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Abstract
Compositional Data Analysis (CoDa) has gained popularity in recent years. This type of data consists of values from disjoint
categories that sum up to a constant. Both Dirichlet regression and logistic-normal regression have become popular as CoDa
analysis methods. However, fitting this kind of multivariate models presents challenges, especially when structured random
effects are included in the model, such as temporal or spatial effects. To overcome these challenges, we propose the logistic-
normal Dirichlet Model (LNDM). We seamlessly incorporate this approach into the R-INLA package, facilitating model
fitting and model prediction within the framework of Latent Gaussian Models. Moreover, we explore metrics like Deviance
Information Criteria, Watanabe Akaike information criterion, and cross-validation measure conditional predictive ordinate
for model selection in R-INLA for CoDa. Illustrating LNDM through two simulated examples and with an ecological case
study on Arabidopsis thaliana in the Iberian Peninsula, we underscore its potential as an effective tool for managing CoDa
and large CoDa databases.

Keywords CoDa · Dirichlet · INLA · Spatial

1 Introduction

Compositional Data analysis is an increasingly popular topic
for understanding processes that consist in values that corre-
spond to disjoint categories, the sum of which is a constant.
Those values are usually proportions or percentages, and in
such cases the constant is 1 or 100. The data generated from
these processes are widely known as Compositional Data
(CoDa). For the sake of simplicity and without loss of gener-
ality, from now on, we assume the constant to be 1. Connor
and Mosimann (1969) proposed Dirichlet regression to deal
with CoDa. Since then, several studies have been conducted
using this technique, and most of them have proved that it
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is a very valuable tool for modelling CoDa, see for example
Hijazi and Jernigan (2009) and Pirzamanbein et al. (2020).

There are other approaches to CoDa analysis. Aitchison
(1986) presented an unified theory, developing a range of
methods based on the idea that “information in compositional
vectors is concerned with relative, not absolute magnitudes”.
With this statement, the notion of ratios among proportions
emerged and the concept of log-ratios arose as the pre-
ferredmethod for dealingwith CoDa.Modelling CoDa using
logistic-normal gained ground, and the bases of CoDa were
established.

A vast body of literature exists on the subject of applying
these methods using both Dirichlet regression and logistic-
normal regression in different fields, including Ecology
(Kobal et al. 2017; Douma and Weedon 2019), Geology
(Buccianti and Grunsky 2014; Engle and Rowan 2014),
Genomics (Tsilimigras and Fodor 2016; Shi et al. 2016;
Washburne et al. 2017; Creus Martí et al. 2022), Environ-
mental Sciences (Aguilera et al. 2021; Mota-Bertran et al.
2022) or Medicine (Dumuid et al. 2018; Fairclough et al.
2018).

Nevertheless, one of the biggest problems encountered
when dealing with CoDa models is performing inference. To
do so, different approaches have been proposed; in particu-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-024-10427-3&domain=pdf


116 Page 2 of 22 Statistics and Computing (2024) 34 :116

lar, many R-packages have been implemented not only from
the frequentist perspective (Cribari-Neto and Zeileis 2010;
Templ et al. 2011; Maier 2014), but also from the Bayesian
paradigm. R-packages such as BayesX (Klein et al. 2015),
Stan (Sennhenn-Reulen 2018),BUGS (vanderMerwe2018)
and R-JAGS (Plummer 2016) have tools for dealing with
CoDa.TheseBayesian packages aremainly based onMarkov
chain Monte Carlo (MCMC) methods, which construct a
Markov chain whose stationary distribution converges to the
posterior distribution. However, the computational cost of
MCMCcan be high.Moreover, the integrated nested Laplace
approximation (INLA)methodology (Rue et al. 2009),which
is mainly intended for approximating the posterior distribu-
tion using the Laplace integration method, has become an
alternative to MCMC guaranteeing a higher computational
speed forLatentGaussianModels (LGMs).With the incorpo-
ration of new techniques fromBayesian variational inference
(Niekerk and Rue 2021; Van Niekerk et al. 2023) and the
optimisation of the computation, which improves its parallel
performance (Gaedke-Merzhäuser et al. 2023), a new era is
emerging in the INLA software. Hence, incorporating a tool
for dealing with CoDa would be a convenient way to tackle
the large CoDa databases sometimes encountered.

Nonetheless, in R-INLA, it is still a challenge to fit mod-
els when we deal with a multivariate likelihood such as
the ones defined in simplex of dimension D(SD). There
are some approximations for the Dirichlet likelihood that
involve converting the original Dirichlet observations into
Gaussian pseudo-observations conditioned to the linear pre-
dictor (Martínez-Minaya et al. 2023) or just converting a
CoDa multivariate response into coordinates using the iso-
metric log-ratio transformation (Mota-Bertran et al. 2022)
and fitting them in an independent way. However, there is
no unified way to fit these models inside R-INLA and take
advantage of all its facilities.

In this paper we present the logistic-normal Dirichlet
model (LNDM), which mainly uses logistic-normal distribu-
tion with Dirichlet covariance through the additive log-ratio
transformation as likelihood. This allows us to integrate it
within the R-INLA package in a very simple way. Thus, we
benefit from all the other features of R-INLA for model
fitting, model selection and predictions within the frame-
work of LGMs. Additionally, we present howmeasures such
the Deviance Information Criteria (Spiegelhalter et al. 2002,
DIC), theWatanabe Akaike information criterion (Watanabe
and Opper 2010; Gelman et al. 2014, WAIC), or the cross-
validationmeasure conditional predictive ordinate (CPO) for
evaluating the predictive capacity (Pettit 1990; Roos and
Held 2011) are computed inR-INLA for dealing with CoDa.
To show how the method works, two simulate examples and
a real example in the field of Ecology were implemented.
In the last part, we conducted a spatial analysis of the plant
Arabidopsis thaliana on the Iberian Peninsula.

The paper is then divided into 7 more sections. Section2
introduces CoDa, the distributions that can be defined in SD ,
and their equivalence. Section3 presents some fundamentals
of the INLA methodology. Section4 is devoted to introduc-
ing the logistic-normal regression with Dirichlet covariance.
In Sect. 5, we introduce spatial models as well as model
selection measures in CoDa. Section6 focuses on present-
ing a simulated spatial study. In Sect. 7, we provide a real
application of this method and, finally, Sect. 8 concludes and
discusses future avenues of research.

2 CoDa background

This section is devoted to introducing some preliminary con-
cepts for a better understanding of CoDa. In particular, we
present some basic and formal definitions of the two main
distributions employed when we deal with CoDa.

2.1 CoDa: Definitions

Let yD×1 be a vector that satisfies
∑D

d=1 yd = 1, and 0 <

yd < 1, d = 1, . . . , D. This vector is called a composition,
and it pertains to the simplex sample space. The simplex of
dimension D, denoted by S

D , is defined as:

S
D =

{

y ∈ R
D | 0 < yd < 1;

D∑

d=1

yd = 1

}

. (1)

As in the ordinary real Euclidean space, there is a geom-
etry defined in S

D . It does not follow the usual Euclidean
geometry, and it was introduced by Pawlowsky-Glahn and
Egozcue (2001) and Egozcue et al. (2003). It is called Aitchi-
son geometry. The definitions of perturbation and powering
are sufficient to obtain a vector space of compositions and
the usual properties such as commutativity, associativity and
distributivity hold. With the definition of the Aitchison inner
product, the Aitchison norm and the Aitchison distance, an
Euclidean linear vector space is obtained (Pawlowsky-Glahn
and Egozcue 2001).

Following the fundamentals proposedbyAitchison (1986),
log-ratios play an important role in CoDa analysis. They
can be constructed in different ways, including centered
log-ratio, isometric log-ratio or additive log-ratio, among
others (Egozcue et al. 2012). In this work, we focus on the
well-known additive log-ratio transformation because of its
straightforward interpretation (Greenacre et al. 2023), and
due to its being a one-to-one mapping from S

D to R
D−1. It

is defined as:
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z(D−1)×1 = alr( y) :=
[

log

(
y1
yD

)

, . . . , log

(
yD−1

yD

)]

, (2)

where D is the reference category. In Greenacre et al. (2023),
the authors depicted some criteria to select the reference cate-
gory. They recommended choosing the one whose logarithm
has low variance as a reference, and avoiding taking a refer-
ence with low relative abundances across samples. The new
variables generated are called alr -coordinates. The inverse
alr , also called alr−1 is

alr−1(z) =
[

exp (z1)

1 + ∑D−1
d=1 exp (zd)

, . . . ,

exp (zD−1)

1 + ∑D−1
d=1 exp (zd)

,
1

1 + ∑D−1
d=1 exp (zd)

]

.

In addition to Aitchison geometry, several probability distri-
butions have also been characterised in S

D (Figueras et al.
2003), although here we focus on the normal distribution on
the simplex or logistic-normal distribution, and the Dirichlet
distribution.

2.2 Logistic-normal distribution and Dirichlet
distribution

Logistic-normal distribution was defined by Aitchison and
Shen (1980) and it was studied in depth in Aitchison (1986).
A D random vector y is said to have a logistic-normal distri-
bution LN (μ,�), or alternatively a normal distribution on
S
D , if any of its vector of log-ratio coordinates has a joint

(D − 1)-variate normal distribution. This definition can be
adapted straight to a CoDa response using alr -coordinates,
as:

y | μ,� ∼ LN (μ,�) ⇐⇒ alr( y) | μ,� ∼ N (μ,�), (3)

μ being a D−1 dimensional vector and� a (D−1)×(D−1)
covariance matrix. Alternatively, the Dirichlet distribution
was introduced in Connor and Mosimann (1969), and it is
the generalisation of the widely known beta distribution. A
D random vector y is said to have a Dirichlet distribution
D(α), if it has the following probability density:

p( y | α) = 1

B(α)

D∏

d=1

yαd−1
d , (4)

α = (α1, . . . , αD) being the vector of shape parameters for
each category, αD > 0 ∀d, yd ∈ (0, 1),

∑D
d=1 yd = 1,

and B(α) the multinomial Beta function, which serves as
the normalising constant. The multinomial Beta function is
defined as B(α) = ∏D

d=1 �(αd)/�(
∑D

d=1 αd). The sum of

all α’s, α0 = ∑D
d=1 αc, is usually interpreted as a preci-

sion parameter. The Beta distribution is the particular case
when D = 2. In addition, each variable is marginally Beta
distributed with α = αd and β = α0 − αd . If y ∼ D(α),
the expected values are E(yd) = αd/α0, the variances are
Var(yd) = [αc(α0 − αd)]/[α2

0(α0 + 1)] and the covariances
are Cov(yd , yd ′) = −αdαd ′/[α2

0(α0 + 1)].

2.3 Relation between the two distributions

As pointed out in Aitchison (1986, 126–129), the logistic-
normal and the Dirichlet distribution are separate in the sense
that they are never exactly equal for any choice of parameters.
However, through the Kullback–Leibler divergence (KL),
which measures by how much the approximation q misses
the target p, theDirichlet distribution can be approachedwith
the logistic-normal distribution. The solution to the minimi-
sation of the KL:

K (p, q) =
∫

SD
p( y | α) log

(
p( y | α)

q( y | μ,�)

)

d y, (5)

where p( y | α) represents the density function of the Dirich-
let, and q( y | μ,�), the logistic-normal density function, is
minimised by:

μ = E
[
log

(
y1
yD

)
, . . . , log

(
yD−1
yD

)]
= E

[
alr( y)

]
,

� = Var
[
log

(
y1
yD

)
, . . . , log

(
yD−1
yD

)]
= Var

[
alr( y)

]
,

(6)

and the solution can be written in terms of the digamma φ

and trigamma φ′ functions as:

μd =φ(αd) − φ(αD), d = 1, . . . , D − 1,

�dd =φ′(αd) + φ′(αD), d = 1, . . . , D − 1,

�dk =φ′(αD), d �= k.

(7)

This approach plays an important role in this paper, as it
constitutes the basis for defining logistic-normal regression
with Dirichlet covariance. But first we introduce the model
framework inwhich this likelihood is included, that is, Latent
Gaussian Models (LGMs, Rue et al. 2009).

3 LGMs and INLA

The popularity of INLA lies in the fact that it allows fast
approximate inference for LGMs. Furthermore, the INLA
software is experiencing a new era, facilitated by the integra-
tion of novel techniques from Bayesian variational inference
(Niekerk and Rue 2021; Van Niekerk et al. 2023) and
enhanced computation optimization, leading to improved
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parallel performance (Gaedke-Merzhäuser et al. 2023). This
section is devoted to briefly introducing the structure of
LGMs and how INLA makes inference and prediction with
the new advances in INLA.

3.1 LGMs

In Van Niekerk et al. (2023) a new formulation of INLA is
presented. So, we follow it to introduce the notions of INLA.
LGMs can be seen as three-stage hierarchical Bayesian
models in which observations yN×1 can be assumed to be
conditionally independent given a latent Gaussian random
field X and hyperparameters θ1

y | X, θ1 ∼
N∏

n=1

p(yn | X, θ1). (8)

Theversatility of themodel class is related to the specification
of the latent Gaussian field:

X | θ2 ∼ N (0, Q−1(θ2)), (9)

which includes all the latent (non-observable) components of
interest, such as fixed effects and random terms, describing
the process underlying the data. The hyperparameters θ =
{θ1, θ2} control the latentGaussianfield and/or the likelihood
for the data.

Additionally, the LGMs are a class generalising the large
number of related variants of additive and generalised mod-
els. If ηN×1 is a column vector representing the linear
predictor, then different effects can be added to it:

ηN×1 = Xβ +
L∑

l=1

fl(ul) (10)

where X is the design matrix for the fixed part (including
the first column of 1 s if intercepts are added to the model),
and β(M+1)×1 is a column vector for the linear effects of X
on η. { f } are unknown functions of U . This formulation can
be seen as any model where each one of the f l(.) terms can
be written in matrix form as Alul . So, expression (10) can
be rewritten as η = AX , with A a sparse design matrix that
links the linear predictors to the latent field.

Whenwe do inference, the aim is to estimate X (M+1+L)×1

= {β, f }, which represents the set of unobserved latent vari-
ables (latent field). If a Gaussian prior is assumed for β

and f , the joint prior distribution of X is Gaussian. This
yields the latent field X in the hierarchical LGM formulation.
The vector of hyperparameters θ contain the non-Gaussian
parameters of the likelihood and the model components.
These parameters commonly include variance, scale or cor-
relation parameters.

In most cases, the latent field in addition to be Gaussian, is
also a Gaussian Markov random field (GMRF, Rue and Held
2005). A GMRF is a multivariate Gaussian random variable
with additional conditional independence properties: x j and
x ′
j are conditionally independent given the remaining ele-

ments if and only if the (i, j) entry of the precision matrix
is 0. Implementation of INLA method use this property to
speed up computation.

3.2 INLA

The main idea of the INLA approach is to approximate
the posteriors of interest: the marginal posteriors for the
latent field, p(Xm | y), and the marginal posteriors for
the hyperparameters, p(θk | y). With the modern formu-
lation (Van Niekerk et al. 2023), the main enhancement is
that the latent field is not augmented with the ‘noisy’ linear
predictors. Then, the joint density of the latent field, hyper-
parameters and the data is derived as:

p(X, θ | y) ∝ p(θ)p(X | θ)

N∏

n=1

p(yn | (AX)n, θ). (11)

Thus, the initial step in approaching the posterior distribu-
tions involves determining the mode and the Hessian at the
mode of p̃(θ | y):

p̃(θ | y) ∝ p(X, θ | y)
pG(X | θ , y)

∣
∣
∣
∣
X=μ(θ)

. (12)

being pG (X | θ , y) the Gaussian approximation to p(X |
θ , y) computed as depicted in Van Niekerk et al. (2023):

X | θ , y ∼ N (μ(θ), Q−1
X (θ)). (13)

The subsequent step involves obtaining the conditional pos-
terior distributions of the elements in X . To achieve this,
it suffices to perform integration θ out from (13) using T
integration points θt and area weights δt defined by some
numerical integration scheme:

p̃(Xm | y) =
∫

pG(Xm | θ , y)dθ

≈
T∑

t=1

pG(Xm | θt , y) p̃(θt | y)δt . (14)

Finally, the recent proposed Variational Bayes correction to
Gaussian means by Niekerk and Rue (2021) is used to effi-
ciently calculate an improvedmean for themarginal posterior
of the latent field. All thismethodology can be used through R
with the R-INLA package. For more details about R-INLA
we refer the reader to Blangiardo and Cameletti (2015), Zuur
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et al. (2017), Wang et al. (2018), Krainski et al. (2018), Mor-
aga (2019), Gómez-Rubio (2020), Van Niekerk et al. (2023),
where practical examples and code guidelines are provided.

4 INLA for fitting logistic-normal regression
with Dirichlet covariance

This part of the paper focuses on presenting our approxima-
tion for fitting CoDa.

4.1 Bayesian logistic-normal regression with
Dirichlet covariance

To define the likelihood we need the logistic-normal distri-
bution and the structure of the variance–covariance matrix
presented in Eq. (7).

Definition 1 y ∈ S
D follows a logistic-normal distribu-

tion with Dirichlet covariance LND(μ,�) if and only if
alr( y) ∼ N (μ,�), and:

�dd = σ 2
d + γ, d = 1, . . . , D − 1,

�dk = γ, d �= k,

where σ 2
d + γ represents the variance of each log-ratio and

γ is the covariance between log-ratios.

From now on, we will refer toND(μ,�) as the multivariate
normal with Dirichlet covariance structure, as depicted in
Definition 1. Let y be a multivariate random variable such
as y ∼ LND(μ,�), which by definition is equivalent to
alr( y) ∼ ND(μ,�). Because of its easy interpretability in
terms of log-ratios with the reference category, we focus on
modelling alr( y) as a ND(μ,�).

Letμ(d)
N×1, a column vector representing the linear predic-

tor for the nth observation in the dth alr -coordinate, and X (d)

with dimension N×(M (d)+1), d = 1, . . . , D−1, the design
matrix, which can be different for each dth alr -coordinate; in
other words, each alr -coordinate can be explained by differ-
ent covariates. Let f (d) be a set of L(d) unknown functions of
U that also can vary depending on the alr -coordinate. For the
sake of simplicity, and without loss of generality, we assume
M (d) = M and L(d) = L , fixing the number of covariates
and the number of functions as the same in each linear pre-
dictor. Finally, we define β

(d)
(M+1)×1 a M + 1-dimensional

column vector that contains the parameters corresponding to
the fixed effects including the intercept.

Then, the logistic-normal Dirichlet model (LNDM) can
be expressed as follows:

alr( y) ∼ ND(μ,�), (15)

μ(d) = Xβ(d) +
L∑

l=1

f (d)
l (ul), (16)

being X = {β(d), f (d); d = 1, . . . , D − 1} the latent field,
θ1 = {σ 2

d , γ : d = 1, . . . , D − 1} the hyperparameters
corresponding to the likelihood, and θ2 the hyperparameters
corresponding to the functions f .

4.2 LNDM in R-INLA

R-INLA has been implemented in the sense that each data
item is linked to one element of the Gaussian field. Although
in this new INLA era, this condition disappears (VanNiekerk
et al. 2023), it is still a challenge to fit models with multi-
variate likelihoods. Some approximations exist for Multi-
nomial likelihood using the Poisson–Laplace trick (Baker
1994), or the Dirichlet likelihood converting the original
Dirichlet observations into Gaussian pseudo-observations
conditioned to the linear predictor (Martínez-Minaya et al.
2023). In our case, the main challenge is to estimate the
variance-covariance matrix of the ND(μ,�) distribution,
in particular, p(γ | y). To do so, we adopt the strategy
of modelling each alr -coordinate as if we were modelling
multiple likelihoods (Krainski et al. 2018), and the covari-
ance hyperparameter is estimated using independent random
effects through the following well-known proposition.

Proposition 1 Let zd , d = 1, . . . , D − 1 be independent
Gaussian randomvariableswith differentmeanμd variances
σ 2
d , and u ∼ N (0, γ ). Then, the multivariate random vari-

able y, defined as:

y1 = z1 + u,

y2 = z2 + u,
... = ...

yD−1 = zD−1 + u,

(17)

follows amultivariateGaussianwithmeanμ and covariance
matrix � whose elements are:

�dd = σ 2
d + γ, d = 1, . . . , D − 1,

�d j = γ, d �= j .

This proposition is simple but powerful, as with independent
Gaussian distributions and a shared random effect between
predictors, p(γ | y) can be easily estimated. So, this struc-
ture fits perfectly in the context of LGMs. Thus, to estimate
LNDM inR-INLA, we only need to add an individual shared
random effect between linear predictors corresponding to the
different alr -coordinates.

4.3 A simulated example

In this section, we exemplify, using a simulated scenario, the
process of fitting CoDa usingR-INLA. To elucidate, we ini-
tiate with a simplistic case featuring solely three categories
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and one covariate. We presuppose that the impact of this
covariate differs for each predictor. Subsequently, we desig-
nate this model as a Type II model. The model structure with
which we operate in this example is:

alr(Y) ∼ ND((μ(1),μ(2)),�), (18)

μ(d) = Xβ(d), (19)

where XN×2 is a matrix with ones in the first column and
values of the covariate simulated from a Uniform distri-
bution between −0.5 and 0.5. Four different parameters
compose the model, and they form the latent field: X =
{β(1)

0 , β
(2)
0 , β

(1)
1 , β

(2)
1 }. Moreover, three different hyperpa-

rameters are included in the model and they form the set
of hyperparameters θ = {σ 2

1 , σ 2
2 , γ }.

4.3.1 Data simulation

In this part of the manuscript, we present an example of how
simulation can be conducted. First at all, we define the val-
ues of the hyperparameters and we compute the correlation
matrix in �. N = 1000, D = 3, σ 2

1 = 0.5, σ 2
2 = 0.4 and

γ = 0.1 are the choosen values for the simulation.
R> D <- 3
R> N <- 1000
R> sigma2 <- c(0.5, 0.4)
R> cov_param <- 0.1
R> sigma_diag <- sqrt(sigma2 + cov_param)

Correlation matrix can also be easily computed. This
matrix is formed for ((D − 1)2 − (D − 1))/2 values out
of the diagonal.

R> rho <- diag(1/sigma_diag)
diag(1/sigma_diag)

R> diag(rho) <- 1

Next step is simulating the covariate.

R> x = runif(N)-0.5

Subsequently, with fixed betas, β
(1)
0 = −1, β

(1)
1 = 1,

β
(2)
0 = −1, β

(2)
1 = 2, we construct the values for the two

linear predictors.
R> betas = matrix(c(-1, 1,

-1, 2), nrow = D-1, byrow = TRUE)
R> X <- data.frame(1, x)
R> lin.pred <- X

Simulating fromamultivariateGaussianwith the structure
previously constructed is the next step. Andwith it, we obtain
the alr -coordinates.

R> Sigma <- matrix(sigma_diag, ncol = 1)
matrix(sigma_diag, nrow = 1)

R> Sigma <- Sigma*rho

R> lin.pred
apply(., 1, function(z)

MASS::mvrnorm( n = 1,
mu = z,
Sigma = Sigma))

t(.)-> alry

Finally, we move to the simplex assuming the third cat-
egory the reference one. the output is a matrix with the
response variable summing their rows up to one. We create a
data.frame in order to keep the CoDa, the alr -coordinates
and the covariate x. In Fig. 1, CoDa generated and alr -
coordinates have been depicted.

R> y.simplex <- compositions::alrInv(alry)
R> data <- data.frame(alry, y.simplex, x)

4.3.2 Preparing data for being introduced in R-INLA

In this section, the most labor-intensive step is preparing the
database to be input into R-INLA. To do this, we make use
of structures like inla.stack. In this structure, we need
to include the multiresponse variable, where we incorporate
different alr -coordinates. Additionally, we input the covari-
ates, indicating which alr -coordinate they affect, along with
an index that assist us in introducing the shared random effect
for estimating the hyperparameter γ . So, we start defining
such index.

R> id.z <- 1:dim(alry)[1]

Posteriorly, we extent the dataset for constructing the
multivariate response which is a matrix with dimension
(N × (D − 1)) × (D − 1), being the first column formed for
the first alr -coordinate en N first rows, and NAs in the rest;
the second column formed by the second alr -coordinate in
the positions (N + 1):(2N), and NAs in the rest, and so on.

R> data_ext <- data
tidyr::pivot_longer(., cols = all_of

(paste0("alry.", 1:(D-1))),
names_to = "y.names",
values_to = "y.resp")

.[order(ordered(.$y.names)),]
R> data_ext$y.names <- ordered(data_

ext$y.names)

R> names_y <- paste0("alry.", 1:(D-1))

R> 1:length(names_y)
lapply(., function(i){

data_ext
dplyr::filter(y.names == names_y

[i]) -> data_comp_i
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Fig. 1 Top: CoDa simulated represented in the simplex. Bottom: alr -coordiantes in terms of the generated covariate x

#Response
y_alr <- matrix(ncol = names_y

length(.), nrow = dim(data_comp
_i)[1])

y_alr[, i] <- data_comp_i$y.resp
}) -> y.resp

R> 1:length(names_y)
lapply(., function(i){

y_aux <- data_ext
dplyr::select(y.resp, y.names)
dplyr::filter(y.names == names

_y[i])
dplyr::select(y.resp)
as.matrix(.)

aux_vec <- rep(NA, (D-1))
aux_vec[i] <- 1
kronecker(aux_vec, y_aux)

}) -> y_list

R> y_tot <- do.call(cbind, y_list)

R> y_tot

R> [,1] [,2]
R> [1,] -1.580 NA
R> [2,] -1.345 NA
R> [3,] -1.735 NA
R> [4,] -1.012 NA
R> [5,] -0.584 NA
R> [6,] -0.041 NA

In the model, covariates are included as random effects
with big variance. So, we need the values of the covari-
ates, and also, an index indicating to which alr -coordinate it
belongs.

R> variables <- c("intercept", data
dplyr::select(starts_

with("x"))
colnames(.))

R> id.names <- paste0("id.", variables)
R> id.variables <- rep(data_ext$y.names

as.numeric(.),

123



116 Page 8 of 22 Statistics and Computing (2024) 34 :116

length(variables))
matrix(., ncol = length(variables),

byrow = FALSE)
R> colnames(id.variables) <- id.names

Finally, we create the inla.stack for estimation, and
we are ready for fitting the model.

R> stk.est <- inla.stack(data =
list(resp = y_tot),
A = list(1),
effects = list(cbind(data_ext
dplyr::select(starts_with("x")),

data_ext
dplyr::select(starts_with("id.z")),
id.variables,
intercept = 1)),
tag = ’est’)

R> colnames(id.variables) <- id.names

4.3.3 Fitting the model

For fitting the model, it is required to define priors for the
parameters and hyperparameters. Prior considered for the
parameters are the default ones used in R-INLA. How-
ever, PC-priors (Simpson et al. 2017) are considered for the
standard deviations and the root square of the covariance
parameter γ , in particular, PC-prior(1, 0.01) were used for
σ1, σ2 and

√
γ . So, the required formula to be introduced in

R-INLA was:

R> list_prior <- rep(list(list(prior =
"pc.prec",
param = c(1, 0.01))), D-1)

R> formula.typeII <- resp ˜ -1 +
f(id.intercept, intercept,

model = "iid",
initial = log(1/1000),
fixed = TRUE) +

f(id.x, x,
model = "iid",
initial = log(1/1000),
fixed = TRUE) +

f(id.z,
model = "iid",
hyper = list(prec = list(prior =

"pc.prec",
param = c(1, 0.01))),

constr = TRUE)

and the call to R-INLA:

model.typeII <- inla(formula.typeII,

family = rep("gaussian", D-1),
data = inla.stack.data
(stk.est),
control.compute = list(config = TRUE),
control.predictor = list(A = inla.stack
.A(stk.est),

compute = TRUE),
control.family = list_prior,
verbose = FALSE)

In Figs. 2 and 3, marginal posterior distributions jointly
with the simulated value are depicted showing that we were
able to recover the original value.

5 Spatial LNDM andmodel selection

Once the LNDM is defined, a particular focus lies on how
more intricate structures within the linear predictor can
be accommodated within the R-INLA framework. Further-
more, another issue pertains to model selection. Hence, this
section is dedicated to spatial LNDMs and the utilization
of measures such as Deviance Information Criteria (DIC),
Watanabe Akaike information criterion (WAIC), and LCPO
for model selection.

5.1 Spatial LNDMs

Of particular interest are the LNDMs in the spatial context.
The analysis of the spatial process refers to the analysis of
data collected in space. Space can be indexed over a discrete
domain or a continuous one. So, spatial statistics is tradition-
ally divided into three main areas depending on the type of
problem and data: lattice data, Geostatistics and point pat-
terns. For a review of models of different types of spatial
data, see Haining and Haining (2003) and Cressie and Wikle
(2015).When a spatial effect has to be included in the model,
it is common to formulate mixed-effects regression models
in which the linear predictor is made up of a trend plus a
spatial variation, the spatial effect being modelled with cor-
relation random effects and matching perfectly the structure
presented in Eq. (16).

R-INLA provides many options when implementing
Gaussian latent spatial effects (Gómez-Rubio 2020), includ-
ing intrinsic conditional autoregressive models (iCAR) or
conditional autoregressive models (CAR) for areal data
(Besag et al. 1991) or spatial effect with Matérn covariance
function for continuous processes (Lindgren et al. 2011). In
this manuscript, we focus in the last, but it can be easily
applicable to other latent Gaussian effects.

The Matérn covariance function is one of the most widely
used inGeostatistics due to its flexibility. Although initially it
could not be directly incorporated into theR-INLA structure,
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Fig. 2 Marginals posterior distributions for the fixed effects. Vertical lines represent the real values

Fig. 3 Marginals posterior distributions for the hyperparameters. Vertical lines represent the real values
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in Lindgren et al. (2011) introduced a solution through the
SPDE module, approximating the spatial latent effect with a
Matérn function as a solution to a stochastic partial differen-
tial equation using the finite element method (FEM). Since
then, this methodology has been applied in numerous scien-
tific articles across different areas (Martínez-Minaya et al.
2018).

These effects can be easily included in the LNDM. As
we are adopting a multiple likelihood modelling strategy, we
make use of the features that R-INLA provides for fitting
multiple likelihoods in a jointly way. The copy command
is intended share random effects, i.e., to use the same latent
effect in different linear predictors. It also, allows to share
exactly the same latent effect but adding a proportionality
hyperparmeter. The replicate feature provides a way to
add different random effects per linear predictor sharing the
same hyperparameters. For details about its implementation,
we refer the reader to thewebsite https://www.r-inla.org/ and
books by Krainski et al. (2018) and Gómez-Rubio (2020).

Applying these principles and emphasizing both fixed
effects and continuous spatial random effects, the examples
presented in this paper follow a systematic framework that
leads to the development of eight distinct model types. Then,
the model structure employed for the remainder of the paper
is as follows:

alr(Y) ∼ ND((μ(1), . . . ,μ(d)),�), (20)

μ(d) = Xβ(d) + ω(d), d = 1, . . . , D − 1, (21)

μ(d) = (μ
(d)
1 , . . . , μ

(d)
N ) being the different linear predic-

tor for the nth observation in the dth alr -coordinate, and
XN×(M+1) the design matrix, containing 1s in the first col-
umn if intercepts are considered in themodel.ω(d) represents
the spatial random effect withMatérn covariance for each dth
alr -coordinate, ω(d) ∼ N (0, Q−1(σω, φ)), depending on
the standard deviation of the spatial effect σω and its range
φ. β

(d)
(M+1)×1 is the parameter vector corresponding to the

fixed effects. The latent field is composed of the parameters
corresponding to the fixed effects and the realisations of the
random field.

X = {β(d),ω(d) : d = 1, . . . , (D − 1)}.

In contrast, θ1 = {σ 2
d , γ : d = 1, . . . , (D − 1)} are

the hyperparameters corresponding to the likelihood, and
θ2 = {σω, φ} are the hyperparameters corresponding to the
spatial random effect. Together they form the field of hyper-
parameters. Gaussian priors are usually assigned for the fixed
effects and PC-priors for the hyperparameters (Simpson et al.
2017).

Based on themodel structure defined in Eq. (21),R-INLA
offers flexibility by allowing us to introduce fixed effects and
random effects in different ways with the features previously

explained. For the fixed effects, two different assumptions
between parameters of the different alr -coordinates are plau-
sible. The first is under the assumption that the effect of the
m-covariate is the same for the different alr -coordinates,
i.e. they are sharing the same parameter for fixed effects:
β

(d)
m = β

(k)
m ,d �= k andd, k = 1, . . . , (D−1),m = 0, . . . M .

We denote it by βm . For the second, we consider that the
effect of the m-covariate could be different for each alr -
coordinate. Note that this one is more general, as it includes
the case where the effects are equal and also the case where
we do not have the same covariates in each linear predictor.
We denote them by β

(d)
m .

With regard to the randomeffects,wedistinguish three dif-
ferent cases. The first one considers that the spatial random
field is the same for all the linear predictors, i.e. ω(d) = ω(k),
d �= k and d, k = 1, . . . , (D − 1). They share exactly the
same spatial term. So, we denote it byω as it is not dependent
on the alr -coordinates predictor. The second case is under
the assumption that the spatial fields are proportional, in other
words, ω(d) = α(d)ω(k), d �= k and d, k = 1, . . . , (D − 1).
We denoted it by ω(∗d). Finally, the third case states that the
realisation of the spatial random effect is different for each
linear predictor. However, they share the same hyperparam-
eters, i.e. ω(d) �= ω(k), d �= k, and d, k = 1, . . . , (D − 1),
where ω(d) ∼ N (0, Q−1(σω, φ)). We denote it by ω(d).

By combining fixed and random terms, we reach eight
different structures for the linear predictors (See Table 1 for
details about the latent field and hyperparameters):

• Type I: share the same parameters for fixed effects, and
do not include spatial random effects.

• Type II: have different parameters for fixed effects, and
do not include spatial random effects.

• Type III: share the same parameters for fixed effects, and
share the same spatial effect.

• Type IV: have different parameters for fixed effects, and
share the same spatial effect.

• Type V: share the same parameters for fixed effects, and
the spatial effects between linear predictors are propor-
tional. Realisations of the spatial field are the same, but
a proportionality hyperparameter is added in two of the
three linear predictors.

• Type VI: have different parameters for fixed effects, and
the spatial effects between linear predictors are propor-
tional. Realisations of the spatial field are the same, but
a proportionality hyperparameter is added in two of the
three linear predictors.

• Type VII: share the same parameters for fixed effects,
and different realisations of the spatial effect for each
linear predictor. Although realisations of random effects
are different, they share the same hyperparameters.

• Type VIII: have different parameters for fixed effects,
and different realisations of the spatial effect for each
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linear predictor. Although realisations of random effects
are different, they share the same hyperparameters.

5.2 Model selection and validation

Regarding themodel selection process, sometimes there are a
large number ofmodels resulting fromall the possible combi-
nations of covariates, and combining them with the possible
latent effects that can be incorporated increases the num-
ber of possibilities exponentially. R-INLA has proved to be
fast enough to compute huge numbers of models as well as
different measures to make the model selection process fea-
sible. Such measures include Deviance Information Criteria
(Spiegelhalter et al. 2002, DIC), defined as a hierarchical
modelling generalisation of the Akaike information criterion
(AIC); Watanabe Akaike information criterion (Watanabe
and Opper 2010; Gelman et al. 2014, WAIC), which is the
sum of two components: one quantifying the model fit and
the other evaluating the model complexity; or the cross-
validationmeasure conditional predictive ordinate (CPO) for
evaluating the predictive capacity and its log-score (Pettit
1990; Roos and Held 2011, LCPO). The models with the
lowest values of DIC, WAIC or LCPO have preference over
the rest.

However, R-INLA is programmed to handle univariate
likelihoods, and the variability added with the inclusion of
the new random effect is not being considered when the
calculation of the deviance is computed. This affects the
computation of the DIC and WAIC. So, an additional pro-
cess is needed to calculate DIC andWAICwhen the response
variable follows a multivariate normal distribution. This pro-
cess must be able to incorporate the elements that are off the
diagonal of the variance–covariance matrix. To achieve this,
a post-processing of the model is performed for obtaining
samples of the jointly posterior distributions using the feature
inla.posterior.sample function, and the likelihood
of the multivariate normal distribution is calculated. The
remaining calculations for DIC are done following the for-
mula defined inSpiegelhalter et al. (2002),meanwhile,WAIC
is computed following the formula in Watanabe and Opper
(2010). These two ways have been implemented in two dif-
ferent functions in R. The functions are called DIC.mult
and WAIC.mult and are available in the repository https://
github.com/jmartinez-minaya/INLAcomp.

The same does not apply to the CPO, as it is based on the
posterior predictive distribution. In Appendix A, there is a
proof of why the CPO is not affected by the approach we
propose here. However, we believe that the CPO cannot be
calculated in the same way when dealing with CoDa, and
therefore, we propose a new definition.

5.2.1 CPO

In the context of CoDa cross-validation process, exclud-
ing a category from a CoDa point may not make sense, as
we know that CoDa have a constraint: their sum must be
1. This implies that the remaining categories provide valu-
able information about the category we are excluding. One
might think that working in the log-ratio coordinates could
alleviate this issue, but that is not the case. The reference cat-
egory is present in all the log-ratios, and thus we encounter
a similar situation. At that point, the remaining log-ratio
coordinates provide information about the category we have
removed during cross-validation. In this manner, the concept
of friendship emerges. Consequently, we can assert that the
first alr -coordinate of individual n is friend of the second
alr -coordinate of individual n, and is thereby contributing
information. Hence, in order to conduct cross-validation for
individual n and alr -coordinate d, it is necessary to exclude
the values from all alr -coordinates pertaining to that indi-
vidual. Accordingly, we can define the CPO for the nth data
point and dth alr -coordinate as:

CPO(d)
n =

∫

p(alr( y)(d)
n | X, θ)

p(X, θ | alr( y)•−n) dXdθ , (22)

being alr( y)(d)
n the observed vector for the n-data point and

the d alr -coordinate, and alr( y)•−n represents the observed
data in alr -coordinates (N − 1 data points with D − 1 com-
ponents for data point) excluding the n data point with its
corresponding D − 1 alr -coordinates. We then easily com-
pute the log-score (Gneiting and Raftery 2007) as:

LCPO = − 1

N · (D − 1)

D−1∑

d=1

N∑

n=1

log
(
CPO(d)

n

)
. (23)

6 Continuos spatial data: a simulation study

The goals of this simulation are twofold. Firstly, we seek to
assess the reliability of model selection criteria previously
presented. As we have pointed out, these metrics play a cru-
cial role in identifying the model that best represents the
underlying process. Secondly, we aim to demonstrate capa-
bility of R-INLA to accurately recover the initial parameters.

6.1 Simulated data

We conducted a simulation of a spatial LNDM Type VIII
renowned for its high flexibility as the fixed effects vary by
linear predictor, and spatial effects realizations differ accord-
ingly. The simulation involved one covariate, simulated from
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Table 1 Different structures included in the model in an additive way with their corresponding latent field and the hyperparameters to be estimated

Models Predictor Latent field (X) Hyperparameters (θ)

Type I Xβ {β0, . . . , βM } {σ 2
d , γ }

Type II Xβ(d) {β(d)
0 , . . . , β

(d)
M } {σ 2

d , γ }
Type III Xβ + ω {β0, . . . , βM , ω1, . . . , ωN } {σ 2

d , γ, σω, φ}
Type IV Xβ(d) + ω {β(d)

0 , . . . , β
(d)
M , ω1, . . . , ωN } {σ 2

d , γ, σω, φ}
Type V Xβ + ω∗(d) {β0, . . . , βM , ω1, . . . , ωN } {σ 2

d , γ, σω, φ, α(1), . . . , α(D−2)}
Type VI Xβ(d) + ω∗(d) {β(d)

0 , . . . , β
(d)
M , ω1, . . . , ωN } {σ 2

d , γ, σω, φ, α(1), . . . , α(D−2)}
Type VII Xβ + ω(d) {β0, . . . , βM , ω

(d)
1 , . . . , ω

(d)
N } {σ 2

d , γ, σω, φ}
Type VIII Xβ(d) + ω(d) {β(d)

0 , . . . , β
(d)
M , ω

(d)
1 , . . . , ω

(d)
N } {σ 2

d , γ, σω, φ}

Fig. 4 CoDa simulated. Proportion per category

a Uniform distribution between −0.5 and 0.5; two different
realizations of a Matérn field in the square space [0,10]×
[0,10] with range φ = 4 and σω = 1 (See Fig. 6); one
thousand observations (N = 1000) and three dimensions
(D = 3). Given that D = 3, applying the alr transformation
yields two linear predictors. In the context of Type VIII and
considering we simulated only one covariate, we are tasked
with estimating two parameters, denoted as β

(1)
1 and β

(2)
1 .

These parameters were pre-set to specific values: −2.27 and
−2.3 respectively. Turning our attention to the likelihood
hyperparameters, we encounter two variance hyperparam-
eters σ 2

1 and σ 2
2 and one covariance parameter γ . For this

simulation, these hyperparameters were fixed at predeter-
mined values 0.32, 0.59 and 0.1. Resulting data simulation
is depicted in Fig. 4 and the alr -coordinates using the third

category as reference are displayed in Fig. 5. We selected the
third category as reference as it was the one whose logarithm
had the lowest variance.

6.2 Model selection

The simulation originates from the Type VIII model, and
we sought to fit alternative model types (refer to Table 1).
Subsequently, we computed the DIC, WAIC, and LCPO for
each model. Results are depicted in Table 2. Upon analysis,
it is evident that, in all three cases, the Type VIII model
consistently exhibits the best fit to our simulated data. This
conclusion is supported by consistently smaller values across
all three evaluation metrics.
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Fig. 5 Additive log-ratio
transformation of CoDa using
the third category as the
reference one

Table 2 LNDMs with their corresponding DIC, WAIC and LCPO

Models Predictor DIC WAIC LCPO

Type I Xβ 6822.373 6822.132 1.704

Type II Xβ(d) 6265.526 6265.444 1.571

Type III Xβ + ω 6221.710 6206.081 1.546

Type IV Xβ(d) + ω 5585.697 5569.343 1.386

Type V Xβ + ω∗(d) 6068.076 6072.944 1.517

Type VI Xβ(d) + ω∗(d) 5397.224 5405.861 1.303

Type VII Xβ + ω(d) 5772.775 5782.855 1.446

Type VIII Xβ(d) + ω(d) 4694.686 4711.903 1.176

In bold, the best model, whose DIC, WAIC, and LCPO values are the
lowest

6.3 Parameters recovery

As previously discussed, the optimal model is the Type VIII
model. This model comprises: 2 parameters corresponding
to fixed effects, β

(1)
1 and β

(2)
1 , and the realizations of the

spatial random effects which form the latent Gaussian field
(X); 3 hyperparameters related to likelihood σ 2

1 , σ 2
2 and γ ,

and 2 hyperparameters associatedwith spatial randomeffects
which forms the set of hyperparameters (θ).

The 95% credible interval of the parameter β
(1)
1 is

[2.103, 2.4]with a median value of 2.251. In contrast, for the
parameterβ(2)

1 , the 95%credible interval is [−2.469,−2.086]
with a median value of −2.277. Comparing these intervals
with the true parameter values, −2.27 and 2.3 respectively,
we conclude that estimation is accurate enough. A similar
pattern emerges for the latent fields with Matérn covariance
matrices. In Fig. 6, we depict the original spatial latent fields

alongside the medians and estimated 95% credible intervals.
Once again, we observe a reliable estimation. Finally, we
examine the behavior of the hyperparameters. In Fig. 7, the
posterior distributions of the hyperparameters are illustrated
jointly with the true values. Once more, the estimations align
well with the actual values. From these findings, we can
conclude that the method is proficient in recovering the true
parameter values effectively.

7 The case of Arabidopsis thaliana

This section is devoted to showing an application of contin-
uous spatial LNDMs in a real setting.

7.1 The data and themodel

We worked with a collection of 301 accessions of the annual
plant Arabidopsis thaliana on the Iberian Peninsula. For
each accession, the probability of belonging to each of the
4 genetic clusters (GC) inferred in Martínez-Minaya et al.
(2019), namely, GC1, GC2, GC3 and GC4, were available
(Fig. 8), their sum total being 1. We were interested in
estimating the probability of membership, which in this par-
ticular context can be thought of as the habitat suitability
for each genetic cluster. To do so, we employed LNDMs
including climate covariates and spatial terms in the linear
predictor. In particular, two bioclimatic variables were used
to define the climatic part: annual mean temperature (BIO1)
and annual precipitation (BIO12). The complete dataset was
downloaded from the repository Martínez-Minaya et al.
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Fig. 6 Real values for the latent fields withMatérn covariancematrix used in the simulation.Median and 95% credible intervals for the the estimated
field

(2019). Climate covariates were scaled before conducting
the analysis.

Asmentioned, four categorieswere employed in this prob-
lem:GC1,GC2,GC3 andGC4. So,we dealtwith proportions
in S4. To produce the LNDM, we selected GC4 as the refer-
ence category because it was the onewhose logarithmhad the
lowest variance. We were thus dealing with a three dimen-
sional ND(μ,�). The transformed data is shown in Fig. 9.

7.2 Model selection, model fitting and prediction

Model selection was conducted including the intercept and
also the two climatic covariates combining them with the
spatial effects for the different structures presented inTable 1.
8 models were fitted and the DIC, WAIC and LCPO were
computed (Table 3).

In view of the results in the model selection, and based
on DIC and WAIC, we observed that the one with type VIII
structure seemed to be the best at representing the process of

interest. On the contrary, the LCPO indicates that the best
model features a Type VI structure. However, as the dif-
ference is just 0.019, we proceeded with the model Type
VIII for making the computation of the posterior distribu-
tions and also for making the predictions. Then, R-INLA
allowed us to compute the posterior distribution for the fixed
effects (Fig. 10) in each alr -coordinate. As we have argued
in favour of alr , it is easy to interpret in terms of ratios.

If we focus on the covariate BI O1 (annual mean temper-
ature), we observed that in presence of BI O12, it is relevant
with a probability of 0.972 for the coefficient to be lower
than 0 in the the first alr -coordinate, 0.99 for the second
one, and 0.99 for the third. Therefore, in all three cases, we
shall presume the covariate to be relevant and proceed to
interpret the coefficients (Fig. 10). We observed that the ratio
between the probability of belonging to GC1 and the prob-
ability of belonging to GC4 reduces by approximately 20%
when the scaled covariate annualmean temperature increased
by one unit. For the case of the ratio between the probability
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Fig. 7 Marginals posterior distributions for the hyperparameters. Vertical lines represent the real values

Fig. 8 Probability of membership of GC1, GC2, GC3 and GC4 on the Iberian Peninsula

of belonging to GC2 and GC4, it decreased by 32% when
the scaled covariate annual mean temperature increased by
one unit. Finally, the ratio between the probability of belong-
ing to GC3 and GC4 decreased by 50% when the covariate
annual mean temperature increased by one unit.

If we focus on the covariate present in the model BI O12
(annual precipitation), we noted that in presence of BI O1,
it is relevant with a probability of 0.72 for the coefficient
to be lower than 0 in the the first alr -coordinate. Not hap-
pen the same for the second and third alr -coordinate, as the
probability to be lower than 0 are 0.43 and 0.46 respectively.

As a result, we assume the covariate’s relevance in the first
alr -coordinate and we proceed to interpret its coefficient
(Fig. 10). The ratio between the probability of belonging
to GC1 and the probability of belonging to GC4 decreases
by approximately 6% when the scaled covariate BI O12
increased by one unit and BI O1 remains constant.

With the method implemented here, we are able to make
predictions not only on the alr -coordinates scale (Fig. 11),
but also on the original scale (Fig. 12). If we focus on Fig. 11,
we observe how in the north-west of Spain the ratio between
the probability of belonging to GC1 and GC4 reached 12,
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Fig. 9 Additive log-ratio transformation of the proportion of GC1, GC2, GC3 and GC4 on the Iberian Peninsula, using GC4 as the reference
category

Table 3 LNDMs with their corresponding DIC, WAIC and LCPO

Models Predictor DIC WAIC LCPO

Type I Xβ 3353.890 3353.786 1.894

Type II Xβ(d) 3294.560 3295.630 1.867

Type III Xβ + ω 3202.248 3208.578 1.786

Type IV Xβ(d) + ω 3146.029 3154.323 1.758

Type V Xβ + ω∗(d) 3060.331 3060.484 1.470

Type VI Xβ(d) + ω∗(d) 3004.190 3005.256 1.383

Type VII Xβ + ω(d) 2752.965 2759.735 1.416

Type VIII Xβ(d) + ω(d) 2741.096 2750.654 1.402

meaning that at those points the probability of belonging to
GC1 is 12 times greater than the probability of belonging
to GC4. Something similar happened in the north-east of

the Iberian Peninsula, where the probability of belonging to
GC2 is 12 times greater than the probability of belonging
to GC4. The case of the third alr -coordinate seems a bit
different, and the greatest difference between the probability
of belonging to GC3 and GC4 is found in the centre of the
Iberian Peninsula.

Finally, it is accessible to compute marginal posterior
distribution of the hyperparameters and, consequently, the
covariance parameter between the alr -coordinates (Fig. 13).

8 Conclusions and future work

CoDa are becoming more and more common, especially in
the context of genomics, and require increasingly powerful
computational tools to be analysed. Thus, we believe that
finding a way to include a likelihood that can deal with CoDa

Fig. 10 Marginal posterior distribution for the parameters corresponding to the fixed effects or each of the alr -coordinates: BI O2 and BI O12
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Fig. 11 Mean and standard deviation of the posterior predictive distribution for the alr -coordinates

in the context of LGMs can facilitate inference and predic-
tions. That is why in this manuscript, we have introduced a
different way to make inference on Bayesian CoDa analysis.
By doing so, we attempt to include it in the context of LGMs,
therebymaking the range of possibilities thatR-INLA offers
available to the logistic-normal distribution with Dirichlet
covariance likelihood.

The main idea underlying the proposed method is to
approximate themultivariate likelihoodswith univariate ones
sharing an independent random effect that can be fitted by
R-INLA, in particular, Gaussian likelihoods. This idea is
similar to the one proposed for modellingMultinomial likeli-
hood inR-INLA, where using the Poisson trick (Baker 1994)
to reparameterise the model we need to fit independent Pois-
son observations, or the one proposed in (Martínez-Minaya
et al. 2023) to approximate Dirichlet likelihoods using con-
ditionally independent Gaussians. Simpson et al. (2016) also
used a similar strategy, constructing a Poisson approximation
to the true log-Gaussian Cox process likelihood and making
it possible to carry out inference on a regular lattice over

the observation window by counting the number of points
in each cell. But this work does not intend to be a substi-
tute for the dirinla package (Martínez-Minaya et al. 2023)
or for the Bayesian ilr approach (Mota-Bertran et al. 2022):
it is simply a viable alternative when dealing with CoDa that
allows the estimation and prediction of very complex models
in the context of CoDa. Furthermore, functions are provided
for the computation of DIC andWAIC within the framework
of R-INLA, accompanied by the definition of the CPO for
CoDa.

Wehave reported an example in thefieldofEcology, show-
ing the potential of R-INLAwhen continuous spatial effects
can be added in the linear predictor. We have exploited the
options that R-INLA has available using tools in the con-
text of multiple likelihoods, such as copy or replicate
(Gómez-Rubio 2020). With them, our aim was to show prac-
titioners the number of models that can be fitted in this
context. Although here we have focused mainly on spatial
processes, this tool can be easily applied in other contexts:
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Fig. 12 Mean and standard deviation of the posterior predictive distribution for the probability of belonging to GC1, GC2, GC3 and GC4

Fig. 13 Marginal posterior distribution for the hyperparameters of the model
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temporal, spatiotemporal, etc., as long as we exprees the
model in the context of LGMs.

Supplementary information

Code: The functions are stored in a R-package call INLA-
Comp, it is onhttps://github.com/jmartinez-minaya/INLAcomp.
The results shown in the paper are stored in https://jmartinez-
minaya.github.io/supplementary.html.
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Appendix A: CPO computation in R-INLA

To verify that the CPO is not affected when fitting the model,
it is enough to simplify the problem to the calculation of
the posterior predictive distribution for the following two
models:

MODEL I:

yi ∼ N (μi , σ
2
y ), i = 1, . . . N ,

μi = β0,

β0 ∼ N (0, σ 2
0 ), (A1)

MODEL II:

yi ∼ N (μi , σ
2
ε ),

μi = β0 + ωi ,

β0 ∼ N (0, σ 2
0 )

ωi ∼ N (0, σ 2
ω). (A2)

Let assume for simplicity that σ 2
y , σ

2
ε , σ

2
ω and σ 2

0 are fixed
numbers. Both models are equivalent, and σ 2

ε + σ 2
ω = σ 2

y .
However, as we have pointed out, in R-INLA, an additional
process is required for computing DIC andWAIC. Neverthe-
less, it is not necessary for CPO, let’s see why.

Proposition 2 Let yi , i = 1, . . . , N independent realisations
of a Gaussian distribution with mean μi and variance σ 2

y .
The expressions (A1) and (A2) reflect two different ways of
representing the process, although both models are equiv-
alent. Thus, the CPO of the Model I and Model II are the
same.

Proof For proving that both CPOs are equal, it is enough to
show that the posterior predictive distribution of both models
is the same.

We start with a general linear mixed model following the
expression in Eq. (10)

y = Xβ + Aωω + ε, (A3)

being X and Aω design matrices, β, a vector of fixed effects
which follows amultivariate Gaussian prior distribution with
mean m and covariance matrix M, and ω a vector of random
effects which follows a multivariate Gaussian prior distribu-
tion with mean 0 and covariance matrix G. The covariance
matrices for ω and ε are assumed to be non singular, and
positive definite, and ω and ε are independent.

Following Fahrmeir et al. (2013), if the covariance struc-
tures G and R are known, and C = (X,U), B =(
M−1 0
0 G−1

)

, m̃ =
(
M−1m

0

)

, then the posterior dis-

tribution is multivariate Gaussian with the the following
expectation and Covariance matrix.

E((β, γ ) | y) = (C ′R−1C + B)−1

(
m̃ + C ′R−1 y

)
(A4)

Cov((β, γ ) | y) =
(
C ′R−1C + B

)−1
(A5)

Model I:
For model I, depicted in Eq. (A1), R is a diagonal matrix

in R
n×n whose elements in the diagonal are σ 2

y . As we do
not have random effects C = X , which is a columnmatrix in
R

N×1 whose elements are 1. m̃ is a column matrix in R
1×1

whose elements are 0, and finally B = M−1 inR1×1, whose
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element is 1
σ 2
0
. Then, β0 | y ∼ N (μβ0 , σ

2
β0

), being:

μβ0 = E(β0 | y) = 1
N
σ 2
y

+ 1
σ 2
0

N y
σ 2
y

(A6)

σ 2
β0

= Var(β0 | y) = 1
N
σ 2
y

+ 1
σ 2
0

(A7)

The posterior predictive distribution for a new observation y′

p
(
y′ | y) =

∫

p
(
y′ | β0

) · p (β0 | y) dβ0 (A8)

is Gaussian with mean μβ0 and variance σ 2
β0

+ σ 2
y .

Model II:
Regarding model II, depicted in Eq. (A2), R is also diag-

onal matrix inRN×N whose elements in the diagonal are σ 2
ε .

V , again is a column matrix in RN×1 whose elements are 1,
andU is an identity matrix inRN×1. Then C = (V ,U). m̃ is
a column matrix in R(N+1)×1 whose elements are 0. Finally
B is a diagonal matrix inR(N+1)×(N+1), whose first element
of the diagonal is 1

σ 2
0
and the rest are 1

σ 2
ω
.

Computing the joint posterior distribution for β0,ω, we
obtain that it follows a multivariate Gaussian with:

E(β0,ω | y)

= Cov(β0,ω | y)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
σ 2

ε

1
σ 2

ε

1
σ 2

ε
. . . 1

σ 2
ε

1
σ 2

ε
0 0 . . . 0

0 1
σ 2

ε
0 . . . 0

...
...

...
...

...

0 0 0 . . . 1
σ 2

ε

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

y (A9)

Cov(β0,ω | y)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

N
σ 2

ε
+ 1

σ 2
0

1
σ 2

ε

1
σ 2

ε
. . . 1

σ 2
ε

1
σ 2

ε

1
σ 2

ε
+ 1

σ 2
ω

0 . . . 0
...

...
...

...
...

1
σ 2

ε
0 0 . . . 1

σ 2
ε

+ 1
σ 2

ω

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−1

(A10)

The posterior predictive distribution for a new observation
y′ with mean μ′ can be computed as:

p
(
y′ | y) =

∫

p
(
y′ | μ′) · p (

μ′ | y) dμ′, (A11)

being p(μ′ | y) = ∫
p

(
μ′ | β0, σ

2
ω

)·p (β0 | y) dβ0. Clearly,
it is Gaussian with mean μβ0 and variance σ 2

β0
+ σ 2

ω. Note

that σ 2
β0

is the variance of the posterior marginal of β0.
This corresponds to the first element of Cov(β0,ω | y),
which is 1

N
σ2ω

+ 1
σ20

. Something similar happens with μβ0 , the

first element of the resulting matrix E(β0,ω | y), which is
1

N
σ2ε +σ2ω

+ 1
σ20

N y
σ 2

ε +σ 2
ω

Finally, and coming back to Eq. (A11), we obtain that the
posterior predictive distribution of y′ | y is Gaussian, with
mean μβ0 and variance σ 2

β0
+ σ 2

ω + σ 2
ε .

As a consequence, the twomodels have the same posterior
predictive distributions, and then CPO is equal for both. 
�
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