK)	T (ºC)
1530.000	20
1770.000	100
13600.000	101
13500.000	120
2120.000	121
2000.000	200
1620.000	250
710.000	300
850.000	350
1000.000	400
1400.000	600
1650.000	800
1650.000	1200

Figura 5.7: Calor específico de la madera en función de la temperatura

Tabla 5.3: Densidad de la madera en función de la temperatura

Ratio (r _w)	$ ho_{ m w}$ (kg/m³)	T (ºC)
1.120	504	20
1.120	504	100
1.000	450	120
1.000	450	200
0.930	418.5	250
0.760	342	300
0.520	234	350
0.380	171	400
0.280	126	600
0.260	117	800
0.000	0	1200

Figura 5.8: Densidad de la madera en función de la temperatura

Finalmente, para el material lana de roca (empleado como aislante térmico en la solución de protección pasiva de las vigas), y según lo especificado en la publicación "Performance-based fire engineering of structures" [32]: el calor específico (c_{mw}) es constante e igual a 840 J/kgK; la densidad (ρ_{mw}) es también constante con un valor de 165 kg/m³; mientras que la conductividad térmica (λ_{mw}), variable con la temperatura, se basa en la ecuación (5.6):

Figura 5.9: Conductividad térmica de lana de roca en función de la temperatura

5.1.3 Pasos de carga y técnica de resolución

El modelo térmico correspondiente al conector P3 se configura con un solo paso de carga, mientras que el modelo del conector P15 se configura con dos pasos de carga, debido a que se observó que al final del ensayo experimental se desprendió el material lana de roca, lo que generó un aumento súbito de temperatura en la viga (ver Figura 5.10). Por tal razón se crearon dos pasos de carga: el primero llamado "Fuego" (ver Tabla 5.4) y el segundo llamado "Sin protección".

Figura 5.10: Viga mixta con conector P15 y desprendimiento del material lana de roca

La metodología escogida de resolución fue *"Heat transfer (Transient)"*, donde el periodo de tiempo (*"Time period"*) en un análisis térmico debe ser considerado y fue variable dependiendo del ensayo a reproducir. La técnica de resolución usada fue *"Full Newton"*, donde el incremento máximo depende del caso a simular. El máximo cambio de temperatura por incremento se estableció en 50°C y el máximo cambio de emisividad por incremento en 0.1.

「abla 5.4: Valores en módul	o "Step" para	a el análisis térmico	o considerando	cada tipo de conector
-----------------------------	---------------	-----------------------	----------------	-----------------------

Tipo conector	Pasos	Time period (s)	Máximo Incremento (s)
P3	Fuego	7200	100
Fuego		6000	100
FIJ	Sin Protección	120	20

5.1.4 Condiciones de contorno térmicas

Para el análisis de tipo térmico no se requiere la presencia de ningún vínculo cinemático, no siendo tampoco necesario definir la condición de simetría.

Figura 5.11: Modelo de un cuarto de viga en análisis térmico [27]

Según las leyes de la termodinámica, la transmisión de calor se da por tres mecanismos: conducción, convección y radiación.

Página 67 de 136

El mecanismo de transmisión de calor por conducción está gobernado por la ley de Fourier:

$$q = -\lambda * \frac{dT}{dx} \tag{5.7}$$

Donde:

q: flujo de calor por unidad de área y de tiempo [W/m²]

- λ: conductividad térmica [W/m*K] (propiedad del material Capítulo 5.1.2)
- T: Temperatura del cuerpo [K]

La transmisión de calor por convección es aquella que se da debido a la presencia de flujo de aire. Por lo tanto, en este trabajo se consideraron dos superficies expuestas a corrientes de aire, por un lado, aquella superficie que está directamente expuesta al fuego (ver Figura 5.13) y por otro lado, aquella superficie que está en contacto libre con el aire a temperatura ambiente (ver Figura 5.12). Este mecanismo de transmisión de calor está gobernado por la ley de enfriamiento de Newton.

$$q = h * (T_s - T_f)$$
 (5.8)

Donde:

- q: flujo de calor por unidad de área y de tiempo [W/m²]
- h: coeficiente de convención [W/m²*K]
- T_s: Temperatura de la superficie [K]
- T_f: Temperatura del fluido [K]

Figura 5.12: Superficie en contacto con el aire a temperatura ambiente [27]

Figura 5.13: Superficie expuesta al fuego [27]

La convección se definió mediante una interacción de tipo "*Surface film condition*" con temperatura de referencia igual a 20 °C para todas las superficies, siendo el coeficiente de convención igual a 25 W/m²*K y la amplitud igual a la curva ISO834 (Capítulo 5.1.5). Para el caso de la superficie expuesta al fuego, el coeficiente de convención se consideró igual a 4 W/m²*K con una amplitud constante para el

Página 68 de 136

caso de la superficie en contacto con el aire a temperatura ambiente. Los valores de los coeficientes de convención seleccionados están definidos en EN 1991-1-2 [26], apartado, 3.2.1 y 3.1 respectivamente.

La transmisión de calor por radiación es aquella donde una fuente radiante transmite calor por medio de ondas electromagnéticas. En este trabajo se consideraron tres superficies emisoras/receptoras de radiación: las dos antes mencionadas (ver Figura 5.12 y Figura 5.13) y adicionalmente se consideró una superficie interior que corresponde a la cavidad cerrada entre el material de protección (lana de roca) y el perfil metálico (ver Figura 5.14). Este mecanismo de transmisión de calor está gobernado por la siguiente ecuación.

$$q = \sigma * T_s^4 \tag{5.9}$$

Donde:

q: flujo de calor por unidad de área y de tiempo $[W/m^2]$

 σ : constante de Stefan-Boltzmann [5.67*10⁻⁸ W/m²*K⁴]

Ts: Temperatura de la superficie [K]

Figura 5.14: Superficie interior para radiación [27]

La radiación se definió mediante una interacción de tipo "*Surface radiation*" con temperatura ambiente igual a 20 °C para todas las superficies y como casos particulares las siguientes consideraciones:

- Para la superficie expuesta a fuego se consideró una radiación de tipo "*To ambient*": emisividad igual a 0.8 para la madera según EN 1995-1-2 [33]; emisividad igual a 0.7 para la superficie de hormigón según EN 1994-1-2 [2]; y amplitud igual a la curva ISO834 (Capítulo 5.1.5)
- Para la superficie de hormigón expuesta a temperatura ambiente se consideró una radiación de tipo *"To ambient"*: emisividad igual a 0.7 y amplitud constante.
- Para la superficie interior se consideró una radiación de tipo "Cavity approximation": la emisividad se unificó con un valor igual a 0.7 correspondiente a la de acero según EN 1994-1-2 [2] ya que no existe información sobre la emisividad de lana de roca.

Como se explicó en el capítulo 5.1.3 la viga mixta con conectores P15 sufrió un desprendimiento del material de lana de roca unos minutos antes de finalizar el ensayo. Por lo cual, para poder recrear este fenómeno en la simulación, se procedió a crear una condición de contorno de tipo convección y

radiación en el paso de carga "Sin protección", definiendo como superficie de aplicación la cara expuesta de la viga. El valor de los parámetros se muestra en la Tabla 5.5.

Convección		Radiación	
		Тіро	"To ambient"
Coeficiente de convección	25 W/m ² *K	Emisividad	0.7
Temperatura de referencia	1000 °C	Temperatura ambiente	1000°C
Amplitud	Constante	Amplitud	Constante

Tabla 5.5: Parámetros definidos en el paso de carga "sin protección"

5.1.5 Modelo de incendio

El modelo de incendio aplicado en las simulaciones fue la curva estándar normalizada de fuego ISO834. Si se compara con las temperaturas medidas en el horno donde se llevaron a cabo los ensayos, como es habitual en los laboratorios autorizados para este tipo de ensayos normalizados, se observa que la media de las temperaturas registradas por los termopares de horno recrea la curva ISO-834.

Figura 5.15: Posicionamiento de termopares para medición de temperatura horno

Figura 5.16: Comparación de medición termopares horno con curva ISO-834

La Figura 5.16 indica que la temperatura del horno fue igual a la curva ISO 834, lo cual valida el modelo de incendio usado.

5.1.6 Contacto entre superficies

En la simulación numérica se definió las siguientes superficies de contacto térmico:

- a) Forjado con los otros materiales (viga, lana de roca, madera) (ver Figura 5.17)
- b) Madera con lana de roca (ver Figura 5.18)
- c) Viga con lana de roca (ver Figura 5.19)

Figura 5.17: Superficies en contacto entre forjado y demás materiales [27]

Figura 5.18: Superficies en contacto entre madera y lana de roca [27]

Figura 5.19: Superficies en contacto entre viga y lana de roca [27]

Para el modelado del contacto térmico entre superficies se aplicó "*Surface-to-surface contact*" y se asignó la propiedad como un contacto perfecto. Es decir, la transmisión de calor por conducción a través de las interfaces de contacto entre las distintas partes del modelo es perfecta, definiendo una propiedad de tipo "*Thermal Conductance*" con los siguientes valores:

Conductancia [S]	Distancia entre superficies [m]
100000000	0
100000000	1
0	1E+20

Tabla 5.6: Valores definidos para interacción entre superficies

Los valores ingresados en la Tabla 5.6 se puede interpretar como una conducción muy alta de calor, es decir, una conducción muy rápida para cualquier distancia entre superficies en el rango entre 0 a 1 m.

5.1.7 Tipo de elemento finito y malla

Se modeló con elementos tipo (DC3D8) que corresponde a un elemento finito de transferencia de calor con 8 nodos, donde el tamaño de malla proviene de ser el que mejor resultado después de un análisis de sensibilidad de malla, fijándose en 50 mm.

Figura 5.20: Mallado de la viga mixta a temperatura elevada [27]

5.2 Modelo termo-mecánico

El modelo termo-mecánico tiene por objetivo recrear lo que sucede en un ensayo de resistencia al fuego en horno normalizado de incendios. A medida que se va elevando la temperatura, las propiedades mecánicas de los materiales que componen la viga mixta (acero y hormigón) se van deteriorando, provocando que la viga pierda rigidez y aumente progresivamente su deflexión.

El modelo termo-mecánico está compuesto por dos etapas: la primera consiste en aplicar un cierto porcentaje de carga a temperatura ambiente, la segunda consiste en mantener constante el porcentaje de carga aplicado y someter la estructura a una condición de incendio desde su cara inferior. Esto se hace a través de la lectura del archivo ".OBD" generado por el modelo térmico visto en el capítulo 5.1.

Figura 5.21: Esquema de flujo para simulación de modelo termo-mecánico

5.2.1 Definición geométrica

Se modeló únicamente un cuarto de viga ya que es simétrica en las dos direcciones. La geometría tanto de la sección transversal como en alzado de la viga ensayada se presenta en la Figura 3.27 y Figura 3.28.

5.2.2 Definición de parámetro termo-mecánico

La definición del coeficiente de expansión térmica del acero y hormigón, se basa en ecuación (5.10)

$$\alpha = \left(\frac{\Delta l}{l} * \frac{1}{1000} * \frac{1}{\theta - 20}\right) \qquad \text{para } 20 < \theta \le 1200 \,^{\circ}C \tag{5.10}$$

Donde:

16

14

12

10 $(\Delta/l)c \times (10-3)$

8

6 4

2

0

0

200

400

 $\frac{\Delta l}{l}$ corresponde a la elongabilidad térmica definida en EN 1994-1-2 [2].

Figura 5.22: Elongabilidad térmica del acero

Figura 5.23: Coeficiente de expansión térmica del acero

Figura 5.25: Coeficiente de expansión térmica del hormigón

5.2.3 Ecuaciones constitutivas a temperatura elevada

600

Figura 5.24: Elongabilidad térmica del hormigón

Temperatura (PC)

800

Áridos silíceos

1000

1200

Para la definición de las ecuaciones constitutivas se requiere conocer el comportamiento elástico y plástico del acero y del hormigón. Para ello es indispensable determinar el coeficiente de Poisson (v), los factores de reducción del módulo elástico y la variación de la resistencia con la temperatura.

El comportamiento elástico del acero viene definido por el coeficiente de Poisson (v), que es un valor constante a diferentes temperaturas, y el módulo elástico (E_{aT}) que va decreciendo a medida que aumenta la temperatura tal como se puede ver en los factores de reducción (ver Figura 5.26).

Steel Temperature θ _a [°C]	$\mathbf{k}_{\mathrm{E},\Theta} = \frac{E_{a,\Theta}}{E_a}$	$k_{p,\theta} = \frac{f_{ap,\theta}}{f_{ay}}$	$\mathbf{k}_{\mathrm{y},\theta} = \frac{f_{a\mathrm{y},\theta}}{f_{a\mathrm{y}}}$	$\mathbf{k}_{\mathbf{u},\boldsymbol{\theta}} = \frac{f_{au,\boldsymbol{\theta}}}{f_{ay}}$	
20	1,00	1,00	1,00 1,25		
100	1,00	1,00	1,00 1,25		
200	0,90	0,807	1,00	1,25	
300	0,80	0,613	1,00 1,25		
400	0,70	0,420	1,00		
500	0,60	0,360	0,78		
600	0,31	0,180	0,47		
700	0,13	0,075	0,23		
800	0,09	0,050	0,11		
900	0,0675	0,0375	0,06		
1000	0,0450	0,0250	0,04		
1100	0,0225	0,0125	0,02		
1200	0	0	0		

Figura 5.26: Factores de reducción para curva tensión-deformación de acero estructural a temperatura elevada [2].

Conocido el factor de reducción del módulo elástico ($k_{E,\theta}$) se multiplica por el módulo elástico a temperatura ambiente (ver Tabla 4.2) y se determina el módulo elástico para las diferentes temperaturas.

Tabla 5.7: Valores ingresados en la simulación numérica para el comportamiento elástico del acero

T (ºC)	Eaт (GPa)	ν	T (ºC)
20	210	0.3	20
100	210	0.3	100
200	189	0.3	200
300	168	0.3	300
400	147	0.3	400
500	126	0.3	500
600	65.1	0.3	600
700	27.3	0.3	700
800	18.9	0.3	800
900	14.18	0.3	900
1000	9.45	0.3	1000
1100	4.73	0.3	1100

El comportamiento plástico del acero viene definido por la resta del comportamiento total menos el comportamiento elástico. El comportamiento total es descrito aplicando las ecuaciones propuestas por la normativa EN 1994-1-2 [2] (ver Figura 5.28).

Página 74 de 136

Strain Range	Stress σ	Tangent modulus
$I \ / \ elastic \\ \epsilon \le \epsilon_{ap,\theta}$	$E_{a,\theta} \varepsilon_{a,\theta}$	$E_{a, \theta}$
II / transit elliptical $\epsilon_{ap,\theta} \le \epsilon$	$(f_{q,\theta} - c) + \frac{b}{a} \sqrt{a^2 - (\varepsilon_{q,\theta} - \varepsilon_{a,\theta})^2}$ with	
ε≤ε _{ay,θ}	$a^{2} = \left(\varepsilon_{ay,\theta} - \varepsilon_{ap,\theta}\right) \left(\varepsilon_{ay,\theta} - \varepsilon_{ap,\theta} + c / E_{a,\theta}\right)$ $b^{2} = E_{a,\theta} \left(\varepsilon_{ay,\theta} - \varepsilon_{ap,\theta}\right) c + c^{2}$	$\frac{b(\varepsilon_{ay,\theta} - \varepsilon_{a,\theta})}{a\sqrt{a^2 - (\varepsilon_{ay,\theta} - \varepsilon_{a,\theta})^2}}$
	$c = \frac{\left(f_{a_{0},\theta} - f_{ap,\theta}\right)^{2}}{E_{a,\theta}\left(\varepsilon_{a_{0},\theta} - \varepsilon_{ap,\theta}\right) - 2\left(f_{a_{0},\theta} - f_{ap,\theta}\right)}$	
$\begin{array}{l} \text{III} / \text{ plastic} \\ \epsilon_{ay,\theta} \leq \epsilon \end{array}$	$f_{\sigma\nu\theta}$	0
$\epsilon \leq \epsilon_{au,\theta}$		

Figura 5.28: Curvas tensión-deformación del acero a temperatura elevada

Para determinar el comportamiento elástico del acero se siguen los siguientes pasos:

- d) Se multiplica el factor de reducción de la tensión de fluencia (k_{p,θ}) por la tensión de fluencia a temperatura ambiente (ver Tabla 4.2) y se determina la tensión de fluencia elástica para las diferentes temperaturas.
- e) Se multiplica la tensión de fluencia plástica por el módulo elástico obtenido anteriormente y se obtiene la deformación elástica a diferentes temperaturas.
- f) Se restan las tensiones y deformaciones totales (ver Figura 5.28) de la tensión elástica y deformación elástica obtenidas en el apartado a) y b) para obtener las tensiones y deformaciones pláticas.

Para el hormigón la normativa no define la variación del módulo elástico (E_{cT}), por lo que, a efectos de cálculo, se define un módulo elástico inicial como la relación entre fc (tensión de compresión del hormigón) y una deformación muy pequeña. Esto no tiene mucha importancia en el modelo numérico ya que en el hormigón predomina el comportamiento plástico. El coeficiente de Poisson (v) es constante a diferentes temperaturas.

El comportamiento plástico utiliza el modelo *Concrete Damaged Plasticity* (CDP), donde la curva tensión-deformación a compresión del hormigón viene dada por las ecuaciones descritas en EN 1994-1-2 [2] (ver Figura 5.30)

Concrete Temperature	$k_{c,\theta} = f_{c,\theta} / f_c$		$\varepsilon_{cu,\theta}$. 10 ³
<i>θ</i> _c [°C]	NC	LC	NC
20	1	1	2,5
100	1	1	4,0
200	0,95	1	5,5
300	0,85	1	7,0
400	0,75	0,88	10,0
500	0,60	0,76	15,0
600	0,45	0,64	25,0
700	0,30	0,52	25,0
800	0,15	0,40	25,0
900	0,08	0,28	25,0
1000	0,04	0,16	25,0
1100	0,01	0,04	25,0
1200	0	0	-

Figura 5.29: Factores de reducción para curva tensión-deformación de hormigón a compresión a temperatura elevada [2].

Figura 5.30: Ecuaciones para curva tensión-deformación del hormigón a compresión a temperatura elevada [2]

Figura 5.31: Curva tensión-deformación del hormigón a compresión a diferentes temperaturas

El comportamiento a tracción a temperatura elevada viene definido por la multiplicación de la resistencia a tracción a temperatura ambiente (ver Tabla 4.5) por el factor de reducción descrito en EN 1992-1-2 [35] (5.11)

$$k_{c,t}(\theta_{c}) = 1 \qquad \text{para } 20^{\circ} < \theta_{c} \le 100^{\circ}C$$

$$k_{c,t}(\theta_{c}) = 1 - \frac{\theta_{c} - 100}{500} \qquad \text{para } 100^{\circ} < \theta_{c} \le 600^{\circ}C$$

$$(5.11)$$

Figura 5.32: Curva tensión-deformación del hormigón a tracción a diferentes temperaturas

Los valores del hormigón en comportamiento triaxial son iguales a los definidos en el capítulo 4.2. No se tiene información para definir su variación con respecto a la temperatura.

5.2.4 Pasos de carga y técnica de resolución

El modelo termo-mecánico tiene como pasos de carga los considerados en un análisis a temperatura ambiente y los del modelo térmico. La metodología escogida de resolución fue *"Static, General"*, y la técnica de resolución fue *"Full Newton"*, donde el periodo de tiempo y el máximo incremento varían según el ensayo a simular.

Tipo conector	Pasos	Time period (s)	Máximo Incremento (s)
20	Carga	1	0.1
P5	Fuego	7200	60
	Carga	1	0.1
P15	Fuego	6000	60
	Sin Protección	120	60

Tabla 5.8: Valores en módulo "Step" para el análisis termo-mecánico considerando cada tipo de conector

5.2.5 Condiciones de contorno

Las condiciones de contorno a considerar son las mismas que se definió en el modelo a temperatura ambiente para el proyecto FIREDUCE (véase capítulo 4.3) y las condiciones de contorno térmicas. Es decir, se debe definir el campo de temperaturas en todos los elementos (forjado, viga y conectores).

5.2.6 Definición de campo de temperaturas

Para definir el campo de temperaturas de la viga y forjado se realiza la lectura de los resultados previamente obtenidos en el modelo térmico. Es muy importante definir el paso en el que se realiza dicha lectura, donde para el caso del conector P3 sería en el step "Fuego" y para el caso del conector P15 sería en el step "Fuego" y "Sin Protección", según corresponda.

Para el caso de los conectores, se define una temperatura constante en toda la longitud del conector, donde esta temperatura corresponde a lo especificado en el capítulo 6.2.3.

5.2.7 Aplicación de carga

Para la aplicación de carga se creó un punto de referencia a 700 mm del centro de vano (ver Figura 4.9) al cual se prescribió una fuerza concentrada "f" que corresponde a un porcentaje de la carga última (P_{ultm}) obtenido en la simulación numérica a temperatura ambiente. Finalmente se conectó el punto de referencia con la superficie superior de hormigón a través de un vínculo cinemático tipo "*coupling*" con distribución continua y radio de influencia de 100 mm.

	P _{ultm} (kN)	f (kN)	% P _{ultm} (%)
Р3	1000.38	645.044	64
P15	1038.188	683	66

Tabla 5.9: Cargas aplicadas en la simulación numerica para el modelo termo-mecanic	Tabla 5.9: Cargas	aplicadas en la	a simulación	numérica para e	l modelo térmo	-mecánico
--	-------------------	-----------------	--------------	-----------------	----------------	-----------

Esta carga tiene una amplitud tipo "Ramp" en el paso "carga" y una amplitud "constante" para los otros pasos, según el tipo de conector.

5.2.8 Modelado de conectores

El comportamiento no lineal de los conectores a diferentes temperaturas se basa en las curvas fuerzadeslizamiento obtenidas experimentalmente (ver Figura 3.6 y Figura 3.7). Estas curvas se han linealizado para facilitar la introducción en el modelo numérico.

Figura 5.33: Curvas Push-Out implementadas en el modelo numérico a temperatura elevada (conector P3)

Figura 5.34: Curvas Push-Out implementadas en el modelo numérico a temperatura elevada (conector P15)

5.2.9 Otros

El contacto entre superficies, tipo de elemento finito y malla se definió igual a los descrito en los capítulos 4.5 y 4.7 según corresponde.

- 6 Validación del modelo numérico y análisis de resultados
- 6.1 Temperatura ambiente
- 6.1.1 Curvas Fuerza-Desplazamiento

El fallo de las simulaciones de las curvas fuerza-desplazamiento para las vigas simuladas correspondientes al proyecto REDUCE se da por la rotura del conector. Esto responde a la consideración de la rama descendente hasta cero en la curva de comportamiento del conector (ver Figura 4.15)

Figura 6.1: Comparación de las curvas fuerzadesplazamiento numéricas y experimentales proyecto REDUCE conector P3

Figura 6.2: Comparación de las curvas fuerzadesplazamiento numéricas y experimentales proyecto REDUCE conector P15

Para las vigas simuladas correspondientes al proyecto FIREDUCE, el fallo se dio por la plastificación de la viga de acero. Sin embargo, se puede ver en la Figura 6.3 que se produce la rotura del conector a rasante, si bien esto sólo provoca una pérdida de rigidez en el comportamiento a flexión. Esto se debe a que la rama descendente en la curva de comportamiento del conector no llega a cero (ver Figura 4.16 y Figura 4.17)

Figura 6.3: Comparación de las curvas fuerza-desplazamiento numéricas y experimentales proyecto FIREDUCE conector P3

Página 81 de 136

Figura 6.4: Comparación de las curvas fuerza-desplazamiento numéricas y experimentales proyecto FIREDUCE conector P15

La comparación de los resultados obtenidos experimental y numéricamente mostró una precisión suficiente en todas las simulaciones con respecto a la fuerza máxima, desplazamiento máximo y perdida de rigidez a lo largo del ensayo. Esto prueba que el modelo numérico es capaz de recrear con suficiente fiabilidad el comportamiento real de la tipología de vigas mixtas estudiadas.

El considerar una rama descendente del conector hasta cero, tal como se hizo en los modelos numéricos del proyecto REDUCE, permite obtener el comportamiento incompleto de la estructura llegando solo hasta el fallo del conector. Adicionalmente el calculó no es completado, es decir el programa no converge al 100%.

6.1.2 Curvas de evolución de la fecha con la carga aplicada

En el proyecto FIREDUCE se midió el desplazamiento en tres puntos de la viga (LVDT 1, LVDT2, LVDT3) (ver capítulo 3.3.1) lo cual permite obtener gráficas de la deformada de la viga para distintos valores de la carga aplicada, los resultados se muestran a continuación.

Se compara la evolución de la flecha medida en distintas posiciones a lo largo de la viga con la obtenida numéricamente, obteniéndose un buen ajuste, lo que prueba de nuevo la precisión del modelo numérico.

Figura 6.5: Comparación de la evolución de la flecha numéricas y experimentales proyecto FIREDUCE conector P3

Figura 6.6: Comparación de la evolución de la flecha numéricas y experimentales proyecto FIREDUCE conector P15

6.1.3 Curvas Fuerza-Deslizamiento

Como se explicó en el capítulo (ver capítulo 3.3.2), las vigas mixtas con conectores desmontables debido al comportamiento de estos, se produce un fenómeno de deslizamiento del forjado con respecto a la viga (ver Figura 3.20).

Los resultados experimentales son comparados con los resultados numéricos

Figura 6.7: Comparación de las curvas fuerzadeslizamiento numéricas y experimentales proyecto REDUCE conector P3

Figura 6.9: Comparación de las curvas fuerza-deslizamiento numéricas y experimentales proyecto FIREDUCE conector P3

Página 84 de 136

Figura 6.10: Comparación de las curvas fuerza-deslizamiento numéricas y experimentales proyecto FIREDUCE conector P15

En el proyecto FIREDUCE se muestran las cuatro mediciones experimentales LVDT 4, LVDT 5, LVDT 6, LVDT 7 (ver Figura 6.9 y Figura 6.10) mientras que en el proyecto REDUCE el promedio de las cuatro mediciones.

Para este tipo de análisis fuerza-deslizamiento no es adecuado sacar el promedio de las mediciones ya que la medición de cada captador de desplazamiento es diferente. Esto indica que el sistema no se comporta de manera totalmente simétrica, tal como sí pasa con el sistema del modelado numérico.

La comparación de los resultados obtenidos experimental y numéricamente en los dos proyectos mostró una precisión suficiente con respecto a la fuerza máxima, deslizamiento máximo y pérdida de rigidez a lo largo del ensayo. Esto justifica que los modelos numéricos son capaces de recrear con suficiente precisión el comportamiento real de esta tipología de vigas mixtas.

Adicionalmente, para el proyecto FIREDUCE se obtuvo el deslizamiento relativo del forjado con respecto a la viga en cada posición de los conectores (ver Figura 6.11). Estos resultados se aproximaron a una función coseno el cual es de gran utilidad en el capítulo 7.

Figura 6.11: Valores de deslizamiento a diferentes niveles de carga

6.1.4 Gráfica de deformaciones

En el proyecto FIREDUCE, adicionalmente se instalaron tres galgas extensométricas en el centro del vano, posicionadas una en el ala superior, otra en el centro del alma y otra en el ala inferior del perfil metálico (para tener un registro de las deformaciones).

Una vez que la viga ha llegado a su punto de plastificación, las galgas extensométricas dan resultados erróneos, por tal razón se admite que las galgas solo miden deformaciones elásticas.

Las siguientes figuras muestran los resultados obtenidos experimental y numéricamente para la viga mixta con conectores P3.

Página 86 de 136

Figura 6.12: Deformaciones en perfil metálico hasta un 50% de carga máxima conector P3

Las deformaciones obtenidas de la simulación numérica se ajustan con mucha precisión a las deformaciones obtenidas por las galgas extensométricas (ver Figura 6.12), por lo tanto, hasta un 50 % de carga las deformaciones son completamente elásticas.

Figura 6.13: Deformaciones en perfil metálico para un 75% de carga máxima conector P3

Al incrementar la carga a un 75 %, la galga extensométrica colocada en el ala inferior sufrió plastificación, por tal motivo la lectura de datos es errónea. Esto también es correspondido con los resultados del modelo numérico ya que existe deformaciones totales (Deformación elástica + plástica) en lugar de solo deformaciones elásticas (ver Figura 6.13).

Como se sabe, en una viga simplemente apoyada el máximo momento se produce en el centro de vano. Esto justifica que la galga extensométrica mencionada anteriormente haya sufrido plastificación.

Página 87 de 136

A continuación, se presentan los resultados obtenidos experimental y numéricamente para la viga mixta con conectores P15.

Figura 6.14: Deformaciones en perfil metálico hasta un 50% de carga máxima conector P15

Figura 6.15: Deformaciones en perfil metálico para un 75% de carga máxima conector P15

El mismo análisis realizado para el conector P3 se aplica para el conector P15, con la diferencia que en este caso para un 75 % de carga plastifican tanto la galga del alma como la del ala inferior.

La comparación de los resultados obtenidos experimental y numéricamente mostró una precisión suficiente hasta que se dé la plastificación de la viga o hasta el 50 % de carga, lo que de nuevo justifica que la simulación sea capaz de recrear el comportamiento experimental.

6.1.5 Curvas fuerza-deslizamiento de los conectores

Para las vigas correspondientes al proyecto FIREDUCE, por medio de la simulación numérica es posible extraer la fuerza y el deslizamiento que desarrolla cada conector hasta el final de la simulación

Figura 6.16: Fuerza-deslizamiento de cada perno para conector tipo P3

Figura 6.17: Fuerza-deslizamiento de cada perno para conector tipo P15

Página 89 de 136

Como se sabe, en una viga simplemente apoyada el máximo cortante se produce en los extremos. El cortante está relacionado con la fuerza rasante, y es por tal razón que los conectores de los extremos alcanzan mayor fuerza rasante en comparación con los conectores del centro.

6.2 Temperatura elevada

6.2.1 Temperaturas seccionales

Las temperaturas obtenidas por la simulación numérica son comparadas con las temperaturas obtenidas experimentalmente (ver capítulo 3.4.1).

Como se mencionó en el capítulo 3.4.1 las temperaturas de las 3 secciones para la madera, lana de roca y hormigón son similares. Es por tal razón que, para este análisis, se obtuvo el promedio y se comparó con la simulación numérica.

Los registros de las temperaturas para la simulación numérica fueron extraídos a través del modelo térmico. Estos registros corresponden a los distintos puntos de la sección donde se instalaron los termopares.

A continuación, se muestra los registros experimentales (ver Figura 3.33 y Figura 3.35) y numéricos de temperaturas en la madera para los termopares TC y TL.

1200

1000

800

600

400

Temperatura (°C)

Figura 6.19: Comparación de las temperaturas en la madera numéricas y experimentales proyecto FIREDUCE conector P15

Las siguientes gráficas corresponden a los registros experimentales (ver

Figura 3.34 y Figura 3.36) y numéricos de temperaturas en la protección térmica de lana de roca para los termopares MWU y MWL.

120

Figura 6.20: Comparación de las temperaturas en lana de roca numéricas y experimentales proyecto FIREDUCE conector P3

Las siguientes gráficas corresponden a los registros experimentales (ver Figura 3.37 y

Figura 3.38) y numéricos de temperaturas en el hormigón para los termopares HS y HI.

Figura 6.22: Comparación de las temperaturas en el hormigón numéricas y experimentales proyecto FIREDUCE conector P3

Figura 6.23: Comparación de las temperaturas en el hormigón numéricas y experimentales proyecto FIREDUCE conector P15

Página 91 de 136

Para los registros de temperatura experimentales para la viga con conectores P3, al igual que para los materiales vistos anteriormente, se obtuvo la media de las 3 secciones y se comparó con los registros de la simulación numérica.

Para la viga con conectores P15 los registros de temperaturas corresponden a la sección 3 ya que es aquella donde se produjo el desprendimiento del material lana de roca, siendo éstos comparables con los registros numéricos.

A continuación, se muestra los registros experimentales (ver Figura 3.39 y Figura 3.40) y numéricos de temperaturas en el ala superior de la viga.

Figura 6.24: Comparación de las temperaturas en el ala superior de la viga numéricas y experimentales proyecto FIREDUCE conector P3

Figura 6.25: Comparación de las temperaturas en el ala superior de la viga numéricas y experimentales proyecto FIREDUCE conector P15

Las siguientes gráficas corresponden a los registros experimentales (ver Figura 3.41 y Figura 3.42) y numéricos de temperaturas en el alma de la viga.

Figura 6.26: Comparación de las temperaturas en el alma de la viga numéricas y experimentales proyecto FIREDUCE conector P3

Figura 6.27: Comparación de las temperaturas en el alma de la viga numéricas y experimentales proyecto FIREDUCE conector P15

Las siguientes gráficas corresponden a los registros experimentales (ver Figura 3.43 y Figura 3.44) y numéricos de temperaturas en el ala inferior de la viga.

Figura 6.28: Comparación de las temperaturas en el ala inferior de la viga numéricas y experimentales proyecto FIREDUCE conector P3

Figura 6.29: Comparación de las temperaturas en el ala inferior de la viga numéricas y experimentales proyecto FIREDUCE conector P15

6.2.2 Curvas Desplazamiento-Tiempo

La curva desplazamiento – tiempo de la medida experimental en el centro de vano (ver capítulo 3.4.1) es comparada con los resultados obtenidos numéricamente.

Figura 6.30: Comparación de las curvas desplazamiento-tiempo numéricas y experimentales proyecto FIREDUCE conector P3

La comparación de los resultados obtenidos experimental y numéricamente en el proyecto FIREDUCE mostró una precisión suficiente con respecto al desplazamiento máximo y al tiempo. Esto permite asegurar que el modelo numérico es capaz de recrear con suficiente precisión el comportamiento de las vigas mixtas estudiadas en situación de incendio.

6.2.3 Temperatura de los conectores

Para obtener la temperatura en los conectores se extrajo del modelo térmico el valor de la temperatura en puntos nodales seleccionados, ubicados en la parte superior, interfaz y parte inferior de cada conector.

Figura 6.32: Puntos para la definición de temperaturas en el conector

Figura 6.33: Curva temperatura-tiempo para conector 1 tipo P3

Figura 6.35: Curva temperatura-tiempo para conector 3 tipo P3

Figura 6.37: Curva temperatura-tiempo para conector 1 tipo P15

Figura 6.34: Curva temperatura-tiempo para conector 2 tipo P3

Figura 6.36: Curva temperatura-tiempo para conector 4 tipo P3

Figura 6.38: Curva temperatura-tiempo para conector 2 tipo P15

Figura 6.39: Curva temperatura-tiempo para conector 3 tipo P15

Figura 6.40: Curva temperatura-tiempo para conector 4 tipo P15

La temperatura en los conectores de manera experimental se midió únicamente en la parte superior de los conectores 2 y 4. Por tal razón no es posible la comparación de todos los conectores y en todas las posiciones del conector.

Las temperaturas de los conectores en los ensayos experimentales tienen cierta diferencia con las temperaturas de los conectores en la simulación numérica. Esto se debe a la posición de los termopares, ya que es posible que no hayan sido colocados "exactamente" en la cabeza del conector sino un poco más abajo y se sabe que en el hormigón se produce un gradiente de temperatura. Esto produce que, si un termopar se coloca más abajo, la temperatura es más alta.

Los resultados de temperatura de los conectores obtenidos por la simulación numérica son de utilidad en el capítulo 5.2.6, donde la temperatura ingresada fue la correspondiente a la interfaz del conector.

7 Propuestas de cálculo analítico a temperatura ambiente

El diseño de una estructura mixta basada en el EN 1994-1-1 [1] sigue la misma filosofía de cualquier otro diseño estructural. Es decir, se requiere conocer geometrías, propiedades de los materiales, coeficientes de mayoración y reducción, propiedades del conector. Así, en base a éstos, obtener la relación demanda/capacidad y determinar si la estructura resiste o no.

A continuación, se propone un algoritmo simplificado, el cual es similar al que sigue el programa de ArcelorMittal para diseño de estructuras mixtas [36].

Verificación a flexión, cortante, pandeo lateral por torsión, esfuerzo transversal en almas, rasante, disposiciones constructivas a rasante y armadura a rasante en el forjado

Figura 7.1: Algoritmo simplificado propuesto para diseño de vigas mixtas acero-hormigón

El objetivo de este trabajo no es realizar un diseño estructural de una viga mixta acero-hormigón, pero sí es útil lo mencionado al inicio de este capítulo ya que permite comprobar que los resultados obtenidos experimentalmente se corroboran con lo que se obtuviese si se sigue el diseño del EN 1994-1-1 [1].

7.1 Grado de conexión a rasante

El concepto de grado de conexión a rasante se puede interpretar mejor con el siguiente gráfico:

Figura 7.2: Definición de grado de conexión a rasante [Fuente: Propia]

El grado de conexión a rasante es aquel que indica cuánto es el aporte del forjado para trabajar como una estructura mixta. El aporte del forjado está en función de la cantidad de conectores que coloquemos, ya que mientras mayor es el número de conectores más aporte tiene el forjado de hormigón y menor es el canto de la viga metálica.

No siempre se tiene libertad para decidir la cantidad de conectores. Por ejemplo, en forjados de chapa colaborante está limitado a la cantidad de nervios que tiene, por lo que hablamos de conexiones parciales ($\eta_{lim} \le \eta < 1$). Sin embargo, en un forjado macizo se tiene libertad y se puede tener conexión total ($\eta = 1$) o parcial.

Adicionalmente existe un grado de conexión limite (η_{lim}) que se corresponde con el número mínimo de conectores que se requieren para asumir que las tensiones tengan una distribución plástica. Si la cantidad de conectores es inferior, se opta por un análisis elástico.

Para determinar el grado de conexión a rasante se aplica la fórmula especificada en EN 1994-1-1 [1], la cual indica que la conexión a rasante (η) es igual a la relación entre la suma de la fuerza que ejerce cada conector a rasante (N_c) sobre la máxima fuerza que se requiere para llevar a la plastificación a uno de los materiales ($N_{c,f}$).

$$\eta = \frac{N_c}{N_{c,f}} \tag{7.1}$$

La máxima la fuerza que ejerce cada conector a rasante (N_c) depende del tipo de conector que se use, es decir, tradicionales (soldados) o desmontables. Este detalle se explicará más a fondo en el capítulo 7.3.

La máxima fuerza que se requiere para llevar a la plastificación a uno de los materiales ($N_{c,f}$) está dada por la siguiente ecuación.

Página 98 de 136

$$N_{c,f} = \min(N_{pl,c}; N_{pl,a})$$
(7.2)

Donde:

 $N_{pl,c} = b_{eff} * h_c * 0.85 * f_{cd}$ Resistencia plástica a compresión en el forjado de hormigón $N_{pl,a} = A_a * f_{yd}$ Resistencia plástica a tracción en la viga de acero

Para determinar el grado de conexión a rasante limite (η_{lim}) se sigue lo establecido en EN 1994-1-1 [1].

7.2 Análisis elástico

Cuando corresponde realizar un análisis de tipo elástico se aplican conceptos de la teoría elástica usando como sección resistente la homogenizada. Se realizan los diseños a flexión, cortante, pandeo lateral por torsión, esfuerzo transversal en almas, rasante (solo en caso de conectores tradicionales), disposiciones constructivas a rasante y armadura a rasante en el forjado. En este trabajo se hace más énfasis a la flexión y el rasante, pero adicionalmente se debe cumplir con lo especificado en EN 1994-1-1 [1].

Con respecto al diseño por rasante en un análisis elástico con conectores tradicionales, se comprueba que el rasante actuante sea menor que el rasante resistente considerando sus respectivos coeficientes. el rasante actuante se obtiene aplicando el teorema de Collignon-Jourawski ecuación (7.3) y el rasante resistente (P_{Rd}) siguiendo los conceptos del EN 1994-1-1 [1].

Un ejemplo de la posible distribución de conectores según las demandas de esfuerzo cortante se tiene en la Figura 7.3.

$$\tau = \frac{V * S}{I_V * b} \tag{7.3}$$

Donde:

 τ : Tensión tangencial (rasante) en la viga

V: Esfuerzo cortante en la viga

S: Momento estático parcial

I_y: Inercia según tipo de conector, desmontable o tradicional ($I_{y,eff}$ o $I_{y,rigido}$)

b: ancho de la sección

Figura 7.3: Disposición de conectores según la solicitación cortante [3]

Con respecto al diseño por flexión, se comprueba que el momento actuante sea menor que el momento resistente, considerando sus respectivos coeficientes. Para determinar el momento resistente en estos conectores desmontables se usan las dos metodologías propuestas en la tesis doctoral de Kozma [3].

7.2.1 Método 1

Esta metodología es también aplicable para conectores tradicionales (soldados) y se comprobó su validez como método simplificado para conectores desmontables, asumiendo que el conector tiene un comportamiento flexible-rígido (ver Figura 3.5)

El momento resistente está en función de la tensión, la distancia del eje neutro a la fibra de análisis y la inercia, ecuación (7.4), que varía en función de la distribución de deslizamiento a lo largo de la viga y la posición de la fibra neutra varía en función del plano de deformaciones:

$$M = \frac{\sigma * I}{z} \tag{7.4}$$

7.2.1.1 Segundo momento de área (inercia)

Para el caso de conectores tradicionales (pernos soldados), la distribución de deslizamiento a lo largo de la viga es uniforme, es decir todos los conectores a lo largo de la viga tendrán el mismo deslizamiento. Por lo tanto, el segundo momento de área (es dedir, la inercia) con respecto al centro de gravedad se encuentra aplicando la siguiente formula (demostrada en la tesis doctoral de Kozma [3]):

$$I_{y,rigido} = I_{y,a} + \frac{I_{y,c}}{n} + \frac{A_c * A_a}{A_c + nA_a} * a^2$$
(7.5)

Figura 7.4: Sección transversal de una viga mixta

Donde:

n: relación de módulos elásticos (E_a/E_c)

Para el caso de conectores desmontables, la hipótesis que se hace es que la distribución de deslizamiento a lo largo de la viga se aproxima a una función coseno. Esto sería cierto siempre que la carga aplicada sobre la viga sea una función tipo coseno (ver Figura 7.5). Sin embargo, existen varias investigaciones en la que se indica que no hay mucha diferencia en el diagrama de momentos flectores para una carga tipo coseno con respecto a una carga uniformemente distribuida (ver Figura 7.6)

Figura 7.5: Diagrama carga, deslizamiento, momento para una viga mixta con conector desmontable y carga tipo coseno [3]

Figura 7.6: Comparación de momentos por carga tipo coseno y carga uniforme distribuida [3]

Considerando la hipótesis descrita para conectores desmontables, el segundo momento de área corresponde a una inercia efectiva, es decir, no se puede relacionar con un punto específico, como por ejemplo el centro de gravedad. El valor del segundo momento de área se encuentra aplicando la siguiente formula, Kozma [3]:

$$I_{y,eff} = I_{y,a} + \frac{I_{y,c}}{n} + \frac{A_c/n}{1 + \frac{A_c}{nA_a} + \left(\frac{E_a}{\frac{K_{sc}}{S_{sc,eq}}}\right) * \left(\frac{\pi}{L}\right)^2 * \left(\frac{A_c}{n}\right)}$$
(7.6)

Donde:

$$\begin{split} &k_{sc}: rigidez \ elástica \ del \ conector \ (\frac{0.7*0.9*Pu}{deslizamiento \ a \ 0.7*0.9*Pu}) \\ &S_{sc,eq}: \ espaciamiento \ longitudinal \ equivalente \ (\frac{sep \ entre \ conectores}{\# \ de \ conectores \ dispuestos \ por \ fila}) \end{split}$$

7.2.1.2 Posición de la fibra neutra

Para el caso de conectores desmontables, la posición de la fibra neutra depende de la rigidez y el espaciamiento de los conectores de corte, resultando que el plano de deformaciones sea diferente para el forjado y la viga.

Figura 7.7: Diagrama de deformaciones de una sección mixta con conexión flexible a rasante [Fuente: Propia]

$$M_{el,Rd} = \min(M_{el,cc}, M_{el,ac}, M_{el,at})$$
(7.7)

Página 102 de 136

Donde:

$$M_{el,cc} = \frac{f_{c}*n*I_{y,eff}}{z_{el,c}} \qquad z_{el,c} = \frac{h_{c}}{2} + \frac{n*S_{k}}{A_{c}}$$
$$M_{el,ac} = \frac{f_{y}*I_{y,eff}}{z_{el,a}} \qquad z_{el,a} = y_{a} - \frac{S_{k}}{A_{a}}$$
$$M_{el,at} = \frac{f_{y}*I_{y,eff}}{h_{a}-z_{el,a}}$$
$$S_{k} = \frac{a}{\frac{E_{a}}{\left(\frac{k_{SC}}{S_{Sc,eq}}\right)^{*}\left(\frac{L}{n}\right)^{2}} + \frac{A_{c}+nA_{a}}{A_{c}A_{a}}}$$
$$y_{a} = \frac{h_{a}}{2}$$

Para el caso de conectores tradicionales (pernos soldados), el plano de deformaciones es único para toda la estructura mixta (ver Figura 7.8)

Figura 7.8: Diagrama de deformaciones de una sección mixta con conexión rígida a rasante [Fuente: Propia]

$$M_{el,Rd} = \min(M_{el,c}, M_{el,a})$$
 (7.8)

Donde:

$$M_{el,c} = \frac{f_c * I_{y,rigido}}{z_{el,c} - z_{el,a}} \qquad z_{el,c} = h_c + z_{el,a}$$
$$M_{el,a} = \frac{f_y * I_{y,rigido}}{h_a - z_{el,a}}$$

 $\boldsymbol{z}_{el,a}$ aplica la misma fórmula vista para conectores desmontables

7.2.1.3 Desplazamiento elástico

Todo lo visto anteriormente sirve para determinar el momento elástico resistente. Por último, se tiene que determinar el desplazamiento perpendicular a la directriz de la viga (flecha) y así poder comparar con las curvas obtenidas experimentalmente. La flecha en centro de vano (w) de una viga biapoyada

de longitud L sometida a una carga uniformemente distribuida (q) viene dada por la siguiente expresión:

$$w = \frac{5}{384} * \frac{q * L^4}{E_a I_{y,eff}}$$
(7.9)

Donde:

$$q = \frac{8 * M_{el,Rd}}{L^2}$$

7.2.2 Método 2

A diferencia del método 1, este método es exacto, ya que considera el comportamiento no-lineal del conector. En este trabajo, gracias a las simulaciones numéricas, se puede conocer el deslizamiento en el apoyo o final de barra (\bar{s}) para diferentes cargas. Queda fuera del alcance de este trabajo el desarrollo de este método cuando no se conoce (\bar{s}) pero se puede encontrar en Kozma [3].

El desarrollo de este método aplica los siguientes supuestos:

- a) La distribución de conectores a lo largo de la longitud de la viga es equidistante o de acuerdo con la distribución de cortante en la viga.
- b) La función de distribución de deslizamientos s(x) responde a una función coseno:

$$s(x) = \bar{s} * \cos\left(\frac{\pi * x}{L}\right) \tag{7.10}$$

Para la resolución se aplica el siguiente algoritmo

Figura 7.9: Algoritmo para la determinación del momento elástico resistente de vigas mixtas con conectores no lineales (Método 2), conocido deslizamiento final.

Figura 7.10: Esquema para determinación de carga aplicada

Figura 7.11: Determinación del esfuerzo cortante a partir de la distribución de deslizamiento con ayuda de la curva fuerza-deslizamiento [3]

$$I_{y,eff,m} = I_{y,a} + \frac{I_{y,c}}{n} + \frac{a^2}{\frac{E_a * \sin\left(\frac{m\pi}{2n_p}\right)}{\sum_{i=1}^m \frac{k_{scm,i}}{S_{sc,eq}} \frac{L}{\pi} * \left[\sin\left(\frac{i\pi}{2n_p}\right) - \sin\left(\frac{(i-1)\pi}{2n_p}\right)\right]} + \left(\frac{A_c + nA_a}{A_c A_a}\right)$$
(7.12)

Donde:

m: número de conectores acumulados hasta la longitud crítica o L/2

 n_p : número de conectores hasta la longitud crítica $\left(\frac{L/2}{Distancia entre conectores}\right)$

 $k_{scm,i}$: rigidez de cada conector $\left(\frac{P_{sc,i}}{s_i}\right)$

$$w_{np} = \sum_{m=1}^{n_p} \frac{F}{24E_a I_{y,eff,m}} * [L^3(A-B) + 2L(B^3 - A^3) + A^4 - B^4]$$
(7.13)

Donde:

F: Carga aplicada sobre viga simplemente apoyada (ver Figura 7.10)

$$A = \frac{m * L}{2n_p}$$
$$B = \frac{(m-1) * L}{2n_p}$$

Repitiendo el algoritmo del método para diferentes momentos (M) se obtiene la curva momento resistente vs desplazamiento, donde el momento último resultante nunca debe ser superior al obtenido por el método 1.

7.3 Análisis plástico

Es muy importante saber que para realizar un análisis plástico no solo es necesario que satisfaga lo visto en la Figura 7.1, además se debe cumplir las condiciones especificadas en EN 1994-1-1 [1]. En un análisis plástico se realizan las siguientes comprobaciones (flexión, cortante, pandeo lateral por torsión, esfuerzo transversal en almas, disposiciones constructivas a rasante y armadura a rasante en el forjado).

Este tipo de análisis es el más común para diseño y parte de ciertas hipótesis descritas en EN 1994-1-1 [1], donde una de ellas es que todas las fibras del acero están sometidas a una tensión igual a su límite elástico, tanto en tracción como en compresión (ver Figura 7.12). Esto se da por válido siempre que el grado de conexión sea mayor al η_{lim} , tal como se mencionó en el capítulo 7.1.

Figura 7.12: Distribución de tensiones plásticas para una viga mixta en flexión positiva y negativa [1]

Con respecto al diseño por flexión, se comprueba que el momento aplicado sea menor que el momento resistido, el cual depende de dos factores:

a) Grado de conexión a rasante, pudiendo ser conexión total (M_{pl,Rd}) o conexión parcial (M_{Rd})

Figura 7.13: Posibles distribución de tensiones para conexión total [3]

Página 107 de 136

Figura 7.14: Posibles distribución de tensiones para conexión parcial [3]

b) Tipo de conector, pudiendo ser conectores soldados (método tradicional) o conectores desmontables.

Para el caso de conectores tradicionales (pernos soldados), se considera que tienen un comportamiento idealizado "rígido-dúctil" (ver Figura 3.5). Esto significa que, apenas haya experimentado carga la viga mixta, todos los conectores tendrán la misma fuerza independientemente del deslizamiento. Por lo tanto, la fuerza a compresión será la multiplicación de la resistencia del conector de cortante (P_{Rd}) (definida según EN 1994-1-1 [1]) por el número de conectores necesarios (n_{f}) para el caso de conexión total o número de conectores colocados (n_{sc}) para el caso de conexión parcial

$$N_{c,f} = n_f * P_{Rd} = \min(N_{pl,c}; N_{pl,a})$$
(7.14)

$$N_c = n_{sc} * P_{Rd} \tag{7.15}$$

Donde:

$$\eta = \frac{n_{sc}}{n_f} \tag{7.16}$$

Para el caso de conectores desmontables, y dado que su comportamiento idealizado es no lineal, la fuerza en los conectores es variable. Esto tiene dos implicaciones: la primera es que la conexión siempre será parcial y la otra es que se requiere conocer la fuerza que tiene cada conector para poder sumar y lograr determinar (N_c).

La determinación de la fuerza en cada conector mediante un método analítico es muy laboriosa, lo que hace necesario recurrir a modelos de elementos finitos. Sin embargo, Kozma [3] consiguió desarrollar una metodología práctica para obtener la fuerza de cada conector partiendo de la suposición que el deslizamiento en una viga mixta responde a una función coseno. Con esto se desarrolló una metodología general y una simplificada, que se describen a continuación.

Página 108 de 136

7.3.1 Método general

La aplicación de esta metodología es válida si se cumplen las siguientes condiciones:

- i. La viga mixta responde a la tipología de viga descolgada con un tablero de hormigón colocado sobre el ala superior de la viga de acero.
- ii. La viga está simplemente apoyada y sometida a un momento flector positivo (por ejemplo, mediante carga uniformemente distribuida).
- iii. La curvatura de la viga es suficiente para el desarrollo de una distribución de tensiones plásticas en la sección de la viga.
- iv. La sección de la viga es simétrica con respecto a su eje vertical.
- v. El perfil de acero pertenece a clase 1 o clase 2 especificadas en la norma EN 1993-1-1 [7].
- vi. La distribución de conectores a lo largo de la longitud de la viga es equidistante o de acuerdo con la distribución de cortante en la viga.
- vii. La curva fuerza-deslizamiento del conector puede representarse mediante una curva monótona creciente.

Esta metodología aplica el siguiente algoritmo:

Figura 7.15: Algoritmo para la determinación del momento resistente de vigas mixtas con conectores no lineales (Método general)

El deslizamiento final (\overline{s}) se puede aproximar aplicando la siguiente ecuación:

$$\bar{\mathbf{s}} = \min \begin{cases} \delta_u \\ s_{ult,0} * (1 - \psi) \end{cases}$$
(7.17)

Donde:

 δ_u : Deslizamiento último del conector

 $\delta_{ult,0}$: Deslizamiento final cuando se alcanza la capacidad de momento para el caso que no haya conectores a rasante determinado, según Bärtschi [24].

$$s_{ult,0} = \alpha * \frac{L}{2} * \frac{1.5 * f_y - \sigma}{E_a} \left(1 + \frac{h_t}{0.5 * h_a} \right)$$
(7.18)

Donde:

$$\alpha = \begin{cases} \frac{2}{3} Para \ carga \ uniformemente \ distribuida\\ \frac{1}{2} Para \ carga \ puntual \ que \ actua \ en \ el \ centro \ de \ vano\\ 1 - \frac{e}{L} Para \ dos \ cargas \ puntuales \ simétricas \ que \ actuan \ a \ una \ distancia \ e \ de \ los \ apoyos \end{cases}$$

σ: Tensión normal máxima en la viga de acero debido a una construcción no apuntalada

 $\mathbf{ht} = \begin{cases} \mathbf{h}_c + \mathbf{h}_s \, si \, es \, losa \, colaborante \, (Altura \, total) \\ h_c \, si \, es \, losa \, maciza \end{cases}$

 ψ : Grado de interacción

$$\psi = \frac{I_{y,eff} - (I_{y,a} + \frac{I_{y,c}}{n})}{I_{y,rigido} - (I_{y,a} + \frac{I_{y,c}}{n})}$$
(7.19)

La distribución de deslizamiento s(x) se describe mediante una función coseno la cual responde a la siguiente fórmula:

$$s(x) = \bar{s} * \cos\left(\frac{\pi * x}{L}\right) \tag{7.20}$$

7.3.2 Método simplificado

La aplicación de esta metodología es válida si se cumplen las mismas condiciones solicitadas en el método general (ver capítulo 7.3.1).

El objetivo de esta simplificación es evitar obtener la fuerza en cada uno de los conectores tal como propone la metodología presentada anteriormente, proponiendo una fuerza efectiva ($P_{R,eff}$). Para conseguir esto, se consideran los siguientes supuestos:

- i. El deslizamiento final (\overline{s}) es exactamente 6 mm cuando se alcanza el momento plástico resistente.
- ii. Como máximo se colocarían 6 conectores en la longitud crítica (L/2)

Una de las condiciones necesarias para la aplicación de esta metodología menciona que "la curvatura de la viga es suficiente para el desarrollo de una distribución de tensiones plásticas en la sección de la viga", esto se asegura cuando el grado de conexión a rasante (η) es mayor al mínimo (η_{lim}).

Las reglas para la formulación del grado mínimo de conexión a rasante (η_{lim}) se desarrollaron con conectores tradicionales (soldables) que tienen capacidad de deslizamiento de al menos 6 mm, por tal razón aplica el supuesto (i).

En cuanto al supuesto (ii), Kozma [3] analizó mediante simulación numérica la variación de k_{flex} con respecto al número de conectores a rasante, obteniendo los siguientes resultados:

Figura 7.16: Factor de reducción k_{flex} en función del número de conectores a rasante a lo largo de la viga [3]

Como se puede observar en la Figura 7.16, cuantas más filas de conectores de cizallamiento tengamos, menor será el valor de k_{flex} . Sin embargo, la diferencia en los valores de k_{flex} entre 4 filas y 30 filas es relativamente pequeña, su valor varía entre 0.69 y 0.81.

Por lo cual Kozma [3] como simplificación propone utilizar el número que corresponde a n_p = 6.

 k_{flex} representa a la relación entre $P_{R,eff}$ y la fuerza máxima a rasante en el último conector \overline{P} , donde:

$$P_{R,eff} = \frac{\sum_{i=1}^{n_p} P_{sc,i}}{n_p}$$
(7.21)

El algoritmo propuesto para el método simplificado es el siguiente:

Figura 7.17: Algoritmo para la determinación del momento resistente de vigas mixtas con conectores no lineales (Método simplificado)

Cabe recalcar que el coeficiente 0.9 corresponde a lo mencionado en la normativa, donde P_{RK} = 0.9 Pu y el coeficiente de 1.25 es el de minoración para diseño.

7.4 Validación del método analítico a temperatura ambiente

El objetivo de este capítulo es mostrar la aplicabilidad de las ecuaciones descritas en el capítulo 7 y validar el método analítico con los resultados obtenidos en las simulaciones numéricas de las vigas ensayadas en el proyecto FIREDUCE (capítulo 6.1.1). Para ello, primeramente, se transforman las curvas fuerza-desplazamiento a curvas momento-desplazamiento aplicando la ecuación

(7.11).

Análisis del comportamiento a flexión a temperatura ambiente y en situación de incendio de vigas mixtas acero-hormigón con conectores desmontables

Figura 7.18: Curva momento-desplazamiento de la viga simulada numéricamente en el proyecto FIREDUCE (conector tipo P3)

Figura 7.19: Curva momento-desplazamiento de la viga simulada numéricamente en el proyecto FIREDUCE (conector tipo P15)

7.4.1 Grado de conexión a rasante

El grado de conexión a rasante se determinó aplicando la ecuación (7.1), donde N_c es la suma de las fuerzas de los conectores según Figura 6.16 y Figura 6.17 y $N_{c,f}$ aplica la ecuación (7.2).

Tabla 7.1: Grado de conexión a rasante

	Р3	P15
Grado de conexión a rasante (η)	0.51	0.59
Grado de conexión a rasante mínimo (η _{min})	0.52	

7.4.2 Análisis elástico

Se determinó el momento resistente elástico y la flecha elástica por el método 1 aplicando las ecuaciones descritas en el capítulo 7.2.1.

Tabla 7.2: Resultados para obtención de momento elástico resistente y flecha elástica por método 1

	1		1	
Datos	Valor Conector P3	Valor Conector P15	Unidades	
n	5.79	5.79		
k _{sc}	23515.9	68945.9	N/mm	
Ssc,eq	300	300	mm	
Sk	139936.11	347722.27	mm ³	
I _{y,eff}	256692994.9	309678464.2	mm ⁴	
Z _{el,c}	79.50	86.18	mm	
Z _{el,a}	160.75	132.17	mm	
M _{el,cc}	747.19	831.57	kN*m	
M _{el,ac}	742.53	1089.51	kN*m	
M _{el,at}	599.06	632.05	kN*m	

Análisis del comportamiento a flexión a temperatura ambiente y en situación de incendio de vigas mixtas acero-hormigón con conectores desmontables

Mel	599.06	632.05	kN*m
q _{el}	299.53	316.03	kN/m
Wel	18.52	16.20	mm

Figura 7.20: Comparación de las curvas momentodesplazamiento numéricas y analíticas (proyecto FIREDUCE conector P3)

Figura 7.21: Comparación de las curvas momentodesplazamiento numéricas y analíticas (proyecto FIREDUCE conector P15)

Las curvas obtenidas según las ecuaciones descritas en el análisis elástico por el método 1 no tienen buena correlación con las curvas obtenidas en la simulación numérica, así que se procedió a aplicar el método 2 descrito en el capítulo 7.2.2.

Figura 7.22: Comparación de las curvas momentodesplazamiento numéricas y analíticas método 2 (proyecto FIREDUCE conector P3)

Figura 7.23: Comparación de las curvas momentodesplazamiento numéricas y analíticas método 2 (proyecto FIREDUCE conector P15)

Las curvas obtenidas según las ecuaciones descritas en el análisis elástico por el método 2 tienen mejor correlación que las obtenidas por el método 1, sin embargo, se observa que para el conector P3 a partir de 400 kN*m y para el conector P15 a partir de 500 kN*m la curva obtenida por el método analítico se aleja de la curva numérica Este detalle indica que en dichos puntos se da el inicio de la plastificación del perfil metálico.

7.4.3 Análisis Plástico

El momento plástico depende de dos factores, el grado de conexión y el tipo de conector. Con respecto al grado de conexión, éste fue determinado en el capítulo 7.4.1 a pesar que el conector P3 no cumpliría el requisito para ser conexión parcial, pero se asume que cumple al estar muy cercano al valor límite. Por su parte, el conector P15 cumple totalmente el requisito de conexión parcial. Con respecto al tipo de conector, este trabajo se enfoca a conectores desmontables, por lo tanto, se requiere conocer N_c (ver Figura 7.14), pudiendo ser determinada por el programa de elementos finitos o por las propuestas presentadas en los capítulos 7.3.1 o 7.3.2.

Para este trabajo se determinó N_c mediante los resultados obtenidos en la simulación numérica, es decir, N_c corresponde a la suma de la fuerza de cada uno de los conectores (ver Figura 6.16 y Figura 6.17)

Tabla 7.3: Valores de N_c para cada uno de los conectores del proyecto FIREDUCE

	Conector P3	Conector P15
Nc (kN)	1734.56	2010.3

Conocido N_c se planteó la distribución de tensiones plásticas y posteriormente se determinó el M_{Rd}. Adicionalmente se consideró la hipótesis de que sería una conexión total (ver Figura 7.13), obteniendo el momento plástico total resistente M_{pl,Rd}.

	Unidades	Conector P3	Conector P15
M _{Rd} : Momento resistente analítico para conexión parcial	kN*m	599.48	644.66
M _{pl,Rd} : Momento resistente analítico para conexión total	kN*m	862.04	
Momento resistente simulado	kN*m	650.247	674.82

Tabla 7.4: Momento plástico para conexión parcial y total

7.4.4 Resumen

Se presenta un resumen de los resultados por análisis elástico (capítulo 0) con los dos métodos y por análisis plástico (capítulo 7.4.3).

Figura 7.24: Momento plástico para conexión parcial y total (conector P3 proyecto FIREDUCE)

Figura 7.26: Comparación de resultados numéricos y analíticos , conector P3 a temperatura ambiente

Figura 7.25: Momento plástico para conexión parcial y total (conector P15 proyecto FIREDUCE)

Figura 7.27: Comparación de resultados numéricos y analíticos, conector P15 a temperatura ambiente

Como se puede observar, el M_{el} (Momento resistente elástico) y el M_{Rd} (Momento resistente para conexiones parciales) en los dos tipos de conectores tienen valores similares, esto se debe a que el grado de conexión a rasante (ver Tabla 7.1) está muy cerca del límite, y tal como se explicó en el capítulo 7.1, este límite es el punto en el cual se considera que las deformaciones pasan de elásticas a plásticas.

Al aplicar un análisis elástico, el método 2 proporciona resultados más exactos tal como se observa en la Figura 7.26 y Figura 7.27. Sin embargo, esto implica un mayor coste computacional ya que requiere de programación.

Los métodos analíticos aplicados por un análisis plástico proporcionan resultados con alta precisión lo cual significa que las fórmulas propuestas por el EN 1994-1-1 [1] y la tesis doctoral de Kozma [3] son plenamente aplicables para cualquier tipo de conector con comportamiento no-lineal a temperatura ambiente.

Página 116 de 136

8 Propuestas de cálculo analítico a temperatura elevada

Las investigaciones por metodologías analíticas que permiten determinar el momento resistente a temperatura elevada para una viga mixta acero-hormigón con conectores desmontables son muy limitadas. Tan sólo se conoce de un artículo que afirma que las fórmulas descritas en EN 1994-1-2 [2] también son aplicables para conectores desmontables [38].

El artículo [38] no considera lo principal que se debe tener en cuenta el usar conectores desmontables que es la fuerza a compresión en el forjado. Es por tal razón que este capítulo tiene gran aporte al sector de la construcción aportando toda la información para un completo diseño a flexión con conectores desmontables a temperatura elevada.

El objetivo de este capítulo no es proponer nuevas formulaciones sino adaptar las ecuaciones propuestas por la normativa EN 1994-1-2 [2] y otras dispuestas por la tesis doctoral de Kozma [3] a temperatura ambiente para su extensión y aplicación en el cálculo en situación de incendio.

El diseño a flexión de una viga mixta acero-hormigón sometida a fuego sigue la misma filosofía de cualquier otro diseño estructural, donde el momento resistido en fuego debe ser mayor o igual que el momento aplicado en fuego, considerando sus respectivos coeficientes. Para el caso del momento actuante se sigue lo descrito en EN 1994-1-2 [2] y no es de mayor enfoque en este trabajo.

La obtención del momento resistente o capacidad a flexión de una viga mixta acero-hormigón sometida a fuego sigue la misma filosofía mencionada en el capítulo 7.3, es decir, se asume un estado plástico de los materiales. Sin embargo, el cálculo se complica ya que las propiedades mecánicas se degradan con la temperatura convirtiéndose en un cálculo puramente no lineal.

Además de las reducciones mecánicas de los materiales debido a la temperatura, se debe considerar el tipo de conector (tradicional o desmontable).

Se propone a continuación un algoritmo para la obtención del momento resistente según lo descrito en el EN 1994 1-2 [2].

Figura 8.1: Algoritmo para la determinación del momento resistente de vigas mixtas sometida a fuego con conectores tradicionales o desmontables

8.1 Evolución de la temperatura de la viga de acero

La evolución de la temperatura de una viga de acero expuesta a un modelo de incendio nominal según la curva estándar ISO-834 se determina de acuerdo a lo indicado en el EN 1994 1-2 [2], donde se proponen dos ecuaciones en función si la viga está protegida o sin protección. Adicionalmente, se consideran tres puntos de análisis: el ala superior, alma y ala inferior del perfil metálico, cada una con sus respectivas masividades.

Para el caso del proyecto FIREDUCE, las vigas mixtas son protegidas con protección tipo cajeado, lo cual permite considerar (según EN 1994 1-2 [2]) una temperatura uniforme en toda la sección del perfil metálico. Con ello, el calentamiento de la viga se determina según la siguiente ecuación:

$$\Delta \theta_{a,t} = \left[\left(\frac{\lambda_p / d_p}{c_a \rho_a} \right) \left(\frac{A_p}{V} \right) \left(\frac{1}{1 + w/3} \right) \left(\theta_t - \theta_{a,t} \right) \Delta t \right] - \left[\left(e^{w/10} - 1 \right) \Delta \theta_t \right]$$
(8.1)

Donde:

$$w = \left(\frac{c_p \rho_p}{c_a \rho_a}\right) d_p \left(\frac{A_p}{V}\right)$$

Página 118 de 136

 λ_p : conductividad térmica del material de protección. Se tomó como valor variable en función de la temperatura (ver Figura 5.9) [W/mK]

 d_p : espesor del material de protección. Se tomó como 0.03 m (ver capítulo 3.4)

c_p: calor específico del material de protección. Se tomó como 840 J/kgK (ver capítulo 5.1.2)

 ρ_p : densidad del material de protección. Se tomó como 165 kg/m³ (ver capítulo 5.1.2)

c_a: calor específico del acero se tomó como valor variable en función de la temperatura (ver Figura 5.1) [J/kgK]

 ρ_a : densidad del acero. Se tomó como 7850 kg/m³

 A_p : área de la cara interior de la protección cajeada por unidad de longitud de la viga de acero $[m^2/m]$

V: volumen de toda la sección transversal de la viga de acero por unidad de longitud [m³/m]

 θ_t : temperatura del gas para el instante t [°C]

 $\theta_{a,t}$: temperatura del acero para el instante t [°C]

 Δ_t : incremento de tiempo [min]

 $\Delta \theta_t$: incremento de temperatura del gas [°C] durante el intervalo Δ_t

El término $\left(\frac{A_p}{V}\right)$ se conoce como masividad o factor de sección, el cual se calcula tal como indica la Figura 8.2.

Sketch	Description	Section factor (A_p/V)
	Hollow encasement of uniform thickness, exposed to fire on three sides) ¹	$\frac{2h+b}{\text{steel cross-section area}}$

Figura 8.2: Factor de sección para perfiles con protección de tipo cajeado [37]

Al aplicar la ecuación (8.1) considerando un modelo de incendio correspondiente al normalizado (curva ISO-834) se obtiene los siguientes resultados.

Análisis del comportamiento a flexión a temperatura ambiente y en situación de incendio de vigas mixtas acero-hormigón con conectores desmontables

Figura 8.3: Evolución de la temperatura de la viga de acero

La evolución de la temperatura de la viga de acero obtenida de manera analítica (ver Figura 8.3) es comparada con la obtenida de manera numérica, que como se vio anteriormente, es similar a la experimental (ver Figura 6.24 a Figura 6.29).

Figura 8.4: Comparación del calentamiento del perfil metálico (numérico frente a analítico), conector P3

Figura 8.5: Comparación del calentamiento del perfil metálico (numérico frente a analítico), conector P15

La comparación de los resultados obtenidos numéricamente frente a los obtenidos analíticamente demuestra que el modelo analítico es más conservador que el numérico. Esto se debe a que la ecuación analítica no considera que el forjado de hormigón afecta, disminuyendo la temperatura del perfil de acero.

La hipótesis realizada por la normativa, la cual dice que cuando existe una protección de tipo cajeado la temperatura en el perfil se considera como uniforme en toda la sección, se da por válida. Esto permite observar en las Figura 8.4 y Figura 8.5 que no existen grandes diferencias de temperaturas.

8.2 Distribución de tensiones

La posición de la línea neutra plástica (ENP) puede estar en el forjado, ala superior o alma de la viga. Dependiendo de la posición en que se encuentre, varían las fuerzas de equilibrio, y éstas dependen de las tensiones $f_{ay,\theta}$ y $f_{c,20\ ^{\circ}C}$.

Página 120 de 136

Donde:

 $f_{ay,\theta}$: tensión del acero a temperatura elevada y $f_{c,20\,^\circ C}$ tensión del hormigón a temperatura ambiente.

El EN 1994 1-2 [2] (en el Anexo E) muestra un modelo de distribución de tensiones correspondiente, asumiendo que el ENP está en el forjado. El mismo análisis se puede hacer para los diversos casos.

Figura 8.6: Distribución de tensiones asumiendo que el ENP está en el forjado y es conexión total [2]

Siempre que todo el perfil tenga una temperatura uniforme, y según la posición del ENP, la fuerza a compresión en el hormigón está dada por la siguiente ecuación:

$$F = N * P_{fi,Rd}$$
(Cuando ENP está en el ala superior o alma de la viga) $F = A_a * f_{ay,\theta} \le N * P_{fi,Rd}$ (8.2)

Donde:

N: número de conectores a lo largo de la viga

P_{fi,Rd}: es el valor de cálculo de la resistencia a rasante de los conectores en situación de incendio determinado según la siguiente ecuación:

$$P_{fi,Rd} = min \begin{cases} 0.8 * k_{u,\theta} * P_{Rd} \\ k_{c,\theta} * P_{Rd} \end{cases}$$
(8.3)

 $k_{u,\theta}$ corresponde al factor de reducción a temperatura elevada para los conectores, que es la misma del acero (ver Figura 5.26). Por su parte, $k_{c,\theta}$ corresponde al factor de reducción a temperatura elevada para el hormigón (ver Figura 5.29).

Para determinar $k_{u,\theta}$ y $k_{c,\theta}$ se requiere conocer la temperatura a la cual está el conector y el forjado de hormigón. El EN 1994 1-2 [2] indica que se puede asumir como temperatura de los conectores un 80% y como temperatura del forjado un 40% de la temperatura del ala superior de la viga.

A continuación, se muestran las temperaturas correspondientes al conector y al forjado a partir de la temperatura de la viga (ver Figura 8.3) (con las hipótesis realizadas por la normativa de un 80 % y 40 %, respectivamente).

Figura 8.7: Temperaturas asumidas según aproximaciones del 80 % y 40 % para el conector y forjado respectivamente

La evolución de la temperatura de los conectores obtenida de manera analítica (ver Figura 8.7) es comparada con la obtenida de manera numérica. La temperatura numérica corresponde a la media de los cuatro conectores y como posición interfaz (ver Figura 6.33 a Figura 6.40).

Figura 8.8: Comparación temperaturas analíticas y simuladas en el plano de los conectores (Conector P3)

Figura 8.9: Comparación temperaturas analíticas y simuladas en el plano de los conectores (Conector P15)

Página 122 de 136

Se puede afirmar que la hipótesis del EN 1994 1-2 [2] que indica que la temperatura del conector corresponde al 80 % de la temperatura de la viga es correcta. Sin embargo, la diferencia observada entre los resultados analíticos y la simulación se debe a que la temperatura de referencia (temperatura de la viga) no se ajusta a la de la simulación (ver Figura 8.4 y Figura 8.5)

La evolución de la temperatura del forjado obtenida de manera analítica (ver Figura 8.7) es comparada con la obtenida de manera numérica (ver Figura 6.22 y Figura 6.23).

Figura 8.10: Comparación temperaturas analíticas y simuladas para el forjado (Conector P3)

El forjado presenta un gradiente de temperaturas, tal como se observa en las Figura 8.10 y Figura 8.11. La hipótesis del EN 1994 1-2 [2] que indica que la temperatura del forjado es el 40 % de la temperatura de la viga en dichas figuras corresponde a la media entre la temperatura superior e inferior de la simulación. Sin embargo, si consideramos que la temperatura de referencia (temperatura viga) no se ajusta a la de la simulación (ver Figura 8.4 y Figura 8.5), la curva por el método analítico tendería a bajar aproximándose más a la temperatura de la parte superior del forjado.

Para completar todas las variables de la ecuación (8.3) queda calcular P_{Rd} , el cual se determina en función del tipo de conector. Para el caso de conectores tradicionales se usa las ecuaciones 6.18 y 6.19 descritas en [1] EN 1994-1-1 y para el caso de los conectores desmontables se aplica la siguiente ecuación, Kozma [34]:

$$P_{Rd} = \frac{1}{n_p} * \sum_{i=1}^{n_p} P_{sc,i}$$
(8.4)

8.3 Momento plástico resistente a temperatura elevada por el método analítico

Para determinar el momento plástico resistente de manera analítica, se sigue la Figura 8.1. Durante el proceso se obtienen resultados que no dependen del tipo de conector (ver Tabla 8.1) y otros que dependen del tipo de conector (ver Tabla 8.2 y Tabla 8.3).

Tabla 8.1: Valores generales para la determinación del momento plástico resistente a temperatura elevada

				Tioner			1 f	
Resultado a				nempo de exposición al fuego				
determinar	Propiedades	Unidades	Formulación		(m	in)		
uccerninar				30	60	90	120	
	fy	Мра	Según Tabla 4.2	465	465	465	465	
5 · · · · · · ·	Temperatura	*0	Según Figura	100.0	405.2			
Resistencia de la viga	Viga	Ľ	8.3	189.6	405.3	577.4	700.5	
	1.		Según Figura	4		0.54	0.000	
temperatura	K _{y,θ}		5.26Figura 8.3	1	0.988	0.54	0.229	
	f _{ay,θ}	MPa f _y *k _{y,θ}		465	459.42	251.1	106.49	
	Temp.		Sogún Eigura					
	Conector (80	°C	°C		151.7	324.2	461.9	560.4
	%)		8.7					
Resistencia a rasante	Ŀ			1		0.96	0.50	
de los conectores a			5.26	T	T	0.86	0.59	
temperatura	Temp. Forjado	°C	Según Figura	75.0		220.0	200.2	
	(40 %)	Ľ	8.7	/5.8	102.1	230.9	280.2	
	k -		Según Figura	1	0.07	0.02	0.07	
	K _{c,θ}		5.29	L	0.97	0.92	0.87	

Tabla 8.2: Valores específicos para la determinación del momento plástico resistente a temperatura elevada
(Conector P3)

Resultado a	Broniodados	Unidados	Formulación	Tiempo de exposición al fuego (min)			
determinar	Fiopledades	Unidades	official formaticion		60	90	120
			Según				
Resistencia a	P _{Rd}	kN	ecuación (13	37.7	
rasante de los			8.4)				
conectores a			Según				
temperatura	$P_{\mathrm{fi,Rd}}$	kN	ecuación (110.14	110.14	95.13	65.28
			8.3)				
Máxima fuerza a			Según				
compresión,	F	kN	ecuación (1541.9	1541.9	1331.9	775.43
posición del eje			8.2)				
neutro plástico y	ENID			Ala	Ala	Ala	Hormigón
distancia de la	LINF			superior	superior	superior	nonnigon
fibra neutra			Distribución				
desde el extremo	7	mm	de tensiones	161 63	161 51	155 78	16 15
superior del	۷.			101.05	101.51	133.78	10.15
forjado							
				-		-	
	Corrección de		Según Anexo				
	la fuerza a		F 1 FN 1994	No	No	No	
	compresión		1-2	Anlica	Anlica	Anlica	No aplica
Resistencia del	por		12	Aprica	Aprica	Aprica	
forjado de	temperatura						
hormigón a	fc	MPa	Según Tabla	40	40	40	40
temperatura			4.4				
	Kc A*		Según Figura	1	1	1	1
			5.29	-	-	-	-
	f _{c,θ}	MPa	fc*kcθ*	40	40	40	40
	1		1				
Momento			Distribución				
plástico	$M_{fi,Rd}^+$	kN*m	de tensiones	567.63	564	387.93	254.91
resistente							

Tabla 8.3: Valores específicos para la determinación del momento plástico resistente a temperatura elevada
(Conector P15)

Resultado a	Broniodados	Unidades Formulación Tiempo de exposición al fue			ición al fue	ʒo (min)	
determinar	Propiedades	Unidades	Formulacion	30	60	90	120
Resistencia a rasante de los	P _{Rd}	kN	KN ecuación (8.4)		15	56.4	
conectores a temperatura	$P_{fi,Rd}$	kN	Según ecuación (8.3)	125.12	125.12	108.08	74.16
	1		1				
Máxima fuerza a compresión, posición del eje	F	kN	Según ecuación (8.2)	1751.68	1751.68	1513.07	775.43
neutro plástico y distancia de la	ENP			Ala superior	Ala superior	Ala superior	Hormigón
fibra neutra desde el extremo superior del forjado	Z	mm	Distribución de tensiones	160.3	160.17	153.66	16.15
Resistencia del forjado de	Corrección de la fuerza a compresión por temperatura		Según Anexo E.1 EN 1994 1-2	No Aplica	No Aplica	No Aplica	No aplica
hormigón a temperatura	fc	MPa	Según Tabla 4.4	40	40	40	40
	k _{c,0} *		Según Figura 5.29	1	1	1	1
	f _{c,θ}	MPa	fc*kcθ*	40	40	40	40
Momento plástico resistente	$M_{\mathrm{fi},\mathrm{Rd}}^+$	kN*m	Distribución de tensiones	602.3	598.64	416.74	254.91

Donde k_{c,θ^*} es diferente al $k_{c,\theta}$ de la Tabla 8.1. $k_{c,\theta}$ es el factor de reducción basado en una aproximación de temperatura (40 % de la temperatura de la viga). Sin embargo, k_{c,θ^*} es un factor de reducción basado en que, si la temperatura ha afectado al bloque de compresión, se debe aplicar (o no) la corrección de la fuerza de compresión por temperatura.

Página 126 de 136

8.4 Momento plástico resistente a temperatura elevada por el método numérico

Para determinar el momento plástico resistente de manera numérica, la propuesta se basa en el procedimiento para el cálculo a temperatura ambiente, tal como se describió en el capítulo 4 considerando las propiedades mecánicas reducidas por efecto de la temperatura $f_{ay,\theta}$ y $f_{c\theta}$.

La geometría, materiales, pasos de carga, etc corresponden a los del proyecto FIREDUCE.

Tabla 8.4: Propiedades mecánicas para la obtención de momento plástica resistente de manera numérica

Broniodados mocánicas	Unidados	Tiempo de exposición al fuego (min)					
Fropiedades mecanicas	Unidades	30	60	90	120		
f _{ay,θ}	MPa	465	459.42	251.1	106.49		
f _{c,θ} (Conector P3 y P15)	MPa	40	40	40	40		

Figura 8.12: Momento resistente numérico para un tiempo de exposición al fuego de 30 minutos (Conector P3)

Análisis del comportamiento a flexión a temperatura ambiente y en situación de incendio de vigas mixtas acero-hormigón con conectores desmontables

Figura 8.14: Momento resistente numérico para un tiempo de exposición al fuego de 90 minutos (Conector P3)

Figura 8.16: Momento resistente numérico para un tiempo de exposición al fuego de 30 minutos (Conector P15)

Figura 8.18: Momento resistente numérico para un tiempo de exposición al fuego de 90 minutos (Conector P15)

Figura 8.15: Momento resistente numérico para un tiempo de exposición al fuego de 120 minutos (Conector P3)

Figura 8.19: Momento resistente numérico para un tiempo de exposición al fuego de 120 minutos (Conector P15)

8.5 Validación del método analítico a temperatura elevada

Los momentos plásticos resistentes obtenidos de manera analítica para los conectores tipo P3 (ver Tabla 8.2) son comparados con los obtenidos de manera numérica (ver Figura 8.12 a Figura 8.15).

Figura 8.20: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 30 minutos (conector P3)

Figura 8.22: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 90 minutos (conector P3)

Figura 8.21: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 60 minutos (conector P3)

Figura 8.23: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 120 minutos (conector P3)

Los momentos plásticos resistentes obtenidos de manera analítica para los conectores tipo P15 (ver Tabla 8.3) son comparados con los obtenidos de manera numérica (ver Figura 8.16 a Figura 8.19).

Figura 8.24: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 30 minutos (conector P15)

Figura 8.26: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 90 minutos (conector P15)

Figura 8.25: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 60 minutos (conector P15)

Figura 8.27: Comparación de resultados numéricos y analíticos para tiempo de exposición a fuego de 120 minutos (conector P15)

La propuesta a temperatura elevada por el método analítico conduce a resultados del lado de la seguridad con respecto a los resultados numéricos para tiempos de resistencia al fuego cortos (30 y 60 minutos) y resultados muy ajustados para tiempos de resistencia al fuego altos (90 y 120 minutos).

Los métodos analíticos aplicados por un análisis plástico proporcionan resultados con buena precisión. Esto significa que las fórmulas propuestas por el EN 1994 1-2 [2] y la tesis doctoral de Kozma [3] son plenamente aplicables para cualquier tipo de conector con comportamiento no-lineal a temperatura elevada.

9 Aplicabilidad práctica en el sector de la construcción

La tecnología de vigas mixtas acero-hormigón para su empleo en forjados de edificación se viene desarrollando durante muchos años en el campo de la construcción. La unión entre los dos componentes de la viga mixta, perfil de acero y forjado de hormigón, se realiza tradicionalmente mediante pernos soldados al ala superior de la viga. A pesar que la construcción metálica tiene su principal ventaja en la rapidez de ejecución, ésta podría ser aún más optimizada con los llamados conectores a rasante desmontables, teniendo una aplicación directa en la industria prefabricada. Esto permitiría le preparación en taller del forjado y el rápido ensamblaje en obra con los conectores atornillados descritos en este trabajo. Tras la ejecución de la estructura metálica, se procedería a la colocación de estos conectores atornillados mediante pretensado, para unir las vigas metálicas a los elementos del forjado de hormigón. Esto ayudaría a abaratar notablemente en el coste de esta fase del proyecto, reduciendo los tiempos de ejecución.

Otro aspecto muy importante es que un conector soldado (método tradicional) requiere personal y equipamiento especializado. Al remplazar la unión de la viga mixta por un conector atornillado desmontable, éste podría ser manipulado sin requerir una gran especialización.

En este trabajo se ha abordado el diseño estructural en base a un modelo avanzado que considera el comportamiento plástico (no-lineal) de los materiales y el comportamiento realista fuerzadeslizamiento de los conectores en todo su rango de trabajo, en base al cual se ha propuesto una metodología de análisis. Las vigas diseñadas mediante la metodología propuesta tienen mayor capacidad en comparación con los que se obtendría de haberse realizado un diseño elástico o plástico rígido, también aceptado por la normativa. Por lo tanto, implementar en el diseño la aplicación del cálculo no-lineal en vigas mixtas acero-hormigón a temperatura ambiente y elevada con cualquier tipo de conector contribuye también a ahorrar costes en el proyecto.

Finalmente, la normativa europea (en lo que respecta a vigas mixtas acero-hormigón a temperatura ambiente y elevada) propone ecuaciones para el diseño estructural que se basan en conectores con comportamiento rígido-dúctil (conectores tradicionales). La transferencia a la normativa de la metodología propuesta en este trabajo puede resultar práctica desde el punto de vista del calculista, pues las ecuaciones propuestas para los conectores con comportamiento no-lineal (conectores desmontables) se basan en las expresiones ya empleadas en la normativa europea (Eurocódigo 4) para vigas mixtas con conectores tradicionales, estando alineada con estas directrices. La existencia de un método de cálculo tanto a temperatura ambiente como en situación de incendio facilitará además la introducción de esta nueva tipología de conectores desmontables en el sector de la construcción, en aras de una mayor contribución a la economía circular en el sector de la construcción.

10 Conclusiones y Recomendaciones

Este Trabajo Final de Master ha tenido por objeto el análisis del comportamiento a flexión de vigas mixtas acero-hormigón con conectores desmontables. Existen varios obstáculos en el camino de la reutilización cuando se trata de construcción con vigas mixtas, principalmente por el tipo de conectores que se usa, tradicionalmente soldados.

Como solución al problema antes mencionado, se ha propuesto en este trabajo el empleo de conectores desmontables, ventajosos en términos de desempeño estructural, y que además permiten la desmontabilidad del sistema, sin embargo, requieren para su estudio analítico el conocimiento del comportamiento completo, es decir valores de fuerza y deslizamiento para cada fase. A diferencia de los conectores tradicionales que sólo requieren conocer la fuerza máxima.

Los conectores de rasante desmontables tienen un comportamiento diferente a los conectores tradicionales (soldables). El primer tipo de conector tiene un comportamiento no-lineal. Por el contrario, el segundo tipo de conector posee un comportamiento idealizado rígido-dúctil.

Este trabajo propone dos tipos de conectores de rasante desmontables (sistemas P3 y P15), los cuales fueron sometidos a ensayos experimentales a temperatura ambiente y elevada en sendos proyectos de investigación realizados en la Universidad de Luxemburgo y en las propias instalaciones del Instituto Universitario de Investigación ICITECH de la UPV, en el marco de los proyectos REDUCE y FIREDUCE, respectivamente.

Estas campañas experimentales consistieron en dos tipos de ensayos: ensayos Push-out (POT) con elementos de pequeña longitud, que permiten caracterizar el comportamiento del conector (curva fuerza-deslizamiento); y ensayos sobre vigas mixtas de gran longitud, que permiten obtener el momento resistente y/o carga máxima resistente.

Además, los ensayos de resistencia al fuego realizados, permiten obtener el comportamiento de las vigas bajo un escenario de fuego normalizado, obteniendo con ello el tiempo de resistencia al fuego, siendo estos ensayos una novedad en este campo para la tipología estudiada.

Las pruebas experimentales se complementaron con simulaciones numéricas mediante un modelo propio de elementos finitos y cálculos analíticos desarrollados por el autor del presente TFM, con el fin de generalizar el comportamiento de las vigas a temperatura ambiente y elevada.

Las simulaciones numéricas a temperatura ambiente y elevada son capaces de capturar con muy alta precisión el comportamiento de los ensayos experimentales, esto permite ampliar los estudios considerando ciertas variaciones paramétricas (resistencia del hormigón, resistencia del acero, separación entre conectores, luz de viga, aplicación de carga, geometría de la sección transversal, diversos materiales de protección, entre otros).

Los cálculos analíticos según las directrices de la normativa europea para determinar el momento plástico resistente a temperatura ambiente se basan en conectores tradicionales. Sin embargo, en este trabajo se demostró que, al considerar las fórmulas propuestas en la bibliografía revisada, y en particular para la determinación de la contribución del forjado de hormigón en el comportamiento de la viga mixta, se consigue que dichas fórmulas también sean aplicables para conectores desmontables.

Es importante destacar que actualmente no existe un método que facilite a los calculistas la determinación del momento plástico resistente a temperatura elevada para vigas mixtas con conectores desmontables, pues la propuesta de la normativa europea se basa en conectores tradicionales, es por tal razón que este Trabajo Final de Master propone una metodología la cual extiende las ecuaciones propuestas en la bibliografía revisada para su aplicabilidad a la tipología de conectores estudiados tanto a temperatura ambiente como en situación de incendio, estando en línea con los Eurocódigos estructurales.

La metodología propuesta en este Trabajo Final de Master es por tanto transferible a la normativa europea, proporcionando a los calculistas un método para el diseño y cálculo de este tipo de vigas mixtas con conectores desmontables a temperatura elevada.

- 11 Bibliografía
- [1] EN 1994-1-1. Eurocode 4: Design of composite steel and concrete structures Part 1.1: General rules and rules for buildings. 2004.
- [2] EN 1994-1-2. Eurocode 4: Design of composite steel and concrete structures Part 1-2 : General rules Structural fire design. 2005.
- [3] Kozma AS. DEMOUNTABLE COMPOSITE BEAMS: ANALYTICAL CALCULATION APPROACHES FOR SHEAR CONNECTIONS WITH MULTILINEAR LOAD-SLIP BEHAVIOUR [PhD Thesis]. [Luxembourg]: Université du Luxembourg; 2020.
- [4] Ministerio para la transición ecológica y el reto demográfico de España. Plan estatal marco de gestión de residuos (PEMAR). 2022.
- [5] Pimentel R, Simões R, Da Silva LS. Demountable Steel-CLT Composite Floors for Net-Zero Carbon Buildings: State of the Art and Design Principles. ce/papers. abril de 2022;5(2):184-95.
- [6] Ley 7/2022, de 8 de abril, de residuos y suelos contaminados para una economía circular. BOE-A-2022-5809.
- [7] EN 1993-1-1. Eurocode 3: Design of steel structures Part 1-1: General rules and rules for buildings. 2004.
- [8] Sause R, Fahnestock LA. Strength and ductility of HPS-100W I-girders in negative flexure. J Bridge Eng. octubre de 2001;6:318-23.
- [9] Oehlers DJ, Bradford MA. Elementary behaviour of composite steel & concrete structural members. 1.^a ed. Oxford: Butterworth-Heinemann; 1999.
- [10] Dallaman LN. High Strength Bolt Shear Connectors -Pushout Tests. En 1968.
- [11] Dedic D, Klaiber F. High-Strength Bolts as Shear Connectors in Rehabilitation Work. En 1984. p. 41-6.
- [12] European Commission, Directorate-General for Research and Innovation, Sedlacek G, Hoffmeister B, Trumpf H. Composite bridge design for small and medium spans. En 2003.
- [13] Pavlović M. Resistance of Bolted Shear Connectors in prefabricated steel-concrete composite decks [PhD Thesis]. [Belgrade]: University of Belgrade; 2013.
- [14] Moynihan MC, Allwood JM. Viability and performance of demountable composite connectors. J Constr Steel Res. agosto de 2014;99:47-56.
- [15] Lam D, Dai X. Demountable Shear Connectors for Sustainable Composite Construction. Adv Struct Eng Mech ASEM13. 2013;
- [16] Rehman N, Lam D, Dai X, Ashour AF. Experimental study on demountable shear connectors in composite slabs with profiled decking. J Constr Steel Res. julio de 2016;122:178-89.

- [17] Wang JY, Guo JY, Jia LJ, Chen SM, Dong Y. Push-out tests of demountable headed stud shear connectors in steel-UHPC composite structures. Compos Struct. junio de 2017;170:69-79.
- [18] Marshall W, Nelson H, Banerjee H. An experiment study of the use of high-strength friction grip bolts as shear connectors in composite beams. Struct Eng. 1971;49(4):171-8.
- [19] Roik K, Buerkner KE. REIBWERT ZWISCHEN STAHLGURTEN UND AUFGESPANNTEN BETONFERTIGTEILEN. Bauing. 1978;53:37-41.
- [20] Chen YT, Zhao Y, West JS, Walbridge S. Behaviour of steel-precast composite girders with through-bolt shear connectors under static loading. J Constr Steel Res. diciembre de 2014;103:168-78.
- [21] Becker J. Beitrag zur Auslegung der Verdübelung von Verbundträgern des Hochbaus unter ruhender und nichtruhender Belastung. Kiaserslautern: University of Kaiserslautern; 1997.
- [22] Thiele A. Verbundträger im Hochbau. Vieweg+Teubner Verlag; 1986.
- [23] Mansilla R, Espinós A, Odenbreit C, Payá-Zaforteza I, Romero ML. Characterization of the elevated temperature behaviour of demountable shear connectors in steel-concrete composite beams through push-out tests. Structures. enero de 2024;59:105810.
- [24] Bärtschi R. Load-bearing behaviour of composite beams in low degrees of partial shear connection [PhD Thesis]. [Zürich]: ETH Zürich; 2005.
- [25] UNE-EN 1363-1. Ensayos de resistencia al fuego Parte 1: Requisitos generales. 2000.
- [26] EN 1991-1-2. Eurocode 1: Actions on structures Part 1-2: General actions Actions on structures res exposed to fi re. 2002.
- [27] SIMULIA User Assistance. Abaqus, © Dassault Systèmes Simulia. USA: Abaqus Corp. All rights Reserv. Provid. RI; 2017.
- [28] Menegotto M, Pinto PE. Method of analysis for cyclically loaded R.C plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. 1973;
- [29] Ádány S, Dulácska E, László D, Sándor F, László H. Acélszerkezetek Tervezés az Eurocode alapján. Business Media Magyarország Kft; 2010.
- [30] EN 1992-1-1. Eurocode 2: Design of concrete structures Part 1-1 : General rules and rules for buildings. 2004.
- [31] Model Code 2010. 1. Lausanne: International Federation for Structural Concrete (fib); 2010. 202
 p. (Bulletin / Fédération Internationale du Béton).
- [32] Wang Y, Burgess I, Wald F, Gillie M. Performance-Based Fire Engineering of Structures [Internet].
 0 ed. CRC Press; 2012 [citado 16 de junio de 2024]. Disponible en: https://www.taylorfrancis.com/books/9780203868713

- [33] EN 1995-1-2. Eurocode 5: Design of timber structures Part 1-2: General Structural fire design. 2004.
- [34] Kozma A, Girão Coelho A, Yang J, Odenbreit C. A new concept and algorithm to transfer brittle and arbitrary load-slip curves into an effective shear resistance suitable for Eurocode 4. J Theor Appl Mech. 25 de noviembre de 2022;705-18.
- [35] EN 1992-1-2. Eurocode 2: Design of concrete structures Part 1-2: General rules Structural fire design. 2004.
- [36] ArcelorMittal Beams Calculator, ArcelorMittal Corp. All rights Reserv. Provid.
- [37] EN 1993-1-2. Eurocode 3: Design of steel structures Part 1-2: General rules -Structural fire design. 2004.
- [38] Long J, Wang Y, Lou G, Hu Z, Yang T, Tan Q, et al. An experimental investigation of the fire behaviour of demountable composite beams with profiled steel decking. Eng Struct. mayo de 2024;307:117944.

