
Vol.:(0123456789)

The Journal of Supercomputing (2024) 80:12623–12643
https://doi.org/10.1007/s11227-024-05927-y

1 3

Parallel GEMM‑based convolution for deep learning
on multicore RISC‑V processors

Cristian Ramírez1 · Adrián Castelló1 · Héctor Martínez2 ·
Enrique S. Quintana‑Ortí1

Accepted: 21 January 2024 / Published online: 19 February 2024
© The Author(s) 2024

Abstract
We address the efficient implementation of the convolution operator on the GAP8
parallel ultra-low power platform (PULP), a heterogeneous multi-core processor
equipped with a fabric controller (FC); a cluster of eight compute cores; and a four-
level memory hierarchy with scratchpads instead of conventional, hardware-assisted
cache memories. Our solution for this platform transforms the convolution into a
general matrix–matrix multiplication (gemm) via the lowering approach, demonstrat-
ing that it is possible to attain reasonable performance on the GAP8 by carefully
adapting techniques such as tiling and loop parallelism, which are mainstream in the
multi-threaded, cache-aware realization of gemm.

Keywords Convolutional layers · Deep learning · Edge processors · Performance
analysis

1 Introduction

Implementing deep learning (DL) algorithms on edge devices for Internet of
things (IoT) applications is critical to enhance privacy and security. In addi-
tion, moving the computation from the cloud to IoT nodes closer to sensors can

 * Adrián Castelló
 adcastel@disca.upv.es

 Cristian Ramírez
 crirabe@posgrado.upv.es

 Héctor Martínez
 el2mapeh@uco.es

 Enrique S. Quintana-Ortí
 quintana@disca.upv.es

1 Universitat Politècnica de València, València, Spain
2 Universidad de Córdoba, Córdoba, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05927-y&domain=pdf

12624 C. Ramírez et al.

1 3

significantly reduce the amount of data sent over the network, thereby reducing
latency and energy consumption [1–3]. The wide variety of IoT applications,
many of which rely on DL technologies, has led to a broad range of edge pro-
cessor architectures, including cores with RISC-V ISA (instruction set architec-
ture) [4]. This diversity, combined with severe constraints on power, memory
capacity and computational performance for edge devices, asks for a careful
selection of algorithms and the optimization of the software running on them.

In this work, we focus on the implementation of convolutional deep neural net-
works (DNNs) on edge processors. With this objective, we parallelize a popular
algorithm for the convolution operator based on the lowering approach, which
decomposes the operation into a data replication transform, known as im2col or
im2row, followed by a general matrix–matrix multiplication (gemm) [5]. Moreo-
ver, we target the heterogeneous 1+8 RISC-V cores integrated into the GAP8 par-
allel ultra-low power platform (PULP) for IoT. In more detail, this paper makes
the following contributions:

• We develop a high-performance, multi-threaded implementation of gemm that
operates with 8-bit integer (INT8) data and arithmetic on top of the dot (scalar
or inner) product, a basic kernel that receives special support in the GAP8. In
our solution, the 8 compute cores of the GAP8 are in charge of all the arith-
metic while the remaining core, known as the fabric controller (FC), coordi-
nates the data movements.

• We orchestrate a careful sequence of data transfers across the memory areas
of the GAP8 via DMA transfers, embedding these movements into the tiling
techniques of a parallel blocked algorithm for gemm.

• We perform a complete experimental evaluation of the convolution realization
for the two aforementioned transforms: im2col and im2row.

The rest of the paper is structured as follows. In Sect. 2 we briefly present the
convolution operator and in Sect. 3 we review the high-performance implemen-
tation of gemm on multicore processors with a multilayered memory including
caches. In Sect. 4 we detail the main features of the GAP8 platform. In Sect. 5
we describe the approach to obtain a parallel high-performance algorithm for
gemm on the GAP8 system. In Sect. 6, we evaluate the resulting routine. Finally,
in Sects. 7 and 8 we close the paper with a general discussion and a few conclud-
ing remarks.

2 Convolution via IM2COL+GEMM

In this section, we first introduce the convolution operation [6] to then present the
im2col and im2row transforms which, combined with gemm, potentially yield a
high-performance approach to compute this operator, at the cost of an augmented
workspace and some data copies [5].

12625

1 3

Parallel GEMM‑based convolution for deep learning on multicore…

2.1 Convolution

The inference process for a conv layer requires the application of a convolu-
tion operator. This operation receives an input activation tensor I, of dimension
b × ci × hi × wi , where b is the number of input images or samples (also known as
batch size), ci specifies the number of input image channels, and hi × wi are the input
image height × width. In addition, the convolution also receives an input filter (or
kernel) tensor F, of dimension co × ci × hf × wf , where co is the number of filters
and hf × wf denote the filter height × width. Following with the operator definition:

returns the output activation tensor O, of dimension b × co × ho × wo , where co spec-
ifies the number of output channels and ho × wo are the output image height × width.

The algorithm in Figure 1 provides a direct realization of the convolution
operator. There, each individual filter combines a subset of the inputs, with the
same dimension as the filter, to produce a single scalar value (or entry) in one of
the co outputs. By repeatedly applying the filter to the whole input, with a cer-
tain horizontal/vertical stride s, the convolution operator thus obtains the entries
of this single output [6]. Assuming vertical and horizontal padding factors given
by ph and pw , respectively, the output height × width dimensions are given by
ho × wo = ⌊(hi − hf + 2ph)∕s + 1⌋ × ⌊(wi − wf + 2pw)∕s + 1⌋.

2.2 Indirect convolution via the im2col/im2row transforms

On current computer architectures, the performance of the direct algorithm in Fig-
ure 1 is strongly constrained by the memory bandwidth and, therefore, this approach
in general delivers only a fraction of the processor peak floating-point throughput.
In practice, this drawback is usually tackled by adopting an indirect or gemm-based
approach which casts this operator in terms of a matrix multiplication via either the
im2col or im2row transform [5]. This realization is often referred to as the lowering
algorithm.

(1)O = CONV(F, I),

Fig. 1 Direct algorithm for the application of the convolution operator O = CONV(F, I)

12626 C. Ramírez et al.

1 3

In short detail, Figure 2 displays the im2col algorithm1 that “flattens” the four-
dimensional (4D) input tensor I into an augmented (2-dimensional, 2D) matrix B̂ so
that the output of the convolution can be then obtained from the gemm

where Ĉ ≡ O → m × n = co × (ho ⋅ wo ⋅ b) is the convolution output (viewed as a 2D
matrix, with m = co and n = ho ⋅ wo ⋅ b); Â ≡ F → m × k = co × (hf ⋅ wf ⋅ ci) con-
tains a 2D organization of the filters; and B̂ → k × n = (hf ⋅ wf ⋅ ci) × (ho ⋅ wo ⋅ b) is
the aforementioned augmented matrix. For simplicity, the algorithm shown in Fig-
ure 2 does not take into account the memory access when the stride of the convo-
lution is higher than one. In addition, the actual implementation of this transform
eliminates some of the loop invariants inside several loops to reduce the indexing
overhead.

3 Blocked algorithms for GEMM

With the convolution operator flattened into a matrix multiplication via the im2col
(or im2row) transform, this section reviews the conventional strategy to obtain a
high-performance realization of gemm on current processor architectures with deep
cache memory hierarchies and single-instruction multiple-data (SIMD) vector units.

3.1 The baseline algorithm for GEMM

Current high-performance implementations of gemm, in both open-source and com-
mercial linear algebra libraries, follow GotoBLAS [7] to formulate this kernel as a
collection of five nested loops around two packing routines and a micro-kernel; see
Figure 3 (top). In rough detail, the instances of gemm in these libraries apply tiling
(blocking) as follows:

Ĉ = Â ⋅ B̂,

Fig. 2 Algorithm for the im2col transformation

1 The algorithm for the im2row transform is basically a variant of im2col, with the Â and B̂ roles and the
corresponding dimensions swapped.

12627

1 3

Parallel GEMM‑based convolution for deep learning on multicore…

– A kc × nc block of matrix B is packed into a buffer Bc , intended to reside in the
L3 cache memory (or main memory, in case there is no L3 cache); see line 4 in
the algorithm.

– An mc × kc block of matrix A is packed into a buffer Ac , designated for the L2
cache memory; line 7.

– During the micro-kernel execution (lines 11–14), a specific kc × nr block of Bc ,
referred to as the micro-panel Br , is expected to lie in the L1 cache memory.

– The micro-kernel performs the arithmetic, in principle accessing the data for Ac
from the L2 cache, for Br from the L1 cache, and for C directly from main mem-
ory.

The data transfers across the memory hierarchy are illustrated in Figure 4. In
addition, packing Ac,Bc as in Figure 5 ensures that their entries are retrieved with
unit stride from the micro-kernel. The baseline algorithm for gemm, also referred
as B3A2C0,2 features a micro-kernel that includes the sixth loop, iterating over
the kc dimension. This component of the algorithm is the only one encoded
directly in assembly or in C with vector intrinsics; see Figure 3 (top). At each

Fig. 3 B3A2C0 (top) and B3C2A0 (bottom) algorithms for gemm

2 The notation introduced in [8] refers to the baseline algorithm as B3A2C0, where each letter denotes
one of the matrix operands, and the number indicates the cache level where that operand resides (with 0
referring to the processor registers). The same matrix operand resides in both the L1 and L3 caches.

12628 C. Ramírez et al.

1 3

iteration of the loop, the micro-kernel updates an mr × nr micro-tile of C, say Cr ,
by performing an outer product involving (part of) one row of the buffer Ac and
one column of the micro-panel Br.

Fig. 4 The baseline algorithm of gemm B3A2C0. Here C
r
 is a notation artifact, introduced to ease the

presentation of the algorithm while A
c
 and B

c
 are actual buffers that maintain copies of certain blocks of

A and B

12629

1 3

Parallel GEMM‑based convolution for deep learning on multicore…

3.2 Alternative algorithms for GEMM

By re-arranging the gemm loops in the baseline algorithm in Figure 3 (top) in
a distinct order, combined with an appropriate selection of the loop strides, we
can obtain different algorithmic variants of gemm, which favor that certain blocks
of A, B, C reside in distinct levels of the memory hierarchy [8–10]. Concretely,
Figure 3 allows a visual comparison between the codes for the B3A2C0 (base-
line) and B3C2A0 variants, implicitly exposing the following major differences
between the two:

• In B3C2A0, an mc × nc block of C is packed into a buffer Cc for the L2 cache;
line 7 in the algorithm. Moreover, this variant also requires an unpacking step
that moves the entries of Cc into C once the micro-kernel is executed; line 16.

• In order to ensure accessing the entries of C, B with unit stride from the
micro-kernel for B3C2A0, both Cc and Bc are stored following the same pat-
tern shown for Ac in Figure 5, with the entries of Cc arranged into micro-pan-
els of mr rows and those of Bc into micro-panels of kr rows.

• The micro-kernel for B3C2A0 operates with a mr × kr micro-tile of A streamed
directly from the memory into the registers, where it will reside during the full
execution of the micro-kernel. This performs a small, mr × kr matrix-vector
product per iteration of Loop L6 (for a total of nc iterations), each involving
a single column of a micro-panel Cr and a single column of a micro-panel Br ;
lines 11–14.

As we will discuss in Sect. 4, variant B3C2A0 presents several characteristics
that make it especially interesting for its implementation on the GAP8 platform.

Fig. 5 Packing in the baseline algorithm of gemm B3A2C0. Note how the entries of A, B are reorganized
into A

c
,B

c
 in micro-panels of m

r
 rows, n

r
 columns, respectively

12630 C. Ramírez et al.

1 3

4 The GAP8 Platform

The GAP8 is a commercial platform designed for IoT applications, with a processor
based on the PULP [11] architecture. As depicted in Figure 6, the GAP8 processor
embeds three main computing components: (1) A low-power microcontroller unit
(MCU), known as the FC, which is responsible for managing control, communica-
tions, and security functions; (2) a compute engine (CE) comprising a cluster of 8
compute cores specifically designed for the execution of parallel algorithms; and (3)
a specialized hardware accelerator (HWCE) that is part of the CE as well.

The FC integrates a read-only memory (ROM) that stores the primary boot code,
plus a private 16-KB L1 scratchpad (also referred to as memory area or MA). On
the CE side, the compute cores and the HWCE share a 64-KB multi-banked tightly
coupled data memory (TCDM) L1 scratchpad (MA). Moreover, FC and CE share a
512-KB L2 scratchpad. The device also includes an 8-MB L3 MA that acts as the
platform main memory and is accessible from the FC. To enable rapid data transfers
between MAs, the platform features two direct memory access (DMA) units. One of
these units assists in transferring data between the FC domain and the CE domain,
while the micro-DMA unit transfers data to/from peripherals, including the L3 MA.

Both the FC and the cluster cores support the RISC-V RV32IMCXpulpV2 instruc-
tion set architecture (ISA), which includes integer (I) arithmetic, compressed
instructions (C), multiplication and division (M) extensions, and a portion of the
supervisor ISA subset. The RV32ICMXpulpV2 ISA extension also provides special-
ized instructions for zero overhead hardware loops, pointer post/pre-modified mem-
ory accesses, instructions mixing control flow with computation, multiply/subtract
and accumulate, vector operations, fixed point operations, bit manipulation, and the
dot product of two vectors.

5 Tailoring GEMM for the GAP8

In this section, we describe our adaptation of gemm to run in parallel on the compute
cores integrated into the GAP8 CE. This customization effort is strongly dictated by
the following features of the GAP8 platform:

uDMA

PMU/RTC

Debug

PWM

ROM

L2
(512KB)

Fabric
Controller
(Core 8)

16KB

L1D

A
X

I/A
M

B
A

Hardware

Sync

Shared L1D
(64KB)

Shared L1I

(16KB)

Logarithmic Interconnect

4KB

L1I

Low-Power MCU Compute Engine

Cluster

DMA

Debug

H
W

C
E

HyperBus

L3 Memory
8 MB RAM

64 MB Flash

I/O
 P

erip
h

erals

C
o

re
 0

C
o

re
 7

C
o

re
 1

C
o

re
 2

C
o

re
 3

C
o

re
 4

C
o

re
 6

C
o

re
 5

Fig. 6 GAP8 layout

12631

1 3

Parallel GEMM‑based convolution for deep learning on multicore…

– The compute cores offer special hardware for the dot product.
– The memory hierarchy in the platform is structured into four levels: vector regis-

ters, two intermediate scratchpad levels (L1, L2 MAs), and a main memory (also
referred to as RAM or L3 MA).

– The system integrates scratchpads instead of conventional cache memories.
– A single FC controls the memory transfers between main memory and the L1,

L2 scratchpads.
– The CE features 8 compute cores.

As a first step, we followed the work described in [12], which addressed the sequen-
tial implementation of gemm on the FC, modifying that solution to target the com-
pute cores in the CE. The resulting code operates with signed INT8 numbers and
presents the specific features described in the remainder of this section.

5.1 Micro‑kernel for B3C2A0

A first aspect to note is that, as the FC and compute cores support the same RISC-V-
oriented ISA, including the specialized instructions for the dot product and the vec-
tor registers, adapting the initial FC micro-kernel from [12], to the cluster cores basi-
cally required no changes. To illustrate this, Figure 7 displays a simplified version of
a micro-kernel that operates with a 4 × 4 micro-tile Ar , implementing the innermost
loop in the B3C2A0 algorithm (see lines 11–14 in Figure 3 right) as follows:

Fig. 7 Simplified realization of the sequential implementation of a micro-kernel with an m
r
× k

r
= 4 × 4

micro-tile of A resident in the processor (FC or compute core) registers for the B3C2A0 variant of gemm

12632 C. Ramírez et al.

1 3

• The micro-kernel receives as input parameters (1) the starting address in main
memory of the micro-tile Ar (parameter Ar), which is assumed to be stored in
row-major order; (2) the leading dimension of the matrix operand A (parameter
ldA); (3) the starting address of the micro-panel Br (parameter Br) in the L1
MA of the CE; and (4) the starting address of the micro-panel Cr embedded in Cc
(parameter Cc) in the L2 MA shared with the FC.

• The code for the micro-kernel next includes the corresponding variable declara-
tions of scalar and vector data (lines 4–6). The data type for the latter is v4s,
which identifies a vector with capacity for four INT8 numbers.

• The code then loads the four rows (with four INT8 numbers each) of the
4 × 4 micro-tile Ar into the same number of vector registers: A0, A1, A2, A3
(lines 9–10).

• At each iteration of the main loop (line 12), the micro-kernel loads one column
of the micro-panel Cr (four INT8 numbers) into the vector register cr and one
column of the micro-panel Br (four INT8 numbers) into the vector register br
(lines 14–15).

• Inside the loop, the micro-kernel then proceeds to multiply the contents of the
micro-tile Ar with the column of Br , updating the column of Cr via four dot prod-
ucts (lines 18–19); and storing the four INT8 elements in the column of Cr back
into the L2 MA (lines 22–23).

At this point we note that we have implemented and tested micro-kernels of different
“shapes” (or dimensions) mr × kr . Also, while the same micro-kernel can basically
run on the FC and a single compute core, the data for the matrix operands must be
placed into the appropriate MAs, which are different depending on which compo-
nent (FC or compute core) has to execute the micro-kernel. We discuss this point in
detail next.

5.2 Data transfers across the memory hierarchy

The GAP8 platform integrates L1 and L2 scratchpads, which give the programmer
full control over the data transfers across the memory hierarchy but also the respon-
sibility to orchestrate them. Our solution targeting the compute cores in the CE
addresses this task by embedding the data movements naturally into the B3C2A0
algorithm as follows:

– The FC packs B into the buffer Bc , with both data operands residing in the main
memory. Thus, this data movement only involves the “hardware” in the MCU
(scratchpads and core).

– The FC packs the data for C into Cc , in this case transferring it from the memory
to the L2 MA in the MCU. The transfer for the unpacking is also governed by the
FC, but obviously carried out in the opposite direction. Again, these copies only
involve the MCU part of the GAP8.

– The FC copies the micro-panel Br from Bc , from the L2 MA in the MCU to the
L1 MA in the CE.

12633

1 3

Parallel GEMM‑based convolution for deep learning on multicore…

– The compute core that executes a micro-kernel expects that the data for Br
resides in the L1 MA, for Cc in the L2 MA, and for A in the main memory.
However, the CE cannot directly access the data in the main memory, and
therefore the FC copies the appropriate micro-tiles of A from there to the L1
MA in the CE. Next, inside the micro-kernel, each core streams the data of its
own micro-tile from the L1 to its vector registers.

The data movements required for the collaboration of FC and compute cores are
graphically illustrated in Figure 8. Although the plot there displays the execution
of the parallel algorithm, to be discussed next, the data movements in the case of
the sequential algorithm are basically the same and can be derived by considering
the movements involving Core 1 only.

To close this subsection, we remind that the loop strides for the B3C2A0 algo-
rithm are set to nc, kc,mc,mr, kr (respectively, for loops L1, L2,..., L5; see Fig-
ure 3 (right)). The last two variables, mr, kr , determine the shape of the micro-
kernel and are usually adjusted depending on the number of vector registers per
core. The first three variables are known as the cache configuration parameters,
and they should be set according to the dimensions of the L1, L2, and L3 memory
levels as well as the shape of the micro-kernel. For a sequential algorithm target-
ing a single compute core of the GAP8 platform, we have to take into account
that

Fig. 8 Data movements in the parallel version of the B3C2A0 algorithm. For simplicity, the data trans-
fers corresponding to the streaming of the columns c0

r
, c1

r
,… , c7

r
 from the corresponding 8 micro-panels

of C
c
 into the processor registers are annotated with arrows only for Core 1. The same applies from the

streaming (replication) of the column b
r
 from the micro-panel B

r
 , and the streaming of the 8 micro-tiles

A0

r
,A1

r
,… ,A7

r
 from A

12634 C. Ramírez et al.

1 3

where CL1, CL2, respectively, denote the capacity of the L1, L2 MAs accessed by
the compute core.

5.3 Parallelization

Following the conventional approach for the multi-threaded realization of gemm, we
exploit loop parallelism for the B3C2A0 algorithm. The first question thus is which
of the six loops appearing in the algorithm to target. In order to take this decision,
we make the following observations about the code in Figure 3 (right):

– Parallelizing Loop L1 (indexed by jc) partitions the operation into a collec-
tion of independent gemm kernels. The consequence is that this requires separate
workspaces per thread for the Cc,Bc,Br buffers in each memory level, in practice
dividing the capacity of these memories among the threads. Given that the com-
pute cores in the CE share the L1, L2 MAs and, obviously, the main memory,
this does not seem the best approach for an efficient collaboration.

– A parallel algorithm targeting loops L2 (indexed by pc) or L4 (indexed by pr)
faces race conditions because multiple threads may then update the same parts of
the output matrix at the same time. It is possible to control this type of behavior
using various software techniques (and, in some cases, hardware mechanisms),
but in general they introduce a non-negligible overhead.

– Parallelizing loop L3 (indexed by ic) would require a separate buffer per thread
for Cc,Br . Therefore, for the same reasons as exposed for loop L1, this does not
seem a good option from an inter-core collaboration perspective.

This analysis leaves only loops L5 (indexed by ir) or L6 (indexed by jr, inside the
micro-kernel,) as potential candidates. To increase the granularity of the workload
distribution and reduce thread synchronization we therefore choose the outermost
option: loop L5. The memory target of the distinct operands and buffers and the
data movements for the parallel algorithm are illustrated in Figure 8. Note that, with
the selected parallelization scheme, all the compute cores access the same mc × nc
buffer Cc in the L2 MA, the same kr × nc micro-panel Br in the L1 MA, but a dif-
ferent mr × kr micro-tile Ar in the L1 MA. For this reason, in the parallel case, the
micro-kernel shape and cache configuration parameters must satisfy

where c specifies the number of cores that participate in the parallel execution.
To fully leverage the capabilities of the GAP8 processor and improve the

overall performance, we distribute the iteration space for loop L5 evenly across
the 8 RISC-V compute cores in the GAP8 CE. Figure 9 displays the fragment of

kr × nc + mr × kr ≤ ���,

mc × nc ≤ ���,

kr × nc + c (mr × kr) ≤ ���,

mc × nc ≤ ���,

12635

1 3

Parallel GEMM‑based convolution for deep learning on multicore…

the parallel code that comprises loop L5 plus the invocation to the micro-kernel.
The main differences with the sequential counterpart are:

– All the cluster compute cores iterate over the ir loop, but each core only
executes its “own” iterations. The workload is distributed following a simple
round-robin policy with “chunks” of mr rows (see lines 10–11 in the algo-
rithm).

– The core in charge of executing a given micro-kernel instructs the FC to copy
the mr × kr micro-tile Ar from the memory to L1 MA (lines 14–18).

– The core then executes the micro-kernel by invoking the sequential code pre-
sented earlier (line 21), and prepares the variables and address pointers for
the next iteration (line 23). Remind that, from inside the micro-kernel, the
core streams Ar from L1 to its vector registers.

– Synchronization points are included in lines 17 and 25. The former ensures
that the data are already copied in the L1 MA, while the latter is for overall
thread synchronization.

We finally come back to the convolution operator to note that, in the case of
the im2col transform, matrix Â contains the operator filters and, for inference,
this tensor remains constant. The same applies to B̂ in the case of the im2row
transform. In the next section we describe how we can take advantage of this to
pre-pack the filter tensor and eliminate/accelerate some of the data transfers for
the B3C2A0 algorithm.

1 gemm_loop_L5_gap8 (int nc , signed char *A, int ldA ,
2 signed char *Br,
3 signed char *Cc,
4 signed char *Atmp) {
5 int ir;
6 unsigned int cl_core_id , // Core identifier
7 num_cores; // Number of cores
8 pi_cl_ram_req_t req_a;
9

10 for (ir=0; ir<mc; ir+=mr) { // Loop L5
11 if (((ir/mr)%num_cores)!= cl_core_id) continue;
12
13 // Copy Ar from main memory to L1 in CE
14 for (i = 0; i < mr; i++) {
15 pi_cl_ram_read(ram , &A[i*ldA]), &A_local[i*kr],
16 kr , &req_a);
17 pi_cl_ram_read_wait (& req_a);
18 }
19
20 // Micro -kernel (same as in sequential case)
21 gemm_ukernel_gap8 (nc, A_local , kr , Br , Cc);
22
23 A=A+mr; Cr=(Cr+(mr*nc)); // Prepare for next iter.
24 }
25 pi_cl_team_barrier (0); // Thread synchronization
26 }

Fig. 9 Simplified realization of the parallel implementation of loop L5 for the B3C2A0 variant of gemm

12636 C. Ramírez et al.

1 3

6 Performance Analysis

In this section, we evaluate the performance of the convolution operator based on
the lowering approach, discussing the differences between the im2col or the im2row
variants.

6.1 Setup

We have evaluated the performance of our parallel gemm-based convolution in the
GAP8 platform using a real DL model and INT8 arithmetic. Specifically, we ran the
inference phase for the convolutional layers in the MobileNet-v1 DNN, setting the
input batch size b to 1 (i.e., a single input scenario). For this purpose, we preprocess
the convolution operators using either the im2col or the im2row transform, obtaining
gemm kernels of the form Ĉ = Â ⋅ B̂ that operate with augmented matrices of differ-
ent dimensions; see Sect. 2 and Table 1.

Table 1 Parameters of the convolution layers arising in MobileNet-v1 and dimensions of the gemm
obtained with the application of the im2col transform

For im2row, the values of columns m and n are swapped. Layer 28 boils down a matrix-vector product
and, therefore, is omitted from the experiments. For all layers, the stride and vertical/horizontal paddings
equal 1

#Layer id. Convolution parameters gemm dimensions Best

c
o

w
o

h
o

h
f

w
f

c
i

m n k micro-kernel

1 32 224 224 3 3 3 32 50176 27 4 × 24
2 32 112 112 3 3 32 32 12544 288 4 × 24
3 64 112 112 1 1 32 64 12544 32 4 × 20
4 64 56 56 3 3 64 64 3136 576 4 × 24
5 128 56 56 1 1 128 128 3136 128 4 × 24
6 128 56 56 3 3 128 128 3136 1152 4 × 24
7 128 56 56 1 1 128 128 3136 128 4 × 20
8 128 28 28 3 3 128 128 784 1152 4 × 20
9 256 28 28 1 1 128 256 784 128 4 × 20
10 256 28 28 3 3 256 256 784 2304 4 × 20
11 256 28 28 1 1 256 256 784 256 4 × 24
12 256 14 14 3 3 256 256 196 2304 4 × 24
13 512 14 14 1 1 256 512 196 256 4 × 24
14,16,18,20,22 512 14 14 3 3 512 512 196 4608 4 × 24
15,17,19,21,23 512 14 14 1 1 512 512 196 512 4 × 24
24 512 7 7 3 3 512 512 49 4608 4 × 24
25 1024 7 7 1 1 512 1024 49 512 4 × 24
26 1024 7 7 3 3 1024 1024 49 9216 4 × 24
27 1024 7 7 1 1 1024 1024 49 1024 4 × 24

12637

1 3

Parallel GEMM‑based convolution for deep learning on multicore…

The results reported in this section are averaged for a 30-second execution of
each experiment. We have implemented and tested micro-kernels of varying dimen-
sions mr × kr . For brevity, for each convolution operator we only report the results
obtained with the best-performing micro-kernel. For layers 1–2, 4–7, and 11–27 of
MobileNet-v1, this corresponds to a micro-kernel with mr × kr = 4 × 24 . For layers
3 and 8–10, the best micro-kernel was mr × kr = 4 × 20.

The variety of micro-kernels that can be implemented is strongly constrained
by the number of vector register in the hardware which, in turn, is quite low (usu-
ally, around 32). In consequence the number of micro-kernels is also limited. In our
experiments, we implemented the micro-kernel as part of an incremental process,
starting with mr × kr = 4 × 4, 4 × 8 and 8 × 4 . We then guided our development
effort by implementing additional micro-kernels (e.g., mr × kr = 4 × 16, 16 × 4),
testing their performance, and observing the trend as either mr or kr was increased.
This allowed us to determine an optimal micro-kernel without the effort of imple-
menting them all.

6.2 Preliminary analysis

As a starting point for our analysis, Figure 10 breaks down the time spent in layer 10
of MobileNet-v1 into the different components of the algorithm:

• Arithmetic (by compute cores),
• Stream_Cc (from L2 to registers by compute cores),

Fig. 10 Distribution of costs for layer #10 of MobileNet-v1 using im2col+gemm (top) and im2row+gemm
(bottom)

12638 C. Ramírez et al.

1 3

• Stream_Br (from L1 to registers by compute cores),
• Stream_A (from L3 to L1 by FC, and from there to registers by compute cores),
• Copy_Br (from L3 to L1 by compute cores),
• Pack_Cc (from L3 to L2 by FC),
• Unpack_Cc (from L2 to L3 by FC), and
• Pack_Bc (from L3 to L3 by FC);

see Sect. 4 and Figure 8. The figure displays two plots, for the im2col- and im2row-
based convolution variants, and reports the execution time (in seconds) using 1, 4
and 8 compute cores.

For reference, we first analyze the transfer costs and how they impact the effi-
ciency of the sequential implementation. For brevity, we focus this study on layer
#10 and the im2col transform. From Figure 10, we observe that the arithmetic cost
for this layer is 3.73 s, which offers a sustained peak of about 247 MOPS. In com-
parison, the transfer costs amount to 3.70 s, which offers an efficiency that is close
to 50% when we run the algorithm on a single core of the CE. Also for reference,
in [13] we measured and reported the sustained arithmetic performance as well as
the sustained bandwidth between different levels of the memory hierarchy.

Let us turn our attention next to the parallel implementation. From the plots in
Figure 10, it is clear that the two first components, Arithmetic and Stream_Cc, sig-
nificantly benefit from a parallel execution. In contrast, there is a different behavior
for many other components, with a very small decrease of the execution time when
using 4 compute cores and a negligible benefit for 8 compute cores. The explana-
tion in all these cases is common: Those components that are executed inside the
loop that is parallelized in our solution (loop L5), for which in addition there is
no participation of FC, truly run in parallel and consequently are accelerated in a
multi-threaded execution. This is the case of Arithmetic, Stream_Cc, Stream_Br,
and Copy_Br. In comparison, the remaining components require the participation
of FC (basically to program the DMA transfers from/to L3) and, therefore, they are
intrinsically sequential as there is only one FC. For the sequential execution, the cost
is dominated by Arithmetic followed by Stream_Cc and, for the im2row variant,
Stream_A. The lack of parallel scalability of the latter component for im2row exerts
a strong impact on the cost of the parallel executions for that variant.

A significant difference between the costs of the im2col and im2row variants
is visible for Stream_A. The reason is mainly that this cost is proportional to the
dimension m of the gemm associated with this layer: 256 for im2col and 784 for
im2row (see Table 1). In addition, for im2col the filter matrix corresponds to the
gemm matrix operand Â . Therefore, we have accelerated this type of transfer, from
the main memory to the L1 MA, by (1) pre-packing the operand, so that the mr × kr
elements of each micro-tile lie in contiguous positions in main memory; and (2) pro-
gramming the DMA/FC to copy the (mr ⋅ kr) elements of the micro-tile with a single
call. This allows to replace the loop in lines 14–18 of Figure 9 with a single call to
pi_cl_ram_read+pi_cl_ram_read_wait.

Finally, comparing the distributions of costs between the im2col and im2row vari-
ants, we observe that there is no cost associated with Pack_Bc for the latter. The
reason is that, for im2row, the gemm matrix operand B̂ corresponds to the convolution

12639

1 3

Parallel GEMM‑based convolution for deep learning on multicore…

filters, which remain constant during the inference stage. In consequence, we can
pre-pack this matrix (and re-utilize it for any number of subsequent inferences) so
that the re-organization of the matrix becomes unnecessary. In contrast, for im2row
the matrix operand Â corresponds to the augmented matrix that results from apply-
ing the transform to the input activation tensor. As these data vary from one sample
to the next, we cannot pre-pack it. Therefore, for im2row we cannot benefit from the
faster transfers of the micro-tiles between main memory and L1 described in the
previous paragraph.

6.3 Global comparison

Figure 11 shows the performance rates for all layers of MobileNet-v1, attained with
the “sequential” version3 of the two convolution variants (im2col and im2row) as well
as the corresponding speedup observed with the parallel counterpart, using 4 and 8

Fig. 11 Performance attained for the convolutional layers in MobileNet-v1 using im2col+gemm (top) and
im2row+gemm (bottom). The results with one core display the arithmetic rate (in millions of INT8 opera-
tions per second, or MOPS) observed with the “sequential” algorithm, executed using a single compute
core and the FC

3 Note that, although the sequential algorithm utilizes a single compute core for the arithmetic, it still
requires the participation of the FC to orchestrate the data transfers. The same applies to the parallel
algorithm, for which the FC is in charge of moving the data between MAs but all the arithmetic is per-
formed by the compute cores.

12640 C. Ramírez et al.

1 3

compute cores. In general, the sequential version using im2col slightly outperforms the
alternative based on im2row for the initial layers (1–11), but it is scantly inferior for
the final layers. The reason for the similar behavior is that, in the sequential case, (1)
there are no differences for Arithmetic, since both variants obviously perform the same
number of arithmetic operations and this component does not include any data transfer
cost; furthermore, (2) the differences between cost of Stream_Cc for the two vari-
ants are negligible, as this depends on m, n, and these two values are simply swapped
between the two variants. In the parallel case, the factor that can make a difference
between im2col and im2row is the lack of scalability of Stream_A, which has a signifi-
cant contribution to the execution time for the latter. However, this is compensated by
the Pack_Bc component for im2col, which contributes a cost that the im2row counter-
part does not have to pay.

With respect to the parallel algorithm, on 4 compute cores we observe a maximum
speedup of 3.19 for im2col and slightly higher, 3.24, for im2row. With 8 compute cores,
the maximum speedup is 5.00 for im2col and again marginally higher, 5.15, for im2row.
The average speedup for im2col is 2.96 on 4 compute cores and 4.39 8 compute cores;
for im2row, it is 2.71 on 4 compute cores and 4.09 on 8 compute cores.

6.4 im2col versus im2row

The previous discussion exposes the small performance differences between im2col
and im2row. In practice, the former type of transform is associated with the so-called
NHWC layout of the input/output activation tensors, where the four letters (N,H,W,C),
respectively, specify the ordering in memory of the dimensions (b, hi∕ho,wi∕wo, ci∕co)
of the convolution operator. In comparison, the im2row transform is linked with the
NCHW layout. This is relevant because, for im2row, it is possible to concatenate two
(or more) consecutive convolutional layers (with a number of element-wise layers in
between) so that the output activation tensor of one convolution is directly passed as the
input activation to the next one. For im2col, in contrast, the concatenation of consecu-
tive convolutional layers requires re-arranging the output activation tensor in memory,
previously to passing its data to the next layer. The key here is that the cost of these data
re-organization is, in general, not negligible in a platform such as the GAP8.

A potential strategy to accelerate the execution of im2row is to employ an algorith-
mic variant based on A3C2B0 for gemm instead of B3C2A0. For im2row, the filter
matrix corresponds to the gemm matrix operand B̂ and, for A3C2C0, this operand can
be pre-packed into micro-tiles in the main memory. Therefore, this solution can benefit
from the same fast transfers reported earlier for Â in the im2col variant combined with
the B3C2A0 algorithm.

7 General discussion

The GAP8 PULP is a system with some unique features: (1) special hardware
support for the dot product; (2) a heterogeneous architecture consisting of the
FC plus the eight CE cores; and (3) a four-level memory hierarchy, with the

12641

1 3

Parallel GEMM‑based convolution for deep learning on multicore…

two intermediate levels corresponding to scratchpads instead of the traditional
hardware-assisted caches. These characteristics required us to take some special
measures to adapt the conventional blocked algorithm for gemm to achieve high
performance on the GAP8 PULP, which we discuss next.

First, the support for the dot product forced us to target the B3C2A0 member
of the gemm algorithm family, where a small micro-tile of A resides in the proces-
sor registers during micro-kernel execution. In contrast, the conventional algo-
rithm for gemm follows a B3A2C0 scheme, where a tile of C resides in the proces-
sor register. While one could formulate the B3A2C0 algorithm to rely on the dot
product, this comes at the cost of modifying the standard packing routines.

Second, the presence of eight compute cores in the CE, with shared L1/L2/
L3 memory levels, is addressed in our parallel algorithm by exploiting loop par-
allelism at loop L5 (indexed by ir). This implies that, during the execution of
the micro-kernel, all threads/cores access the same data from C, A, respectively,
residing in the L2, L3 memory areas, which matches the fact that these two lev-
els of memory are shared. However, each thread/core accesses a different micro-
panel Br in the shared L1 scratchpad. In principle, it would be more natural to
parallelize the loop L6 so that all threads/cores access different columns of the
same micro-panel B. However, this results in a scheme with very fine-grained
parallelism, with significant synchronization overhead for the threads.

Third, the integration of the scratchpads forced us to hide the data move-
ments across the memory hierarchy within the packing routines (for packing C
from main memory into the L2 scratchpad), or directly include new code transfer
routines within the gemm loops (for copying B between main memory and the
L1 scratchpad) as well as the micro-kernel (for copying A from main memory
and the processor registers). We had to carefully distribute these transfer tasks
between the FC and the CE, as these different types of cores have different access
rights to different levels of memory.

Overall, the adaptation of gemm to the GAP8 platform required a rethink of the
principles underlying modern high-performance implementations of matrix mul-
tiplication. Some of the ideas that emerged from this effort are indeed general,
and carry over to other platforms with similar characteristics. Two clear examples
of this are the formulation of the algorithm to rely on the dot product for architec-
tures with special hardware support for this type of operation and the embedding
of data movements within the packing routines. Therefore, while migrating the
implementation to other architectures with similar hardware characteristics may
require a non-negligible amount of recoding, we are very confident that the ideas
described in this work are general and portable.

8 Concluding remarks

We have proposed an efficient implementation of convolution operator, for the
GAP8 PULP heterogeneous multicore processor, that leverages the fabric con-
troller for data transfers and the cores in the compute engine for the arithmetic.
The GAP8 features a four-level memory hierarchy, with scratchpads instead of

12642 C. Ramírez et al.

1 3

conventional caches, plus a fabric controller and 8 compute cores. To target this
architecture, our solution transforms the convolution into a gemm, via the lower-
ing approach; applies tiling to partition the gemm matrix operands; and orches-
trates the data transfers across the memory hierarchy as part of the packing opera-
tions in gemm. In addition, the proposed approach formulates the gemm operation
as an algorithm where a small block of A (the micro-tile) is resident in the vec-
tor registers of each compute core (in order to cast the innermost computation in
terms of a dot product); and exploits parallelism from one of the gemm innermost
loops to distribute the workload among the eight compute cores.

Our experiments on the platform, using the MobileNet-v1 model and a sin-
gle input scenario show small differences in the execution time and parallel scal-
ability between the im2col and im2row variants, though we expect the latter to
be more efficient when considering the concatenation of layers that appear in a
DNN, especially if it is integrated into a A3C2B0 algorithm for gemm.

As part of future work, we plan to explore the possibilities of overlapping
transfers with computation via double buffering. We expect this will reduce the
impact of idle times due to communication on the global performance. However,
there is a delicate balance to inspect here as it also reduces the re-utilization of
the data stored in the buffers, a factor which is relevant due to the small capacity
of the scratchpads.

Acknowledgements This research was funded by projects PID2020-113656RB and TED2021-
129334B-I00, supported by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGen-
erationEU/PRTR”. C. Ramírez is a “Santiago Grisolía” fellow supported by Generalitat Valenciana. A.
Castelló is a FJC2019-039222-I fellow supported by MCIN/AEI/10.13039/501100011033. H. Martínez
is a POSTDOC_21_00025 postdoctoral fellow supported by Junta de Andalucía.

Author contributions C.R. implemented the gemm algorithm and executed the experiments. A.C. and
H.M review C.R. work and write several sections of the paper. E.Q orchestrates the research and write a
considerable part of the paper. All authors reviewed the manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
European Commission, European Union. de Andalucía, POSTDOC_21_00025. Agencia Estatal de Inves-
tigación, FJC2019-039222, PID2020-113656R, TED2021-129334B-I00. Generalitat Valenciana, San-
tiago Grisolía, PROMETEO 2023-CIPROM/2022/20

Availability of data and materials Not applicable.

Declarations

 Conflict of interest The authors declare no competing interests.

Ethical approval Not applicable

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

12643

1 3

Parallel GEMM‑based convolution for deep learning on multicore…

directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Hazelwood K, Bird S, Brooks D, Chintala S, Diril U, Dzhulgakov D, Fawzy M, Jia B, Jia Y,
Kalro A, Law J, Lee K, Lu J, Noordhuis P, Smelyanskiy M, Xiong L, Wang X (2018) Applied
machine learning at Facebook: A datacenter infrastructure perspective. In: IEEE Int. Symp. HPC
Architecture, pp 620–629

 2. Park J, Naumov M, Basu P, Deng S, Kalaiah A, Khudia D, Law J, Malani P, Malevich A, Nadathur
S, Pino J, Schatz M, Sidorov A, Sivakumar V, Tulloch A, Wang X, Wu Y, Yuen H, Diril U, Dzhul-
gakov D, Hazelwood K, Jia B, Jia Y, Qiao L, Rao V, Rotem N, Yoo S, Smelyanskiy M (2018) Deep
learning inference in Facebook data centers: characterization, performance optimizations and hard-
ware implications. arXiv: 1811. 09886

 3. Wu C, Brooks D, Chen K, Chen D, Choudhury S, Dukhan M, Hazelwood K, Isaac E, Jia Y, Jia B,
Leyvand T, Lu H, Lu Y, Qiao L, Reagen B, Spisak J, Sun F, Tulloch A, Vajda P, Wang X, Wang
Y, Wasti B, Wu Y, Xian R, Yoo S, Zhang P (2019) Machine learning at Facebook: Understanding
inference at the edge. In: IEEE international symposium HPC architecture, pp 331–344

 4. Garofalo A, Rusci M, Conti F, Rossi D, Benini L (2019) PULP-NN: a computing library for quan-
tized neural network inference at the edge on RISC-V based parallel ultra low power clusters. In:
2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp 33–36

 5. Chellapilla K, Puri S, Simard P (2006) High performance convolutional neural networks for docu-
ment processing. In: 10th international workshop on frontiers in handwriting recognition, Université
de Rennes, France

 6. Sze V, Chen Y-H, Yang T-J, Emer JS (2017) Efficient processing of deep neural networks: a tutorial
and survey. Proc. IEEE 105(12):2295–2329

 7. Goto K, van de Geijn RA (2008) Anatomy of a high-performance matrix multiplication. ACM
Trans. Math. Softw. 34(3):12:1-12:25

 8. Smith TM, van de Geijn RA (2019) The MOMMS family of matrix multiplication algorithms.
CoRR, Arxiv: abs/ 1904. 05717

 9. Gunnels JA, Gustavson FG, Henry GM, van de Geijn RA (2004) A family of high-performance
matrix multiplication algorithms. In: Proceedings of the 7th international Conference on Applied
Parallel Computing, pp 256–265

 10. Castelló A, Igual FD, Quintana-Ortí ES (2022) Anatomy of the BLIS family of algorithms for
matrix multiplication. In: 2022 30th Euromicro international Conference on Parallel, Distributed
and Network-based Processing (PDP), pp 92–99

 11. Pullini A, Rossi D, Loi I, Tagliavini G, Benini L (2019) Mr. Wolf: an energy-precision scalable par-
allel ultra low power SoC for IoT edge processing. IEEE J. Solid-State Circuits 54(7):1970–1981

 12. Ramírez C, Castelló A, Quintana-Ortí ES (2022) A BLIS-like matrix multiplication for machine
learning in the RISC-V ISA-based GAP8 processor. J. Supercomput. 78(16):18051–18060. https://
doi. org/ 10. 1007/ s11227- 022- 04581-6

 13. Ramírez C, Castelló A, Martínez H, Quintana-Ortí ES (2023) Performance analysis of matrix
multiplication for deep learning on the edge. In: High Performance Computing. ISC High Per-
formance 2022 International Workshops: Hamburg, Germany, May 29–June 2, 2022, Revised
Selected Papers. Springer-Verlag, Berlin, Heidelberg, pp 65–76. Available: https:// doi. org/ 10. 1007/
978-3- 031- 23220-6_5

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1811.09886
http://arxiv.org/1904.05717
https://doi.org/10.1007/s11227-022-04581-6
https://doi.org/10.1007/s11227-022-04581-6
https://doi.org/10.1007/978-3-031-23220-6_5
https://doi.org/10.1007/978-3-031-23220-6_5

	Parallel GEMM-based convolution for deep learning on multicore RISC-V processors
	Abstract
	1 Introduction
	2 Convolution via IM2COL+GEMM
	2.1 Convolution
	2.2 Indirect convolution via the im2colim2row transforms

	3 Blocked algorithms for GEMM
	3.1 The baseline algorithm for GEMM
	3.2 Alternative algorithms for GEMM

	4 The GAP8 Platform
	5 Tailoring GEMM for the GAP8
	5.1 Micro-kernel for B3C2A0
	5.2 Data transfers across the memory hierarchy
	5.3 Parallelization

	6 Performance Analysis
	6.1 Setup
	6.2 Preliminary analysis
	6.3 Global comparison
	6.4 im2col versus im2row

	7 General discussion
	8 Concluding remarks
	Acknowledgements
	References

