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The symmetry-based turbulence theory has been used to derive new scaling laws for the streamwise velocity
and temperature moments of arbitrary order. For this, it has been applied to an incompressible turbulent channel
flow driven by a pressure gradient with a passive scalar equation coupled in. To derive the scaling laws,
symmetries of the classical Navier-Stokes and the thermal energy equations have been used together with
statistical symmetries, i.e., the statistical scaling and translation symmetries of the multipoint moment equations.
Specifically, the multipoint moments are built on the instantaneous velocity and temperature fields other than
in the classical approach, where moments are based on the fluctuations of these fields. With this instantaneous
approach, a linear system of multipoint correlation equations has been obtained, which greatly simplifies the
symmetry analysis. The scaling laws have been derived in the limit of zero viscosity and heat conduction, i.e.,
Reτ → ∞ and Pr > 1, and they apply in the center of the channel, i.e., they represent a generalization of the
deficit law, thus extending the work of Oberlack et al. [Phys. Rev. Lett. 128, 024502 (2022)]. The scaling laws are
all power laws, with the exponent of the high moments all depending exclusively on those of the first and second
moments. To validate the new scaling laws, the data from a large number of direct numerical simulations (DNS)
for different Reynolds and Prandtl numbers have been used. The results show a very high accuracy of the scaling
laws to represent the DNS data. The statistical scaling symmetry of the multipoint moment equations, which
characterizes intermittency, has been the key to the new results since it generates a constant in the exponent of
the final scaling law. Most important, since this constant is independent of the order of the moments, it clearly
indicates anomalous scaling.

DOI: 10.1103/PhysRevE.109.025104

I. INTRODUCTION

The open problem in physics with most applications in
daily life is probably the behavior of turbulent flows. Different
strategies have been proposed when dealing with predict-
ing turbulence in engineering. From the different approaches
known in computational fluid dynamics (CFD), direct nu-
merical simulations (DNSs) has proven to be a powerful
tool to generate highly reliable databases for theoretical con-
cepts on the nature of turbulence. In a DNS, no empirical
modeling is needed to account for turbulent effects, and the
approximations of the solutions of the Navier-Stokes equa-
tions are obtained through highly accurate numerical schemes.
The main problematic issue of DNSs is their high computa-
tional cost since even the smallest scales of turbulence, the
Kolmogorov scales, have to be simulated. Hence, this limits
DNSs to very simple canonical geometries. However, DNSs
have the same validity as experiments, and almost any imag-
inable quantity can be computed.
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It was not until the late 1980s that supercomputers could
run the first DNS of turbulent flows. Specifically, in 1987, Kim
et al. [1] conducted the first DNS of a turbulent channel flow
where a pressure gradient drove the flow at a low Reynolds
number. The first DNS of a thermal turbulent channel flow
was also performed in 1987 by Kim et al. [2]. The flow
was also driven by a pressure gradient at a friction Reynolds
number of Reτ = 180. Therein and presently, Reτ is defined
as huτ /ν, where h is the semiheight of the channel, uτ is
the friction velocity, and ν is the kinematic viscosity of the
fluid. The friction velocity is defined as uτ = √

τw/ρ, where
τw is the averaged wall shear stress, and ρ is the fluid den-
sity. Different Prandtl numbers were used, namely Pr = 0.1,
0.71, and 2. Here the Prandtl number is defined as the ratio
between the momentum diffusivity to the thermal diffusivity,
Pr = ν/α, where α is the thermal diffusivity of the fluid. One
of the main results from the latter work was the validation of
the DNS results comparing several first-order statistics with
experimental data.

Since then, the aim of the DNS of thermal channel flows
has been to increase the simulated Reynolds number, usually
around Pr = 0.71, which is the Prandtl number of the air.
However, reaching higher Reynolds numbers has a computa-
tional cost that scales as L2

x LzRe4
τ Pr3/2, according to Ref. [3].

The largest DNS to date of a thermal channel flow [4] used
a friction Reynolds number of 4000, and more recently, for

2470-0045/2024/109(2)/025104(12) 025104-1 ©2024 American Physical Society

https://orcid.org/0000-0002-8458-7288
https://orcid.org/0000-0002-5849-3755
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.025104&domain=pdf&date_stamp=2024-02-14
https://doi.org/10.1103/PhysRevLett.128.024502
https://doi.org/10.1103/PhysRevE.109.025104


FRANCISCO ALCÁNTARA-ÁVILA et al. PHYSICAL REVIEW E 109, 025104 (2024)

isothermal turbulent channel flows, a friction Reynolds num-
ber of Reτ = 10000 was reached in Ref. [5]. However, these
values are still far below the actual Reynolds numbers of
most real-life problems. Therefore, Reynolds number extrap-
olations of the turbulent behavior must be made, introducing
inevitable errors and uncertainties. For example, the viscous
diffusion and dissipation of the streamwise velocity fluctua-
tions present a scaling failure near the wall [6]. An analogous
scaling failure was obtained for the temperature variance
at moderate Reynolds numbers. However, it was recently
found [7] that for high Prandtl numbers and sufficiently high
Reynolds numbers, the value of the viscous diffusion and dis-
sipation of the temperature variance presented a much better
scaling near the wall. Therefore, it is still an open question
whether the streamwise velocity scaling failure will occur at
much higher Reynolds numbers.

For all these reasons, turbulence is and will be, for many
more years, an open problem without a complete analytical
solution. Many researchers have proposed what are called
turbulence scaling laws to describe the universal behavior of
turbulent statistics for special flows, though usually limited to
the first and second moments. The most well-known scaling
law is the universal law of the wall, which describes the profile
of the mean streamwise velocity near the wall, consisting of
a linear viscous sublayer, where U

+ = y+, followed by the
buffer layer and the logarithmic region further away from
the wall. The overbar here denotes averaged in time, and the
superscript + refers to dimensionless variables normalized in
wall units with uτ , θτ , and ν, where θτ = qw/(ρcpuτ ) is the
friction temperature, and qw and cp are the normal heat flux to
the walls and the specific heat at constant pressure, respec-
tively. Analogously to the law of the wall for the velocity,
one can approximate the mean temperature near the wall in
a similar form, where, for the first sublayer, called conduc-
tive sublayer, �

+ = Pr y+. In particular, the discovery of a
logarithmic behavior of the flow dates back to von Kármán
in 1931. However, no connection between the analytical form
of the scaling law and the Navier-Stokes equation was made.
Despite the fact that a perfectly developed logarithmic region
has not been observed in DNSs due to the high Reynolds
number needed to be simulated, a clear tendency suggests that
it will appear for higher Reynolds numbers in different types
of flows such as boundary layers, Couette flows, pipe flows,
[8–15], etc. A first derivation of the logarithmic behavior of
the flow, based on first principles, was presented in Ref. [16].
The use of Lie symmetries was the mathematical tool to
achieve this.

Lie symmetries are a powerful mathematical theory to
develop turbulent flow scaling laws. The origin of the Lie
symmetries method dates back to the end of the 19th century
when the mathematician Sophus Lie proposed it for obtaining
solutions to differential equations and, most importantly, to
systems of partial differential equations (PDEs), such as the
Navier-Stokes equations. The basis of the method consists of
finding the symmetries of the system of PDEs. Here, symme-
try refers to a variable transformation that leads to an identical
system of PDEs, i.e., the transformed system of PDEs has the
same solution as the original one. With these symmetries, one
can formulate a characteristic system (see Sec. III for more

details about the characteristic system), which, in turn, leads
to what is known as invariant solutions, which in turbulence
are also known as scaling laws.

Lie symmetries possess several advantageous properties
using ad hoc methods for a concrete application. First, sym-
metries can be obtained using computer algebra methods such
as MAPLE. Second, symmetries give fundamental insight into
the physics of the problem. And third, the scaling laws ob-
tained are solutions to the moment equations and, hence, are
based on first principles, not just pure curve fits. For these
reasons, Lie symmetries are one of the most powerful tools
for obtaining scaling laws of turbulent flows. Most important,
it is also applicable to an infinite number of equations such as
the moment hierarchy, and in this sense the ubiquitous closure
problem of turbulence can be circumvented. This is also the
approach that is presently applied.

The method has been widely studied by Oberlack and
co-workers in several papers. Starting with Ref. [16], scal-
ing laws for the three regions of wall-parallel shear flows
(viscous sublayer, logarithmic law, and deficit law in the
center of the channel) were obtained. Classical mechanical
symmetries of the Navier-Stokes equations were used, but
the key to the analysis was to employ the multipoint cor-
relation (MPC) equations. Two additional symmetries, not
visible in the Navier-Stokes equations and called statistical
symmetries, first discovered in Ref. [17], were used to derive
the scaling laws that describe the flow statistics even for high
moments. The next section will give more details about the
MPC equations (Sec. II). After this successful application of
Lie symmetries to turbulent flows, several more works have
been done with different geometries or boundary conditions
[18–23].

In this work, Lie symmetries theory will be used to
derive new moment scaling laws of velocity and tempera-
ture, and mixed moments of arbitrary orders, extending the
work in Ref. [24] to include the temperature. To achieve
this, symmetries of the energy equation and the MPC equa-
tions of the energy and heat fluxes equations are obtained,
from which the new scaling laws are formulated. These
new scaling laws will be validated using the DNS data ob-
tained by the authors in previous works (see Refs. [7,25,26]).
We will restrict ourselves to moments in the streamwise
direction. However, this shows the ability of our method
to obtain scaling laws following only strong mathematical
arguments.

In the next section, the governing equations of the problem
are presented. In the third section, the Lie symmetries method
is introduced, together with the application of the method to
the governing equations of the problem. Then, in the fourth
section, the new scaling laws are developed and validated
using DNS data. Finally, the fifth and last section contains
conclusions.

II. GOVERNING EQUATIONS

The equations that describe the behavior of a turbulent
flow, considering a Newtonian fluid with constant density and
viscosity, are the well-known Navier-Stokes equations. For
the sake of readability, the temporal and spatial dependencies
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will be omitted if uniqueness allows doing so. In the most
general form, these equations can be written as

C (x) = ∂Uk

∂xk
= 0, (1)

Mi(x) = ∂Ui

∂t
+ Uk

∂Ui

∂xk
+ ∂P

∂xi
− ν

∂2Ui

∂xk∂xk
= 0, (2)

where t ∈ R+ is time; xi and Ui are the space coordinate
and velocity, i = 1, 2, 3; and P is the pressure divided by the
density. The no-slip boundary condition is applied to both
walls, periodic boundary conditions are used in the x1 and x3

directions, and, to propel the flow, a constant pressure gradient
is introduced in the x1 direction so that the mass flux remains
constant. The x2 coordinate points in the wall normal direc-
tion. Additionally, the thermal energy equation is simulated,
which for a constant thermal conductivity coefficient, α, reads

E (x) = ∂�

∂t
+ Uk

∂�

∂xk
− α

∂2�

∂xk∂xk
= 0, (3)

where � is the temperature. It should be noted that a constant
heat flux at the wall was assumed in the simulation of the
energy equation (3) since only this implies the temperature-
scaling laws. This thermal boundary condition is known as
the uniform heat flux (UHF) boundary condition. The curious
reader is referred to Refs. [7,25–28] for more information
about the UHF boundary condition. This is similar to the
constant wall shear stress, which is central to the velocity-
scaling laws. With this, since no heat sink was introduced, a
constant temperature gradient in the x1 direction is generated.
This is removed from the flow by the following transformation
to guarantee homogeneity in the x1-direction:

� = 〈�w〉x3 − �tr, (4)

where 〈�w〉x3 is the temperature at the wall averaged in time
and in the x3 direction, and �tr is the transformed temper-
ature. Therefore, 〈�w〉x3 carries the linear increment of the
temperature and only depends on the x1 direction. Then, �tr

is homogeneous in this streamwise direction. The somewhat
unusual choice of the sign in (4) is due to the fact that the tem-
perature at the wall is maximum and therefore the transformed
temperature �tr remains positive throughout.

This allows the use of spectral discretization in the x1 di-
rection. Obviously, the scaling of � and �tr in the x2 direction
will be the same since only a constant value will differ among
them. Furthermore, since the scaling laws are presented as
defect laws, for both � and �tr, these scaling laws must be the
same. For the sake of generality, and without loss of veracity,
we will refer to scaling laws of temperature, �, instead of
transformed temperature.

Using the Reynolds decomposition, one can separate the
instantaneous variables (capital letter) in an average part (cap-
ital letter and overbar) that does not depend on time, and a
fluctuation part (lower case), e.g., Ui(x, t ) = U i(x) + ui(t, x)
(note that temporal and spatial dependencies have been re-
covered only to show this example). Therefore, the following
properties can be applied: the average in time of a mean quan-

tity, 	, will remain unchanged, i.e., 	 = 	; and the average in
time of a fluctuation quantity is 0, i.e., φ = 0. In addition, the
following simplifications are valid for a developed turbulent

channel flow driven by a pressure gradient:

U 1 = U 1(x2), P = P(x1, x2), � = �(x2),

U 2 = U 3 = 0, uiu j = uiu j (x2), uiθ = uiθ (x2). (5)

Introducing the latter into Eqs. (2) and (3) and, in turn, taking
the average, the governing equations reduce to

du1u2

dx2
+ ∂P

∂x1
− ν

d2U 1

dx2
2

= 0, (6)

du2u2

dx2
+ ∂P

∂x2
= 0, (7)

du3u2

dx2
= 0, (8)

dθu2

dx2
− α

d2�

dx2
2

= 0. (9)

Besides the latter one-point quantities, we may define the two-
point correlation functions, or two-point moments, based on
the fluctuating velocity,

Ri j (x, r) = ui(x)u j (x + r),

R0
i j (x) = lim

r→0
Ri j (x, r) = ui(x)u j (x). (10)

Employing an equivalent definition based on the instanta-
neous variables reads

Hi j (x, r) = Ui(x)Uj (x + r),

H0
i j (x) = lim

r→0
Hi j (x, r) = Ui(x)Uj (x), (11)

and a relation between the two correlation functions Ri j and
Hi j reads as follows:

Ri j (x, r) = Hi j (x, r) − U i(x)U j (x + r). (12)

This two-point concept can be extended for any number of
points and ultimately forms the basis of the following analysis
as well as the resulting scaling laws. Hence, we introduce
the MPC equations (see, e.g., Refs. [20–23]). For high-order
moments of velocity and temperature, they give additional
information that is not provided in the one-point statistic equa-
tions, such as lengthscales. Also, when deriving a higher-order
moment equation, only one unclosed function arises. As ob-
served in Eq. (10), from the two-point statistics one can obtain
every one-point statistic. Finally, regarding Lie symmetries,
two extra symmetries are obtained from the MPC equations,
which are the key for determining the new scaling laws of the
high-order moments, and will be pointed out in Sec. IV.

Equations (10) and (11) are the basis of the two different
approaches that can be used to obtain the MPC equations:
the fluctuating approach or the instantaneous approach. On
the one hand, the fluctuating approach has some advantages,
such as a straightforward relation to the Reynolds stress tensor
or the turbulent heat fluxes. However, as noted in Ref. [17],
a nonlinear system of equations is obtained. Furthermore,
all moment equations are coupled to the mean velocity or
temperature, and equations of the third moment or higher
are coupled to the second moment. All this complicates the
symmetry analysis that will be done below. On the other hand,
the instantaneous approach results in a linear system of MPC
equations with an equivalent but much simpler symmetry
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analysis. For this reason, the instantaneous approach is the
one used in this work. It should be noted that the fluctuating
approach and the instantaneous approach are bijective, i.e.,
mathematically physically absolutely equivalent.

Before presenting the MPC equations, some notations must
be clarified. The correlation functions for the velocity are
defined as

Hi{n} = Hi(1)i(2)···i(n) = Ui(1) (x(1) )Ui(2) (x(2) ) · · ·Ui(n) (x(n) ), (13)

which for n = 2, x(1) = x, and x(2) = x + r yields (11). Note
the in Ui(n) (x(n) ), the subscript i(n) refers to the velocity direc-

tion of the nth term, which is measured at the coordinate x(n).
The definition of the temperature correlation is

H�{m} = H�(1)�(2)···�(m) = �(x(1) )�(x(2) ) · · · �(x(m) ). (14)

Mixed moments of velocity and temperature, which in the
limit of only one temperature and one velocity reduces to the
turbulent heat flux, read

Hi{n}�{m} = Hi(1)i(2)···i(n)�(n+1)�(n+2)···�(n+m) = Ui(1) (x(1) )Ui(2) (x(2) ) · · ·Ui(n) (x(n) )�(x(n+1))�(x(n+2)) · · · �(x(n+m) ). (15)

Note that (13) and (14) are just particular cases of (15) for m and n equal to 0, respectively, but for the sake of readability, they
are presented separately. When pressure is involved in the correlation, the notation, in the general form, is

Ii{n−1}�{m}[l]P = Hi(1)···i(l−1)Pi(l+1)···i(n)�(n+1)�(n+2)···�(n+m) = Ui(1) (x(1) ) · · · P(x(l ) ) · · ·Ui(n) (x(n) )�(x(n+1)) · · · �(x(n+m) ) (16)

for 1 � l � n. Finally, the notation

Hi{n}�{m}[i(l )→k](x(l ) → x(p) ) = Ui(1) (x(1) ) · · ·Ui(l−1) (x(l−1))Uk (x(p) )Ui(l+1) (x(l+1)) · · ·Ui(n) (x(n) )�(x(n+1)) · · · �(x(n+m) ) (17)

is used to indicate a change in the correlation function of velocity direction, i(l ), to k and/or the coordinate where the variable is
applied, x(l ), to x(p). With these definitions, the MPC equations of the heat flux moments of order n + m read (see Appendix A
for detailed step-by-step derivation of the MPC equations)

∂Hi{n}�{m}

∂t
+

n∑
a=1

(
∂Hi{n+1}�{m}[i(n+m+1)→k](x(n+m+1) → x(a) )

∂xk(a)

+ ∂Ii{n−1}�{m}[a]P

∂xi(a)

− ν
∂2Hi{n}�{m}

∂xk(a)∂xk(a)

)

+
n+m∑

b=n+1

(
∂Hi{n+1}�{m}[i(n+m+1)→k](x(n+m+1) → x(b) )

∂xk(b)

− α
∂2Hi{n}�{m}

∂xk(b)∂xk(b)

)
= 0. (18)

As was mentioned before in (15), the MPC equations of
the velocity and temperature moments are specific cases of
(18), which can be obtained by setting, respectively, m and
n equal to 0.

Additionally, the continuity equations read

∂Hi{n}�{m}[i(l )→k]

∂xk(l )

= 0 for l = 1, 2, . . . , n, (19)

∂Ii{n−1}�{m}[a]P[i(l )→k]

∂xk(l )

= 0 for a, l = 1, 2, . . . , n,

a �= l, and n � 2. (20)

Note that pure temperature correlations and heat flux corre-
lations with l > n do not admit continuity equations since
they would have originated from ∂�(x)/∂xk , which is not a
continuity equation.

As was previously noted, the system of the MPC equa-
tions (18), (19), and (20) is linear for any turbulent flow.
Moreover, the dependent variables H and I appear inside
spatial or temporal derivatives. As seen in Secs. III C and
IV, this is the key to obtaining two important statistical Lie
symmetries necessary to derive the scaling laws.

To make the notation easier to understand, the two-point
correlation (TPC) equations for the velocity, heat fluxes, and
temperature are presented in Appendix B.

III. LIE SYMMETRIES OF THE MPC EQUATIONS

In this section, the Lie symmetries method will be pre-
sented briefly. After that, the symmetries of the governing
equations introduced in the previous section will be given.

A. Symmetry transformations

Consider a system of partial differential equations (PDEs)

F (x, y, y(1), y(2), . . . ) = 0, (21)

where x are the independent variables, y are the dependent
variables, and y(n) are the nth derivative of the dependent
variables with respect to all coordinate combinations of x.
Based on this, a transformation of (21), with the form

x∗ = φ(x, y), y∗ = ψ(x, y), (22)

is called a symmetry transformation, or just symmetry, if the
following holds:

F(x, y, y(1), y(2), . . . ) = 0 ⇔ F(x∗, y∗, y∗(1), y∗(2), . . . )

= 0. (23)

In other words, a symmetry transformation (22) leaves the
PDEs (21) invariant and, in addition, maps any solution of
(21) into a new solution.

In Lie group analysis, it is the aim to find all possible sym-
metry transformations of the PDE (21). The notation group
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refers to the fact that symmetry transformations usually admit
group properties. As we are presently dealing with Lie sym-
metry groups, the group parameter ε ∈ R has to be introduced
to obtain the so-called one-parameter Lie symmetry group of
transformations, with the form

x∗ = φ(x, y; ε), y∗ = ψ(x, y; ε). (24)

Equation (24) provides a continuous group of transformations
that allows analytical solutions for the underlying equations.
As for the group properties of (24), we may, without loss of
generality, assign ε = 0 to the identity element, i.e.,

x∗ = φ(x, y; ε = 0) = x, y∗ = ψ(x, y; ε = 0) = y. (25)

Therefore, if a Taylor series at ε = 0 is applied to the Lie
group of transformation (24), we obtain

x∗ = x + ∂φ(x, y; ε)

∂ε

∣∣∣∣
ε=0

ε + O(ε2) = x + ξ(x, y)ε + O(ε2),

(26)

y∗ = y + ∂ψ(x, y; ε)

∂ε

∣∣∣∣
ε=0

ε + O(ε2) = y + η(x, y)ε + O(ε2).

(27)

Equations (26) and (27) are the infinitesimal form of the Lie
group of transformation (24), where ξ and η are the so-called
infinitesimals. The general form of the transformation (24)
and the infinitesimal transformations (26) and (27) are related
by Lie’s first theorem (see Ref. [29]), i.e., if the infinitesimals
of the transformation, ξ and η, are known, one can uniquely
recover the general form of the symmetry group of transfor-
mations (24). To obtain all symmetries of a given system of
PDEs, one has to invoke the infinitesimal form of the transfor-
mations (26) and (27). Based on this, an algebraic algorithm,
the Lie algorithm, evolves, which has been implemented into
various computer algebra systems. Details on the algorithm
may be taken from different textbooks like Ref. [29] or in
works such as Ref. [19].

B. Group-invariant solutions

In addition to the fact that symmetries characterize fun-
damental physical properties of a system, it is the ability to
construct solutions that are central to their application, and
which will also be applied here. For this purpose, we define
the so-called group-invariant solutions, i.e., once the Lie sym-
metries of the system of PDEs are obtained, the next step is to
generate invariant solutions, which in turbulence are referred
to as scaling laws. We call y = �(x) an invariant solution of a
PDE system if and only if the following is true:

(i) y − �(x) is invariant under X , where X is the so-called
infinitesimal generator, defined as

X = ξi(x, y)
∂

∂xi
+ η j (x, y)

∂

∂y j
. (28)

Hence, we have

X (y − �(x)) = 0 (29)

on y = �(x). Using the operator (28) and differentiating out,
we obtain the following hyperbolic system:

ξi(x,�)
∂� j

∂ξi
= η j (x,�), i = 1, . . . , k; j = 1, . . . , l,

(30)

which generates the invariant solution. The solution of the hy-
perbolic system (30) can now be determined by the method of
characteristics, and we obtain the so-called invariant surface
condition

dx1

ξ1
= dx2

ξ2
= · · · = dxk

ξk
= dy1

η1
= dy2

η2
= · · · = dyl

ηl
, (31)

where k and l are the respective numbers of the independent
and dependent variables.

The integrals of the system (31) are the characteristics of
the hyperbolic system (30), but, at the same time, the invari-
ants of the original system of equations. These now form the
basis of the invariant solutions and, thus, the new independent
and dependent variables—the similarity variables.

(ii) Finally, the invariant solution, y = �(x) has to solve
the PDE system, which is to be verified by insertion into the
original PDE.

C. Symmetries of the governing equations

In this section, we present the Lie symmetries of the gov-
erning equations (1)–(3). For high Reynolds numbers flows,
i.e., for Reτ → ∞, and sufficiently away from the wall, the
viscous effects are limited to lengthscales of the order of
the Kolmogorov lengthscale. In Ref. [30], this fact forms the
basis for a singular asymptotic expansion similar to boundary
layer theory. As a result, two sets of moment equations arise,
where the equation for the “outer” solutions is frictionless and
acts on lengthscales larger than the Kolmogorov scale, while
an “inner” equation contains friction terms and operates on
the Kolmogorov length. As a result, the frictionless “outer”
equation and the corresponding solutions have the symmetries
of the Euler equation. The above development again illustrates
the fact that although the limit ν → 0+ can be considered,
this is not identical to ν = 0. For the following analyses, this
means a focus on the large scales and thus that ν = α = 0
may be set in Eq. (18), assuming ν ∼ α, i.e., the diffusion
terms are of the same order of magnitude. Incidentally, the
dissipation therefore results from the “inner” equation, which
is not considered presently.

For the case of the Euler equations, a 10-parameter symme-
try group of transformation is obtained, where here we only
present the scaling groups needed further below,

TSx : t∗ = t, x∗ = eaSx x, U∗ = eaSxU , P∗ = e2aSx P,

(32)

TSt : t∗ = eaSt t, x∗ = x, U∗ = e−aSt U , P∗ = e−2aSt P.

(33)

The coefficients aSx and aSt are the group parameters of scal-
ing of space and time, respectively.

If the Navier-Stokes equations are considered, i.e., the vis-
cous term is not neglected, the two scaling symmetries, TSx

and TSt , linearly combine into a simple scaling symmetry. This

025104-5



FRANCISCO ALCÁNTARA-ÁVILA et al. PHYSICAL REVIEW E 109, 025104 (2024)

phenomenon, in which a multiparameter symmetry group of
transformations is reduced after a specific condition is applied,
is known as symmetry breaking.

An analogous simplification, such as the transition from
the Navier-Stokes to the Euler equation, applied to the energy
equation (3), can be done by neglecting the diffusive term,
i.e., Peτ → ∞, which holds in the center of the channel.
Considering this, the energy equation admits the following
infinite-dimensional symmetry:

T� : t∗ = t, x∗ = x, U∗ = U , P∗ = P,

�∗ = f (�). (34)

For scaling purposes, and in analogy with the scaling sym-
metries of the Euler equations, we consider the simplification
f (�) = ea��, so that T� represents a scaling of temperature.
It should be noted that the energy equation (3), just like
the Navier-Stokes equations (1) and (2), admits the Galilean
group.

As noted in Ref. [17], the symmetries obtained for the
Navier-Stokes and energy equations transfer to the MPC equa-
tions (18). So, in the limit of zero viscosity and diffusion,
i.e., Reτ → ∞ and Pr > 1, the MPC equations (18) admit the
following scaling symmetries:

T Sx : t∗ = t, x∗ = eaSx x, H∗
i{n}�{m} = enaSx Hi{n}�{m} ,

I∗
i{n−1}�{m}[a]P

= e(n+1)aSx Ii{n−1}�{m}[a]P , (35)

T St : t∗ = eaSt t, x∗ = x, H∗
i{n}�{m} = e−naSt Hi{n}�{m} ,

I∗
i{n−1}�{m}[a]P

= e−(n+1)aSt Ii{n−1}�{m}[a]P , (36)

T S� : t∗ = t, x∗ = x, H∗
i{n}�{m} = ema�Hi{n}�{m} ,

I∗
i{n−1}�{m}[a]P

= ema� Ii{n−1}�{m}[a]P , (37)

which are immediate consequences of (32), (33), and the
scaling version of (34).

In addition to the symmetries induced from the
Navier-Stokes/Euler and energy equations, the MPC
equations (18) admit an extended set of symmetry
transformations. These symmetries are called statistical
symmetries and they are the key in the process of deriving
scaling laws [20] for high-order moments of the velocity
and temperature. These symmetries were discovered in
Ref. [17], and detailed information on the physical meaning
of the statistical symmetries can be found in Ref. [31]. First,
because of the linearity of the MPC equations (18), a scaling
symmetry of the dependent variables is admitted,

T Ss : t∗ = t, x∗ = x, H∗
i{n}�{m} = eaSs Hi{n}�{m} ,

I∗
i{n−1}�{m}[a]P

= eaSs Ii{n−1}�{m}[a]P . (38)

This symmetry, as proven in Ref. [31], represents a measure
of intermittency. For intermittency, we understand a flow with
subsequently changing turbulent and nonturbulent regimes.
Moreover, as all dependent variables in (18) appear inside
derivatives, a translation symmetry of all moments is also
admitted,

T tra,H : t∗ = t, x∗ = x, H∗
i{n}�{m} = Hi{n}�{m} + aH

i{n}�{m} ,

I∗
i{n−1}�{m}[a]P

= Ii{n−1}�{m}[a]P + aI
i{n−1}�{m} . (39)

Apart from the symmetries presented, we will also include
the classical translation in space symmetry, i.e.,

T tra,x : t∗ = t, x∗ = x + ax, H∗
i{n}�{m} = Hi{n}�{m} ,

I∗
i{n−1}�{m}[a]P

= Ii{n−1}�{m}[a]P . (40)

Note that, in contrast to (38), where aSs is a single group
parameter, symmetries (39) and (40) are a condensed way of
showing several symmetries. Each component of the vector
and tensors aH

{n}{m}, aI
{n−1}{m}, and ax represent the group pa-

rameter of different and independent symmetries. Therefore,
infinite symmetries are contained in (39), while (40) contains
three symmetries, one for each spatial direction.

In summary, six symmetries have been identified that will
be used to derive the scaling laws of high-order moments of
velocity and temperature. One property of the Lie symmetries
is that one can combine different one-parameter Lie symme-
tries into a multiparameter Lie symmetry. Following this, one
can obtain the following multiparameter Lie symmetry group
from the symmetries (35)–(40):

T : t∗ = eaSt t, x∗ = eaSx x + ax,

H∗
i{n}�{m} = en(aSx−aSt )+ma�+aSs Hi{n}�{m} + aH

i{n}�{m} ,

I∗
i{n−1}�{m}[a]P

= e(n+1)(aSx−aSt )+ma�+aSs Ii{n−1}�{m}[a]P + aI
i{n−1}�{m} .

(41)

A different way of writing the symmetry group (41) is using
the infinitesimal notation (26) and (27), from which one ob-
tains

ξt = aSt t, ξx = aSxx + ax,

ηHi{n}�{m} = [n(aSx − aSt ) + ma� + aSs]Hi{n}�{m} + aH
i{n}�{m} ,

ηIi{n−1}�{m}[a]P
= [(n + 1)(aSx − aSt ) + ma� + aSs]Ii{n−1}�{m}[a]P

+ aI
i{n−1}�{m} , (42)

and which will be used below in the next chapter.

IV. HIGH-ORDER MOMENT SCALING
LAWS AND ITS VALIDATION

A. New velocity, temperature, and mixed moment scaling laws

Using the symmetries (41), or rather its infinitesimal form
(42), we are now able to compute the invariant solutions of
Eq. (18), which in turbulence are called the turbulent scaling
laws. It should be noted here that in the following, we only
consider the moments of the instantaneous variables, i.e., the
H approach. Of course, a conversion for each moment into
that of the fluctuations is straightforward, but in Ref. [32]
we were able to show that an error accumulation occurs in
the calculation from DNS data, which inevitably results from
the finite number of available flow fields. This error increases
considerably as the order of the moments increases. We have
therefore deliberately refrained from displaying the moments
from the fluctuations.

Further, we note that the study focuses now on the stream-
wise velocity and temperature. For this purpose, we only have
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to insert the infinitesimals (42) into the invariant surface condition (31), and we obtain

dx2

aSxx2 + ax2

= dH1{1}

[aSx − aSt + aSs]H1{1} + aH
1{1}

= dH�{1}

[a� + aSs]H�{1} + aH
�{1}

= dH1{1}�{1}

[aSx − aSt + a� + aSs]H1{1}�{1} + aH
1{1}�{1}

= · · ·

= dH1{n}�{m}

[n(aSx − aSt ) + ma� + aSs]H1{n}�{m} + aH
1{n}�{m}

. (43)

Since we consider a shear flow that is fully developed in x1

and x3, all moments in the one-point limit depend only on
x2. Furthermore, the dependencies of the other points for the
higher-order tensors would have to be formally considered as
well, because this would result in further similarity variables.
However, from now on, we will focus on one-point statistics,
so that every point of application of the variables in (18) will
be x(1) = x(2) = · · · = x(n+m). Integrating (43) (notice that we
are using the first and the last term because the other terms
are just specific moments), we obtain the following invariant
solutions for any arbitrary moment:

H1{n}�{m} =C′
1{n}�{m}

(
x2 + ax2

aSx

)n(σ2−σ1 )+mσ�+2σ1−σ2

−
aH

1{n}�{m}

n(aSx − aSt ) + ma� + aSs
,

(44)

with C′
1{n}�{m} = ec′

nm[n(aSx−aSt )+ma�+aSs], (45)

where c′
nm denote the constants of integration, σ1 = 1 −

aSt/aSx + aSs/aSx, σ2 = 2(1 − aSt/aSx ) + aSs/aSx, and σ� =
a�/aSx. Similar to Ref. [24], the choice of parameters in the
exponent of (44) has been designed so that the high-order
moments depend on those of the first and second order. Fo-
cusing on the velocity only, as in Ref. [24], i.e., m = 0, the
exponent for n = 1 is σ1, and for n = 2 it is σ2, while for
pure temperature moments, i.e., n = 0, we have for m = 1
the exponent σ�. Therefore, σ1 and σ2 are determined from
the first two velocity moments, while σ� is determined from
the first temperature moment.

At this point, it is important to recall that the invariant
solution (44) has been derived in the limit of vanishing vis-
cosity and heat conduction. Therefore, this solution will only
be valid in the region where these conditions apply, i.e.,
the center of the channel. The invariant solution (44) shows
that the moments of velocity, temperature, and higher-order
moments scale as power laws, whose exponents are deter-
mined by the parameters σ1, σ2, and σ�. Note that, in the
exponent of the power law, four initial parameters appear
(aSx, aSt , a�, and aSs). However, these parameters appear as
ratios, leading to only three free parameters remaining (σ1, σ2,
and σ�).

Analogously to Ref. [16], where the scaling law of the
mean velocity of a turbulent shear flow was presented as a
deficit law, and significantly extended in Ref. [24] to arbitrary
velocity moments, Eq. (44) can be rewritten to form the final

deficit scaling law of velocity, temperature, and arbitrarily
mixed moments of both as

H1{n}�{m}cl
− H1{n}�{m}

un
τ θ

m
τ

= C′
nm

(x2

h

)n(σ2−σ1 )+mσ�+2σ1−σ2

, (46)

with C′
nm = α′enβ ′+mβ ′

�, (47)

where the subscript cl refers to the value of the moment on the
center line, which comes from the last term on the right-hand
side of Eq. (44), and C′

nm are the new exponential scaling
factors. Similar to Ref. [24], it has been assumed that c′

nm is
independent of n and m to derive C′

nm in (46), and this will
indeed be validated below in Sec. IV B. Also note that, in
Eq. (46), the shift in x2 has been set to 0, as the coordinate
is anchored to the center line.

B. Validation of the scaling law (46) with DNS data

The new scaling law (46) will be validated by using DNS
data of turbulent channel flows driven by a pressure gradient
at friction Reynolds numbers of Reτ = 500, 1000, 2000, and
5000, and heated by a constant heat flux from both walls with
a wide range of values of Prandtl numbers: Pr = 0.007, 0.01,
0.02, 0.05, 0.1, 0.3, 0.5, 0.71, 1, 2, 4, 7, and 10. Specifically,
the combinations of Reτ and Pr used are presented in Table I.

The code used to run the simulations is the Liso code,
already validated and employed in many other simulations of
turbulent channel flows [6,8,10,18,33,34]. Detailed informa-
tion about the code itself and the parameters of the simulation
(mesh size, wash-outs run, computational box size, etc.) can
be found in Refs. [7,25,26,28]. As mentioned, the UHF is
used as the thermal boundary condition in the DNS cited. This
implies that temperature increases linearly in the streamwise
direction. To make the temperature field homogeneous in
the x1 direction, the value of the temperature at the wall is
removed, obtaining a transformed temperature. Because we
want to give a general scaling law for temperature moments,
and because the same symmetry, T� (34), is also obtained
for the energy equation of the transformed temperature, the

TABLE I. Reτ and Pr numbers used for the validation of the
scaling law (46). The last column shows the colors used in the
figures to refer to each Reynolds number.
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FIG. 1. Moments of velocity, H1{n} , for (a) Reτ = 500 and Pr = 4
and (b) Reτ = 2000 and Pr = 7. Moments of (c) temperature, H�{m} ,
and (d) heat fluxes, H1{n}�{m} , for Reτ = 2000 and Pr = 7. In (a),
(b), and (c), velocity and temperature moments are obtained for n
and m = 1, 2, . . . , 7, appearing in that order from the bottom to
the top of the plot. For (d), heat fluxes moments are shown for
n + m = 2, 3, . . . , 6, appearing in that order from bottom to top. For
heat flux moments of the same order, the lower lines are for m = 0,
while the upper lines are for n = 0. Solid lines are the values from
the DNS, while squares represent the values from the scaling law.
The wall and center of the channel are swapped, so the center line is
at x2/h = 0, while the wall is at x2/h = 1. Colors as in Table I.

general form of the temperature energy equation is used in
this work.

The moments calculated in the simulations are limited to
order seven for pure moments of velocity and temperature
and six for mixed moments of velocity and temperature. The
procedure to fit the scaling law (46) to the DNS data has been
done by minimizing the infinite norm of the relative error
between the fit and the value of the DNS data, i.e.,

error = min

(∣∣∣∣
∣∣∣∣data(x2) − fit(x2)

data(x2)

∣∣∣∣
∣∣∣∣
∞

)
. (48)

The infinite norm is used in this formula since the data take
values across several orders of magnitude. After this fitting is
applied to the first and second moments of velocity and the
first moment of temperature, σ1, σ2, and σ� from the scaling
law (46) are determined and, thus, the exponent for any high-
order moment is known and only the constants of integration,
C′

nm, must be calculated.
The results of the fits of the velocity moments for Reτ =

500 and Pr = 4 are depicted in Fig. 1(a), together with the
fits of the velocity moments for Reτ = 2000 and Pr = 7, in
Fig. 1(b). Additionally, for Reτ = 2000 and Pr = 7, the fits of
the temperature moments and mixed moments are presented
in Figs. 1(c) and 1(d), respectively. Solid lines represent the
values from the DNS, while squares are the values obtained
from the scaling law (46). Recall that in all figures below,
the wall and center of the channel are swapped, so the center

FIG. 2. Moments of temperature, H�{m} , for (a) Reτ = 500 and
Pr = 4 and (b) Reτ = 500 and Pr = 0.01. Moments of heat fluxes,
H1{n}�{m} , for (c) Reτ = 500 and Pr = 4 and (d) Reτ = 500 and
Pr = 0.01. In (a) and (b), temperature moments are obtained for
m = 1, 2, . . . , 7, appearing in that order from the bottom to the
top of the plot. For (c), heat flux moments are shown for n + m =
2, 3, . . . , 6, appearing in that order from bottom to top. For heat flux
moments of the same order, the lower lines are for m = 0, while the
upper lines are for n = 0. For (d), heat flux moments are shown for
n + m = 2, 3, and 6, appearing in that order from bottom to top. For
heat flux moments of the same order, the lower lines are for n = 0,
while the upper lines are for m = 0. Solid lines are the values from
the DNS, while squares represent the values from the scaling law.
The wall and center of the channel are swapped, so the center line is
at x2/h = 0, while the wall is at x2/h = 1. Colors as in Table I.

line is at x2/h = 0, while the wall is at x2/h = 1. Also, it
is important to mention that the range of the center of the
channel where the scaling law has been applied is up to
x2/h = 0.75. The most important result of this work is the
high accuracy of the scaling law (46) to fit the data of the
DNS for all moments, with the highest relative errors of only
0.2% for the higher-order moments, calculated with Eq. (48).
Even for the lowest Reynolds numbers of value 500, the accu-
racy of the fit is almost as good as for Reτ = 2000, as can be
seen in Figs. 1(a) and 1(b). In the same way, the scaling law
is validated with the same accuracy for the temperature and
mixed moments as shown in Figs. 1(c) and 1(d), respectively.

To analyze the influence of the Prandtl number, we com-
pare the scaling between a high Prandtl number of 4 and a
very low one of 0.01 in Fig. 2. In the case of the scaling of
the temperature moments, in Figs. 2(a) and 2(b), for cases
Pr = 4 and 0.01, respectively, there is a noticeable difference.
While for Pr = 4 the scaling (46) represents the DNS data
with high accuracy (errors are lower than 0.01%), for the
case of Pr = 0.01 the deviation is high and clearly visible in
Fig. 2(b). The reason for this error comes from the assumption
in Sec. III of zero heat conduction in the symmetry analysis,
which, obviously, for Pr = 0.01 is not true. The high diffusiv-
ity for very low Prandtl numbers affects the temperature field
in a deeper region away from the wall, and the temperature
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moments are no longer parallel for x2/h approximately greater
than 0.2. In the same manner, the scaling of mixed moments
is no longer correct for very low Prandtl numbers. While
in Fig. 2(c), the scaling is again very accurate for Pr = 4,
in Fig. 2(d), a similar failure, as obtained in Fig. 2(b), appears
in the scaling for Pr = 0.01. Note that in Fig. 2(d), only
moments for n + m = 2, 4, and 6 are plotted for clarity.

One important point to note is that the functional struc-
ture of the invariant solution (44) that leads to the scaling
law (46) does not change for vanishing or not vanishing
viscosity/diffusivity, in the sense that the same number of
parameters appears in the exponent of the scaling law. There-
fore, one should expect the scaling law to be correct also for
these cases. This is true for a limited region of the center of
the channel. In the case of Figs. 2(b) and 2(d), if one tries to
use the scaling law only in the region of y∗ < 0.1 away from
the center, instead of y∗ < 0.75, as was done in Fig. 2, then a
perfect matching with the DNS data will be obtained, even
for the lowest Prandtl number cases. As mentioned above,
this happens because the viscous/diffusive effects appear so
deep away from the wall. Effectively, as shown in Ref. [25],
for such low Reynolds and Prandtl numbers, one cannot even
see the emergence of a logarithmic layer, so a bad scaling
is also expected. Also, remark that the coefficient σ1 and σ2

approach to a value of 2 as the region where the fitting is done
is reduced.

Note here that although Reτ = 500 is a low Reynolds num-
ber and one may expect the assumption of vanishing viscosity
to fail, the velocity field is still turbulent, and in the center
of the channel, the mentioned assumption is true. However,
Pr = 0.01 produces a much less turbulent temperature field,
even also laminar [25], and for this reason the assumption of
vanishing heat conduction is not true for such a low Prandtl
number, or at least it is only true in a very central region of the
channel (less than 10%), where the temperature moments are
parallel in Fig. 2(b). In addition, the key parameter is actually
not the Prandtl number by itself, but the friction Péclet num-
ber, defined as Peτ = Reτ Pr. Therefore, in our plots, we are
comparing a Reτ = 500 with Pr = 4 and 0.01, which means
Peτ = 2000 compared with Peτ = 5, explaining the errors in
the scaling for such a low Prandtl or friction Péclet numbers.

It is important to analyze the values of the different ex-
ponential parameters of the scaling law (46) and see the
influence of each symmetry on the final scaling. As was
shown in Eq. (46), the exponent of the power law is formed
by a constant term, 2σ1 − σ2, that comes from the statistical
scaling symmetry of the moments, T Ss (38). A second term
that scales with n, i.e., n(σ2 − σ1), emerged from the classical
scaling symmetries of space and time, T Sx (35) and T St (36),
respectively. A third term that scales with m, i.e., mσ�, has
its roots in the scaling symmetry of the temperature, T S�

(37). However, as can be clearly seen in Fig. 1, all moments
have a more or less constant slope in the log-log plot, which
translates into a very weak dependence on n and m. In other
words, the values of σ1 and σ2 are very similar, and σ� is small
compared with the value of 2σ1 − σ2. This, in turn, implies
that scaling of space and time has almost no influence in the
center of the channel, and the statistical scaling of moments
is dominant, which makes sense, since, as was said before,
it is a measure of intermittency. Scaling independent of the

FIG. 3. Values of (a) σ1, solid lines left axis, and σ2, dashed lines
right axis, and (b) σ�. Colors as in Table I. Note that black circles
at Pr = 0.71 represent the value for the single simulation at Reτ =
5000.

dimensions of space and time is called anomalous scaling and
has its origin in the intermittency symmetry.

Figure 3(a) presents the values of σ1 and σ2 for all the DNS
simulations, while the values of σ� are shown in Fig. 3(b).
The values of σ1 are almost the same as σ2 (note that the
left and right axes are shifted for better visualization), which
confirms that the symmetries of scaling in space and time have
almost no influence in the center of the channel. Similarly,
the scaling symmetry of temperature has barely any influence,
since σ�  2σ1 − σ2. This last term, 2σ1 − σ2, is indeed the
only dominant term in the exponent of the scaling law (46),
with a value slightly below 2, confirming that the symmetry
of scaling of moments, T Ss (38), is dominant in the center of
the channel. Further, we observe that the parameters σ1, σ2 and
σ� in the investigated ranges are largely independent of Reτ

and Pr. Small differences are due to small numerical errors or
noise in the fitting.

The second important part of the scaling law (46) is the
prefactor C′

nm. Figure 4(a) shows the values of C′
nm for Reτ =

500 and Pr = 4. An almost perfect plane is observed in the
vertical log-scaling plot, which confirms that C′

nm is an ex-
ponential function in n and m, and further verifies that the

FIG. 4. (a) Values of C1{n}�{m} for Reτ = 500 and Pr = 4. Param-
eters from Eq. (47): (b) α′, (c) β ′, and (d) β ′

�. Colors as in Table I.
Note that black points at Pr = 0.71 in (b), (c), and (d) represent the
values for the single simulation at Reτ = 5000.
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constants of integration c′
nm in Eq. (45) are independent of n

and m.
In Figs. 4(b), 4(c), and 4(d), the values of α′, β ′, and β ′

�

for all the present simulations are shown, respectively. To cal-
culate them, only the constants of integration of the moments
up to order 2 have been used, i.e., C′

10, C′
20, C′

01, C′
02, and C′

11.
With these five values, a fit of the parameters α′, β ′, and β ′

�

has been done minimizing again as in Eq. (48).
Interestingly enough, and other than the parameters in the

exponent σ1, σ2, and σ�, the coefficients α′, β ′, and β ′
� are

not independent of Reτ and Pr. We want to point out that
for high friction Péclet numbers, the values of α′, β ′, and
β ′

� seem to be independent of the friction Reynolds number,
which may be related to a more realistic assumption of the
zero viscosity and heat conduction. However, this is just a
point to be investigated. From the theory developed in Sec. III,
the dependency on Reτ or Pr is not apparent but goes be-
yond the scope of the theory in its present form. Here we
limited the study to confirm that the scaling law (46) can
represent the behavior of the arbitrary moments obtained from
the DNS data, including exponential scaling of C′

nm with n and
m.

V. CONCLUSIONS

A new set of turbulent scaling laws for arbitrary moments
of the streamwise velocity, temperature, and high-order mo-
ments of both in a turbulent channel flow has been obtained
using the symmetry-based turbulence theory. These scaling
laws apply to incompressible flows driven by a pressure differ-
ence and with a passive scalar. For the derivation of the scaling
laws, we had to assume vanishing viscosity and diffusion, i.e.,
Reτ → ∞ and Pr > 1, which holds in the central region of
the channel, and they are finally cast as deficit laws.

The deficit form of the arbitrary moments in the wall-
normal direction can be represented as power functions, where
the exponent is determined by the order of the moments and
three different parameters that emerged from four different
scaling symmetries (σ1, σ2, and σ�). Besides the classical
symmetries of the Navier-Stokes and energy equations, we
employed statistical symmetries of the multipoint correlation
equations, which were the key to obtaining a constant expo-
nent of the power-law scaling function that can accurately
represent the DNS data. Instead of the usual fluctuation ap-
proach as the basis for the MPC equations, which yields
a nonlinear system of equations, we presently employ the
instantaneous approach, which results in a linear system of
equations. The statistical symmetries are trivially displayed
in this representation as scaling and translation of moments.

This statistical scaling of moments represents a measure of
intermittency. It appears as the dominant term in the exponent
of all moments as the constant 2σ1 − σ2, which is independent
of the moment order.

The scaling laws have been validated with data from dif-
ferent DNSs at different Reynolds and Prandtl numbers. The
accuracy of the scaling laws to represent the data is remark-
able, especially for high Péclet numbers. For cases with low
Péclet numbers, the center of the channel gets influenced by
viscosity and heat conduction, and the assumption of Reτ →
∞ and Pr > 1 no longer holds, which entails a significant
deviation from the theoretical scaling of the moments in the
center of the channel.

The exponential prefactor in n and m in Eq. (47) has been
obtained by the observation that the constants of integration
c′

nm in (45) are indeed constant and independent of n and m. So
far, no justification based on first principles can be given for
this, though we speculate that the probability density function
(PDF) contains deeper information on this. Therefore, we
presently follow the idea of deriving invariant solutions to the
PDF equations.

One point of this theory to be explored is the derivation of
scaling laws for other important statistics such as fluctuating
quantities, cross velocities, the wall-normal and spanwise heat
fluxes, and their high-order moments. So far, with the sym-
metries obtained in this work, it was impossible to properly
describe these statistics. However, as mentioned before, fur-
ther symmetries can be obtained from the MPC equations or
from other equations that describe turbulence, such as the
PDF equations. This is left for future work, which is already
being investigated, but we would like to point out that our
method is able to obtain scaling laws following only strong
mathematical arguments, removing lucky curve fitting.
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APPENDIX A

In this Appendix, we present a step-by-step derivation of the MPC equation of the mixed moments. The derivation of the
MPC equations of velocity and thermal energy are just two specific cases of the general MPC equations.

Starting with Eqs. (2) and (3), we perform the following operation to obtain the MPC equation of order n + m of the mixed
moments:

Mi(1) (x(1) )Ui(2) (x(2) ) · · ·Ui(n) (x(n) )�(x(n+1)) · · · �(x(n+m) ) + Ui(1) (x(1) )Mi(2) (x(2) )Ui(3) (x(3) ) · · ·Ui(n) (x(n) )�(x(n+1)) · · · �(x(n+m) )

+ · · · + Ui(1) (x(1) ) · · ·Ui(n−1) (x(n−1))Mi(n) (x(n) )�(x(n+1)) · · · �(x(n+m) )

025104-10



VALIDATION OF SYMMETRY-INDUCED HIGH MOMENT … PHYSICAL REVIEW E 109, 025104 (2024)

+ Ui(1) (x(1) ) · · ·Ui(n) (x(n) )E (x(n+1))�(x(n+2)) · · · �(x(n+m) )

+ Ui(1) (x(1) ) · · ·Ui(n) (x(n) )�(x(n+1))E (x(n+2))�(x(n+3)) · · · �(x(n+m) ) + · · ·
+ Ui(1) (x(1) ) · · ·Ui(n) (x(n) )�(x(n+1)) · · · �(x(n+m−1))E (x(n+m) )

=
n∑

a=1

Mi(a) (x(a) )
n∏

c=1,c �=a

Ui(c) (x(c) )
n+m∏

d=n+1

�(x(d ) ) +
n+m∑

b=n+1

E (x(b) )
n∏

c=1

Ui(c) (x(c) )
n+m∏

d=n+1,d �=c

�(x(d ) ) = 0, (A1)

where Ui(l ) and x(l ) are the velocity and the different points where the equations and the variables are applied, for i(l ) = 1, 2, 3;
and l = 1, 2,...,n + m (l can be a or b). Introducing the momentum and energy equations, (2) and (3), into (A1), we obtain

n∑
a=1

∂Ui(a) (x(a) )

∂t

n∏
c=1,c �=a

Ui(c) (x(c) )
n+m∏

d=n+1

�(x(d ) ) +
n∑

a=1

Uk (x(a) )
∂Ui(a) (x(a) )

∂xk(a)

n∏
c=1,c �=a

Ui(c) (x(c) )
n+m∏

d=n+1

�(x(d ) )

+
n∑

a=1

∂P(x(a) )

∂xi(a)

n∏
c=1,c �=a

Ui(c) (x(c) )
n+m∏

d=n+1

�(x(d ) ) − 1

Reτ

n∑
a=1

∂2Ui(a) (x(a) )

∂xk(a)∂xk(a)

n∏
c=1,c �=a

Ui(c) (x(c) )
n+m∏

d=n+1

�(x(d ) )

+
n+m∑

b=n+1

∂�(x(b) )

∂t

n∏
c=1

Ui(c) (x(c) )
n+m∏

d=n+1,d �=c

�(x(d ) ),+
n+m∑

b=n+1

Uk (x(b) )
∂�(x(b) )

∂xk(b)

n∏
c=1

Ui(c) (x(c) )
n+m∏

d=n+1,d �=c

�(x(d ) ),

− 1

Peτ

n+m∑
b=n+1

∂2�(x(b) )

∂xk(b)∂xk(b)

n∏
c=1

Ui(c) (x(c) )
n+m∏

d=n+1,d �=c

�(x(d ) ) = 0. (A2)

At this point, the continuity equation (1) should be applied to introduce the terms Uk (xl ) inside the derivatives with respect to
xk(l ) in the second and sixth lines of Eq. (A2). Also, the product terms can be introduced in the derivatives with respect to the
spatial coordinates, since the points x(a) and x(b) are excluded from the product series. Regarding the temporal derivatives in the
first and fifth lines of (A2), the chain rule is applied to reduce it to a single term. Finally, using definitions (15), (16), and (17),
one can obtain the MPC equation for all mixed moments written in the following way:

∂Hi{n}�{m}

∂t
+

n∑
a=1

(
∂Hi{n+1}�{m}[i(n+m+1)→k](x(n+m+1) → x(a) )

∂xk(a)

+ ∂Ii{n−1}�{m}[a]P

∂xi(a)

− 1

Reτ

∂2Hi{n}�{m}

∂xk(a)∂xk(a)

)

+
n+m∑

b=n+1

(
∂Hi{n+1}�{m}[i(n+m+1)→k](x(n+m+1) → x(b) )

∂xk(b)

− 1

Peτ

∂2Hi{n}�{m}

∂xk(b)∂xk(b)

)
= 0. (A3)

As mentioned before, the MPC equations of the velocity arise if m = 0 in (A3). Similarly, one can obtain the MPC equations of
the temperature by setting n = 0 in (A3).

APPENDIX B

In this Appendix, the two-point correlation (TPC) equations for the velocity, heat fluxes, and temperature are given as
examples of the MPC equation (18) in order to make the notation clearer. These equations can be obtained by setting in Eq. (18)
n = 2, 1, 0 and m = 0, 1, 2, respectively,

∂Hi(1)i(2) (x(1), x(2) )

∂t
+ ∂Hi(1)i(2)k (x(1), x(2), x(1) )

∂xk(1)

+ ∂Hi(1)i(2)k (x(1), x(2), x(2) )

∂xk(2)

+ ∂IPi(2) (x(1), x(2) )

∂xi(1)

+ ∂Ii(1)P(x(1), x(2) )

∂xi(2)

− ν
∂2Hi(1)i(2) (x(1), x(2) )

∂xk(1)∂xk(1)

− ν
∂2Hi(1)i(2) (x(1), x(2) )

∂xk(2)∂xk(2)

= 0, (B1)

∂Hi(1)�(x(1), x(2) )

∂t
+ ∂Hi(1)�k (x(1), x(2), x(1) )

∂xk(1)

+ ∂Hi(1)�k (x(1), x(2), x(2) )

∂xk(2)

+ ∂IP�(x(1), x(2) )

∂xi(1)

− ν
∂2Hi(1)�(x(1), x(2) )

∂xk(1)∂xk(1)

− α
∂2Hi(1)�(x(1), x(2) )

∂xk(2)∂xk(2)

= 0, (B2)

∂H��(x(1), x(2) )

∂t
+ ∂H��k (x(1), x(2), x(1) )

∂xk(1)

+ ∂H��k (x(1), x(2), x(2) )

∂xk(2)

− α
∂2H��(x(1), x(2) )

∂xk(1)∂xk(1)

− α
∂2H��(x(1), x(2) )

∂xk(2)∂xk(2)

= 0. (B3)
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