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Abstract Lexicographic methods to rank fuzzy numbers

present the advantages of simplicity, consistency with

human intuition, and power of discrimination. In this paper,

we tackle the problem of finding the conditions for these

methods to produce a rank in specific steps. Our main

results are twofold. First, we prove that a necessary and

sufficient condition for a ranking function to be a total

order is that this function is either injective, surjective, or

bijective. Second, we provide further insight into the

required steps for a lexicographic order to rank same-type

and different-type fuzzy numbers. A counterexample

refutes a conjecture in the literature about the maximum

number of steps needed to rank different-type fuzzy

numbers.

Keywords Fuzzy numbers � Ranking � Lexicographic
order � Total order

1 Introduction

In many real-world situations, decision-makers face prob-

lems that are difficult to address because the uncertainties

associated with the problem are vague or non-probabilistic.

To deal with vagueness and imprecision in such situations,

Zadeh [31] proposed the theory of fuzzy sets, which has

been extensively used to address a wide range of decision-

making situations [3, 6, 18]. The ranking of fuzzy quanti-

ties is a challenging problem that has attracted the interest

of many researchers. The different approaches to ranking

fuzzy numbers can be considered to fall into three main

categories [28, 30]:

1. Ranking methods based on the distance to a reference

set. These methods evaluate each fuzzy number by

computing its distance to some reference set. Among

this class are included the approaches focusing on

maximizing sets [9, 17] and Fuzzy-TOPSIS methods

[24–26].

2. Ranking methods based on pairwise comparisons.

These ranking methods construct a fuzzy preference

relation for ranking or choosing from a group of

alternatives by comparing them against each other in

pairs as in [2, 21, 30].

3. Ranking methods based on defuzzification. In this

category, we find procedures relying on fuzzy numbers

mapped to real numbers to derive a ranking as in

[14, 29]. Also, in this group are included the ranking

methods based on lexicographic orders [12, 27], which

are particularly interesting because the final ranking is

not based on a single defuzzified value but in a

lexicographic order of different values.

While no method can be considered superior to any other,

some scholars consider that ranking methods relying on
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lexicographic orders present the advantages of simplicity,

consistency with human intuition, and power of discrimi-

nation [12]. They have been widely used in multiobjective

optimization since their first introduction by [8] and rep-

resent valuable tools for ranking fuzzy numbers based on a

strict structure of preferences. Several works [12, 23, 27]

claim the ability of lexicographic methods to solve the

shortcomings of alternative techniques. For instance,

ranking functions that map fuzzy numbers to the real line,

such as the one described in [14], present the following

limitation: if two fuzzy numbers are mapped into the same

real number, then these two fuzzy numbers are indistin-

guishable by the ranking function even though they may

look different to a decision-maker. On the application side,

lexicographic orders have been employed to solve fuzzy

linear programming problems [11, 23], to evaluate the

relative efficiency of a set of decision-making units [16], to

solve matrix games [22], and in multi-attribute decision-

making [13].

Focusing on specific lexicographic methods, [12] pro-

posed to rank trapezoidal and triangular fuzzy numbers in

four steps. Other authors proposed a lexicographic

screening procedure to rank fuzzy numbers, claiming

efficient computation and ease of understanding [27]. The

authors proved that the described method could generate an

ordered set of fuzzy numbers of the same type with

membership functions defined by at most eight parameters.

In addition, they suggested but did not prove that the

maximum number of steps in a lexicographic method to

rank two fuzzy numbers of a different type is given by the

smallest number of defining parameters plus one (see

Conjecture 1). However, there is a need to consider the

underlying motives why lexicographic orders can solve a

ranking problem in a limited number of steps.

Along the lines of previous research [12, 23, 27], our

main research assumption is that lexicographic methods

provide an efficient and robust way to rank fuzzy numbers.

Instead of considering the advantages that some lexico-

graphic methods may present compared to others, we focus

on the conditions to produce a ranking and the required

number of steps. As a result, our work gives two funda-

mental insights. Firstly, we provide novel theoretical results

on the conditions to obtain a total ordering from an arbitrary

set of fuzzy numbers based on lexicographic methods. For

this purpose, we start from lexicographic methods of the

same type as described in [12, 27]. The authors do not

provide the conditions a lexicographic order must meet to

produce a total order. We here show that a necessary and

sufficient condition for a ranking function to be a total order

on a set of fuzzy numbers is that this function is injective,

surjective, or bijective. Secondly, we provide insight into the

required steps for a lexicographic order to rank same-type

and different-type fuzzy numbers. One of these results

refutes Conjecture 1 by [27] about the maximum number of

steps required to rank different-type fuzzy numbers.

In our research, we focus on the exploration of the

conditions to establish an ordering system through the

utilization of various lexicographic methods. Rather than

advocating the superiority of one method over another, we

offer a versatile approach applicable to a wide array of

fuzzy numbers. In direct contrast to the works by [12, 27],

our approach is not limited by the type or number of

defining parameters, extending its utility to same-type and

different-type fuzzy numbers. Our results not only enrich

the existing landscape of lexicographic methods described

but also provide a valuable framework for designing novel

methods to rank fuzzy numbers.

In addition to this introduction, this paper includes

Sect. 2, in which we provide useful background on fuzzy

numbers and lexicographic orders. Section 3 is the central

part of this paper describing novel theoretical results. In

Sect. 4, we illustrate the theoretical results with numerical

examples, and Sect. 5 concludes this paper by highlighting

natural research extensions of this work.

2 Useful Background

In this section, we provide basic concepts on fuzzy num-

bers and lexicographic orders that will be useful to follow

the main results of this paper.

2.1 Basic Definitions

Definition 1 Fuzzy set [31]. Let X be a non-empty set, the

fuzzy set A is expressed as

A ¼ fhx; lAðxÞijx 2 Xg ð1Þ

where lAðxÞ is the degree of membership of element x to A,

defined as a function lA : X ! 0; 1½ �, with 0 and 1 repre-

senting the lowest and highest degrees of membership.

Definition 2 Fuzzy number [6]. A fuzzy number ~A is a

fuzzy set of the real line R with a normal, fuzzy convex,

and continuous membership function of bounded support.

Definition 3 LR fuzzy number [7, 23]. A fuzzy number
~A ¼ ða1; a2; a3; a4Þ is said to be an LR fuzzy number if its

membership function l ~AðxÞ is given by

l ~AðxÞ ¼

L
a2 � x

a2 � a1

� �
; a1 � x� a2

1; a2 � x� a3

R
x� a3
a4 � a3

� �
; a3 � x� a4

0; otherwise

8>>>>>>><
>>>>>>>:

ð2Þ
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where L and R are shape functions ½0; 1� ! ½0; 1�, with

Lð0Þ ¼ Rð0Þ ¼ 1 and Lð1Þ ¼ Rð1Þ ¼ 0, which are non-in-

creasing, continuous mappings.

If LðxÞ ¼ RðxÞ ¼ 1� x, then ~A is called a trapezoidal

fuzzy number. If a2 ¼ a3, trapezoidal fuzzy number ~A

reduces to a triangular fuzzy number.

Definition 4 Support [12]. The support Suppð ~AÞ of fuzzy
number ~A is defined as the crisp set:

Suppð ~AÞ ¼ fx 2 R j l ~AðxÞ[ 0g: ð3Þ

Definition 5 Core [10]. The core Coreð ~AÞ of fuzzy

number ~A is defined as the crisp set:

Coreð ~AÞ ¼ fx 2 R j l ~AðxÞ ¼ 1g: ð4Þ

2.2 Lexicographic Orders

Before defining lexicographic orders, let us consider the

following preliminary definitions.

Definition 6 Type of fuzzy numbers. A type (or class) of

fuzzy numbers is a set of all fuzzy numbers whose mem-

bership functions share a group of features that can be

summarized in a vector of parameters of the same size.

For instance, triangular fuzzy numbers share standard fea-

tures usually summarized in a three-dimensional vector,
~A ¼ ða1; a2; a3Þ, with a1\a2\a3, where a1 refers to the left

end-point of Suppð ~AÞ, a2 is the modal value of ~A in which

lð ~AÞ ¼ 1, and a3 refers to the right end-point of Suppð ~AÞ.
Furthermore, symmetric triangular fuzzy numbers are a sub-

type of triangular fuzzy numbers whose membership func-

tion can be summarized using a two-dimensional vector
~A ¼ ða1; a2Þ, where a1 is the modal value and a2 is the left

and right spread from a1, equivalent to ~A ¼ ða1 � a2; a1; a1
þa2Þ. However, symmetric triangular fuzzy numbers can

also be expressed using a three-dimensional vector to be con-

sidered general triangular fuzzy numbers for ranking purposes.

Definition 7 Same-type fuzzy numbers. Two fuzzy

numbers ~M1 and ~M2, described by vectors of parameters
~M1 ¼ ðri; i ¼ 1; . . .;m1Þ and ~M2 ¼ ðsi; i ¼ 1; . . .;m2Þ,
where m1 and m2 are the total number of defining param-

eters, are of the same type if and only if m1 ¼ m2, and

lð ~M1Þ ¼ lð ~M2Þ, when ri ¼ si, 8i.

Definition 8 Different-type fuzzy numbers. Two fuzzy

numbers are said to be different-type when they are not

same-type fuzzy numbers.

Then, two triangular fuzzy numbers ~A ¼ ða1; a2; a3Þ and
~B ¼ ðb1; b2; b3Þ are of the same-type because when

ai ¼ bi; 8i 2 f1; 2; 3g, it necessary implies that

lð ~AÞ ¼ lð ~BÞ. Similarly, triangular fuzzy number ~A ¼
ða1; a2; a3Þ and trapezoidal ~B ¼ ðb1; b2; b3; b4Þ are not

same-type fuzzy numbers because m1 ¼ 3 is not equal to

m2 ¼ 4. Furthermore, triangular fuzzy number ~A ¼
ða1; a2; a3Þ and trapezoidal fuzzy number
~B ¼ ðb1; b2; b3; b4Þ, with b2 ¼ b3, are of the same type

because ~B is indeed a triangular fuzzy number that can be

rewritten as ~B ¼ ðb1; b2; b4Þ. Finally, symmetric triangular

fuzzy number ~A ¼ ða1; a2Þ and Gaussian fuzzy number
~B ¼ ðb1; b2Þ are not of the same type because ai ¼ bi; 8i 2
f1; 2g does not imply that lð ~AÞ ¼ lð ~BÞ, according to the

definition of a Gaussian fuzzy number with membership

function l ~BðxÞ ¼ e
�ðx�b1

b2
Þ2
.

Definition 9 Strict lexicographic order [12]. For

x; y 2 Rn, the strict lexicographic order x�lexy holds, if and

only if there is 1� i� n so that xj ¼ yj, for j\i, and

xi [ yi.

Definition 10 Weak lexicographic order [12]. For

x; y 2 Rn, the weak lexicographic order x �lex y holds, if

and only if, x�lexy, or x ¼ y.

At this point, it is essential to distinguish between a

vector of defining parameters and a function defined on a

vector of parameters. For instance, a trapezoidal fuzzy

number is characterized by a vector of parameters denoted

by ~A ¼ ða1; a2; a3; a4Þ. On the other hand, function g :
~A ! R is a function mapping the vector of parameters to

the real line that can be used for comparison purposes.

The lexicographic procedure proposed in [27] is based on

eight functions for sigmoid fuzzy numbers with eight

parameters ðcl; cr; b1; b2; d1; d2; b1; b2Þ, where cl and cr are

the left and right modal values, b1 and b2 are the membership

function values of the left and right inflection points, d1 and
d2 are the first and second left spreads, and b1 and b2 are the
first and second right spreads. In this case, the mode is ðcl þ
crÞ=2 and the membership function is given by

lðxÞ ¼

b1 �
b1
d1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 � ðx� ðcl � d1 � d2ÞÞ2

q
; cl � d1 � d2 � x� cl � d2

b1 þ
1� b1
d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d22 � ðcl � xÞ2

q
; cl � d2 � x� cl

1; cl � x� cr

b2 þ
1� b2
b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 � ðx� crÞ2

q
; cr � x� cr þ b1

b2 �
b2
b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � ðcr þ b1 þ b2 � xÞ2

q
; cr þ b1� x� cr þ b1 þ b2

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð5Þ

Then, the authors proposed the following lexicographic

procedure:

123

F. Salas-Molina et al.: Total Orderings in Lexicographic Methods 1419



1. The larger the mode d ¼ ðcl þ crÞ=2 is, the larger is

the fuzzy number.

2. The larger the right spread sr with respect to the mode,

the larger the fuzzy number.

3. The larger the total area M below the membership, the

larger the fuzzy number.

4. The larger the upper modal value cr ¼ sup fx 2
Suppð ~AÞ; l ~AðxÞ ¼ 1g is, the larger is the fuzzy number.

5. The larger the first right spread b1 is, the larger the

fuzzy number.

6. The larger the membership value of the right inflection

point b2 is, the larger the fuzzy number.

7. The larger the second left spread d2 is, the larger the

fuzzy number.

8. The larger the membership value of the left inflection

point b1 is, the larger the fuzzy number.

As a result, the strict lexicographic order ~A�lex
~B holds if

and only if Zð ~AÞ�lexZð ~BÞ, where vector Z is constructed by

Zð ~AÞ ¼ðdð ~AÞ; srð ~AÞ;Mð ~AÞ; crð ~AÞ; b1ð ~AÞ; b2ð ~AÞ; d2ð ~AÞ; b1ð ~AÞÞ
ð6Þ

Zð ~BÞ ¼ðdð ~BÞ; srð ~BÞ;Mð ~BÞ; crð ~BÞ; b1ð ~BÞ; b2ð ~BÞ; d2ð ~BÞ; b1ð ~BÞÞ:
ð7Þ

The authors also apply this lexicographic procedure to

fuzzy numbers with fewer parameters by focusing on the

first three steps for triangular fuzzy numbers and the first

four for trapezoidal fuzzy numbers.

Similarly, [12] established a lexicographic rule to rank

fuzzy numbers based on the following functions defined on

four-dimensional vectors of parameters for LR fuzzy

numbers:

Definition 11 Let ~A be a fuzzy number. Define:

1. Lower modal value: Cð ~AÞ ¼ inf fx 2 Supp ð ~AÞ;
l ~AðxÞ ¼ 1g

2. Left end-point of support: Lð ~AÞ ¼ inf fSuppð ~AÞg.
3. Length of support Wð ~AÞ ¼ jSuppð ~AÞj.
4. Area under the membership function Mð ~AÞ ¼

R
l ~Adx.

5. Ordered set: Vð ~AÞ ¼ ðCð ~AÞ; Lð ~AÞ;Wð ~AÞ;Mð ~AÞÞ.
Then, the author proposed the following ranking function

for two LR fuzzy numbers ~A; ~B:

– Step 1. Compare Cð ~AÞ and Cð ~BÞ. If Cð ~AÞ ¼ Cð ~BÞ, then
go to Step 2. Otherwise, stop. The larger Cð�Þ is, the

larger the corresponding fuzzy number � is.

– Step 2. Compare Lð ~AÞ and Lð ~BÞ. If Lð ~AÞ ¼ Lð ~BÞ, then
go to Step 3. Otherwise, stop. The larger Lð�Þ is, the

larger the corresponding fuzzy number � is.

– Step 3. Compare Wð ~AÞ and Wð ~BÞ. If Wð ~AÞ ¼ Wð ~BÞ,
then go to Step 4. Otherwise, stop. The larger Wð�Þ is,
the larger the corresponding fuzzy number � is.

– Step 4. Compare Mð ~AÞ and Mð ~BÞ. If Mð ~AÞ ¼ Mð ~BÞ,
then ~A	 ~B. Otherwise, stop. The larger Mð�Þ is, the

larger the corresponding fuzzy number � is.

As a result, the strict lexicographic order ~A�lex
~B holds if

and only if Vð ~AÞ�lexVð ~BÞ. Similarly, the weak lexico-

graphic order ~A �lex
~B holds if and only if Vð ~AÞ�lexVð ~BÞ,

or Vð ~AÞ ¼ Vð ~BÞ. Note that the lexicographic order �lex

derived from Definition 11 is a total order for same-type LR

fuzzy numbers because it presents the properties for a total

order [23]:

Definition 12 Total order [4]. Given set S, a total order is

a binary relation � on S with the following properties:

1. Reflexivity: ~Ai � ~Ai; 8 ~Ai 2 S.

2. Anti-symmetry: ~Ai � ~Aj and ~Aj � ~Ai, implies ~Ai ¼ ~Aj;

8 ~Ai; ~Aj 2 S.

3. Transitivity: ~Ai � ~Aj and ~Aj � ~Ak, implies ~Ai � ~Ak;

8 ~Ai; ~Aj; ~Ak 2 S.

4. Comparability: ~Ai � ~Aj or ~Aj � ~Ai; 8 ~Ai; ~Aj 2 S.

Furthermore, the specific order Vð ~AÞ ¼ ðCð ~AÞ; Lð ~AÞ;
Wð ~AÞ;Mð ~AÞÞ, in which functions in Vð ~AÞ are compared to

rank LR fuzzy numbers, reflects the importance of the

information provided by each of the functions in deciding

the ranking [23].

On the other hand, [27] provided the following result

derived from their lexicographic ranking method:

Theorem 1 The lexicographic screening procedure [27]

generates a totally ordered set of fuzzy numbers with same

type of membership functions defined by at most eight

parameters.

In addition, [27] suggested, but did not prove, that the

maximum number of steps in a lexicographic order to rank

different-type fuzzy numbers is given by the following

conjecture:

Conjecture 1 [27] Given two fuzzy numbers of different

types denoted by ~M1 ¼ ðri; i ¼ 1; . . .;m1Þ and ~M2 ¼
ðsi; i ¼ 1; . . .;m2Þ where m1, m2 are numbers of defining

parameters, respectively, the maximal number of ranking

steps is minðm1;m2Þ þ 1.

From the previous background on lexicographic orders,

we consider the following research questions: 1) what are

the conditions to obtain a total order on a set of fuzzy

numbers? and 2) how many steps are necessary to produce
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a total order by following a lexicographic algorithm?

Sect. 3 addresses these questions.

3 Conditions for Total Orderings Based
on Lexicographic Approaches

In this section, we provide the conditions to produce a total

order over an arbitrary set of different fuzzy numbers

defined by m parameters through decision rules or classi-

fication functions such as lexicographic methods. We

consider the case of sets with the same type of fuzzy

numbers and those with different types of fuzzy numbers.

Let us consider an arbitrary set S ¼ f ~A1; ~A2; . . .; ~Ang
populated with different fuzzy numbers such that ~Ai 6¼ ~Aj,

for all i 6¼ j in range 1; n½ �. Consider ordered set Y ¼
f1; 2; . . .; ng with ordinal numbers representing a ranking

in decreasing order of preference, and ranking function

f : S ! Y mapping elements of S to ranking Y.

Definition 13 Injective function [20]. A function f : S !
Y is injective if and only if for all ~Ai; ~Aj 2 S, ~Ai 6¼ ~Aj

implies that f ð ~AiÞ 6¼ f ð ~AjÞ.

Definition 14 Surjective function [20]. A function f :

S ! Y is surjective if and only if for every y 2 Y , there

exists ~Ai 2 S with y ¼ f ð ~AiÞ.

Definition 15 Bijective function [20]. A function f : S !
Y is bijective if and only if f is both injective and surjective,

or equivalently, if and only if for every y 2 Y , there exists a

unique ~Ai 2 S with y ¼ f ð ~AiÞ.

Theorem 2 Injectivity and surjectivity [20]. If S and Y

are finite sets with the same number of elements, then

function f : S ! Y is injective if and only if f is surjective.

Proof Suppose S and Y both have n elements, and write

S ¼ f ~Ai; . . .; ~Ang. Assume that function f : S ! Y is

injective. Then, set T ¼ ff ð ~AiÞ; . . .; f ð ~AnÞg is a subset of Y

consisting of n distinct elements. Since Y has n elements,

this subset must be all of Y. This means that every y 2 Y

has the form f ð ~AiÞ for some ~Ai 2 S, so that f is surjective.

Conversely, assume that function f : S ! Y is not injective.

Then there exists i 6¼ j with f ð ~AiÞ ¼ f ð ~AjÞ. It follows that

the set T contains fewer than n elements because it contains

at least one duplicate. Thus, T is a proper subset of Y.

Letting y be any element of a set difference YnT (y 2 YnT
if and only if y 2 Y and y 62 T), we see that y does not have

the form f ð ~AiÞ for any ~Ai 2 S. Therefore f is not surjective.

h

Based on the properties of injective, surjective, and

bijective functions, we derive the following results:

Lemma 1 Given set S of different fuzzy numbers, totally

ordered set Y of the same size of S, and ranking function

f : S ! Y , a necessary and sufficient condition to rank

every fuzzy number in S is that function f is injective.

Proof To prove that injection is a necessary condition, it

is sufficient to prove that if f is not injective, then f does not

produce a total order. If f is not injective, then there are at

least two elements ~Ai; ~Aj in S with the same ranking

f ð ~AiÞ ¼ f ð ~AjÞ, and the anti-symmetry property is not

guaranteed because ~Ai 6¼ ~Aj. As a result, if f is not injective,

then f does not produce the total order on S. To prove that

injection is a sufficient condition, we need to prove that the

reflexivity, anti-symmetry, transitivity, and comparability

properties are guaranteed by an injective function f.

Reflexivity ~Ai � ~Ai is guaranteed because there is only one

ranking f ð ~AiÞ, for every ~Ai 2 S. Anti-symmetry holds

because if f ð ~AiÞ ¼ f ð ~AjÞ, then ~Ai � ~Aj and ~Aj � ~Ai, and it

implies that ~Ai ¼ ~Aj because for every ranking in Y, there is

a unique element ~Ai 2 S. Transitivity is ensured because an

injective function for three arbitrary elements ~Ai; ~Aj; ~Ak,

such that f ð ~AiÞ\f ð ~AjÞ and f ð ~AjÞ\f ð ~AkÞ, necessarily

implies that f ð ~AiÞ\f ð ~AkÞ because of the order in Y,

meaning that ~Ai � ~Ak. Finally, comparability is certified

because there exist f ð ~AiÞ and f ð ~AjÞ for all ~Ai; ~Aj 2 S, and

either f ð ~AiÞ\f ð ~AjÞ or f ð ~AiÞ[ f ð ~AjÞ hold. h

Remark 1 Sets S and Y are finite sets with the same

number of elements. Then, function f : S ! Y is injective

if and only if f is surjective because of Theorem 2. As a

result, a necessary and sufficient condition to rank every

fuzzy number in S is that function f is either injective,

surjective, or bijective.

3.1 Same-Type Fuzzy Numbers

The following results show that both the minimum and the

maximum number of steps to produce a total order on

S with different fuzzy numbers of the same type are

determined by the condition that function f is injective:

Lemma 2 The number of steps for a lexicographic order

to rank same-type fuzzy numbers is equal to the level of the

lexicographic order in which an injective function is found.

Proof Assume that function f1 : S ! Y exists and is used

to rank fuzzy numbers on the first level of a lexicographic

order. Suppose that f1ð ~AiÞ 6¼ f1ð ~AjÞ for all ~Ai and ~Aj in S.

Then, f1 is injective, and it can derive a total order, and the

number of steps required to rank elements in S is one.

Otherwise, if there is at least a pair ~Ai; ~Aj with

f1ð ~AiÞ ¼ f1ð ~AjÞ, then f1 is not injective, and it is necessary
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to go the following level of the lexicographic order.

Assume that f2 : S ! Y exists and is used to rank fuzzy

numbers on the second level of a lexicographic order.

Suppose that f2ð ~AiÞ 6¼ f2ð ~AjÞ for all ~Ai and ~Aj in S. Then, f2
is injective, and it can derive a total order, and the number

of steps required to rank elements in S is two. Otherwise, if

there is at least a pair ~Ai; ~Aj with f2ð ~AiÞ ¼ f2ð ~AjÞ, then f2 is

not injective, and it is necessary to go the following level of

the lexicographic order. Assume that fn : S ! Y exists and

is used to rank fuzzy numbers on the n-th level of a lexi-

cographic order. Suppose that fnð ~AiÞ 6¼ fnð ~AjÞ for all ~Ai and

~Aj in S. Then, fn is injective, and it can derive a total order,

and the number of steps required to rank elements in S is n.

Otherwise, if there is at least a pair ~Ai; ~Aj with

fnð ~AiÞ ¼ fnð ~AjÞ, then fn is not injective, and it is necessary

to go the following level of the lexicographic order. As a

result, the number of steps required for a lexicographic

order to rank same-type fuzzy numbers is equal to the level

of the lexicographic order in which an injective function is

found. h

Now, we focus on the maximum number of steps for a

lexicographic order to rank same-type and different-type

sets of fuzzy numbers, hence generalizing Theorem 1 in

[27]. Assuming that the values of the defining parameters

of fuzzy numbers cannot be observed before the ranking

procedure is applied:

Theorem 3 The maximum number of steps for a lexico-

graphic order to rank same-type fuzzy numbers equals the

number of defining parameters.

Proof Assume that m is equal to the number of defining

parameters of fuzzy numbers ~Ai and ~Aj in S, and use fm :

S ! Y to rank fuzzy numbers on the m-th level of a lexi-

cographic order. If there exists at least a vector of functions

f ¼ ðf1; f2; . . .; fmÞ that constructs a lexicographic injective

ranking function, then the maximum number of steps for a

lexicographic order to rank same-type fuzzy numbers is m

according to Lemma 2. Consider fuzzy number
~Ai ¼ ða1; a2; . . .; amÞ, and functions f1ð ~AiÞ ¼ a1, f2ð ~AiÞ ¼
a2 and fmð ~AiÞ ¼ am to rank fuzzy numbers in a lexico-

graphic order such that f1; f2; . . .; fm are, respectively, used

to rank fuzzy numbers at levels 1, 2, and m. Then, lexi-

cographic order f is injective at most at the m-th level

because S contains only different same-type fuzzy num-

bers, hence ensuring that at least one defining parameter is

different for any pair ~Ai and ~Aj in S. h

Remark 2 Suppose we relax the assumption of ignorance

of the value of defining parameters. In that case, there is

always an injective function to rank two different fuzzy

numbers of the same type in one step by comparing the

parameter that is not equal.

Next, we prove that the lexicographic order by [12] is an

injective function.

Theorem 4 Given set S populated with different LR fuzzy

numbers of the same-type, the lexicographic order �lex by

[12] based on ordered set Vð ~AÞ ¼ ðCð ~AÞ; Lð ~AÞ;
Wð ~AÞ;Mð ~AÞÞ, described in Definition 11, is an injective

function.

Proof The ranking function f : S ! Y derived from the

lexicographic order �lex by [12] is a total order because the

properties of reflexivity, anti-symmetry, transitivity, and

comparability are satisfied. By Lemma 1, the ranking

function is injective because if it is a total order, it is

injective. h

3.2 Different-Type Fuzzy Numbers

In what follows, we focus on the minimum and maximum

steps required to rank sets of different-type fuzzy numbers.

Let us consider again set S populated with different-type

fuzzy numbers according to Definition 7 and denoted by
~Ai ¼ ðsj; j ¼ 1; 2; . . .;miÞ, where mi is a natural number

expressing the size of the set of the defining parameters for

each element in S.

On the one hand, we know from Lemma 2 that the

number of steps for a lexicographic order to rank same-

type fuzzy numbers is equal to the level of the lexico-

graphic order in which an injective function is found. This

result is still valid for the subset of fuzzy numbers in S of

the same type. Then, we conclude that the minimum

number of steps for a lexicographic order to rank different-

type fuzzy numbers equals one. On the other hand, to

derive the maximum number of steps, we need to focus on

the subset with the maximum mi among the different types

of fuzzy numbers in S. As a result, if set S contains more

than one same-type fuzzy number, then the maximum

number of steps for a lexicographic order to rank different-

type fuzzy numbers is equal to maxðmiÞ, because according
to Theorem 3, the maximum number of steps for a lexi-

cographic order to rank same-type fuzzy numbers is equal

to the number of defining parameters.

Recall now that Conjecture 1, proposed by [27], states

that the maximum number of steps to rank a pair of dif-

ferent-type fuzzy numbers with the number of parameters

m1 and m2, respectively, is equal to minðm1;m2Þ þ 1. The

following reasoning shows that this conjecture is false.

Assuming that the values of the defining parameters of

fuzzy numbers cannot be observed before the ranking

procedure is applied, consider a set with a triangular fuzzy

number ~A ¼ ða1; a2; a3Þ, and a trapezoidal fuzzy number
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~B ¼ ðb1; b2; b3; b4Þ. According to Conjecture 1, the maxi-

mum number of steps is minð3; 4Þ þ 1 ¼ 4. However, the

following method ranks these two elements in two steps at

most:

1. Define g1ð ~AÞ ¼ inf fx 2 Suppð ~AÞ; l ~AðxÞ ¼ 1g as a

comparing function. If g1ð ~AÞ[ g1ð ~BÞ, then ~A� ~B. If

g1ð ~AÞ\g1ð ~BÞ, then ~B� ~A. Otherwise, g1ð ~AÞ ¼ g1ð ~BÞ
and ~B � ~A. Go to step 2.

2. Define g2ð ~AÞ ¼ sup fx 2 Suppð ~AÞ; l ~AðxÞ ¼ 1g as a

comparing function. If g2ð ~AÞ\g2ð ~BÞ, then ~B� ~A. If

g2ð ~AÞ ¼ g2ð ~BÞ, then ~A ¼ ~B.

Note that when ~A is a triangular fuzzy number and ~B is a

trapezoidal fuzzy number, if g1ð ~AÞ ¼ g1ð ~BÞ in step 1, then

a2 ¼ b2 and a2 � b3. Furthermore, if b2\b3 for a proper

trapezoidal fuzzy number ~B, then it follows that ~B� ~A. Only

when b2 ¼ b3 for a trapezoidal, which is indeed a trian-

gular fuzzy number, can we find the case ~B	 ~A if

a2 ¼ b2 ¼ b3. We conclude that functions g1 and g2 are

sufficient to rank triangular and trapezoidal fuzzy numbers

in two steps. This counterexample invalidates

Conjecture 1.

Remark 3 Suppose we relax the assumption of ignorance

of the value of defining parameters. In that case, there is

always an injective function to rank two different rank

fuzzy numbers of different-type in one step by focusing on

the membership function value, which is different for the

two fuzzy numbers under study.

The main implications derived from the results descri-

bed in this section are twofold. From the theoretical

standpoint, any claim of an improved lexicographic method

can now be contrasted with the theoretical results of the

minimum and maximum steps described in this paper.

From the practical application perspective, establishing an

upper bound on the required steps for lexicographic

methods to rank fuzzy can be valuable in various decision-

making contexts where ranking involves a mixture of

same-type and different-type fuzzy criteria. It can help

decision-makers make more informed and balanced choi-

ces, considering various factors and uncertainties. For

instance, in supply chain management, companies often

must compare and rank suppliers based on multiple criteria.

Our results can be applied to rank suppliers when the

evaluation is made using fuzzy numbers of the same type

(e.g., for cost and quality) and fuzzy numbers of different

types (e.g., for delivery time and customer service). This

insight can aid supplier selection and evaluation, ensuring

the most suitable suppliers are chosen. It can potentially

improve the accuracy and robustness of decision support

systems in several application domains.

4 Numerical Examples

In this section, we describe several numerical examples

that illustrate the theoretical results presented in this paper.

To illustrate Lemma 1, let us first consider the following

set of triangular and trapezoidal fuzzy numbers:

S1 ¼ f ~A1 ¼ ð3; 4; 6; 7Þ; ~A2 ¼ ð2; 4:5; 5:5; 7Þ; ~A3 ¼ ð3; 5; 5; 7Þg:
ð8Þ

If we compute the magnitude for the fuzzy numbers in S

according to the ranking method proposed by [14], we

obtain the results summarized in Table 1. In addition, we

compute function Cð ~AiÞ to derive a ranking from the lex-

icographic order proposed by [12]. Even though ~A1 and ~A3

are different, the magnitude method fails to be an injective

function, preventing us from obtaining a total order.

However, the first step of the lexicographic order results in

a different value for function Cð ~AiÞ, hence producing a

total order. This result is guaranteed by Theorem 4, which

states that the lexicographic order by [12] is an injective

function.

The results in Table 1 also show that the required

number of steps for the lexicographic order by [12] to rank

fuzzy numbers in S1 is one because function Cð ~AiÞ is

sufficient to discriminate among the elements in S1.

In Table 2, we compare the ranking derived from

applying different ranking methods to the fuzzy numbers in

S1. Although we pay particular attention to lexicographic

methods, we consider the magnitude-based methods

described in [1, 14, 15]. In addition, we include the fuzzy

TOPSIS method [19] based on the following preference

relation:

~Ai � ~Aj () Ki 
Kj ; ð9Þ

where Ki is the usual closeness measure defined as

Ki ¼
d�i

d�i þ dþi
ð10Þ

where d�i is the Euclidean distance of parameters ~Ai ¼
ðai1; ai4; ai3; ai4Þ to the anti-ideal point (0, 0, 0, 0), and dþi
is the Euclidean distance of vector of parameters ~Ai ¼
ðai1; ai4; ai3; ai4Þ to the ideal point (10, 10, 10, 10). Note

Table 1 An injective and a non-injective ranking method

Ranking function ~A1
~A2

~A3 Ranking

Magð ~AiÞ [14] 5,82 5,85 5,82 ~A2� ~A1 	 ~A3

Cð ~AiÞ [12] 4,00 4,50 5,00 ~A3� ~A2� ~A1
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that similar results can be obtained by selecting other ideal

and anti-ideal points.

We consider the lexicographic methods proposed by

[12, 27] and propose three additional lexicographic meth-

ods for illustrative purposes. First, we consider a lexico-

graphic method based on the interval values of the support

of fuzzy numbers relying on the concept of admissible

order [5]:

~Ai � ~Aj () ðai1 [ aj1Þ _ ðai1 ¼ aj1 ^ ai4 
 aj4Þ: ð11Þ

Similarly, we propose a new lexicographic method based

on the interval values of the core of fuzzy numbers as

follows:

~Ai � ~Aj () ðai2 [ aj2Þ _ ðai2 ¼ aj2 ^ ai3 
 aj3Þ: ð12Þ

Finally, we propose a new lexicographic method based on

the whole vector of defining parameters for fuzzy numbers:

~Ai � ~Aj () ðai1 [ aj1Þ _ ðai1 ¼ aj1 ^ ai2 [ aj2Þ_
ðai1 ¼ aj1 ^ ai2 ¼ aj2 ^ ai3 [ aj3Þ_
ðai1 ¼ aj1 ^ ai2 ¼ aj2 ^ ai3 ¼ aj3 ^ ai4 
 aj4Þ:

ð13Þ

The results of this comparative study summarized in

Table 2 show the variability of the results derived from

applying different ranking methods. However, we must

highlight an important insight derived from the theoretical

results described in this paper. Depending on the definition

of the magnitude of a fuzzy number, magnitude-based

methods can produce a tie between fuzzy numbers when

they are different by definition. This situation is more

unlikely, but not impossible when using distance methods

such as Fuzzy TOPSIS. However, we can ensure a ranking

without ties when using lexicographic methods, provided

we select a method with the appropriate number of steps.

For instance, the lexicographic method based on the

support comparison could not strictly rank ~A3 and ~A1

because the support is precisely the same for both fuzzy

numbers. Luckily, the lexicographic method based on

comparing the core could strictly rank ~A3 and ~A1 because

the core interval eventually differed within the fuzzy

numbers in set S1. However, obtaining the same results

with a different set of fuzzy numbers is not guaranteed. On

the contrary, lexicographic methods described in [12, 27]

and the last one proposed in this paper were able to rank

without ties all the fuzzy numbers in the set because they

are 4-step lexicographic methods.

Consider now the following set of trapezoidal fuzzy

numbers:

S2 ¼ f ~B1 ¼ ð1; 4; 6; 7Þ; ~B2 ¼ ð1; 4; 5:5; 7Þ; ~B3 ¼ ð1; 4; 5; 7Þg:
ð14Þ

In this case, the results obtained for each ranking function

derived from the lexicographic order by [12] are shown in

Table 3. We observe that four steps are necessary to rank

the fuzzy numbers in S2 because it is only at the fourth step

that we find different values for each of the ranking func-

tions included in the lexicographic method. The resulting

ranking is ~B1� ~B2� ~B3.

The results summarized in Table 3 allow us to illustrate

Theorem 3. When considering a set of different same-type

fuzzy numbers, the maximum number of steps to rank all

of them equals the number of defining parameters. There is

no other possibility because if, in our example, four steps

were insufficient to order the elements in S2, it would be

because the defining parameters are equal for at least two

elements in the set.

To illustrate the rebuttal of Conjecture 1 for different-

type fuzzy numbers, consider the following set of trian-

gular and trapezoidal fuzzy numbers:

S3 ¼ f ~C1 ¼ ð3; 5; 6; 7Þ; ~C2 ¼ ð3; 5; 7Þg: ð15Þ

According to Conjecture 1, the maximum number of steps

is minð3; 4Þ þ 1 ¼ 4. However, following the ranking

method described in Sect. 3.2, we define the following

functions for ranking purposes:

1. g1ð ~CiÞ ¼ inf fx 2 Suppð ~CiÞ; l ~Ci
ðxÞ ¼ 1g.

Table 2 A comparative study of different ranking methods

Ranking method Ranking

Magnitude [1] ~A3 	 ~A1� ~A2

Magnitude [15] ~A3� ~A2� ~A1

Magnitude [14] ~A2� ~A1 	 ~A3

Fuzzy TOPSIS [19] ~A1� ~A3� ~A2

Lexicographic [12] ~A3� ~A2� ~A1

Lexicographic [27] ~A1� ~A2� ~A3

Lexicographic Supp ~A3 	 ~A1� ~A2

Lexicographic Core ~A3� ~A2� ~A1

Lexicographic Param ~A3� ~A1� ~A2

Table 3 The number of steps required to rank fuzzy numbers

Step Ranking function ~B1
~B2

~B3

1 Cð ~AiÞ 4,00 4,00 4,00

2 Lð ~AiÞ 1,00 1,00 1,00

3 Wð ~AiÞ 6,00 6,00 6,00

4 Mð ~AiÞ 4,00 3,75 3,50
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2. g2ð ~CiÞ ¼ sup fx 2 Suppð ~CiÞ; l ~Ci
ðxÞ ¼ 1g.

It is not difficult to show that g1ð ~C1Þ ¼ g1ð ~C2Þ, but

g2ð ~C1Þ[ g2ð ~C2Þ. Then ~C1� ~C2, proving that Conjecture 1

is false.

In the last numerical example, we illustrate Remark 3.

Consider set S4 with two different-type fuzzy numbers:

S4 ¼ f ~D1 ¼ ð0; 3Þ; ~D2 ¼ ð0; 1Þg ð16Þ

populated with a symmetric triangular fuzzy number
~D1 ¼ ð0; 3Þ, where the first defining parameter is the modal

value, the second one is the left and right spread from the

modal value, and a Gaussian fuzzy number ~D2 ¼ ð0; 1Þ,
with membership function l ~D2

ðxÞ ¼ e�x2 , as shown in

Fig. 1.

In this case, Conjecture 1 states that the maximum

number of required steps is minð2; 2Þ þ 1 ¼ 3. However,

assuming that we can observe the set of fuzzy numbers

before defining any ranking method, we can easily rank

fuzzy numbers in S4 in a single step by computing the area

under membership functions l ~D1
ðxÞ and l ~D2

ðxÞ to obtain

the ranking ~D1� ~D2.

5 Concluding Remarks

In this paper, we focus on the underlying motives why

lexicographic orders can solve a ranking problem for fuzzy

numbers in a limited number of steps. The main findings of

our work are twofold. We first show that a necessary and

sufficient condition for a ranking function to be a total

order on a set of fuzzy numbers is that this function is

injective, surjective, or bijective. This result allows us to

bridge the gap between theory and practice by connecting

the practical side of lexicographic methods described in

[12, 27] with essential properties of ranking methods.

As an extension of this first result, we also provide

insight into the required steps for a lexicographic order to

rank same-type and different-type fuzzy numbers.

Revealing the minimum and maximum number of steps

implies setting levels or goals for benchmarking purposes.

For example, any claim of an improved lexicographic

method can now be contrasted with the theoretical results

of the minimum and maximum steps described in this

paper. For same-type fuzzy numbers, we connect the

required steps with the number of defining parameters as

critical information for designing new ranking methods.

This result implies that lexicographic methods requiring

more than four steps to rank trapezoidal fuzzy numbers are

inefficient. For different-type fuzzy numbers, we also prove

that a Conjecture 1 by [27] about the maximum number of

steps required to rank different-type fuzzy numbers is false,

hence contributing to extending the knowledge about lex-

icographic methods.

As a consequence of the main research assumption

stated in the introduction, namely, lexicographic methods

provide an efficient and robust way of ranking fuzzy

numbers, a limitation of our work is the empirical com-

parison of alternative lexicographic methods in terms of

efficiency and robustness. Thus, we believe that a natural

extension of this work is the search for simplified methods

for ranking fuzzy numbers based on lexicographic orders.

In this sense, the theoretical results of the required number

of steps represent a good benchmark. In addition, analyzing

the robustness of specific lexicographic methods is also an

interesting future line of work. Both efficiency and

Fig. 1 A symmetric triangular and a Gaussian fuzzy number
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robustness are desirable attributes that could be addressed

by relying on multiple criteria decision-making.
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