
Citation: Uguina, A.R.; Gomez, J.F.;

Panadero, J.; Martínez-Gavara, A.;

Juan, A.A. A Learnheuristic

Algorithm Based on Thompson

Sampling for the Heterogeneous and

Dynamic Team Orienteering Problem.

Mathematics 2024, 12, 1758. https://

doi.org/10.3390/math12111758

Academic Editor: Andrea Scozzari

Received: 2 May 2024

Revised: 25 May 2024

Accepted: 4 June 2024

Published: 5 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Learnheuristic Algorithm Based on Thompson Sampling for
the Heterogeneous and Dynamic Team Orienteering Problem
Antonio R. Uguina 1 , Juan F. Gomez 1 , Javier Panadero 2 , Anna Martínez-Gavara 3 and Angel A. Juan 1,*

1 Research Center on Production Management and Engineering, Universitat Politècnica de València,
03801 Alcoy, Spain

2 Department of Computer Architecture & Operating Systems, Universitat Autònoma de Barcelona,
08193 Bellaterra, Spain

3 Statistics and Operational Research Department, Universitat de València, Doctor Moliner, 50, Burjassot,
46100 València, Spain; ana.martinez-gavara@uv.es

* Correspondence: ajuanp@upv.es

Abstract: The team orienteering problem (TOP) is a well-studied optimization challenge in the field
of Operations Research, where multiple vehicles aim to maximize the total collected rewards within a
given time limit by visiting a subset of nodes in a network. With the goal of including dynamic and
uncertain conditions inherent in real-world transportation scenarios, we introduce a novel dynamic
variant of the TOP that considers real-time changes in environmental conditions affecting reward
acquisition at each node. Specifically, we model the dynamic nature of environmental factors—such
as traffic congestion, weather conditions, and battery level of each vehicle—to reflect their impact on
the probability of obtaining the reward when visiting each type of node in a heterogeneous network.
To address this problem, a learnheuristic optimization framework is proposed. It combines a meta-
heuristic algorithm with Thompson sampling to make informed decisions in dynamic environments.
Furthermore, we conduct empirical experiments to assess the impact of varying reward probabilities
on resource allocation and route planning within the context of this dynamic TOP, where nodes might
offer a different reward behavior depending upon the environmental conditions. Our numerical
results indicate that the proposed learnheuristic algorithm outperforms static approaches, achieving
up to 25% better performance in highly dynamic scenarios. Our findings highlight the effectiveness
of our approach in adapting to dynamic conditions and optimizing decision-making processes in
transportation systems.

Keywords: combinatorial optimization; team orienteering problem; reinforcement learning;
learnheuristics

MSC: 90-08; 68T20; 68T05

1. Introduction

The orienteering problem (OP), the TOP, and their extensions are among the most
studied routing problems with profits [1], constituting a popular class of NP-hard opti-
mization problems in the Operations Research literature. The TOP is a natural extension
of the OP introduced by Butt and Cavalier [2]. The first paper specifically addressing the
TOP is credited to Chao et al. [3]. The goal in the TOP is to determine the routes for a fixed
number of vehicles within a given time budget, maximizing the total gain collected from
the subset of visited nodes [4,5]. Several TOP variants have been proposed and studied,
among others: (i) the TOP with time windows, where each node can only be visited during
a limited time period [6,7]; (ii) the time-dependent TOP, where the traveling time between
two nodes depends on the time of the day [8]; and (iii) several stochastic variants, which
introduce stochastic attributes for both the traveling time and the score at each node [9–11].
In this paper, we propose a novel variant of the TOP that incorporates a probability in

Mathematics 2024, 12, 1758. https://doi.org/10.3390/math12111758 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12111758
https://doi.org/10.3390/math12111758
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0001-5506-1674
https://orcid.org/0000-0001-7692-9922
https://orcid.org/0000-0002-3793-3328
https://orcid.org/0000-0001-9995-010X
https://orcid.org/0000-0003-1392-1776
https://doi.org/10.3390/math12111758
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12111758?type=check_update&version=2

Mathematics 2024, 12, 1758 2 of 19

the collection of the reward at each node. The acquisition or non-acquisition of rewards
dynamically updates in real time depending on external circumstances (context informa-
tion), such as real-time traffic conditions, weather influences, and varying electric vehicle
battery levels. This TOP with dynamic conditions (DTOP) is motivated by the rapidly
evolving field of urban logistics and transportation, particularly in the context of smart city
development [12].

Recent advancements in electric vehicles (EVs) and Internet of things (IoT) technologies
support the need for efficient and environmentally sustainable solutions [13]. Since static
models often fail to capture the complexities of real-world scenarios, dynamic models
are also required when considering the TOP. Traffic congestion, for instance, is a major
factor that can vary significantly within short time periods, directly impacting travel times
and route efficiency. By accounting for these dynamic elements, our approach aims to
provide more realistic and effective routing solutions. Integrating EVs into transportation
not only addresses environmental concerns but also introduces novel dimensions in route
optimization and resource allocation [14]. For this reason, this paper analyzes how these
factors influence the probabilistic nature of node rewards in the DTOP. Thus, this paper
focuses on integrating real-time data analytics with advanced optimization techniques to
solve the DTOP. The use of learnheuristic algorithms, which combine metaheuristics with
machine learning [15], offers a novel way to tackle the inherent dynamism and complexity
of the DTOP, especially when considering real-time changes in urban environments [16].
Notice that, despite the paper mainly focuses on EVs, the same concepts apply if traditional
internal-combustion engine vehicles are considered, since the optimization problem would
be a simplified version of the one for EVs.

The main goals of this work are (i) to extend the traditional TOP by incorporating
dynamic acquisition/non-acquisition of the possible reward at each node; (ii) to introduce a
hybrid learnheuristic algorithm for solving the proposed heterogeneous DTOP; (iii) to inte-
grate the aforementioned algorithm with real-time data analytics to enhance the efficiency
and sustainability of decision making in transportation; (iv) to use a Thompson sampling
approach in order to make more informed decisions; and (v) to perform a series a numerical
experiments that allows for measuring the impact of varying reward probabilities in the
context of the heterogeneous DTOP. The remaining of the paper is structured as follows:
Section 2 presents some related work, thus setting the stage for subsequent discussions.
The mathematical model of the DTOP is described in Section 3, whereas Section 4 explains
the modeling of the rewarding probabilities based on the type of node. Section 5 explores
the methodology, elaborating on the computational model and optimization techniques
employed. Section 6 describes the computational experiments, whereas Section 7 analyzes
the obtained results. Finally, Section 8 concludes the paper with a discussion of the results,
standing out the efficacy of the approach, and suggesting lines for future research.

2. Related Work

One of the main practical applications of DTOP involves the use of drones.
Macrina et al. [17], Otto et al. [18], Rojas Viloria et al. [19], and Peyman et al. [20] pro-
vide excellent overviews on routing problems with drones. In particular, Mufalli et al. [21]
examine sensor assignment and routing for unmanned aerial vehicles (UAVs) with limited
battery life and sensor weight, aiming to maximize intelligence gathering. Lee and Ahn [22]
introduce a data-efficient deep reinforcement learning method for addressing a multi-start
TOP scenario, enabling UAV mission re-planning. Their approach utilizes a policy network
that continuously learns to adapt to changing conditions through iterative updates based
on experience from previous UAV mission planning problems. Sundar et al. [23] propose a
branch-and-price method to solve the TOP with fixed-wing drones, whereas their approach
offers optimal solutions in most cases, its dependence on exact methods impeded real-
time solutions, which are essential for dynamic systems. Routing problems with dynamic
inputs involve adapting to real-time changes such as variations in travel times, resource
availability, customer demands, and other dynamic conditions that affect route planning.

Mathematics 2024, 12, 1758 3 of 19

As mentioned in the introduction, the TOP is an extension of the OP that involves
multiple vehicles [3] and can include additional constraints such as time windows [4].
Regarding the deterministic versions of the TOP, Poggi et al. [24], Dang et al. [25], and
Keshtkaran et al. [26] demonstrate the effectiveness of branch-and-cut algorithms in solv-
ing classical TOPs using exact methods. Among population-based metaheuristics, par-
ticle swarm optimization has shown promising results, as evidenced in Dang et al. [27],
Dang et al. [28], and Muthuswamy and Lam [29]. Genetic algorithms (GAs) have also been
utilized to solve the classical TOP [30,31]. Furthermore, trajectory-based metaheuristics
have been employed by Archetti et al. [32]. These authors propose two tabu search algo-
rithms and a variable neighborhood search (VNS) algorithm to solve the TOP, comparing
them and finding VNS to be more efficient and effective for this problem. Campos et al. [33]
propose a greedy randomized adaptive search procedure (GRASP) with path relinking [34]
to solve the OP.

Regarding stochastic or dynamic versions of the TOP, Reyes-Rubiano et al. [35] con-
sider a variant where rewards are initially unknown and must be estimated using a learning
mechanism. To solve this, the authors propose a biased-randomized (BR) heuristic, which
incorporates a learning mechanism and predictive estimation to adapt to variations in
observed rewards. However, this assumption may not hold in all real-world scenarios, par-
ticularly when rewards are highly dynamic or context-dependent. A preliminary approach
to the dynamic TOP is presented in the work by Panadero et al. [11]. The authors consider
rewards dependent on the order of customers’ visits, with earlier visits yielding larger
rewards. Still, the scenario is not updated in real time. Li et al. [36] consider the TOP with
dynamic traveling times and mandatory nodes, presenting an interesting extension of the
TOP with applications in waste collection management. Similarly, Panadero et al. [10] dis-
cuss a variant where travel times are modeled as random variables. The authors introduce
a VNS metaheuristic that incorporates simulation to solve it, emphasizing the algorithm’s
effectiveness in combining savings and rewards for candidate selection. A different variant
is proposed by Bayliss et al. [16]. Here, the travel time between nodes depends on the path
already traveled by the vehicle. Still, these authors do not consider real-time changing
environments, which limits their approach when considering dynamic scenarios.

Finally, it is worth mentioning the work by Gomez et al. [37], where a learnheuris-
tic algorithm is applied with dynamic conditions to a different problem, the capacitated
dispersion problem (CDP). For the CDP, their work introduces a real-time changing envi-
ronment to test the algorithm’s performance on classical instances. All in all, these previous
studies have significantly contributed to improving the solutions for the deterministic TOP,
as well as its stochastic or dynamic extensions. However, these models do not consider
context-dependent reward conditions within a real-time changing environment. Hence, to
the best of our knowledge, ours is the first study to incorporate these dynamic conditions
into the TOP.

3. Describing the DTOP

This section provides both an illustrative example of the DTOP being considered in
this paper as well as a formal model that describes the general case.

3.1. An Illustrative Example of the DTOP

Figure 1 presents an illustrative example of a simple DTOP. The figure depicts the
trajectories of two vehicles, each of them visiting three nodes. From each visited node i in
a set N, a vehicle can retrieve (or not) a certain reward ri > 0 with a given probability pi.
Hence, the actual reward collected by visiting a node i ∈ N can be ri with probability pi, or
0 with probability 1− pi (Bernoulli experiment). This probability of success, pi, depends
upon the status of some environmental factors (e.g., battery level, weather conditions, etc.)
at the time when the node is visited. Nodes with a ‘Yes’ label represent successful reward
acquisition, whereas nodes with a ‘No’ label indicate visited nodes where no rewards
were obtained. Nodes left unvisited are colored in white. Not all nodes exhibit the same

Mathematics 2024, 12, 1758 4 of 19

probability values, pi, under varying environmental conditions. To accommodate this
variability, we introduce the concept of node types, where each type represents a group
of nodes sharing the same probability pi for a given set of factor values. In other words,
nodes within the same type exhibit consistent reward probabilities under similar conditions.
Therefore, in our analysis, we consider kmax > 1 distinct types of nodes. This approach
results in a DTOP with heterogeneous nodes, meaning that nodes differ in their associated
probabilities of reward based on their type.

Figure 1. A simple example of a DTOP solution with two routes under dynamic conditions.

3.2. A Mathematical Model for the DTOP

This section introduces a mathematical model for the DTOP. The proposed model
builds upon the one proposed by Evers et al. [38] for the static TOP. Consider a directed
graph G = (N, A), consisting of a set of nodes N, and a set of arcs A. The set N =
{0, 1, 2, . . . , n + 1} includes the origin depot (node 0), the destination depot (node n + 1),
and n intermediate nodes offering possible rewards. The set A = {(i, j)|i, j ∈ N, i ̸= j}
represents the connection arcs between nodes. Assume D is the set of heterogeneous
vehicles, with each vehicle d ∈ D starting its route from the origin depot, serving a subset
of intermediate nodes, and eventually proceeding to the destination depot. The traveling
time for each arc (i, j) ∈ A is predefined: tij = tji > 0. Each vehicle embarks on a route
and can only serve a limited number of nodes due to a travel time constraint for the total
route duration, tmax > 0, i.e., each vehicle must reach the endpoint before this time expires.
Visiting an intermediate node for the first time yields a reward ri > 0 with a probability pi.
This probability depends upon several dynamic conditions, including the weather at the
node wi, the congestion of the node ci, and the battery level of the vehicle when it reaches
the node bi, i.e., pi = ϕ(wi, ci, bi) for an unknown (black-box) function ϕ emulating reality.
The objective is to maximize the total expected rewards collected by all vehicles. Notice that
the origin and destination depot do not have any associated reward. For each arc (i, j) ∈ A
and each vehicle d ∈ D, we define a binary variable xd

ij, which takes the value 1 if and only
if vehicle d traverses the edge (i, j), while otherwise taking the value 0. Additionally, we
introduce the variable yd

i ≥ 0 to indicate the position of an intermediate node i in the tour
made by vehicle d, being yd

0 = 0 for the origin depot and yd
i = 0 if node i is not visited by

vehicle d. Then, the mathematical model of the DTOP can be formulated as follows:

Mathematics 2024, 12, 1758 5 of 19

max ∑
d∈D

∑
(i,j)∈A

pj · rj · xd
ij (1)

subject to: ∑
d∈D

∑
i∈N

xd
ij ≤ 1 ∀j ∈ N (2)

yd
i − yd

j + 1 ≤ (1− xd
ij)|N| ∀i, j ∈ N ∀d ∈ D (3)

∑
(i,j)∈A

tijxd
ij ≤ tmax ∀d ∈ D (4)

∑
i∈N

xd
ij = ∑

h∈N
xd

jh ∀d ∈ D ∀j ∈ N (5)

∑
j∈N

xd
0j = 1 ∀d ∈ D (6)

∑
i∈N

xd
i(n+1) = 1 ∀d ∈ D (7)

yd
j ≥ 0 ∀j ∈ N ∀d ∈ D (8)

xd
ij ∈ {0, 1} ∀(i, j) ∈ A ∀d ∈ D (9)

Unlike the traditional TOP, which aims to maximize the total collected rewards,
Equation (1) in our model incorporates a probabilistic factor, pj, that accounts for the
dynamic nature of real-world scenarios. This factor reflects the probability of obtain-
ing the reward rj at node j based on the current status of the environmental conditions.
Constraints (2) ensure that each node in the network is serviced at most once, avoiding
repetitive visits by any vehicle. To prevent the formation of subtours within the routes, Con-
straints (3) are imposed. The travel time constraint for each vehicle, given in Constraints (4),
ensures that the total travel time for any route does not exceed a predefined maximum.
Flow balance across the network is maintained by Constraints (5), which stipulate that the
number of times a vehicle enters a node must equal the number of times it exits. Each
vehicle’s route is required to start at the origin depot and end at the destination depot,
as defined in Constraints (6) and (7). Lastly, the non-negative and binary nature of the
variables yd

j and xd
ij, respectively, are established in Constraints (8) and (9).

4. Modeling Probabilities of Reward for Different Types of Nodes

To emulate real-life environmental conditions, a ‘black-box’ function is implemented.
The term black-box refers to the fact that the function internal behavior is not accessible to
the solving algorithm, which will only be able to provide inputs to the black-box function
and obtain outputs, thus emulating a real-life environment with unknown internal behav-
ior. In our numerical experiments, this black-box has been implemented using a logistic
regression model [39]. In particular, our black-box model considers factors such as weather
conditions, congestion levels, and the remaining battery percentage of an electric vehicle,
as follows:

ϕ(w, c, b) =
1

1 + eβ0+β1·w+β2·c+β3·b
(10)

where:

• Parameter w ∈ {0, 1} implies the meteorological conditions: a value 0 denotes good
meteorological conditions, whereas a value 1 expresses bad ones.

• Parameter c ∈ {0, 1} represents the congestion level in the urban network: a value 1
denotes severe congestion on the node, whereas a value 0 expresses the lack of it.

• Parameter b ∈ [0, 1] indicates the remaining battery percentage of an electric vehicle: a
value 1 denotes that the battery is full of energy, whereas a value 0 express that the
battery is empty.

Mathematics 2024, 12, 1758 6 of 19

The black-box function utilizes a set of β coefficients, namely β0, β1, β2, and β3, to
model the effect of these variables on the routing process:

• Coefficient β0 acts as a baseline intercept term, representing the default scenario when
all variables are at their baseline levels.

• Coefficient β1 modulates the influence of meteorological conditions (w).
• Coefficient β2 reflects the impact of congestion (c) at the specific node being visited.
• Coefficient β3 adjusts the outcome based on the remaining battery percentage (b).

In the proposed DTOP, the environmental conditions can change while the vehicles
are in motion. For example, a node that starts off without congestion when the route
begins may become congested as the vehicles progress, making it less attractive to visit.
Moreover, not all nodes react the same way to these changes in environmental conditions,
particularly in terms of their associated probabilities pi. To account for this variability
among nodes, we categorize them into kmax different types based on their likelihood of
providing rewards under different environmental circumstances. To ensure consistency
and reproducibility in our experiments, we assign each node i ∈ {1, 2, . . . , n} a specific
type using the following expression:

type of node i = i mod kmax (11)

In Equation (11), the operation i mod kmax calculates the remainder when i is divided
by kmax. This approach enables us to classify nodes into kmax distinct categories, each
representing a unique aspect of the black-box function. Utilizing modular division ensures
an even distribution of these node types across the network and adds complexity to the
reward system.

5. Solution Approaches for the Heterogeneous DTOP

In order to solve the heterogeneous DTOP, we propose a learnheuristic algorithm that
capitalizes on the strengths of Thomson sampling [40] for dealing with the unkonwn values
of the probabilities pi . In particular, Thomson sampling is employed to build a ‘white-box’
reinforcement learning mechanism that predicts the performance of the black-box function,
which is unknown for the algorithm. To assess the effectiveness of the learnheuristic
algorithm, we first describe a traditional constructive algorithm that does not consider
either dynamism or real-time conditions. Hence, this can be denoted as a static algorithm.
Next, we propose a dynamic algorithm where nodes are selected in real time based on the
information provided by the Thomson sampling.

5.1. Online Contextual Thompson Sampling

Thompson sampling [41] is a heuristic strategy used in decision-making scenarios
like the multi-armed bandit problem (MABP) [42]. This method is used for choosing
actions according to their expected rewards, which are continuously updated using Beta
probability distributions based on previous successes and failures [43]. In the context of
the heterogeneous DTOP discussed in this article, each node type is analogous to an arm
in a contextual MABP setup. To estimate the success probability of each node, we apply
a regularized Bayesian logistic regression as described in Chapelle and Li [44]. Thus, for
each node type k ∈ {1, 2, . . . , kmax}, the probability πk(x) under the vector of factor values
x is estimated as

πk(x) =
1

1 + exp(− f (x))
(12)

where
f (x) = β0 + β1 · x + ϵ (13)

and the weights βi are distributed as independent Gaussian probability distributions, as
follows:

βi = N (mi, α · q−1
i) (14)

Mathematics 2024, 12, 1758 7 of 19

This algorithm is particularly effective in online settings and features an adjustable
learning rate α > 0. For α > 1, the model incentivizes exploration, and for α < 1, the model
is more exploitative. The process for fitting this model is outlined in Chapelle and Li [44].
Examples of the latest use of Thompson Sampling can be found in [45,46].

5.2. A Static Constructive Heuristic

Algorithm 1 shows the main procedure of the static constructive heuristic without
considering the predictions provided by the white-box to deal with the dynamic conditions
of the problem. The algorithm employs a parameter γ, which allow us to define a geometric
probability distribution associated with a BR approach [47], performed in get_candidate
function in line 6, as well as a parameter δ, used to calculate the efficiency list [10]. To
determine the δ parameter, we execute the constructive heuristic 10 times, adjusting δ
within the range of 0 to 1 in increments of 0.1 for each run. The δ value that produces the
best solution is then utilized for the entire execution. In line 1, the algorithm is initialized,
setting empty to Routes. Then, whereas not all routes are completed, each one is constructed
(line 2). Line 3 initializes a route to complete. The function evaluate_efficiency (line 5)
evaluates each node and is described in Equation (15). BR appproach is performed in line
6 to obtain a candidate. Then, that candidate is added to the route R in line 7. Function
exceed_max_distance (line 8) determines when a route R under construction if finished,
and then can mark the route R as complete and can be aggregated to the solution (lines 9,
10, 11). Update the objective function with the built route (line 14).

Algorithm 1 Constructive Static Solution (γ, δ)

1: Routes← ∅
2: while all_routes_complete(Routes) do
3: R← ∅
4: while is_incomplete(R) do
5: candidates← evaluate_efficiency(N, δ)
6: i← get_candidate(candidates, γ)
7: R← R ∪ {i}
8: if exceed_max_distance(i, R) then
9: Mark R as complete.

10: R← R \ {i}
11: Routes← Routes ∪ R
12: break
13: end if
14: Update_OF(R)
15: end while
16: end while
17: return Routes

The constructive static solution approach begins by initializing an empty set named
Routes. The algorithm proceeds iteratively while the number of routes is less than the
number of vehicles available. For every vehicle, the algorithm first calculates a set of
candidate nodes that could potentially be added to the current route. This set of candidates
is determined by the evaluate_efficiency function according to the following expression:

eval(i) = δ ·
(

1− distance(last_node(v), i)
max_distance(N \ R)

)
+ (1− δ) · ri

max_reward(N \ R)
(15)

where last_node(v) corresponds to the last node visited in the route and ri corresponds with
the reward of node i. Both values are normalized by the max_distance and max_reward of
the nodes not in the solution set (R). Once the candidates are determined, the algorithm
selects the most suitable candidate node i using the get_candidate function. This function
can be a greedy one where you select the best node or, like in our case, a BR one that allows

Mathematics 2024, 12, 1758 8 of 19

us to select a node randomly but assigns higher probabilities to the most ‘promising’ ones.
It then adds the node to the vehicle’s route and updates the route details and the objective
function (OF) accordingly. However, if adding the node exceeds the maximum distance,
the current route of vehicle R is marked as complete and is added to the set Routes. This
process is repeated until all routes are completed. The algorithm concludes by returning
the set Routes, which contains the constructed routes for all vehicles. Once a preliminary
solution is obtained, the local search algorithm is employed to enhance it.

A 2-opt local search is employed to derive a solution aimed at reducing the total
travel time to reduce travel time and allow for the inclusion of new nodes in the solution.
Specifically, whenever a proposed arc swap yields a better solution than the current config-
uration. Subsequently, we attempt to incorporate additional nodes using the methodology
outlined in Algorithm 1, continuing this process until the maximum allowable distance is
reached. Figure 2 shows the process flow of the static algorithm. The initial step involves
constructing a solution via the BR, as outlined in Algorithm 1. Following the construction
of an initial solution, it is refined through a 2-opt optimization. Subsequently, an additional
local search (LS) is conducted to ascertain any further enhancements, culminating in the
iteration’s final solution. Lastly, this solution is tested within a dynamic environment to
evaluate the performance of the static solution under changing conditions.

Figure 2. Logical process of the static approach and its evaluation under a dynamic environment.

The static constructive algorithm exhibits a complexity that can be analyzed by the
constructive node selection process, which uses O(n2 · log(n)). This is attributed to the
operations involved in identifying the closest node to a given point and subsequently
sorting these values, where n represents the number of nodes. Constraint checks, such as
the maximum distance, are performed at each step of route construction, maintaining the
O(m · n) complexity, where m represents the number of vehicles. The application of a 2-opt
local search post-construction, typically O(n2) for route optimization, further influences
the overall complexity. Thus, the algorithm’s total complexity can be approximated as
O(m · n2 · log(n) + m · n + n2), acknowledging that the heuristic and probabilistic elements
introduce variability that may affect the actual performance in practice. It is essential to
emphasize that the static algorithm, generates a single static solution before its exposure to
a dynamic environment. This solution, once obtained, is subjected to simulations across

Mathematics 2024, 12, 1758 9 of 19

various dynamic scenarios. However, the complexity and time required to derive this
static solution remain independent of the number of dynamic scenarios in which it is
subsequently simulated.

5.3. A Learnheuristic Constructive Heuristic

The dynamism inherent in the problem presents a new challenge: the algorithm
should adapt its performance using contextual data. This learning mechanism is detailed
in Section 5.1. The algorithm receives inputs from a predictive white-box model, providing
feedback on the likelihood of encountering rewards at different nodes. The primary
distinction between this new Algorithms 2 and Algorithm 1 lies in the way the node
efficiency is computed (line 6), described in Equation (16).

Algorithm 2 Constructive Dynamic Solution (γ, δ)

1: Routes← ∅
2: weather, congestion = new_environment()
3: while all_routes_complete(Routes) do
4: R← ∅
5: while is_incomplete(R) do
6: candidates← evaluate_efficiency_with_wb(N, δ)
7: i← get_candidate(candidates, γ)
8: R← R ∪ {i}
9: if exceed_max_distance(i, R) then

10: Mark R as complete
11: R← R \ {i}
12: Route← Route ∪ R
13: break
14: end if
15: Update_OF(R)
16: weather, congestion = new_environment()
17: end while
18: end while
19: return Routes

In the dynamic context, we introduce the π ∈ [0, 1] parameter, derived from the
white-box model based on factors like weather, node congestion, and battery level. The
node evaluation formula is as follows:

eval(i) = δ ·
(

1− distance(last_node(v), i)
max_distance(N \ R)

)
+ (1− δ) · πi ·

ri
max_reward(N \ R)

(16)

Therefore, whereas the static algorithm operates by generating multiple solutions
initially and then evaluating these solutions within a dynamic context, the dynamic (learn-
heuristic) algorithm is characterized by its ability to operate in a constantly evolving
environment. It does not generate multiple solutions. Instead, it adapts and recalculates
solutions as the environment changes with each node selection. The algorithm is required
to make real-time decisions without the ability to plan multiple steps. One critical consider-
ation in the dynamic algorithm is the avoidance of local search methods. This is due to the
potential reduction in rewards and increased complexity by the real-time changes in the
environment. Every inclusion of a node into an emerging solution alters the environment.
Figure 3 shows the flow of the learnheuristic algorithm. Throughout its execution, the
algorithm records data pertaining to each visited node including congestion levels, weather
conditions, and battery status as well as the node’s state regarding reward availability. This
information is systematically compiled by vehicles through sensors and communication
technologies embedded in them, sent to the central system, and utilized to calibrate the
Thompson sampling model, improving its predictive accuracy for future iterations and
generating a data traffic scheme specific to the IoT framework.

Mathematics 2024, 12, 1758 10 of 19

Figure 3. Logical process of the proposed learnheuristic approach.

In Figure 4, the principal distinctions in the decision-making process for choosing a
node are illustrated. The static algorithm, which does not utilize any predictive models,
selects nodes based on distance and reward, regardless of the associated probability of
actually receiving that reward. This approach may lead to choices where the likelihood
of obtaining a reward is quite low. In contrast, the learnheuristic algorithm incorporates
predictive analytics into its decision-making process. It utilizes information from a Thomp-
son sampling predictor to make more informed choices. This method allows for a more
strategic selection of nodes, taking into account not only the reward amount but also the
probability of successfully obtaining that reward based on the predicted probability values.

Figure 4. Choosing the next node: static vs. dynamic algorithms.

The complexity of the dynamic algorithm reflects its adaptability to a changing envi-
ronment. The node selection process, similar to the static algorithm, maintains a complexity
of O(n2 · log(n)), considering the sorting and evaluation steps. However, the unique
characteristic of this dynamic algorithm lies in its real-time adaptation to environmental
changes, necessitating frequent recalculations with each node selection. In fitting a Thomp-
son sampling model, the complexity primarily arises from two operations: updating the
probability distributions of rewards and sampling from these distributions. Assuming
constant-time operations for updates and sampling, the complexity for each type of node,
in a scenario with kmax node types, can be approximated as O(n) per iteration. Additionally,
the avoidance of local search methods, while reducing complexity in one aspect, is offset

Mathematics 2024, 12, 1758 11 of 19

by the continuous recalibration based on the evolving environment and the systematic
recording and utilization of data for the Thompson sampling model. Consequently, the
baseline complexity of the dynamic algorithm can be approximated at O(n2 · log(n) + n)
for the node selection process and prediction of Thompson sampling. This complexity must
be multiplied by the number of dynamic scenarios that have to be run.

6. Numerical Experiments

This section outlines the computational experiments we conducted to evaluate the
efficacy and performance of the previously discussed algorithms. All algorithms were im-
plemented using Python version 3.11 and executed on a Google cloud platform computing
instance [48] equipped with an AMD EPYC 7B12 CPU @ 2.25 GHz, 4 GB of RAM, and a
Debian 11 operating system. For experimental purposes, we utilized the benchmark set
proposed by [3], as it is widely employed in the literature to assess the performance of
algorithms designed to solve the classical version of the TOP. This benchmark set is divided
into seven different subsets, containing a total of 320 instances. Within each subset, the
node locations and rewards remain constant across all instances. However, the number of
vehicles, m, as well as the time threshold, Tmax, can vary. The naming convention for each
instance follows the format pa.b.c, where (i) a represents the identifier of the subset; (ii) b is
the number of vehicles, which varies between 2 and 4; and (iii) c denotes an alphabetical
order for each instance. We performed 100 iterations for each instance except for those
belonging to subset p7, for which we conducted 1000 iterations due to their larger size.
Each run has its own parameters for congestion and weather, defined by the seed. For each
node added to the solution, the parameters change by incrementing the seed by 1. In the
experiments, three distinct seeds were used to create the environments of the instances.
Once a simulation has run, the seed will change by adding 10,000 to generate a different
scenario. Figure 5 illustrates the random sampling process in the problem. We selected
a node to visit based on Thompson Sampling (TS), which provides the probability of a
node having a reward. From the list of candidates, we chose one of these nodes. The
black box indicates whether the selected node has a reward associated with it. Using this
information, we updated the TS data, refining the model to generate more accurate results.
We then adjusted the nodes’ environment, accounting for potential changes in congestion
and weather conditions. We continued this process until the drone ran out of battery,
thereby completing the solution.

We compared the effectiveness of the proposed dynamic approach against a static
one, where the latter operates without integrating the learned insights from the white-
box model. For the static method, we chose the PJHeuristic [10], a powerful and widely
validated heuristic for solving the deterministic TOP. Specifically, the deterministic method
assumes that π(ni) = 1, ∀i ∈ V.

For conducting the numerical experiments, it is necessary to establish the black-box
parameters, which determine the varying probabilities of earning rewards at each node,
depending on environmental conditions. In the design of the experiment carried out,
the betas have been selected in such a way that the probability curves were sufficiently
different depending on the established magnitude of difference (Low, Medium, High)
and had coherent probabilities. In our analysis, the variables have been standardized to
a range of −1 to 1 in order to ensure consistency and comparability. In order to create
node types that are stable in terms of probability when all conditions are neutral, β0 is set
to 0 for all scenarios. For instance, β1 is assigned a negative sign, indicating that better
weather conditions improve the probability of receiving a reward. Similarly, β2, which is
linked to traffic congestion, also follows this standardized scale. On the other hand, β3
carries a positive sign, reflecting an increase in the probability of reward when the battery
is fully charged (represented by 1) and a decrease when the battery is low (represented by
−1). This standardization of values facilitates a clearer understanding and interpretation
of their impact on reward probabilities. In our experiments, we have set kmax = 5, i.e.,
a total of five types of nodes have been considered, each with distinct parameters and

Mathematics 2024, 12, 1758 12 of 19

behaviors. For example, the probability associated with type node 5 is independent of
the battery level. We have also established three sets of dynamism, each representing a
different level of variability. With higher levels of dynamism, environmental conditions
play a more significant role in determining the probability of receiving a reward. Table 1
provides detailed information on the probability of each node providing the possible reward.
This probability is calculated based on various scenarios that combine factors such as
weather, congestion, and battery level. Notice that the battery level significantly influences
this probability for most types of nodes. Figure 6 depicts a graphical representation of
the five different types of nodes in the low-level scenario. The color coding represents
different environmental conditions to generate heterogeneous nodes: blue lines indicate
good weather and no congestion, green lines represent bad weather without congestion,
yellow lines indicate good weather with congestion, and red lines denote bad weather
coupled with severe congestion. This color scheme provides a clear visual representation
of how different environmental factors affect the probability of receiving rewards at each
node. Node types can be more affected by some environmental conditions than others.

Figure 5. Random sampling in dynamic TOP.

Table 1. Black-box’s parameters employed with Equation (10).

Node Type
Low Medium High

β1 β2 β3 β1 β2 β3 β1 β2 β3

N1 0 −1 1 0 −1.2 1.2 0 −2 1

N2 −0.2 −0.8 1.1 −0.4 1 1.4 −0.6 −1.5 2

N3 −0.4 −0.6 1.2 −0.6 −0.8 1.6 −1.2 −1 3

N4 −0.6 −0.4 1.3 −0.8 −0.6 1.8 −1.8 −0.8 4

N5 −1 −1.5 0 −1.5 −2 0 −2 −3 0

Mathematics 2024, 12, 1758 13 of 19

Figure 6. Black-box probabilities in the low-level scenario. Each node has a completely different
behavior against the environment conditions.

7. Analysis of Results

As observed in Table 2, on average, the solutions obtained from the dynamic approach
outperform the deterministic solutions when they are evaluated in dynamic scenarios for
all the tested cases. Specifically, in dynamic environments, the performance gap between
these methodologies ranges from 11.20% in low-dynamism scenarios to 25.14% in highly
dynamic scenarios, whereas the static algorithm shows enhanced efficiency in static sce-
narios (column OF), the learnheuristic algorithm outperforms it in dynamic contexts. It
is noteworthy that the computational time of the static method only accounts for the gen-
eration of a single solution, whereas the dynamic approach iteratively produces multiple
solutions, specifically, 100 distinct iterations for instances other than p7 and 1000 iterations
for p7 instances. Consequently, in data-rich environments, the dynamic algorithm can
yield superior outcomes in a comparably shorter time frame. All disaggregated data by
instance, including detailed performance metrics and analysis results, are publicly available
at: https://github.com/juanfran143/Dynamic_TOP (accessed on 2 May 2024).

Figures 7 and 8 depict the comparative results of our learnheuristic approach and the
deterministic method employed. Specifically, Figure 7 illustrates the gaps between the static
and learnheuristic approaches for the four different sets of tested instances and levels of
environmental dynamism, where the discontinuous line represents the base deterministic
solution obtained using the PJHeuristic and simulated in the dynamic scenario. Each subplot

https://github.com/juanfran143/Dynamic_TOP

Mathematics 2024, 12, 1758 14 of 19

corresponds to a specific instance and not only clarifies the trend of an increasing performance
gap with escalating levels of environmental dynamism—from low to medium to high—
but also highlights that the vast majority of these gaps are positive. This indicates that
the learnheuristic algorithm has a better capacity to adapt and generally yields superior
results in dynamic settings. On the other hand, Figure 8 depicts the distribution of fail nodes,
highlighting the algorithm’s robustness in maintaining node integrity across instances p4 to p7.
Thus, the learnheuristic approach demonstrates a greater capacity to avoid nodes with a higher
likelihood of failure in more dynamic environments, and whereas the probability of obtaining
a reward in low-dynamic settings is approximately 0.6, this probability can increase to 0.9 in
highly dynamic environments. The analysis of node failures and performance discrepancies
across various instance types enhances our understanding of algorithmic efficacy in dynamic
scenarios. Notice that near-optimal solutions obtained using a deterministic approach can
be sub-optimal or even infeasible (with a total collected reward of 0) in dynamic scenarios.
Thus, the proposed learnheuristic is able to provide solutions with superior performance in
such scenarios. Although we have used PJHeuristic as the deterministic approach because
it is widely used in the literature to solve the TOP, its behavior in dynamic scenarios can be
extrapolated to any other deterministic heuristic due to the lack of mechanisms to consider
dynamic components during their optimization procedures.

Figure 7. Gap for each set of instances.

Mathematics 2024, 12, 1758 15 of 19

Table 2. Comparative results between learnheuristic and static algorithms.

Instance

Static Learnheuristic
Gap (%)

Low (1) Medium (2) High (3) Low (4) Medium (5) High (6)

Time OF Dyn. OF Time OF Dyn. OF Time OF Dyn. OF Time OF Dyn. OF Time OF Dyn. OF Time OF Dyn. OF (1)–(4) (2)–(5) (3)–(6)

p4.2 12.07 901.90 431.54 12.02 876.17 428.36 12.03 901.90 437.75 23.06 804.40 492.11 23.00 800.48 512.88 22.77 796.39 551.54 14.04% 19.73% 25.99%
p4.3 10.71 804.40 384.37 10.64 804.40 381.14 10.66 804.40 388.59 19.71 728.19 449.91 19.68 726.84 464.95 19.57 724.11 503.12 17.05% 21.99% 29.47%
p4.4 9.30 677.13 323.75 9.31 652.40 321.59 9.24 652.40 329.19 16.15 632.55 389.08 16.12 632.55 404.64 16.07 630.45 436.25 20.18% 25.83% 32.52%
p5.2 4.98 995.00 460.21 4.99 995.00 456.15 4.98 995.00 470.05 9.59 808.99 491.18 9.58 805.59 509.95 9.59 804.18 554.34 6.73% 11.79% 17.93%
p5.3 4.53 843.56 391.34 4.51 843.56 387.32 4.49 843.56 398.28 8.50 703.94 430.44 8.48 700.71 445.13 8.47 698.28 480.76 9.99% 14.93% 20.71%
p5.4 4.17 718.94 331.94 4.16 718.94 328.33 4.17 718.94 337.54 7.49 607.85 372.75 7.49 607.20 386.45 7.49 602.68 416.14 12.29% 17.70% 23.28%
p6.2 4.84 868.60 411.58 4.83 868.60 406.55 4.84 868.60 411.90 9.54 703.31 424.62 9.53 704.34 441.83 9.53 702.32 476.01 3.17% 8.68% 15.56%
p6.3 4.74 766.58 363.46 4.71 766.58 358.49 4.69 766.58 364.34 9.08 670.13 391.32 9.06 667.54 403.94 9.06 662.22 426.72 7.67% 12.68% 17.12%
p6.4 4.37 664.00 315.66 4.44 664.00 310.76 4.42 664.00 317.22 8.51 633.14 354.50 8.52 631.78 365.79 8.45 622.72 384.12 12.31% 17.71% 21.09%
p7.2 82.17 700.16 332.47 84.15 700.16 329.20 84.10 700.16 335.54 157.27 581.28 360.32 157.12 579.53 373.86 155.19 570.09 401.66 8.37% 13.57% 19.70%
p7.3 77.82 650.45 307.38 77.33 650.45 304.01 77.41 650.45 310.06 136.70 544.72 335.94 136.43 543.56 349.74 135.88 316.64 469.32 9.29% 15.04% 51.37%
p7.4 67.27 547.23 259.14 67.15 547.21 256.89 67.05 547.21 262.05 108.88 472.65 293.58 109.25 472.42 306.31 107.99 467.08 332.55 13.29% 19.24% 26.90%

Average 23.92 761.49 359.40 24.02 757.29 355.73 24.01 759.43 363.54 42.87 657.60 398.81 42.86 656.04 413.79 42.50 633.10 452.71 11.20% 16.57% 25.14%

Instance
Static Learnheuristic Gap (%)

Low (1) Medium (2) High (3) Low (4) Medium (5) High (6) (1)–(4) (2)–(5) (3)–(6)
Nodes Fails Nodes Fails Nodes Fails Nodes Fails Nodes Fails Nodes Fails

p4.2 60.62 33.23 60.62 33.52 60.62 32.93 59.62 27.59 59.19 26.36 58.71 23.93 −16.97% −21.37% −27.33%
p4.3 56.77 31.65 56.77 31.94 56.77 31.47 56.68 27.19 56.49 26.36 56.14 24.11 −14.10% −17.48% −23.39%
p4.4 51.33 29.31 51.33 29.52 51.33 29.00 52.76 26.77 52.71 25.94 52.46 24.07 −8.66% −12.12% −16.99%
p5.2 38.50 21.61 38.50 21.78 38.50 21.29 36.60 17.05 36.51 16.23 36.47 14.50 −21.10% −25.46% −31.93%
p5.3 36.48 20.91 36.48 21.07 36.48 20.67 36.07 17.70 35.99 16.96 35.92 15.41 −15.34% −19.49% −25.45%
p5.4 34.65 20.39 34.65 20.53 34.65 20.17 35.57 18.52 35.57 17.87 35.47 16.38 −9.20% −12.98% −18.79%
p6.2 38.50 21.18 38.50 21.40 38.50 21.20 37.89 17.63 37.85 16.88 37.78 15.25 −16.75% −21.14% −28.05%
p6.3 39.17 22.00 39.17 22.26 39.17 22.03 40.49 20.63 40.38 19.92 40.25 18.67 −6.24% −10.53% −15.23%
p6.4 38.13 21.81 38.13 22.06 38.13 21.80 42.89 23.51 42.87 22.82 42.59 21.52 7.83% 3.43% −1.28%
p7.2 41.50 22.95 41.50 23.13 41.50 22.72 39.77 18.43 39.60 17.67 39.12 15.78 −19.70% −23.60% −30.55%
p7.3 38.54 21.81 38.54 21.97 38.54 21.61 38.64 19.19 38.52 18.45 38.23 16.65 −12.03% −16.03% −22.93%
p7.4 35.63 20.70 35.63 20.84 35.63 20.49 37.65 19.87 37.60 19.21 37.19 17.52 −3.99% −7.83% −14.46%

Average 42.49 23.96 42.49 24.17 42.49 23.78 42.89 21.17 42.77 20.39 42.53 18.65 −11.35% −15.38% −21.36%

Mathematics 2024, 12, 1758 16 of 19

Figure 8. Boxplot of fail nodes across different instance types.

8. Conclusions and Future Work

This study has analyzed the Dynamic Team Orienteering Problem, focusing on the
comparative effectiveness of learnheuristic approaches against static methods under vary-
ing degrees of dynamism. Our findings revealed that the learnheuristic approach shows a
significant enhancement in performance, which grows as the level of dynamism increases.
In environments characterized by low dynamism, both the learnheuristic and static algo-
rithms exhibited similar levels of performance, with the learnheuristic algorithm showing
a modest improvement, reflected in a gap of 11.20%. However, as the dynamism shifted to
a medium level, the learnheuristic algorithm began to outshine its static version, delivering
more significantly improved solutions with a gap of 16.57%.

A critical consideration, however, is the accessibility of real-time data. Despite the
learnheuristic approach having excellent results, it is crucial to acknowledge that not all
companies have access to real-time data, and the additional costs associated with acquiring
such data may not be justifiable for every business. In scenarios where companies must
assume a static environment due to the lack of real-time information, the deterministic
algorithm provides a better solution, as it is specifically customized for these circumstances.
This highlights a limitation of the learnheuristic approach in contexts where dynamic data
are unavailable to obtain.

The advantage of the learnheuristic approach became particularly evident in high
dynamism scenarios, where its capacity to adeptly adapt to rapid changes and complex
decision-making processes in real-time urban settings was unparalleled, showing an im-
provement of 25.14% compared to the static algorithm. Despite the longer computational
times associated with the learnheuristic method, the gains in accuracy and adaptability in
dynamically challenging environments justified the trade-off. The algorithm’s ability to
process and respond to live data streams significantly contributed to its superior perfor-
mance in managing the intricacies of urban logistics and electric vehicle integration. In
the problem described, failing at a node means not obtaining the reward. However, there
are other possible variants of the problem where either a minimum level of reliability is
required, or failing to obtain the reward could lead to a negative impact on the objective
function. This learnheuristic approach has even greater potential in these scenarios.

Mathematics 2024, 12, 1758 17 of 19

Future research will aim at retaining the learnheuristic robustness and precision.
Additionally, improving the complexity and operational efficiency of the algorithm is a
key area for enhancement, as the current algorithm’s runtime is nearly twice that of static
algorithms. Further exploration into integrating more detailed real-time data and extending
the application of these algorithms to larger and more intricate urban settings are also
topics to be explored in more detail.

Author Contributions: Conceptualization, A.A.J. and J.P.; methodology, A.R.U. and J.F.G.; software,
A.R.U. and J.F.G.; validation, A.A.J., A.M.-G. and J.P.; formal analysis, A.R.U. and J.F.G.; investigation,
A.R.U. and J.F.G.; writing—original draft preparation, A.R.U. and J.F.G.; writing—review and editing,
A.A.J., A.M.-G. and J.P. supervision, A.A.J. All authors have read and agreed to the published version
of the manuscript.

Funding: This work has been partially funded by the Spanish Ministry of Science and Innovation
(PID2022-138860NB-I00, RED2022-134703-T) as well as by the SUN (HORIZON-CL4-2022-HUMAN-
01-14-101092612) and AIDEAS (HORIZON-CL4-2021-TWIN-TRANSITION-01-07-101057294) projects
of the Horizon Europe program.

Data Availability Statement: Publicly available datasets were analyzed in this study. References to
these datasets have been included in the main text.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Archetti, C.; Speranza, M.G.; Vigo, D. Chapter 10: Vehicle routing problems with profits. In Vehicle Routing: Problems, Methods, and

Applications, 2nd ed.; SIAM: Philadelphia, PA, USA, 2014; pp. 273–297.
2. Butt, S.E.; Cavalier, T.M. A heuristic for the multiple tour maximum collection problem. Comput. Oper. Res. 1994, 21, 101–111.

[CrossRef]
3. Chao, I.M.; Golden, B.L.; Wasil, E.A. The team orienteering problem. Eur. J. Oper. Res. 1996, 88, 464–474. [CrossRef]
4. Vansteenwegen, P.; Souffriau, W.; Van Oudheusden, D. The orienteering problem: A survey. Eur. J. Oper. Res. 2011, 209, 1–10.

[CrossRef]
5. Gunawan, A.; Lau, H.C.; Vansteenwegen, P. Orienteering problem: A survey of recent variants, solution approaches and

applications. Eur. J. Oper. Res. 2016, 255, 315–332. [CrossRef]
6. Vansteenwegen, P.; Souffriau, W.; Berghe, G.V.; Van Oudheusden, D. Iterated local search for the team orienteering problem with

time windows. Comput. Oper. Res. 2009, 36, 3281–3290. [CrossRef]
7. Lin, S.W.; Vincent, F.Y. A simulated annealing heuristic for the team orienteering problem with time windows. Eur. J. Oper. Res.

2012, 217, 94–107. [CrossRef]
8. Verbeeck, C.; Sörensen, K.; Aghezzaf, E.H.; Vansteenwegen, P. A fast solution method for the time-dependent orienteering

problem. Eur. J. Oper. Res. 2014, 236, 419–432. [CrossRef]
9. Ilhan, T.; Iravani, S.M.; Daskin, M.S. The orienteering problem with stochastic profits. Iie Trans. 2008, 40, 406–421. [CrossRef]
10. Panadero, J.; Juan, A.A.; Bayliss, C.; Currie, C. Maximising reward from a team of surveillance drones: A simheuristic approach

to the stochastic team orienteering problem. Eur. J. Ind. Eng. 2020, 14, 485–516. [CrossRef]
11. Panadero, J.; Barrena, E.; Juan, A.A.; Canca, D. The stochastic team orienteering problem with position-dependent rewards.

Mathematics 2022, 10, 2856. [CrossRef]
12. Yu, Q.; Adulyasak, Y.; Rousseau, L.M.; Zhu, N.; Ma, S. Team orienteering with time-varying profit. Informs J. Comput. 2022,

34, 262–280. [CrossRef]
13. Ejaz, W.; Anpalagan, A.; Ejaz, W.; Anpalagan, A. Internet of Things enabled electric vehicles in smart cities. In Internet of Things

for Smart Cities: Technologies, Big Data and Security; Springer International Publishing: Cham, Switzerland, 2019; pp. 39–46.
14. Martins, L.d.C.; Tordecilla, R.D.; Castaneda, J.; Juan, A.A.; Faulin, J. Electric vehicle routing, arc routing, and team orienteering

problems in sustainable transportation. Energies 2021, 14, 5131. [CrossRef]
15. Arnau, Q.; Juan, A.A.; Serra, I. On the use of learnheuristics in vehicle routing optimization problems with dynamic inputs.

Algorithms 2018, 11, 208. [CrossRef]
16. Bayliss, C.; Juan, A.A.; Currie, C.S.; Panadero, J. A learnheuristic approach for the team orienteering problem with aerial drone

motion constraints. Appl. Soft Comput. 2020, 92, 106280. [CrossRef]
17. Macrina, G.; Pugliese, L.D.P.; Guerriero, F.; Laporte, G. Drone-aided routing: A literature review. Transp. Res. Part Emerg. Technol.

2020, 120, 102762. [CrossRef]
18. Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; Pesch, E. Optimization approaches for civil applications of unmanned aerial vehicles

(UAVs) or aerial drones: A survey. Networks 2018, 72, 411–458. [CrossRef]
19. Rojas Viloria, D.; Solano-Charris, E.L.; Muñoz-Villamizar, A.; Montoya-Torres, J.R. Unmanned aerial vehicles/drones in vehicle

routing problems: A literature review. Int. Trans. Oper. Res. 2021, 28, 1626–1657. [CrossRef]

http://doi.org/10.1016/0305-0548(94)90065-5
http://dx.doi.org/10.1016/0377-2217(94)00289-4
http://dx.doi.org/10.1016/j.ejor.2010.03.045
http://dx.doi.org/10.1016/j.ejor.2016.04.059
http://dx.doi.org/10.1016/j.cor.2009.03.008
http://dx.doi.org/10.1016/j.ejor.2011.08.024
http://dx.doi.org/10.1016/j.ejor.2013.11.038
http://dx.doi.org/10.1080/07408170701592481
http://dx.doi.org/10.1504/EJIE.2020.108581
http://dx.doi.org/10.3390/math10162856
http://dx.doi.org/10.1287/ijoc.2020.1026
http://dx.doi.org/10.3390/en14165131
http://dx.doi.org/10.3390/a11120208
http://dx.doi.org/10.1016/j.asoc.2020.106280
http://dx.doi.org/10.1016/j.trc.2020.102762
http://dx.doi.org/10.1002/net.21818
http://dx.doi.org/10.1111/itor.12783

Mathematics 2024, 12, 1758 18 of 19

20. Peyman, M.; Martin, X.A.; Panadero, J.; Juan, A.A. A Sim-Learnheuristic for the Team Orienteering Problem: Applications to
Unmanned Aerial Vehicles. Algorithms 2024, 17, 200. [CrossRef]

21. Mufalli, F.; Batta, R.; Nagi, R. Simultaneous sensor selection and routing of unmanned aerial vehicles for complex mission plans.
Comput. Oper. Res. 2012, 39, 2787–2799. [CrossRef]

22. Lee, D.H.; Ahn, J. Multi-start team orienteering problem for UAS mission re-planning with data-efficient deep reinforcement
learning. Appl. Intell. 2024, 54, 4467–4489. [CrossRef]

23. Sundar, K.; Sanjeevi, S.; Montez, C. A branch-and-price algorithm for a team orienteering problem with fixed-wing drones. Euro
J. Transp. Logist. 2022, 11, 100070. [CrossRef]

24. Poggi, M.; Viana, H.; Uchoa, E. The team orienteering problem: Formulations and branch-cut and price. In Proceedings of the
10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’10). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Liverpool, UK, 9 September 2010.

25. Dang, D.C.; El-Hajj, R.; Moukrim, A. A branch-and-cut algorithm for solving the team orienteering problem. In Proceedings
of the Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems: 10th
International Conference, CPAIOR 2013, Yorktown Heights, NY, USA, 18–22 May 2013; Springer: Berlin/Heidelberg, Germany,
2013; pp. 332–339.

26. Keshtkaran, M.; Ziarati, K.; Bettinelli, A.; Vigo, D. Enhanced exact solution methods for the team orienteering problem. Int. J.
Prod. Res. 2016, 54, 591–601. [CrossRef]

27. Dang, D.C.; Guibadj, R.N.; Moukrim, A. A PSO-based memetic algorithm for the team orienteering problem. In Proceedings of
the Applications of Evolutionary Computation: EvoApplications 2011: EvoCOMNET, EvoFIN, EvoHOT, EvoMUSART, EvoSTIM,
and EvoTRANSLOG, Torino, Italy, 27–29 April 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 471–480.

28. Dang, D.C.; Guibadj, R.N.; Moukrim, A. An effective PSO-inspired algorithm for the team orienteering problem. Eur. J. Oper. Res.
2013, 229, 332–344. [CrossRef]

29. Muthuswamy, S.; Lam, S.S. Discrete particle swarm optimization for the team orienteering problem. Memetic Comput. 2011,
3, 287–303. [CrossRef]

30. Ferreira, J.; Quintas, A.; Oliveira, J.A.; Pereira, G.A.; Dias, L. Solving the team orienteering problem: Developing a solution
tool using a genetic algorithm approach. In Proceedings of the Soft Computing in Industrial Applications: Proceedings
of the 17th Online World Conference on Soft Computing in Industrial Applications, Online, 3–14 December 2012; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 365–375.

31. Bouly, H.; Dang, D.C.; Moukrim, A. A memetic algorithm for the team orienteering problem. 4OR 2010, 8, 49–70. [CrossRef]
32. Archetti, C.; Hertz, A.; Speranza, M.G. Metaheuristics for the team orienteering problem. J. Heuristics 2007, 13, 49–76. [CrossRef]
33. Campos, V.; Martí, R.; Sánchez-Oro, J.; Duarte, A. GRASP with path relinking for the orienteering problem. J. Oper. Res. Soc. 2014,

65, 1800–1813. [CrossRef]
34. Laguna, M.; Marti, R. GRASP and path relinking for 2-layer straight line crossing minimization. Informs J. Comput. 1999, 11, 44–52.

[CrossRef]
35. Reyes-Rubiano, L.; Juan, A.; Bayliss, C.; Panadero, J.; Faulin, J.; Copado, P. A biased-randomized learnheuristic for solving the

team orienteering problem with dynamic rewards. Transp. Res. Procedia 2020, 47, 680–687. [CrossRef]
36. Li, Y.; Peyman, M.; Panadero, J.; Juan, A.A.; Xhafa, F. IoT analytics and agile optimization for solving dynamic team orienteering

problems with mandatory visits. Mathematics 2022, 10, 982. [CrossRef]
37. Gomez, J.F.; Uguina, A.R.; Panadero, J.; Juan, A.A. A learnheuristic algorithm for the capacitated dispersion problem under

dynamic conditions. Algorithms 2023, 16, 532. [CrossRef]
38. Evers, L.; Glorie, K.; Van Der Ster, S.; Barros, A.I.; Monsuur, H. A two-stage approach to the orienteering problem with stochastic

weights. Comput. Oper. Res. 2014, 43, 248–260. [CrossRef]
39. Osisanwo, F.; Akinsola, J.; Awodele, O.; Hinmikaiye, J.; Olakanmi, O.; Akinjobi, J. Supervised machine learning algorithms:

Classification and comparison. Int. J. Comput. Trends Technol. 2017, 48, 128–138.
40. Russo, D.J.; Van Roy, B.; Kazerouni, A.; Osband, I.; Wen, Z. A tutorial on Thompson sampling. Found. Trends Mach. Learn. 2018,

11, 1–96. [CrossRef]
41. Thompson, W.R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples.

Biometrika 1933, 25, 285–294. [CrossRef]
42. Zhao, Q. Multi-Armed Bandits: Theory and Applications to Online Learning in Networks; Springer Nature: Berlin/Heidelberg,

Germany, 2022.
43. Gupta, A.K.; Nadarajah, S. Handbook of Beta Distribution and Its Applications; CRC Press: Boca Raton, FL, USA, 2004.
44. Chapelle, O.; Li, L. An empirical evaluation of thompson sampling. Adv. Neural Inf. Process. Syst. 2011, 24, 1–9.
45. Askhedkar, A.R.; Chaudhari, B.S. Multi-Armed Bandit Algorithm Policy for LoRa Network Performance Enhancement. J. Sens.

Actuator Netw. 2023, 12, 38. [CrossRef]
46. Jose, S.T.; Moothedath, S. Thompson sampling for stochastic bandits with noisy contexts: An information-theoretic regret analysis.

arXiv 2024, arXiv:2401.11565.

http://dx.doi.org/10.3390/a17050200
http://dx.doi.org/10.1016/j.cor.2012.02.010
http://dx.doi.org/10.1007/s10489-024-05367-4
http://dx.doi.org/10.1016/j.ejtl.2021.100070
http://dx.doi.org/10.1080/00207543.2015.1058982
http://dx.doi.org/10.1016/j.ejor.2013.02.049
http://dx.doi.org/10.1007/s12293-011-0071-x
http://dx.doi.org/10.1007/s10288-008-0094-4
http://dx.doi.org/10.1007/s10732-006-9004-0
http://dx.doi.org/10.1057/jors.2013.156
http://dx.doi.org/10.1287/ijoc.11.1.44
http://dx.doi.org/10.1016/j.trpro.2020.03.147
http://dx.doi.org/10.3390/math10060982
http://dx.doi.org/10.3390/a16120532
http://dx.doi.org/10.1016/j.cor.2013.09.011
http://dx.doi.org/10.1561/2200000070
http://dx.doi.org/10.1093/biomet/25.3-4.285
http://dx.doi.org/10.3390/jsan12030038

Mathematics 2024, 12, 1758 19 of 19

47. Dominguez, O.; Juan, A.A.; Faulin, J. A biased-randomized algorithm for the two-dimensional vehicle routing problem with and
without item rotations. Int. Trans. Oper. Res. 2014, 21, 375–398. [CrossRef]

48. Arif, T.M. Introduction to Deep Learning for Engineers: Using Python and Google Cloud Platform; Springer Nature: Berlin/Heidelberg,
Germany, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1111/itor.12070

	Introduction
	Related Work
	Describing the DTOP
	An Illustrative Example of the DTOP
	A Mathematical Model for the DTOP

	Modeling Probabilities of Reward for Different Types of Nodes
	Solution Approaches for the Heterogeneous DTOP
	Online Contextual Thompson Sampling
	A Static Constructive Heuristic
	A Learnheuristic Constructive Heuristic

	Numerical Experiments
	Analysis of Results
	Conclusions and Future Work
	References

