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H I G H L I G H T S

A neural network approach for replacing
tabulated chemical kinetics is studied.
A mass-conserving architecture and species
loss weighting are suggested.
The performance of the proposed ap-
proach is validated on four reaction
mechanisms.
The approach shows an excellent perfor-
mance on predicting major and minor
species mass fractions.
The approach also scales well to com-
plex reaction mechanisms involving mul-
tiple species.
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A B S T R A C T

Artificial Neural Networks (ANNs) have emerged as a powerful tool in combustion simulations to replace
memory-intensive tabulation of integrated chemical kinetics. Complex reaction mechanisms, however, present
a challenge for standard ANN approaches as modeling multiple species typically suffers from inaccurate
predictions on minor species. This paper presents a novel ANN approach which can be applied on complex
reaction mechanisms in tabular data form, and only involves training a single ANN for a complete reaction
mechanism. The approach incorporates a network architecture that automatically conserves mass and employs
a particular loss weighting based on species depletion. Both modifications are used to improve the overall ANN
performance and individual prediction accuracies, especially for minor species mass fractions. To validate its
effectiveness, the approach is compared to standard ANNs in terms of performance and ANN complexity. Four
distinct reaction mechanisms (H2, C7H16, C12H26, OME34) are used as a test cases, and results demonstrate that
considerable improvements can be achieved by applying both modifications.
. Introduction

The application of artificial neural networks (ANNs) in chemical
ombustion systems exhibits significant potential for addressing the
ncreasing computational demands associated with complex fluid-flow

∗ Corresponding author.
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simulations [1]. With the ongoing advance in deep learning, complex
reaction mechanisms can now be deployed in computational fluid
dynamics (CFD) with reduced demands for CPU time and RAM uti-
lization [2,3]. Among several approaches, ANNs have shown great
applicability to various types of chemical systems, e.g., in the study
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Nomenclature

𝑇 Temperature
𝑍 Mixture fraction
𝐶 Progress variable
𝜒 Scalar dissipation rate
𝑌𝑘 Mass fraction of species 𝑘
𝒀 Mass fractions
𝑿 Neural network input (features)
𝒀 𝜽 Neural network output (targets)
𝜽 Neural network parameters
𝐿 Number of layers
𝜙 Activation function
 Loss function
𝜔 Loss weights
𝜌 Pearson product-moment correlation coefficient

(PPMCC)

of oxygenate additives [4] or hydrocarbon chemistry [5]. Furthermore,
ANNs have also been successfully coupled with existing methods in-
cluding design of experiments (DOE) [6,7] and tabulation methods
which are in focus of this work. Tabulation methods utilize lookup
tables that represent precomputed chemical kinetics through large
databases which are retrieved many times during a simulation. Taking
up several hundreds or thousands of Megabytes (MB), these tables
drastically raise the memory utilization which can be a limiting factor
for complex reaction mechanisms in distributed memory simulations.
Several tabulation methods have been developed to reduce the compu-
tational demands, such as the Flamelet Generated Manifold (FGM) [8,
9], Rate-Controlled Constrained Equilibrium (RCCE) [10,11], or Self-
Organizing-Maps (SOM) [12,13]. More details on these methods can
be found in [1]. Often, these tabulation methods are then combined
with ANNs that are capable of learning and predicting the gener-
ated chemical kinetics, providing smooth interpolations with only a
small number of network parameters needed. For example, in [14] an
ANN technique is combined with the FGM method to simulate spray
combustion using large eddy and Reynolds averaged Navier–Stokes
simulations. Achieving results that agree very well with the experi-
ments, the ANN approach only consumes a fraction of the memory
utilization compared to the conventional FGM method. Also, in [15]
a ANN model is combined with the FGM method to study water
sprayed turbulent combustion, and similar conclusions are drown from
the results. Furthermore, the incorporation of physical constraints in
ANNs has been studied in [16], and it has been found to increase
performances in predicting tabulated chemical kinetics.

Nevertheless, employing a single ANN for an entire reaction mech-
anism often presents a challenge in terms of ANN optimization and
accuracy. Simultaneously learning from heterogeneous target scales
commonly results in dominant targets being learned more accurately,
while minor ones may be learned less effectively [2,17]. This has
been reported multiple times in combustion studies and is frequently
associated with the depletion of minor species in complex reaction
mechanisms [18,19]. The use of several ANNs, also known as the
multiple multilayer perceptrons or MMLP approach [20,21], has been
demonstrated to mitigate this issue, by applying separate ANNs to
either individual targets or clustered components of a reaction mech-
anism. This may increase the performance on specific targets, such as
minor species mass fractions, as the ANN optimization is facilitated by
focusing on either single targets or targets that share chemical kinetics.
However, with the number of ANNs the complexity for training and
model employment also increases which can be a limiting factor when
considering reaction mechanisms with many species involved. The
trade-off between computational complexity and accuracy has always
2

been a prominent factor in chemical combustion systems, and it appears
that ANNs are not exempt from this consideration.

In this paper, a novel ANN approach is proposed for replacing
lookup tables which is simple and involves only a single ANN for a
complete reaction mechanism. The ANN shares its network parame-
ters across several species involved in the reaction mechanism, thus
representing the underlying reaction mechanism with a single ANN.
The approach further comprises a particular network architecture that
accounts for conservation of mass (CoM) and species loss weighting
(SLW) that is used in the ANN optimization procedure. The ANN
performance is validated on four different lookup tables that are gen-
erated by the flamelet approach and represent four distinct reaction
mechanisms, namely H2, C12H26, OME34, and C7H16. Furthermore,
comparison to standard ANN approaches are provided in terms of
accuracy and computational efficiency. In all experiments, the proposed
ANN approach shows an excellent prediction accuracy on individual
species and demonstrates great scalability to complex chemical systems.

2. Numerical methods

2.1. Flamelet model

The flamelet model, initially derived by Peters [22], assumes that
a turbulent flame is an ensemble of laminar one-dimensional reacting
structures, referred to as ‘flamelets’. Flamelets are solved externally
in ad-hoc solvers, from which the thermochemical state in terms of
temperature 𝑇 and species mass fraction 𝑌𝑘 can be obtained along the
flamelet evolution. This information can be used to describe laminar
combustion processes, but it is commonly extended to create advanced
turbulent-chemistry interaction models, where a CFD code interacts
with the flamelet solver results to obtain the thermochemical state
in the turbulent flame. This approach overcomes the need to solve a
transport equation for each species in every cell of the computational
domain.

Some flamelet methods are tabulated to allow for accelerated CFD-
flamelet interactions during simulation run-time. The information ex-
change occurs over a small number of the so-called ’control variables’.
Depending on the flame configuration, different approaches may be
followed; for example, in the current approach an Unsteady Flamelet
Progress Variable (UFPV) tabulation depending on mixture fraction 𝑍
(local fuel-air ratio), progress variable 𝐶 (chemical evolution from inert
to steady conditions) and scalar dissipation rate 𝜒 (related to the spatial
gradient along the 1D flamelet domain) is followed [23–25].

2.2. Artificial neural network

Artificial neural networks (ANNs) are a versatile class of artificial
intelligence methods and, with fuzzy logic and genetic algorithms, are
most widely used in prediction and classification tasks cross diverse
scientific disciplines [26,27]. ANNs usually consist of multiple layers
and neurons (or perceptrons), with their interconnections specified by
the ANN architecture. Common in the field of combustion chemistry are
multilayer perceptrons (MLPs) that are a simple class of feedforward
ANNs with multiple layers of neurons that are fully-connected, see
Fig. 1. This network architecture is particularly well-suited for approxi-
mating nonlinear mappings 𝑿 ↦ 𝒀 as given by lookup tables, where 𝑿
is given by the input control variable (here 𝐶, 𝑍 and 𝜒) and 𝒀 by the
respective species mass fractions 𝑌𝑘. The task of training the ANN is to
find a good approximation to this nonlinear mapping by using training
examples sampled from the table. The network function with 𝐿 layers
is given by the recursive application of activations

𝒀 𝜽 = 𝜙(𝐿)(𝜽(𝐿),⋯ , 𝜙(1)(𝜽(1), 𝜙(0)(𝜽(0),𝑿))⋯), (1)

where 𝜙(𝑙)(⋅) is the activation function of layer 𝑙 = 0, 1,… , 𝐿, and 𝜽(𝑙) is a
weight matrix containing the weights and biases that connect the layer

𝑙 with its successive layer, see Fig. 1. The use of nonlinear activation
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Fig. 1. Schematic Structure of the ANN used to approximate the mass fractions (𝑌𝑘)
ased on the input control variables (𝐶, 𝑍, and 𝜒).

unctions accounts for the non-linear and smooth interpolations of
NNs where – except for the final layer activation 𝜙(𝐿) – common
hoices for regression tasks are the hyperbolic tangent (tanh) or Sigmoid
inear unit (swish). For simplicity, all network parameters are from now
n denoted with a single weight vector 𝜽 = (𝜽(0),𝜽(1),… ,𝜽(𝐿)). Also,

ANN predictions of mass fractions are denoted by 𝒀 𝜽(𝑿), while 𝑌𝜽,𝑘(𝑿)
denotes prediction of the mass fraction of species 𝑘.

Finding the optimal number of layers and neurons per layer, hence
the optimal number of network parameters, can be quite cumbersome
and is often based on trial-and-error. In general, increasing the number
of network parameters increases the network’s complexity, thus im-
proving the capability of learning more complex reaction mechanisms.
This number, however, also affects several stages of practically employ-
ing an ANN in a simulation, e.g., training time, memory utilization
and inference time for real-time predictions. The training time scales
with the number of network parameters, while memory utilization and
inference time might be determined by the exact ANN coupling and
used hardware. Furthermore, a greater number of network parameters
makes the network more prone to overfitting the training data which, in
case of low-quality data, significantly impacts the prediction accuracy
in the interpolation regime.

Once the number of layers and neurons has been set, finding the
optimal values of the network parameters is part of the training pro-
cedure that requires the selection of an appropriate loss function and
optimization procedure. The standard loss function for regression tasks
in machine learning is the well-known mean squared error (MSE) loss

(𝜽) = 1
𝑁

𝑁
∑

𝑖=1

‖

‖

‖

𝒀 (𝑖) − 𝒀 𝜽(𝑿(𝑖))‖‖
‖

2

2
, (2)

hich is evaluated on examples
{

(𝑿(𝑖), 𝒀 (𝑖))
}𝑁
𝑖=1 in the training database.

he optimization, i.e., finding the network parameters that minimize
his loss function, is most commonly performed in an iterative and
radient-based process, according to the general update rule

𝑛+1 ← 𝜽𝑛 − 𝛼 𝜕
𝜕𝜽

, (3)

where 𝛼 denotes the learning rate, and 𝑛 the optimization step that
is usually repeated for a certain number of epochs. The gradients
𝜕∕𝜕𝜽 are calculated via the backpropagation algorithm as followed
y common optimizers, such as Adam [28] or SGD [29].

. Neural network approach

In this section, details on the ANN approach are provided, which
3

ncludes the conservation of mass (CoM) network architecture, species
loss weighting (SLW), as well as network and optimization settings, in
that respective order.

3.1. Conservation of mass (CoM)

Conservation of mass is a fundamental physical law that plays a
crucial role in closed chemical systems. Violation of this fundamental
property would lead to an increase or decrease of total mass in the
chemical system that accumulates over time, rendering simulation
inaccurate and nonphysical. This can be critical for local species mass
fractions, which are used in the energy equation to retrieve the local
temperature. Violation of mass may propagate into temperature inac-
curacies which thus render chemical reaction rates inaccurate. It is
therefore of great interest to ensure in simulations that the mass of the
system always remains constant, or in terms of mass fractions
∑

𝑘
𝑌𝑘 = 1, (4)

which holds true for a complete reaction mechanism. Note that em-
ploying multiple ANNs, e.g., one for each species mass fraction, does
not trivially fulfill CoM. Correction are thus often applied as a post-
processing step which could increase the computational complexity and
efforts needed for ANN training and predictions [16].

Using a single ANN, on the other hand, enables embedding CoM
within the network structure. This can be achieved by taking the
softmax activation function as final layer activation, which is often
applied to approximate probability density functions and ensures that
predictions sum up to one [30]. The softmax activation for the neuron
𝑘 in the final layer 𝐿, which thus represents the approximated mass
raction 𝑌𝜽,𝑘 of species 𝑘, is given by

𝜙(𝐿)(𝒛)𝑘 = 𝑒𝑧𝑘
∑

𝑖 𝑒𝑧𝑖
, (5)

where 𝒛 is the input to the final layer, cf. Eq. (1). The normalization
factor in the denominator of Eq. (5) ensures that any prediction of mass
fractions fulfills
∑

𝑘
𝑌𝜽,𝑘 = 1, (6)

as stated by Eq. (4), and furthermore that individual species mass frac-
tions lie in the physically meaningful range 𝑌𝜽,𝑘 ∈ (0, 1). An alternative
and often used choice would be the Sigmoid activation function as final
layer activation which indeed also ensures that individual predictions
lie in the range 𝑌𝜽,𝑘 ∈ (0, 1), but they do not sum to one for multiple
species. Throughout this work, both Sigmoid and softmax activations
will be tested and referred to as the standard and CoM approach,
respectively.

Algorithm 1 Pseudo code for ANN optimization using Species Loss
Weighting (SLW)
Require: 𝑌𝑘 ⊳ True data labels
Require: 𝜽, 𝛼 ⊳ Initialize ANN & learning rate

𝜔𝑘 ← 𝑆𝐿𝑊 (𝑌𝑘) ⊳ Set optimal species loss weights
while training do

for each species 𝑘 do
𝑘 ← 𝑀𝑆𝐸(𝑌𝑘, 𝑌𝜽,𝑘) ⊳ Individual species loss

end for
 ←

∑

𝑘 𝜔𝑘𝑘 ⊳ Final loss value
𝜽𝑛+1 ← 𝜽𝑛 − 𝛼 ⋅ 𝜕

𝜕𝜽 ⊳ Gradient update
end while

3.2. Species loss weighting (SLW)

From a multi-variate regression perspective, learning multiple tar-
gets with heterogeneous scales poses challenges for the gradient-based
optimization of a single ANN: by assuming equal relative prediction
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errors across different targets, the optimization and respective gradients
are potentially dominated by targets with larger values, as the MSE is
bound to absolute prediction errors [31]. This is clear when the multi-
variate loss function in Eq. (2) is restated as the sum of individual
species contributions

(𝜽) = 1
𝑁

𝑁
∑

𝑖=1

∑

𝑘

(

𝑌 (𝑖)
𝑘 − 𝑌𝜽,𝑘(𝑿(𝑖))

)2
=
∑

𝑘
𝑘(𝜽), (7)

where 𝑘 denotes the MSE loss evaluated for species 𝑘. A detailed
reaction mechanism with multiple species and heterogeneous target
scales thus potentially results in minor species being learned less ac-
curately than others, as the respective gradients 𝜕𝑘∕𝜕𝜽 in the general
update rule (3) are also smaller compared to major species. This has
been studied in [31], and suggests weighting the individual species
components in the final loss function according to

(𝜽) =
∑

𝑘
𝜔𝑘𝑘(𝜽), (8)

where 𝜔𝑘 is a scalar loss weight for species 𝑘, and the use of this
species weighted loss function is now referred to as the SLW approach.
According to Eq. (8), individual gradients in the update rule (3) are
then also scaled by the SLW approach. The loss weights 𝜔𝑘 intuitively
adjust the importance of individual species in the optimization, which
thus can be used to amplify gradients of underrepresented targets such
as minor species mass fractions. Yet, the optimal choice of loss weights
remains undetermined and is potentially influenced by the particular
data distribution used in the training.

To keep the SLW approach as simple as possible, three different
strategies are considered that individually take into account the dis-
tribution of target scales. These schemes are referred to as (i) MEAN,
(ii) RANGE and (iii) VAR, representing which information is used for
adjusting the loss weights. According to that, scheme (i) specifies the
reciprocal of mean mass fractions 𝜔𝑘 ∶= 𝑌

−1
𝑘 as loss weights, while

ii) uses its ranges 𝜔𝑘 ∶= (max{𝑌𝑘} − min{𝑌𝑘})−1. To also incorporate
higher moments of the underlying data distributions, scheme (iii) uses
the variance Var(𝑌𝑘) =

∑𝑁
𝑖=1(𝑌

(𝑖)
𝑘 − 𝑌𝑘)2∕𝑁 to set the loss weights 𝜔𝑘 ∶=

Var(𝑌𝑘)−1. The loss weights are determined on the species mass fractions
in the training databases, and are subsequently kept fixed during the
entire optimization process. Note that for inert species or species with
vanishing variance in the mass fraction, loss weights and further their
respective gradients in the optimization could explode when using the
SLW approach. As a remedy for those cases, corrections could be made,
e.g., by setting a maximum value for loss weights or adding a small
number to the range or variance in scheme (ii) and (iii). To demonstrate
the basic usage of the SLW approach, Algorithm 1 shows a pseudo code
example.

Note that the SLW approach seems similar to performing target
scaling in a data preprocessing step, which indeed it is but the SLW
approach effectively applies the scaling within the ANN optimization
procedure and thus works with unscaled targets. This enables the use
of the softmax activation in the final output layer which would not
be possible by considering target scaling. Furthermore, physical soft
constraints, such as used by physics-informed neural networks [32,33],
could be additionally applied since physical quantities are unmodified.

3.3. Data, network and optimizer settings

Four reaction mechanisms are generated with the flamelet model
and serve as test case for the ANN application. These include detailed
and skeletal (or reduced) mechanisms for H2, C12H26, OME34, and
C7H16, which are studied as part of atmospheric burners (H2) and
compression-ignition engines (C12H26, OME34, C7H16) configurations.
Details are given in Table 1 where the list of involved species can be
extracted from Fig. 4. The skeletal mechanisms include just a reduced
number of species compared to the actual mechanism, where this is
a common approach to reduce computational expenses. In order to
4

Table 1
Reaction mechanism, combustion settings and database numbers. The chamber tem-
perature 𝑇c and chamber pressure 𝑃c define the combustion settings that were used in
the atmospheric burner (H2) and compression-ignition engines (C12H26, OME34, C7H16)
onfigurations. The last column represents the number of data points that is used for
NN training and testing.
Mechanism Ref. Species (reduceda) Reactions 𝑇c [K] 𝑃c [bar] Data points

H2 [34] 9 21 1045 1.0 6.6 mio.
C12H26 [35] 54 (15) 269 900 59.6 4.4 mio.
OME34 [36] 322 (16) 1611 900 59.6 5.3 mio.
C7H16 [37] 248 (17) 1428 900 59.6 3.4 mio.

a Modeled in this work.

Table 2
Settings that where found to work well and used for the experiments
in this work. The top part of hyperparameters are associated with the
ANN settings, the lower part with the optimization procedure.

Setting Value

Layers & Neuronsa 2 × 20, 4 × 50
Activation (hidden) tanh
Activation (output) sigmoid (standard), softmax (CoM)
Initialization Glorot

Optimizer Adam
Learning Rate 0.001
Epochs 50
Batch Size 1024

a Different settings are used in Section 4.3.

compensate the disregard of mass in reducing the number of species,
a single species is introduced that represents the omitted species and
their combined mass fractions to still ensure CoM. This additional
mass fraction is used for the C12H26, OME34, and C7H16 databases and
subsequently also modeled by the ANN with the CoM architecture.

In practice, the ANN would be trained on the full dataset, i.e., on
all available data, to learn the reaction mechanisms as accurate as
possible. Since this work only performs a prior assessment of the ANN
performance, a standard splitting scheme is used to evaluate the ANN
performance on a dedicated test set. For this, 10% of the data is
randomly sampled from the full dataset for each reaction mechanism
listed in Table 1, to provide the test set for the final performance
evaluation. The remaining 90% represents the training data used for
optimizing the ANN where in Section 4.1 this training data set is further
used in a 5-fold cross validation scheme to determine the optimal
choice of loss weights.

Results from previous experiments, showed that the settings listed
in Table 2 work generally well on the presented tasks, where tested
settings included the variation of layers (1,2,3,4,5), neurons per layer
(20,50,70), activation (tanh, sigmoid, swish), initialization (Glorot,
He), optimizers (Adam, SGD), learning rates (0.01, 0.001, 0.0001),
epochs (50,100,150) and batch sizes (64,1024,8192). Since qualitative
conclusions were the same across several tests, the default settings in
Table 2 are used in Sections 4.1 and 4.2, while different layer settings
are used in Section 4.3.

4. Results

This section is structured as follows: First, the different species
loss weighting schemes (discussed in Section 3.2) are evaluated to set
the optimal and preferred choice of loss weights for the subsequent
experiments. Next, both modifications SLW and CoM (see Section 3)
are compared to the standard use of a single ANN by measuring the
performance on individual species mass fractions. In the final part,
the trade-off between accuracy and ANN complexity is evaluated by
comparing the proposed approach with the common application of
using multiple ANNs.

To validate the ANN performance, the Pearson product-moment

correlation coefficient (PPMCC) is selected which is often used for
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Table 3
Mean (and standard deviation) of the overall ANN performances 𝜌 across five uniquely
trained ANN instances. The overall ANN performance is determined by the average of
all species performances 𝜌𝑘. Bold: Best performance for each reaction mechanism.

Network Architecture, 2 × 20
SLW H2 C12H26 OME34 C7H16

Standard ANN 0.648 (0.485) 0.666 (0.436) 0.679 (0.455) 0.599 (0.448)

MEAN 0.987 (0.027) 0.975 (0.029) 0.982 (0.021) 0.908 (0.232)
RANGE 0.979 (0.043) 0.952 (0.065) 0.962 (0.061) 0.829 (0.293)
VAR 0.999 (0.001) 0.985 (0.011) 0.990 (0.008) 0.968 (0.033)

Network Architecture, 4 × 50
SLW H2 C12H26 OME34 C7H16

Standard ANN 0.826 (0.355) 0.867 (0.307) 0.880 (0.299) 0.764 (0.399)

MEAN 0.999 (0.001) 0.993 (0.010) 0.997 (0.005) 0.873 (0.321)
RANGE 0.997 (0.007) 0.988 (0.019) 0.993 (0.012) 0.845 (0.330)
VAR 1.000 (0.001) 0.997 (0.003) 0.998 (0.002) 0.987 (0.018)

quantifying the a priori prediction accuracy in combustion studies [14,
38]. The PPMCC depicts the linear correlation between two sets of data
and, in the context of this work, is calculated for species 𝑘 according
to

𝜌𝑘 =

∑𝑁
𝑖=1

(

𝑌 (𝑖)
𝑘 − 𝑌 𝑘

)(

𝑌 (𝑖)
𝑘,𝜽 − 𝑌 𝑘,𝜽

)

√

∑𝑁
𝑖=1

(

𝑌 (𝑖)
𝑘 − 𝑌 𝑘

)2
√

∑𝑁
𝑖=1

(

𝑌 (𝑖)
𝑘,𝜽 − 𝑌 𝑘,𝜽

)2
, (9)

where 𝜌𝑘 ∈ [−1, 1] and 𝜌𝑘 = 1 indicates a perfect fit between true and
predicted mass fractions.

4.1. Optimal species loss weighting

In the following experiments, different schemes for the SLW ap-
proach are evaluated and compared to a standard ANN that does not
use the SLW approach. In order to produce comparable results, all
ANNs use the standard sigmoid activation as final layer activation,
i.e. predicted mass fractions are bound with 𝑌𝜽,𝑘 ∈ (0, 1) but the CoM
architecture is not applied. Two ANN settings are used, namely a small
network architecture with 2 × 20 and a larger one with 4 × 50. For
ach setting 5-fold cross validation is applied, i.e. five repetitions with
ifferent seeds for network initialization and data splits are performed.

The results are listed in Table 3, which shows the mean (and
tandard deviation) of the overall performance 𝜌 that is determined

by the average of all species performances 𝜌𝑘. As evident from these
numbers, the standard ANN only achieves a moderate performance on
each reaction mechanism. The standard ANN performance is 𝜌 < 0.7 for
he small network architecture and 𝜌 < 0.88 for the larger one, where
he lowest performance for both cases is measured on the C7H16 reac-
ion mechanism. Further investigations have shown that these numbers
re mainly influenced by minor species performances (will be shown
n the next experiments). Note that while testing various ANN and
ptimizer settings, no significant improvement could be achieved with
he standard ANN approach. The performance issues related to minor
pecies appeared to be unaffected by settings other than those listed in
able 2, why the overall performance of the standard ANN could not
e further improved considerably. The use of the SLW approach, on the
ther hand, greatly improves the overall performance on each reaction
echanisms as it is evident from Table 3. Among all SLW schemes,

he VAR scheme seems to be the best choice for the loss weights, as
t consistently outperforms the other schemes and achieves an overall
erformance of 𝜌 > 0.96 even with the small network architecture.
he superiority of the VAR scheme is believed to be explained by the
act that this scheme effectively normalizes individual species to unit
ariance. This appears beneficial for training with an MSE criterion in
he followed multivariate regression setting. It can be expected that
or other optimization criteria, such as mean absolute error, alternative
eight scaling approaches may be more effective.
5

To visually demonstrate the effectiveness of the SLW approach,
individual species predictions on the test sets are provided by using
the 4 × 50 network architecture and all available data from the training
sets. Fig. 2 and 3 show the correlation plots for a selection of major and
minor species, namely H2, HO2, and H2O2 from the H2 database, and
C12H26, O, and H from the C12H26 database. The plots show the true
versus the predicted mass fractions, where the diagonal line indicates a
perfect fit with 𝜌𝑘 = 1. The respective accuracies are given in the upper
left corner of each plot. Evident from the figures is that all approaches
perform well on the major species (H2 and C12H26) as indicated by a
nearly perfect fit with 𝜌𝑘 ≈ 1. However, for the minor species (HO2,
H2O2, O, H) the performance of the standard ANN approach is poor
and seems to decline with the species depletion. The MEAN and RANGE
schemes perform considerably better on the minor species while the
VAR scheme achieves the best results, in particular considering the
outstanding performance on HO2 and H2O2 in the H2 database in Fig. 2.
Based on these results the VAR method will be used for all remaining
experiments.

4.2. ANN performance on individual species

As a continuation of the preceding experiment, the prediction accu-
racy of all individual species in the reaction mechanisms is evaluated.
For comparison, the following three ANN strategies are applied: a stan-
dard ANN is employed that serves as reference and is set up as discussed
in the previous experiment. To now also study the effectiveness of the
CoM architecture, the SLW approach with the VAR scheme is employed
with two settings, once with the sigmoid activation (without CoM) and
once with the softmax activation (with CoM) in the final output layer.
The three approaches are named in the respective order as standard
ANN, SLW, and SLW+CoM. For demonstration purposes, the 2 × 20
network architecture is used since the 4 × 50 architecture has already
exhibited outstanding performance with the SLW approach in the pre-
ceding experiment — the difference between the SLW and SLW+CoM
would be barely noticeable with the 4 × 50 network architecture. The
remaining settings are taken as listed in Table 2. The training is again
performed on the complete training dataset where predictions are made
on the dedicated test set, respectively for each reaction mechanism.

The results are shown in Fig. 4 where each subplot represents a
single reaction mechanism. The order of listed species is based on
the performance of the standard ANN approach, decreasing from left
to right. Across all reaction mechanisms, it is clearly evident that
the performance of the standard ANN declines with the depletion of
species, i.e. minor species with small mass fractions are predicted
worse than major species. As already captured by Fig. 2 and 3, the
standard ANN fails largely (𝜌𝑘 < 0) in predicting the mass fractions
of certain minor species, in particular that of H and H2O2 in the H2
database, and O, H, and OH in the others. The SLW approach, on the
other hand, yields accurate results across all species and databases,
demonstrating its robustness for distinct reaction mechanisms. This was
already captured by the overall performance in Table 3. From the figure
it is now also evident that the additional use of the CoM architecture
further improves the performance on every single species — again, the
difference is less pronounced with the 4 × 50 network architecture
(not shown) but the same conclusion can be derived. In view of this,
the additional constraint of ensuring that the sum of all species mass
fractions equals one not only guarantees CoM when utilizing the ANN
in simulations but also appears to have a generally favorable impact
on the performance of individual species. This effectively demonstrates
the benefits of incorporating simple physical constraints into ANNs —
notably, with the CoM architecture, these benefits are achieved without
the need for any additional computations.
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Fig. 2. True vs. predicted mass fractions for species (a) H2, (b) HO2, and (c) H2O2 from the H2 test data using the 4 × 50 network architecture. A perfect fit (𝜌𝑘 = 1) is indicated
by the dashed diagonal line.
4.3. Computational efficiency & scalability

As previous results showed that the proposed ANN approach is
capable of accurately learning all species mass fraction in a complete
reaction mechanism, the approach is put into a final test to evaluate
its computational efficiency and scalability. For this, the trade-off be-
tween ANN accuracy and network complexity is assessed. The proposed
approach (SLW+CoM) is compared with the method of utilizing mul-
tiple ANNs (one for each species; MMLP [20,21]), which is the only
solution known from the literature that has also demonstrated accurate
predictions for minor species, see Section 1. In order to provide a fair
evaluation of their computational efficiency, the ANN performance is
evaluated for different numbers of layers 𝐿, by focusing on the perfor-
mance of the least accurately learned species. This performance usually
determines whether an ANN approach can be successfully employed in
a chemical combustion simulation (discussed in Section 2.2). The used
setup thus evaluates the computational efficiency of the ANN approach
for several stages of the ANN utilization, such as training time and
memory utilization.

Tests are performed on the H2 reaction mechanism with 20 neurons
per layer and on the more complex C H reaction mechanism with 50
6

7 16
neurons per layer. The number of layers, on the other hand, is varied
from one to five layers to adjust the number of network parameters and
thus the ANN complexity. The MMLP approach is used for the complete
reaction mechanisms, i.e., in total 9 ANNs for the H2 system and 16
ANNs for the C6H16 system; one ANN per species. Furthermore, the
sigmoid activation1 is applied in the final output layer of each ANN in
the MMLP approach, and MinMax target scaling is used to optimize all
ANNs with an equal learning rate of 0.001.

The results for the two systems are shown in Fig. 5(a) and 5(b). In
the two figures, the solid line (left 𝑦-axis) shows the maximum predic-
tion error which is based on the least accurately learned species in the
complete reaction mechanism and determined by 1 −min{𝜌𝑘}. A lower
prediction error implies higher chances of success in employing the
ANN in a simulation. The dashed line (right 𝑦-axis) captures the number
of network parameters 𝜽, i.e. the sum of all ANN weights and biases
used by the respective approach. From the figures it is evident that the
SLW+CoM approach is computationally more efficient compared to the

1 Conservation of mass is disregarded in this experiment, but would
potentially also influence the ANN’s performance in a simulation.
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Fig. 3. True vs. predicted mass fractions for species (a) C12H26, (b) O, and (c) H from the C12H26 test data using the 4 × 50 network architecture. A perfect fit (𝜌𝑘 = 1) is indicated
by the dashed diagonal line.
MMLP approach, as fewer network parameters are needed to achieve
a low prediction error. For instance, both approaches achieve a low
prediction error with five layers. The SLW+CoM approach, however,
only needs a fraction of network parameters in comparison to the
MMLP approach.2 Furthermore, comparing Fig. 5(a) and 5(b), the
difference of used network parameters seems to become more distinct
as the reaction mechanism involves more species. This is due to the fact
that the MMLP approach scales linearly with the number of involved
species while the SLW+CoM does not.

5. Conclusion

This paper presented a novel ANN approach designed for modeling
chemical kinetics and species mass fractions as used by tabulation

2 For the used setup and hardware, training a single 2 × 20 ANN instance
took about 40 min; multiplied by the number of species for the MMLP
approach.
7

methods in combustion studies. The proposed approach leverages a
network architecture that conserves mass, and utilizes a particular
weighting of species depletion. Both simple modifications have proven
effective in accurately learning and predicting multiple mass frac-
tions with a single ANN. The efficacy of the approach was validated
through experiments involving four distinct reaction mechanisms (H2,
C7H16, C12H26, OME34), with a comparative analysis against standard
ANN approaches. Results showed that incorporating mass conservation
led to an enhancement in overall performance, and the introduced
species loss weighting significantly improved the prediction accuracy
of individual species mass fractions. Notably, even with multiple mi-
nor species involved in the reaction mechanism, the ANN approach
demonstrated robust performance, underscoring its capability to handle
widely varying target scales. Additionally, an assessment of compu-
tational efficiency and scalability to complex reaction mechanisms
was conducted, revealing the superior performance of the proposed
approach compared to standard ANN approaches.
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Fig. 4. Performance on individual species evaluated on the test sets for the (a) H2, (b) C12H26, (c) OME34, and (d) C7H16 database using the 2 × 20 network architecture.
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Fig. 5. Computational efficiency of the MMLP and SLW+CoM approach, evaluated for different numbers of layers 𝐿 on the (a) H2 and (c) C7H16 database. The solid line (left
𝑦-axis) shows the maximum prediction error across all species in the reaction mechanism, which is given by 1 − min{𝜌} and thus selected by the lowest species performance 𝜌𝑘.
The dashed line (right 𝑦-axis) shows the number of network parameters 𝜽 applied by the respective approach.
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