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Abstract

Objective: To study the suitability of cost-sensitive ordinal artificial intelligence-machine
learning (AI-ML) strategies in the prognosis of SARS-CoV-2 pneumonia severity.

Materials & methods: Observational, retrospective, longitudinal, cohort study in 4 hospi-
tals in Spain. Information regarding demographic and clinical status was supplemented by
socioeconomic data and air pollution exposures.

We proposed AI-ML algorithms for ordinal classification via ordinal decomposition and
for cost-sensitive learning via resampling techniques. For performance-based model selection,
we defined a custom score including per-class sensitivities and asymmetric misprognosis costs.
260 distinct AI-ML models were evaluated via 10 repetitions of 5×5 nested cross-validation
with hyperparameter tuning. Model selection was followed by the calibration of predicted
probabilities. Final overall performance was compared against five well-established clinical
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severity scores and against a ‘standard’ (non-cost sensitive, non-ordinal) AI-ML baseline. In
our best model, we also evaluated its explainability with respect to each of the input variables.

Results: The study enrolled n=1548 patients: 712 experienced low, 238 medium, and 598
high clinical severity. d=131 variables were collected, becoming d′=148 features after categor-
ical encoding. Model selection resulted in our best-performing AI-ML pipeline having: a) no
imputation of missing data, b) no feature selection (i.e. using the full set of d′ features), c) ‘Or-
dered Partitions’ ordinal decomposition, d) cost-based reimbalance, and e) a Histogram-based
Gradient Boosting classifier. This best model (calibrated) obtained a median accuracy of
68.1% [67.3%, 68.8%] (95% confidence interval), a balanced accuracy of 57.0% [55.6%, 57.9%],
and an overall area under the curve (AUC) 0.802 [0.795, 0.808]. In our dataset, it outperformed
all five clinical severity scores and the ‘standard’ AI-ML baseline.

Discussion & conclusion: We conducted an exhaustive exploration of AI-ML methods
designed for both ordinal and cost-sensitive classification, motivated by a real-world application
domain (clinical severity prognosis) in which these topics arise naturally.

Our model with the best classification performance exploited successfully the ordering
information of ground truth classes, coping with imbalance and asymmetric costs. However,
these ordinal and cost-sensitive aspects are seldom explored in the literature.

Keywords — Artificial intelligence, COVID-19, cost-sensitive classification, ordinal classification,
SARS-CoV-2 pneumonia, severity prediction.

1 Introduction
After the rapid spread of the SARS-CoV-2 coronavirus and its outbreak into the global COVID-19 pan-
demic, the medical informatics and artificial intelligence-machine learning (AI-ML) communities dedicated
large efforts to support medical decision-making towards high-quality healthcare for COVID-19 [1–3].
These initiatives ranged from predicting the spread of the disease [4, 5] or identifying populations at
risk [6, 7], to diagnostic [8, 9] and/or prognostic tools [10–13].

In this context, medical informatics may provide pulmonologists with assistance for personalized, ef-
fective and efficient, data-backed therapeutic guidance [14].

1.1 Motivation
A ‘living’ systematic literature review [1] identified 107 AI-ML models for COVID-19 disease prognosis:
39 focused on predicting mortality risk, whereas 28 were for clinical progression. Prognoses were often
either dichotomous by nature (e.g. admission or not to intensive care units, ICU [15]), or dichotomized.
However, our pulmonologists considered it relevant to assess deterioration by distinguishing multiple levels
of severity. Such a clinical question motivated us to investigate tailored AI-ML strategies able to address
–by design– two key aspects of the motivating task:

• Having three severities entails a natural intrinsic order in the ground truth classes. Thus, here we
formalized mathematically our task as an ordinal classification problem (aka ordinal regression) [16].

• The various types of misprognoses imply different consequences for patient safety, a fact which called
upon the use of cost-sensitive learning [17].

These two choices entail –by themselves, as well as combined– methodological novelty with respect
to the ‘standard’ nominal approach (either binary or even multi-class but non-ordinal) adopted by the
majority of AI-ML literature in the context of COVID-19 [1].

The data collected to characterize each patient’s case comprised mostly demographic (e.g. sex, age) [18]
and clinical information (e.g. blood analytics) as the core explanatory variables for the AI-ML systems
to learn patterns in prognosis. In addition, our Working Group decided to supplement such information
with extra factors, which had been consistently reported in the literature to aggravate health outcomes
(in general, but also for COVID-19 in particular): socioeconomic inequalities [19, 20] and the exposure
to outdoor air pollution – mainly particulate matter and NO2 [21–25]. Population from deprived strata
and/or regions have been reported to suffer from more severe consequences of COVID-19, and to be more
prone to get infected [20, 26, 27], due to their living conditions, baseline health status, etc. Besides, air
pollution may also predispose to chronic diseases (respiratory and cardiometabolic) [23] which can become
aggravated by COVID-19: decreasing subjects’ immune response, facilitating viral entry and SARS-CoV-2
infection [24]. Chronic exposure to various pollutants (notably PM2.5 particulate matter) was found to
correlate with alveolar ACE-2 receptor over-expression, leading to more severe infections [25]. Furthermore,
for the cohort studied here, our Working Group found statistically significant relations between: a) chronic
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exposure to pollutants (primarily nitrogen oxides NO2, NO, NOX , also PM10); and b) SARS-CoV-2
pneumonia mortality, as well as with biomarkers of inflammation and gas exchange [28].

2 Materials & Methods
We adopted the ‘IJMEDI checklist for assessment of medical AI’ [29] to guide the reporting of our study.

2.1 Data collection
We conducted an observational, retrospective, longitudinal, cohort study with a multi-center setup, in four
major general hospitals from three different geographical territories in Spain: Catalonia (Clínic Hospital,
in Barcelona), Valencian Community (La Fe Hospital, in Valencia), and the Basque Country (Galdakao-
Usansolo and Cruces Hospitals, in Galdakao and Barakaldo). The study was approved by the corresponding
Ethics Committees for Clinical Research (codes: HCB/2020/0273, 20-122-1, PI 2019090, PI 2020083), and
it was carried out in adherence to the relevant guidelines and regulations. Only participants who voluntarily
gave written informed consent were enrolled.

The inclusion criterion was adult patients (≥18 years old) admitted to in-hospital stays due to SARS-
CoV-2 pneumonia during the first wave of COVID-19 in Spain: between mid-February and end-May 2020.
Requirements for COVID-19 pneumonia diagnosis were both a positive microbiological test (positive DNA
amplification test by PCR for SARS-CoV-2), as well as compatible chest imaging findings (radiography,
tomography).

A posteriori examination of the clinical records allowed us to determine the ground truth severity in
their evolution. Our pulmonologists defined three target ordinal classes via systematic objective criteria.
The high severity group comprised patients who either: a) died intra-hospital or within 30 days after
admission; or b) required major respiratory aids/aggressive treatments (high flow oxygen therapy, non-in-
vasive mechanical ventilation, orotracheal intubation, extracorporeal membrane oxygenation, hemofilter,
and/or vasoactives); or c) were admitted to ICU –including ‘intermediate’ respiratory ICUs–; or d) suffered
major clinical complications (e.g. distress, shock). The medium severity group was formed by patients who
either: a) stayed in the hospital for at least 14 days, or b) suffered intermediate complications (e.g. pul-
monary embolism, congestive heart failure, neurological deterioration, etc.); whereas the low severity
group comprised the rest of the patients, whose clinical evolution was thus favorable.

A broad set of variables were collected to characterize each patient’s case (Section 3.1 for further
details). These included: a) demographics (e.g. age, sex, body mass index, residence in a nursing home);
b) comorbidities (i.e. pre-existing conditions); c) symptoms and physiological status during the preliminary
emergency episode; and d) results from baseline examinations at the time of hospitalization (laboratory
blood analytics, arterial gas tests, etc.).

Besides, we incorporated extra variables describing the socioeconomic situation in each patient’s post-
code of residence: average income, mean age, percentage of the population under 18 and over 65 years
old, etc. These data were obtained from the most recent public census by the Spanish National Statistical
Institute (INE, 2019) [30].

We also obtained daily air pollution measurements, throughout 2019 and during the relevant part of
2020, to characterize acute and chronic exposures to pollutants per geographical location. These data were
published by the air quality agencies from the corresponding territorial authorities [31–34], for eight main
pollutants: PM10, PM2.5, O3, NO2, NO, NOX , SO2, and CO.

2.2 Data preparation & pre-processing
As part of a preliminary curation stage to guarantee data quality and integrity, we disregarded a pri-
ori any variable suffering from ≥60% missing values (Figure 1). For the remaining variables, continu-
ous measurements spanning several orders of magnitude (e.g. concentrations from the blood tests) were
log10-transformed. Discrete categorical variables (without intrinsic order, e.g. type of bronchological co-
morbidity) were transformed into binary features via ‘one-hot’ encoding; whereas discrete ordinal variables
(e.g. CURB-65 pneumonia score) were treated as integers.

Regarding socioeconomic information, since the original data were published per census districts, we
re-interpolated them per postcode of residence (i.e. the available information). We first computed the
portion of geographical area from each census polygon within a certain postcode polygon and then carried
out a weighted sum of values.

For air quality, measurements were available only at the locations of surveillance stations. Thus, we
estimated day-to-day pollution levels per postcode via Bayesian Generalized Additive Models (BGAMs) [35,
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36], computing the distribution of exposures as a function of latitude, longitude, and elevation. In this
study, we considered chronic exposure as the pollution throughout 2019; whereas acute exposure was across
the 7 days before each patient’s admission date.

Figure 1 depicts an overview of the structure of our dataset, along with a schematic of our compound
AI-ML workflow, including the algorithmic choices for each step (Sections 2.3 to 2.10).

Figure 1: Workflow – Diagram of our methodology. In red, preliminary quality assurance
discarded variables with ≥60% missing values. In golden, data pre-processing. In blue, steps
forming the AI-ML pipelines. In green, additional procedures.

2.3 AI-ML pipelines
Methodologically, our proposal here consisted in examining compound AI-ML models (aka pipelines),
whose stages (Figure 1) were specifically designed to tackle challenges posed by our SARS-CoV-2 pneu-
monia dataset, as well as by the nature of our cost-sensitive ordinal classification task.

After data pre-processing (Section 2.2), we performed input scaling. It aimed to guarantee that per-
feature distributions have commensurate magnitudes: within comparable ranges of variation (e.g. regardless
of their physical units of measurement), as commensurability is known to help in the convergence of many
AI-ML algorithms. Instead of the archetypical ‘standardization’ (i.e. subtract the sample mean, then divide
by the sample standard deviation), here we opted for a so-called ‘robust’ scaling: i.e. subtract the sample
median (quartile q2), then divide by the inter-quartile range (q3 − q1). The motivation for this choice
is that quartiles are less sensitive to potential outliers than mean and deviation. We did not apply any
further explicit outlier detection scheme.
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Secondly, we proposed an imputation stage to cope with missing values. This is necessary because most
AI-ML estimators (Section 2.6) are unable to handle missing data. We examined two different choices for
an imputation strategy:

a) k-nearest neighbors (kNN), where an instance’s missing values are estimated by the weighted average
of the values for that same feature across the k instances closest to it (‘neighbors’) [37, 38]; and

b) Iterative (MICE), where the imputation formula for the missing values of a certain feature is com-
puted as a regression function of the nf other features most correlated to it [39,40].

In addition, and given that one of the AI-ML estimators (HGB, see Section 2.6) is capable of learning
with missing data, we also studied pipelines without any imputation. None of these choices altered the
dimensionality of data: neither in terms of the amount of instances nor in the number of features.

As a third stage in our pipelines, we examined various feature selection techniques. The motivation
was to ameliorate the ‘curse of dimensionality’ issue [41], compacting the representation of the relevant
information in a subspace of lower dimensionality. This may facilitate learning for the subsequent AI-
ML estimators. In our complementary work [42], we conducted an exhaustive examination of 166 distinct
feature selection strategies for this scenario, attending to objective and systematic criteria on selection per-
formance (mostly, bootstrapped stability in the subset of selected features). Out of those 166 alternatives,
here we employed the top four:

a) Mutual information (MI) univariate filter [41],

b) ReliefF multivariate filter [43],

c) L1-penalized regularization for embedded selection [41],

d) Recursive feature elimination (RFE) wrappers [41].

From these, only ReliefF can handle missing data. Besides, given that some AI-ML estimators (e.g. tree
bagging and boosting) may not always suffer from the ‘curse of dimensionality’, we also considered a case
without feature selection, i.e. working with the full set of features.

As additional stages (Figure 1), we proposed: a) ordinal decomposition for ordinal classification (Sec-
tion 2.4); b) instance resampling to cope with class imbalance, as well as for cost-sensitive learning (Sec-
tion 2.5); and c) the AI-ML supervised estimators themselves (Section 2.6).

2.4 Ordinal classification
For the motivating scenario, our pulmonologists considered it relevant to discern Q=3 severity levels, which
entail an obvious natural ordering. In the classical ‘standard’ AI-ML strategies, one would straightforwardly
use nominal classification techniques, which are not designed to account for such an ordered structure of
the ground truth classes. Thus, the underlying –and potentially enhancing– information about class order
may remain unexploited.

Conversely, here we focused on solutions explicitly designed to address such an ordinal classification
scenario. We examined three ordinal strategies [16]:

a) A ‘naïve’ transformation of the classification problem into a regression task.

b) A ‘naïve’ multi-class decomposition ‘One-Vs-One’ (OvO) into
(
Q
2

)
=3 binary classification problems.

c) An ordinal ‘Ordered Partitions’ (OrdP) decomposition [44] into Q-1=2 binary problems, formed by
contiguous class groupings: (i) [Low & Medium] vs. High; and (ii) Low vs. [Medium & High].

2.5 Class imbalance & cost-sensitive learning
AI-ML algorithms learn by minimizing an overall loss function averaged across samples in the training
dataset. Thus, if certain classes are under-represented in those training data, the algorithms may learn in
a biased manner: e.g. prone to suffer marked decays in performance for the minority group(s).

By default, in the typical nominal classification, losses for the different types of errors tend to be
assumed all with equal impact. However, this does not hold appropriate with ordinal tasks.

Furthermore, our motivating scenario is inherently cost-sensitive. In clinical practice, the implications
for patient safety due to different types of misprognoses should not always be regarded as the same:
over-predicting severity may be detrimental to some extent (e.g. for the healthcare providers in their
management of personnel and resources), but under-prognoses can imply very serious adverse consequences
for those patients receiving suboptimal surveillance or treatment.

To address simultaneously both tasks of learning in a strongly imbalanced class representation, and
under a cost-sensitive ordinal scenario, we opted for resampling techniques [45,46] at the level of data. To
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tackle imbalance, we first equalized class frequencies in the training dataset using SMOTE oversampling;
in particular, its ‘Borderline (v1)’ variation [47], which focuses on generating synthetic minority samples
from instances in the neighborhood of majority ones – hence in danger of being misclassified. (Note that, in
those scenarios without effective imputation, random oversampling had to be used instead, since SMOTE
does not support missing values).

Afterwards and in order to promote cost-sensitive learning, we made the data imbalanced again, re-
flecting the ratios of misclassification costs [48, 49]. To do so, we used undersampling with the ‘NearMiss
(v1)’ heuristic [50], which retains instances near the opposite class. Again, in those scenarios without
imputation, we used random undersampling).

2.6 AI-ML estimators
The last stage of our proposed pipelines (Figure 1) comprised the AI-ML classification algorithm itself; or
in the case of the ‘naïve’ ordinal formulation as regression (Section 2.4), the AI-ML regressor. We explored
five families of algorithms, to cover a diverse range of AI-ML working principles:

a) Linear methods: Logistic Regression for the two ordinal decompositions based on classification
(i.e. OvO, OrdP), and Ridge for the regression task.

b) Support Vector Machines (SVM) with non-linear kernels; specifically radial basis functions (‘rbf ’ ).

c) Multi-Layer Perceptron (MLP) architectures, as representatives of shallow artificial neural networks.

d) Random Forests (RF) as ‘bagging’ ensembles of decision trees.

e) Histogram-based Gradient Boosting (HGB), within the ‘boosting’ ensemble paradigm – Also with
the noticeable ability to handle missing values: at each node, HGB learns into which branch they
should be routed.

Throughout the training, we automatically tuned each algorithm’s key hyperparameters via a cross-
validated (CV) grid search (Section 2.11 for implementation details). In particular, we tuned:

a) For the linear models,

a.1) Logistic regression: CLR (inverse of the L2 regularization strength).

b.2) Ridge: αRidge (L2 regularization strength).

b) SVM with ‘rbf ’ kernel: γ (kernel scale), CSV M (inverse of the L2 regularization strength).

c) MLP: the number of neurons in the hidden layers, αMLP (L2 regularization strength).

d) RF: the number of trees in a forest, maximal tree depth, splitting criterion (either Gini impurity or
entropy, in classification; mean absolute or squared error, in regression), and the number of candidate
features for each split.

e) HGB: η (learning rate), the maximum number of iterations, and maximal tree depth.

Hyperparameter tuning was based on our custom performance score (Section 2.7), defined to account for
the trade-offs in class imbalance and cost-sensitive ordinal scenarios.

2.7 Performance metric for model selection
Let N be the Q×Q confusion matrix for a certain prediction (here Q=3 target classes). Its ni,j element
represents the count of instances assigned to the i-th class but truly belonging to the j-th. Therefore, the
total number of ground truth samples in the j-th class is n•j =

∑Q
i=1 ni,j , and the corresponding sensitivity

equals nj,j/n•j . In multi-class imbalanced problems like ours, a widespread metric of performance is the
G-mean score (GMS) [49], which equals the geometric mean of per-class sensitivities:

GMS :=

[
Q∏

i=1

nj,j

n•j

]1/Q

(1)

Besides, let C be the Q × Q cost matrix. Its ci,j element quantifies the penalization for predicting a
sample as in the i-th class when it truly belongs to the j-th. By convention, ci,i = 0 ∀i ∈ {1, . . . , Q} and
ci,j > 0 ∀i ̸= j. Then, known C, the total cost of a predictor with confusion matrix N equals:

CostTotal :=

Q∑
i=1

Q∑
j=1

ci,jni,j (2)
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To contextualize this total cost in Eq. (2), we suggest comparing it against a ‘dummy’ but ‘safe’ predictor
which always outputs the class with minimal total cost:

CostSafe := min
i∈{1,...,Q}

Q∑
j=1

ci,jn•j (3)

Thus, one can define a cost-based score (CBS), bounded in the [0, 1] interval, as follows:

CBS := max

{
0, 1− CostTotal

CostSafe

}
(4)

Hence, our cost-sensitive ordinal learning task can be understood as two-sided: a) achieving high recog-
nition rates for each and all of the (imbalanced) target classes – i.e. maximizing GMS, and simultaneously
b) minimizing the overall misclassification cost – i.e. maximizing CBS, thus practical applicability. Inspired
by the F1-score, which in binary classification problems is the harmonic mean between precision and recall,
we defined the following custom metric:

Score := 2
GMS · CBS
GMS + CBS

(5)

i.e. the harmonic mean of GMS and CBS. Here we used this score as our target performance metric –to
be maximized– in two contexts: i) during AI-ML hyperparameter tuning, and ii) for model selection.

2.8 Calibration
When supporting medical decision-making, it is both theoretically sound and practically appropriate [1]
to ascertain not only the quality of AI-ML prognoses (Sections 2.7, 2.9) but also the level of uncertainty in
prediction. In other words: how close our model estimates class probabilities with respect to the observed
relative frequencies. After model selection attending to Eq. (5), our architecture with the best performance
was evaluated without and with a final stage of probability calibration [51,52]. Specifically, for calibrating
the model we binarized the multi-class problem in a ‘One-vs-Rest’ (OvR) fashion [53] and employed Platt’s
sigmoid method [54].

2.9 Final performance evaluation
To benchmark our best model’s performance in terms of the success rates attained for our particular cohort
and prognostic target, we also calculated the following scoring methods:

a) Pneumonia severity index (PSI) [55], a well-established general-purpose clinical score, which has also
been applied in the context of COVID-19 [56].

b) Among the 107 proposals reviewed by Wynants et al. [1], the four scores recommended by the authors
for hospitalized patients: Xie et al. [57], PRIEST [58], ISARIC 4C [59], and Carr et al. extension [60]
of the NEWS2 score [61]. Note that these four models fulfilled the highest requirements in terms of
discrimination ability, calibration, and external validation.

For them, we computed the optimal decision thresholds towards our three-class severity task as proposed
in [62]. In the case of [60], we trained their logistic regression from scratch adapting its input: with a binary
indicator of whether the patient received supplementary oxygen, instead of the exact flow (not recorded in
our study); and with creatinine as a biomarker of kidney function [63], instead of the estimated glomerular
filtration rate (eGFR, also not recorded).

Furthermore, we proposed a baseline AI-ML model with a ‘standard’ design (i.e. non-cost sensitive,
non-ordinal): an HGB classifier, whose internal hyperparameters were tuned exactly as in Section 2.6.

As performance metrics, we opted for: accuracy, balanced accuracy (pertinent for class imbalance [49]),
area under the receiver operating characteristic (AUC), average precision in the precision-recall curve, Brier
score loss (to study accuracy in the probabilistic predictions/calibration), mean absolute error (MAE, a
typical metric in ordinal scenarios [16]), GMS (also pertinent for class imbalance [49]), average cost (for
cost-sensitive scenarios), and our custom score in Eq. (5).

2.10 Model explainability
Currently, explainable AI-ML is a major topic for both researchers and practitioners, having attracted
growing interest. Except for simple algorithms –binary logistic regression or small-sized decision trees,
which can be termed as ‘transparent’ due to their straightforward explainability–, the vast majority of
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AI-ML models tend to become very complex internally, with intricate interactions among input variables.
Thus, they behave as ‘opaque’ systems hindering human understanding of AI-ML [64,65].

To explore and quantify the contribution of each input variable toward severity prognosis, we used
Shapley additive explanation techniques (SHAP) [66]. SHAP comprises post hoc explainability analyses [65]
that compute the marginal impact of a feature (or of a subgroup/‘coalition’ of them) with respect to the
model’s outcome. Here we opted for the ‘Kernel SHAP’ approach, as it is model-agnostic.

2.11 Implementation details
For the sake of reproducibility, we made the source code for our experiments publicly available at our
GitHub repository: https://github.com/fegarcia-bcam/CostOrdinalPredict-COVID-19-IEEE-JBHI. Our
experiments were run on a supercomputing cluster at the Donostia International Physics Center (DIPC).

We implemented our algorithms based on publicly available Python libraries for AI-ML. We used
primarily scikit-learn [67]: for the first stages in our pipeline (encoding, scaling, imputation, and most
of the feature selection techniques – Figure 1), as well as for the supervised estimators and their calibration.
We used scikit-rebate [43] for ReliefF feature selection filters, imbalanced-learn [68] for data resampling
and GMS in Eq. (1), and shap [66] for model explainability. We developed in-house implementations to
transform the ordinal classification task into regression, OvO classification, and OrdP problems.

We opted for internal model validation using CV. To prevent information leakage [69], not only the
final prediction stage was subjected to CV; but instead the whole pipeline: scaling, imputation, feature
selection, ordinal decomposition, and resampling as well (Figure 1).

For model selection, we used 10 independent repetitions of a 5×5-fold nested CV with internal hyper-
parameter tuning, in order to simultaneously achieve optimal hyperparameters and an unbiased estimation
of the models’ performance. Samples were doubly stratified into the CV folds both by hospital and by
severity level.

We fixed certain pre-processing hyperparameters (Section 2.3): for kNN imputation we opted for
k=9 neighbors, and for iterative (MICE) nf=4 auxiliary features; whereas for ReliefF filters we used
k=100 neighbors [42]. In our GitHub repository, the interested reader may find further details about the
hyperparameter search spaces employed for the tuning of the five types of AI-ML estimators (Section 2.6).

For the final performance assessment (without and with calibration [51]), we used 20 repetitions of
10-fold CV – again doubly stratified by hospital and by severity. Hyperparameters for the optimal model
were set as the most repeated choice during tuning in the model selection stage.

SHAP explainability computations were obtained with a single round of 10-fold CV.

3 Results

3.1 Dataset
With our inclusion/exclusion criteria, a total of n=1548 patients were enrolled: 596 women (38.5%,
p<0.001). They were distributed as shown in Table 1, where hospitals have been anonymized. For an
exhaustive characterization of our cohort, we kindly refer the reader to our supporting report publicly
available at Zenodo: https://doi.org/10.5281/zenodo.7703106. It contains descriptive statistics for all vari-
ables –both in overall and by severity–, plots of their univariate distributions, along with hypothesis testing
results for differences across groups (χ2 tests for categorical variables, non-parametric Kruskal-Wallis for
continuous) and their effect sizes. This supporting document also depicts maps with the geographical
distribution of patients and severities per postcode, socioeconomic information, and the distribution of
chronic/acute exposures to pollutants. However, patient confidentiality issues prevented us from making
the dataset public.

Out of the 106 demographic and clinical variables collected at hospitalization, 14 variables (e.g. ferritin,
albumin, bilirubin, or platelets) [42] had to be discarded a priori (Figure 1) for not meeting our quality
assurance criterion of <60% missing. After ‘one-hot’ encoding categorical variables, the remaining 92
became 109 features – for further details, please read our Zenodo report. In addition, 7 socioeconomic
variables were extracted at each postcode, alongside 32 about chronic and acute exposures to pollutants.
Therefore, they totaled d=131 variables before encoding, and d′=148 features afterwards.

Our pulmonologists at the Galdakao-Usansolo University Hospital defined the cost matrix in Figure 2,
based on their expert clinical knowledge. As expected for ordinal classification, costs increase monotonically
with the difference in the number of levels between the true and the predicted class [16]. The asymmetric
structure of this cost matrix encodes the disparate practical consequences of under- and over-prognoses.
In all, it entails a trade-off between promoting patient safety and quality of care and constraining the
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Table 1: Patient counts and frequencies

Overall By severity
Low Medium High

n=1548 n=712 (46.0%) n=238 (15.4%) n=598 (38.6%)

H
os

p
it

al A 358 (23.1%) 205 (57.3%) 36 (10.1%) 117 (32.7%)

B 380 (24.5%) 229 (60.3%) 50 (13.2%) 101 (26.6%)

C 438 (28.3%) 119 (27.2%) 59 (13.5%) 260 (59.4%)

D 372 (24.0%) 159 (42.7%) 93 (25.0%) 120 (32.3%)

number of over-prognoses (to cope with potentially heavy burdens for the clinical staff, in a situation of
pandemics).

Figure 2: Cost matrix.

3.2 AI-ML model selection
As explained in Sections 2.3 to 2.6 and Figure 1, we explored a comprehensive set of choices with respect
to the various stages of our AI-ML pipeline: (i) 3 alternatives for imputation; (ii) 5 feature selection
techniques; (iii) 3 ordinal decompositions – regression, OvO, OrdP ; (iv) 2 forms of sample rebalancing –
equalized to cope with class imbalance, or reimbalanced for cost-sensitive learning; and finally (v) 5 families
of AI-ML estimators. Not all combinations were feasible, due to the inability of most feature selection
algorithms and/or estimators to handle missing data. Thus, we trained and evaluated a total of 260 unique
pipeline architectures.

For model selection, Table 2 summarizes their median performance in terms of our custom score in
Eq. (5). As highlighted in bold, our best model –i.e. the one with the highest overall score– was an AI-
ML pipeline comprising: (i) no imputation, (ii) no feature selection (i.e. all features fed), (iii) ‘Ordered
Partitions’ for ordinal decomposition, (iv) cost-based reimbalance, and (v) an HGB classifier handling
missing values.

3.3 Final performance evaluation
Having determined our best model (Section 3.2) and its optimal hyperparameters –i.e. the most repeated
choice during tuning–, we assessed its overall classification performance via 20 runs of 10-fold CV (Sec-
tion 2.11), without and with calibration. Figure 3 illustrates its receiver operating characteristic (ROC),
precision-recall, and calibration curves. Since such curves are defined for binary problems, we used ‘One-
vs-Rest’ (OvR) transformations as recommended by [70].

In addition, Table 3 contains an exhaustive comparison of the performance results by our best pipeline:
against the five models recommended by [1], and against the nominal HGB baseline (Section 2.9). When
applied to our dataset with optimal decision thresholds calculated as in [62], these state-of-the-art models
were outperformed by both the HGB baseline algorithm and our best cost-sensitive ordinal AI-ML model
(also an HGB-powered pipeline).

The HGB baseline behaved equivalently in terms of accuracy, AUC for Low & High severities,
precision-recall for High, and MAE (Table 3). Nonetheless, our best model outperformed it in all other per-
formance metrics, particularly in those pertaining class imbalance or cost-sensitiveness: balanced accuracy,
GMS, average cost, and our custom score.
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Table 2: Results for model selection – Median performance score across 10 repetitions of
5×5-fold nested CV with hyperparameter tuning. In bold, our model with the best performance
overall.

E
st

im
at

io
n

O
r
d
in

a
l

R
es

a
m

p
le

Imputation
kNN Iterative (MICE) None

Feature selection
Filt Emb Wrap None Filt Emb Wrap None Filt NoneMI RelF L1 RFE MI RelF L1 RFE RelF

LIN

Regr Equal .119 .118 .146 .104 .268 .083 .088 .131 .082 .253

— —OvO Equal .320 .301 .336 .339 .370 .296 .289 .338 .340 .345
Cost .356 .343 .369 .367 .345 .329 .348 .380 .366 .367

OrdP Equal .113 .083 .188 .107 .164 0 0 .006 .002 .165
Cost .320 .327 .346 .331 .337 .306 .327 .355 .345 .389

SVM

Regr Equal .270 .246 .290 .258 .345 .245 .246 .266 .212 .320

— —OvO Equal .356 .338 .362 .372 .413 .321 .297 .353 .354 .385
Cost .364 .371 .384 .387 .387 .333 .347 .371 .375 .404

OrdP Equal .218 .173 .246 .249 .210 .149 .124 .208 .203 .259
Cost .336 .309 .345 .358 .387 .306 .320 .368 .349 .406

MLP

Regr Equal .229 .179 .249 .206 .302 .185 .120 .170 .189 .270

— —OvO Equal .328 .265 .333 .336 .385 .283 .254 .320 .336 .367
Cost .351 .312 .347 .348 .362 .316 .287 .333 .329 .381

OrdP Equal 0 0 0 0 .082 0 0 0 0 0
Cost .318 .291 .323 .320 .349 .287 .284 .309 .312 .371

RF

Regr Equal .208 .200 .208 .162 .212 .161 .155 .170 .134 .167

— —OvO Equal .371 .371 .386 .390 .399 .350 .340 .372 .374 .394
Cost .384 .365 .398 .392 .371 .358 .364 .384 .384 .385

OrdP Equal 0 0 0 0 0 0 0 0 0 0
Cost .388 .369 .396 .393 .414 .368 .364 .391 .391 .424

HGB

Regr Equal .255 .242 .261 .201 .305 .206 .235 .253 .164 .291 .270 .325

OvO Equal .358 .334 .365 .361 .404 .323 .339 .355 .335 .389 .365 .402
Cost .358 .352 .375 .370 .359 .333 .340 .376 .360 .388 .405 .437

OrdP Equal 0 0 0 0 .114 0 0 0 0 .002 .265 .351
Cost .344 .348 .369 .369 .396 .337 .349 .363 .354 .412 .380 .442

Abbreviations – kNN : k-nearest neighbors, Filt : filter, MI : mutual information, RelF : ReliefF, Emb: embedded,
Wrap: wrapper, RFE : Recursive feature elimination, LIN : linear (Ridge for Regr, logistic for OvO and OrdP),

SVM : support vector machines, MLP : multi-layer perceptron, RF : random forest, HGB : histogram-based gradient
boosting, Regr : regression, OvO : One-vs-One, OrdP : ordered partitions.

3.4 Model explainability
For our best AI-ML pipeline (Section 3.2), Figure 4 depicts the mean absolute value of SHAP explainability
magnitudes, per each of the original d=131 variables, and per target severity level – averaged across the
n=1548 patients. Notably, our best model working without feature selection (i.e. full input) is consistent
with the results displayed in Figure 4, where almost all variables had non-negligible SHAP weights. The
only exceptions are #040 (overall COVID-19 symptoms) and #089 (preliminary treatment with Remdesivir
during the emergency), but this behavior is easy to understand: only one patient in our cohort was
asymptomatic, and only 11 received Remdesivir [Zenodo report].

A dozen variables stood out with the largest SHAP weights: #029 (PSI pneumonia score), #054
(SpO2/F iO2) and #054 (SpO2/RespiRate) –both oxygenation biomarkers–, #068 (C-reactive protein,
CRP) and #063 (creatinine), #041 (days with symptoms before hospitalization), #092 (emergency treat-
ment with low-molecular-weight heparin), #052 (SpO2 oxygen saturation), and #067 (lactate dehydro-
genase, LDH). Conversely, patients’ sex (#001) and age (#002) yielded modest SHAP weights, meaning
that our algorithm relied on this information merely to a limited extent.

Socioeconomic factors (#093 to #099) and exposures to air pollution (#100 to #131) also showed
non-negligible SHAP weights. Among the latter: #117 (PM2.5 acute), #126 (O3 acute), and #116 (PM10

acute).

4 Discussion
This work was based on a multi-centric clinical study for COVID-19, with a broad set of measurements
collected to predict the severity of hospitalized SARS-CoV-2 pneumonia patients. Our pneumologists
established the relevance of distinguishing three levels of increasing severity, with imbalanced class repre-
sentation and uneven misclassification penalties. Methodologically, this motivated us to explore AI-ML
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(a) ROC curves [OvR]: Uncali-
brated

(b) Precision-recall [OvR]: Uncal-
ibr.

(c) Calibration [OvR]: Uncali-
brated

(d) ROC curves [OvR]: Calibrated (e) Precision-recall [OvR]: Calibr. (f) Calibration [OvR]: Calibrated

Figure 3: Classification performance by our best model – Without (top) and with
calibration (bottom). Median and 95% CIs across 20 repetitions of 10-fold CV. Calibration
curves (c, f) were generated with 5 bins each.
Color coding for ground truth – Green: Low, Orange: Medium, Red: High.

strategies tailored for cost-sensitive ordinal classification. They entail a double novelty with respect to
the prevailing algorithmic choices: not only across the comparable COVID-19 literature [1] but in general,
with ordinal scenarios.

To exploit this natural order of the ground truth, we explored three decompositions of the ordinal
classification problem: (i) as a regression task, (ii) as a nominal (i.e. non-ordered) OvO multi-class clas-
sification, and (iii) with an explicitly ordinal approach known as ‘Ordered Partitions’ (OrdP) [44]. In
addition, we proposed a custom performance score to guide hyperparameter tuning and model selection –
Eq. (5), which encompasses a trade-off between sensitivity to the minority classes, and accounting for the
different implications of the various types of over-/under-prognoses. For meaningful comparisons, it used
a maximally precautionary (minimal cost) reference – Eq. (3).

We had access to an extensive characterization of patients’ status at hospital admission. Nonetheless,
there was a high occurrence of missing values, due to the extraordinary burden on the clinical staff during
the first wave of COVID-19. This and other peculiarities of our dataset (e.g. variables of different types
and scales, feature dimensionality, class imbalance) posed practical challenges which demanded multi-stage
pipelines (Figure 1) to address them adequately.

A remarkable strength of our study is having done an exhaustive exploration of AI-ML models tailored
for cost-sensitive ordinal tasks: up to 260 different architectures with ordinal decompositions and cost-based
resampling. Our pulmonologists incorporated domain knowledge to define the concrete penalizations in
our asymmetric cost matrix (Figure 2), but our algorithm is fully generic in this regard: it can be applied
straightforwardly with different losses (e.g. penalizing more heavily under-prognoses).

Attending to model selection (Table 2), the order of ground truth classes turned out to be informative,
as it was the OrdP ordinal decomposition that fostered the top performance. When benchmarked against
five well-established scoring methods for pneumonia and COVID-19 hospitalizations (Section 2.9), our our
best AI-ML pipeline noticeably outperformed them all across classification metrics (Table 3). In addition,
we opted for an extra AI-ML baseline: a ‘standard’ HGB classifier. This algorithm was comparable in
design to our best pipeline, although it followed a nominal approach: neither exploiting ordinal nor cost-
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Figure 4: Contributions by variable – SHAP explanation magnitude (average across patients),
for each variable in the optimal calibrated model. A detailed list of the variable names and numbers
can be found in the appendix materials.

sensitive information. Whereas this HGB baseline yielded equivalent results for certain metrics (accuracy,
AUC for Low & High – Table 3), our best model outperformed it in others, noticeably those related to
class imbalance or cost-sensitiveness: balanced accuracy, AUC and average precision for Medium (the most
minority class), GMS, average misclassification cost, and our custom score. In general, beyond this concrete
SARS-CoV-2 pneumonia scenario, we consider that these findings emphasize the appropriateness of tailored
ordinal and/or cost-sensitive AI-ML strategies whenever these topic are inherent to the application (as
here).
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Our best AI-ML pipeline relied on the full set of d′ input features. This may indicate that predicting
the progression of SARS-CoV-2 pneumonia is a complex task, where many factors play non-negligible
roles. The model’s behavior in the explainability analyses also reflected this phenomenon, as SHAP
showed non-negligible weights for most input variables (Figure 4). SHAP weights were the largest for
clinical factors: respiratory status at admission (e.g. PSI score), measurements of oxygenation (SpO2/F iO2,
SpO2/RespiRate), and biomarkers of inflammation and disease (e.g. CRP, LDH). Yet various features
related to pollution exposure also exhibited non-negligible SHAP weights, in line with another study by
our COVID-19 & Air Pollution Working Group for this same cohort, in which we found statistically
significant effects of various chronic pollutants on the likelihood of death [28].

From a clinical perspective, a limitation of our motivating dataset consists in that it belongs to the first
wave of the COVID-19 pandemic in Spain: from February to May 2020. With such a cohort, we aimed
at learning patterns from patients who underwent the disease in a situation as homogeneous as possible:
regarding the medical knowledge available about COVID-19 and its treatment, and in terms of the burden
to the healthcare system. This first-wave situation was detrimental to data collection, which explains –to
a major extent– the high occurrence of missing values. We deem it interesting for further research to
investigate the algorithmic adaptations to accommodate time-induced distributional shifts [71,72].

A certain inclusion bias may have been introduced by the admission policies at Hospital C : forced
by the unprecedented situation of the pandemic and considering that such an institution had many more
ICU beds than other local hospitals, patients who during emergency screenings were assessed as the most
fragile or deteriorated, were preferentially referred there. This could explain, to an important extent, the
higher rate of severe cases at Hospital C (Table 1).

Finally, calibration –desirable to obtain trustworthy probability estimates (Figure 3c vs. 3f)– appears
to have implied some degree of trade-off for various performance scores (Table 3): it improved Brier loss –
noticeably, as expected– alongside overall accuracy; but at the expense of balanced accuracy, MAE, GMS,
average cost, and our custom score. Thus, practitioners should consider carefully these matters when
deciding whether to deploy the model’s uncalibrated or calibrated version.

5 Conclusion
We investigated the use of tailored AI-ML strategies for ordinal classification with cost-sensitive learning.
The motivating problem was predicting the evolution in severity for hospitalized SARS-CoV-2 pneumonia
patients, a scenario in which these ‘non-standard’ cost-sensitive ordinal topics arise naturally. Despite
that, such techniques are often overlooked in the literature, notably in the context of COVID-19.

We conducted exhaustive experiments with 260 different AI-ML architectures, where the top perfor-
mance was achieved by a model using ‘Ordered Partitions’ ordinal decomposition –hence exploiting the
information about ground truth class order–, and with cost-based sample reimbalance via resampling
for cost-sensitive learning. Furthermore –with accuracy 68.1% [67.3%, 68.8%] (95% CI), balanced ac-
curacy 57.0% [55.6%, 57.9%], and overall AUC 0.802 [0.795, 0.808]–, our best model outperformed five
well-established scores for COVID-19 severity, alongside a nominal AI-ML baseline (non-ordinal, cost-
insensitive): a ‘boosting’ algorithm trained on our dataset. These findings highlight the suitability of
exploring beyond the ‘standard’ nominal techniques when the targeted classification problem is of an
ordinal and/or cost-sensitive nature.

Acknowledgments
We would like to acknowledge patients who participated in this research, as well as the staff at the four
member hospitals.

COVID-19 & Air Pollution Working Group
La Fe Univ & Polytechnic Hosp: Ana Latorre, Paula González Jiménez, Raul Méndez, Rosario Menéndez.
Cruces Univ Hosp: Leyre Serrano Fernández, Eva Tabernero Huguet, Luis Alberto Ruiz Iturriaga, Rafael Za-
lacain Jorge. Hosp Clínic of Barcelona: Antoni Torres, Catia Cilloniz. Galdakao-Usansolo Univ Hosp,
Respiratory Service: Pedro Pablo España Yandiola, Ana Uranga Echeverría, Olaia Bronte Moreno, Isabel Urru-
tia Landa. Galdakao-Usansolo Univ Hosp, Research Unit: Jose María Quintana, Susana García-Gutiérrez,
Mónica Nieves Ermecheo, María Gascón Pérez, Ane Villanueva. BioCruces Bizkaia Health Research Inst:
Mónica Nieves Ermecheo. Basque Center for Applied Mathematics: Fernando García-García, Dae-Jin Lee,
Joaquín Martínez-Minaya, Miren Hayet-Otero, Inmaculada Arostegui. IE Univ: Dae-Jin Lee. Univ Politècnica
de València: Joaquín Martínez-Minaya. Tecnalia: Miren Hayet-Otero. Univ of the Basque Country: Miren
Hayet-Otero, Inmaculada Arostegui.

13



T
ab

le
3:

C
o
m
pa

r
is

o
n

o
f

cl
a
ss

if
ic

at
io

n
pe

r
fo

r
m
a
n
ce

s
–

Fo
r

th
e

A
I-

M
L

m
et

ho
ds

,
m

ed
ia

n
an

d
95

%
C

I
ac

ro
ss

20
re

pe
ti

ti
on

s
of

10
-f
ol

d
C

V
.I

n
bo

ld
,

th
e

be
st

pe
rf

or
m

an
ce

fo
r

ea
ch

m
et

ri
c;

in
it

al
ic

s,
th

e
se

co
nd

be
st

.

P
S
I

sc
or

e
[5

5]
X

ie
et

al
.
[5

7]
P

R
IE

S
T

[5
8]

IS
A

R
IC

4C
[5

9]
A

d
ap

ta
ti

on
C

ar
r

et
al

.
[6

0]

B
as

el
in

e
A

I-
M

L
[H

G
B

]
O

u
r

b
es

t
A

I-
M

L
M

et
r
ic

U
nc

al
ib

ra
te

d
C

al
ib

ra
te

d
U

nc
al

ib
ra

te
d

C
al

ib
ra

te
d

A
cc

ur
ac

y
.4

44
.5

65
.4

90
.5

29
.6

09
.6

80
.6

81
.6

10
.6

81
[.
60

6,
.6

11
]

[.
67

1,
.6

88
]

[.
67

3,
.6

88
]

[.
59

5,
.6

29
]

[.
67

3,
.6

88
]

B
al

an
ce

d
ac

cu
ra

cy
.4

63
.4

99
.4

81
.5

25
.4

79
.5

68
.5

36
.5

94
.5

70
[.
47

7,
.4

83
]

[.
55

7,
.5

82
]

[.
53

0,
.5

41
]

[.
58

0,
.6

15
]

[.
55

6,
.5

79
]

A
U

C

O
ve

ra
ll

.6
61

.6
90

.6
78

.7
32

.7
26

.7
72

.7
69

.7
99

.8
02

[.
72

4,
.7

27
]

[.
76

6,
.7

87
]

[.
75

8,
.7

79
]

[.
79

0,
.8

11
]

[.
79

5,
.8

08
]

L
o
w

.7
10

.7
31

.7
28

.7
75

.7
56

.8
18

.8
38

.8
34

.8
37

[.
75

4,
.7

57
]

[.
80

8,
.8

30
]

[.
83

2,
.8

44
]

[.
82

5,
.8

46
]

[.
83

1,
.8

42
]

M
ed

iu
m

.6
02

.6
10

.5
76

.6
22

.6
46

.6
72

.6
14

.7
04

.7
14

[.
64

1,
.6

50
]

[.
65

6,
.6

92
]

[.
57

7,
.6

34
]

[.
69

3,
.7

24
]

[.
69

5,
.7

27
]

H
ig

h
.6

72
.7

28
.7

30
.8

00
.7

77
.8

33
.8

57
.8

57
.8

55
[.
77

4,
.7

77
]

[.
82

4,
.8

44
]

[.
85

2,
.8

65
]

[.
85

0,
.8

64
]

[.
85

2,
.8

59
]

A
vg

.
pr

ec
is

.

O
ve

ra
ll

.4
70

.5
14

.4
91

.5
59

.5
59

.6
14

.6
23

.6
44

.6
40

[.
55

7,
.5

62
]

[.
60

2,
.6

35
]

[.
61

4,
.6

34
]

[.
63

3,
.6

63
]

[.
62

7,
.6

50
]

L
o
w

.6
72

.6
81

.6
73

.7
48

.7
32

.7
70

.8
03

.8
11

.8
15

[.
72

9,
.7

34
]

[.
75

7,
.7

92
]

[.
79

6,
.8

12
]

[.
79

8,
.8

27
]

[.
80

4,
.8

24
]

M
ed

iu
m

.1
96

.2
15

.1
89

.2
09

.2
50

.3
05

.2
69

.3
18

.3
26

[.
24

1,
.2

55
]

[.
29

1,
.3

39
]

[.
24

1,
.2

92
]

[.
29

0,
.3

54
]

[.
30

3,
.3

44
]

H
ig

h
.5

42
.6

47
.6

11
.7

18
.6

96
.7

65
.8

00
.8

01
.7

77
[.
69

2,
.6

98
]

[.
75

0,
.7

87
]

[.
79

3,
.8

15
]

[.
79

4,
.8

19
]

[.
76

7,
.7

92
]

B
ri

er
sc

or
e

(B
S)

lo
ss

.5
59

.5
35

.5
37

.4
93

.5
10

.4
84

.4
73

.6
50

.4
51

[.
50

9,
.5

12
]

[.
45

4,
.5

03
]

[.
46

9,
.4

76
]

[.
61

9,
.6

74
]

[.
44

7,
.4

56
]

M
ea

n
ab

so
lu

te
er

ro
r

(M
A

E
)

.6
85

.6
41

.6
61

.6
12

.6
27

.4
78

.4
85

.5
01

.4
79

[.
62

2,
.6

32
]

[.
46

3,
.4

94
]

[.
47

0,
.4

99
]

[.
48

0,
.5

26
]

[.
46

7,
.4

92
]

G
eo

m
et

ri
c

m
ea

n
sc

or
e

(G
M

S)
[E

q.
(1

)]
.4

49
.4

63
.4

72
.4

96
.1

62
.4

55
.0

00
.5

83
.4

49
[.
12

9,
.1

86
]

[.
43

1,
.4

92
]

[.
00

0,
.0

73
]

[.
56

9,
.6

06
]

[.
41

5,
.4

77
]

A
ve

ra
ge

co
st

1 /
n
·C

os
t T

o
t

[E
q.

(2
)]

.8
43

.7
47

.7
04

.6
10

.7
38

.5
77

.5
66

.5
27

.5
46

[.
73

2,
.7

45
]

[.
56

2,
.5

93
]

[.
55

1,
.5

81
]

[.
50

5,
.5

56
]

[.
53

4,
.5

69
]

C
us

to
m

sc
or

e
[E

q.
(5

)]
.0

01
.1

84
.2

44
.3

55
.1

39
.3

74
.1

37
.4

55
.3

91
[.
12

3,
.1

54
]

[.
35

2,
.3

96
]

[.
13

5,
.1

70
]

[.
42

6,
.4

83
]

[.
36

6,
.4

14
]

14



References
[1] L. Wynants et al., “Prediction models for diagnosis and prognosis of COVID-19: Systematic review and critical

appraisal,” BMJ, vol. 369, 2020.

[2] R. Vaishya et al., “Artificial Intelligence (AI) applications for COVID-19 pandemic,” Diabetes & Metabolic
Syndrome: Clinical Research & Reviews, vol. 14, no. 4, pp. 337–339, 2020.

[3] J. S. Suri et al., “Systematic review of artificial intelligence in acute respiratory distress syndrome for COVID-19
lung patients: A biomedical imaging perspective,” IEEE J Biomed Health Inf, vol. 25, no. 11, pp. 4128–4139,
2021.

[4] J. Musulin et al., “Application of artificial intelligence-based regression methods in the problem of COVID-19
spread prediction: A systematic review,” Int J Environ Res Public Health, vol. 18, no. 8, 2021.

[5] G. Lombardo et al., “Fine-grained agent-based modeling to predict COVID-19 spreading and effect of policies
in large-scale scenarios,” IEEE J Biomed Health Inf, vol. 26, no. 5, pp. 2052–2062, 2022.

[6] Y. Liu et al., “A COVID-19 risk assessment decision support system for general practitioners: Design and
development study,” J Med Internet Res, vol. 22, no. 6, p. e19786, 2020.

[7] Y. Ye et al., “α-Satellite: An AI-driven system and benchmark datasets for dynamic COVID-19 risk assessment
in the United States,” IEEE J Biomed Health Inf, vol. 24, no. 10, pp. 2755–2764, 2020.

[8] L. Jehi et al., “Individualizing risk prediction for positive coronavirus disease 2019 testing: Results from 11,672
patients,” Chest, vol. 158, no. 4, pp. 1364–1375, 2020.

[9] W. Shi et al., “COVID-19 automatic diagnosis with radiographic imaging: Explainable attention transfer deep
neural networks,” IEEE J Biomed Health Inf, vol. 25, no. 7, pp. 2376–2387, 2021.

[10] S. R. Knight et al., “Risk stratification of patients admitted to hospital with COVID-19 using the ISARIC
WHO clinical characterisation protocol: Development and validation of the 4C mortality score,” BMJ, vol.
370, 2020.

[11] M. Luo et al., “IL-6 and CD8+ T cell counts combined are an early predictor of in-hospital mortality of patients
with COVID-19,” JCI Insight, vol. 5, no. 13, 2020.

[12] L. Meng et al., “A deep learning prognosis model help alert for COVID-19 patients at high-risk of death: A
multi-center study,” IEEE J Biomed Health Inf, vol. 24, no. 12, pp. 3576–3584, 2020.

[13] S. Tabik et al., “COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest
X-ray images,” IEEE J Biomed Health Inf, vol. 24, no. 12, pp. 3595–3605, 2020.

[14] M. van der Schaar et al., “How artificial intelligence and machine learning can help healthcare systems respond
to COVID-19,” Machine Learning, vol. 110, no. 1, pp. 1–14, 2021.

[15] F.-Y. Cheng et al., “Using machine learning to predict ICU transfer in hospitalized COVID-19 patients,”
Journal of Clinical Medicine, vol. 9, no. 6, 2020.

[16] P. A. Gutiérrez et al., “Ordinal regression methods: Survey and experimental study,” IEEE Trans Knowl Data
Eng, vol. 28, no. 1, pp. 127–146, 2016.

[17] A. Fernández et al., Learning from imbalanced data sets. Springer, 2018, ch. Cost-sensitive learning, pp. 63–78.

[18] B. G. Pijls et al., “Demographic risk factors for COVID-19 infection, severity, ICU admission and death: A
meta-analysis of 59 studies,” BMJ Open, vol. 11, no. 1, 2021.

[19] R. B. Hawkins et al., “Socio-economic status and COVID-19–related cases and fatalities,” Public Health, vol.
189, pp. 129–134, 2020.

[20] P. Congdon, “COVID-19 mortality in English neighborhoods: The relative role of socioeconomic and environ-
mental factors,” J, vol. 4, no. 2, pp. 131–146, 2021.

[21] C. Copat et al., “The role of air pollution (PM and NO2) in COVID-19 spread and lethality: A systematic
review,” Environ Res, vol. 191, p. 110129, 2020.

[22] N. Ali and F. Islam, “The effects of air pollution on COVID-19 infection and mortality - A review on recent
evidence,” Front Public Health, vol. 8, 2020.

[23] Z. J. Andersen et al., “Air pollution and COVID-19: clearing the air and charting a post-pandemic course: a
joint workshop report of ERS, ISEE, HEI and WHO,” Eur Respir J, vol. 58, no. 2, p. 2101063, 2021.

[24] T. Bourdrel et al., “The impact of outdoor air pollution on COVID-19: a review of evidence from in vitro,
animal, and human studies,” European Respiratory Review, vol. 30, no. 159, p. 200242, 2021.

[25] A. Frontera et al., “Severe air pollution links to higher mortality in COVID-19 patients: The “double-hit”
hypothesis,” J Infect, vol. 81, no. 2, pp. 255–259, 2020.

[26] B. Wachtler et al., “Socioeconomic inequalities and COVID-19, A review of the current international literature,”
J Health Monit, vol. 5, no. Suppl 7, pp. 3–17, 2020.

[27] S. Khalatbari-Soltani et al., “Importance of collecting data on socioeconomic determinants from the early stage
of the COVID-19 outbreak onwards,” J Epidemiol Community Health, vol. 74, no. 8, pp. 620–623, 2020.

[28] O. Bronte et al., “Impact of outdoor air pollution on severity and mortality in COVID-19 pneumonia,” Sci
Total Environ, vol. 894, p. 164877, 2023.

15



[29] F. Cabitza and A. Campagner, “The need to separate the wheat from the chaff in medical informatics: Intro-
ducing a comprehensive checklist for the (self)-assessment of medical AI studies,” Int J Med Informatics, vol.
153, p. 104510, 2021.

[30] INE Spanish National Statistics Institute, “Household income distribution atlas,” 2019. [Online]. Available:
https://www.ine.es/dynt3/inebase/en/index.htm?padre=7132

[31] Basque Network for the Surveillance of Air Quality, “Air quality measurements in the Basque Country,” 2019.
[Online]. Available: https://www.opendata.euskadi.eus/catalogo/-/calidad-aire-en-euskadi-2019

[32] ——, “Air quality measurements in the Basque Country,” 2020. [Online]. Available: https://www.opendata.
euskadi.eus/catalogo/-/calidad-aire-en-euskadi-2020

[33] Catalan Network for the Monitoring and Prediction of Air Pollution, “Air quality measure-
ments in Catalonia.” [Online]. Available: https://analisi.transparenciacatalunya.cat/es/Medi-Ambient/
Qualitat-de-l-aire-als-punts-de-mesurament-autom%C3%A0t/tasf-thgu

[34] Valencian Network for the Monitoring and Surveillance of Air Pollution, “Air quality measurements
in the Valencian Community.” [Online]. Available: https://agroambient.gva.es/es/web/calidad-ambiental/
datos-historicos

[35] N. Umlauf et al., “BAMLSS: Bayesian additive models for location, scale, and shape (and beyond),” Journal
of Computational and Graphical Statistics, vol. 27, no. 3, pp. 612–627, 2018.

[36] H. D. Alas et al., “Pedestrian exposure to black carbon and PM2.5 emissions in urban hot spots: new find-
ings using mobile measurement techniques and flexible Bayesian regression models,” J Exposure Sci Environ
Epidemiol, 2021.

[37] O. Troyanskaya et al., “Missing value estimation methods for DNA microarrays,” Bioinformatics, vol. 17, no. 6,
pp. 520–525, 2001.

[38] L. Beretta and A. Santaniello, “Nearest neighbor imputation algorithms: A critical evaluation,” BMC Med
Inform Decis Mak, vol. 16, no. S3, 2016.

[39] S. van Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate imputation by chained equations in R,”
Journal of Statistical Software, vol. 45, no. 3, pp. 1–67, 2011.

[40] J. N. Wulff and L. Ejlskov, “Multiple imputation by chained equations in praxis: Guidelines and review,”
Electron J Bus Res Methods, vol. 15, no. 1, pp. 41–56, 2017.

[41] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal of Machine Learning
Research, vol. 3, no. Mar, pp. 1157–1182, 2003.

[42] M. Hayet-Otero et al., “Extracting relevant predictive variables for COVID-19 severity prognosis: An exhaustive
comparison of feature selection techniques,” PLoS One, vol. 18, no. 4, p. e0284150, 2023.

[43] R. J. Urbanowicz et al., “Benchmarking Relief-based feature selection methods for bioinformatics data mining,”
J Biomed Inform, vol. 85, pp. 168–188, 2018.

[44] E. Frank and M. Hall, “A simple approach to ordinal classification,” in Machine Learning: ECML, 2001, pp.
145–156.

[45] V. López et al., “Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open prob-
lems on intrinsic data characteristics,” Expert Syst Appl, vol. 39, no. 7, pp. 6585–6608, 2012.

[46] H. He and Y. Ma, Imbalanced learning: Foundations, algorithms, and applications. Wiley, 2013.

[47] H. Han et al., “Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning,” Lect Notes
Comput Sci, vol. 3644, pp. 878–887, 2005.

[48] C. Elkan, “The foundations of cost-sensitive learning,” in 17th International Joint Conference on Artificial
Intelligence, 2001.

[49] R. Barandela et al., “Strategies for learning in class imbalance problems,” Pattern Recognit, vol. 36, no. 3, pp.
849–851, 2003.

[50] I. Mani, “kNN approach to unbalanced data distributions: A case study involving information extraction,” in
Workshop on Learning from Imbalanced Datasets, 2003.

[51] A. Niculescu-Mizil and R. Caruana, “Predicting good probabilities with supervised learning,” in 22nd Interna-
tional Conference on Machine Learning, 2005, pp. 625–632.

[52] B. Zadrozny and C. Elkan, “Obtaining calibrated probability estimates from decision trees and naïve Bayesian
classifiers,” in 18th International Conference on Machine Learning, vol. 1. Citeseer, 2001, pp. 609–616.

[53] ——, “Transforming classifier scores into accurate multiclass probability estimates,” in 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2002, pp. 694–699.

[54] J. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods,”
Advances in Large Margin Classifiers, vol. 10, no. 3, pp. 61–74, 1999.

[55] M. J. Fine et al., “A prediction rule to identify low-risk patients with community-acquired pneumonia,” N Engl
J Med, vol. 336, no. 4, pp. 243–250, 1997.

[56] A. Artero et al., “Severity scores in covid-19 pneumonia: a multicenter, retrospective, cohort study,” J Gen
Intern Med, vol. 36, no. 5, pp. 1338–1345, 2021.

16

https://www.ine.es/dynt3/inebase/en/index.htm?padre=7132
https://www.opendata.euskadi.eus/catalogo/-/calidad-aire-en-euskadi-2019
https://www.opendata.euskadi.eus/catalogo/-/calidad-aire-en-euskadi-2020
https://www.opendata.euskadi.eus/catalogo/-/calidad-aire-en-euskadi-2020
https://analisi.transparenciacatalunya.cat/es/Medi-Ambient/Qualitat-de-l-aire-als-punts-de-mesurament-autom%C3%A0t/tasf-thgu
https://analisi.transparenciacatalunya.cat/es/Medi-Ambient/Qualitat-de-l-aire-als-punts-de-mesurament-autom%C3%A0t/tasf-thgu
https://agroambient.gva.es/es/web/calidad-ambiental/datos-historicos
https://agroambient.gva.es/es/web/calidad-ambiental/datos-historicos


[57] J. Xie et al., “Development and external validation of a prognostic multivariable model on admission for
hospitalized patients with COVID-19,” medRxiv, Tech. Rep., 2020.

[58] S. Goodacre et al., “Derivation and validation of a clinical severity score for acutely ill adults with suspected
COVID-19: The PRIEST observational cohort study,” PLoS One, vol. 16, no. 1, p. e0245840, 2021.

[59] R. K. Gupta et al., “Development and validation of the ISARIC 4C Deterioration model for adults hospitalised
with COVID-19: a prospective cohort study,” Lancet Respir Med, vol. 9, no. 4, pp. 349–359, 2021.

[60] E. Carr et al., “Evaluation and improvement of the National Early Warning Score (NEWS2) for COVID-19: a
multi-hospital study,” BMC Med, vol. 19, no. 1, 2021.

[61] G. B. Smith et al., “The National Early Warning Score 2 (NEWS2),” Clin Med, vol. 19, no. 3, pp. 260–260,
2019.

[62] C. T. Nakas et al., “Accuracy and cut-off point selection in three-class classification problems using a general-
ization of the Youden index,” Stat Med, vol. 29, no. 28, pp. 2946–2955, 2010.

[63] W. R. Zhang and C. R. Parikh, “Biomarkers of acute and chronic kidney disease,” Annu Rev Physiol, vol. 81,
no. 1, pp. 309–333, 2019.

[64] G. Vilone and L. Longo, “Notions of explainability and evaluation approaches for explainable artificial intelli-
gence,” Inf Fusion, vol. 76, pp. 89–106, 2021.

[65] V. Belle and I. Papantonis, “Principles and practice of explainable machine learning,” Front Big Data, vol. 4,
2021.

[66] S. M. Lundberg and S. I. Lee, “A unified approach to interpreting model predictions,” in Adv Neural Inf Process
Syst, 2017, pp. 4766–4775.

[67] F. Pedregosa et al., “scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[68] G. Lemaître et al., “imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine
learning,” Journal of Machine Learning Research, vol. 18, no. 17, pp. 1–5, 2017.

[69] G. C. Cawley and N. L. C. Talbot, “On over-fitting in model selection and subsequent selection bias in perfor-
mance evaluation,” Journal of Machine Learning Research, vol. 11, pp. 2079–2107, 2010.

[70] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit Lett, vol. 27, no. 8, pp. 861–874, 2006.

[71] Y. Dendramis et al., “Estimation of time-varying covariance matrices for large datasets,” Econometric Theory,
vol. 37, no. 6, pp. 1100–1134, 2021.

[72] C. Huyen, Designing machine learning systems. O’Reilly Media, 2022.

17


