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Abstract—The coordination of actions to be executed by
multiple independent agents in a dynamic environment is one of
the main challenges of multi-agent systems. To address this type
of scenario, a key technology called Reinforcement Learning (RL)
has emerged, which enables the training of optimal cooperative
policies among agents. However, traditional value decomposition
methods suffer from unstable convergence when the number of
agents increases. To address this problem, this paper proposes
a novel algorithm based on centralized learning that employs a
self-advice module to replace the joint action, thereby reducing
the algorithmic complexity. The proposed algorithm uses the
Joint Action Learning (JAL) concept to find an optimal approach
and a collision controller module that was designed to further
mitigate the risk of collisions. A comparison of the algorithm
proposed is carried out with two benchmark algorithms. The
first one focuses on decomposing the reward signal and the
second one trains a different actor-critic network for each agent.
Furthermore, multiple target points are defined to enhance
cooperative scenarios during the learning process. According
to the results, the proposed approach outperforms the two
benchmarks by 8% and 49%, thus highlighting the effectiveness
of the centralized learning approach in multi-agent systems.

Index Terms—Cooperative Multi-Agent System, Reinforce-
ment Learning, Independent Learning, Joint Action Learning,
k-Nearest Neighbors, Deep Deterministic Policy Gradient.

I. INTRODUCTION

THE ability of human social groups to cooperate and
interact with each other is a characteristic observed in

microorganisms and animal groups. Achieving this collective
intelligence that enables cooperation between different agents
represents one of the great challenges of Industry 4.0 [1].
Many research studies have focused on using Artificial In-
telligence (AI) techniques and the ability of agents to share
their knowledge to achieve this cooperation. However, the
complexity of these systems is increasing as more factors are
involved [2]–[5].

RL is a field within the Machine Learning (ML) and AI
that studies the learning of agents through their interaction
with their environment. Therefore, the agent will learn how
to behave in order to achieve its goals through trial and error.
For instance, a possible task could be to plan a trajectory to
reach a specific position. To accomplish this, the agent first
uses its sensors to determine its state and then acts based
on the information collected. This action will lead it into a
new state, and, as a result, it will finally obtain a reward that
will measure the quality of the action performed. This process
is repeated continuously until the agent learns an optimal
behavior policy [6], [7].

While RL focuses on solving problems involving a single
agent, Multi-Agent Reinforcement Learning (MARL) is a
standard framework for multi-agent environments. One of the
main characteristics of these systems is the possibility of
sharing data among all of them. However, due to the large
amount of data collected, finding a behavior policy based on
state and action tables as RL does is not easy. Therefore, deep
neural networks are used to handle the vast amount of data
collected [8], [9].

A MARL system can interact in a competitively, cooper-
atively, or mixed manner. For instance, in the cooperative
mode, agents learn to coordinate with each other while sharing
information. One of the approaches to address this type of
system is a Independent Reinforcement Learning (IRL). In
this approach, each agent treats the others as a static part of its
environment and, as there is no communication between them,
it will only know its own state and the action performed [10].
On the other hand, other methods assume that the agents can
collect information from the others and use a reward obtained
as a team [11], [12]. In such systems, one of the challenges
to be solved is the problem of lazy agents. A lazy agent is
one that learns a suboptimal behavior policy instead of the
desired optimal one. This means that it prefers to choose those
actions that do not maximize its reward in order to let others
learn an obstacle-free optimal policy. In this way, it avoids
possible collisions that would result in a negative reward for
the team [13].

A. Related work

This section reviews from the point of view of the authors
the most outstanding research focuses on MARL. However,
most of them have been proposed and tested in small environ-
ments.

In multi-agent systems, one of the main concerns is the
exchange of data between them, not only in terms of se-
curity but also in terms of latency or bandwidth that the
telecommunication network must meet. That is why Yu et
al. suggested an algorithm in which the raw data is not
shared among the agents, as each one trains its model locally.
However, there is still a need for communication between
the agents and a central element in charge of calculating
a global model. Hereby the global model is defined as the
average of all local ones, and it is broadcasted to all agents
in order to replace their local model [8]. Conversely, Kraemer
et al. introduced an approach for learning using Decentralized
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Partially Observable Markov Decision Process (Dec-POMDP).
This method assumes that agents can train their models with
information collected by sensors from other agents. However,
they do not use this data to choose the action to be executed
[14]. Likewise, Zhang et al. proposed an algorithm in which
the agent shares its state and reward at each step. Thus,
the immediate local reward is replaced by the frequency of
obtaining the maximum immediate global reward for that
action [15].

In a multi-agent environment, behavioral policies are very
sensitive to variations in the conditions for which they were
trained, such as an increase in the number of agents or the
number of actions they can perform. For this reason, Chai et al.
proposed a self-weighted mixture network, which is based on
the factorization of the joint action value and the mapping
of the Q-values in a nonlinear way [16]. On the other hand,
to improve performance, Lee et al. suggested an imitation
learning technique combining a benchmark policy with the
Dec-POMDP. This improves the model of each agent’s policy
by using only a partial observation of the environment [17].

Another of MARL’s major challenges is the coordination
of multiple agents, to address this, Wang et al. proposed
a method based on multi-agent interaction through sparse
coordination, whose aim is to find an equilibrium solution,
i.e., the solution that represents the maximum reward for all
agents [18]. With the same purpose, Zhang et al. introduced the
idea of transforming the environment into a P-model, which
means that the reward return has only two possibilities: “one”
when the agent obtains the maximum reward (success) or
“zero” in the opposite case (failure) [19]. Whereas, Park et al.
proposed recurrent neural networks based on actor-critical
networks and deterministic policy gradients [20].

Other authors have proposed the use of different types
of neural network architectures to solve these challenges, as
in the case of Zhang et al., who presented a method using
a Recurrent Neural Network (RNN) [21]. Sunehang et al.
introduced a method that allows the agent first to learn using
an individual architecture and then combine the weights of
the different agents in a linear dual layer [13]. Wang et al.
presented a method for factoring the joint action-value function
of a duplex dueling network architecture into individual action-
value functions [22], and Song et al. proposed an actor-critic
policy delay to manage feature encoding and make navigation
decisions [23].

Qie et al. suggested an approach in which each agent
trains its own actor and critic networks. The actor-network
receives only its observation, while the critic network uses
its information and the action performed by the other [24].
Alternatively, Sun et al. proposed an algorithm based on the
decomposing of the holistic reward signal into multiple sub-
rewards and updates the policy by summing the distributed
value functions [25]. However, these approaches represent a
significant challenge since, on the one hand, it requires con-
stant communication between agents, and on the other hand,
it requires equipment with a higher computational capacity
to handle and process the data. Moreover, as they focus on
feedback from joint actions or shared rewards, these represent
an effect on the rewards expected by each agent, which hinders

a rapid convergence of the behavior policy.
Beyond the aforementioned works, some other authors have

proposed novel approaches to improve the efficiency and
performance of RL learning in specific autonomous navigation
tasks, such as line change, tactical decision-making, prediction
of future movements of surrounding vehicles, adjusting the
speed of vehicles to avoid waiting in queues that may exist
at intersections, or the combination of speed control and
lane change to reduce energy consumption in the case of
electric cars [26]–[31]. Liu et al, proposed a novel approach
to solve the dispatching problem in areas of high dispatching
concurrency using a single agent, for which it uses a list
of recommendations for reassignments [32]. However, our
goal is to achieve successful iterations among many agents
using a common policy while reducing the number of existing
communication links between them.

B. Contribution of the paper

This work focuses on the cooperation of neighboring agents
to achieve their goals while avoiding collisions using a semi-
centralized architecture. During the training phase, a central-
ized approach is adopted where the observations made by
the agents are stored in shared memory and trained as if
they were a single entity. In contrast, during the execution
phase, a decentralized approach is taken, where each agent
makes decisions based on its own observations. Despite the
fact that execution is decentralized, all agents use the same
policy over time. The contributions of this work detailed below
focus on the design of an algorithm that allows the successful
cooperation of neighboring agents.

1) We opted for a semi-centralized architecture using
Deep Deterministic Policy Gradients (DDPG) to achieve
global knowledge but with independence when the agent
chooses the action to perform. On the one hand, this
configuration allows all agents to act as if they were
Independent Learning (IL) since they use only their own
data to determine the action to be executed. But on
the other hand, they have the advantage of having the
same policy that was built from the knowledge of all of
them. Moreover, this policy will have periodic updates
coming from the cloud that is in charge of performing
the training in a centralized way.
Since we are seeking to learn a global policy, we decided
to use the JAL concept; however, we replace the joint
action that corresponds to the neighboring agents for the
action suggested by the self-advice module. This is in
order to avoid the dimensionality problem that appears
in the joint action approach when there are many agents
that must interact with each other.
In order to reduce the lazy agent problem in MARL,
we propose a future collision controller based on the
k-Nearest Neighbors (kNN) algorithm and the priorities
assigned to the agents in each task.

The rest of the paper is organized as follows: Section II
covers the technical background. Section III presents the
formulation of the proposal. Section IV shows the proposed
algorithm. Section V discusses and compares the results
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obtained from the proposed algorithm with the algorithms
proposed by [24], [25]. Section VI draws the main conclusions
of the paper and highlights some future research lines.

II. TECHNICAL BACKGROUND

This section presents a brief introduction to RL, IL, JAL,
and DDPG which are the underlying fundamentals of the
proposed algorithm.

A. Reinforcement Learning

The field of ML that studies how an agent learns through
interactions with its environment is RL. These iterations are
used to train a behavior policy (π) based on the state (st)
and reward (rt) of the actions (at) performed over time t.
Once the optimal policy has been found, the agent executes
the action with the maximum Q-value, where this maximum
Q-value (max Qa) indicates the best action to be performed.

As mentioned above, a multi-agent system where RL is
applied is called MARL. This redefines the Markov framework
as (n,S,A1...n,R1...n,T), where n represents the number of
interacting agents, S is the set of states, A is the set of
actions, R is the set of rewards assigned to each agent
considering the joint actions, and T is the transformation
function T : S x A1 x A2 x ... x An → S. The number of
joint actions will depend on the number of agents since it
represents the action executed by each one of them [2], [33].

In Markov processes, it is known that any stationary
distribution will converge over time. However, in a multi-
agent system, agents are continuously in motion. This causes
their environment to change from stationary to non-stationary,
breaking the Markov assumptions of the need for a stationary
distribution to achieve convergence and causing instability
in training [34]. Within these systems, agents can learn ap-
proaches such as IL or JAL.

B. Independent Learning

An agent can operate as IL when it learns its policy using
only its own knowledge. Moreover, the actions are chosen,
assuming that the other agents are a static part of their
environment even when they are constantly in motion. One
advantage of IL is that it reduces inter-agent communications
since this approach does not require the broadcasting of states
or actions to be performed among all agents. On the other
hand, it is easy to implement due to its simple structure [35].

In order to represent the Q-value of the neural network (Qa)
defined in [36] as a function of the executed action (Qa(at)),
the Q-value update is redefined as:

Qa(at)←(1− α)Qa(at)

+ α(Rt+1 + γ Qa(at)),
(1)

where at belongs to the set of actions At, α represents the
learning factor of the algorithm, and γ is the discount factor
that determines the importance of future rewards.

C. Joint Action Learning

In contrast, an agent acting as a JAL learns the Q-value
using not only their actions but also the actions of the other
agents. This means that all agents will be aware of the actions
actions performed by others. In this approach, the Q-value
of each agent will be affected by the joint action space
corresponding to all the agents in the system (Qa(at, A

−m
t )).

Therefore the update of the Q-value will be defined as:

Qa(at, A
−m
t )←(1− α)Qa(at, A

−m
t )

+ α(Rt+1 + γ Qa(at, A
−m
t )),

(2)

where A−m
t is the set of actions corresponding to each of the

remaining agents at time t.

D. Deep Deterministic Policy Gradient

This algorithm improves the actor-critic algorithm since
DDPG focuses on learning policies in continuous action
spaces. It consists of a critic-network and an actor-network,
where each network contains two sub-networks corresponding
to the online network (Qa) and the target network (Qb), both
with the same architecture. The critic network evaluates state-
action pairs, while the actor-network is trained to generate a
deterministic policy (π), which is responsible for choosing
action at based on π [37], [38].

Mathematically, the update of Q-value and the loss func-
tion (L) of DDPG can be expressed as a function of its state
and action [34], [39].

Qa(St, At)←(1− α)Qa(St, At)

+ α(Rt+1 + γ Qb(St+1, a)),
(3)

a = max
a∈At

Qa(St+1, At), (4)

L = E
[
(Qa(st, at)− (rit+1 + γ ·Qa(st+1, At)))

2
]
, (5)

where E [·] represents the expected loss value.

III. FORMULATION OF THE PROPOSAL

A. Architecture

The deployment of multi-agent algorithms can be accom-
plished using three types of architecture: centralized, decen-
tralized, and semi-decentralized. In a centralized architecture,
the cloud is in charge of training the behavior policy and
making the decisions of each agent in the system. However,
this approach could present problems with the dimensionality
of the data since the action space will become more extensive
as the number of agents increases.

In a decentralized approach, each agent trains its policy
and determines the action to be performed. In this type of
approach, the policy trained by the agent can be affected by
the overgeneralization problem. This is because the agent’s
reward will be affected by the actions performed by others
and the agent will not understand why the reward is not equal
to the expected one [40].

In this paper, a semi-decentralized system is applied, as
illustrated in Fig. 1. This architecture separates tasks with high
computational processing from tasks with lower processing
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W
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Agent i Agent i+n

Fig. 1. In a semi-decentralized architecture, the cloud trains the policy and
sends the weights regularly to each agent to update its policy. Meanwhile, the
agent is in charge of reading the data, sending it to the cloud, and choosing
the action to execute using the policy received from the cloud.

requirements. On the one hand, the cloud trains a global
behavior policy and creates a 2D map of the environment using
data from all agents. On the other hand, the agent determines
the action to be performed using only the information from
its sensors.

This approach reduces policy overgeneralization and data
overfitting. Since the size of the memory storing the data to
be sent for training will always be the same. Consequently,
the number of agents involved in the cooperative system will
not increase the algorithm’s complexity.

B. Variation of JAL

This paper proposes an algorithm based on the idea of [24],
where the authors proposed a cooperative algorithm using the
actions performed by the other agents (JAL). However, if the
number of agents increases, the complexity of this approach
will also increase.

In order to solve that problem, this study focuses on using
the concept of JAL to find the optimal behavior policy.
However, instead of using the actions of other agents, the
actions will be provided by a self-advice module (see Fig. 2).

Considering that all the samples from the different agents
in the system are sent to a common memory in the cloud, the
common policy is achieved by training the neural network with
all these samples, treating them as if they came from the same
agent. In this way, a simple learning model is obtained, which
does not increase in complexity when the number of agents
does. Since the number of actions will always be two, one
corresponding to the action chosen by the neural network and
the other corresponding to the one suggested by the self-advice
module, which is explained in the following subsections.

Agent i 

 

Agent i+1

Joint
actions

ai+1

ai

si+1 ri+1 ri

Self-advice

si

Self-advice  a  j(i+1)

 Agent i+n...Agent i+1

Environment

 a  ji

Fig. 2. Our approach is based on the fact that the agent chooses the action
to execute considering only its information. However, the policy training will
also use a joint action which is determined by a self-advice module that will
consider the other agents as part of its environment but in a temporary way.

Furthermore, this approach reduces the manipulation of data
by third parties because even if agents send their sensor data
to the cloud, only the cloud will have access to the data. In
view of the above, the Q-value will be defined as:

Qa(St, At, A
j
t ) = Qi(st, a

i
t, a

ji
t )

+Qi+1(st, a
i+1
t , a

j(i+1)
t )

+ ....

+Qi+n(st, a
i+n
t , a

j(i+n)
t )

=

P∑
l=1

Ql
a(st, a

l
t, a

jl
t ),

(6)

where Qi(st, a
i
t, a

ji
t ) represents the Q-value of agent i as a

function of its state, its action, and the action suggested by the
self-advice module at time t, al being the action determined
by each agent’s policy, aj the action given by the self-advice
module, and P the number of agents participating in the
common learning process.

Therefore, the update will be given by

Qa(St, At, A
j
t )←(1− α)Qa(St, At, A

j
t )

+ α(Rt+1 + γ Qb(St+1, a)),
(7)

a = max
a,aj∈A

Qa(St+1, At, A
j), (8)

and losses will be minimized by

L = E
[
(Qa(st, at, a

j
t )− yit)2

]
, (9)

where yit is equivalent to:

yit = rit+1 + γ ·Qa(st+1, at, a
j
t ). (10)
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C. Self-advice Module
The self-advice module has two parts. First, a 2D map is

constructed in the cloud (Phase 1) using the data received
by all the agents. Then, the routing and obstacle avoidance
algorithm proposed in [41] is adapted (Phase 2). The adap-
tation is necessary because the agent in this approach cannot
perform backward actions, and the original algorithm has to
move ”backward” several steps when it collides.

Phase 1 2D global mapping created in the cloud with joint
data

1: Get agent state
2: Initialize matrix for free space (mf )
3: Initialize matrix for the occupied space (mo)
4: Initialize matrix for the temporarily occupied space (mt)
5: Initialize constants corresponding to occupied space (c0),

free space (cf ), and temporarily occupied space (ct)
6: Split map into segments of the same size
7: Sets each segment of the map as an empty space
8: for each Laser do
9: Read distance traveled

10: Determine the angle of the laser and the set of seg-
ments it goes through

11: for each segment in the set of segments do
12: Read the segment
13: if segment == length(set of segments) then
14: Add co to the current value
15: else
16: Add cf to the current value
17: end if
18: end for
19: Assign the values of the segments to the corresponding

matrix
20: Divide the occupied and free space matrices into each

other
21: Define whether it corresponds to free, occupied, or

temporarily occupied space according to the result of the
division

22: After every 10 samples, overlay the free and occupied
space matrices and send the updated map to each agent

23: end for

D. k-Nearest Neighbors Algorithm
kNN is a simple and low computational time ML algorithm

used in classification prediction and regression. This algorithm
assigns each input data a certain class, corresponding to
its nearest neighbor. To calculate the nearest neighbors, the
Euclidean distance (d) is used, i.e., it is calculated between
the test sample and the specified training samples [42], [43].

For this paper, a collision controller was designed using
kNN (see Fig. 3), and it is defined in Phase 3. Within this
module, each agent calculates its future position given the
action chosen by its policy. Therefore, it has to be considered
that each action has a given linear and angular velocity. In
other words, the future positions are calculated considering
the current position, the action to be executed, and the linear
and angular velocities.

Phase 2 Self-advice (Routing and obstacle avoidance algo-
rithm adaptation)

1: for each step do
2: Get agent state
3: Get the latest version of the map sent by the cloud
4: Update the map with its status and add temporary

objects
5: Check the agent’s current process
6: if process is “follow the path” then
7: Desired angle “determined by A* algorithm”
8: action = arg min [heading - desired angle]
9: else if process is “orientation heading” then

10: Desired angle “zero ”
11: action = arg min[heading - desired angle]
12: else if process is “driving straight” then
13: action = 2
14: if free distance > target distance then
15: action = 2
16: else
17: Change process to “follow the path”
18: end if
19: end if
20: return action
21: end for

For those cases in which the previous action has not been
applied an angular velocity equal to zero, the principle of
conservation of angular momentum has to be taken into
account. Consequently, to obtain a prediction of a future
position very close to the real one, both the linear (vl) and
the angular (vω) velocity will be represented as the average
of the velocity of the past action (t− 1) and the velocity of
the chosen action (t), in the following equations:

vl =
vt + vt−1

2
, (11)

vω =
ωt + ωt−1

2
. (12)

Therefore, to calculate future positions with linear velocities
different from zero, and angular velocities equal to zero, first
the rotation matrix (Rv) of the Yaw angle (ψ) of the agent
is calculated. Where ψ represents the rotation of the agent
around the vertical axis.

Rm =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, (13)

R⃗v = Rm(θ) ·

[
1

0

]
, (14)

θ = −ψ. (15)

The next step is calculating the distance (l) traveled during
the action time (ta) using:

l = vl · ta. (16)
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Fig. 3. The collision controller first checks whether the distance (d) between the future positions of the agents will produce a collision. If so, it checks which
agent has the preference label and then uses the kNN algorithm to determine which action moves the non-preference agent the largest distance with respect
to all collision points.

Phase 3 Collision Controller
1: Initialized variable possible action = []
2: for Every step do
3: Calculate its own future position
4: if action == 2 then
5: Calculate new position using Eq. (18)
6: else
7: Calculate new position using Eq. (19)
8: end if
9: Send future position to its neighbors

10: Each agent read its preference tag
11: if tag == True then
12: return [False, None]
13: else
14: Calculate distance to its neighbors
15: if Distance is ≤ safe distance then
16: Create an array of possible obstacles using

sensor data and the position of the other agent.
17: Train kNN using the matrix with possible ob-

stacles
18: for Every action do
19: Calculate the near neighbor using kNN
20: Save in possible action
21: end for
22: action = max(possible action)
23: return [True, action]
24: else
25: return [False, None]
26: end if
27: end if
28: Clear variable possible action
29: end for

Finally, the position in the next step (pt+1) is defined as:

pt =

[
px

py

]
, (17)

pt+1 = pt + lRv, (18)

where pt represents the current position in x (px) and y (py).
On the other hand, in the case of non-vanishing angular

velocities, the future positions are calculated according to:

pt+1 = cr + (Rm(ζ) · (−Rm(δ) ·Rv)) · r, (19)

where ζ represents the angle displaced by the agent during
the execution time of the action, δ is the rotation angle with
respect to the x-axis, r is the length of the vector (distance
traveled), and cr is the new origin coordinate,

ζ = −vω · ta, (20)

δ =
π

2
, (21)

r =
l

ζ
, (22)

cr = pt + rRσ. (23)

IV. COORDINATED ALGORITHM

a2

a1

goal 1

goal 2

Obstacle

Fig. 4. Environment in which the algorithms were tested consists of two
agents on random goals and several obstacles.
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A. Observation and Action Space

In order to deploy the proposed algorithm, we have used
Robot Operating System (ROS) Melodic and Gazebo 9 simu-
lator. The chosen software is widely used for the deployment
of robotic applications as they are open source and provide all
the necessary libraries and tools to simulate real scenarios with
high fidelity. Additionally, ROS is also compatible with Python
and TensorFlow libraries used to program the algorithm.

Regarding the deployment characteristics, all the agents
participating in the system have the same characteristics, such
as:

• Agent’s radius of 105 mm.
• Knowledge of the near agent’s future position at each

step.
• Each episode ends when the agent completes 500 steps

or when it collides.
• Same training environment (see Fig. 4).
• Same objectives.
• Every agent has five possible actions, corresponding to

turning left or right or moving forward (Table I).

TABLE I
LINEAR VELOCITY (ν) AND ANGULAR VELOCITY(ω) CORRESPONDING TO

THE 5 POSSIBLE ACTIONS

type of action ν (m/s) ω (rad/s)
turn +1.2 ± 1.5
turn +1.2 ± 0.75

forward +1.5 0

B. Proposed algorithm (CMA-SA&CC)

In summary, to solve the multi-agent cooperation, an off-
policy CMA-SA&CC algorithm is proposed (Algorithm 1 and
2). According to this algorithm, a single global policy is
trained with the information of all the agents, considering them
as a single agent.

This policy will consider not only the action that was
executed but also the one recommended by the self-advice
module. However, the action to be executed by each agent is
chosen using only the information collected by its sensors.

Before the agent executes the action, the collision control
module makes sure that it will not cause a collision with a

Fig. 5. The second test environment has an irregular shape with diagonal
walls and is twice the size of the first one.

Algorithm 1 CMA-SA&CC (Agent)
1: Initializing the actor-network with random weights (π)
2: for each episode do
3: Initialize the environment and set the agent’s starting

point and goal point
4: for each step do
5: Get action a = π(st)
6: Get action aj from the self-advice module
7: new action = Collision Controller function
8: if new action[0] = True then
9: action = new action[1]

10: else
11: Execute the action chosen by π(st)
12: end if
13: Temporarily store st,at,rt,a

j
t

14: Send st,at,rt,a
j
t to the cloud

15: if Collision status == True then
16: Request update to the cloud
17: Update (π)
18: else
19: Check for new policies sent from the cloud
20: if An update is available then
21: Update (π)
22: end if
23: end if
24: end for
25: end for

Algorithm 2 CMA-SA&CC (Cloud)
Initialize learning rate (α), discount factor (γ), update
rate (κ), increase factor (δ), tau(τ), time (t)

2: Initialize the actor networks and critic networks with the
same weights
for each step do

4: Get st,at,rt,a
j
t from all the agents

Store sample in the memory
6: Call Phase 1

Sample Mini-batch
8: Actor and critic network training

if t % κ == zero then
10: Update critic network (target)

θ q′ ← τθ q + (1-τ )θ q’ with τ < 1
12: Update actor-network (target)

θ π′ ← τθ π + (1-τ )θ π’ with τ < 1
14: end if

if (step % 200) == 0 then
16: Send 2D map to agents

end if
18: if (step % 20) == 0 then

Send weights (π) to agents
20: end if

end for

nearby agent in the near future. If this is the case, it will
choose another action that moves it away from its neigh-
bor (see Fig. 6).
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Fig. 6. As it is a semi-decentralized architecture, obtaining an optimal behavior policy is done in the cloud by training the data sent by the agents. This
policy is sent to each agent responsible for choosing the action using only its own data. Before executing the action, the collision controller checks that the
action does not produce collisions between agents. It will set a different value to the action if the received action produces a collision shortly.
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Fig. 7. Each subfigure shows the ratio between successes and failures for each agent and their average as a team during the entire learning process. Where
each row represents CMA-SA&CC, MADPG-TDEC, and STAPP, respectively.
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Fig. 8. Each subfigure shows the ratio between successes and failures of the second environment for each agent and their average as a team during the entire
learning process. Each row represents CMA-SA&CC, MADPG-TDEC, and STAPP, respectively.

V. RESULTS DISCUSSION

In this section, the performance of the proposed algorithm 1

is compared with two proposals mentioned in Section I-A.
The training and evaluation scenarios (see Fig. 4, Fig. 5)

contemplate a team of two agents that have random targets to
force more interaction between them.

The first algorithm to be compared is presented in [25] and
the second in [24]. In this paper, we will refer to them as
MADPG-TDEC and STAPP, respectively.

A. Performance during the training phase

1) First Environment: Note that all the algorithms share the
same learning parameters since they use two hidden layers
with 512 neurons per layer and a learning rate of 0.001.
Furthermore, they were trained in the same environment for
19 hours using the same targets but randomly selected.

As shown in Fig. 7, the performance during the learning
process of the proposed algorithm CMA-SA&CC as a team
is higher than MADPG-TDEC and STAPP, achieving 54.53%,
44.98%, and 35% of their targets during the whole training,
respectively. Moreover, it can be observed that the STAPP
algorithm presents the problem called lazy agent since the
agent 2 presents a much higher number of successful hits than
agent 1. The reason for this behavior is that the policy learned

1https://github.com/ELIZABETH1611/Cooperative multi agent.git

by agent 1 is a collision avoidance policy that always gives
priority to agent 2. In this way, it reduces collisions between
them and prevents negative rewards for their behavior as a
team.

Concerning the other two algorithms, it is observed that the
number of objectives reached by each agent is more balanced
than in the case of STAPP, so the lazy agent problem is less
pronounced in those algorithms.

2) Second Environment: In this setting, the size of the en-
vironment is doubled with respect to the first one. In addition,
the training time was reduced to 15 hours to determine the
performance of the proposed algorithm using less training time
and a larger environment. As shown in Fig. 8, the performance
during the learning process of the proposed algorithm is the
highest as in the first environment. The number of goals
achieved by CMA-SA&CC as a team is higher than MADPG-
TDEC and STAPP, as they achieved 57.76%, 22.61%, and
11.01% of their targets during the training, respectively. There-
fore, reducing the number of training hours and using a larger
environment does not affect the performance of our proposed
algorithm, but it does affect the performance of the two
algorithms used for comparison.

B. Interaction Between Agents

1) First Environment: To analyze the interaction between
the agents, the map corresponding to the spaces traversed by

https://github.com/ELIZABETH1611/Cooperative_multi_agent.git
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Fig. 9. In the top row of subfigures, the heat map showing the positions the agent traversed during its 19 hours of training and the positions where a collision
occurred is shown. The bottom row instead shows the route of each agent to their respective targets using the same time window.

the agents within the environment can be seen in the top row
of Fig. 9. The orange dots show the places where a collision
occurred during the training, either between agents or with a
fixed object in the environment. It can also be observed that
most of the targets represented by stars are located in the center
of the environment. Therefore, the probability of interaction
between agents in this area was higher.

As observed, the proposed algorithm has very few collisions
in the central zone of the environment where most targets
are located. In contrast, MADPG-TDEC shows a greater
number of collisions in that zone. However, STAPP shows the
highest number of collisions in the center of the environment
compared to the other algorithms. Consequently, it can be
deduced that CMA-SA&CC can better handle situations where
agents must interact with each other since, in 19 hours, it
did not present many collisions in that area. In summary, the
proposed algorithm has a total of 427390 collisions, which is
48.94% and 47.44% less than MADPG-TDEC (837078) and

STAPP (813172). Since all algorithms had different success
rates per target and in order to compare the iteration of the
agent 2 over time, a specific target reached by all agents in
the last hours of training was defined.

The chosen target corresponds to the point (1,0) indicated
as a white star on the map (Fig. 9).

To determine the target corresponding to agent 1, first, the
time window in which agent 2 goes from its point of origin to
its target is calculated. Then, in that time window, the target to
be reached or reached by agent 1 is searched. It is noted that
although the target of agent 2 is close to its starting point, the
route defined by the MADPG-TDEC and STAPP algorithms
presents much longer paths than the one obtained with CMA-
SA&CC.

Furthermore, agent 1 in STAPP clearly shows that its policy
prioritizes the other agent by performing many incessant turns
toward its target. With this type of policy, the interaction
between agents will be almost null since one of the agents
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COLLISION 
AREA

Fig. 10. Second environment: In the top row of subfigures, the heat map showing the positions the agent traversed during its 15 hours of training and the
positions where a collision occurred is shown. It also shows the area with the highest probability of collision (white box); this is because the starting position
of both agents is in that area, so there is a higher probability of iteration there. In contrast, the bottom row instead shows the route of each agent to their
respective targets using the same time window.

prefers to leave the way accessible to the other agent to avoid
negative rewards between them.

2) Second Environment: In this environment, the proposed
algorithm also presents a lower number of collisions during the
area with a higher probability of agent interaction, as can be
observed in Fig. 10. This area is located between the starting
positions of the agents, which are (-1,2) and (-1,4.5), and it is
observed that the highest number of orange dots (collisions)
belong to the MADPG-TDEC and STAPP algorithms.

As in the first environment, since all algorithms had dif-
ferent success rates per target, the point (-2,2) is chosen as
the target for agent 2, and its interaction with agent 1 is
compared over time. Furthermore, it can be concluded from
the trajectories traced to their goals that the behavioral policy
trained by CMA-SA&CC is optimal, as it allows agents to
successfully interact and plan short and smooth trajectories.

On the other hand, MADPG-TDEC and STAPP present long
and convoluted paths even when the starting point is close to
the goal.

C. Performance of the trained policy

1) First Environment performance: In addition, the perfor-
mance is tested by executing the policy five times for a given
time (see Fig. 11, Fig. 12).

In the first one, the position of the agent is (2.0,1.8) and
(2.0,-1.8), the same as in the training, while in the second
one, the position changes to (0.0,1.5) and (0.0,-1.5), which
corresponds to the center of the environment.

As a result, it can be seen that the median obtained in
the first set of tests with the proposed algorithm is higher
since it presents a value of 67%, while the others present
values of 42% and 36%, respectively. In the second set of
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Fig. 11. Performance achieved as a team when agents use the same point
used to train the loaded training policy as a starting point.
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Fig. 12. Performance achieved as a team when agents use a different starting
point than the one used to train the loading policy. This point is located in
the central zone of the environment where the highest number of targets is
found. Thus, the interaction between them is higher.
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Fig. 13. Performance achieved in the second environment as a team when
agents use the same point used to train the loaded training policy as a starting
point.

tests, the CMA-SA&CC algorithm continues to show higher
performance compared to the other algorithms, reaching a
median of 69%, 61%, and 20%, respectively.

2) Second Environment performance: In this environment,
the performance was tested using the same agent starting
position as during the training process. As a result, it can be
observed that the median obtained with the proposed algorithm
is superior since it presents a value of 91% performance, while
the others present values of 13% and 0.01%, respectively.
The performance obtained was as expected since, as shown
in Fig. 8, the number of targets achieved by MADPG-TDEC
is low, and almost none with STAPP. From this performance
during the training phase, we can expect a low or null
performance in the testing phase since these algorithms would
need to increase the training hours to improve their policy
and eventually perhaps reach their optimal policy. Therefore,
taking into account the performance obtained during the whole
training process and in the test (Fig. 13), it is shown that our
cooperative algorithm outperforms the others even when the
size of the environment is increased and the training hours are
reduced.

VI. CONCLUSIONS

Achieving successful multi-agent cooperation represents a
significant challenge since each agent aims to achieve different
goals in a shared environment without a preloaded map. There-
fore, a cooperative multi-agent algorithm with self-advice and
priority collision control between near neighbors has been
proposed.

The algorithm has been designed with the aim of mitigating
the lazy agent problem and achieving the highest possible
cooperation between agents. This goal has been completed,
as shown in Fig. 7 and 9. Additionally, apart from having
the fewest collisions in the area of major interaction between
agents, the path traced to its objectives is the best in terms of
distance.

Finally, the success rate of the final model of each algorithm
has been evaluated five times using random targets for five
minutes. Results show a median success rate of 67%, 42%,
36% in the first set of tests and y 69%, 61%, 20% in the
second set of tests for CMA-SA&CC, MADPG-TDEC, and
STAPP, respectively. Based on the results obtained, we showed
that the proposed algorithm performs better in a multi-agent
environment. Moreover, its policy is robust since it performs
better than the other algorithms, no matter if its starting point
differs from the one it was trained in. Therefore, the proposed
algorithm outperforms MADPG-TDEC by 25% and STAPP
by 31% when evaluated under the same training conditions;
even when the agents are in a collaborative environment with
a high probability of interaction it outperforms MADPG-
TDEC by 8% and STAPP by 49%. It is important to mention
that the robustness of our collaborative agent algorithm was
validated by the high performance achieved (Fig. 13) in a large
environment and with fewer training hours.

As a future line, we propose to use agents with different
sensor technologies to create a global policy of collaborative
behavior compatible with heterogeneous agents.
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