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Histological interpretation of spitzoid tumours: an extensive machine learning-based con-
cordance analysis for improving decision making

The histopathological classification of melanocytic
tumours with spitzoid features remains a challenging
task. We confront the complexities involved in the
histological classification of these tumours by propos-
ing machine learning (ML) algorithms that objectively
categorise the most relevant features in order of
importance. The data set comprises 122 tumours (39
benign, 44 atypical and 39 malignant) from four dif-
ferent countries. BRAF and NRAS mutation status
was evaluated in 51. Analysis of variance score was
performed to rank 22 clinicopathological variables.
The Gaussian naive Bayes algorithm achieved in dis-
tinguishing Spitz naevus from malignant spitzoid
tumours with an accuracy of 0.95 and kappa score
of 0.87, utilising the 12 most important variables.
For benign versus non-benign Spitz tumours, the test
reached a kappa score of 0.88 using the 13

highest-scored features. Furthermore, for the atypical
Spitz tumours (AST) versus Spitz melanoma compari-
son, the logistic regression algorithm achieved a
kappa value of 0.66 and an accuracy rate of 0.85.
When the three categories were compared most AST
were classified as melanoma, because of the similari-
ties on histological features between the two groups.
Our results show promise in supporting the histologi-
cal classification of these tumours in clinical practice,
and provide valuable insight into the use of ML to
improve the accuracy and objectivity of this process
while minimising interobserver variability. These pro-
posed algorithms represent a potential solution to the
lack of a clear threshold for the Spitz/spitzoid tumour
classification, and its high accuracy supports its use-
fulness as a helpful tool to improve diagnostic
decision-making.
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Introduction

Sophie Spitz described a series of 13 children with
melanocytic tumours with histopathological features
of malignancy but favourable outcomes, except for
one case with a fatal result. In this study she iden-
tified four questions: two related to clinical factors
and treatment and the other two related to histo-
logical features, as useful tools to outline differences
from conventional melanoma and as a marker of
clinical behaviour. Initially, she coined the term
‘juvenile melanomas’ for these tumours, although
nowadays we know that they also appear in older
populations.1 Currently, they are known as Spitz
tumours (ST) when, as well as a typical morphol-
ogy (large epithelioid and/or spindle melanocytic
cells with variable nuclear atypia), they harbour
HRAS mutations or kinase gene fusions but no
BRAF or NRAS mutations. Conversely, tumours
with the same morphology with no knowledge of
the genetic alterations and/or the presence of BRAF
or NRAS mutation can be categorised as spitzoid
tumours.2–4

Spitz tumours must be categorised as benign,
malignant and a third category of high diagnostic
challenge lying in between: Spitz naevus (SN), Spitz
melanoma (SM) and Spitz melanocytoma/atypical
Spitz tumour (AST). The same subclassification is
applied to the spitzoid tumours SN, SoidM and
ASoidT.2,5

One of the most challenging categories to identify
is the AST.5,6 This group makes up only 2% of all ST,
and while most have a positive outcome, there is a
small percentage that can result in fatal consequences
and distant metastasis.7,8 However, it remains
unclear how to distinguish those with malignant clin-
ical behaviour from the others.
Despite all the molecular discoveries that help to

understand ST as a distinct group with specific
mutagenic driver alterations, histological appearance
continues to be the first and often the only useful
tool for diagnostic interpretation worldwide. How-
ever, it has important shortcomings that are both a
major concern and a major challenge in dermato-
pathology. One of the most important weaknesses of
histological examination is the high interobserver
variability.9,10

In addition, the implementation of a complete ‘all-
inclusive’ study is hampered by limited access to
perform complex and expensive molecular studies,
especially in pathology laboratories with limited
economic resources.
In this regard, the questions related to histopathol-

ogy that Sophie Spitz mentioned are still relevant and
have not yet been completely clarified. In the scien-
tific literature, attempts to subclassify this group of
tumours on the basis of histological features create
flexible boundaries, where the same features appear
with variable oscillation or with more prominence in
one of the three ST classes mentioned above, and
therefore subjectivity remains an essential part of this
diagnostic interpretation.2,5,11 Essentially, the chal-
lenge lies in the fact that the more than 20 histologi-
cal features used for diagnosing STs have not yet
been objectively prioritised or systematically evalu-
ated to ascertain their impact on the histopathologi-
cal diagnosis.
Conversely, artificial intelligence (AI) applied to his-

topathology (known as computational pathology) has
shown significant benefits in increasing the efficiency
and accuracy of pathologists’ diagnosis, providing
quantitative measurements of biomarkers to classify
diseases into subtypes and predict outcomes, reducing
the interobserver variability in differentiating benign
from malignant tumours and their grading.12

Although the results that AI shows are promising,
only a small fraction of all these studies are approved
for clinical purposes. This is due mainly to the lack of
generalisability of their methodologies as one of the
most common problems.13

In this study, we propose a machine learning (ML)
model based on an analysis of variance (ANOVA)
according to different clinicopathological variables
commonly used for the diagnosis of STs to objectively
characterise, in order of relevance, the most impor-
tant features according to the algorithm tested.
Therefore, we attempt to demonstrate that with the
interpretation shown by the model, pathologists could
improve the certainty of using some particular fea-
tures with more diagnostic significance and reduce
the relevance of other characteristics for a proper
classification of STs, and evaluate the utility of these
algorithms in predicting low or high grade within the
AST category.
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Materials and Methods

E T H I C A L I S S U E S

The Ethics Committees of the University Clinic Hospi-
tal (Valencia, Spain), Stavanger University Hospital
(Stavanger, Norway), Cumming School of Medicine
(Calgary, Canada) and Fundaci�on Universitaria Sani-
tas (Bogot�a, Colombia) approved the study (2020/
114, 2019/747/RekVest, 2117-21) as part of the
Clarify Project (clarify-project.eu) from the European
Commission’s Horizon 2020 Program for Research
and Innovation, under the Marie Skłodowska-Curie
grant agreement no. 860627, which was conducted
in conformity with the principles of the Declaration of
Helsinki.

S A M P L E D A T A

This study was conducted in the Pathology Depart-
ment at the University Clinic Hospital of Valencia,
Spain. We collected ST cases from four institutions of
different countries (Spain, Norway, Canada and
Colombia) diagnosed by expert dermatopathologists
(C.M., E.U., T.B. and J.C.L-T., respectively). All speci-
mens had been formalin-fixed, paraffin-embedded and
processed in each pathology laboratory according to
standardised institutional protocols. Clinical and his-
topathological variables were obtained from each
institution and gathered together with the whole slide
image (WSI) of each case on which to corroborate
the diagnosis.
Cases were first divided into three categories based

solely upon their histopathological and immunohisto-
chemical features (HMB-45, Ki67 and p16), when
available: SN, ASoidT, and SoidM (see Figure 1,
Tables 1 and 2), according to the World Health Orga-
nisation (WHO) classification of skin tumours.2 In
addition, we divided the ASoidT category according to
its histological appearance: low-grade, when it was
closer to SN and high-grade if closer to melanoma.
When classifying these tumours as low- or
high-grade, it is important to note that some subjec-
tivity may be unavoidable due to differences in how
clinical and histological characteristics are inter-
preted. Nevertheless, we emphasised the presence of
four to six mitoses/mm2, atypical mitosis, expansile
nests and ulceration in order to subclassify them as
high-grade.2,14 Specifically, we considered high-grade
ASoidT when at least two of the following criteria
were present: four to six mitoses/mm2, atypical mito-
sis, expansile nests, marked nuclear pleomorphism
and ulceration (Table 1).

CDKN2A status was assessed by fluorescence in-situ
hybridisation (FISH) using a 9p21 probe (Vysis LSI
9p21; Abbot Molecular Inc., Des Plaines, IL, USA),
labelled with spectrum-red 2824 fluorophore, and a
Chr9 centromeric probe (Vysis LSI CEP; Abbott)
labelled with spectrum-green fluorophore and with
Salsa� methylation-specific multiplex ligation-
dependent probe amplification (MLPA) probemix
ME024-B2 9p21 CDKN2A/2B region (MRC-Holland,
Amsterdam, the Netherlands).15 We further obtained
information on BRAF and NRAS mutation status
by immunohistochemistry (anti-BRAF V600E, clone:
VE1; Ventana�; anti-RAS Q61R, clone: SP174 Abcam�,
respectively) and/or next-generation sequencing (NGS)
for atypical and malignant lesions. Cases without
BRAF or NRAS mutation were considered as bona fide
AST and SM.

M A C H I N E L E A R N I N G A S S E S S M E N T A N D

S T A T I S T I C A L A N A L Y S I S

Model building and statistical computations were per-
formed using Python (https://www.python.org/) in
the Jupyter Notebook platform (https://jupyter.org/)
with seaborn, NumPy, scikit-learn and pandas
libraries.
The primary objective of this study is to evaluate

the effectiveness of an ML model in classifying spitzoid
tumours to assist pathologists in the objective use of
clinical and histological information. The first step
aimed to distinguish between benign and malignant
spitzoid tumours, as well as between both categories
(low- and high-grade) of the ASoidT. In addition, we
evaluated the performance of a multiclass ML model
in distinguishing between SN, ASoidT and SoidM. Sec-
ondly, as the Spitz lineage is currently genetically
defined and simulating the histopathological diagnos-
tic process, the study focused upon the comparison
between benign (SN) and non-benign (AST + SM)
tumours, followed by the comparison between both
non-benign categories (AST versus SM) (Figure 2).

ML algorithms
To carry out these objectives, we selected a range of
ML algorithms; namely, logistic regression (LR),
Gaussian naive bayes (GNB), support vector machines
(SVM), decision tree (DT) and K-nearest neighbour
(KNN), to evaluate the ML model’s capability to pre-
dict the subclassification of these tumours based on
the tabulated clinicopathological variables as input.
Each selected algorithm provides different advantages
in handling the complexity of the task and the nature

� 2024 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology, 85, 155–170.
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of the data set and enables the development of effi-
cient models, even with limited data.

Algorithm evaluation
To evaluate our respective models, multiple evalua-
tion metrics were selected, including kappa score,
accuracy, F1-score, precision, sensitivity and speci-
ficity. The kappa score was evaluated to determine
concordance with pathologists’ diagnoses. It was
chosen as the main reference metric for optimising

and fine-tuning the models because of its particular
relevance in the medical field. This metric can be
interpreted as follows: a kappa score of less than
0.20 indicates poor agreement, 0.21–0.40 suggests
fair agreement, 0.41–0.60 denotes moderate agree-
ment, 0.61–0.80 signifies substantial agreement and
higher than 0.80 represents almost perfect agree-
ment. Finally, confusion matrices were also com-
puted to facilitate visualisation of the model’s
performance.

Figure 1. Spitzoid tumours: A–C. SN. D–F, Low-grade ASoidT with epidermal consumption and mitosis. G–I, High-grade ASoidT with ulcera-

tion and more prominent cellular atypia. J–L, (SoidM) with penetrating expansile mass composed of atypical spitzoid melanocytes and deep

mitosis.

� 2024 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology, 85, 155–170.
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Model’s optimisation
To determine the base models for each of the specific
approaches, we conducted a thorough comparison of
the results obtained from the five selected ML algo-
rithms. Prior to the comparison, each of the specific
algorithms underwent a fine-tuning process to select
the best parameters based on the average perfor-
mance across cohorts in the cross-validation process.
This optimisation allowed us to identify the models
that reached the best performance in distinguishing
three different comparisons: the first being SN versus
SoidM as illustrated in Figure 2A; the second, SN ver-
sus AST + SM (Figure 2B); and the third, AST versus
SM (Figure 2C).

Training data
The training and validation process of the first experi-
ment compared 39 SN versus 39 SoidM from Spain;
the second included 18 AST versus 18 SM cases; and
the third included 38 SN versus 38 AST + SM from
all three countries.

Analysis of clinicopathological variables
The ANOVA16 was performed to rank the variables
based on their importance and assess the differences
between the three comparisons mentioned above and
understand the variations among the clinicopatholog-
ical variables when comparing two classes. Subse-
quently, we refined the model selection process by

Table 1. Histological classification of spitzoid tumours

Feature SN Low-grade ASoidT High-grade ASoidT SoidM

Dimensions < 5–6 mm > 5–10 mm > 5–10 mm > 5 mm often > 10 mm

Symmetry Present May be present May be present Uncommon

Circumscription Well demarcated Well or poorly
demarcated

Well or poorly
demarcated

Poorly demarcated

Ulceration Uncommon Uncommon May be present May be present

Expansile nests Absent Absent May be present Common

Pagetoid pattern If any, central and focal Greater than SN Greater than SN Extensive

Epidermal consumption Extremely Uncommon May be present May be present Common

Maturation Present Partial or absent Partial or absent Uncommon

Mitotic rate < 2/mm2 2–3/mm2 4–6/mm2 > 6/mm2

Atypical mitosis Absent Absent May be present Common

Deep mitosis Extremely uncommon May be present May be present Yes

Necrosis Absent Uncommon Uncommon May be present

Cell type Enlarged epithelioid/
spindle

Enlarged epithelioid/
spindle

Enlarged epithelioid/
spindle

Enlarged epithelioid/
spindle

High-grade nuclear
atypia

Absent May be present May be present Common

Peritumoural TILs May be present May be present May be present May be present

Intratumoural TILs May be present May be present May be present May be present

Pigmentation May be present May be present May be present May be present

Prominent solar elastosis Uncommon May be present May be present More common than AST

Pulverocytes Extremely uncommon Extremely uncommon May be present May be present

Kamino bodies May be present May be present May be present Extremely uncommon

Sclerosis/desmoplasia May be present May be present May be present May be present

The features in bold type were considered more relevant for distinguishing low-grade ASoidT from high-grade ASoidT.
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iteratively reducing the feature set from the initial 22
variables, assessing the impact on model performance
with each reduction. This systematic reduction of the
variables aimed to determine the minimal feature
subset necessary while still achieving a kappa score
higher than 0.60. This approach allowed us to iden-
tify the threshold at which the model maintained its
predictive accuracy, revealing the most impactful fea-
tures for our analysis.

Results

The clinicopathological features are summarised in
Table 3. A total of 122 cases of ST, including (a) SN

(n = 39), which histologically corresponded to 10
junctional or compound conventional cases, 10 des-
moplastic, 10 pigmented (but not Reed’s naevi), three
plexiform, two pagetoid, two halo Spitz, one hyalinis-
ing and one angiomatous; (b) ASoidT (n = 44); and
(c) SoidM (n = 39). There is a higher prevalence of ST
in females compared to males among all three catego-
ries. The mean age of patients in the SoidM category
is higher (45.64 years) compared to those in the SN
(23.82 years) and ASoidT (26.41 years) categories.
SN is typically diagnosed in younger people, while
the age range for ASoidT falls between that of SN and
SoidM. The average clinical follow-up of the study was
73 months. For the 22 cases of high-grade ASoidT,

Table 2. Immunohistochemical findings and CDKN2A deletion status (FISH/MLPA).

BRAF/NRAS status

p16 CDKN2A status HMB-45 maturation Ki67

No loss Loss NA No/Del HET/Del HOM/del NA Present Absent NA < 20% ≥ 20% NA

Low-grade ASoidT

Non-mutated (n = 13) 8 1 4 4 1 0 8 3 0 10 5 0 8

Mutated (n = 0) 0 0 0 0 0 0 0 0 0 0 0 0 0

NA (n = 9) 4 3 2 0 0 0 9 6 1 2 7 0 2

Total (n = 22) 12 4 6 4 1 0 17 9 1 12 12 0 10

High-grade ASoidT

Non mutated (n = 6) 2 1 3 1 0 0 5 4 0 2 4 0 2

Mutated (n = 2) 1 1 0 1 1 0 0 1 1 0 2 0 0

NA (n = 14) 6 2 6 0 0 0 14 10 1 3 11 0 3

Total (n = 22) 9 4 9 2 1 0 19 15 2 5 17 0 5

Total ASoidT

n = 44 21 8 15 6 2 0 36 24 3 17 29 0 15

SoidM

Non-mutated (n = 19) 2 8 9 1 1 1 16 0 3 16 6 2 11

Mutated (n = 11) 4 2 5 1 2 1 7 1 2 8 2 1 8

NA (n = 9) 3 3 3 0 4 0 5 1 1 7 2 2 5

Total (n = 39) 9 13 17 2 7 2 28 2 6 31 10 5 24

No/Del, no deletion; HET/Del, heterozygous deletion; HOM/Del, homozygous deletion; NA, not applicable.

Figure 2. Overall ML and statistical analysis pipeline: A–C, Histological variables were concatenated to clinical variables of the patient (age

at diagnosis, sex, tumour location), and each case was labelled according to the pathologists’ diagnosis. Using ANOVA, the clinicopathologi-

cal features were stratified. Subsequently, a ML model was implemented to see the performance according to the ANOVA’s score in predict-

ing (A) SN versus SoidM; high-grade ASoidT versus low-grade (ASoidT); (B) AST versus SM and (C) SN versus AST + SM. D, Multiclass ML

model to predict SN, ASoidT and SoidM.
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Table 3. Clinicopathological data

Diagnosis SN Low-grade ASoidT High-grade ASoidT Total ASoidT SoidM

Number of cases 39 22 22 44 39

Age

Mean 23.82 24.31 30.45 27.38 45.64

Min 3 1 4 5 10

Max 85 78 70 148 91

Sex

Female 26 (67%) 14 (64%) 13 (59%) 27 (61%) 22 (56%)

Male 13 (33%) 8 (36%) 7 (32%) 15 (34%) 17 (44%)

NA 0 (0%) 0 (0%) 2 (9%) 2 (5%) 0 (0%)

Tumour location

Head and neck 5 (13%) 6 (27%) 6 (27%) 12 (27%) 3 (8%)

Trunk 11 (28%) 1 (5%) 1 (5%) 2 (5%) 1 (3%)

Upper limb 8 (21%) 6 (27%) 1 (5%) 7 (16%) 15 (38%)

Lower limb 8 (21%) 5 (23%) 7 (32%) 12 (27%) 11 (28%)

NA 7 (18%) 4 (18%) 7 (32%) 11 (25%) 9 (23%)

Symmetry 38 (97%) 20 (91%) 21 (95%) 41 (93%) 26 (67%)

Ulceration 0 (0%) 0 (0%) 1 (5%) 1 (2%) 6 (15%)

Pagetoid spread 6 (15%) 5 (23%) 7 (32%) 12 (27%) 19 (49%)

Expansile nests 1 (3%) 2 (9%) 3 (14%) 5 (11%) 18 (46%)

Number of cases with mitosis 2 (5%) 11 (50%) 11 (50%) 22 (50%) 29 (74%)

Mitosis/mm2

Mean 0.05 2.09 2.45 2.27 3.74

Min 0 1 0 1 0

Max 2 3 6 6 30

Atypical mitosis 0 (0%) 0 (0%) 4 (18%) 4 (9%) 23 (59%)

Deep mitosis 0 (0%) 3 (14%) 1 (5%) 4 (9%) 13 (33%)

Atypia/pleomorphism 4 (10%) 15 (68%) 19 (86%) 34 (77%) 35 (90%)

Maturation 39 (100%) 14 (64%) 12 (55%) 26 (59%) 8 (21%)

Kamino bodies

0 33 (85%) 19 (86%) 21 (95%) 40 (91%) 35 (90%)

1 2 (5%) 0 (0%) 1 (5%) 1 (2%) 4 (10%)

2–5 2 (5%) 1 (5%) 0 (0%) 1 (2%) 0 (0%)

6–10 1 (3%) 1 (5%) 0 (0%) 1 (2%) 0 (0%)

> 10 1 (3%) 1 (5%) 0 (0%) 1 (2%) 0 (0%)
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there was a 5% incidence of both local recurrence
and regional relapse, with no distant metastasis or
deaths. The 22 cases of low-grade ASoidT showed no
events in any category. Finally, among the 39 SoidM
cases, there was a 3% local recurrence rate, 18%
regional relapse, 8% distant metastasis and a 5%
death rate (see Table 4).

We were able to obtain information on BRAF
and NRAS mutation status from 51 cases of ASoidT
and SoidM (21 and 30, respectively). With regard to
ASoidT, we found that only one case (histologically
high-grade) was BRAF mutated (BAMS)3 and one
case (also histologically high-grade) was NRAS
mutated. Therefore, most (90%) of our ASoidT can

Table 3. (Continued)

Diagnosis SN Low-grade ASoidT High-grade ASoidT Total ASoidT SoidM

Peritumoural TILs

Absent 14 (36%) 5 (23%) 10 (45%) 15 (34%) 7 (18%)

Discontinuous 24 (62%) 14 (64%) 10 (45%) 24 (55%) 27 (69%)

Dense 1 (3%) 3 (14%) 2 (9%) 5 (11%) 5 (13%)

Intratumoural TILs

Absent 22 (56%) 5 (23%) 9 (41%) 14 (32%) 12 (31%)

Weak 17 (44%) 17 (77%) 11 (50%) 28 (64%) 23 (59%)

Intense 0 (0%) 0 (0%) 2 (9%) 2 (5%) 4 (10%)

Epidermal consumption 1 (3%) 8 (36%) 5 (23%) 13 (30%) 19 (49%)

Prominent elastosis 1 (3%) 1 (5%) 1 (5%) 2 (5%) 2 (5%)

Pigmentation 14 (36%) 9 (41%) 8 (36%) 17 (39%) 18 (46%)

Sclerosis 6 (15%) 2 (9%) 1 (5%) 3 (7%) 4 (10%)

Type of cell

Epithelioid 18 (46%) 17 (77%) 20 (91%) 37 (84%) 28 (72%)

Spindle 15 (38%) 1 (5%) 1 (5%) 2 (5%) 6 (15%)

epi/spin 6 (15%) 4 (18%) 1 (5%) 5 (11%) 5 (13%)

Pulverocytes 0 (0%) 0 (0%) 2 (9%) 2 (5%) 2 (5%)

Necrosis 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (3%)

TILs, tumour-infiltrating lymphocytes; epi/spin, epithelioid and spindle; NA, not applicable.

Table 4. Clinical follow-up

Diagnosis SN Low-grade ASoidT High-grade ASoidT Total ASoidT SoidM

Number of cases 39 22 22 44 39

Local recurrence 0 (0%) 0 (0%) 1 (5%) 1 (2%) 1 (3%)

Regional relapse 0 (0%) 0 (0%) 1 (5%) 1 (2%) 7 (18%)

Distant metastasis 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (8%)

Death 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (5%)
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be considered to be bona fide Spitz melanocytoma/
AST. In contrast, nine of 30 SoidM were BRAF
mutated and two were NRAS mutated. Thus, the
majority (63%) can be considered as true Spitz
melanomas (SM) (Tables 2 and 5). The lack of
information on the specific genetic drivers of
the different subtypes of ST is a limitation of our
study.
We collected data on p16 immunostaining from 51

cases of ASoidT and SoidM (29 of 44 and 22 of 39,
respectively) and CDKN2A deletion status from 19
cases. Eight ASoidT and SoidM cases had loss of p16
immunostaining. Eight cases had no CDKN2A copy
number alteration. Heterozygous deletion was found
in nine cases and homozygous deletion in two cases
(both SM). The low-grade ASoidT cases with p16 loss
were not upgraded because there was no CDKN2A
homozygous deletion. These results, as well as those
of HMB-45 and Ki67, are shown in Table 2.
Although relevant, we finally decided not to include
the immunohistochemical biomarkers because the
limited availability of samples with this information
hindered the ability to achieve an effective ML
performance.

M L M O D E L P E R F O R M A N C E U S I N G A N O V A

The best-performing ML model in classifying SN ver-
sus SoidM using the 22 clinicopathological variables
was the GNB model, with an accuracy of 0.95 and a
kappa score of 0.87 (Table 6), thus making it the
backbone model for further experiments for this pre-
diction task. During the ANOVA analysis of the

clinicopathological features, cellular atypia and pleo-
morphism reported the highest score (41.30), fol-
lowed by maturation (32.88) and atypical mitosis
(19.13). Conversely, necrosis, sclerosis and solar elas-
tosis had the worst scores (0, 0.48 and 1.16, respec-
tively), thus suggesting less relevance in the possible
diagnosis, as depicted in Figure 3A. In the validation
phase, considering the 12 features with the highest
ANOVA significance scores, the GNB yielded identical
results. When we narrowed it down to the top six
features according to ANOVA scores, we noticed just
a small difference in the kappa score (0.84), main-
taining the same accuracy. This ML model was tested
on an international cohort with four cases from Nor-
way and four from Colombia (each with two SN and
two SoidM), together with four cases from Spain. The
model reached a kappa score of 0.67 and an accu-
racy of 0.83 on the test set, as shown in Table 7.
In the comparison of SN versus AST + SM, the

GNB model outperformed the other four machine
learning models, achieving a kappa score of 0.72 and
an accuracy of 0.87 (Table 6). Cellular atypia and
pleomorphism was identified as the most important
feature, similar to the previous comparison, with a
score of 13.16. The next three most significant fea-
tures included tumour location, with a score of 9.92,
the presence of atypical mitoses at 8.93 and mitotic
count/mm2 at 7.61. During the validation phase, the
model sustained a substantial level of agreement, evi-
denced by a kappa score of 0.65 and an accuracy of
0.83, using the 13 features with the highest scores
from ANOVA analysis (Figure 3B). The model further
improved in the test phase, achieving a kappa score
of 0.75 and an accuracy of 0.88 (Table 7).
Furthermore, for the comparison between AST and

SM, the LR model stood out as the most effective ML
strategy. It attained a kappa score of 0.66 and an
accuracy rate of 0.85 (Table 6). The kappa score
remained within the range for substantial agreement
(0.61) when the last six of the 22 features according
to the ANOVA ranking for this group were discarded.
This was achieved with a sensitivity of 0.82 and a
specificity of 0.75. However, the performance signifi-
cantly decreased after reducing the feature set to 15
characteristics (Table 7). The highest scores in this
comparison were atypical mitosis (9.02) followed by
maturation (7.89), age (7.20) and expansile nest
(6.66) (Figure 3C).

M U L T I C L A S S M L M O D E L P E R F O R M A N C E

The confusion matrix obtained regarding the classifi-
cation of the three-class GNB model distinguishing

Table 5. BRAF V600E and NRAS Q61R mutation status

Low-grade
ASoidT
(n = 22)

High-grade
ASoidT
(n = 22)

Total
ASoidT
(n = 44)

SoidM
(n = 39)

BRAF V600E

Mutated 0 1 1 9

Non-mutated 13 7 20 21

NA 9 14 23 9

NRAS Q61R

Mutated 0 1 1 2

Non-mutated 11 4 15 27

NA 11 17 28 10

NA, not applicable.

� 2024 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology, 85, 155–170.

164 A Mosquera-Zamudio et al.

 13652559, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/his.15187 by U

niversitat Politecnica D
e V

alencia, W
iley O

nline L
ibrary on [30/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



between SN, ASoidT and SoidM revealed, first, that a
high rate of correct predictions was observed for SN
cases, with a total of 27 of 29 cases correctly classi-
fied. However, two SN instances were erroneously
classified as AST. Conversely, the classification of
ASoidT cases showed more challenging performance
with nine cases correctly classified, but also 11 cases
misclassified as SN and nine cases as SoidM. For SoidM
cases, a high rate of correct classification was
observed, with 21 cases accurately identified. How-
ever, there were eight cases that were misclassified as
ASoidT (see Figure 4).

A S O I D T

ML model performance with binary ML model used
in SN versus SoidM
We evaluated the model’s performance of the binary
ML model used previously for SN versus SoidM (see
Figure 2D) by analysing the confusion matrix, which

compared the predicted classifications of low-grade
ASoidT and high-grade ASoidT lesions to their classifi-
cations according to the pathologists. Note that the
ASoidT data set used in these steps encompassed cases
from four different institutions (Canada, Colombia,
Spain and Norway). O the 22 cases of low-grade
ASoidT lesions, 11 were correctly classified as
low-grade ASoidT, while 11 were misclassified as
high-grade ASoidT. The majority of ASoidT lesions
(62%) were classified as malignant, indicating a
potential risk for malignancy. However, the cases
classified as benign highlight the difficulty in accu-
rately distinguishing between malignant and benign
ASoidT lesions (Figure 4B).

Discussion

ML models have proved feasible in distinguishing
between benign and malignant melanocytic

Table 6. Validation results of the models trained with the binary classifier

Model Kappa ACC F1-score Precision Sensitivity Specificity

SN versus SoidM

GNB 0.87 � 0.11 0.95 � 0.04 0.95 � 0.04 0.95 � 0.04 0.93 � 0.13 0.92 � 0.10

LR 0.83 � 0.17 0.93 � 0.07 0.93 � 0.07 0.93 � 0.07 0.86 � 0.13 0.97 � 0.05

DT 0.76 � 0.23 0.91 � 0.08 0.90 � 0.09 0.92 � 0.07 0.77 � 0.29 0.90 � 0.09

SVM 0.63 � 0.31 0.84 � 0.12 0.84 � 0.12 0.84 � 0.12 0.77 � 0.23 0.87 � 0.11

KNN 0.66 � 0.23 0.86 � 0.07 0.86 � 0.08 0.86 � 0.09 0.73 � 0.21 0.93 � 0.10

SN versus AST + SM

GNB 0.72 � 0.08 0.87 � 0.04 0.86 � 0.04 0.89 � 0.04 0.76 � 0.10 0.97 � 0.07

LR 0.66 � 0.10 0.83 � 0.05 0.83 � 0.05 0.87 � 0.03 0.71 � 0.09 0.97 � 0.07

DT 0.43 � 0.26 0.75 � 0.12 0.68 � 0.14 0.77 � 0.14 0.67 � 0.17 0.79 � 0.12

SVM 0.52 � 0.27 0.77 � 0.13 0.77 � 0.13 0.78 � 0.14 0.70 � 0.13 0.83 � 0.14

KNN 0.55 � 0.21 0.77 � 0.12 0.76 � 0.13 0.83 � 0.08 0.58 � 0.15 0.97 � 0.07

AST versus SM

GNB 0.25 � 0.27 0.65 � 0.14 0.59 � 0.18 0.67 � 0.24 1.00 � 0.00 0.28 � 0.28

LR 0.66 � 0.23 0.85 � 0.09 0.84 � 0.10 0.88 � 0.08 0.92 � 0.11 0.76 � 0.22

DT 0.37 � 0.25 0.69 � 0.14 0.71 � 0.14 0.72 � 0.14 0.63 � 0.11 0.85 � 0.30

SVM 0.61 � 0.24 0.82 � 0.11 0.82 � 0.11 0.86 � 0.09 0.68 � 0.19 0.96 � 0.08

KNN 0.62 � 0.37 0.82 � 0.19 0.82 � 0.18 0.85 � 0.18 0.73 � 0.23 0.90 � 0.20

Note that a grid search for parameters’ optimisation based on cross-validation results with the Cohen kappa’s score was performed for each

of the presented models. GNB, Gaussian naive Bayes; LR, logistic regression; DT, decision tree; SVM, support vector machines; KNN,

K-nearest neighbour. The best model performance for each experiment is highlighted in bold.
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Figure 3. ANOVA score results for each predictor variable of our data set. TILs, tumour-infiltrating lymphocytes. [Colour figure can be

viewed at wileyonlinelibrary.com]
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tumours.17 Additionally, the ANOVA analysis has
proved to be a valuable tool for identifying and select-
ing the most significant features, enhancing the per-
formance of ML models to achieve greater accuracy
in various applications related to tumour
diagnosis.18–21

As spitzoid tumours continue to pose significant
challenges in dermatopathology, this study aimed to
evaluate the effectiveness of ML models in distin-
guishing benign from malignant tumours, as well as
predicting the subclassification of the atypical inter-
mediate category, based on 22 clinicopathological
features in different cohorts diagnosed by dermato-
pathologists from four different countries. The pri-
mary goal was to rank these features objectively
according to their relevance, providing valuable

insights to pathologists in identifying the most signifi-
cant factors for accurate diagnosis.
It is well known that in many pathology laborato-

ries worldwide no genetic information is available,
but still the subclassification and especially the dis-
tinction between benign and malignant is mandatory.
For this reason, we also implemented our ML models
in order to categorise and rank the clinical and histo-
logical features that are available in all centres to
select the most important variables in order to
improving and saving time in the diagnostic
decision-making process.
We demonstrate that our GNB ML algorithm,

through simulation of the histopathology diagnostic
workflow, can discriminate between benign and
non-benign Spitz tumours based solely upon the 14

Table 7. Validation of the models trained with the best binary classifier selected in the previous step, selecting subsets of
the features depending on their ANOVA score (see Figure 3)

Features Kappa ACC F1-score Precision Sensitivity Specificity

SN versus SoidM

Validation

22 (all) 0.87 � 0.11 0.95 � 0.04 0.95 � 0.04 0.95 � 0.04 0.93 � 0.13 0.92 � 0.10

12 0.87 � 0.11 0.95 � 0.04 0.95 � 0.04 0.95 � 0.04 0.93 � 0.13 0.92 � 0.10

6 0.84 � 0.23 0.95 � 0.07 0.94 � 0.09 0.96 � 0.06 0.87 � 0.27 0.95 � 0.10

Test (multinational)

12 0.67 0.83 0.86 1.0 0.75 1.0

SN versus AST + SM

Validation

22 0.72 � 0.08 0.87 � 0.04 0.86 � 0.04 0.89 � 0.04 0.76 � 0.10 0.97 � 0.07

13 0.65 � 0.10 0.83 � 0.05 0.83 � 0.05 0.84 � 0.05 0.80 � 0.09 0.85 � 0.08

Test (multinational)

14 0.88 0.88 0.88 0.88 0.88 0.88

AST versus SM

Validation

22 0.66 � 0.23 0.85 � 0.09 0.84 � 0.10 0.88 � 0.08 0.92 � 0.11 0.76 � 0.22

19 0.61 � 0.28 0.82 � 0.13 0.82 � 0.13 0.84 � 0.13 0.87 � 0.11 0.75 � 0.22

16 0.61 � 0.28 0.82 � 0.13 0.82 � 0.13 0.84 � 0.13 0.87 � 0.11 0.75 � 0.22

15 0.17 � 0.26 0.53 � 0.18 0.49 � 0.22 0.56 � 0.28 0.72 � 0.27 0.45 � 0.33

The SN versus SoidM and the SN versus AST + SM models were tested with external cases from Colombia and Norway, in addition to insti-

tutional cases from Spain. The best performance for each experiment is highlighted in bold.
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most important clinical and histological features
according to the ANOVA categorisation, achieving a
test kappa score of 0.88 with high accuracy, sensitiv-
ity and specificity. Furthermore, our LR ML model is
also effective in distinguishing AST versus SM with
an acceptable substantial agreement maintaining
very high performance in the other metrics.

Therefore, with these two ML algorithms, we have
shown that an objective evaluation and reduction of
the clinicopathological variables can be conducted in
order to make an accurate diagnosis.
When testing the ML model on cases from other

countries between SN and SoidM we observed a reduc-
tion in accuracy to 0.83, with the kappa score also

Figure 4. Confusion matrix of the ML models experiments including ASoidT cases. A, Validation results of a multi-class model trained to differen-

tiate between benign, malignant and ASoidT. B, Validation of the ASoidT model predictions using the binary model applied for SN versus SoidM.

[Colour figure can be viewed at wileyonlinelibrary.com]

Figure 5. Dispersion map comparing the histological features between ASoidT, SN and SoidM. [Colour figure can be viewed at

wileyonlinelibrary.com]
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decreasing to 0.67 (Table 7). However, these results
still demonstrate an acceptable level of agreement
and accuracy. This finding also aligns with existing
literature that highlights the high interobserver vari-
ability observed in ambiguous tumours. Previous
studies, such as Bhoyrul et al.10 and Colloby et al.,22

have reported similar difficulties in achieving consen-
sus among pathologists. The impact of interobserver
variability has also been highlighted in studies by
Elmore et al.23 and Lodha et al.24

During the validation of the ASoidT using the
binary model for the SN versus SoidM comparison, we
observed that a significant number of cases were clas-
sified as SoiM. This implies that certain features pre-
sent in these cases tend to resemble those of
melanoma (SoidM) rather than naevi (SN), leading to
a diagnosis of a malignancy. The dispersion map in
Figure 5, based on the results presented in Table 3,
further supports this finding. Specifically, characteris-
tics such as pagetoid spread, expansile nests, atypical
mitosis and deep mitosis show a closer resemblance
between ASoidT and SoidM than between ASoidT and
SN, indicating a higher similarity between ASoidT and
SoidM. This convergence of characteristics between
ASoidT and SoidM reinforces the rationale behind the
experimental observations.
Our findings with the ANOVA categorisation, ana-

lysing among these three different comparisons,
revealed some consistent trends in the most impor-
tant features. Among the 22 features we looked at,
atypical mitosis, atypia/pleomorphism and mitosis/
mm2 always ranked in the top six, highlighting
their significant role in our predictive models
(Figure 3).
In summary, this approach shows promising poten-

tial to facilitate the diagnosis of challenging melano-
cytic tumours with spitzoid features by utilising ML
models to objectively categorise clinicopathological
parameters. This approach not only simplifies the
diagnostic process by minimising the number of vari-
ables needed, but also enhances diagnostic accuracy
for these tumours with known or unknown BRAF/
NRAS mutation status. Implementation of this
method may potentially reduce interobserver variabil-
ity between pathologists improving the morphological
categorisation of these tumours, in order to facilitate
their histopathological diagnostic interpretation.
Despite our lack of information regarding the specific
genetic drivers of the different subtypes of ST, our
algorithms distinguish successfully between SN and
SoidM, SN and non-benign ST (AST + SM), as well as
between AST and SM. Overall, this model offers
promising implications for improving the clinical

workflow and diagnostic practices in the field of
dermatopathology.

Acknowledgements

This work has received funding from Horizon 2020,
the European Commission’s Framework Programme
for Research and Innovation, under the grant agree-
ment no. 860627 (CLARIFY), PI20/00094, Instituto
de Salud Carlos III, FEDER European Funds and INN-
EST/2021/321 (SAMUEL). The work of A.C. has been
supported by the ValgrAI—Valencian Graduate
School and Research Network for Artificial Intelli-
gence and Generalitat Valenciana and Universitat
Polit�ecnica de Val�encia (PAID-PD-22).The material
from Norway has been collected as part of the project
‘Pathology services in the Western Norway Health
Region—a centre for applied digitisation’ which is
financed through a strategic investment from the
Western Norway Health Authority.

Conflicts of interest

The authors declare no conflicts of interest. The foun-
ders had no role in the study’s design; in the collec-
tion, analysis or interpretation of data; in the writing
of the manuscript; or in the decision to publish the
results.

Data availability statement

The data that support the findings of this study are
available from the corresponding author upon rea-
sonable request.

References

1. Spitz S. Melanomas of childhood. Am. J. Pathol. 1948; 24;

591–609.
2. Gerami P, Bahrami A, Busam KJ, de la Fouchardi�ere A, Kaza-

kov DV, Massi D, et al. In: Elder D, Barnhill R, editors. Spitz

Melanoma, Vol. 12 Of WHO classification of tumours, 5 ed.

Lyon, France: International Agency for Research on Cancer;

2023. https://tumourclassification.iarc.who.int/chapters/64,

[Internet; beta version ahead of print].

3. Zhao J, Benton S, Zhang B et al. Benign and intermediate-grade

melanocytic tumors with BRAF mutations and spitzoid morphol-

ogy: a subset of melanocytic neoplasms distinct From melanoma.

Am. J. Surg. Pathol. 2022; 46; 476–485.
4. Raghavan S, Peternel S, Mully T et al. Spitz melanoma is a dis-

tinct subset of spitzoid melanoma. Mod. Pathol. 2020; 33;

1122–1134.
5. Yeh I, Busam KJ. Spitz melanocytic tumours - a review. Histo-

pathology 2022; 80; 122–134.

� 2024 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology, 85, 155–170.

Machine learning for histologic analysis of Spitzoid tumors 169

 13652559, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/his.15187 by U

niversitat Politecnica D
e V

alencia, W
iley O

nline L
ibrary on [30/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://tumourclassification.iarc.who.int/chapters/64


6. Barnhill RL, Argenyi ZB, From L et al. Atypical Spitz nevi/

tumors: lack of consensus for diagnosis, discrimination from

melanoma, and prediction of outcome. Hum. Pathol. 1999; 30;

513–520.
7. Ruijter CGH, Ouwerkerk W, Jaspars EH et al. Incidence and

outcome of Spitzoid tumour of unknown malignant potential

(STUMP): an analysis of cases in The Netherlands from 1999

to 2014. Br. J. Dermatol. 2020; 183; 1121–1123.
8. Lallas A, Kyrgidis A, Ferrara G et al. Atypical spitz tumours

and sentinel lymph node biopsy: a systematic review. Lancet

Oncol. 2014; 15; e178–e183.
9. Cazzato G, Massaro A, Colagrande A et al. Dermatopathology

of malignant melanoma in the era of artificial intelligence: a

single institutional experience. Diagnostics (Basel) 2022; 12;

1972.

10. Bhoyrul B, Brent G, Elliott F et al. Pathological review of pri-

mary cutaneous malignant melanoma by a specialist skin can-

cer multidisciplinary team improves patient care in the UK. J.

Clin. Pathol. 2019; 72; 482–486.
11. Massi D, De Giorgi V, Mandal�a M. The complex management

of atypical Spitz tumours. Pathology 2016; 48; 132–141.
12. Berb�ıs MA, McClintock DS, Bychkov A et al. Computational

pathology in 2030: a Delphi study forecasting the role of AI in

pathology within the next decade. EBioMedicine 2023; 88;

104427.

13. Mosquera-Zamudio A, Launet L, Tabatabaei Z et al. Deep

learning for skin melanocytic tumors in whole-slide images: a

systematic review. Cancers (Basel) 2022; 15; 42.

14. Spatz A, Calonje E, Handfield-Jones S, Barnhill RL. Spitz

tumors in children: a grading system for risk stratification.

Arch. Dermatol. 1999; 135; 282–285.
15. Martinez Ciarpaglini C, Gonzalez J, Sanchez B et al. The

amount of melanin influences p16 loss in Spitzoid melanocytic

lesions: correlation with CDKN2A status by FISH and MLPA.

Appl. Immunohistochem. Mol. Morphol. 2019; 27; 423–429.
16. St»hle L. Analysis of variance (ANOVA). Chemom. Intell. Lab.

Syst. 1989; 6; 259–272. https://www.sciencedirect.com/

science/article/pii/0169743989800954.

17. Li S, Chu Y, Wang Y et al. Distinguish the value of the benign

nevus and melanomas using machine learning: a meta-analysis

and systematic review.Mediat. Inflamm. 2022; 2022; 1734327.

18. Burti S, Zotti A, Bonsembiante F, Contiero B, Banzato T. A

machine learning-based approach for classification of focal

splenic lesions based on their CT features. Front. Vet. Sci.

2022; 9; 872618.

19. do Nascimento MZ, Martins AS, Azevedo Tosta TA, Neves LA.

Lymphoma images analysis using morphological and

non-morphological descriptors for classification. Comput.

Methods Prog. Biomed. 2018; 163; 65–77.
20. Shao S, Mao N, Liu W et al. Epithelial salivary gland tumors:

utility of radiomics analysis based on diffusion-weighted imag-

ing for differentiation of benign from malignant tumors. J.

Xray Sci. Technol. 2020; 28; 799–808.
21. Vijithananda SM, Jayatilake ML, Hewavithana B et al. Feature

extraction from MRI ADC images for brain tumor classification

using machine learning techniques. Biomed. Eng. Online 2022;

21; 52.

22. Colloby PS, West KP, Fletcher A. Observer variation in the

measurement of Breslow depth and Clark’s level in thin cuta-

neous malignant melanoma. J. Pathol. 1991; 163; 245–250.
23. Elmore JG, Barnhill RL, Elder DE et al. Pathologists’ diagnosis

of invasive melanoma and melanocytic proliferations: observer

accuracy and reproducibility study. BMJ 2017; 357; j2813.

24. Lodha S, Saggar S, Celebi JT, Silvers DN. Discordance in the

histopathologic diagnosis of difficult melanocytic neoplasms in

the clinical setting. J. Cutan. Pathol. 2008; 35; 349–352.

� 2024 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology, 85, 155–170.

170 A Mosquera-Zamudio et al.

 13652559, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/his.15187 by U

niversitat Politecnica D
e V

alencia, W
iley O

nline L
ibrary on [30/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.sciencedirect.com/science/article/pii/0169743989800954
https://www.sciencedirect.com/science/article/pii/0169743989800954

	 Introduction
	 Materials and Methods
	 Ethical Issues
	 Sample�Data
	 Machine Learning Assessment and Statistical Analysis
	 ML algorithms
	 Algorithm evaluation

	his15187-fig-0001
	 Model&apos;s optimisation
	 Training�data
	 Analysis of clinicopathological variables


	 Results
	his15187-fig-0002
	 ML Model Performance Using�ANOVA
	 MultiClass ML Model Performance
	 ASoidT
	 ML model performance with binary ML model used in SN versus SoidM


	 Discussion
	his15187-fig-0003
	his15187-fig-0004
	his15187-fig-0005

	 Acknowledgements
	 Conflicts of interest
	 Data availability statement

	 References
	his15187-bib-0001
	his15187-bib-0002
	his15187-bib-0003
	his15187-bib-0004
	his15187-bib-0005
	his15187-bib-0006
	his15187-bib-0007
	his15187-bib-0008
	his15187-bib-0009
	his15187-bib-0010
	his15187-bib-0011
	his15187-bib-0012
	his15187-bib-0013
	his15187-bib-0014
	his15187-bib-0015
	his15187-bib-0016
	his15187-bib-0017
	his15187-bib-0018
	his15187-bib-0019
	his15187-bib-0020
	his15187-bib-0021
	his15187-bib-0022
	his15187-bib-0023
	his15187-bib-0024


