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Abstract: The aim of this article is to investigate the existence of traveling waves of a diffusive model
that represents the transmission of a virus in a determined population composed of the following
populations: susceptible (S), infected (I), asymptomatic (A), and recovered (R). An analytical
study is performed, where the existence of solutions of traveling waves in a bounded domain is
demonstrated. We use the upper and lower coupled solutions method to achieve this aim. The
existence and local asymptotic stability of the endemic (Ee) and disease-free (E0) equilibrium states
are also determined. The constructed model includes a discrete-time delay that is related to the
incubation stage of a virus. We find the crucial basic reproduction number R0, which determines
the local stability of the steady states. We perform numerical simulations of the model in order to
provide additional support to the theoretical results and observe the traveling waves. The model can
be used to study the dynamics of SARS-CoV-2 and other viruses where the disease evolution has a
similar behavior.

Keywords: diffusive mathematical models; traveling wave solutions; SARS-CoV-2 virus; discrete-
time delay

MSC: 34K05; 37N25; 92D30

1. Introduction

Mathematical models have been extensively used to study the dynamics of many
infectious diseases [1]. It is common to use differential equations to construct these models.
The most well-known models are based on ordinary differential equations (ODEs), partial
differential equations (PDEs), and delay differential equations (DDEs) [2–5]. The SIR
(susceptible–infected–recovered) model is by far the most commonly used mathematical
model based on differential equations [1]. Recently, the SAIR model, or its variants, has
been used to address well-known asymptomatic cases [6–9]. In [10], a SIR model that
incorporates awareness and a time delay to account for the latent stage was studied. These
previous studies have used ODEs, as specific spatial effects were not considered.

Often in mathematical epidemiology, models that consider the spatial component,
where individuals live, are usually described using partial differential equations. This is
justified by the movement of individuals from one place to another, either within a region
or through the emigration of the population to other regions through its borders. Another
important variable in modeling infectious diseases is the delay in the appearance of the
symptoms of the disease after individuals become infected. In [11], the authors proposed
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an epidemic SIR mathematical model with spatial diffusion and time delay. The authors
investigated the existence of traveling waves in their proposed SIR model. In addition,
they determined the stationary states and analyzed the existence of waves through the
existence of upper and lower solutions. Other works have incorporated discrete-time
delays in partial differential equations [12–14]. For instance, in [12], the authors analyzed
the existence of wavefront solutions using a monotonous iteration scheme for the wave
system. The authors proved that the wave system has a solution if the quasi-monotonicity
(QM) condition is satisfied.

The incorporation of time delays can make the mathematical models more realistic,
but then these models and their analysis become more complex. Thus, time delays can be
incorporated into reaction-diffusion systems, but then classical techniques such as the phase
plane cannot be applied to guarantee the existence of the solution. However, by applying the
monotonous iteration technique, the existence of a traveling wave solution was demonstrated
for a reaction-diffusion model with delays [13]. The monotonous iteration technique was
demonstrated in [12,14]. Another interesting work was presented in [15]. The authors found
and proved the existence of traveling waves when they analyzed an SEIR-type model
represented by a system of reaction-diffusion equations. In addition, the authors computed
the basic reproduction number, which is a threshold parameter for the long-term dynamics,
and used it to prove the existence of traveling waves.

In this direction of epidemiological applications, in [16], the authors analyzed the role
of population mobility in the transmission of coronavirus disease 2019 (COVID-19) using a
nonlinear parabolic system. The authors presented alternatives to control the transmission
of the virus by applying restrictions such as the closure of borders, reduction of travel, and
interruption of human mobility. In another interesting work [17], the authors presented an
epidemiological SEIR-type model with reaction-diffusion terms, nonlinear incidence, and
distributive delay. The authors applied the Lyapunov function methodology and the basic
reproduction number to analyze the stability of the stationary states.

In this paper, we present a SAIR-type epidemiological model based on a system of partial
differential equations, incorporating a discrete-time delay to mimic the virus’s incubation
period within a host and the time it takes for a person to become infected [10,18–21]. The
spatial effect is justified due to people’s mobility and the spread of the virus [6,16,22,23]. Thus,
the main contributions of this paper are the introduction of spatial effects in conjunction with the
time delay due to the latent stage of individuals. Moreover, the model includes asymptomatic
cases and considers the possibility of death for asymptomatic individuals. In addition, we find
the crucial basic reproduction number R0, which determines the local stability of the steady
states. In general, this theoretical result is more complex to achieve in mathematical models
that include spatial effects and time delays compared to classical models based on ODEs.

There are different ways to introduce a discrete-time delay in an epidemiological math-
ematical model. This delay takes into account the fact that when a susceptible individual
has effective contact with an infected individual, the susceptible person does not become
infectious right away, i.e., they are unable to spread the virus [24–29]. In this article, we use
a particular approach to introduce the time delay that has been used in several previous
papers related to the mathematical modeling of epidemics [11,30,31]. We aim to analyze
the existence and uniqueness of a traveling wave that connects the two equilibrium points
of the system. In addition, we will analyze the stability of the stationary points of the model.
The proposed mathematical model represents the transmission of a virus in a determined
population composed of susceptible (S), infected (I), asymptomatic (A), and recovered (R)
individuals. As with any real-world mathematical model, there are simplifications and as-
sumptions. However, this type of study provides additional insights into the dynamics of
different diseases [1,26,32]. We perform an analytical study, where the existence of solutions of
traveling waves in a bounded domain is demonstrated. We use a method that is based on the
upper and lower coupled solutions to prove this existence. The existence and local asymptotic
stability of the endemic (Ee) and disease-free (E0) equilibrium states are determined. It should
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be mentioned that the proposed mathematical model can be used to study the dynamics of
SARS-CoV-2 and other viruses where the disease status evolution is similar.

This paper is organized as follows. Section 2 introduces the constructed model and
Section 3 provides the mathematical analysis of the existence and uniqueness of the solution.
The stability of the equilibrium points is then discussed in Section 4. In Section 5, numerical
simulations of the solutions are presented, and finally, in Section 6, the conclusions of this
study are given.

2. Materials and Methods

In this section, we present the most important elements that are often used to design
new epidemiological mathematical models and the mathematical tools that can be used to
demonstrate that the model is well posed.

2.1. Mathematical Model

In this subsection, we present a mathematical model that is based on a system of
partial differential equations with a discrete-time delay, where the population has been
subdivided into the following subpopulations: susceptible (S) people who do not have
the virus but can be infected, infected (I) people with symptoms of the disease who have
the ability to infect susceptible individuals, asymptomatic (A) infected people who can
transmit the disease but do not present symptoms of the disease, and finally, recovered (R)
people who have had the disease but do not transmit it.

Let us consider a bounded domain Ω ⊂ R and a time interval [0, T]. We assume that
N : Ω × [0, T] → R is a non-negative function representing the spatio-temporal density
of the population. That is, N(x, t) denotes the number of individuals over the point xinΩ
at the instant tin[0, T]. It is also assumed that S, I, A, R : Ω × [0, T] → R are non-negative
functions such that N(x, t) = S(x, t) + I(x, t) + A(x, t) + R(x, t), and they describe the
densities of the subpopulations that interact in this model. These functions are given
as follows:

• S(x, t) is the population susceptible to the virus in space and time;
• I(x, t) is the infected population presenting symptoms of the disease and transmitting

the virus in space and time;
• A(x, t) is the population infected by the virus that does not present symptoms, that is,

it is asymptomatic and transmits the virus in space and time;
• R(x, t) is the population that has recovered from the disease and does not present

symptoms of the disease but is under medical treatment.

With the above considerations, we present a model governed by partial differential
equations, where the interaction and flow of the subpopulations involved in this class of
epidemiological models are shown in Figure 1. Thus, one has

∂S(x, t)
∂t

=Λ − βS(x, t)[I(x, t − τ) + A(x, t − τ)]− µS(x, t)

+∇ · [νS∇S(x, t)],

∂I(x, t)
∂t

= rβS(x, t)[I(x, t − τ) + A(x, t − τ)]− µI(x, t)− η I(x, t) (1)

− αI(x, t) +∇ · [νI∇I(x, t)],

∂A(x, t)
∂t

= (1 − r)βS(x, t)[I(x, t − τ) + A(x, t − τ)]− µA(x, t)

− αA(x, t) +∇ · [νA∇A(x, t)],

∂R(x, t)
∂t

= α[I(x, t) + A(x, t)]− µR(x, t) +∇ · [νR∇R(x, t)],

where ∇ =
(

∂
∂x

)
is the vector differential operator; Λ represents the rate of new people

entering the susceptible population; α is the recovery rate; η is the mortality rate caused by
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infection; β is the contagion rate; µ is the general natural mortality rate; r is the proportion
of people who become infected and present symptoms; and νS, νA, νI , νR are diffusion pa-
rameters, indicating the space and time mobility of the susceptible, infected, and recovered
individuals on those classes, respectively [33].

Figure 1. Diagram of the mathematical model (1) based on a system of partial differential equations
with a discrete-time delay τ.

The mathematical model (1) is considered closed. Therefore, we consider Neumann-
type boundary conditions. That is, we assume that n(x, t) is the unit normal vector of Ω
to the point (x, t) ∈ ∂Ω × [0, T], where ∂Ω represents the border of Ω and C := C(Ω ×
[−τ, 0],R4) for τ > 0 represents the set of continuous functions defined in Ω × [−τ, 0].
Due to the above, the initial and boundary conditions of the mathematical model (1) are
as follows: {

∇u(x, t) · n( t) = 0 (x, t) ∈ ∂Ω × (0, T];
u0(x, θ) = φ(x, θ) φ ∈ C,

(2)

where u = (S, I, A, R)T and φ = (φ1, φ2, φ3, φ4)
T such that φi is a non-negative real

function for i = 1, 2, 3, 4.

2.2. Existence of Equilibrium States

Now, we analyze the equations of system (1) with conditions (2) to determine the
existence of a disease-free equilibrium and an endemic equilibrium. In this way, the stability
of these steady states is shown. The Neumann boundary conditions are given in (2) and
indicate that

∂s(x, t)
∂n

=
∂I(x, t)

∂n
=

∂A(x, t)
∂n

=
∂R(x, t)

∂n
= 0 ∀(x, t) ∈ ∂Ω × [0, T],

where ∂
∂n denotes the normal outward derivative over ∂Ω. These boundary conditions

mean that subpopulations do not cross the boundary ∂Ω.
The disease-free equilibrium E0 is obtained by setting A = I = R = 0. Thus,

E0

(
Λ
µ

, 0, 0, 0
)

. (3)

Now, if we assume I, A > 0, the solution of the following system represents the endemic
stationary state, i.e,

Λ − βSe(Ie + Ae)− µSe = 0,

rβSe(Ie + Ae)− (µ + α + η)Ie = 0, (4)

(1 − r)βSe(Ie + Ae)− (µ + α)Ae = 0,

α(Ie + Ae)− µRe = 0.
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From the second and third equations of (4) and dividing by Ie > 0, one obtains

rβSe(1 +
Ae

Ie )− (µ + α + η) = 0, (5)

(1 − r)βSe(1 +
Ae

Ie )− (µ + α)
Ae

Ie = 0.

Next, from (5), one obtains

βSe(1 +
Ae

Ie ) =
µ + α + η

r
. (6)

We can obtain from (6) and the second equation of (5) that

(1 − r)
(

µ + α + η

r

)
= (µ + α)

Ae

Ie ⇒ (1 − r)(µ + α + η)

r(µ + α)
=

Ae

Ie . (7)

Thus,

βSe
(

1 +
(1 − r)(µ + α + η)

r(µ + α)

)
=

µ + α + η

r
,

βSe
(

r(µ + α) + (1 − r)(µ + α + η)

r(µ + α)

)
=

µ + α + η

r
,

Se =
(µ + α)(µ + α + η)

β(µ + α + (1 − r)η)
.

Now, we can replace the first equation of (4) and substitute Se into the second and third
equations of (4) to obtain Ie and Ae as

Ie =
rΛ

µ + α + η
− rµ(µ + α)

β(µ + α + (1 − r)η)
=

r[Λβ(µ + α + (1 − r)η)− µ(µ + α)(µ + α + η)]

β(µ + α + η)(µ + α + (1 − r)η)
.

Ae =
(1 − r)Λ

µ + α
− (1 − r)µ(µ + α + η)

β(µ + α + (1 − r)η)

=
(1 − r)[Λβ(µ + α + (1 − r)η)− µ(µ + α)(µ + α + η)]

β(µ + α)(µ + α + (1 − r)η)
.

Now, we define the following parameter

R0 =
Λβ(µ + α + (1 − r)η)
µ(µ + α)(µ + α + η)

. (8)

With the above results, we have the following proposition:

Proposition 1. If R0 > 1, there is only one endemic state Ee(Se, Ie, Ae, Re) of system (1) with the
conditions given in (2), which is

Se =
(µ + α)(µ + α + η)

β(µ + α + (1 − r)η)
=

Λ
µR0

,

Ie =
r[Λβ(µ + α + (1 − r)η)− µ(µ + α)(µ + α + η)]

β(µ + α + η)(µ + α + (1 − r)η)
=

Λr[R0 − 1]
R0(µ + α + η)

,

Ae =
(1 − r)[Λβ(µ + α + (1 − r)η)− µ(µ + α)(µ + α + η)]

β(µ + α)(µ + α + (1 − r)η)
=

Λ(1 − r)[R0 − 1]
R0(µ + α)

,

Re =
α

µ
(Ie + Ae) =

α[R0 − 1]
β

.
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3. Existence and Uniqueness of the Solution

Since model (1) represents an epidemiological model, from a biological point of view, it
is important to analyze the epidemic waves generated when solutions propagate as traveling
waves that move at a certain speed. Here, we show the existence of a single solution of
model (1) with the conditions given in (2) (see Appendix A). We assume that the diffu-
sion coefficients are constant. We simplify the notation by setting for (x, t) ∈ Ω × [0, T],
and τ > 0 the following: S = S(x, t), I = I(x, t), A = A(x, t), R = R(x, t), and N = N(x, t),
Tτ = T(x, t − τ). Then, system (1) can be written as

∂S
∂t

=Λ − βSIτ − βSAτ − µS +∇ · (νS∇S),

∂I
∂t

=rβSIτ + rβSAτ − (µ + η + α)I +∇ · (νI∇I), (9)

∂A
∂t

=(1 − r)βSIτ + (1 − r)βSAτ − (α + µ)A +∇ · (νA∇A),

∂R
∂t

=αI + αA − µR +∇ · (νR∇R).

We set M(x, t) = Λ
µ − S(x, t). Then, system (9) is transformed into

∂M
∂t

=− µM + β

(
Λ
µ
− M

)
(Iτ + Aτ) + νM∆M,

∂I
∂t

=rβ

(
Λ
µ
− M

)
(Iτ + Aτ)− (α + µ + η)I + νI∆I, (10)

∂A
∂t

=(1 − r)β

(
Λ
µ
− M

)
(Iτ + Aτ)− (α + µ)A + νA∆A,

∂R
∂t

=α(I + A)− µR + νR∆R.

System (10) has two stationary states. If R0 < 1 it is 0 = (0, 0, 0, 0)T , and for R0 > 1, it is
k = (k1, k2, k3, k4)

T , where

k1 =
Λ
µ
− Se, k2 = Ie, k3 = Ae, k4 = Re, ki > 0, i = 1, 2, 3, 4. (11)

Using the notation presented in [34] and substituting into (10), the solutions are given by

M(x, t) = φ1

( x
c
+ t
)

, I(x, t) = φ2

( x
c
+ t
)

, A(x, t) = φ3

( x
c
+ t
)

, R(x, t) = φ4

( x
c
+ t
)

,

and by setting s = x
c + t, one obtains the following system:

d1

c2 ϕ′′
1 (s)− ϕ′

1(s) + f1(ϕs) = 0,

d2

c2 ϕ′′
2 (s)− ϕ′

2(s) + f2(ϕs) = 0, (12)

d3

c2 ϕ′′
3 (s)− ϕ′

3(s) + f3(ϕs) = 0,

d3

c2 ϕ′′
4 (s)− ϕ′

4(s) + f4(ϕs) = 0,

where d1 = νM, d2 = νI , d3 = νA, d4 = νR, ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T , ϕs ∈ C([−τ, 0],R4) with

ϕs = (ϕs
1, ϕs

2, ϕs
3, ϕs

4)
T ; ϕs

i (θ) = ϕi(s + θ) and
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f1(ϕs) = −µϕs
1(0) + β

(
Λ
µ
− ϕs

1(0)
)
(ϕs

2(−τ) + ϕs
3(−τ)),

f2(ϕs) = rβ

(
Λ
µ
− ϕs

1(0)
)
[ϕs

2(−τ) + ϕs
3(−τ)]− (α + µ + η)ϕs

2(0),

f3(ϕs) = (1 − r)β

(
Λ
µ
− ϕs

1(0)
)
[ϕs

2(−τ) + ϕs
3(−τ)]− (α + µ)ϕs

3(0), (13)

f4(ϕs) = α(ϕs
2(0) + ϕs

3(0))− µϕs
4(0),

where ϕ satisfies the following asymptotic boundary conditions:

lim
s→−∞

ϕ(s) = 0, lim
s→∞

ϕ(s) = k. (14)

Let us show that the function f = ( f1, f2, f3, f4)
T satisfies conditions A1, A2, and A3 given

in (A4).

Proposition 2 (A1). Suppose that f = ( f1, f2, f3, f4)
T and that W(Ω,R4) is like in (A3). Then,

f (0) = f (k) = 0.

Proof. The proof follows from (13).

Proposition 3 (A2). fi satisfies the Lipschitz condition in W([−τ, 0],R4) for i = 1, 2, 3, 4.

Proof. Set ϕ, ψ ∈ W([−τ, 0],R4). Then,

| f1(ϕ)− f1(ψ)| =
∣∣∣∣−µϕ1(0) + β

(
Λ
µ
− ϕ1(0)

)
(ϕ2(−τ) + ϕ3(−τ)) + µψ1(0)

− β

(
Λ
µ
− ψ1(0)

)
[ψ2(−τ) + ψ3(−τ)]

∣∣∣∣
≤ µ|ψ1(0)− ϕ1(0)|

+ β

∣∣∣∣(Λ
µ
− ϕ1(0)

)
[ϕ2(−τ)− ϕ3(−τ)] −

(
Λ
µ
− ψ1(0)

)
[ψ2(−τ)− ψ3(−τ)]

∣∣∣∣
≤ µ|ψ1(0)− ϕ1(0)|+

βΛ
µ

(|ϕ2(−τ)− ψ2(−τ)|+ |ϕ3(−τ)− ψ3(−τ)|)

+ β| − ϕ1(0)(ϕ2(−τ) + ϕ3(−τ)) + ψ1(0)(ψ2(−τ) + ψ3(−τ))|

≤ µ|ψ1(0)− ϕ1(0)|+
βΛ
µ

(|ϕ2(−τ)− ψ2(−τ)|+ |ϕ3(−τ)− ψ3(−τ)|)

+ β| − ϕ1(0)ϕ2(−τ)− ϕ1(0)ϕ3(−τ) + ψ1(0)ψ2(−τ) + ψ1(0)ψ3(−τ)|.

Thus, one obtains

| f1(ϕ)− f1(ψ)| ≤ µ|ψ1(0)− ϕ1(0)|+
βΛ
µ

(|ϕ2(−τ)− ψ2(−τ)|+ |ϕ3(−τ)− ψ3(−τ)|)

+ βm1|ψ2(−τ)− ϕ2(−τ)|+ βm2|ψ1(0)− ϕ1(0)|
+ βm3|ψ1(0)− ϕ1(0)|+ βm1|ψ3(−τ)− ϕ3(−τ)|.

Therefore, | f1(ϕ)− f1(ψ)| ≤ L1∥ϕ − ψ∥W , where L1 = µ + 2βΛ
µ + 2βm1 + β(m2 + m3). In a

similar process, for all ϕ, ψ ∈ W([−τ, 0],R4), we can find the constants Li, con i = 2, 3, 4,
such that | fi(ϕ)− fi(ψ)| ≤ Li∥ϕ − ψ∥W .

Proposition 4 (A3). The function f = ( f1, f2, f3, f4)
T holds the partial conditions of quasi-

monotonicity (PQM) given in Definition A4, and W([−τ, 0],R4).
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Proof. Consider ψ, φ ∈ W([−τ, 0],R4), with ψ = (ψ1, ψ2, ψ3, ψ4)
T , φ = (φ1, φ2, φ3, φ4)

T ,
and 0 ≤ ψi ≤ φi ≤ mi for all i = 1, 2, 3, 4. Moreover, suppose that

φ2,3 = (φ1, ψ2, ψ3, φ4)
T φ1 = (ψ1, φ2, φ3, φ4)

T , φ4 = (φ1, φ2, φ3, ψ4)
T .

Set m = (m1, m2, m3, m4)
T > k such that Λ

µ − mi > 0. Then, Λ
µ − φi(0) ≥ Λ

µ − mi > 0, and
hence

f1(φ)− f1(ψ) = −µφ1(0) + β

(
Λ
µ
− φ1(0)

)
[φ2(−τ) + φ3(−τ)]

+ µψ1(0)− β

(
Λ
µ
− ψ1(0)

)
[ψ2(−τ) + ψ3(−τ)]

≥ −µφ1(0) + β

(
Λ
µ
− φ1(0)

)
[ψ2(−τ) + ψ3(−τ)]

+ µψ1(0)− β

(
Λ
µ
− ψ1(0)

)
[ψ2(−τ) + ψ3(−τ)]

≥ µ(ψ1(0)− φ1(0)) + β(ψ1(0)− φ1(0))[ψ2(−τ) + ψ3(−τ)].

Now, since ψ2 + ψ3 ≤ m2 + m3 and ψ1(0)− φ1(0) ≤ 0, this implies that

(ψ1(0)− φ1(0))(ψ2(−τ) + ψ3(−τ)) ≥ (ψ1(0)− φ1(0))(m2 + m3).

Thus,

f1(φ)− f1(ψ) ≥ µ(ψ1(0)− φ1(0)) + β(m2 + m3)(ψ1(0)− φ1(0))

≥ [µ + β(m2 + m3)](ψ1(0)− φ1(0)).

Consider β1 = µ + β(m2 + m3) > 0, then f1(φ)− f1(ψ) + β1(φ1(0)− ψ1(0)) ≥ 0. Now,

f2(φ)− f2(φ2,3) = rβ

(
Λ
µ
− φ1(0)

)
[φ2(−τ) + φ3(−τ)]− (α + µ + η)φ2(0)

− rβ

(
Λ
µ
− φ1(0)

)
[ψ2(−τ) + ψ3(−τ)] + (α + µ + η)ψ2(0)

= rβ

(
Λ
µ
− φ1(0)

)
[φ2(−τ)− ψ2(−τ) + φ3(−τ)− ψ3(−τ)]

+ (α + µ + η)(ψ2(0)− φ2(0)) ≥ (α + µ + η)(ψ2(0)− φ2(0)).

By setting β2 = α + µ + η > 0, one obtains f2(φ)− f2(φ2,3) + β2(φ2(0)− ψ2(0)) ≥ 0. On
the other hand,

f2(φ)− f2(φ1) = rβ

(
Λ
µ
− φ1(0)

)
[φ2(−τ) + φ3(−τ)]− (α + µ + η)φ2(0)

− rβ

(
Λ
µ
− ψ1(0)

)
[φ2(−τ) + φ3(−τ)] + (α + µ + η)φ2(0)

= rβ(ψ1(0)− φ1(0))[φ2(−τ) + φ3(−τ)] ≤ 0.

Hence, f2(φ)− f2(φ1) ≤ 0. Since ϕ4 is not in f2, then f2(φ)− f2(φ4) = 0 ≤ 0. Similarly,
for f3, β3 = α + µ > 0 is obtained such that f3(φ)− f3(φ2,3) + β3(φ3(0)− ψ3(0)) ≥ 0, and
f3(φ)− f3(φi) ≤ 0, i = 1, 4. Furthermore,

f4(φ)− f4(ψ) = α(φ2(0) + φ3(0))− µφ4(0)− α(ψ2(0) + ψ3(0)) + µψ4(0) ≥ µ(ψ4(0)− φ4(0)).

If we set β4 = µ > 0, then f4(φ)− f4(ψ) + β4(φ4(0)− ψ4(0)) ≥ 0. Thus, we have found
β1, β2, β3, β4 > 0, such that Definition A4 (PQM) holds.
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As a consequence of the above propositions, the function f satisfies the hypotheses
(A1), (A2), and (A3). Next, we determine the upper and lower coupled solutions, i.e., the
functions of the form presented in (A5). These functions are given by

ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T ; ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)

T ;

ϕ
2,3

= (ϕ1, ϕ2, ϕ3, ϕ4)
T ; ϕ2,3 = (ϕ1, ϕ2, ϕ3, ϕ4)

T ,

which must meet the following conditions almost everywhere in R:

d1

c2 ϕ
′′
1 − ϕ

′
1 + f1(ϕs) ≤ 0,

d1

c2 ϕ′′
1
− ϕ′

1
+ f1(ϕs

) ≥ 0,

d2

c2 ϕ
′′
2 − ϕ

′
2 + f2(ϕ

2,3
s ) ≤ 0,

d2

c2 ϕ′′
2
− ϕ′

2
+ f2(ϕ

2,3
s
) ≥ 0,

d3

c2 ϕ
′′
3 − ϕ

′
3 + f3(ϕ

2,3
s ) ≤ 0,

d3

c2 ϕ′′
3
− ϕ′

3
+ f3(ϕ

2,3
s
) ≥ 0,

d4

c2 ϕ
′′
4 − ϕ

′
4 + f4(ϕs) ≤ 0,

d4

c2 ϕ′′
4
− ϕ′

4
+ f4(ϕs

) ≥ 0.

Set D = max{di : i = 1, 2, 3, 4}, K = min{ki : i = 1, 2, 3, 4}, mi > ki for i = 1, . . . , 4, and we
consider pi, i = 1, . . . , 4, which is given by

p1 =
βΛ
m1

(m2 + m3), p2 =
βΛ
µK

(m2 + m3), p3 =
α

m4
(m2 + m3), p4 = −(α + µ + η).

Then, the characteristic equation ∆i(λ) =
D
c2 λ2 − λ + pi has at least one positive real root

if c > 2
√

D|pi|. We define c∗ := max{2
√

D|pi| : i = 1, 2, 3, 4}. If we set c > c∗, there are
constants λi > 0 (i = 1, 2, 3, 4) such that

D
c2 λ2

1 − λ1 +
βΛ

µm1
(m2 + m3) = 0,

D
c2 λ2

2 − λ2 +
βΛ
µK (m2 + m3) = 0,

D
c2 λ2

3 − λ3 +
α

m4
(m2 + m3) = 0,

D
c2 λ2

4 − λ4 − (α + µ + η) = 0, λ1, λ3 < λ2.

(15)

Define the following continuous functions

ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T , ϕ = (ϕ

1
, ϕ

2
, ϕ

3
, ϕ

4
)T ,

such that

ϕ1(t) =
{

k1eλ1t t ≤ t1,
k1 + ε1e−λt t > t1.

ϕ
1
(t) =

{
0 t ≤ t∗1 ,
k1 − ε∗1e−λt t > t∗1 .

ϕ2(t) =
{

k2eλ2t t ≤ t2,
k2 + ε2e−λt t > t2.

ϕ
2
(t) =


0 t ≤ t∗2 ,
k2eλ4t − C0 t∗2 < t ≤ t∗3
k2 − ε∗2e−λt t > t∗3 .

ϕ3(t) =
{

k3eλ2t t ≤ t3,
k3 + ε3e−λt t > t3.

ϕ
3
(t) =

{
0 t ≤ t∗4 ,
k3 − ε∗3e−λt t > t∗4 .

ϕ4(t) =
{

k4eλ3t t ≤ t4,
k4 + ε4e−λt t > t4.

ϕ
4
(t) =

{
0 t ≤ t∗5 ,
k4 − ε∗4e−λt t > t∗5 ,
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where the constants εi, ε∗i > 0 for i = 1, 2, 3, 4 meet the following conditions:

µ(k1 + ε1)− β
(

Λ
µ − k1 − ε1

)
(m2 + m3) > 0,

(α + µ + η)(k2 + ε2)− rβ
(

Λ
µ − k1 + ε∗1

)
(m2 + m3) > 0,

(α + µ + η)(k3 + ε3)− rβ
(

Λ
µ − k1 + ε∗1

)
(m3 + m2) > 0,

µ(k4 + ε4)− α(m2 + m3) > 0,
−µ(k1 − ε∗1) + β

(
Λ
µ − k1 + ε∗1

)
(k2 − ε∗2 + k3 − ε∗3) > 0,

rβK0

(
Λ
µ − m1

)
− (α + µ + η)(k2 − ε∗2) > 0,

rβ
(

Λ
µ − m1

)(
k2eλ4t∗3 − C0

)
− (α + µ + η)(k2 − ε∗2) > 0,

(1 − r)β
(

Λ
µ − m1

)
(k2 − ε∗2 + k3 − ε∗3)− (α + µ + η)(k3 − ε∗3) > 0,

α(k2 − ε∗2 + k3 − ε∗3)− µ(k4 − ε∗4) > 0.

(16)

λ > 0 is a constant that is appropriately set later. The values of ti and t∗j are set such
that t∗1 , t1, t4 ≤ t2 ≤ t3; t3 − τ ≤ t2; t∗3 , t∗4 ≤ t∗1 − τ, t∗5 ; and t∗4 − τ > t∗3 . Moreover,
C0 = k2eλ4t∗2 , K0 = k2eλ4(t∗3−τ) − C0 > 0, mi := supt∈R{ϕi} > ki for i = 1, 2, 3, 4 (see [11]).
If we set m = (m1, m2, m3, m4)

T , the functions ϕ and ϕ verify the following conditions:

(i) 0 ≤ ϕ ≤ ϕ ≤ m;
(ii) lim

t→−∞
ϕ = 0 and lim

t→∞
ϕ = k;

(iii) ϕ′
i
(t+) ≥ ϕ′

i
(t−) and ϕ

′
i(t+) ≤ ϕ

′
i(t−) for all t ∈ R and i = 1, 2, 3, 4.

The following two lemmas show the results for the upper and lower solutions.

Lemma 1. The function ϕ is an upper solution of system (10).

Proof. Let us show that d1
c2 ϕ

′′
1 − ϕ

′
1 + f (ϕt) ≤ 0. If t ≤ t1, ϕ1(t) = k1eλ1t, ϕ2(t) = k2eλ2(t−τ),

ϕ3(t) = k3eλ2(t−τ), it is obtained that

d1

c2 ϕ
′′
1 (t)− ϕ

′
1(t) + f1(ϕt) =

d1

c2 ϕ
′′
1 (t)− ϕ

′
1(t)− µϕ1(t)

+ β

(
Λ
µ
− ϕ1(t)

)
[ϕ2(t − τ) + ϕ3(t − τ)]

≤
d1k1λ2

1
c2 eλ1t − k1λ1eλ1t +

βΛ
µ

(
k2eλ2(t−τ) + k3eλ2(t−τ)

)
≤

d1k1λ2
1

c2 eλ1t − k1λ1eλ1t +
βΛ
µ

(
k2eλ2t + k3eλ2t

)
.

Since t ≤ t1 ≤ t2, t3, and λ1 ≤ λ2, then

eλ1(t1−t) ≤ eλ2(t2−t), eλ1(t1−t) ≤ eλ2(t3−t), eλ2t ≤ eλ2t2

eλ1t1
eλ1t, eλ2t ≤ eλ2t3

eλ1t1
eλ1t,

k2eλ2t ≤ k2eλ2t2

k1eλ1t1
k1eλ1t, k3eλ2t ≤ k3eλ2t3

k1eλ1t1
k1eλ1t,

k2eλ2t ≤ m2

m1
k1eλ1t, k3eλ2t ≤ m3

m1
k1eλ1t.

With the above and using (15), we have

d1

c2 ϕ
′′
1 (t)− ϕ

′
1(t) + f1(ϕt) ≤ k1eλ1t

[
D
c2 λ2

1 − λ1 +
βΛ
m1µ

(m2 + m3)

]
= 0.
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But, if t > t1, ϕ1(t) = k1 + ε1e−λt, then

d1

c2 ϕ
′′
1 − ϕ

′
1 + f1(ϕt) =

d1ε1λ2
1

c2 e−λt + ε1λe−λt − µ(k1 + ε1e−λt)

+ β

(
Λ
µ
− k1 − ε1e−λt

)
[ϕ2(t − τ) + ϕ3(t − τ)] ≤ g1(λ).

where

g1(λ) =
d1ε1λ2

1
c2 e−λt + ε1λe−λt − µ(k1 + ε1e−λt) + β

(
Λ
µ
− k1 − ε1e−λt

)
[m2 + m3],

and from condition (16), it follows that g1(0) < 0. Next, since g1 is continuous, there
is λ∗

1 > 0 such that if λ ∈ (0, λ∗
1), then d1

c2 ϕ
′′
1 − ϕ

′
1 + f (ϕt) ≤ g1(λ) < 0. We consider

d2
c2 ϕ

′′
2 (t)− ϕ

′
2(t) + f2(ϕ

2,3
t ). If t ≤ t2, ϕ2 = k2eλ2t, then using (15), it is deduced that

d2

c2 ϕ
′′
2 − ϕ

′
2 + rβ

(
Λ
µ
− ϕ

1

)
[ϕ2(t − τ) + ϕ3(t − τ)]− (α + µ + η)ϕ2

≤ k2eλ2t

[
d2λ2

2
c2 − λ2 +

rβΛ
µK

(k2 + k3)

]

≤ k2eλ2t

[
Dλ2

2
c2 − λ2 +

βΛ
µK

(m2 + m3)

]
= 0,

for t > t2, ϕ1(t) = k2 + ε2e−λt, ϕ
1
(t) = k1 − ε∗1e−λt. Hence,

d2

c2 ϕ
′′
2 (t)− ϕ

′
2(t) + f2(ϕ

2,3
t ) ≤ g2(λ),

where

g2(λ) =

(
d2λ2ε2

c2 + λε2

)
e−λt + rβ

(
Λ
µ
− k1 + ε∗1e−λt

)
(m2 + m3)− (α + µ + η)(k2 + ε2e−λt).

From the conditions in (16), it is deduced that

g2(0) = rβ

(
Λ
µ
− k1 + ε∗1

)
(m2 + m3)− (α + µ + η)(k2 + ε2) < 0.

Thus, there exists a λ∗
2 > 0 such that if λ ∈ (0, λ∗

2), then

d2

c2 ϕ
′′
2 (t)− ϕ

′
2(t) + f2(ϕ

2,3
t ) ≤ 0.

Similarly, there is λ∗
3 > 0 such that if λ ∈ (0, λ∗

3), one obtains

d3

c2 ϕ
′′
3 (t)− ϕ

′
3(t) + f3(ϕ

2,3
t ) ≤ 0.

Next, we consider d4
c2 ϕ

′′
4 (t)− ϕ

′
4(t) + f4(ϕt). For t ≤ t4, it holds that ϕ4(t) = k4eλ3t, and hence

d4

c2 ϕ
′′
4 (t)− ϕ

′
4(t) + f4(ϕt) =

d4

c2 ϕ
′′
4 (t)− ϕ

′
4(t) + α(ϕ2(t) + ϕ3(t))− µϕ4(t)

≤
d4k4λ2

3
c2 eλ3t − k4λ3eλ3t + α(k2eλ2t + k3eλ2t).
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Now, since t4 < t2, t3 and λ3 ≤ λ2, when t ≤ t1 and from (15), it follows that

d4

c2 ϕ
′′
4 (t)− ϕ

′
4(t) + f4(ϕt) ≤

d4k4λ2
3

c2 eλ3t − k4λ3eλ3t + k4eλ3tα

(
m2

m4
+

m3

m4

)
≤ k4eλ3t

[
Dλ2

3
c2 − λ3 +

α

m4
(m2 + m3)

]
= 0.

For t > t4, it is deduced that ϕ4 = k4 + ε4e−λt. Therefore,

d4

c2 ϕ
′′
4 (t)− ϕ

′
4(t) + α(ϕ2(t) + ϕ3(t))− µϕ4 ≤ g4(λ),

where

g4(λ) = ε4e−λt
(

d4

c2 λ2 + λ

)
+ α(m2 + m3)− µ(k4 + ε4)e−λt.

From (16), it is obtained that g4(0) = α(m2 + m3) − µ(k4 + ε4) < 0. Then, there exists
λ∗

4 > 0 such that if λ ∈ (0, λ∗
4), we obtain

d4

c2 ϕ
′′
4 − ϕ

′
4 + f (ϕ4, ϕ

4
τ) ≤ 0.

By choosing λ ∈ (0, λ∗) with λ∗ = min{λ∗
1 , λ∗

2 , λ∗
3 , λ∗

4}, the desired result is obtained.

Lemma 2. The function ϕ is a lower solution of system (10).

Proof. Let d1
c2 ϕ′′

1
(t)− ϕ′

1
(t) + f1(ϕt

), t ≤ t∗1 , and ϕ
1
(t) = 0, then

d1

c2 ϕ′′
1
(t)− ϕ′

1
(t) + f1(ϕt

) =
Λ
µ
(ϕ

2
(t − τ) + ϕ

3
(t − τ)) ≥ 0.

Thus, if t > t∗1 , then ϕ
1
(t) = k1 − ε∗1e−λt, and since t − τ > t∗1 − τ > t∗3 , t∗4 , ϕ

2
(t − τ) =

k2 − ε∗2e−λ(t−τ), ϕ
3
(t − τ) = k3 − ε∗3e−λ(t−τ). Similarly,

d1

c2 ϕ′′
1
(t)− ϕ′

1
(t) + f1(ϕt

) = g5(λ),

where

g5(λ) = −d1

c2 ε∗1λe−λt − ε∗1λe−λt − µ(k1 − ε∗1e−λt)

+ β

(
Λ
µ
− k1 + ε∗1e−λt

)(
k2 − ε∗2e−λ(t−τ) + k3 − ε∗3e−λ(t−τ)

)
.

From (16), we have

g5(0) = −µ(k1 − ε∗1) + β

(
Λ
µ
− k1 + ε∗1

)
(k2 − ε∗2 + k3 − ε∗3) > 0,

and thus there exists a λ∗
5 > 0 such that λ ∈ (0, λ∗

5). It is concluded that

d1

c2 ϕ′′
1
(t)− ϕ′

1
(t) + f1(ϕt

) ≥ 0.

Now, for d2
c2 ϕ′′

2
(t)− ϕ′

2
(t) + f2(ϕ

2,3
t
), if t ≤ t∗2 , ϕ

2
(t) = 0, and therefore,

d2

c2 ϕ′′
2
(t)− ϕ′

2
(t) + f2(ϕ

2,3
t
) = rβ

(
Λ
µ
− ϕ1e

)
ϕ

3
(t − τ) ≥ 0.
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Suppose that t∗2 < t ≤ t∗3 , ϕ
2
= k2eλ4t − C0. So, from (15) it follows that

d2

c2 ϕ′′
2
(t)− ϕ′

2
(t) + rβ

(
Λ
µ
− ϕ1(t)

)
(ϕ

2
(t − τ) + ϕ

3
(t − τ))− (α + µ + η)ϕ

2
(t)

≥ k2e−λ4t
(

d2

c2 λ4 − λ4 − (α + µ + η)

)
= 0.

For t > t∗3 , we have ϕ
2
= k2 − ε∗2e−λt. Since t − τ > t3 − τ > t∗2 , then t − τ ≤ t∗3 .

Cinsequently, after ϕ
2
(t − τ) = k2eλ4(t−τ) − C0 > K0, and thus

d2

c2 ϕ′′
2
(t)− ϕ′

2
(t) + f2(ϕ

2,3
t
) ≥ g6(λ),

with

g6(λ) = −
(

d2

c2 ε∗2λ2 + ε∗2λ

)
e−λt + rβ

(
Λ
µ
− m1

)
K0 − (µ + α + η)(k2 − ε∗2e−λt).

From (16), g6(0) = rβ
(

Λ
µ − m1

)
K0 − (µ + α + η)(k2 − ε∗2) > 0. Therefore, there exists a

λ∗
6 > 0. For instance, when λ ∈ (0, λ∗

6), this implies that

d2

c2 ϕ′′
2
(t)− ϕ′

2
(t) + f2(ϕ

2,3
t
) ≥ 0.

Now, in another case, with t − τ > t∗3 , we obtain

ϕ
2
(t − τ) = k2 − ε∗2e−λ(t−τ) > k2eλ4t∗3 − C0 > 0,

which implies that

d2

c2 ϕ′′
2
(t)− ϕ′

2
(t) + f2(ϕ

2,3
t
) ≥ g7(λ),

with

g7(λ) = −
(

d2

c2 ε∗2λ2 + ε∗2λ

)
e−λt − (µ + α + η)(k2 − ε∗2e−λt) + rβ

(
Λ
µ
− m1

)(
k2eλ4t∗3 − C0

)
.

Thus, from (16), it is deduced that

g7(0) = rβ

(
Λ
µ
− m1

)(
k2eλ4t∗3 − C0

)
− (µ + α + η)(k2 − ε∗2) > 0.

Thus, there exists a λ∗
7 > 0, with λ ∈ (0, λ∗

7), which implies that

d2

c2 ϕ′′
2
(t)− ϕ′

2
(t) + f2(ϕ

2,3
t
) ≥ 0.

Reasoning in the same way, we can obtain λ∗
8 and λ∗

9 such that if λ∗ = min{λ∗
5 , λ∗

6 , λ∗
7 , λ∗

8 , λ∗
9},

for λ ∈ (0, λ∗), ϕ is a lower solution of (10).

With the above results, the following conclusion is obtained, which ensures the existence
of a traveling wave solution with speed c > 0 of system (1) with the conditions given in (2).

Theorem 1. Suppose that R0 > 1 and c > c∗. Then, system (1) with the conditions in (2) has
a traveling wave solution with speed c > 0, which does not depend on τ ≥ 0 and connects the
stationary points E0 and EE.

Proof. Since R0 > 1, there are only stationary points 0 and k of system (12) with the
conditions A1, A2, and A3 given in (14). From Lemmas 1 and 2, ϕ and ϕ are the upper and
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lower solutions. Then, from Theorem A1, system (1) with the conditions in (2) has a unique
traveling wave solution with speed c > 0 connecting points E0 and EE (see [35]).

4. Local Stability of Equilibrium States

In this section, we examine the local stability of the endemic equilibrium Ee and
the disease-free equilibrium E0 of system (1) with the initial and homogeneous Neumann
boundary conditions given in (2). From system (9), we set u = (S, I, A, R)T , uτ = u(x, t− τ),
and f = ( f1, f2, f3, f4)

T with

f1(u, uτ) = Λ − βS(Iτ + Aτ)− µS,

f2(u, uτ) = rβS(Iτ + Aτ)− (α + µ + η)I,

f3(u, uτ) = (1 − r)βS(Iτ + Aτ)− (α + µ)A,

f4(u, uτ) = α(I + A)− µR.

Next, we have

∂ f
∂u

(Ee) =


−β(Ie + Ae)− µ 0 0 0

rβ(Ie + Ae) −(α + µ + η) 0 0
(1 − r)β(Ie + Ae) 0 −(α + µ) 0

0 α α −µ

,

∂ f
∂uτ

(Ee) =


0 −βSe −βSe 0
0 rβSe rβSe 0
0 (1 − r)βSe (1 − r)βSe 0
0 0 0 0

,

where ∂ f
∂u (Ee) is the Jacobian matrix. We set Q = ∂ f

∂u (Ee) and G = ∂ f
∂uτ

(Ee). Then, the
linearization of system (9) at the equilibrium point Ee is given by

Lu = V∆u + Qu + Guτ , (17)

where V = Diag(νS, νI, νA, νR). Suppose that 0 = ρ1 < ρ2 < ρ3 . . ., are eigenvalues
of operator −∆ on Ω with Neumann conditions, and consider Eρi the eigenspace corre-
sponding to eigenvalue ρi in C1(Ω). We denote ni := dim(Eρi) and M := [C1(Ω)]3. Set
Bi := {vij : j = 1, 2, 3, . . . , ni} as an orthonormal basis of Eρi andMij := {cvij : vij ∈ Bi; c ∈ R3}.
Next, the direct sum of the vector subspaces is M = M1 ⊕ M2 ⊕ M3 ⊕ . . ., where
Mi = Mi1 ⊕Mi2 ⊕Mi3 ⊕ . . . ⊕Mini . Thus, Mi is invariant under the operator L for
each i ≥ 1. In addition, λ is an eigenvalue of L if and only if it is the solution of the
characteristic equation

det(λI4 − Lλ) = 0 , (18)

with Lλ := −ρiV + Q + e−λτG for some i ≥ 1, in which case, there is an eigenvector in Mi
(see [11]). We suppose that νI , νS, νR, νA = v, and from (18), we have∣∣∣∣∣∣∣∣

c11 c12 c13 0
c21 c22 c23 0
c31 c32 c33 0
0 c42 c43 c44

∣∣∣∣∣∣∣∣ = 0 , (19)

where

c11 = λ + ρiv + β(Ie + Ae) + µ, c12 = c13 = βSee−λτ , c21 = −rβ(Ie + Ae) ,

c22 = λ + ρiv + α + µ + η − rβSee−λτ , c23 = −rβSee−λτ , c31 = −(1 − r)β(Ie + Ae),

c32 = −(1 − r)βSee−λτ , c33 = λ + ρiv + α + µ − (1 − r)βSee−λτ , c42 = c43 = −α,

c44 = λ + ρiv + µ .
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Therefore, from (19), it follows that

c44[c11(c22c33 − c32c23)− c12(c21c33 − c31c23) + c13(c21c32 − c31c22)] = 0.

Now, by replacing the values cij in −c12(c21c33 − c31c23) + c13(c21c32 − c31c22), we obtain

− βSee−λτ
[
−rβ(Ie + Ae)

(
λ + ρiv + α + µ − (1 − r)βe−λτ

)
− r(1 − r)β2Se(Ie + Ae)e−λτ

]
+ βSee−λτ

[
r(1 − r)β2Se(Ie + Ae)e−λτ + (1 − r)β(Ie + Ae)

(
λ + ρiv + α + µ + η − rβSee−λτ

)]
= βSee−λτ

[
β(Ie + Ae)

(
λ + ρiv + α + µ + (1 − r)η − 2r(1 − r)βSee−λτ

)
(20)

+ 2r(1 − r)β2Se(Ie + Ae)e−λτ
]

= β2Se(Ie + Ae)[λ + ρiv + α + µ + (1 − r)η]e−λτ .

Similarly, by simplifying c22c33, it follows that(
λ + ρiv + α + µ + η − rβSee−λτ

)(
λ + ρiv + α + µ − (1 − r)βSee−λτ

)
= λ2 + (2ρiv + 2α + 2µ + η − βSee−λτ)λ + (ρiv + α + µ + η)(ρiv + α + µ)

+ [−r(ρiv + α + µ)− (ρiv + α + µ)(1 − r)− (1 − r)η]βSee−λτ + r(1 − r)β2(Se)2e−2λτ (21)

= λ2 + (2ρiv + 2α + 2µ + η)λ + (ρiv + α + µ + η)(ρiv + α + µ)

+ [−βSeλ − βSe(ρiv + α + µ + (1 − r)η)]e−λτ + r(1 − r)β2(Se)2e−2λτ .

Now, −c32c23 = −r(1 − r)β2(Se)2e−2λτ and thus the expression c22c33 − c32c23 is

λ2 + (2ρiv + 2α + 2µ + η)λ + (ρiv + α + µ + η)(ρiv + α + µ)

− βSe[λ + ρiv + α + µ + (1 − r)η]e−λτ . (22)

Then, by multiplying (22) by c11 = (λ + ρiv + µ) + β(Ie + Ae), we obtain

(λ + ρiv + µ)
[
λ2 + (2ρiv + 2α + 2µ + η)λ + (ρiv + α + µ + η)(ρiv + α + µ)

−βSe[λ + ρiv + α + µ + (1 − r)η]e−λτ
]
+ β(Ie + Ae)[λ2 + (2ρiv + 2α + 2µ + η)λ (23)

+ (ρiv + α + µ + η)(ρiv + α + µ)]− β2Se(Ie + Ae)[λ + ρiv + α + µ + (1 − r)η]e−λτ .

Finally, from (23), (20), and c44, we obtain

(λ + ρiv + µ)
[
λ3 + p2λ2 + p1λ + p0 − C(λ2 + q1λ + q0)e−λτ

]
= 0, (24)

where

p0 = [ρiv + µ + β(Ie + Ae)](ρiv + α + µ + η)(ρiv + α + µ),

p1 = [piv + µ + β(Ie + Ae)](2piv + 2α + 2µ + η) + (ρiv + α + µ + η)(ρiv + α + µ),

p2 = 3piv + 2α + 3µ + η + β(Ie + Ae),

q0 = (ρiv + µ)[ρiv + α + µ + (1 − r)η],

q1 = 2ρiv + 2µ + α + (1 − r)η,

C = βSe.

For the case E0, Ae = Ie = 0 and hence from (19) and (23), Equation (24) is

(λ + ρiv + µ)2[λ2 + b1λ + b0 + (a1λ + a0)e−λτ ] = 0, (25)
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with

b0 = (ρiv + α + µ + η)(ρiv + α + µ), b1 = 2piv + 2α + 2µ + η,

a0 = − βΛ
µ

[ρiv + α + µ + (1 − r)η], a1 = − βΛ
µ

.

Thus, for all i ≥ 1 λ = −(ρiv + µ). The other roots are in

λ2 + b1λ + b0 + (a1λ + a0)e−λτ = 0. (26)

We define Wi(λ) = λ2 + b1λ + b0 + (a1λ + a0)e−λτ . The following cases are given:

Case I: If R0 > 1 and λ ∈ R, since ρ1 = 0, then

W1(0) = b0 + a0 = (ρ1v + α + µ + η)(ρ1v + α + µ)− βΛ
µ

[ρ1v + α + µ + (1 − r)η]

= (α + µ + η)(α + µ)− βΛ
µ

[α + µ + (1 − r)η]

= (α + µ + η)(α + µ)

[
1 − βΛ(α + µ + (1 − r)η)

µ(α + µ + η)(α + µ)

]
= (α + µ + η)(α + µ)(1 −R0) < 0,

moreover, limλ→+∞ W1(λ) = +∞. Thus, (26) has a positive root. Therefore, there is a λ
feature root with a positive real part in the operator spectrum L (17). This implies that
E0 = (Λ/µ, 0, 0, 0) is unstable while R0 > 1.

Case II: Suppose that R0 < 1. If τ = 0, then Wi(λ) = λ2 + (b1 + a1)λ + (b0 + a0). Now, we
can see that

b0 + a0 = (ρiv + α + µ + η)(ρiv + α + µ)− βΛ
µ

[ρiv + α + µ + (1 − r)η]

≥ (α + µ + η)(α + µ)− βΛ
µ

[α + µ + (1 − r)η]

≥ (α + µ + η)(α + µ)

[
1 − βΛ(α + µ + (1 − r)η)

µ(α + µ + η)(α + µ)

]
≥ (α + µ + η)(α + µ)(1 −R0) > 0,

and as R0 < 1, it follows that

βΛ(α + µ + (1 − r)η)
µ(α + µ + η)(α + µ)

< 1, implies that
1

µ + α
− βΛ

µ(α + µ + η)(α + µ)
> 0.

Hence, we obtain

b1 + a1 = 2ρiv + 2α + 2µ + η − βΛ
µ

= 2ρiv + (α + µ) + (α + µ + η)− βΛ
µ

= 2ρiv + (α + µ)(α + µ + η)

[
1

α + µ
+

1
α + µ + η

− βΛ
µ(α + µ + η)(α + µ)

]
> 0.

The above allows us to conclude that the equation Wi(λ) = 0 has two roots with a negative
real part for all i. Now, if we suppose that τ > 0, and ωj (ω > 0) is the solution of
Wi(λ) = 0, where j =

√
−1. Then, by solving Wi(ωj) = 0 and separating the real and

imaginary parts, it follows that{
a1 sin(ωτ)ω + a0 cos(ωτ) = ω2 − b0,
−a1 cos(ωτ)ω + a0 sin(ωτ) = b1ω.

(27)
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By squaring both sides of each equation in (27) and then adding the two equations, we
obtain

ω4 + (b2
1 − 2b0 − a2

1)ω + b2
0 − a2

0 = 0.

Set z = ω2. Next,

z2 + (b2
1 − 2b0 − a2

1)z + (b2
0 − a2

0) = 0. (28)

Thus,

b2
1 = [(ρiv + α + µ + η) + (ρiv + α + µ)]2

= (ρiv + α + µ + η)2 + (ρiv + α + µ)2 + 2(ρiv + α + µ + η)(ρiv + α + µ).

Therefore,

b2
1 − 2b0 + a2

1 = (ρiv + α + µ + η)2 + (ρiv + α + µ)2 −
[

βΛ
µ

]2

> (α + µ + η)2 + (α + µ)2 −
[

βΛ
µ

]2

> (α + µ + η)2(α + µ)2
[

1
(α + µ + η)2 +

1
(α + µ)2 − β2Λ2

µ2(α + µ)2(α + µ + η)2

]
> 0,

because R0 < 1 implies that

β2Λ2(α + µ + (1 − r)η)2

µ2(α + µ)2(α + µ + η)2 < 1

⇒− β2Λ2

µ2(α + µ)2(α + µ + η)2 > − 1
(α + µ + (1 − r)η)2

⇒ 1
(α + µ)2 − β2Λ2

µ2(α + µ)2(α + µ + η)2 >
1

(α + µ)2 − 1
(α + µ + (1 − r)η)2 > 0.

Moreover, b2
0 − a2

0 = (b0 + a0)(b0 − a0) > 0. Consequently, Equation (28) has no positive
real roots. Therefore, if R0 < 1, E0 is asymptotically stable locally, for all τ > 0.

In the endemic point E∗ = Ee(Se, Ie, Ae, Re), for R0 > 1, we obtain

Se =
Λ

µR0
, Ie =

rΛ(R0 − 1)
(µ + α + η)R0

, Ae =
(1 − r)Λ(R0 − 1)

(µ + α)R0
, Re =

α

µ
(Ie + Ae) =

α(R0 − 1)
β

.

Thus, the characteristic Equation (24) for Ee is

(λ + ρiv + µ)
[
λ3 + p2λ2 + p1λ + p0 − C(λ2 + q1λ + q0)e−λτ

]
= 0, (29)

with
p0 = (ρiv + µR0)(ρiv + α + µ + η)(ρiv + α + µ),

p1 = (piv + µR0)(2piv + 2α + 2µ + η) + (ρiv + α + µ + η)(ρiv + α + µ),

p2 = 3piv + 2α + 2µ + η + µR0,

q0 = (ρiv + µ)[ρiv + α + µ + (1 − r)η],

q1 = 2ρiv + 2µ + α + (1 − r)η,

C =
βΛ

µR0
.

Is clear that for all i ≥ 1, −(ρiv + µ) is a real negative root of (29). The other roots are in
Fi(λ) = 0, where

Fi(λ) = λ3 + p2λ2 + p1λ + p0 − C(λ2 + q1λ + q0)e−λτ .
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To demonstrate that the roots of the characteristic equation Fi(λ) = 0 have negative real
parts for τ ≥ 0, we use the following result presented in [36].

Proposition 5. Suppose that
P(λ) + Y(λ)e−rλ = 0,

where P and Y are polynomials with real coefficients. If this holds true, then:

1. P(λ) ̸= 0, si ℜ(λ) ≥ 0.
2. |Y(wj)| < |P(wj)|, para 0 ≤ w < ∞.
3. lim|λ|→∞, ℜ(λ)≥0 |Q(λ)/P(λ)| = 0.

Then, ℜ(λ) < 0 for all roots λ and r ≥ 0.

Consider Fi(λ) = P(λ) + Y(λ)e−λτ . Let us consider the following:

1. P(λ) ̸= 0, if ℜ(λ) ≥ 0. Indeed, set λ = a + bj with a ≥ 0. It follows that

P(λ) = (a + bj)3 + p2(a + bj)2 + p1(a + bj) + p0

= a3 + 3a2bj − 3ab2 − b3 j + p2a2 + 2p2abj − p2b2 + p1a + p1bj + p0,

= (a3 + p2a2 + p1a + p0 − 3ab2 − p2b2) + (3a2b − b3 + 2p2ab + p1b)j.

Now, if P(λ) = 0, then we have

a3 + p2a2 + p1a + p0 = 3ab2 + p2b2, (30)

3a2b + 2p2ab + p1b = b3. (31)

Notice that b ̸= 0, since if b = 0 in Equation (30) one obtains

a3 + p2a2 + p1a + p0 = 0,

which is impossible, since a ≥ 0 and p2, p1, p0 > 0 imply that that the equation is
positive. After Equation (31), it follows that b2 = 3a2 + 2p2a + p1. By replacing this in
Equation (30), we obtain

a3 + p2a2 + p1a + p0 = 3a(3a2 + 2p2a + p1) + p2(3a2 + 2p2a + p1),

a3 + p2a2 + p1a + p0 = 9a3 + 9p2a2 + (3p1 + 2p2
2)a + p1 p2,

which is also a contradiction, since a ≥ 0, 9a3 ≥ a3, 9p2a2 ≥ p2a2, (3p1 + 2p2
2)a ≥

p1a, and p1p2 > p0.
2. |Y(wj)| < |P(wj)|, if w is real and w ≥ 0. Indeed, given that

Y(λ) = −Cλ2 − Cq1λ − Cq0 y P(λ) = λ3 + p2λ2 + p1λ + p0,

we have

Y(wj) = Cw2 − Cq1wj − Cq0 = (Cw2 − Cq0)− Cq1wj,

|Y(wj)|2 = (Cw2 − Cq0)
2 + C2q2

1w2,

|Y(wj)|2 = C2w4 − 2C2q0w2 + C2q2
0 + C2q2

1w2.

P(wj) = −w3 j − p2w2 + p1wj + p0 = (p0 − p2w2) + (p1w − w3)j,

|P(wj)|2 = (w3 − p1w)2 + (p2w2 − p0)
2,

|P(wj)|2 = w6 − 2p1w4 + p2
1w2 + p2

2w4 − 2p2 p0w2 + p2
0.
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Consequently,

|P(wj)|2 − |Y(wj)|2 = (p2
2 − 2p1 − C2)w4 + (p2

1 + 2C2q0 − 2p0 p2 − C2q2
1)w

2

+ w6 + (p2
0 − C2q2

0).

The following expression p2
2 − 2p1 − C2 is expanded as

(3ρiv + 2α + 2µ + η + µR0)
2 − 2(ρiv + µR0)(2ρiv + 2α + 2µ + η)

− 2(ρiv + α + µ + η)(ρiv + α + µ)− β2Λ2

µ2R2
0

.

Notice that

(3ρiv + 2α + 2µ + η + µR0)
2 = [(2ρiv + 2α + 2µ + η) + (ρiv + µR0)]

2

= [(ρiv + α + µ) + (ρiv + α + µ + η)]2

+ 2(2ρiv + 2α + 2µ + η)(ρiv + µR0) + (ρiv + µR0)
2

= (ρiv + α + µ)2 + 2(ρiv + α + µ)(ρiv + α + µ + η)

+ (ρiv + α + µ + η)2 + (ρiv + µR0)
2

+ 2(2ρiv + 2α + 2µ + η)(ρiv + µR0).

Thus,

p2
2 − 2p1 − C2 = (ρiv + α + µ + η)2 + (ρiv + µR0)

2 + (ρiv + α + µ)2 − β2Λ2

µ2R2
0

> (ρiv + µR0)
2 + (α + µ + η)2 + (α + µ)2 − β2Λ2

µ2R2
0

> (ρiv + µR0)
2 + (α + µ + η)2(α + µ)2

[
1

(α + µ + η)2 +
1

(α + µ)2

− β2Λ2

µ2(µ + α)2(µ + α + η)2R2
0

]
.

Since
β2Λ2

µ2(µ + α)2(µ + α + η)2R2
0
=

1
(µ + α + (1 − r)η)2 ,

and
1

(α + µ)2 − 1
(µ + α + (1 − r)η)2 > 0,

then p2
2 − 2p1 − C2 > 0. Next, for p2

1 + 2C2q0 − 2p0 p2 − C2q2
1, one obtains

p2
1 = (ρi + µR0)

2(2piv + 2α + 2µ + η)2 + (ρiv + α + µ + ν)2(ρiv + α + µ)2

+ 2(ρiv + µR0)(2ρi + 2α + 2µ + η)(ρiv + α + µ + η)(ρiv + α + µ)

= (ρi + µR0)
2(ρiv + α + µ)2 + 2(ρi + µR0)

2(ρiv + α + µ)(ρiv + α + µ + ν) (32)

+ (ρi + µR0)
2(ρiv + α + µ + ν)2 + (ρiv + α + µ + ν)2(ρiv + α + µ)2

+ 2(ρiv + µR0)(2ρi + 2α + 2µ + η)(ρiv + α + µ + η)(ρiv + α + µ).

−2p0 p2 = −2(ρiv + µR0)(ρiv + α + µ)(ρiv + α + µ + η)(3ρiv + 2α + 2µ + η)

= −2(ρiv + µR0)(ρiv + α + µ)(ρiv + α + µ + η)(2ρiv + 2α + 2µ + η) (33)

− 2(ρiv + µR0)
2(ρiv + α + µ)(ρiv + α + µ + η).

2C2q0 = 2
β2Λ2

µ2R2
0
(ρiv + µ)(ρiv + α + µ + (1 − r)η). (34)
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−C2q2
1 = − β2Λ2

µ2R2
0
(2ρiv + 2µ + α + (1 − r)η)2

= − β2Λ2

µ2R2
0
(ρiv + µ)2 − 2

β2Λ2

µ2R2
0
(ρiv + µ)(ρiv + α + µ + (1 − r)η) (35)

− β2Λ2

µ2R2
0
(ρiv + α + µ + (1 − r)η)2.

Then, from (32)–(35), one obtains

p2
1 + 2C2q0 − 2p0 p2 − C2q2

1 = (ρiv + µR0)
2(ρiv + µ + α)2 − β2Λ2

µ2R2
0
(ρiv + µ)2

+ (ρi + µ + α + η)2(ρiv + µR0)
2

+ (ρiv + µ + α)2(ρi + µ + α + η)2

− β2Λ2

µ2R2
0
(ρiv + α + µ + (1 − r)η)2.

As R0 > 1, then µR0 > µ, after

p2
1 + 2C2q0 − 2p0 p2 − C2q2

1 > (ρiv + µ)2(ρiv + µ + α)2 − β2Λ2

µ2R2
0
(ρiv + µ)2

+ (ρiv + µ + α)2(ρiv + µ + α + η)2

+ (ρi + µ + α + η)2(ρiv + µ)2

− β2Λ2

µ2R2
0
(ρiv + α + µ + (1 − r)η)2.

Now,

(ρiv + µ)2(ρiv + µ + α)2 + (ρi + µ + α + η)2(ρiv + µ)2 − β2Λ2

µ2R2
0
(ρiv + µ)2

> (ρiv + µ)2

[
(µ + α)2 + (µ + α + η)2 − β2Λ2

µ2R2
0

]
> 0,

and
(ρiv + µ + α)2(ρiv + µ + α + η)2 − β2Λ2

µ2R2
0
(ρiv + α + µ + (1 − r)η)2

=

[
(ρiv + µ + α)(ρiv + µ + α + η)− βΛ

µR0
(ρiv + α + µ + (1 − r)η)

]
×
[
(ρiv + µ + α)(ρiv + µ + α + η) +

βΛ
µR0

(ρiv + α + µ + (1 − r)η)
]

.

Now, recall that
βΛ(µ + α + (1 − r)η)
µ(µ + α)(µ + α + η)

= R0, ⇒ βΛ(µ + α + (1 − r)η)
µR0

= (µ + α)(µ + α + η),

then

(ρiv + µ + α)(ρiv + µ + α + η)− βΛ
µR0

(ρiv + α + µ + (1 − r)η)

= ρ2
i v2 + ρiv(α + µ + η + α + µ) + (α + µ + η)(α + µ)

− βΛ
µR0

(α + µ + (1 − r)η)− βΛ
µR0

(ρiv)

= ρ2
i v2 + ρiv(α + µ + η + α + µ)− βΛ

µR0
(ρiv)

= ρ2
i v2 + ρiv

(
α + µ + η + α + µ − βΛ

µR0

)
= ρ2

i v2 + ρiv(α + µ + η)(α + µ)

(
1

α + µ + η
+

1
α + µ

− βΛ
µ(α + µ)(α + µ + η)R0

)
> 0.
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Thus, p2
1 + 2C2q0 − 2p0p2 − C2q2

1 > 0. Finally, let us consider p2
0 − C2q2

0 = (p0 − Cq0)
(p0 + Cq0), where p0 − Cq0 is given by

(ρiv + µR0)(ρiv + α + µ + η)(ρiv + α + µ)− βΛ
µR0

(ρi + µ)(ρiv + α + µ + (1 − r)η)

> (ρiv + µ)(ρiv + α + µ + η)(ρiv + α + µ)− βΛ
µR0

(ρiv + µ)(ρiv + α + µ + (1 − r)η)

> (ρiv + µ)

[
(ρiv + α + µ + η)(ρiv + α + µ)− βΛ

µR0
(ρiv + α + µ + (1 − r)η)

]
> 0.

Hence, p2
0 − C2q2

0 > 0. Thus, |P(wj)| > |Y(wj)| for all w ≥ 0.
3. Let us show that lim|z|→∞, ℜ(z)≥0 |Y(z)/P(z)| = 0. Indeed, suppose that Fi(z) = 0,

with ℜ(z) ≥ 0. Then, P(z) ̸= 0, and if z = r(cos θ + sin θ j) (r > 0), we have

Y(z) = r2(cos 2θ + sin 2θ j) + q1r(cos θ + sin θ j) + q0,

|Y(z)|2 = (r2 cos 2θ + q1r cos θ + q0) + (r2 sin 2θ + q1r sin θ)2,

P(z) = r3(cos 3θ + sin 3θ j) + p2r2(cos 2θ + sin 2θ j) + p1r(cos θ + sin θ j) + p0,

|P(z)|2 = (r3 cos 3θ + p2r2 cos 2θ + p1r cos θ + p0)
2 + (r3 sin 3θ + p2r2 sin 2θ + p1r sin θ)2.

However,
∣∣∣Y(z)

P(z)

∣∣∣2 yields

r4(cos 2θ + q1
r cos θ + q0

r
)2

+ r4(sin 2θ + q1
r sin θ

)2

r6
(

cos 3θ + p2
r cos 2θ + p1

r2 cos θ + p0
r2

)2
+ r6

(
sin 3θ + p2

r sin 2θ + p1
r2 sin θ

)2 .

Therefore, if ℜ(z) ≥ 0,

lim
|z|→+∞

∣∣∣∣Y(z)P(z)

∣∣∣∣2 = lim
r→+∞

1
r2 · (cos 2θ)2 + (sin 2θ)2

(cos 3θ)2 + (sin 3θ)2 = 0.

Thus, we arrive at the following theoretical result:

Theorem 2. For system (1) with the conditions in (2), we have the following:

1. If R0 ≤ 1, the infection-free state of E0 is locally asymptotically stable.
2. If R0 > 1, the endemic balance Ee is locally asymptotically stable, if τ > 0.

The next section is devoted to performing numerical simulations to support the
previous theoretical results.

5. Numerical Simulations of the Mathematical Model

In this section, we present numerical simulations of the mathematical model (1), which
is based on a system of partial differential equations with a discrete-time delay τ. The
numerical simulations allow us to examine the dynamics of a simplified scenario of the
COVID-19 pandemic. In addition, they allow us to support the theoretical findings obtained
in the previous subsections.

For the numerical simulations, we used available approximated real data where
possible to test the theoretical results. Some parameter values are not known in the
scientific literature, making it extremely difficult to find accurate values. There are many
scientific works devoted to dealing with uncertainties in mathematical models for the
COVID-19 pandemic and other epidemics. In addition, there are specific works devoted
to the uncertainties associated with some parameter values. For instance, in [37–41], this
topic is investigated as one of the main aims. In our work, one of the main aims was the
mathematical analysis of the model (1). Nevertheless, we used approximated realistic
values for most of the parameters. In particular, we used approximated initial conditions
from the early phase of the COVID-19 pandemic in Colombia. For the history functions,
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we assumed constant values while accounting for proportions in the early phase of the
COVID-19 situation in Colombia. This is a common approach used in similar theoretical
works that deal with discrete-time delays. The time delay, which takes into account the
incubation time, was set at seven days, which is slightly longer than in other works but
still plausible. For asymptomatic cases, we assumed that 30% of cases were asymptomatic,
which is one of the scenarios assumed by the CDC. For the transmission rate, we chose a
parameter value (beta) that allows us to verify the theoretical results and also aligns with
reported basic reproduction numbers from other studies.

We simulated a specific scenario where R0 > 1. Based on the theoretical results,
COVID-19 did not become extinct. We present the numerical simulations, where the
dynamics of the model (1) can be observed in space and time. The main idea behind
this simulation is to use a specific value of the basic reproduction number R0 since this
threshold parameter is crucial for the dynamics of the disease. The simulations provide
further insights, such as the transient and long-term behavior of the disease for a specific
simplified scenario.

We executed the simulations using the IMEX method [42]. This method combines the
explicit and implicit Euler methods. In addition, we relied on the ghost-node technique to
discretize the model (1) [43,44]. The numerical simulations were implemented using Matlab
version R2023a. These simulations allow us to illustrate and support the theoretical results.
The general basic idea of the numerical method is to divide the domain [0, L]× [0, T] using
a grid of points. The space-step size is given by h = L

n and the time-step size is given by
k = T

m for m, n ∈ N. In addition, the value of k was chosen such that τ = pk for some
integer number p such that p ≥ 1.

For the numerical simulations, we used some illustrative numerical values for the
parameters of the mathematical model (1). These values were as follows: Λ = (180 ×
365)/50352943, µ = 0.0001523835 ∗ 365, η = 0.00006586199 × 365, β = 0.4 × 365, α = 0.65,
r = 0.3, νS = 3.75+ 10−5 × 365, νI = 0.75× 10−10 × 365, νA = 0.75× 10−3 × 365, and νR =
3.75 + 10−5 × 365. For the domain, we used [0, 1]× [0, T], where T is the simulation time.
The initial conditions, that is, the history functions, were assumed to be constant and given
by S(x, 0) = 46054839/50352943, A(x, 0) = 35005/50352943, I(x, 0) = 10500/50352943,
and R(x, 0) = 4160000/50352943 for θ ∈ [−τ, 0]. The boundary conditions were Neumann-
type, as explained in the previous section. Figure 2 shows the numerical solution of the
mathematical model (1) with a discrete-time delay τ = 7/365 and R0 = 1.27 > 1 for
t ∈ [0, 1]. It can be seen that the susceptible population S(x, t) becomes extinct, whereas
the infected I(x, t) and asymptomatic A(x, t) populations are approaching an endemic
steady state through traveling waves. On the left-hand side of Figure 3, we can see the
numerical solution of the mathematical model (1) at x = 1. Again, it can be observed
that the susceptible population becomes extinct, whereas the infected and asymptomatic
populations are approaching an endemic steady state, as expected. On the right-hand
side of Figure 3, we can see the numerical solution of the mathematical model (1) at the
final time of t = 1 for different values of x. It can be seen that the disease is approaching
an endemic equilibrium state since R0 = 1.27 > 1. This numerical result supports the
theoretical results, despite the fact that the model (1) was designed for the early phase of
the COVID-19 pandemic. A more complex model is needed for the current pandemic to
account for vaccinated individuals and the waning of immunity [8,45–47].
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Figure 2. Numerical solution of the mathematical model (1) with a discrete-time delay τ = 7/365,
t ∈ [0, 1], and R0 = 1.27 > 1.

Figure 3. Numerical solution of the mathematical model (1) at t = 1 with a discrete-time delay
τ = 7/365, t = 1, and R0 = 1.27 > 1.

6. Conclusions

In this article, we studied the existence of traveling waves in a diffusive mathematical
model representing the transmission of a virus within a population composed of susceptible
(S), infected (I), asymptomatic (A), and recovered (R) individuals. The constructed model
is a simplification of a complex real-world situation, but it provides further insight into
the dynamics of different diseases, such as COVID-19. Furthermore, it demonstrates a
mathematical modeling approach that considers spatial effects and time delays in the
biological process related to SARS-CoV-2 virus transmission among the human population.
An analytical study was performed, where the existence of solutions of traveling waves
within a bounded domain was demonstrated using the upper and lower coupled solutions
method. The existence and local asymptotic stability of both endemic (Ee) and disease-free
(E0) equilibrium states were also determined. We presented numerical simulations of the
solutions in order to provide additional support to the theoretical results. In addition, we
provided further simulations in order to illustrate the effects of discrete-time delays on the
dynamics of the traveling waves.
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Appendix A

In this appendix, we present some results and definitions of a type of partial differen-
tial equation with delay, which is applied to our proposed model. For more information,
see [11–13,34,48]. ∥ · ∥ denotes the Euclidean norm of Rn. ∥ · ∥∞ denotes the space supreme
norm Cb(R,R4) of the continuous and bounded functions of R in R4. C = C([−τ, 0];R4) for
τ > 0. Consider the reaction-diffusion system with delay given by

∂

∂t
u(x, t) = D

∂2

∂x2 u(x, t) + f (ut(x)) (x, t) ∈ R× [0, ∞), (A1)

where u := (u1, u2, u3, u4)
T ∈ R4, D = diag(d1, d2, d3, d4) with di > 0 for i = 1, 2, 3, 4,

f : C → R4 is a continuous function, and for t ≥ 0, x ∈ R, ut(x) ∈ C is

ut(x)(θ) = u(x, t + θ), θ ∈ [−τ, 0].

When f = ( f1, f2, f3, f4)
T , the Lipschitz condition for each component fi is defined, as in

the definition below.

Definition A1 (Lipschitz). If u, v ∈ C and fi : C → R is a function, then we say that fi is
Lipschitz if there is Li > 0 such that

| fi(u)− fi(v)| ≤ Li∥u − v∥∞, for i = 1, 2, 3, 4.

Definition A2. Let p, q ∈ R4 be with p = (p1, p2, p3, p4)
T and q = (q1, q2, q3, q4)

T . Then, we
define the following:

1. q ≤ p si qi ≤ pi for i = 1, 2, 3, 4.
2. q < p si qi < pi and qi ̸= pi for i = 1, 2, 3, 4.
3. [q, p] = {r ∈ R4 : q ≤ r ≤ p}.

Definition A3. A traveling wave solution of (A1) is a special invariant translation function of the
form u(x, t) = ϕ( x

c + t), where ϕ ∈ C2(R,R4) is bounded and c > 0 is a constant known as the
wave speed.

Suppose that ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T and ui(x, t) = ϕi(

x
c + t) ∈ R for i = 1, 2, 3, 4. Let

θ ∈ [−τ, 0], and we make the change of variable s = x
c + t. Thus, we obtain
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∂ui(x, t)
∂t

= ϕ′
i(s)

∂s
∂t

= ϕ′
i(s),

∂ui(x, t)
∂x

= ϕ′
i(s)

∂s
∂x

=
1
c

ϕ′
i(s),

∂2ui(x, t)
∂x2 =

1
c

ϕ′′
i (s)

∂s
∂x

=
1
c2 ϕ′′

i (s),

fi(ut) = fi(u(x, t + θ)) = fi

(
ϕ
( x

c
+ t + θ

))
= fi(ϕ(s + θ)).

Therefore,
∂ui(x, t)

∂t
= di

∂2ui
∂x2 + fi(ut) ⇔ ϕ′

i(s) =
di
c2 ϕ′′

i (s) + fi(ϕs),

i.e.,
D
c2 ϕ′′(s)− ϕ′(s) + f (ϕs) = 0, para s ∈ R, ϕs(θ) = ϕ(s + θ). (A2)

If for c > 0, system (A2) has a solution ϕ defined on R such that lims→−∞ ϕ(s) = u−
and lims→∞ ϕ(s) = u+, where u− and u+ are stationary states of (A1), then there exists
u(x, t) = ϕ( x

c + t), which is called a traveling wave, with a velocity of c > 0.
Without loss of generality, suppose k ∈ R4 such that k = (k1, k2, k3, k4)

T , k > 0 and

u− = 0, u+ = k.

Let m = (m1, m2, m3, m4) ∈ R4 such that m > k and for Ω ⊆ R, consider the following set:

W(Ω;R4) = {ϕ ∈ Cb(Ω,R4) : 0 ≤ ϕi(s) ≤ mi, i = 1, 2, 3, 4; s ∈ Ω}. (A3)

Next, let ψ, φ ∈ W([−τ, 0];R4), with

ψ = (ψ1, ψ2, ψ3, ψ4)
T , φ = (φ1, φ2, φ3, φ4)

T ,

and ψ ≤ φ. Moreover, suppose that

φ1 = (ψ1, φ2, φ3, φ4)
T , φ2,3 = (φ1, ψ2, ψ3, φ4)

T , φ4 = (φ1, φ2, φ3, ψ4)
T .

Definition A4. The partial conditions of quasi-monotonicity (PQM) for f = ( f1, f2, f3, f4)
T are

given if there are constants β1, β2, β3, β4 > 0 such that

f1(φ)− f1(ψ) + β1(φ1(0)− ψ1(0)) ≥ 0,

f2(φ)− f2(φ2,3) + β2(φ2(0)− ψ2(0)) ≥ 0,

f3(φ)− f3(φ2,3) + β3(φ3(0)− ψ3(0)) ≥ 0,

f4(φ)− f4(ψ) + β4(φ4(0)− ψ4(0)) ≥ 0,

f2(φ)− f2(φ1) ≤ 0,

f2(φ)− f2(φ4) ≤ 0,

f3(φ)− f2(φ1) ≤ 0,

f3(φ)− f2(φ4) ≤ 0.

We assume the following hypothesis:

(A1) f (0) = f (k) = 0, and there exists u = (u1, u2, u3, u4) ∈ R4 with 0 < u < k

such that f (u) ̸= 0.

(A2) fi satisfies Lipschitz’s condition in W([−τ, 0];R4), i = 1, 2, 3, 4. (A4)

(A3) fi fulfills the conditions of PQM, i = 1, 2, 3, 4.

We use the following notation:
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• A function has a certain property in almost everywhere (a.e) in R if it has the property
in R except on a set of measure zero (see [49], Chapter 11).

• The notation
ϕi(s+) = lim

t→s+
ϕi(s), ϕi(s−) = lim

t→s−
ϕi(s),

indicates that ϕi(s+) and ϕi(s−) exist for i = 1, 2, 3, 4.

Definition A5. Let ϕ, ϕ : R → R4 be boundless and continuous functions such that ϕ ≥ ϕ. If
there are constants T1, T2, T3, . . . , TN such that ϕ, ϕ ∈ C2(R− {T1, T2, T3, . . . , TN}), and for

ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T , ϕ2,3 = (ϕ1, ϕ2, ϕ3, ϕ4)

T ,

ϕ
2,3

= (ϕ1, ϕ2, ϕ3, ϕ4)
T , ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)

T

it satisfies the following properties

di
c2 ϕ

′′
i (s)− ϕ

′
i(s) + fi(ϕs) ≤ 0 ,

di
c2 ϕ′′

i
(s)− ϕ′

i
(s) + fi(ϕs

) ≥ 0 a.e. in R,

dj

c2 ϕ
′′
j (s)− ϕ

′
j(s) + f j(ϕ

2,3
s ) ≤ 0 ,

dj

c2 ϕ′′
j
(s)− ϕ′

j
(s) + f j(ϕ

2,3
s
) ≥ 0 a.e. in R,

for i = 1, 4 and j = 2, 3. Then, ϕ, ϕ are called lower and upper coupled solutions, respectively, of (A2).

If Equation (A2) has an upper solution ϕ and a lower solution ϕ, they must satisfy the
following hypotheses:

(i) 0 ≤ ϕ ≤ ϕ ≤ m.
(ii) lim

s→−∞
ϕ(s) = 0, lim

s→∞
ϕ(s) = k.

(iii) ϕ′
i
(s+) ≥ ϕ′

i
(s−) and ϕ

′
i(s+) ≤ ϕ

′
i(s−) for all s ∈ R and i = 1, 2, 3, 4.

Using the constants βi given in Definition A4, we define the operator H : C(R,R4) →
C(R,R4) given by

H(φ)(s) = f (φs) + βφ(s) , φ ∈ C(R,R4), ∀s ∈ R, (A5)

where H = (H1, H2, H3, H4), β = diag(β1, β2, β3, β4), and Hi(φ)(s) = fi(φs) + βi φi(s).
This operator holds the following properties:

Lemma A1. Let ϕ, ψ, ϕi, ϕ2,3 be for i = 1, 4, as in Definition A4, and suppose that (A3) holds.
Then, for j = 2, 3, and s ∈ R one obtains

Hj(ϕ)(s) ≤ Hj(ϕ
i)(s), Hj(ϕ

2,3)(s) ≤ Hj(ϕ)(s).

Proof. From the hypothesis and the definition of the operator H for j = 2, 3 and s ∈ R
we have

Hj(ϕ)(s)− Hj(ϕ
i)(s) = f j(ϕs) + β jϕj − f j(ϕ

i
s)− β jϕj = f j(ϕs)− f j(ϕ

i
s) ≤ 0.

For θ ∈ [−τ, 0], it follows that

Hj(ϕ)(s)− Hj(ϕ
2,3)(s) = f j(ϕs(θ)) + β jϕj(s)− f j(ϕ

2,3
s (θ))− β jψj(s)

= f j(ϕ(s + θ))− f j(ϕ
2,3(s + θ)) + β j(ϕj(s + 0)− ψj(s + 0))

= f j(ϕs(θ))− f j(ϕ
2,3
s (θ)) + β j((ϕj)s(0)− (ψj)s(0)) ≥ 0.

Lemma A2. Suppose that (A1) and (A3) are fulfilled. If ϕ, ψ ∈ W(R,R4), then the following
statements hold:
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(i) Hj(ϕ)(s) ≥ 0 for j = 1, 4 and s ∈ R.
(ii) Hj(ψ)(s) ≤ Hj(ϕ)(s) for j = 1, 4, ψ ≤ ϕ, and s ∈ R.

Proof. If (A1) and (A3) hold, then f (0) = 0. For γ, α ∈ W([−τ, 0],R4), with γ ≤ α and
γ = (γ1, γ2, γ3, γ4), α = (α1, α2, α3, α4), one obtains

f j(α)− f j(γ) + β j(αj(0)− γj(0)) ≥ 0, j = 1, 4.

Consider ϕ, ψ ∈ W(R,R4) such that ψ ≤ ϕ and ρ = (ρ1, ρ2, ρ3, ρ4) ≡ 0 ∈ W(R,R4). We
now show the following:

(i) If s ∈ R and j = 1, 4, we have

Hj(ϕ)(s) = f j(ϕs) + β jϕj(s) = f j(ϕs) + 0 + β j[(ϕj)s(0)− 0]

= f j(ϕs)− f j(ρs) + β j[(ϕj)s(0)− (ρj)s(0)] ≥ 0.

(ii) For s ∈ R and j = 1, 4, we obtain

Hj(ϕ)(s)− Hj(ψ)(s) = f j(ϕs)− f j(ψs) + β j(ϕj(s)− ψj(s))

= f j(ϕs)− f j(ψs) + β j[(ϕj)s(0)− (ψj)s(0)] ≥ 0.

Therefore, system (A2) is equivalent to the system

− di
c2 φ′′

i (s) + φ′
i(s) + βi φi(s) = Hi(φ)(s), i = 1, 2, 3, 4, s ∈ R. (A6)

Thus, we have the characteristic equation for the part of the homogeneous equation as

di
c2 λ2 − λ − βi = 0, i = 1, 2, 3, 4,

which has the roots

λ1i =
c2(1 −

√
1 + 4βidi/c2)

2di
, λ2i =

c2(1 +
√

1 + 4βidi/c2)

2di
.

Since λ2i > 0 and λ1iλ2i =
c4

4d2
i

[
1 −

(
1 + 4 βidi

c2

)]
= c4

4d2
i

(
−4βidi

c2

)
< 0, then λ1i < 0. Hence,

λ2i − λ1i > 0. Now, we define the application

F = (F1, F2, F3, F4) : W(R,R4) → C(R,R4),

given by

Fi(ϕi)(s) =
c2

di(λ2i − λ1i)

[∫ s

−∞
eλ1i(s−p)Hi(ϕ)(p)dp +

∫ ∞

s
eλ2i(s−p)Hi(ϕ)(p)dp

]
,

for i = 1, 2, 3, 4.
The following statement holds:∫ s

−∞
eλ1i(s−p)dp +

∫ ∞

s
eλ2i(s−p)dp =

1
λ2i

− 1
λ1i

> 0. (A7)

Indeed, ∫ s

−∞
eλ1i(s−p)dp = eλ1is

∫ s

−∞
e−λ1i pdp = eλ1is

[
− 1

λ1i
(e−λ1is − lim

r→−∞
e−λ1ir)

]
= eλ1is

[
− 1

λ1i
(e−λ1is − 0)

]
= − 1

λ1i
,
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and ∫ ∞

s
eλ2i(s−p)dp = eλ2is

∫ ∞

s
e−λ2i pdp = eλ2is

[
− 1

λ2i
( lim

r→∞
e−λ2ir − e−λ2is)

]
= eλ2is

[
− 1

λ2i
(−e−λ2is)

]
=

1
λ2i

.

Proposition A1. The F application is well defined and satisfies (A6).

Proof. Since f = ( f1, f2, f3, f4) is continuous and satisfies (A1) and (A2), then for
ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ W(R,R4), by the Lipschitz condition of fi in W([−τ, 0],R4) and
fi(0) = 0, if we set ψ ≡ 0 ∈ W([−τ, 0],R4), there is Li > 0 such that for all s ∈ R, it
holds that

| fi(ϕs)− fi(ψ)| ≤ Li∥ϕs − ψ∥∞ ⇒ | fi(ϕs)| ≤ Li∥ϕs∥∞ ≤ Li∥ϕ∥∞.

Thus, for s ∈ R, we have

|Hi(ϕ)(s)| ≤ | fi(ϕs)|+ βi|ϕi(s)| ≤ Li∥ϕ∥∞ + βi∥ϕ∥∞.

Next, considering Ki = ∥ϕ∥∞(Li + βi), it is deduced that |Hi(ϕ)(s)| ≤ Ki for all s ∈ R.
Hence, from (A7) and for s ∈ R and i = 1, 2, 3, 4, it follows that

|Fi(ϕ)(s)| ≤
c2

di(λ2i − λ1i)

[∫ s

−∞
eλ1i(s−p)|Hi(ϕ)(p)|dp +

∫ ∞

s
eλ2i(s−p)|Hi(ϕ)(p)|dp

]
≤ c2Ki

di(λ2i − λ1i)

[∫ s

−∞
eλ1i(s−p)dp +

∫ ∞

s
eλ2i(s−p)dp

]
< ∞.

It is concluded that for ϕ ∈ W(R,Rn), one obtains F(ϕ) ∈ Cb(R,R4), i.e., F is well defined.
Let us assume that F satisfies (A6). Indeed, for i = 1, 2, 3, 4, we have γi =

c2

di(λ2i−λ1i)
. Then,

Fi(ϕ)(s) = γi

[
eλ1is

∫ s

−∞
e−λ1i p Hi(ϕ)(p)dp + eλ2is

∫ ∞

s
e−λ2i pHi(ϕ)(p)dp

]
,

d
ds

Fi(ϕ)(s) = γi

[
λ1ieλ1is

∫ s

−∞
e−λ1i pHi(ϕ)(p)dp + eλ1ise−λ1is Hi(ϕ)(s)

+ λ2ieλ2is
∫ ∞

s
e−λ2i p Hi(ϕ)(p)dp − eλ2ise−λ2isHi(ϕ)(s)

]
= γi

[
λ1ieλ1is

∫ s

−∞
e−λ1i pHi(ϕ)(p)dp + λ2ieλ2is

∫ ∞

s
e−λ2i p Hi(ϕ)(p)dp

]
.

d2

ds2 Fi(ϕ)(s) = γi

[
λ2

1ie
λ1is

∫ s

−∞
e−λ1i pHi(ϕ)(p)dp + λ1ieλ1ise−λ1isHi(ϕ)(s)

+ λ2
2ie

λ2is
∫ ∞

s
e−λ2i p Hi(ϕ)(p)dp − λ2ieλ2ise−λ2is Hi(ϕ)(s)

]
= γi

[
λ2

1ie
λ1is

∫ s

−∞
e−λ1i pHi(ϕ)(p)dp + λ2

2ie
λ2is

∫ ∞

s
e−λ2i p Hi(ϕ)(p)dp

+ (λ1i − λ2i)Hi(ϕ)(s)].

Now, Ii(s) = eλ1is
∫ s
−∞ e−λ1i p Hi(ϕ)(p)dp and Ji(s) = eλ2is

∫ ∞
s e−λ2i p Hi(ϕ)(p)dp, and then

βiFi(ϕ)(s) = βiγi Ii(s) + βiγi Ji(s),

F′
i (ϕ)(s) = λ1iγi Ii(s) + λ2iγi Ji(s),

− di
c2 F′′

i (ϕ)(s) = − di
c2 λ2

1iγi Ii(s)−
di
c2 λ2

2iγi Ji(s) + Hi(ϕ)(s).
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Since − di
c2 λ2

1i + λ1i + βi = 0 and − di
c2 λ2

2i + λ2i + βi = 0, it is clear that

− di
c2 F′′

i (ϕ)(s) + F′
i (ϕ)(s) + βiFi(ϕ)(s) = H(ϕ)(s).

Now, for ρ > 0 ρ < min{−λ1i, λ2i : i = 1, 2, 3, 4}, we define the following set:

Bρ(R,R4) =

{
ϕ ∈ Cb(R,R4) : sup

s∈R
e−ρ|s|∥ϕ(s)∥ < ∞

}
,

and ∥ϕ∥ρ := sups∈R e−ρ|s|∥ϕ(s)∥ (see [34], pag. 7). Let ϕ and ϕ be the lower and upper
coupled solutions, respectively, of (A2). We define the set

Γ = {ϕ ∈ W(R,R4) : ϕ ≤ ϕ ≤ ϕ}.

Proposition A2. Γ is a non-empty set that is closed, bounded, and convex.

Proof. From (A5) and the functions, it holds that ϕ and ϕ, then ϕ, ϕ ∈ Γ. This implies that
Γ ̸= . Γ is bounded. Indeed, let ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)

T and ψ = (ψ1, ψ2, ψ3, ψ4)
T be such that

ϕ, ψ ∈ Γ. Since ϕ, ψ ∈ W(R,R4), then

0 ≤ ϕi ≤ mi, 0 ≤ ψi ≤ mi, i = 1, 2, 3, 4.

Let m = max{mi : i = 1, 2, 3, 4}. Then, |ϕi − ψi| < 2m for i = 1, 2, 3, 4. Hence,

∥ϕ − ψ∥2 =
4

∑
i=1

|ϕi − ψi|2 ≤ 4(2m)2,

⇒∥ϕ − ψ∥ < 4m ⇒ ∥ϕ − ψ∥∞ ≤ 4m.

Next, Γ is closed. Indeed, let {ϕn} ⊂ Γ be a sequence and ψ ∈ Cb(R,R4) be a cluster
point of {ϕn}. There is a subsequence {ψk} of {ϕn} that converges to ψ. Suppose that
ψk = (ψk1, ψk2, ψk3, ψk4)

T and ψ = (ψ1, ψ2, ψ3, ψ4)
T . From the definition of Γ, for

i = 1, 2, 3, 4, we have

ϕ
i
≤ ψki ≤ ϕi ⇒ ϕ

i
≤ lim

k→∞
ψki ≤ ϕi ⇒ ϕ

i
≤ ψi ≤ ϕi.

Thus, ϕ ≤ ψ ≤ ϕ, and therefore, ψ ∈ Γ, i.e., Γ is closed. Next, for t ∈ [0, 1], let ϕ =

(ϕ1, ϕ2, ϕ3, ϕ4)
T and ψ = (ψ1, ψ2, ψ3, ψ4)

T such that ϕ, ψ ∈ Γ. Next, for i = 1, 2, 3, 4, we have

ϕ
i
≤ ϕi, ψi ≤ ϕi.

Consequently,

tϕ
i
≤ tϕi ≤ tϕi and (1 − t)ϕ

i
≤ (1 − t)ψi ≤ (1 − t)ϕi.

Summing both inequalities, one obtains

ϕ
i
≤ tϕi + (1 − t)ψi ≤ ϕi ⇒ ϕ ≤ tϕ + (1 − t)ψ ≤ ϕ,

which implies that [tϕ + (1 − t)ψ] ∈ Γ, and therefore, Γ is convex.

Proposition A3. Bρ(R,R4) con ∥ · ∥ρ is a Banach space.
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Proof. It is clear that Bρ(R,R4) is a vectorial space and ∥ · ∥ρ is a norm. Let {ϕn} be a
Cauchy sequence in Bρ(R, Rn). Fix s0 ∈ R and ε > 0. Then, there is n0 ∈ N such that for
all n, m ∈ N with n ≥ n0, we have

∥ϕn − ϕm∥ρ <
ε

2
e−ρ|s0|.

In particular, for s0 we have

∥ϕn(s0)− ϕm(s0)∥e−ρ|s0| < ∥ϕn − ϕm∥ρ <
ε

2
e−ρ|s0| ⇒ ∥ϕn(s0)− ϕm(s0)∥ <

ε

2
.

Now, s0 is arbitrary, Then, ∥ϕn(s)− ϕm(s)∥ < ε
2 for all s ∈ R, which implies ∥ϕn − ϕm∥∞ <

ε. Thus, {ϕn} is a Cauchy sequence in the Banach Space Cb(R,R4). Then, there exists
ϕ ∈ Cb(R,R4) such that ϕn → ϕ. Thus, for ε0 > 0, there is m0 ∈ N such that for all n ∈ N
with n ≥ m0, we have

∥ϕn − ϕ∥∞ <
ε0

2
.

It follows that for s ∈ R, we have

∥ϕn(s)− ϕ(s)∥ ≤ ∥ϕn − ϕ∥∞ <
ε0

2
,

⇒ ∥ϕn(s)− ϕ(s)∥e−ρ|s| <
ε0

2
e−ρ|s| <

ε0

2
,

⇒ ∥ϕn − ϕ∥ρ ≤ ε0

2
< ε0.

The above implies that {ϕn} converges in Bρ(R,R4) with the norm ∥ · ∥ρ.

The following result for F is deduced from (A1) and (A2).

Lemma A3. Suppose that conditions (A1) and (A3) hold. Let ϕ, ψ, ϕi, ϕ2,3 be such that i = 1, 4,
as in (A4). Then, we can conclude the following:

(i) Fi(ψ) ≤ Fi(ϕ) for i = 1, 4.
(ii) Fj(ϕ) ≤ Fj(ϕ

i) for j = 2, 3, i = 1, 4.
(iii) Fj(ϕ

2,3) ≤ Fj(ϕ) for j = 2, 3.

Now, the application F is continuous.

Lemma A4. Suppose that (A2) holds. Then, F = (F1, F2, F3, F4)
T is continuous with respect to

the norm ∥ · ∥ρ in Bρ(R,R4).

Proof. Fix ε > 0 and consider δ > 0 such that δ < ε/(Lieρτ + βi.) Then, for s ∈ R,
ϕ = (ϕ1, ϕ2, ϕ3, ϕ4),ψ = (ψ1, ψ2, ψ3, ψ4) ∈ Bρ(R,R4) with ∥ϕ − ψ∥ρ < δ, we have

|Hi(ϕ)(s)− Hi(ψ)(s)|e−ρ|s| ≤ | fi(ϕs)− fi(ψs)|e−ρ|s| + βi|ϕi(s)− ψi(s)|e−ρ|s|

≤ Li∥ϕs − ψs∥∞e−ρ|s| + βi∥ϕ(s)− ψ(s)∥e−ρ|s|

≤ Li sup
θ∈[−τ,0]

∥ϕ(s + θ)− ψ(s + θ)∥e−ρ|s| + βi∥ϕ − ψ∥ρ

≤ Li sup
θ∈[−τ,0]

∥ϕ(s + θ)− ψ(s + θ)∥e−ρ|s+θ| sup
θ∈[−τ,0]

eρ|s+θ|e−ρ|s|

+ βi∥ϕ − ψ∥ρ

≤ Li∥ϕ − ψ∥ρeρ|s|eρτe−ρ|s| + βi∥ϕ − ψ∥ρ

≤ (Lieρτ + βi)∥ϕ − ψ∥ρ < ε.
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Now, for all s > 0 if γi =
c2

di(λ2i−λ1i)
, we have

|Fi(ϕ)(s)− Fi(ψ)(s)|e−ρ|s| ≤ γie−ρ|s|
[∫ s

−∞
eλ1i(s−p)|Hi(ϕ)(p)− Hi(ψ)(p)|dp

+
∫ ∞

s
eλ2i(s−p)|Hi(ϕ)(p)− Hi(ψ)(p)|dp

]

≤ γie−ρs

[∫ s

−∞
eλ1i(s−p)+ρ|p||Hi(ϕ)(p)− Hi(ψ)(p)|e−ρ|p|dp+

∫ ∞

s
eλ2i(s−p)+ρ|p||Hi(ϕ)(p)− Hi(ψ)(p)|e−ρ|p|dp

]

≤ γie−ρsε

[
eλ1is

∫ 0

−∞
e−(λ1i+ρ)pdp + eλ1is

∫ s

0
e(−λ1i+ρ)pdp

eλ2is
∫ s

−∞
e(−λ2i+ρ)pdp

]
.

Since ρ < −λ1i, λ2i, we have ρ + λ1i, ρ − λ2i < 0. Then,

eλ1is
∫ 0

−∞
e−(λ1i+ρ)pdp = eλ1is

(
− 1

λ1i + ρ
+

1
λ1i + ρ

lim
q→−∞

e−(−λ1i+ρ)q
)
= − eλ1is

λ1i + ρ
,

eλ1is
∫ s

0
e(−λ1i+ρ)pdp = eλ1is

(
e(−λ1i+ρ)s

−λ1i + ρ
− 1

−λ1i + ρ

)
=

eρs

−λ1i + ρ
− eλ1is

−λ1i + ρ
,

eλ2is
∫ ∞

s
e(−λ2i+ρ)pdp = eλ2is

(
1

−λ2i + ρ
lim
q→∞

e(−λ2i+ρ)q − e(−λ2i+ρ)s

−λ2i + ρ

)
= − eρs

−λ2i + ρ
.

This implies that

|Fi(ϕ)(s)− Fi(ψ)(s)|e−ρ|s| ≤ γie−ρsε

(
− eλ1is

λ1i + ρ
+

eρs

−λ1i + ρ
− eλ1is

−λ1i + ρ
− eρs

−λ2i + ρ

)
≤ γiε

(
2ρ

λ2
1i − ρ2

e(λ1i−ρ)s +
λ1i − λ2i

(ρ − λ2i)(ρ − λ1i)

)

< γiε

(
2ρ

λ2
1i − ρ2

+
λ1i − λ2i

(ρ − λ2i)(ρ − λ1i)

)
.

In the same way for s < 0, we have

|Fi(ϕ)(s)− Fi(ψ)(s)|e−ρ|s| < γiε

(
2ρ

λ2
1i − ρ2

+
λ1i − λ2i

(ρ + λ2i)(ρ + λ1i)

)
.

Then, Fi : Bρ(R,R4) → Bρ(R,R4) is continuous with respect to the norm ∥ · ∥ρ in Bρ(R,R4).
Thus, F is continuous.

Lemma A5. We consider the closed and convex set Γ = {ϕ ∈ W(R,R4) : ϕ ≤ ϕ ≤ ϕ}, where ϕ

and ϕ are the upper and lower coupled solutions of (A2) such that ϕ
′
i, ϕ

′′
i , ϕ′

i
, and ϕ′′

i
for i = 1, 2, 3, 4,

are essentially bounded. Then, F(Γ) ⊆ Γ.

Proof. Let ϕ ∈ Γ be such that ϕ = (ϕ1, ϕ2, ϕ3, ϕ4). From Lemma (A3), for i = 1, 4 and j = 2, 3,
one obtains

Fi(ϕ) ≤ Fi(ϕ) ≤ Fi(ϕ) Fj(ϕ
2,3
) ≤ Fj(ϕ) ≤ Fj(ϕ

2,3). (A8)
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We need to check that

ϕ
i
≤ Fi(ϕ) Fi(ϕ) ≤ ϕi,

ϕ
j
≤ Fj(ϕ

2,3
) Fj(ϕ

2,3) ≤ ϕj.

Indeed, from Definition (A5), we have the following equations in terms of H a.e. in R for
i = 1, 4 and j = 2, 3.

di
c2 ϕ

′′
i − ϕ

′
i − βiϕi + Hi(ϕ)(s) ≤ 0,

di
c2 ϕ′′

i
− ϕ′

i
− βiϕi

+ Hi(ϕ)(s) ≥ 0,

dj

c2 ϕ
′′
j − ϕ

′
j − βiϕj + Hj(ϕ

2,3
)(s) ≤ 0,

dj

c2 ϕ′′
j
− ϕ′

j
− β jϕj

+ Hj(ϕ
j)(s) ≥ 0. (A9)

Without loss of generality, we assume that ϕ and ϕ are C2(R− {T1, T2, . . . , TN}), with
−∞ < T1 < T2 < . . . < TN < ∞. We denote T0 = −∞ and TN+1 = ∞. Then, from the
definition of F and (A9) for all s ∈ (Tn, Tn+1), n = 0, 1, 2, . . . , N, and considering γi as
before, for i = 1, 4 we have

Fi(ϕ)(s) = γi

[∫ s

−∞
eλ1i(s−p)Hi(ϕ)(p)dp +

∫ ∞

s
eλ2i(s−p)Hi(ϕ)(p)dp

]

≤ γi

[∫ s

−∞
eλ1i(s−p)

(
− di

c2 ϕ
′′
i (p) + ϕ

′
i(p) + βiϕi(p)

)
dp

+
∫ ∞

s
eλ2i(s−p)

(
− di

c2 ϕ
′′
i (p) + ϕ

′
i(p) + βiϕi(p)

)
dp

]
.

Using integration by parts for k = 1, 2, it follows that

− di
c2

∫
eλki(s−p)ϕ

′′
i (p)dp = − di

c2 eλki(s−p)ϕ
′
i(p)− diλki

c2 eλki(s−p)ϕi(p)−
diλ

2
ki

c2

∫
eλki(s−p)ϕi(p)dp∫

eλki(s−p)ϕ
′
i(p)dp = eλki(s−p)ϕi(p) + λki

∫
eλki(s−p)ϕi(p)dp.

If
Yki(p) = eλki(s−p)

(
− di

c2 ϕ
′′
i (p) + ϕ

′
i(p) + βiϕi(p)

)
,

and since − di
c2 λ2

ki + λki + βi = 0, then

∫
Yki(p)dp = eλki(s−p)

(
− di

c2 ϕ
′
i(p)− λkidi

c2 ϕi(p) + ϕi(p)
)

.

Now, s ∈ (Tn, Tn+1) and ϕi, ϕ
′
i, ϕ

′′
i are essentially bounded, and it follows that

∫ s

−∞
Y1i(p)dp +

∫ ∞

s
Y2i(p)dp =

∫ T1

−∞
Y1i(p)dp +

∫ T2

T1

Y1i(p)dp + . . . +
∫ s

Tn
Y1i(p)dp

+
∫ Tn+1

s
Y2i(p)dp + . . . +

∫ ∞

TN

Y2i(p)dp,
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where∫ T1

−∞
Y1i(p)dp = − di

c2 eλ1i(s−T1)ϕ
′
i(T1−)− λ1idi

c2 eλ1i(s−T1)ϕi(T1) + eλ1i(s−T1)ϕi(T1),∫ T2

T1

Y1i(p)dp = − di
c2 eλ1i(s−T2)ϕ

′
i(T2−)− λ1idi

c2 eλ1i(s−T2)ϕi(T2) + eλ1i(s−T2)ϕi(T2)

+
di
c2 eλ1i(s−T1)ϕ

′
i(T1+) +

λ1idi
c2 eλ1i(s−T1)ϕi(T1)− eλ1i(s−T1)ϕi(T1),∫ T3

T2

Y1i(p)dp = − di
c2 eλ1i(s−T3)ϕ

′
i(T3−)− λ1idi

c2 eλ1i(s−T3)ϕi(T3) + eλ1i(s−T3)ϕi(T3)

+
di
c2 eλ1i(s−T2)ϕ

′
i(T2+) +

λ1idi
c2 eλ1i(s−T2)ϕi(T2)− eλ1i(s−T2)ϕi(T2),

...∫ s

Tn
Y1i(p)dp = − di

c2 ϕ
′
i(s)−

λ1idi
c2 ϕi(s) + ϕi(s) +

di
c2 eλ1i(s−Tn)ϕ

′
i(Tn+)

+
λ1idi

c2 eλ1i(s−Tn)ϕi(Tn)− eλ1i(s−Tn)ϕi(Tn),∫ Tn+1

s
Y2i(p)dp = − di

c2 eλ2i(s−Tn+1)ϕ
′
i(Tn+1−)− λ2idi

c2 eλ2i(s−Tn+1)ϕi(Tn+1)

+ eλ2i(s−Tn+1)ϕi(Tn+1) +
di
c2 ϕ

′
i(s) +

λ2idi
c2 ϕi(s)− ϕi(s),

...∫ ∞

TN

Y2i(p)dp =
di
c2 eλ2i(s−TN)ϕ

′
i(TN+) +

λ2idi
c2 eλ2i(s−TN)ϕi(TN)− eλ1i(s−TN)ϕi(TN).

From the above, it follows that∫ s

−∞
Y1i(p)dp +

∫ ∞

s
Y2i(p)dp =

di
c2 (λ2i − λ1i)ϕi(s) +

di
c2

n

∑
j=1

eλ1i(s−Tj)
(

ϕ
′
i(Tj+)− ϕ

′
i(Tj−)

)
+

di
c2

N

∑
j=n+1

eλ2i(s−Tj)
(

ϕ
′
i(Tj+)− ϕ

′
i(Tj−)

)
.

Which implies that

Fi(ϕ)(s) ≤ γi

(∫ s

−∞
Y1i(p)dp +

∫ ∞

s
Y2i(p)dp

)
Fi(ϕ)(s) ≤ ϕi(s) +

1
λ2i − λ1i

[
n

∑
j=1

eλ1i(s−Tj)
(

ϕ
′
i(Tj+)− ϕ

′
i(Tj−)

)

+
N

∑
j=n+1

eλ2i(s−Tj)
(

ϕ
′
i(Tj+)− ϕ

′
i(Tj−)

)]
.

From Property (iii) in (A5), we have ϕi(t+) ≤ ϕi(t−). Thus, one obtains

Fi(ϕ)(s) ≤ ϕi(s), ∀ s ∈ R.

In the same form, ϕ
i
≤ Fi(ϕ), ϕ

j
≤ Fj(ϕ

2,3
) and Fj(ϕ

2,3) ≤ ϕj.

In the next lemma, we show that F : Γ → Γ is a compact application.

Lemma A6. Suppose that (A3) and Γ are as in Lemma A5. Then, the application F : Γ → Γ is
compact with respect to the norm ∥ · ∥ρ.
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Proof. Suppose that PQM holds. From Lemma A5, the application F(Γ) is bounded
uniformly. F is equicontinuous on W(R,R4). Indeed, let γi = c2

di(λ2i−λ1i)
, and from

Proposition A1, for ϕ ∈ W(R,R4) and i = 1, 2, 3, 4, it holds that

d
ds

Fi(ϕ)(s) = γi

[
λ1i

∫ s

−∞
eλ1i(s−p)Hi(ϕ)(p)dp + λ2i

∫ ∞

s
eλ2i(s−p)Hi(ϕ)(p)dp

]
.

Then, by a similar argument as shown in (A1) and using (A7), we have∣∣∣∣ d
ds

Fi(ϕ)(s)
∣∣∣∣ ≤ γi

[
|λ1i|

∫ s

−∞
eλ1i(s−p)|Hi(ϕ)(p)|dp + |λ2i|

∫ ∞

s
eλ2i(s−p)|Hi(ϕ)(p)|dp

]
≤ γiKi

[
−λ1i

∫ s

−∞
eλ1i(s−p)dp + λ2i

∫ ∞

s
eλ2i(s−p)dp

]
≤ 2γiKi.

Thus, for i = 1, 2, 3, 4,∣∣∣∣ d
ds

Fi(ϕ)(s)
∣∣∣∣e−ρ|s| ≤ 2γiKie−ρ|s| ≤ 2γiKi ⇒

∣∣∣∣ d
ds

Fi(ϕ)(s)
∣∣∣∣
ρ

≤ 2γiKi.

Therefore, F is equicontinuous on W(R,R4).
F : Γ → Γ is compact. We define the sequence operator given by F(n) : W(R,R4) →

W(R,R4) and

F(n)(φ)(s) =


F(φ)(−n) , s ∈ (−∞,−n),
F(φ)(s) , s ∈ [−n, n],
F(φ)(n) , s ∈ (n, ∞).

Then, for all n ≥ 1, F(n) is bounded uniformly and equicontinuous. By using the Arzela–Ascoli
theorem, it is deduced that F(n) is compact in the interval [−n, n]. On the other hand, since

|F(n)
i − Fi|ρ = sup

s∈R
|F(n)

i (φ)(s)− Fi(φ)(s)|e−ρ|s|

= sup
s∈(−∞,−n)∪(n,∞)

|F(n)
i (φ)(s)− Fi(φ)(s)|e−ρ|s|

≤ 2kie−ρn → 0 as n → ∞,

where φ ∈ W(R,R4). Hence, the sequence {F(n)} converges to F in Γ with respect to the
norm ∥ · ∥ρ. From Proposition 2.1 in [50], F : Γ → Γ is compact.

Thus, we have the following theorem:

Theorem A1. We assume that A1, A2, and A3 are true. Suppose that ϕ, ϕ ∈ W(R,R4) are the
upper and lower solutions of (A2) and

lim
s→−∞

ϕ(s) = 0, lim
s→∞

ϕ = k,

Then, (A2) and (A6) have a solution. Thus, (A1) has a solution.

Proof. Consider the set Γ = {φ ∈ W(R,R4) : ϕ ≤ φ ≤ ϕ} and the operator F : Γ → Γ as
in Lemma A5. Next, from Lemma A4, Lemma A5, and Lemma A6, F is continuous and
compact with respect to the norm ∥ · ∥ρ. From the fixed-point theorem, there is φ∗ ∈ Γ such
that F(φ∗) = φ∗. Then, φ∗ is a solution of (A6) and, therefore, a solution of (A2). Now,
from Lemma A5, ϕ ≤ φ∗ ≤ ϕ. And thus,
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0 ≤ lim
s→−∞

φ∗(s) ≤ lim
s→−∞

ϕ(s) = 0,

k ≤ lim
s→∞

φ∗(s) ≤ lim
s→∞

ϕ(s) = k,

i.e.,
lim

s→−∞
φ∗(s) = 0, lim

s→∞
φ∗(s) = k.

Hence, φ∗ satisfies the asymptotic boundary conditions. Thus, φ∗ is a solution of (A1).
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