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Abstract
We address the efficient implementation of the convolution operator on the GAP8 
parallel ultra-low power platform (PULP), a heterogeneous multi-core processor 
equipped with a fabric controller (FC); a cluster of eight compute cores; and a four-
level memory hierarchy with scratchpads instead of conventional, hardware-assisted 
cache memories. Our solution for this platform transforms the convolution into a 
general matrix–matrix multiplication (gemm) via the lowering approach, demonstrat-
ing that it is possible to attain reasonable performance on the GAP8 by carefully 
adapting techniques such as tiling and loop parallelism, which are mainstream in the 
multi-threaded, cache-aware realization of gemm.

Keywords  Convolutional layers · Deep learning · Edge processors · Performance 
analysis

1  Introduction

Implementing deep learning (DL) algorithms on edge devices for Internet of 
things (IoT) applications is critical to enhance privacy and security. In addi-
tion, moving the computation from the cloud to IoT nodes closer to sensors can 
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significantly reduce the amount of data sent over the network, thereby reducing 
latency and energy consumption  [1–3]. The wide variety of IoT applications, 
many of which rely on DL technologies, has led to a broad range of edge pro-
cessor architectures, including cores with RISC-V ISA (instruction set architec-
ture)  [4]. This diversity, combined with severe constraints on power, memory 
capacity and computational performance for edge devices, asks for a careful 
selection of algorithms and the optimization of the software running on them.

In this work, we focus on the implementation of convolutional deep neural net-
works (DNNs) on edge processors. With this objective, we parallelize a popular 
algorithm for the convolution operator based on the lowering approach, which 
decomposes the operation into a data replication transform, known as im2col or 
im2row, followed by a general matrix–matrix multiplication (gemm)  [5]. Moreo-
ver, we target the heterogeneous 1+8 RISC-V cores integrated into the GAP8 par-
allel ultra-low power platform (PULP) for IoT. In more detail, this paper makes 
the following contributions:

•	 We develop a high-performance, multi-threaded implementation of gemm that 
operates with 8-bit integer (INT8) data and arithmetic on top of the dot (scalar 
or inner) product, a basic kernel that receives special support in the GAP8. In 
our solution, the 8 compute cores of the GAP8 are in charge of all the arith-
metic while the remaining core, known as the fabric controller (FC), coordi-
nates the data movements.

•	 We orchestrate a careful sequence of data transfers across the memory areas 
of the GAP8 via DMA transfers, embedding these movements into the tiling 
techniques of a parallel blocked algorithm for gemm.

•	 We perform a complete experimental evaluation of the convolution realization 
for the two aforementioned transforms: im2col and im2row.

The rest of the paper is structured as follows. In Sect.  2 we briefly present the 
convolution operator and in Sect. 3 we review the high-performance implemen-
tation of gemm on multicore processors with a multilayered memory including 
caches. In Sect. 4 we detail the main features of the GAP8 platform. In Sect. 5 
we describe the approach to obtain a parallel high-performance algorithm for 
gemm on the GAP8 system. In Sect. 6, we evaluate the resulting routine. Finally, 
in Sects. 7 and 8 we close the paper with a general discussion and a few conclud-
ing remarks.

2 � Convolution via IM2COL+GEMM

In this section, we first introduce the convolution operation [6] to then present the 
im2col and im2row transforms which, combined with gemm, potentially yield a 
high-performance approach to compute this operator, at the cost of an augmented 
workspace and some data copies [5].
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2.1 � Convolution

The inference process for a Conv layer requires the application of a convolu-
tion operator. This operation receives an input activation tensor I, of dimension 
b × ci × hi × wi , where b is the number of input images or samples (also known as 
batch size), ci specifies the number of input image channels, and hi × wi are the input 
image height × width. In addition, the convolution also receives an input filter (or 
kernel) tensor F, of dimension co × ci × hf × wf  , where co is the number of filters 
and hf × wf  denote the filter height × width. Following with the operator definition:

returns the output activation tensor O, of dimension b × co × ho × wo , where co spec-
ifies the number of output channels and ho × wo are the output image height × width.

The algorithm in Figure  1 provides a direct realization of the convolution 
operator. There, each individual filter combines a subset of the inputs, with the 
same dimension as the filter, to produce a single scalar value (or entry) in one of 
the co outputs. By repeatedly applying the filter to the whole input, with a cer-
tain horizontal/vertical stride s, the convolution operator thus obtains the entries 
of this single output  [6]. Assuming vertical and horizontal padding factors given 
by ph and pw , respectively, the output height ×  width dimensions are given by 
ho × wo = ⌊(hi − hf + 2ph)∕s + 1⌋ × ⌊(wi − wf + 2pw)∕s + 1⌋.

2.2 � Indirect convolution via the im2col/im2row transforms

On current computer architectures, the performance of the direct algorithm in Fig-
ure 1 is strongly constrained by the memory bandwidth and, therefore, this approach 
in general delivers only a fraction of the processor peak floating-point throughput. 
In practice, this drawback is usually tackled by adopting an indirect or gemm-based 
approach which casts this operator in terms of a matrix multiplication via either the 
im2col or im2row transform [5]. This realization is often referred to as the lowering 
algorithm.

(1)O = CONV(F, I),

Fig. 1   Direct algorithm for the application of the convolution operator O = CONV(F, I)



12626	 C. Ramírez et al.

1 3

In short detail, Figure 2 displays the im2col algorithm1 that “flattens” the four-
dimensional (4D) input tensor I into an augmented (2-dimensional, 2D) matrix B̂ so 
that the output of the convolution can be then obtained from the gemm

where Ĉ ≡ O → m × n = co × (ho ⋅ wo ⋅ b) is the convolution output (viewed as a 2D 
matrix, with m = co and n = ho ⋅ wo ⋅ b ); Â ≡ F → m × k = co × (hf ⋅ wf ⋅ ci) con-
tains a 2D organization of the filters; and B̂ → k × n = (hf ⋅ wf ⋅ ci) × (ho ⋅ wo ⋅ b) is 
the aforementioned augmented matrix. For simplicity, the algorithm shown in Fig-
ure 2 does not take into account the memory access when the stride of the convo-
lution is higher than one. In addition, the actual implementation of this transform 
eliminates some of the loop invariants inside several loops to reduce the indexing 
overhead.

3 � Blocked algorithms for GEMM

With the convolution operator flattened into a matrix multiplication via the im2col 
(or im2row) transform, this section reviews the conventional strategy to obtain a 
high-performance realization of gemm on current processor architectures with deep 
cache memory hierarchies and single-instruction multiple-data (SIMD) vector units.

3.1 � The baseline algorithm for GEMM

Current high-performance implementations of gemm, in both open-source and com-
mercial linear algebra libraries, follow GotoBLAS [7] to formulate this kernel as a 
collection of five nested loops around two packing routines and a micro-kernel; see 
Figure 3 (top). In rough detail, the instances of gemm in these libraries apply tiling 
(blocking) as follows:

Ĉ = Â ⋅ B̂,

Fig. 2   Algorithm for the im2col transformation

1  The algorithm for the im2row transform is basically a variant of im2col, with the Â and B̂ roles and the 
corresponding dimensions swapped.
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–	 A kc × nc block of matrix B is packed into a buffer Bc , intended to reside in the 
L3 cache memory (or main memory, in case there is no L3 cache); see line 4 in 
the algorithm.

–	 An mc × kc block of matrix A is packed into a buffer Ac , designated for the L2 
cache memory; line 7.

–	 During the micro-kernel execution (lines 11–14), a specific kc × nr block of Bc , 
referred to as the micro-panel Br , is expected to lie in the L1 cache memory.

–	 The micro-kernel performs the arithmetic, in principle accessing the data for Ac 
from the L2 cache, for Br from the L1 cache, and for C directly from main mem-
ory.

The data transfers across the memory hierarchy are illustrated in Figure  4. In 
addition, packing Ac,Bc as in Figure 5 ensures that their entries are retrieved with 
unit stride from the micro-kernel. The baseline algorithm for gemm, also referred 
as B3A2C0,2 features a micro-kernel that includes the sixth loop, iterating over 
the kc dimension. This component of the algorithm is the only one encoded 
directly in assembly or in C with vector intrinsics; see Figure  3 (top). At each 

Fig. 3   B3A2C0 (top) and B3C2A0 (bottom) algorithms for gemm 

2  The notation introduced in [8] refers to the baseline algorithm as B3A2C0, where each letter denotes 
one of the matrix operands, and the number indicates the cache level where that operand resides (with 0 
referring to the processor registers). The same matrix operand resides in both the L1 and L3 caches.
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iteration of the loop, the micro-kernel updates an mr × nr micro-tile of C, say Cr , 
by performing an outer product involving (part of) one row of the buffer Ac and 
one column of the micro-panel Br.

Fig. 4   The baseline algorithm of gemm B3A2C0. Here C
r
 is a notation artifact, introduced to ease the 

presentation of the algorithm while A
c
 and B

c
 are actual buffers that maintain copies of certain blocks of 

A and B 
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3.2 � Alternative algorithms for GEMM

By re-arranging the gemm loops in the baseline algorithm in Figure  3 (top) in 
a distinct order, combined with an appropriate selection of the loop strides, we 
can obtain different algorithmic variants of gemm, which favor that certain blocks 
of A, B, C reside in distinct levels of the memory hierarchy [8–10]. Concretely, 
Figure 3 allows a visual comparison between the codes for the B3A2C0 (base-
line) and B3C2A0 variants, implicitly exposing the following major differences 
between the two:

•	 In B3C2A0, an mc × nc block of C is packed into a buffer Cc for the L2 cache; 
line 7 in the algorithm. Moreover, this variant also requires an unpacking step 
that moves the entries of Cc into C once the micro-kernel is executed; line 16.

•	 In order to ensure accessing the entries of C,  B with unit stride from the 
micro-kernel for B3C2A0, both Cc and Bc are stored following the same pat-
tern shown for Ac in Figure 5, with the entries of Cc arranged into micro-pan-
els of mr rows and those of Bc into micro-panels of kr rows.

•	 The micro-kernel for B3C2A0 operates with a mr × kr micro-tile of A streamed 
directly from the memory into the registers, where it will reside during the full 
execution of the micro-kernel. This performs a small, mr × kr matrix-vector 
product per iteration of Loop L6 (for a total of nc iterations), each involving 
a single column of a micro-panel Cr and a single column of a micro-panel Br ; 
lines 11–14.

As we will discuss in Sect.  4, variant B3C2A0 presents several characteristics 
that make it especially interesting for its implementation on the GAP8 platform.

Fig. 5   Packing in the baseline algorithm of gemm B3A2C0. Note how the entries of A, B are reorganized 
into A

c
,B

c
 in micro-panels of m

r
 rows, n

r
 columns, respectively
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4 � The GAP8 Platform

The GAP8 is a commercial platform designed for IoT applications, with a processor 
based on the PULP [11] architecture. As depicted in Figure 6, the GAP8 processor 
embeds three main computing components: (1) A low-power microcontroller unit 
(MCU), known as the FC, which is responsible for managing control, communica-
tions, and security functions; (2) a compute engine (CE) comprising a cluster of 8 
compute cores specifically designed for the execution of parallel algorithms; and (3) 
a specialized hardware accelerator (HWCE) that is part of the CE as well.

The FC integrates a read-only memory (ROM) that stores the primary boot code, 
plus a private 16-KB L1 scratchpad (also referred to as memory area or MA). On 
the CE side, the compute cores and the HWCE share a 64-KB multi-banked tightly 
coupled data memory (TCDM) L1 scratchpad (MA). Moreover, FC and CE share a 
512-KB L2 scratchpad. The device also includes an 8-MB L3 MA that acts as the 
platform main memory and is accessible from the FC. To enable rapid data transfers 
between MAs, the platform features two direct memory access (DMA) units. One of 
these units assists in transferring data between the FC domain and the CE domain, 
while the micro-DMA unit transfers data to/from peripherals, including the L3 MA.

Both the FC and the cluster cores support the RISC-V RV32IMCXpulpV2 instruc-
tion set architecture (ISA), which includes integer (I) arithmetic, compressed 
instructions (C), multiplication and division (M) extensions, and a portion of the 
supervisor ISA subset. The RV32ICMXpulpV2 ISA extension also provides special-
ized instructions for zero overhead hardware loops, pointer post/pre-modified mem-
ory accesses, instructions mixing control flow with computation, multiply/subtract 
and accumulate, vector operations, fixed point operations, bit manipulation, and the 
dot product of two vectors.

5 � Tailoring GEMM for the GAP8

In this section, we describe our adaptation of gemm to run in parallel on the compute 
cores integrated into the GAP8 CE. This customization effort is strongly dictated by 
the following features of the GAP8 platform:
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–	 The compute cores offer special hardware for the dot product.
–	 The memory hierarchy in the platform is structured into four levels: vector regis-

ters, two intermediate scratchpad levels (L1, L2 MAs), and a main memory (also 
referred to as RAM or L3 MA).

–	 The system integrates scratchpads instead of conventional cache memories.
–	 A single FC controls the memory transfers between main memory and the L1, 

L2 scratchpads.
–	 The CE features 8 compute cores.

As a first step, we followed the work described in [12], which addressed the sequen-
tial implementation of gemm on the FC, modifying that solution to target the com-
pute cores in the CE. The resulting code operates with signed INT8 numbers and 
presents the specific features described in the remainder of this section.

5.1 � Micro‑kernel for B3C2A0

A first aspect to note is that, as the FC and compute cores support the same RISC-V-
oriented ISA, including the specialized instructions for the dot product and the vec-
tor registers, adapting the initial FC micro-kernel from [12], to the cluster cores basi-
cally required no changes. To illustrate this, Figure 7 displays a simplified version of 
a micro-kernel that operates with a 4 × 4 micro-tile Ar , implementing the innermost 
loop in the B3C2A0 algorithm (see lines 11–14 in Figure 3 right) as follows:

Fig. 7   Simplified realization of the sequential implementation of a micro-kernel with an m
r
× k

r
= 4 × 4 

micro-tile of A resident in the processor (FC or compute core) registers for the B3C2A0 variant of gemm 
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•	 The micro-kernel receives as input parameters (1) the starting address in main 
memory of the micro-tile Ar (parameter Ar), which is assumed to be stored in 
row-major order; (2) the leading dimension of the matrix operand A (parameter 
ldA); (3) the starting address of the micro-panel Br (parameter Br) in the L1 
MA of the CE; and (4) the starting address of the micro-panel Cr embedded in Cc 
(parameter Cc) in the L2 MA shared with the FC.

•	 The code for the micro-kernel next includes the corresponding variable declara-
tions of scalar and vector data (lines 4–6). The data type for the latter is v4s, 
which identifies a vector with capacity for four INT8 numbers.

•	 The code then loads the four rows (with four INT8 numbers each) of the 
4 × 4 micro-tile Ar into the same number of vector registers: A0, A1, A2, A3 
(lines 9–10).

•	 At each iteration of the main loop (line 12), the micro-kernel loads one column 
of the micro-panel Cr (four INT8 numbers) into the vector register cr and one 
column of the micro-panel Br (four INT8 numbers) into the vector register br 
(lines 14–15).

•	 Inside the loop, the micro-kernel then proceeds to multiply the contents of the 
micro-tile Ar with the column of Br , updating the column of Cr via four dot prod-
ucts (lines 18–19); and storing the four INT8 elements in the column of Cr back 
into the L2 MA (lines 22–23).

At this point we note that we have implemented and tested micro-kernels of different 
“shapes” (or dimensions) mr × kr . Also, while the same micro-kernel can basically 
run on the FC and a single compute core, the data for the matrix operands must be 
placed into the appropriate MAs, which are different depending on which compo-
nent (FC or compute core) has to execute the micro-kernel. We discuss this point in 
detail next.

5.2 � Data transfers across the memory hierarchy

The GAP8 platform integrates L1 and L2 scratchpads, which give the programmer 
full control over the data transfers across the memory hierarchy but also the respon-
sibility to orchestrate them. Our solution targeting the compute cores in the CE 
addresses this task by embedding the data movements naturally into the B3C2A0 
algorithm as follows:

–	 The FC packs B into the buffer Bc , with both data operands residing in the main 
memory. Thus, this data movement only involves the “hardware” in the MCU 
(scratchpads and core).

–	 The FC packs the data for C into Cc , in this case transferring it from the memory 
to the L2 MA in the MCU. The transfer for the unpacking is also governed by the 
FC, but obviously carried out in the opposite direction. Again, these copies only 
involve the MCU part of the GAP8.

–	 The FC copies the micro-panel Br from Bc , from the L2 MA in the MCU to the 
L1 MA in the CE.
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–	 The compute core that executes a micro-kernel expects that the data for Br 
resides in the L1 MA, for Cc in the L2 MA, and for A in the main memory. 
However, the CE cannot directly access the data in the main memory, and 
therefore the FC copies the appropriate micro-tiles of A from there to the L1 
MA in the CE. Next, inside the micro-kernel, each core streams the data of its 
own micro-tile from the L1 to its vector registers.

The data movements required for the collaboration of FC and compute cores are 
graphically illustrated in Figure 8. Although the plot there displays the execution 
of the parallel algorithm, to be discussed next, the data movements in the case of 
the sequential algorithm are basically the same and can be derived by considering 
the movements involving Core 1 only.

To close this subsection, we remind that the loop strides for the B3C2A0 algo-
rithm are set to nc, kc,mc,mr, kr (respectively, for loops L1, L2,..., L5; see Fig-
ure  3 (right)). The last two variables, mr, kr , determine the shape of the micro-
kernel and are usually adjusted depending on the number of vector registers per 
core. The first three variables are known as the cache configuration parameters, 
and they should be set according to the dimensions of the L1, L2, and L3 memory 
levels as well as the shape of the micro-kernel. For a sequential algorithm target-
ing a single compute core of the GAP8 platform, we have to take into account 
that

Fig. 8   Data movements in the parallel version of the B3C2A0 algorithm. For simplicity, the data trans-
fers corresponding to the streaming of the columns c0

r
, c1

r
,… , c7

r
 from the corresponding 8 micro-panels 

of C
c
 into the processor registers are annotated with arrows only for Core 1. The same applies from the 

streaming (replication) of the column b
r
 from the micro-panel B

r
 , and the streaming of the 8 micro-tiles 

A0

r
,A1

r
,… ,A7

r
 from A 
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where CL1, CL2, respectively, denote the capacity of the L1, L2 MAs accessed by 
the compute core.

5.3 � Parallelization

Following the conventional approach for the multi-threaded realization of gemm, we 
exploit loop parallelism for the B3C2A0 algorithm. The first question thus is which 
of the six loops appearing in the algorithm to target. In order to take this decision, 
we make the following observations about the code in Figure 3 (right):

–	 Parallelizing Loop L1 (indexed by jc) partitions the operation into a collec-
tion of independent gemm kernels. The consequence is that this requires separate 
workspaces per thread for the Cc,Bc,Br buffers in each memory level, in practice 
dividing the capacity of these memories among the threads. Given that the com-
pute cores in the CE share the L1, L2 MAs and, obviously, the main memory, 
this does not seem the best approach for an efficient collaboration.

–	 A parallel algorithm targeting loops L2 (indexed by pc) or L4 (indexed by pr) 
faces race conditions because multiple threads may then update the same parts of 
the output matrix at the same time. It is possible to control this type of behavior 
using various software techniques (and, in some cases, hardware mechanisms), 
but in general they introduce a non-negligible overhead.

–	 Parallelizing loop L3 (indexed by ic) would require a separate buffer per thread 
for Cc,Br . Therefore, for the same reasons as exposed for loop L1, this does not 
seem a good option from an inter-core collaboration perspective.

This analysis leaves only loops L5 (indexed by ir) or L6 (indexed by jr, inside the 
micro-kernel,) as potential candidates. To increase the granularity of the workload 
distribution and reduce thread synchronization we therefore choose the outermost 
option: loop L5. The memory target of the distinct operands and buffers and the 
data movements for the parallel algorithm are illustrated in Figure 8. Note that, with 
the selected parallelization scheme, all the compute cores access the same mc × nc 
buffer Cc in the L2 MA, the same kr × nc micro-panel Br in the L1 MA, but a dif-
ferent mr × kr micro-tile Ar in the L1 MA. For this reason, in the parallel case, the 
micro-kernel shape and cache configuration parameters must satisfy

where c specifies the number of cores that participate in the parallel execution.
To fully leverage the capabilities of the GAP8 processor and improve the 

overall performance, we distribute the iteration space for loop L5 evenly across 
the 8 RISC-V compute cores in the GAP8 CE. Figure 9 displays the fragment of 

kr × nc + mr × kr ≤ ���,

mc × nc ≤ ���,

kr × nc + c (mr × kr) ≤ ���,

mc × nc ≤ ���,
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the parallel code that comprises loop L5 plus the invocation to the micro-kernel. 
The main differences with the sequential counterpart are:

–	 All the cluster compute cores iterate over the ir loop, but each core only 
executes its “own” iterations. The workload is distributed following a simple 
round-robin policy with “chunks” of mr rows (see lines 10–11 in the algo-
rithm).

–	 The core in charge of executing a given micro-kernel instructs the FC to copy 
the mr × kr micro-tile Ar from the memory to L1 MA (lines 14–18).

–	 The core then executes the micro-kernel by invoking the sequential code pre-
sented earlier (line  21), and prepares the variables and address pointers for 
the next iteration (line  23). Remind that, from inside the micro-kernel, the 
core streams Ar from L1 to its vector registers.

–	 Synchronization points are included in lines 17 and 25. The former ensures 
that the data are already copied in the L1 MA, while the latter is for overall 
thread synchronization.

We finally come back to the convolution operator to note that, in the case of 
the im2col transform, matrix Â contains the operator filters and, for inference, 
this tensor remains constant. The same applies to B̂ in the case of the im2row 
transform. In the next section we describe how we can take advantage of this to 
pre-pack the filter tensor and eliminate/accelerate some of the data transfers for 
the B3C2A0 algorithm.

1 gemm_loop_L5_gap8 (int nc , signed char *A, int ldA ,
2 signed char *Br,
3 signed char *Cc,
4 signed char *Atmp) {
5 int ir;
6 unsigned int cl_core_id , // Core identifier
7 num_cores; // Number of cores
8 pi_cl_ram_req_t req_a;
9

10 for (ir=0; ir<mc; ir+=mr) { // Loop L5
11 if (((ir/mr)%num_cores)!= cl_core_id) continue;
12
13 // Copy Ar from main memory to L1 in CE
14 for (i = 0; i < mr; i++) {
15 pi_cl_ram_read(ram , &A[i*ldA]), &A_local[i*kr],
16 kr , &req_a);
17 pi_cl_ram_read_wait (& req_a);
18 }
19
20 // Micro -kernel (same as in sequential case)
21 gemm_ukernel_gap8 (nc, A_local , kr , Br , Cc);
22
23 A=A+mr; Cr=(Cr+(mr*nc)); // Prepare for next iter.
24 }
25 pi_cl_team_barrier (0); // Thread synchronization
26 }

Fig. 9   Simplified realization of the parallel implementation of loop L5 for the B3C2A0 variant of gemm 
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6 � Performance Analysis

In this section, we evaluate the performance of the convolution operator based on 
the lowering approach, discussing the differences between the im2col or the im2row 
variants.

6.1 � Setup

We have evaluated the performance of our parallel gemm-based convolution in the 
GAP8 platform using a real DL model and INT8 arithmetic. Specifically, we ran the 
inference phase for the convolutional layers in the MobileNet-v1 DNN, setting the 
input batch size b to 1 (i.e., a single input scenario). For this purpose, we preprocess 
the convolution operators using either the im2col or the im2row transform, obtaining 
gemm kernels of the form Ĉ = Â ⋅ B̂ that operate with augmented matrices of differ-
ent dimensions; see Sect. 2 and Table 1.

Table 1   Parameters of the convolution layers arising in MobileNet-v1 and dimensions of the gemm 
obtained with the application of the im2col transform

For im2row, the values of columns m and n are swapped. Layer 28 boils down a matrix-vector product 
and, therefore, is omitted from the experiments. For all layers, the stride and vertical/horizontal paddings 
equal 1

#Layer id. Convolution parameters gemm dimensions Best

c
o

w
o

h
o

h
f

w
f

c
i

m n k micro-kernel

1 32 224 224 3 3 3 32 50176 27 4 × 24
2 32 112 112 3 3 32 32 12544 288 4 × 24
3 64 112 112 1 1 32 64 12544 32 4 × 20
4 64 56 56 3 3 64 64 3136 576 4 × 24
5 128 56 56 1 1 128 128 3136 128 4 × 24
6 128 56 56 3 3 128 128 3136 1152 4 × 24
7 128 56 56 1 1 128 128 3136 128 4 × 20
8 128 28 28 3 3 128 128 784 1152 4 × 20
9 256 28 28 1 1 128 256 784 128 4 × 20
10 256 28 28 3 3 256 256 784 2304 4 × 20
11 256 28 28 1 1 256 256 784 256 4 × 24
12 256 14 14 3 3 256 256 196 2304 4 × 24
13 512 14 14 1 1 256 512 196 256 4 × 24
14,16,18,20,22 512 14 14 3 3 512 512 196 4608 4 × 24
15,17,19,21,23 512 14 14 1 1 512 512 196 512 4 × 24
24 512 7 7 3 3 512 512 49 4608 4 × 24
25 1024 7 7 1 1 512 1024 49 512 4 × 24
26 1024 7 7 3 3 1024 1024 49 9216 4 × 24
27 1024 7 7 1 1 1024 1024 49 1024 4 × 24
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The results reported in this section are averaged for a 30-second execution of 
each experiment. We have implemented and tested micro-kernels of varying dimen-
sions mr × kr . For brevity, for each convolution operator we only report the results 
obtained with the best-performing micro-kernel. For layers 1–2, 4–7, and 11–27 of 
MobileNet-v1, this corresponds to a micro-kernel with mr × kr = 4 × 24 . For layers 
3 and 8–10, the best micro-kernel was mr × kr = 4 × 20.

The variety of micro-kernels that can be implemented is strongly constrained 
by the number of vector register in the hardware which, in turn, is quite low (usu-
ally, around 32). In consequence the number of micro-kernels is also limited. In our 
experiments, we implemented the micro-kernel as part of an incremental process, 
starting with mr × kr = 4 × 4, 4 × 8 and 8 × 4 . We then guided our development 
effort by implementing additional micro-kernels (e.g., mr × kr = 4 × 16, 16 × 4 ), 
testing their performance, and observing the trend as either mr or kr was increased. 
This allowed us to determine an optimal micro-kernel without the effort of imple-
menting them all.

6.2 � Preliminary analysis

As a starting point for our analysis, Figure 10 breaks down the time spent in layer 10 
of MobileNet-v1 into the different components of the algorithm:

•	 Arithmetic (by compute cores),
•	 Stream_Cc (from L2 to registers by compute cores),

Fig. 10   Distribution of costs for layer #10 of MobileNet-v1 using im2col+gemm (top) and im2row+gemm 
(bottom)
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•	 Stream_Br (from L1 to registers by compute cores),
•	 Stream_A (from L3 to L1 by FC, and from there to registers by compute cores),
•	 Copy_Br (from L3 to L1 by compute cores),
•	 Pack_Cc (from L3 to L2 by FC),
•	 Unpack_Cc (from L2 to L3 by FC), and
•	 Pack_Bc (from L3 to L3 by FC);

see Sect. 4 and Figure 8. The figure displays two plots, for the im2col- and im2row-
based convolution variants, and reports the execution time (in seconds) using 1, 4 
and 8 compute cores.

For reference, we first analyze the transfer costs and how they impact the effi-
ciency of the sequential implementation. For brevity, we focus this study on layer 
#10 and the im2col transform. From Figure 10, we observe that the arithmetic cost 
for this layer is 3.73 s, which offers a sustained peak of about 247 MOPS. In com-
parison, the transfer costs amount to 3.70 s, which offers an efficiency that is close 
to 50% when we run the algorithm on a single core of the CE. Also for reference, 
in [13] we measured and reported the sustained arithmetic performance as well as 
the sustained bandwidth between different levels of the memory hierarchy.

Let us turn our attention next to the parallel implementation. From the plots in 
Figure 10, it is clear that the two first components, Arithmetic and Stream_Cc, sig-
nificantly benefit from a parallel execution. In contrast, there is a different behavior 
for many other components, with a very small decrease of the execution time when 
using 4 compute cores and a negligible benefit for 8 compute cores. The explana-
tion in all these cases is common: Those components that are executed inside the 
loop that is parallelized in our solution (loop L5), for which in addition there is 
no participation of FC, truly run in parallel and consequently are accelerated in a 
multi-threaded execution. This is the case of Arithmetic, Stream_Cc, Stream_Br, 
and Copy_Br. In comparison, the remaining components require the participation 
of FC (basically to program the DMA transfers from/to L3) and, therefore, they are 
intrinsically sequential as there is only one FC. For the sequential execution, the cost 
is dominated by Arithmetic followed by Stream_Cc and, for the im2row variant, 
Stream_A. The lack of parallel scalability of the latter component for im2row exerts 
a strong impact on the cost of the parallel executions for that variant.

A significant difference between the costs of the im2col and im2row variants 
is visible for Stream_A. The reason is mainly that this cost is proportional to the 
dimension m of the gemm associated with this layer: 256 for im2col and 784 for 
im2row (see Table  1). In addition, for im2col the filter matrix corresponds to the 
gemm matrix operand Â . Therefore, we have accelerated this type of transfer, from 
the main memory to the L1 MA, by (1) pre-packing the operand, so that the mr × kr 
elements of each micro-tile lie in contiguous positions in main memory; and (2) pro-
gramming the DMA/FC to copy the (mr ⋅ kr) elements of the micro-tile with a single 
call. This allows to replace the loop in lines 14–18 of Figure 9 with a single call to 
pi_cl_ram_read+pi_cl_ram_read_wait.

Finally, comparing the distributions of costs between the im2col and im2row vari-
ants, we observe that there is no cost associated with Pack_Bc for the latter. The 
reason is that, for im2row, the gemm matrix operand B̂ corresponds to the convolution 
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filters, which remain constant during the inference stage. In consequence, we can 
pre-pack this matrix (and re-utilize it for any number of subsequent inferences) so 
that the re-organization of the matrix becomes unnecessary. In contrast, for im2row 
the matrix operand Â corresponds to the augmented matrix that results from apply-
ing the transform to the input activation tensor. As these data vary from one sample 
to the next, we cannot pre-pack it. Therefore, for im2row we cannot benefit from the 
faster transfers of the micro-tiles between main memory and L1 described in the 
previous paragraph.

6.3 � Global comparison

Figure 11 shows the performance rates for all layers of MobileNet-v1, attained with 
the “sequential” version3 of the two convolution variants (im2col and im2row) as well 
as the corresponding speedup observed with the parallel counterpart, using 4 and 8 

Fig. 11   Performance attained for the convolutional layers in MobileNet-v1 using im2col+gemm (top) and 
im2row+gemm (bottom). The results with one core display the arithmetic rate (in millions of INT8 opera-
tions per second, or MOPS) observed with the “sequential” algorithm, executed using a single compute 
core and the FC

3  Note that, although the sequential algorithm utilizes a single compute core for the arithmetic, it still 
requires the participation of the FC to orchestrate the data transfers. The same applies to the parallel 
algorithm, for which the FC is in charge of moving the data between MAs but all the arithmetic is per-
formed by the compute cores.
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compute cores. In general, the sequential version using im2col slightly outperforms the 
alternative based on im2row for the initial layers (1–11), but it is scantly inferior for 
the final layers. The reason for the similar behavior is that, in the sequential case, (1) 
there are no differences for Arithmetic, since both variants obviously perform the same 
number of arithmetic operations and this component does not include any data transfer 
cost; furthermore, (2) the differences between cost of Stream_Cc for the two vari-
ants are negligible, as this depends on m, n, and these two values are simply swapped 
between the two variants. In the parallel case, the factor that can make a difference 
between im2col and im2row is the lack of scalability of Stream_A, which has a signifi-
cant contribution to the execution time for the latter. However, this is compensated by 
the Pack_Bc component for im2col, which contributes a cost that the im2row counter-
part does not have to pay.

With respect to the parallel algorithm, on 4 compute cores we observe a maximum 
speedup of 3.19 for im2col and slightly higher, 3.24, for im2row. With 8 compute cores, 
the maximum speedup is 5.00 for im2col and again marginally higher, 5.15, for im2row. 
The average speedup for im2col is 2.96 on 4 compute cores and 4.39 8 compute cores; 
for im2row, it is 2.71 on 4 compute cores and 4.09 on 8 compute cores.

6.4 � im2col versus im2row

The previous discussion exposes the small performance differences between im2col 
and im2row. In practice, the former type of transform is associated with the so-called 
NHWC layout of the input/output activation tensors, where the four letters (N,H,W,C), 
respectively, specify the ordering in memory of the dimensions (b, hi∕ho,wi∕wo, ci∕co) 
of the convolution operator. In comparison, the im2row transform is linked with the 
NCHW layout. This is relevant because, for im2row, it is possible to concatenate two 
(or more) consecutive convolutional layers (with a number of element-wise layers in 
between) so that the output activation tensor of one convolution is directly passed as the 
input activation to the next one. For im2col, in contrast, the concatenation of consecu-
tive convolutional layers requires re-arranging the output activation tensor in memory, 
previously to passing its data to the next layer. The key here is that the cost of these data 
re-organization is, in general, not negligible in a platform such as the GAP8.

A potential strategy to accelerate the execution of im2row is to employ an algorith-
mic variant based on A3C2B0 for gemm instead of B3C2A0. For im2row, the filter 
matrix corresponds to the gemm matrix operand B̂ and, for A3C2C0, this operand can 
be pre-packed into micro-tiles in the main memory. Therefore, this solution can benefit 
from the same fast transfers reported earlier for Â in the im2col variant combined with 
the B3C2A0 algorithm.

7 � General discussion

The GAP8 PULP is a system with some unique features: (1) special hardware 
support for the dot product; (2) a heterogeneous architecture consisting of the 
FC plus the eight CE cores; and (3) a four-level memory hierarchy, with the 
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two intermediate levels corresponding to scratchpads instead of the traditional 
hardware-assisted caches. These characteristics required us to take some special 
measures to adapt the conventional blocked algorithm for gemm to achieve high 
performance on the GAP8 PULP, which we discuss next.

First, the support for the dot product forced us to target the B3C2A0 member 
of the gemm algorithm family, where a small micro-tile of A resides in the proces-
sor registers during micro-kernel execution. In contrast, the conventional algo-
rithm for gemm follows a B3A2C0 scheme, where a tile of C resides in the proces-
sor register. While one could formulate the B3A2C0 algorithm to rely on the dot 
product, this comes at the cost of modifying the standard packing routines.

Second, the presence of eight compute cores in the CE, with shared L1/L2/
L3 memory levels, is addressed in our parallel algorithm by exploiting loop par-
allelism at loop L5 (indexed by ir). This implies that, during the execution of 
the micro-kernel, all threads/cores access the same data from C, A, respectively, 
residing in the L2, L3 memory areas, which matches the fact that these two lev-
els of memory are shared. However, each thread/core accesses a different micro-
panel Br in the shared L1 scratchpad. In principle, it would be more natural to 
parallelize the loop L6 so that all threads/cores access different columns of the 
same micro-panel B. However, this results in a scheme with very fine-grained 
parallelism, with significant synchronization overhead for the threads.

Third, the integration of the scratchpads forced us to hide the data move-
ments across the memory hierarchy within the packing routines (for packing C 
from main memory into the L2 scratchpad), or directly include new code transfer 
routines within the gemm loops (for copying B between main memory and the 
L1 scratchpad) as well as the micro-kernel (for copying A from main memory 
and the processor registers). We had to carefully distribute these transfer tasks 
between the FC and the CE, as these different types of cores have different access 
rights to different levels of memory.

Overall, the adaptation of gemm to the GAP8 platform required a rethink of the 
principles underlying modern high-performance implementations of matrix mul-
tiplication. Some of the ideas that emerged from this effort are indeed general, 
and carry over to other platforms with similar characteristics. Two clear examples 
of this are the formulation of the algorithm to rely on the dot product for architec-
tures with special hardware support for this type of operation and the embedding 
of data movements within the packing routines. Therefore, while migrating the 
implementation to other architectures with similar hardware characteristics may 
require a non-negligible amount of recoding, we are very confident that the ideas 
described in this work are general and portable.

8 � Concluding remarks

We have proposed an efficient implementation of convolution operator, for the 
GAP8 PULP heterogeneous multicore processor, that leverages the fabric con-
troller for data transfers and the cores in the compute engine for the arithmetic. 
The GAP8 features a four-level memory hierarchy, with scratchpads instead of 
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conventional caches, plus a fabric controller and 8 compute cores. To target this 
architecture, our solution transforms the convolution into a gemm, via the lower-
ing approach; applies tiling to partition the gemm matrix operands; and orches-
trates the data transfers across the memory hierarchy as part of the packing opera-
tions in gemm. In addition, the proposed approach formulates the gemm operation 
as an algorithm where a small block of A (the micro-tile) is resident in the vec-
tor registers of each compute core (in order to cast the innermost computation in 
terms of a dot product); and exploits parallelism from one of the gemm innermost 
loops to distribute the workload among the eight compute cores.

Our experiments on the platform, using the MobileNet-v1 model and a sin-
gle input scenario show small differences in the execution time and parallel scal-
ability between the im2col and im2row variants, though we expect the latter to 
be more efficient when considering the concatenation of layers that appear in a 
DNN, especially if it is integrated into a A3C2B0 algorithm for gemm.

As part of future work, we plan to explore the possibilities of overlapping 
transfers with computation via double buffering. We expect this will reduce the 
impact of idle times due to communication on the global performance. However, 
there is a delicate balance to inspect here as it also reduces the re-utilization of 
the data stored in the buffers, a factor which is relevant due to the small capacity 
of the scratchpads.
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