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A B S T R A C T

The acoustic response of a passive single point scatterer under grazing flow is shown theoret-
ically and experimentally to have both monopolar and dipolar contributions. The monopolar
response is dominated by the pressure-induced flux 𝑄𝑝, which is related to the specific acoustic
impedance of the point scatterer as 𝜁 = −1∕𝑄𝑝. By contrast, the main dipolar response is the
pressure-induced force 𝐹𝑝, which is experimentally proven to be modelled by introducing a
complex-valued factor 𝜂. In fact, 𝜂 is related to the ratio between 𝑄𝑝 and 𝐹𝑝. By employing
these two complex-valued parameters 𝜁 and 𝜂 in the proposed theoretical transfer matrix model,
the scattering properties of a single point scatterer (e.g., a Helmholtz resonator) subjected to
grazing flow can be well predicted. This model can be readily used in practical applications
such as the design of passive absorbers and silencers in ventilation systems.

. Introduction

Passive acoustic treatments are widely used to realize various desired wave phenomena. Among them, the reduction of airborne
ound [1], e.g., for targeted sound absorption [2,3] or transmission loss [4,5], represents one of the most important applications.
assive metamaterials [6–9], e.g., detuned Helmholtz resonators [3,10], degenerated resonators [11,12], etc., make use of wave
esonances and are introduced in the treatments nowadays. The efficiency in dealing with low-frequency and broadband acoustic
aves has thus been significantly improved with compact designs.

Note that, difficulties arise when applying the aforementioned design strategies to, for instance, a ventilation system or an aircraft
ngine, where a grazing flow exists above the acoustic treatment. Specifically, when the Helmholtz resonators are subjected to the
low: (1) acoustic energy can be possibly extracted from the flow and the system is no longer passive [13] and (2) the acoustic
esponse of the treatment depends on the flow conditions, which makes its accurate modelling difficult in the design process. The
ormer problem is mainly due to the sound-flow interactions near the sharp edges of the resonator necks [14–16]. This problem
an be fixed by either attaching a resistive layer (e.g., a Kevlar cloth or a wiremesh, etc.) on the top of the resonator’s neck [13],
r employing a perforated plate over the resonator array [17,18] to prevent the direct contact between the flow and resonators.
n the opposite, how to reasonably predict the acoustic response of a passive treatment under grazing flow, indicated in the latter
roblem, is still an open question. The impedance modelling of either an aperture, a Helmholtz resonator, or a perforated liner
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Fig. 1. Schematic illustration of the 1D scattering problem of a point scatterer subjected to a uniform grazing mean flow.

nder grazing flow has been extensively studied [14,16,19–24]. These studies aimed at deriving either theoretically or empirically
formula which explicitly expresses the acoustic impedance of the passive treatment as a function of the geometric parameters and

he operating parameters such as the frequency, the grazing flow speed, the incident sound pressure level, etc. However, a usually
verlooked principle lies in the reasonability of assuming that the acoustic response of these treatments under grazing flow can
e fully described by an impedance boundary condition. In fact, both experimental [25–27] and numerical [28,29] studies have
trongly challenged this assumption. Specifically, two distinct impedances of the same locally reacting liner are obtained if the
ncident wave is in the same or in the opposite direction compared to the flow, even if the mean flow Mach number 𝑀0 is small

(|𝑀0| < 0.2). To explain this, an additional stress boundary condition, i.e., a tangential force along the liner induced by either the
normal acoustic velocity [30,31] or the acoustic pressure [29], was introduced (see also Ref. [32]). Note that, the impedance (or the
admittance, defined as the inverse of the impedance) merely refers to a monopolar response of the liner. By introducing the stress
boundary condition, the dipolar response of the liner was accounted for. However, there is still a lack of theoretical or empirical
models of the stress response which can be applied for the design of liners.

The stress (or dipolar) response observed in the measurements of a perforated liner may be generated by several distinct
effects, for instance, the convective momentum transfer due to the boundary layer [29–32], the interaction of either acoustic
or hydrodynamic modes between adjacent orifices [32], the development of near-wall turbulent flow structures along the flow
direction (according to the numerical simulation [33], the wake behind an upstream orifice can interact with a downstream one),
etc. However, these effects are not yet well understood. Thus, instead of accounting for all of them, in this work we focus on the
acoustic response of a single passive point scatterer (e.g., a single orifice, a Helmholtz resonator, etc.) under grazing flow conditions,
the modelling of which is necessary before a homogenization can be applied to derive that of a perforated liner. A theory is proposed
to model both the monopolar and dipolar responses, according to which, the dipolar response (if it exists) can have a significant
effect on the maximum absorption coefficient (𝛼max) in the unidimensional (1D) transmission problem: if the acoustic response of
the scatterer is fully described by an impedance (i.e., the dipolar response is negligible), 𝛼max = 1∕2 can be obtained, which is the
same as the case without grazing flow [34]. Otherwise, 𝛼max = 1∕2 + 𝑂(𝑀0) at low Mach numbers. This implies that 𝛼max < 1∕2 or
𝛼max > 1∕2 when the incident wave is in the same or in the opposite directions of the flow, respectively. Then, the existence of the
dipolar effect can be experimentally validated by achieving 𝛼 > 1∕2 particularly when the wave is against the flow.

This paper is organized as follows. In Section 2, we theoretically investigate the 1D transmission problem of a passive point
scatterer under uniform grazing flow. The acoustic response of the scatterer is modelled by a linear combination of monopolar and
dipolar transfer functions. Then, the transfer and scattering matrices of the 1D system are derived. The maximum absorption of the
system with or without the dipolar effect is analysed with these matrices. In Section 3, the theoretical predictions are validated
experimentally using the flow-duct measurements, where the point scatterers are Helmholtz resonators covered by wiremeshes on
the top of the necks. Conclusions are drawn in Section 4.

2. Monopolar and dipolar acoustical responses of a passive point scatterer in the 1D scattering problem

2.1. Transfer-matrix modelling of the problem

We consider the 1D acoustic scattering problem, shown in Fig. 1, in which a locally reacting element, such as a Helmholtz
resonator, is connected in parallel to a waveguide and is subjected to a grazing air flow. We denote 𝑈0 the mean flow speed in the
waveguide, 𝑐0 the adiabatic sound speed, and 𝜌0 the mean density.

All the losses in the system are assumed to be solely due to the locally reacting element. Besides, this element can be approximated
as a point scatterer located at 𝑥 = 𝑥 when its width is much less than the acoustic wavelength. The governing equations for
2
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the propagation of small-amplitude perturbations within the waveguide are the 1D linearized Euler equations, written here in
conservative form:

𝜕
𝜕𝑡

(

𝜌′

𝜌0𝑢′ + 𝜌′𝑈0

)

+ 𝜕
𝜕𝑥

(

𝜌0𝑢′ + 𝜌′𝑈0
2𝜌0𝑈0𝑢′ + 𝜌′𝑈2

0 + 𝑝′

)

=
(

𝑞′s
𝑞′s𝑈0 + 𝑓 ′

s

)

𝛿(𝑥 − 𝑥0), (1)

where 𝜌′, 𝑢′, and 𝑝′ are the perturbations of density, velocity, and pressure, respectively. In addition, we assume homentropic
perturbations, hence 𝑝′ = 𝑐20𝜌

′.
In the equation above, we have introduced jumps of mass and momentum at 𝑥 = 𝑥0 with terms proportional to the Dirac delta

function 𝛿(𝑥−𝑥0). They correspond to the influence of the passive point scatterer on the fluid. Their amplitudes, i.e., the volume sink
𝑞′s and the force term 𝑓 ′

s , represent the monopolar and dipolar responses of the point scatterer to the acoustic field in the waveguide.
Note that the volume sink 𝑞′s also appears in the momentum conservation equation, i.e., the second equation in (1). This is because
the mean flow 𝑈0 contributes to the momentum carried by the fluid elements added or removed by the volume flux.

To convert the problem into the frequency domain, we assume that every fluctuating quantity has a time dependence given by
e−i𝜔𝑡 with 𝜔 the angular frequency. In addition, the following dimensionless quantities are introduced: 𝑢 = 𝑢′∕𝑐0, 𝑝 = 𝑝′∕(𝜌0𝑐20 ),
𝑞s = 𝑞′s∕(𝜌0𝑐0), and 𝑓s = 𝑓 ′

s∕(𝜌0𝑐
2
0 ). The governing Eq. (1) becomes:

− i𝑘0

(

𝑝
𝑢 +𝑀0𝑝

)

+ 𝜕
𝜕𝑥

(

𝑢 +𝑀0𝑝
2𝑀0𝑢 +𝑀2

0 𝑝 + 𝑝

)

=
(

𝑞s
𝑀0𝑞s + 𝑓s

)

𝛿(𝑥 − 𝑥0), (2)

here 𝑘0 = 𝜔∕𝑐0 is the acoustic wavenumber and 𝑀0 = 𝑈0∕𝑐0 is the Mach number of the mean flow.
To relate the acoustic pressure and velocity on either sides of the scatterer, the governing Eq. (2) is integrated over a control

olume around the scatterer (shown as the region encapsulated by the dashed blue lines in Fig. 1). This involves integrating Eq. (2)
etween 𝑥1 and 𝑥2 (where 𝑥1 and 𝑥2 are the left and right boundaries of the control volume, respectively), using the divergence
heorem, and then taking the limit 𝑥1 → 𝑥−0 and 𝑥2 → 𝑥+0 (see, for instance, page 512 in Ref. [35]). This leads to the following result:

(

𝑢2 +𝑀0𝑝2
2𝑀0𝑢2 +𝑀2

0 𝑝2 + 𝑝2

)

−
(

𝑢1 +𝑀0𝑝1
2𝑀0𝑢1 +𝑀2

0 𝑝1 + 𝑝1

)

=
(

𝑞s
𝑀0𝑞s + 𝑓s

)

, (3)

here the subscripts 1 and 2 refer to quantities evaluated at 𝑥−0 and 𝑥+0 , respectively.
The monopolar and dipolar responses 𝑞s and 𝑓s of the passive point scatterer are solely induced by the acoustic field in the vicinity

f the scatterer at 𝑥 = 𝑥0. The acoustic pressure and velocity at that point are 𝑝 = (𝑝1+𝑝2)∕2 and 𝑢 = (𝑢1+𝑢2)∕2, respectively. Without
loss of generality, the scatterer responses 𝑞s and 𝑓s can be written as proportional to 𝑝 and 𝑢. We therefore define the following
relation between the scatterer responses and the acoustic pressure and velocity at 𝑥 = 𝑥0:

(

𝑞s
𝑓s

)

=
[

𝑄𝑝 𝑄𝑢
𝐹𝑝 𝐹𝑢

](

𝑝
𝑢

)

, (4)

where we have introduced four transfer functions 𝑄𝑝,𝑢 and 𝐹𝑝,𝑢. The rest of this paper is devoted to measuring and modelling these
transfer functions for a Helmholtz resonator.

The transfer matrix 𝐓M that relates the state vectors ⟨𝑝, 𝑢⟩T on both sides of the point scatterer is defined as follows:
(

𝑝2
𝑢2

)

= 𝐓M

(

𝑝1
𝑢1

)

=
[

𝑡11 𝑡12
𝑡21 𝑡22

](

𝑝1
𝑢1

)

. (5)

With Eqs. (3) and (4), two linear equations with variables 𝑝1, 𝑝2, 𝑢1, and 𝑢2 are derived. By rearranging these equations into the
form of Eq. (5), the elements of the transfer matrix can be easily obtained:

𝑡11 =
4(1 −𝑀2

0 ) − 2𝑀0(𝑄𝑝 − 𝐹𝑢) − 2(𝑄𝑢 − 𝐹𝑝) +𝑄𝑢𝐹𝑝 −𝑄𝑝𝐹𝑢

4(1 −𝑀2
0 ) + 2𝑀0(𝑄𝑝 + 𝐹𝑢) − 2(𝑄𝑢 + 𝐹𝑝) +𝑄𝑢𝐹𝑝 −𝑄𝑝𝐹𝑢

,

𝑡12 =
4(𝐹𝑢 −𝑀0𝑄𝑢)

4(1 −𝑀2
0 ) + 2𝑀0(𝑄𝑝 + 𝐹𝑢) − 2(𝑄𝑢 + 𝐹𝑝) +𝑄𝑢𝐹𝑝 −𝑄𝑝𝐹𝑢

,

𝑡21 =
4(𝑄𝑝 −𝑀0𝐹𝑝)

4(1 −𝑀2
0 ) + 2𝑀0(𝑄𝑝 + 𝐹𝑢) − 2(𝑄𝑢 + 𝐹𝑝) +𝑄𝑢𝐹𝑝 −𝑄𝑝𝐹𝑢

,

𝑡22 =
4(1 −𝑀2

0 ) + 2𝑀0(𝑄𝑝 − 𝐹𝑢) + 2(𝑄𝑢 − 𝐹𝑝) −𝑄𝑢𝐹𝑝 +𝑄𝑝𝐹𝑢

4(1 −𝑀2
0 ) + 2𝑀0(𝑄𝑝 + 𝐹𝑢) − 2(𝑄𝑢 + 𝐹𝑝) +𝑄𝑢𝐹𝑝 −𝑄𝑝𝐹𝑢

.

(6)

As illustrated in Fig. 1, the pressure waves coming from upstream or downstream direction and on each side of the point scatterer
are defined as 𝑝1+(𝑥) = 𝐴1ei𝑘+𝑥, 𝑝1−(𝑥) = 𝐴2e−i𝑘−𝑥, 𝑝2+(𝑥) = 𝐴3ei𝑘+𝑥, and 𝑝2−(𝑥) = 𝐴4e−i𝑘−𝑥, respectively, where 𝐴1 to 𝐴4 are the
wave amplitudes and the wavenumbers are 𝑘 = 𝑘 ∕(1 ±𝑀 ). Then, the four scattering coefficients of the point scatterer are well
3
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defined and can be expressed with the elements of the transfer matrix as:

𝑅+ =
𝑝1−(𝑥0)
𝑝1+(𝑥0)

=
−𝑡11 − 𝑡12 + 𝑡21 + 𝑡22
𝑡11 − 𝑡12 − 𝑡21 + 𝑡22

,

𝑇 + =
𝑝2+(𝑥0)
𝑝1+(𝑥0)

=
2(𝑡11𝑡22 − 𝑡12𝑡21)

𝑡11 − 𝑡12 − 𝑡21 + 𝑡22
,

𝑅− =
𝑝2+(𝑥0)
𝑝2−(𝑥0)

=
𝑡11 − 𝑡12 + 𝑡21 − 𝑡22
𝑡11 − 𝑡12 − 𝑡21 + 𝑡22

,

𝑇 − =
𝑝1−(𝑥0)
𝑝2−(𝑥0)

= 2
𝑡11 − 𝑡12 − 𝑡21 + 𝑡22

.

(7)

The absorption coefficient of the system is thus defined as (see Ref. [36]):

𝛼± = 1 −
(

1 ∓𝑀0
1 ±𝑀0

)2
|𝑅±

|

2 − |𝑇 ±
|

2. (8)

2.2. The simplified transfer matrix

Several important observations follow from the definitions of the four transfer functions in Eq. (4).
Firstly, the pressure-driven flux 𝑄𝑝 corresponds to the admittance of the point scatterer, or equivalently, the inverse of its specific

acoustic impedance 𝜁 :

𝑄𝑝 = −1
𝜁
= − 1

𝜃 − i𝜒
, (9)

in which 𝜃 and 𝜒 are the specific resistance and reactance, respectively. Note that the specific impedance 𝜁 is the commonly used
boundary condition that fully describes the acoustic response of a point scatterer in parallel of the waveguide in the absence of
grazing flow (see Chapter 4 in Ref. [9]). However, difficulties arise for the prediction of 𝜁 in the presence of grazing flow: the
impedance of the scatterer usually depends on the flow Mach number 𝑀0. For instance, considering a Helmholtz resonator as a
point scatterer (with the neck radius 𝑅H much smaller than the wavelength), the resistance 𝜃 increases linearly with 𝑀0 whereas
the reactance 𝜒 slightly decreases with 𝑀0, when the Strouhal number 𝑘0𝑅H∕𝑀0 is sufficiently small [15,16]. This effect is induced
by the sound-flow interactions near the sharp edge of the neck as evidenced by several investigations [14–16,24]. Besides, when all
the other three transfer functions are negligible, the acoustic energy is proportional to the resistance 𝜃: 𝜃 > 0 refers to a dissipation
effect, whereas 𝜃 < 0 implies a gain or amplification effect.

Secondly, experimental evidences have shown that the acoustic response of a liner under grazing flow is not fully described by
an impedance boundary condition. The paradox arises from the observation that the measured liner impedances are different when
the incident wave is in the same or opposite directions of the flow [25–27]. In Ref. [29], the pressure-driven force response 𝐹𝑝 is
introduced in addition to the impedance boundary condition to model the effect of flow direction. As indicated in that paper, 𝐹𝑝
an be induced by either viscous effects or momentum transfers between the flow and the lined wall, which can be important as
ell when a point scatterer is accounted for.

Thirdly, the dipolar response of a point scatterer caused by the velocity-driven force1 𝐹𝑢 has been theoretically derived in the
absence of grazing flow [37]. It was found that this dipolar effect was observable when two channels were sufficiently close to each
other (i.e., the separation distance was subwavelength). In contrast, the dipolar effect from 𝐹𝑢 is negligible compared to that from
the monopolar response 𝑄𝑝 for a single channel or for channels separated by distances of the order of the wavelength.

Finally, there is still no clear evidence of a non-negligible effect induced by the velocity-driven flux 𝑄𝑢 in the published literature,
either with or without grazing flow.

In this work, we consider the simple and usual case of a single point scatterer under grazing flow. The transfer matrix Eq. (6)
is heuristically simplified by omitting the velocity-driven transfer functions 𝑄𝑢 and 𝐹𝑢 (this simplification will be validated against

easurements in Section 3.2), which results in

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑡11 = 1 +
2(𝐹𝑝 −𝑀0𝑄𝑝)

2(1 −𝑀2
0 ) +𝑀0𝑄𝑝 − 𝐹𝑝

,

𝑡12 = 0,

𝑡21 =
2(𝑄𝑝 −𝑀0𝐹𝑝)

2(1 −𝑀2
0 ) +𝑀0𝑄𝑝 − 𝐹𝑝

,

𝑡22 = 1.

(10)

On the one hand, the monopolar transfer function 𝑄𝑝 can be expressed as an impedance shown in Eq. (9). On the other hand, it is
ssumed and will be experimentally proven that the dipolar transfer function 𝐹𝑝 is proportional to 𝑄𝑝. Note that, this is equivalent

1 In Refs. [30,31], the momentum transfer impedance, defined as 𝑍T = −𝜏∕𝑣, is introduced to model the dipolar acoustic response of a liner under grazing
flow. In the above expression, 𝜏 is the stress (or tangential force) and 𝑣 is the normal acoustic velocity at the surface of the liner. It should be noticed that 𝑍T
is not related to 𝐹𝑢 in this work. In the low-frequency limit that the acoustic response of the liner in the waveguide approaches to that of a point scatterer in
the 1D transmission problem, 𝑣 tends to be proportional to the flux (𝑢2 − 𝑢1) rather than the averaged velocity 𝑢 = (𝑢2 + 𝑢1)∕2 used in the expression of 𝐹𝑢. In
fact, 𝑍 corresponds to −𝐹 ∕𝑄 by definition.
4
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to assume that the momentum jump due to the point scatterer is mainly induced by the convection of the flux. It follows that,
according to the right-hand side of Eq. (2), the (pressure-driven) momentum jump can be expressed as

𝑀0𝑄𝑝 + 𝐹𝑝 = 𝑀C𝑄𝑝, (11)

where 𝑀C is the convection Mach number of the pressure-driven flux. Due to the effect of boundary layer over the scatterer, 𝑀C is
in general different from 𝑀0 (otherwise the dipolar transfer function 𝐹𝑝 vanishes). Thus, the factor 𝜂 is introduced as

𝑀C = 𝜂𝑀0, (12)

where 𝜂 = 𝜂r − i𝜂i is assumed as complex valued without loss of generality. It is found in experiments that, in usual cases when the
system is passive, 0 ≤ 𝜂r ≤ 1, and 𝜂i ≥ 0. Despite this, the cases 𝜂r > 1, 𝜂r < 0, and 𝜂i < 0 are possible, for instance, when the boundary
layer above the scatterer is unstable. However, this is out of the scope of this work. With Eqs. (11) and (12), the pressure-driven
force 𝐹𝑝 can thus be fixed as

𝐹𝑝 = (𝜂 − 1)𝑀0𝑄𝑝 =
(1 − 𝜂)𝑀0

𝜁
=

(1 − 𝜂)𝑀0
𝜃 − i𝜒

. (13)

Introducing the monopolar and dipolar transfer functions provided by Eqs. (9) and (13), respectively, the elements of the transfer
atrix in Eq. (10) become

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑡11 = 1 +
(2 − 𝜂)𝑀0

(1 −𝑀2
0 )𝜁 − (1 − 𝜂∕2)𝑀0

,

𝑡12 = 0,

𝑡21 = −
1 + (1 − 𝜂)𝑀2

0

(1 −𝑀2
0 )𝜁 − (1 − 𝜂∕2)𝑀0

,

𝑡22 = 1.

(14)

The behaviour of the transfer matrix at low Mach numbers is obtained by using a Taylor expansion of the above equations for small
𝑀0, which yields

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑡11 = 1 +
(2 − 𝜂)𝑀0

𝜁
+

(2 − 𝜂)2𝑀2
0

2𝜁2
+ 𝑂(𝑀3

0 ),

𝑡21 = −1
𝜁
−

(2 − 𝜂)𝑀0

2𝜁2
−

(2 − 𝜂)(2 − 𝜂 + 4𝜁2)𝑀2
0

4𝜁3
+ 𝑂(𝑀3

0 ).

(15)

n early investigations [38–40], the acoustic response of the scatterer under grazing flow was modelled as an admittance (or
mpedance) following the case without flow. Thus, the theoretical transfer matrix proposed by these models refers to the special
ase of Eq. (14) with 𝜂 = 1, obtained when the force term in Eq. (13) vanishes. However, as shown in Ref. [41], the above transfer
atrix fails to predict the correct scattering coefficients of locally reacting acoustic treatments with perforations and backed cavities.
n empirical transfer matrix was proposed in Ref. [41] with the elements

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑡11 = 1 +
1.5𝑀0

(1 − 1.5𝑀2
0 )𝜁 − 0.75𝑀0

,

𝑡12 = 0,

𝑡21 = − 1
(1 − 1.5𝑀2

0 )𝜁 − 0.75𝑀0
,

𝑡22 = 1.

(16)

Note that, in Ref. [41], the impedance 𝜁 was defined with the upstream pressure 𝑝1, whereas in Eq. (16) the averaged pressure
(𝑝1 + 𝑝2)∕2 has been used following the convention of this work. Using again a Taylor expansion of Eq. (16) at low Mach numbers:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑡11 = 1 +
1.5𝑀0

𝜁
+

1.125𝑀2
0

𝜁2
+ 𝑂(𝑀3

0 ),

𝑡21 = −1
𝜁
−

0.75𝑀0

𝜁2
−

(0.5625 + 1.5𝜁2)𝑀2
0

𝜁3
+ 𝑂(𝑀3

0 ),

(17)

which corresponds to the special case of Eq. (15) with 𝜂 = 0.5. A theoretical investigation was then carried out in Ref. [42].
Specifically, the effect of boundary layer on the scatterer was accounted for by using the two-dimensional governing equations of
the perturbation field. Then, the perturbations were averaged in the transverse direction of the wave propagation to derive the
lumped one-dimensional model, which provides the transfer matrix of the system as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝑡11 = 1 +
(2 − 𝜂)𝑀e

(1 −𝑀2
e )𝜁 − (1 − 𝜂∕2)𝑀e

,

𝑡12 = 0,

𝑡21 = −
𝑀0
𝑀e

1 + (1 − 𝜂)𝑀e

(1 −𝑀2
e )𝜁 − (1 − 𝜂∕2)𝑀e

,

𝑡 = 1,

(18)
5

⎩
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where 𝑀e = 𝑀0∕(1 + 𝑏𝑀2
0 ), with 𝑏 a factor that is related to the mean flow velocity profile. However, Eq. (18) has the same

asymptotic expansion as that of Eq. (14) up to the order of 𝑀2
0 (shown in Eq. (15)). In fact, the factor 𝑏 does not appear until

the 𝑀3
0 term, which implies that the effect of the flow profile is insignificant at low Mach numbers. Besides, the coefficient 𝜂 was

assumed to be real valued in Ref. [42].

2.3. The effect of the pressure-driven force

Due to the geometric symmetry of the 1D system, 𝑅−, 𝑇 −, and 𝛼− can be derived by changing the sign of the Mach number
i.e., by using −𝑀0 instead of 𝑀0) in the expressions of 𝑅+, 𝑇 +, and 𝛼+, respectively. Thus, we consider the expression of 𝛼+ in the
ollowing discussions, where 𝑀0 can be either positive or negative. The superscript will be omitted and 𝛼 with positive or negative
0 corresponds to 𝛼+ or 𝛼−, respectively.
With Eqs. (14), (7), and (8), 𝛼 can be explicitly expressed as a function of five real-valued variables, i.e.,

𝛼 = 𝛼(𝑀0, 𝜂r , 𝜂i, 𝜃, 𝜒). (19)

hen 𝑀0, 𝜂r , and 𝜂i are fixed, the stationary point of 𝛼(𝜃, 𝜒), denoted as (𝜃opt , 𝜒opt ), is determined by the unique solution of the
ollowing equations

𝜕𝛼
𝜕𝜃

= 0 and 𝜕𝛼
𝜕𝜒

= 0. (20)

This stationary point corresponds to the optimal impedance of the point scatterer (𝜁opt = 𝜃opt − i𝜒opt) required to achieve maximum
absorption, i.e., 𝛼max = 𝛼(𝜃opt , 𝜒opt ). The closed-form expressions of 𝛼max and 𝜁opt are

𝛼max =
1
2
−

(1 − 𝜂r )𝑀0

1 +𝑀2
0 [(1 − 𝜂r )2 + 𝜂2i ]

= 1
2
− (1 − 𝜂r )𝑀0 + 𝑂(𝑀3

0 ) (21)

nd
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜃opt =
1
2
−

𝑀0(2𝜂r −𝑀0(2 − 𝜂r +𝑀2
0 (2 − 𝜂r )((1 − 𝜂r )2 + 𝜂2i ) − 2𝑀0((2 − 𝜂r )𝜂2i + (1 − 𝜂r )(2 − 2𝜂r + 𝜂2r ))))

2(1 −𝑀2
0 )(1 +𝑀2

0 ((1 − 𝜂r )2 + 𝜂2i ) − 2𝑀0(1 − 𝜂r ))

= 1
2
− 𝜂r𝑀0 +

(

1 − 5
2
𝜂r + 2𝜂2r

)

𝑀2
0 + 𝑂(𝑀3

0 ),

𝜒opt = 𝜂i
𝑀0(2 −𝑀0 −𝑀3

0 ((1 − 𝜂r )2 + 𝜂2i ) + 2𝑀2
0 (𝜂

2
i − (1 − 𝜂r )𝜂r )))

2(1 −𝑀2
0 )(1 +𝑀2

0 ((1 − 𝜂r )2 + 𝜂2i ) − 2𝑀0(1 − 𝜂r ))

= 𝜂i
[

𝑀0 +
( 3
2
− 2𝜂r

)

𝑀2
0 + 𝑂(𝑀3

0 )
]

,

(22)

respectively. According to Eq. (21), 𝛼max is well approximated as a linear function of 𝑀0 and the slope depends on the real part of
the factor 𝜂.

The effect of the dipolar transfer function 𝐹𝑝 (which is proportional to (1 − 𝜂)) on the maximum absorption as well as the
corresponding optimal impedance is shown in Fig. 2. When 𝜂 = 1, 𝐹𝑝 vanishes and 𝛼max = 1∕2 for any flow speed shown as the red
curve in Fig. 2(a). This behaviour is the same as that in the 1D transmission problem in the absence of flow [34]. However, when
𝐹𝑝 exists (i.e., 0 ≤ 𝜂r < 1), 𝛼max is affected by the 𝑂(𝑀0) term at low Mach numbers, as shown in Eq. (21). Consequently, 𝛼max > 1∕2
when the acoustic wave propagates against the flow; 𝛼max < 1∕2 when the acoustic wave and the flow are in the same direction.
This results in different absorber-design strategies from those traditionally used in the absence of grazing flow. When 𝜂 = 0, the
momentum jump caused by the convection of monopolar response (which is at the mean flow speed 𝑀0 as shown in Eq. (3)) is
balanced by the dipolar response of the point scatterer. Consequently, the continuity of perturbation momentum is achieved across
the scatterer. The corresponding 𝛼max for 𝜂 = 0 is shown as the black dashed curve in Fig. 2(a). When 𝜂 = 0.5 (this value is suggested
due to the previous investigations [41,42]), 𝛼max and 𝜁opt are shown as the blue dot-dashed curves in Fig. 2. The curves with 𝜂 = 0.5
are bounded by those with 𝜂 = 1 and 𝜂 = 0, as one would expect.

According to the measurements of this work (provided in Section 3), the factor 𝜂 usually has a non-negligible imaginary part,
i.e., 𝜂i is in the same order of 𝜂r . From the above theory, 𝜂i has negligible effects on 𝛼max and 𝜃opt at low Mach numbers (|𝑀0| < 0.3),
since 𝜂i does not appear up to 𝑀2

0 terms in their asymptotic expressions shown in Eqs. (21) and (22), respectively. In contrast, 𝜒opt is
proportional to 𝜂i as shown in Eq. (22). When 𝜂i vanishes, 𝜒opt is identically zero. A parametric study is presented with 𝜂 = 0.5−0.3i
which is close to the experimental values from this work (see Section 3). The results are illustrated by the blue circles in Fig. 2.

3. Experimental investigations of the problem

3.1. Experimental setup

To validate the above theoretical analyses, the following experimental investigation is carried out. As illustrated in Fig. 3, the 1D
scattering properties of a single point scatterer under grazing flow conditions are experimentally investigated in a straight waveguide
6
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c

Fig. 2. Theoretical predictions based on the simplified transfer matrix in Eq. (14) with different factor 𝜂. Particularly, 𝜂 = 1 corresponds to the case where
he dipolar response vanishes, whereas 𝜂 = 0 implies that there is continuity of perturbation momentum across the point scatterer: (a) maximum absorption
oefficient 𝛼max, (b) optimal resistance 𝜃opt , and (c) optimal reactance 𝜒opt . Note that in (c) the three curves with 𝜂 = 0, 0.5, and 1 overlap.

Table 1
Geometric parameters of the two samples.

Sample 1 Sample 2

Width of the neck: 𝑊 (mm) 4.4 5.1
Thickness of the neck: 𝑇 (mm) 5.0 8.2
Height of the cavity: 𝐻 (mm) 30.0 30.0
Width of the cavity: 𝐿 (mm) 33.6 33.3

with rectangular cross-section of height 𝐴 = 40 mm and width 𝐵 = 50 mm. A compressor is employed to produce the mean flow,
with a mean Mach number in the waveguide reaching up to 0.25, approximately. In the experiments, the flow velocity at the
centre of the duct is measured by a Pitot tube connected to a differential pressure sensor. This measurement provides the maximum
flow Mach number (𝑀max). Then, an empirical formula 𝑀0 = 0.8𝑀max provides the mean Mach number. Note that this formula is
accurate for fully developed turbulent flow profile [43], and has been validated by previous work employing the same experimental
setup [13,44]. For more details about this flow-duct facility, see Refs. [13,44].

The single point scatterer studied in this work consists of two identical flush mounted Helmholtz resonators facing each other
in the walls of the waveguide. This mounting aims at preventing the effect of asymmetric boundary layers in the waveguide. Both
the necks and the cavities of the resonators are rectangular with dimensions 𝐿 ×𝐻 and 𝑊 × 𝑇 , respectively, and extend over the
entire width of the waveguide 𝐵 (see Fig. 3). Besides, wiremeshes with measured specific impedance 𝜁mesh = 0.127 − 0.000114i𝑘0
(note: the constant 0.000114 has the dimension of metre) are glued on the top of the necks of the resonators. The purpose of using
wiremeshes is threefold: (1) introducing sufficient losses in the scatterers to prevent whistling effects [13], (2) ensuring that there
is no amplification of the incident wave and the system is passive, and (3) tuning the resonators to achieve 𝛼max. Two samples are
proposed in this work, whose geometric parameters are provided in Table 1. Specifically, Sample 1 aims at achieving the optimal
impedance at 1000 Hz when 𝑀0 = ±0.2, assuming that 𝜂 = 0. Note that, from Eq. (22), 𝜁opt = 0.54 − 0i for 𝑀0 = ±0.2 if 𝜂 = 0. In
contrast, Sample 2 is designed for the optimal impedance 𝜁 = 0.5 − 0i at 1000 Hz in the absence of grazing flow (i.e., 𝑀 = 0).
7
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Fig. 3. (a) Schematic illustration of the experimental setup. The rectangular waveguide has height 𝐴 = 40 mm and width 𝐵 = 50 mm. Two identical Helmholtz
resonators are mounted at the same axial position to form a single point scatterer. This configuration ensures that the flow profile is symmetric in the waveguide.
Three microphones are located on each side of the scatterer to measure the scattering matrix. (b) Photograph of one Helmholtz resonator with wiremesh covering
the top of the neck.

Three microphones are located on both the upstream and downstream sides of the test section to acquire the acoustic pressures
in order to compute the scattering matrix (i.e., the four scattering coefficients). The method introduced in Ref. [13] is applied, where
one measurement is performed using only the acoustic sources upstream the scatterer, and the other measurement using only the
sources located downstream. In both cases, the amplitude of the incident plane wave is controlled and kept constant at 140 dB (±0.1
dB). Note that, this incident sound pressure level (SPL) ensures that the signal-to-noise ratio is sufficient at the maximum flow speed
𝑀0 = 0.2. In addition, this SPL is insufficient to produce any nonlinear effect on the impedance of the resonator in the absence of
grazing flow, i.e., 𝑀0 = 0. This was validated by measurements at lower SPLs. The input signal is a sine sweep going from 100 Hz
to 3000 Hz with a step of 5 Hz. Then, the transfer matrix is derived with the measured scattering coefficients as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑡11 =
(1 + 𝑅+)(1 − 𝑅−) + 𝑇 +𝑇 −

2𝑇 + ,

𝑡12 = −
(1 + 𝑅+)(1 + 𝑅−) − 𝑇 +𝑇 −

2𝑇 + ,

𝑡21 = −
(1 − 𝑅+)(1 − 𝑅−) − 𝑇 +𝑇 −

2𝑇 + ,

𝑡22 =
(1 − 𝑅+)(1 + 𝑅−) + 𝑇 +𝑇 −

2𝑇 + .

(23)

3.2. The four transfer functions 𝑄𝑝,𝑢 and 𝐹𝑝,𝑢

According to Eq. (6), the four transfer functions 𝑄𝑝,𝑢 and 𝐹𝑝,𝑢 are uniquely determined by the measured transfer matrix as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑄𝑝 =
4𝑡21 + 2𝑀0(𝑡11 − 𝑡22 − 𝑡12𝑡21 + 𝑡11𝑡22 − 1)

1 + 𝑡11 + 𝑡22 − 𝑡12𝑡21 + 𝑡11𝑡22
,

𝑄𝑢 = 2 −
4(1 + 𝑡11 −𝑀0𝑡12)

1 + 𝑡11 + 𝑡22 − 𝑡12𝑡21 + 𝑡11𝑡22
,

𝐹𝑝 =
2(𝑡11 − 𝑡22 + 2𝑀0𝑡21 − 𝑡12𝑡21 + 𝑡11𝑡22 − 1)

1 + 𝑡11 + 𝑡22 − 𝑡12𝑡21 + 𝑡11𝑡22
,

𝐹𝑢 = 2𝑀0 −
4(𝑀0 +𝑀0𝑡11 − 𝑡12)

1 + 𝑡11 + 𝑡22 − 𝑡12𝑡21 + 𝑡11𝑡22
.

(24)

Fig. 4 shows the results of Sample 1 with 𝑀0 = 0.15 and 0.2. It can be found that |𝑄𝑢| and |𝐹𝑢| are much less than |𝑄𝑝| and |𝐹𝑝|

in these cases. Due to this experimental evidence, the simplified transfer matrix (derived by neglecting 𝑄𝑢 and 𝐹𝑢) in Eq. (14) can
be used to model the acoustic behaviour of the system.
8
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Fig. 4. Measured magnitudes of the four transfer functions of Sample 1 at (a) 𝑀0 = 0.15 and (b) 𝑀0 = 0.2.

Fig. 5. Measured acoustic impedance 𝜁 = 𝜃 − i𝜒 = −1∕𝑄𝑝 of Sample 1 with various flow Mach numbers: (a) Resistance 𝜃 and (b) Reactance 𝜒 .

3.2.1. The impedance 𝜁 for the monopolar response
According to Fig. 4, the monopolar transfer function 𝑄𝑝 is dominant in all the four transfer functions. The measured acoustic

impedance 𝜁 (i.e., −1∕𝑄𝑝) of Sample 1 is shown in Fig. 5. Note here that the impedance of each individual Helmholtz resonator
(denoted as 𝜁HR) is related to the point-scatterer impedance 𝜁 as 𝜁HR = 𝜁 × (2𝑆Neck )∕𝑆Duct , where 𝑆Neck = 𝑊 × 𝐵 and 𝑆Duct = 𝐴 × 𝐵
are the areas of the resonator neck and cross section of the waveguide, respectively. From the results in Fig. 5, the impedance 𝜁
is almost unaffected by the grazing flow when 𝑀0 ≤ 0.1. However, when 𝑀0 = 0.15 and 0.2, the effect of flow is non-negligible.
This has been discussed in Section 2.2: the resistance exhibits a significant increase while the reactance decreases with 𝑀0 (i.e., the
resonance frequency increases with 𝑀0). The modelling of the grazing flow effect on the impedance 𝜁 has been widely investigated
and is out of the scope of this work.

3.2.2. The factor 𝜂 for the dipolar response
From the theoretical analyses in Section 2.2, the dipolar transfer function 𝐹𝑝 can be modelled as proportional to the monopolar

one 𝑄𝑝, and thus the convection Mach number 𝑀C as well as the factor 𝜂 have been introduced in Eq. (12). The assumption used
in the theory that 𝐹𝑝 ∼ 𝑀C𝑄𝑝 is verified by the experiments: the measured pressure-driven transfer functions 𝑄𝑝 and 𝐹𝑝 are plotted
in Fig. 6, which indicates the similarity of their spectra and supports the theory that the unsteady force 𝐹𝑝 is mainly generated by
the convection of the unsteady flux 𝑄𝑝.

Moreover, with 𝑄𝑝 and 𝐹𝑝 provided from measurements, the factor 𝜂 is readily derived with Eq. (13). Results from Fig. 7 indicate
that 𝜂 is a complex quantity with real and imaginary parts (𝜂r and −𝜂i, respectively) of the same order of magnitude. Besides,
𝜂 = 𝜂(𝑓,𝑀0) and thus generally depends on both the frequency 𝑓 and the flow Mach number 𝑀0. However, due to the experimental
evidence, neglecting the frequency dependence of 𝜂 around the resonance frequency is acceptable when 𝜂 is used for predictions of
the scattering (or absorption) coefficients. It is thus assumed that 𝜂(𝑓,𝑀0) ≈ 𝜂(𝑀0) with the frequency-averaged factor 𝜂 introduced
as

𝜂(𝑀0) =
1 𝑓2

𝜂(𝑓,𝑀0)d𝑓, (25)
9
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d

Fig. 6. Measured transfer functions 𝑄𝑝 and 𝐹𝑝 of Sample 1 at (a) 𝑀0 = 0.15 and (b) 𝑀0 = 0.2.

Fig. 7. Measured factor 𝜂 of Sample 1 at (a) 𝑀0 = 0.15 and (b) 𝑀0 = 0.2.

Table 2
Frequency-averaged factor 𝜂 = 𝜂r − i𝜂i of the two samples at various flow Mach
numbers.

Sample 1 Sample 2

𝑀0 = 0.05 0.1639 − 0.2026i 0.1492 − 0.1277i
𝑀0 = 0.10 0.3691 − 0.1607i 0.4802 − 0.0327i
𝑀0 = 0.15 0.3153 − 0.2798i 0.5013 − 0.0987i
𝑀0 = 0.20 0.2822 − 0.1968i 0.3842 − 0.1808i

where 𝑓1 = 500 Hz and 𝑓2 = 2000 Hz are used in all the cases in this work. The results of 𝜂(𝑀0) for the two samples at various flow
Mach numbers are provided in Table 2. However, as shown in Fig. 8, neither 𝜂r nor 𝜂i are monotonic functions of 𝑀0. Moreover,
𝜂(𝑀0) behaves differently between Sample 1 and 2, although their geometries are close to each other. Thus, it is still difficult to
erive a closed-form expression of 𝜂(𝑀0) from the experimental results of this work, which remains an open question.

3.3. Scattering and absorption coefficients

The experimental scattering and absorption coefficients are then compared with the theory using the simplified transfer matrix
in Eq. (14) with two complex-valued parameters, i.e., the impedance of the point scatterer 𝜁 and the factor 𝜂. In the theoretical
computations, the measured impedances (shown in Figs. 5 and A.1 for Sample 1 and 2, respectively) are used; the effect of the
factor 𝜂 is checked by using either 𝜂 = 1, 0.5, 0, and 𝜂. Note here that 𝜂 = 1 or 0 refer to the special cases that the convection Mach
number 𝑀C is either the mean Mach number 𝑀0 or zero, respectively. The former implies that the dipolar effect does not exist
and the latter corresponds to the case of momentum continuity characterized by a pronounced dipolar effect. Besides, the value
𝜂 = 0.5 was suggested by the previous works [41,42] and the averaged factor 𝜂 is derived from measurements of this work (given
in Table 2).

The magnitudes of the scattering and absorption coefficients of Sample 1 with 𝑀0 = 0.15 and 0.2 are provided in Figs. 9 and 10.
The relative error caused by the theoretical prediction with factor 𝜂 is defined as 𝜖 = 1 ∫ 𝑓2

|(𝑆 − 𝑆 )∕𝑆 |d𝑓 , where 𝑆 and 𝑆
10
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Fig. 8. Frequency-averaged factor 𝜂 = 𝜂r − i𝜂i at various flow Mach numbers.

enote the magnitudes of the theoretical and experimental scattering (or absorption) coefficients, respectively, and the integration
s carried out in the frequency range from 500 Hz to 2000 Hz. The prediction errors are provided with Figs. 9 and 10. In most cases,
he model using 𝜂 achieves better agreement with the experimental data compared to those employing the other three values. For
nstance, by using 𝜂 = 1 and 𝜂 = 0 in the model, the dipolar effect on the absorption (which is implied by the difference between
+ and 𝛼−) is either underestimated or overestimated, respectively. The usage of 𝜂 = 0.5 in the theory improves the prediction of

both 𝛼+ and 𝛼− compared to those with 𝜂 = 1 and 𝜂 = 0. However, it is still not as good as that using the averaged factor 𝜂, which
hows the necessity of introducing the frequency-averaged and complex-valued factor 𝜂 to account for the dipolar effect properly.
he comparisons between the experiment and the theory using 𝜂 on the complex-valued scattering coefficients of Sample 1 with

𝑀0 = 0.15 and 0.2 are given in Appendix B. Validations of the theory with 𝜂 (i.e., comparison between the simplified-transfer-
atrix predictions and measurements of the scattering and absorption coefficients) in all the cases studied in this work (i.e., both

ample 1 and 2 with 𝑀0 = 0, 0.05, 0.1, 0.15, and 0.2) are provided in the Supplementary Material. The excellent agreement between
he theoretical predictions and the measurements indicates that the effects of the velocity-driven transfer functions 𝑄𝑢 and 𝐹𝑢 are
egligible compared to the pressure-driven transfer functions 𝑄𝑝 and 𝐹𝑝. In addition, it is reasonable to neglect the frequency-
ependence of the 𝜂 factor for describing the scattering properties of the point scatterer. Based on the present experimental results,

𝜂r slightly lower than 0.5 and 𝜂i around 0.2 can be heuristically used in practical applications.

.4. Maximum absorption

According to the theoretical analyses shown in Section 2.3, the maximum absorption can be achieved when the impedance
f the point scatterer reaches the optimum value, which is close to that at the resonance frequency of the Helmholtz resonators
i.e., the optimum reactance is close to zero). In Table 3, the experimental maximum absorption of Sample 1 and the absorption-peak
requency (i.e., 𝑓p) are provided. It can be found that 𝑓𝑝 varies with the flow Mach number. This is because the impedance of the
catterer is affected by the flow as discussed in Section 3.2. The experimental maximum absorptions of Sample 1 and 2 are shown in
ig. 11(a). The effect of the dipolar response of the point scatterer is clearly observed since max(𝛼−) achieves values higher than 1/2,
hile max(𝛼+) is always less than 1/2 in the experiments. Besides, the experimental maximum absorption coefficients are bounded
y the theoretical curves in two extreme cases with 𝜂 = 1 and 0. The experimental 𝛼max of Sample 1 is compared with theoretical
redictions using either the averaged factor 𝜂 given in Table 2 or the 𝜂 factor acquired experimentally at the absorption-peak

frequency. The latter is denoted as 𝜂𝑓 whose values are listed in Table 3. The agreement between experiment and the predictions is
reasonable as shown in Fig. 11(b). Moreover, the theoretical optimal impedances for maximum absorption (i.e., using Eq. (22) with
𝜂 and 𝜂𝑓 ) are compared with measured impedance at 𝑓𝑝 (given in Table 3), as shown in Figs. 11(c) and (d). Similar comparisons
or Sample 2 are presented in Appendix C. The theory proposed in this work is thus validated by these comparisons.

. Conclusions

In the unidimensional (1D) scattering problem, the acoustic performance of a locally reacting element is equivalent to that of a
oint scatterer if its characteristic dimension in the wave direction is much smaller than the acoustic wavelength. This work indicates
hat, under a low-Mach-number grazing air flow, the acoustic response of a passive single point scatterer mounted in the wall of a
aveguide has both monopolar and dipolar contributions, which is different from the case without grazing flow. Specifically, the
onopolar response is a volume flux induced by the incident wave, whereas the dipolar response corresponds to a force along the
ave direction.

Without loss of generality, we can assume that the acoustic performance of the scatterer is fully described by a linear combination
f four independent transfer functions, i.e., the pressure-driven flux and force (𝑄𝑝 and 𝐹𝑝, respectively) as well as the velocity-driven
lux and force (𝑄 and 𝐹 , respectively). Moreover, these four transfer functions are uniquely defined by the scattering (or transfer)
11
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Fig. 9. Comparison between the theoretical prediction under different values of the factor 𝜂 and the experimental scattering/absorption coefficients of Sample 1
at 𝑀0 = 0.15: (a) |𝑅+

| with relative error: 𝜖𝜂 = 4.28%, 𝜖1 = 5.12%, 𝜖0.5 = 2.16%, and 𝜖0 = 8.28%; (b) |𝑅−
| with relative error: 𝜖𝜂 = 1.69%, 𝜖1 = 10.11%, 𝜖0.5 = 1.63%,

nd 𝜖0 = 7.13%; (c) |𝑇 +
| with relative error: 𝜖𝜂 = 0.46%, 𝜖1 = 3.55%, 𝜖0.5 = 1.42%, and 𝜖0 = 2.08%; (d) |𝑇 −

| with relative error: 𝜖𝜂 = 1.97%, 𝜖1 = 7.22%, 𝜖0.5 = 3.69%,
nd 𝜖0 = 2.72%; (e) 𝛼+ with relative error: 𝜖𝜂 = 3.78%, 𝜖1 = 17.20%, 𝜖0.5 = 5.99%, and 𝜖0 = 13.75%; (f) 𝛼− with relative error: 𝜖𝜂 = 2.42%, 𝜖1 = 18.91%, 𝜖0.5 = 5.92%,

and 𝜖0 = 7.70%.

matrix of the 1D system and can be directly derived from measurements. According to the experimental results, the velocity-driven
transfer functions are negligible compared to the pressure-driven ones. The pressure-driven flux 𝑄𝑝 is the inverse of the specific
impedance 𝜁 of the scatterer. In contrast, the modelling of 𝐹𝑝 can be simplified by introducing a complex-valued factor 𝜂 for the
atio between 𝐹𝑝 and 𝑄𝑝. With 𝜁 and 𝜂 given, the acoustic behaviour of the point scatterer can be accurately predicted by using the
implified transfer matrix in Eq. (14), which is validated experimentally in this work.

According to the proposed theory, the dipolar transfer function is a relatively small quantity compared to the monopolar one
i.e., 𝐹 ∕𝑄 ∼ 𝑂(𝑀 )) at low flow Mach numbers. However, the dipolar effect on the scattering coefficients can be of the first-order
12
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Fig. 10. Comparison between the theoretical prediction under different values of the factor 𝜂 and the experimental scattering/absorption coefficients of Sample
1 at 𝑀0 = 0.2: (a) |𝑅+

| with relative error: 𝜖𝜂 = 6.66%, 𝜖1 = 5.99%, 𝜖0.5 = 3.52%, and 𝜖0 = 11.37%; (b) |𝑅−
| with relative error: 𝜖𝜂 = 2.21%, 𝜖1 = 16.17%, 𝜖0.5 = 4.09%,

and 𝜖0 = 8.26%; (c) |𝑇 +
| with relative error: 𝜖𝜂 = 0.81%, 𝜖1 = 4.52%, 𝜖0.5 = 1.66%, and 𝜖0 = 2.12%; (d) |𝑇 −

| with relative error: 𝜖𝜂 = 3.23%, 𝜖1 = 10.93%, 𝜖0.5 = 5.56%,
nd 𝜖0 = 3.47%; (e) 𝛼+ with relative error: 𝜖𝜂 = 6.02%, 𝜖1 = 22.82%, 𝜖0.5 = 7.67%, and 𝜖0 = 16.21%; (f) 𝛼− with relative error: 𝜖𝜂 = 3.36%, 𝜖1 = 22.75%, 𝜖0.5 = 7.99%,

and 𝜖0 = 7.08%.

of 𝑀0 as well, which is usually non-negligible. In the 1D transmission problem, the maximum absorption coefficient 𝛼max achieved
by a single passive point scatterer is 1/2 at any 𝑀0 if the dipolar response is omitted (i.e., 𝐹𝑝 = 0). In the opposite, with 𝐹𝑝 ≠ 0,
hen 𝛼max = 1∕2 + 𝑂(𝑀0). Because of this leading odd-order term of 𝑀0, 𝛼max > 1∕2 when the flow is against the incident wave
i.e., 𝑀0 < 0); 𝛼max < 1∕2 when the wave is with the flow (i.e., 𝑀0 > 0). The experiments in this work confirm that 𝐹𝑝 ≠ 0, which
mplies that the impedance 𝜁 is not sufficient to describe the complete behaviour of a point scatterer (e.g., an orifice, a Helmholtz
esonator, etc.) under grazing flow. For accurate predictions in practical applications such as the design of passive silencers or
bsorbers in ventilation systems, at least another complex-valued parameter besides 𝜁 should be used. From the measurements of
13
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m

o

Fig. 11. Theoretical and experimental results of the maximum absorption and the corresponding impedance with various flow Mach numbers: (a) Experimental
aximum absorption coefficients of Samples 1 and 2 bounded by the theoretical 𝛼max with 𝜂 = 0 and 𝜂 = 1, (b) Comparison between the measured 𝛼max of

Sample 1 and theoretical predictions with 𝜂 and 𝜂𝑓 , (c) Comparison between the measured resistance 𝜃 of Sample 1 at the absorption-peak frequency (i.e., 𝑓p)
and theoretical predictions of optimal resistance to achieve 𝛼max with 𝜂 and 𝜂𝑓 , and (d) Comparison between the measured reactance 𝜒 of Sample 1 at 𝑓p and
theoretical predictions of optimal reactance with 𝜂 and 𝜂𝑓 . Note here that 𝜂 or 𝜂𝑓 refer to experimental values of 𝜂 either averaged within 500 Hz to 2000 Hz
r at 𝑓p, respectively.

Table 3
The frequency of absorption peak 𝑓𝑝, maximum absorption coefficient 𝛼max, impedance 𝜁 at 𝑓p,
and the factor 𝜂𝑓 at 𝑓p, measured with Sample 1.

𝑀0 𝑓p 𝛼max 𝜁 = 𝜃 − i𝜒 𝜂𝑓
−0.2 1130 0.6683 0.7719 + 0.1114i 0.2366 − 0.2247i
−0.15 1140 0.6267 0.5933 + 0.0248i 0.3361 − 0.3035i
−0.1 1060 0.5749 0.4812 + 0.0808i 0.3464 − 0.0961i
−0.05 1060 0.5455 0.4742 + 0.0011i 0.2289 − 0.0613i
0 1080 0.5054 0.4657 − 0.0145i –
0.05 1070 0.4702 0.4754 − 0.0171i 0.2610 − 0.0624i
0.1 1135 0.4531 0.4662 − 0.0579i 0.4508 − 0.1533i
0.15 1195 0.4236 0.5749 − 0.0738i 0.4445 − 0.2643i
0.2 1230 0.3914 0.7336 − 0.0613i 0.4560 − 0.3357i

this work, it is suggested to use the frequency averaged factor 𝜂 (𝜂 = 𝜂r − i𝜂i) with 𝜂r slightly lower than 0.5 and 𝜂i ≈ 0.2 for a
14

reasonable approximation.
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Fig. A.1. Measured acoustic impedance 𝜁 = 𝜃 − i𝜒 = −1∕𝑄𝑝 of Sample 2 with various flow Mach numbers: (a) Resistance 𝜃 and (b) Reactance 𝜒 .

The case with multiple passive scatterers will be studied in the future, as this is closer to the situation of a real perforated liner.
esides, the acoustic response of non-passive point scatterers (with amplifications of acoustic wave due to sound-flow interactions)
an be investigated following the method of this work as well.
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ppendix A. Measured acoustic impedance of Sample 2

The experimental impedances 𝜁 of Sample 2 in all the cases studied in this work are shown in Fig. A.1. The impedance exhibits
similar dependence on 𝑀0 compared to that of Sample 1 as shown in Fig. 5.

ppendix B. Validation of the simplified transfer matrix in Eq. (14)

By using Eqs. (7) and (14), the following exact and low-Mach-number asymptotic expressions of the scattering coefficients are
ritten as

𝑅± = −
(1 ±𝑀0)[1 ± (1 − 𝜂)𝑀0]
1 + 2𝜁 +𝑀2

0 (1 − 𝜂 − 2𝜁 )
= − 1

1 + 2𝜁
∓

(2 − 𝜂)𝑀0
1 + 2𝜁

+ 𝑂(𝑀2
0 ),

𝑇 ± =
2𝜁 ±𝑀0(2 − 𝜂 ∓ 2𝑀0𝜁 )

2
=

2𝜁
±

(2 − 𝜂)𝑀0 + 𝑂(𝑀2
0 ).

(B.1)
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1 + 2𝜁 +𝑀0 (1 − 𝜂 − 2𝜁 ) 1 + 2𝜁 1 + 2𝜁
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Fig. B.1. Comparison between the prediction with the simplified transfer matrix (STM) and the experimental scattering coefficients of Sample 1 at 𝑀0 = 0.15:
(a) 𝑅+, (b) 𝑅−, (c) 𝑇 +, and (d) 𝑇 −.

t can be found that the leading order dipolar corrections on these coefficients (i.e., the 𝑂(𝑀0) terms) are proportional to 1∕(1+2𝜁 ).
his implies that the value of 𝜂 around the resonance frequency of the resonator (where |𝜁 | is small) dominates the dipolar effect.
hus, the frequency-averaged factor 𝜂 has been introduced in the simplified transfer matrix.

The comparisons between the experimental results and the theoretical predictions of the scattering coefficients of Sample 1 with
𝑀0 = 0.15 and 0.2 are provided in Figs. B.1 and B.2, respectively. In the theoretical predictions, the simplified transfer matrix
Eq. (14) is applied with 𝜁 from measurements and the factor 𝜂 given in Table 2. The comparisons for all the cases studied in this

ork (i.e., both Sample 1 and 2 with 𝑀0 = 0, 0.05, 0.1, 0.15, and 0.2) are provided in the Supplementary Material.

ppendix C. Additional information on the maximum absorption of Sample 2

The comparisons between the experimental and theoretical results of 𝛼max and the corresponding impedance at the absorption-
peak frequency 𝑓p of Sample 2 are shown in Fig. C.1. Additional information regarding these comparisons is available in Table C.1.

ppendix D. Supplementary data
16

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jsv.2024.118356.
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(

Fig. B.2. Comparison between the prediction with the simplified transfer matrix (STM) and the experimental scattering coefficients of Sample 1 at 𝑀0 = 0.2:
a) 𝑅+, (b) 𝑅−, (c) 𝑇 +, and (d) 𝑇 −.

Table C.1
The frequency of absorption peak 𝑓𝑝, maximum absorption coefficient 𝛼max, impedance 𝜁 at 𝑓p,
and the factor 𝜂𝑓 at 𝑓p, measured with Sample 2.

𝑀0 𝑓p 𝛼max 𝜁 = 𝜃 − i𝜒 𝜂𝑓
−0.2 1110 0.6574 0.6454 − 0.0866i 0.1982 − 0.0620i
−0.15 1060 0.5890 0.4801 − 0.0316i 0.4441 − 0.0648i
−0.1 970 0.5468 0.4002 + 0.0627i 0.4617 − 0.0042i
−0.05 970 0.5431 0.4340 + 0.0206i 0.1413 − 0.0161i
0 1000 0.5016 0.4344 − 0.0173i –
0.05 1000 0.4653 0.4353 − 0.0404i 0.1629 − 0.0049i
0.1 1015 0.4619 0.3957 − 0.0368i 0.5302 + 0.0554i
0.15 1155 0.4378 0.4525 − 0.2038i 0.5305 − 0.1933i
0.2 1300 0.4133 0.5480 − 0.3820i 0.6227 − 0.1209i
17
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b

Fig. C.1. Theoretical and experimental results of Sample 2: (a) Comparison between the measured 𝛼max and theoretical predictions with 𝜂 and 𝜂𝑓 , (b) Comparison
etween the measured resistance 𝜃 at the absorption-peak frequency (i.e., 𝑓p) and theoretical predictions of optimal resistance to achieve 𝛼max with 𝜂 and 𝜂𝑓 ,

and (d) Comparison between the measured reactance 𝜒 at 𝑓p and theoretical predictions of optimal reactance with 𝜂 and 𝜂𝑓 .
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