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Intelligent Underwater Object Detection and Image
Restoration for Autonomous Underwater Vehicles
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Abstract—Unmanned Underwater Vehicles (UUVs) have been
reliable and economical technological solutions to perform under-
sea monitoring tasks in comparison to manned vehicles. However,
in many situations, UUV is unable to fulfill complex undersea
research tasks since target objects appear distorted due to light
absorption and scattering. Besides, ocean surveying undergoes
severe power requirements compared to terrestrial systems because
of battery-driven low-storage vehicles like Unmanned Underwater
Vehicles (UUVs). Therefore, limited power supply, motion resis-
tance of water medium, and distorted target object appearance can
delay the mission and reduce the efficiency of UUV in their under-
water operations. Considering the resource-constrained undersea
monitoring setup, we propose an intelligent two-stage framework
for expeditious monitoring of underwater scenes. First, an effective
deep neural network is employed for underwater object/region of
interest (ROI) detection. Then the detected ROI is restored using an
efficient restoration method, thereby improving the visual quality
of the degraded images and aiding the navigating and monitoring
tasks of UUVs. Our method has been objectively and subjectively
assessed using 9 evaluation metrics and our key results reveal mAP
of 94.35% and an Underwater Color Image Quality Evaluation
(UCIQE) score of 3.09, surpassing state-of-the-art methods for
object detection. Furthermore, the execution time of 0.550 secs is
required for object detection and dehazing, making this proposal
suitable for UUVs to perform automatic undersea object detection
and dehazing within operational running requirements.

Index Terms—Dark channel, deep learning, object detection,
image restoration, unmanned underwater vehicles.
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I. INTRODUCTION

THE UUV is receiving huge attention for applications not
just limited to scientific undersea exploration [1], [2] but

also, for applications, like military, fishing, hull inspection,
deep-sea survey, undersea construction and rescue, monitoring
seafood, pipeline detection and seabed mapping [3]. UUVs self-
propelled and unmanned intelligent components employ auto-
matic controllers and visual sensors [4]. In particular, Optical
Subaquatic Vehicles (OSVs) having optical sensors providing
better scene details of an undersea environment, are extensively
employed to achieve complex and dynamic missions. The over-
all architecture of UUV and challenges of underwater imaging
are discussed in the following section.

II. BACKGROUND AND RELATED WORK

A. Overview of Generic UUV

Architectural solutions suited for UUV pose high processing
challenges, exacerbated by their limited power availability. Fol-
lowing are the nodes involved in a typical UUV architecture,
which are described to illustrate its working procedure:
� Vehicle Head Box (Node 1): it governs the vehicle move-

ment, camera power, illumination, pitch, yaw, and roll (tilt
survey).

� Doppler velocity logger - DVL (Node 2): it performs data
acquisition.

� GPS and Engine Management (Node 3): it implements
several tasks such as reading GPS data, managing engine,
and controlling dive, propulsion, and rudder.

� Sensor Reading (Node 4): undersea instrumentation sensor
analysis and the management of their energy requirements.

� Vehicle Controller (Master Node): it collects data to be pro-
cessed from every node, and generates commands accord-
ingly. The controller connects the network to the Ethernet.

Fig. 1 gives an overview of UUV architecture employed for
underwater monitoring tasks.

B. Challenges Posed by Underwater Imaging

The UUVs automatic control mechanism obtains multi-scale
visual data from undersea environment through optical sensors.
It also employs automatic control technique to take the decision
to avoid undersea obstacles, thus, rendering the task of both
dynamic decisiveness and optical navigation. However, navi-
gating battery-driven low storage UUVs in complex undersea
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Fig. 1. Overview of undersea UUV.

environment immensely hinders the undersea monitoring tasks.
The challenges are posed mainly by dispersion and absorption
of light which degrades quality of subaqueous pictures showing
reduced level of contrast with color distortion. This results in
obtaining the distorted visual data by the UUVs from the com-
plex undersea environment, impeding its decisive capability of
avoiding obstacles. Besides, the availability of limited resources
put forth a constriction and may result in delaying the mission.
Therefore, the efficiency of UUVs has been limited by the chal-
lenge of obtaining undistorted, haze-free underwater images for
effective monitoring of the scenes via less complex frameworks.

In underwater imaging, three types of light radiation fall on
the camera: direct transmission i.e., the light radiation directly
reflected from the target sub-aquatic object; forward-scattering
radiation that originates when light rays collide with tiny,
suspended particles, thereby scattering before reaching the
aperture of the camera; and background-scattering that is light
energy from the atmospheric light which gets reflected by the
water particles. Thus, an undersea picture is mathematically
given by a sum of back-dispersing, forward-dispersing, and
uninterrupted transmission.

Et(u, v) = Ed(u, v) + Ef(u, v) + Eb(u, v) (1)

Where (u,v) indicates the coordinates of a pel; Et(u,v) denotes
the total light energy falling on the camera. Ef(u,v), Ed(u,v), and
Eb(u,v) indicate the forward-dispersing, uninterrupted transmis-
sion, and back-dispersing components, respectively. If space
from sub-aquatic target to camera aperture is less, then the
forward-dispersed light may be forsaken and just Ed(u,v) and
Eb(u,v) are considered.

To restore an underwater image, the mathematical model that
is extensively employed for misty degraded images in computer
vision is.

I(e) = J(e)t(e) + A(1 − t(e)) (2)

I(e) indicates the input pel at point e, J(e) represents the
haze-free image, t represents transmission map that is the light
that falls on the aperture of camera without dispersing, and
A denotes the atmospheric light. Aforementioned expression
is known as Image Formation Model (IFM). The proposed
method employs (2) for undersea image restoration. The image
restoration algorithms aim at computing true or dehazed scene
radiance which greatly relies on the computation of unknown
variables such as atmospheric light A and transmission map t(e).

C. Related Work

To address the issues of resource constraints and considering
the ill-posed problems of underwater imaging, ocean engineers
have come up with neural networks that are employed in many
disciplines for solving complex automatic problems. Neural
networks are employed to process an immense number of images
and involve specialized systems to reduce operational speed
and storage requirements [5]. Computationally complex tasks
like subaquatic image monitoring, processing, subaquatic object
detection, and recognition can be outsourced to a specialized
Deep Neural Network (DNN) for faster execution. Thus, a hybrid
method involving a neural network-based underwater object
detection and effective underwater image restoration can pave a
way for efficient real-time applications in resource-constrained
UUV setup. A thorough literature survey indicates that efficient
neural computing-based techniques are relatively less employed
in UUV for the precise navigation, exploration of marine life,
instantaneous monitoring of the marine ecosystem, and execu-
tion of other underwater research tasks that are substantial. It is
due to the fact that in UUV frameworks, expeditious monitoring
is a challenging task. Although, due to the advent of PUVs
(Piolet-less Undersea Vehicles), AUVs (Automatic Undersea
Vehicles), digital cameras etc., the availability of underwater
imagery has exponentially increased lately. However, the power
capacity of the battery used in AUV is a limiting factor keeping
the navigating and monitoring operations limited in duration
and range, usually as little as 24 hrs. The cruising speed of
deep-sea exploration vehicles is 3 kts (1.543 m/s) and the average
speed of deep tow is 2 knts (1.028 m/s). The adversity surges by
the additional light scattering and light absorption phenomenon
that interferes with efficient and expeditious underwater
imaging.

For automatic and instantaneous monitoring of underwater
images and solving undersea issues, deep learning which is
SOTA field of ML (Machine Learning) presents unparalleled
potential opportunities. Till now low-level manually designed
features have been exploited in earlier conventional methods of
classification. Also, Support Vector Machine (SVM), Principal
Component Analysis (PCA), Linear Discriminant Analysis
(LDA), and other conventional machine learning approaches are
quickly saturated if the training dataset increases. As the avail-
ability of digital images is greatly increasing with time, there
is a requirement for improved access techniques for retrieving
images from a massive image database. Deep Neural Networks
(DNNs) enable researchers to resolve several underwater issues
such as protecting undersea ecological conditions, sub-aquatic
disaster reduction and prevention, emergency rescue, detecting
a sub-aquatic target, its recognition, and tracking. DNNs can be
employed for underwater systems such as classifying and rec-
ognizing underwater data (CNN) [6], reconstructing underwater
data (CNN) [7], and predicting underwater information (RNN:
Recurrent Neural Network), (CNN) [8]. In this line of research,
Libao et al., [9] proposed a new approach for saliency analysis
and extraction of Region of Interest (ROI) for remote sensing
pictures. The algorithm consists of intra-spectrum information
distribution computation for pictures that are multi-spectral and
a local-global contrast analysis for panchromatic pictures. For
pictures, audios, texts, etc., to be meaningful, DNNs perform
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the transformation of input data through several layers than the
networks that employ shallow learning [10]. Each layer is used
to transform the signal with the help of a computing unit called
neuron that grasps parameters by training. The aforementioned
discussion presents a lot of algorithms that are primarily
governed by neural networks, however, efficient DNNs that have
less computational complexity have been hardly used in UUVs
for object spotting and its classification. Also, at one end many
software-based services have greatly increased, on the other
end, for the quality services, the expectations are significantly
rising. To meet the requirements, we attempt to make use of an
efficient DNN that employs the latest version of the You Only
Look Once Version 8 (YOLOV8) object detection framework.
We have also performed the ROI detection experiment using
YOLOV4. In the proposed technique, YOLOV8 is responsible
for ROI detection and extraction reducing the size of an image
and hence resource requirements. Subsequently, the extracted
ROIs are passed over to the novel and precise dehazing
algorithm to further enhance sea life monitoring performed via
autonomous vehicles. We aim to detect ROI in an image and
yield high-quality images in a reduced amount of time to aid
the UUV navigation and decisiveness to avoid obstacles.

We made several major contributions to the underwater mon-
itoring via UUV network which are summarized as follows:

1) The proposed framework is a two-stage system for ad-
dressing momentous issues of poor quality in underwater
images and resource constraints in UUVs.

2) Our proposed method automatically performs the region
of interest (ROI) detection and extraction, ensuring higher
operational speed by using an efficient neural computing
mechanism. DNN has been employed in this stage due to
its fast inference time.

3) The detected ROI having reduced size and only useful
data is restored using an efficient and precise restoration
method, thereby improving the visual quality of the
degraded underwater images and aiding the subaquatic
monitoring process performed by UUVs in undersea
environments.

4) The redundant data in the underwater images is eradicated
to reduce their sizes, hence reducing processing time and
other resources like bandwidth, transmission power, and
storage required in UUV setup for full coverage commu-
nication to survey underwater environments. The proposal
is evaluated both subjectively and objectively (using 9
evaluation scores) and the results surpass SOTA.

Rest sections of the manuscript are as follows: Background
of our technique comes under Section II. Our technique has
been discussed in detail in Section III. Section IV highlights
performance evaluation based on comparison of our method
with SOTA. Section V concludes proposed work and puts forth
future work.

III. PROPOSED METHODOLOGY

Considering the limitations ocean engineers come across
while dealing with the unmanned vehicles, the proposed frame-
work employs efficient DNN to detect and extract underwater
ROIs. The framework is a two-stage model and aims to effi-
ciently detect, extract ROIs, and restore underwater blur ROIs

keeping in view the UUV navigation in complex environment
and its resource constraints. The famous undersea UUV system
employs battery-driven device. It is less expensive than con-
ventional vessels; however, the power capacity of the battery
is a limiting factor making the undersea surveys limited in
range and duration. Thus, in the proposed framework the trivial
data in the undersea images is eliminated which reduces image
sizes, thereby reducing processing time, bandwidth requirement,
transmit power, and storage like resources required for effective
underwater surveillance.

The first stage performs speedy ROI detection in degraded un-
dersea images. For this stage, we have employed both YOLOV8
and YOLOV4 to compare the performance of both versions
for efficient ROI detection. YOLOV8 is a deep neural network
that enables fast target spotting/detection. RCNN (Region-based
convolutional neural network) first extracts many region propos-
als from the input image. Then a CNN network is used to perform
forward propagation on every extracted region proposal to draw
out features. Subsequently, features from each region proposal
are utilized to perform prediction of the class and the boundary
box for that region proposal. On the contrary, the YOLOV8
takes just single forward propagation through DNN to detect
targets. It indicates, in only single go of the network, predictions
over the entire underwater picture are performed. At the same
time, the prediction process of bounding boxes and probabilities
associated with varied classes is performed.

Subaqueous dataset employed for training and testing of the
YOLO (V4 and V8) model has been curated and it consists of
some substantial underwater species and objects i.e., fish, human
divers, and submarines.

The second stage of the proposed network performs the
restoration of degraded underwater ROIs that have been de-
tected and extracted by the first stage. This stage employs the
restoration algorithm which tends to dehaze the underwater
images with fewer inaccuracies because of the less erroneous
prior information. UDCP is an algorithm that is prior-driven
and can result in massive errors in estimation if prior infor-
mation like medium transmission and air light or atmospheric
light is erroneous. Thus, a need of increasing the precision in
such estimations comes to light for producing output undersea
pictures with pleasing appearance within less time. For UDCP -
Undersea Dark Channel Prior, brightest pel in undersea picture
is often considered atmospheric light. This prior data is invalid
and incapable of yielding good results if an object in a picture is
brighter compared to atmospheric light. Moreover, the precision
in TM (Transmission Map) estimation relies on the computa-
tion accuracy of BL (Background Light). Previous prior driven
algorithms for undersea image restoration including DCP and
UDCP calculate the TM of just single channel and assume the
medium transmissions of the rest of the color channels are the
same which results in distorted textures, block artifacts, plus halo
artifacts over the recovered undersea picture. Such distortions
creep into the process because the medium transmission of the
three channels is not always the same in a local patch. Therefore,
to address these issues, we have employed the algorithm which
estimates the TMs of each of the three colors i.e., RGB. To
decrease the complication in proposed algorithm, we compute
transmission map of the blue channel from the mathematical
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relation of a misty picture representation, then estimate TMs of
rest of the GR colors using the arithmetic relation of medium
TMs of the green-red channels with the blue channel. Thus,
our technique break downs the issue to a single-color TM
computation, nevertheless, computes the TMs of all channels
with no compromise on picture quality.

Equation (2) indicates misty picture representation. Just to not
have confusions, for proposed scheme, the undersea dark color
channel calculated via our algorithm is indicated by JMUWDCP.
The dark channel is calculated using GB channels. The true scene
of particular channel computed by our scheme is represented by
Jmc. Therefore,

JMWUDCP = min
c∈g,b

( min
yεπ(e)

Jmc (y)) (3)

JMUWDCP → 0

Min filters are applied to the misty picture expression, then
considering the idea of proposed scheme,

min
c∈g,b

( min
y∈π(e)

Ic (y)) = min
cεg,b

( min
y∈π(e)

(Jmc (y) t(e))

+cεr,g,b(Amc (1 − t(e))) (4)

Amc denotes the global atmospheric light. On normalizing the
(4) with respect to Amc, we have,(

minCεb,g( minYεπ(e) (IC (y))

(cεr,g,bAmc)

)

= t(e)

⎛
⎝min

cεb,g
(minYεπ(e)Jmc (y))

(cεr,g,bAmc)

⎞
⎠+ 1 − t(e) (5)

Amc is estimated using RGB color channels of the deteriorated
undersea image. To robustly calculate the BL, our scheme has
used a statistical approach on chosen highest intensity pels of
deteriorated undersea picture. A mode approach is proposed
for calculating global airlight using hazy undersea picture. The
technique is implemented on the RGB-colors because light
radiation can be computed separately in each color channel. First
of all, pels of the window π which has center at e of deteriorated
undersea image are chosen, then organized in decreasing order of
pel values. Subsequently, among those pels, about one percent
of the pels with the highest brightness are selected from each
color channel, then the pel with maximum repetition i.e., highest
probability pel gets selected as airlight. Thus, undersea channel
that contains dark pels estimated via GB colors, also pel showing
maximum repeated occurrence in highest intensity pels i.e.,
airlight are placed in (5), and the expression for medium TM
is obtained as,

tbl(e) = 1 −
(

minCεb,g(minYεπ(e)IC (y)

(cεr,g,bAmc)

)
(6)

The medium transmission map computed using (6) has been
considered as TM of channel blue (B). This supposition is made
on the certitude that channel blue has the shortest wavelength
out of RGB channels, thus, it travels most underwater. Based
upon this fact, TM at e is indicated as tbl(e) which is TM of

Fig. 2. General process flow of our method.

Algorithm 1: Steps Involved in Proposed Method.
1. Given input I(e)
2. Detect and Extract ROI Fish, Diver, Submarine
3. Fish = 1000, Diver = 1000, Submarine = 1000

Total number of images = 3000
Training images = 2400
Testing images = 600

4. Solve the following sub-problems:
(i) Compute JMUWDCP from (3)
(ii) Compute Amc using mode operation.
(iii) Compute tb(e), tg(e), and tr(e) via (6)–(11).
(iv) Refine medium TM.

5. Extract Output J(e)
6. Return Dehazed ROI.

channel blue. According to Schechner et al. [11], TM at spot x
i.e., tc(e) is shown as:

tc(e) = e−ηd(x)
c (7)

d(x) gives the camera-object distance, η indicates attenuation
factor that can be computed via a summation of absorption factor
a and scattering factor b, thus, η = a + b. Moreover, Li et al.
[12] proposed that in underwater conditions, the ratios of the
attenuation coefficients of different colors can be given as:

ηr

ηb

=
(−0.00113λr + 1.62517)Ab

(−0.00113λb + 1.62517)Ar
(8)

ηg

ηb

=
(−0.00113λg + 1.62517)Ab

(−0.00113λb + 1.62517)Ag
(9)

Where
ηg

ηb
and ηr

ηb
are the total attenuation factors of GB

and RB channels, wavelengths of various colors are denoted by
λc. Generally, λg, λr, and λb are around 550 nm, 700 nm, and
450 nm, respectively. Hence, the TMs of the rest of the RG-color
channels can be estimated from the equations shown below:

tr(e) = (tb(e))
ηr
ηb (10)

tg(e) = (tb(e))
ηg
ηb (11)

To further eradicate the distortions in recovered undersea
picture, medium TM is enhanced with a guidance filter [13].
Fig. 2 highlights the process flow of our method. Besides, the
outline of the proposed method is given in Algorithm 1.
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TABLE I
COMPARISON OF OUR METHOD TRAINED ON UNDERSEA FISH, SUBMARINE, AND DIVER WITH FAMOUS DNNS

IV. RESULTS AND DISCUSSION

This part of manuscript has been divided into four sections:
Firstly, object detection method is evaluated, and the results are
presented in Section IV-A. Next, the image restoration method is
evaluated from different aspects and is compared with SOTA as
given in Section IV-B. In Section IV-C, an overall comparative
study of our proposal with SOTA is presented using both subjec-
tive and objective evaluation. Finally, Section IV-D highlights
the benefits of the proposed method in undersea monitoring
tasks, supporting unmanned vehicle framework.

A. Results by Our Object Detection Method

Experiment for underwater object detection and ROI extrac-
tion has been performed and our model has been trained using
GPU NVIDIA Tesla K80. The undersea detection has been
performed via YOLOV4 and YOLOV8. We select the so-called
medium-sized version of YOLOV8 (i.e., YOLOv8m).

In the object detection process, Precision, Recall, and Mean
Average Precision are often employed for checking the accuracy
of the algorithm. The model used for comparison has learnt
via training performed using degraded undersea picture dataset
comprising submarines, divers, and fish. These three kinds of
underwater objects are the vital resources of the underwater
world and summarize the subaqueous target spotting operation
for rest of subaqueous targets. We have employed 3000 curated
undersea images; out of these 2400 images have been used
for training the algorithm and 600 images have been used for
testing and the batch size is 128. The framework performs the
underwater object detection with a Mean Average Precision
(mAP) = 94.6%, Recall = 90.6%, and average Intersection
over Union (IoU) = 79.1%. Besides, YOLOV8 performs the
ROI detection with mAP = 94.35% and precision = 94.60%, in
approximately 0.028 ms enabling an instantaneous underwater
ROI detection and extraction, which in turn results in speedy
dehazing and restoration of blurred underwater images.

Table I highlights precision and mAP values of Fast RCNN,
Faster RCNN, and YOLOV3 for images from “Underwater
Robot Picking Contest” compared with the precision and mAP
scores of our method employing YOLOV4 and YOLOV8 for
curated underwater submarines, divers, and fish.

Recall, mAP, and speed i.e., Frames per Second (FPS) are used
to compare the accuracy and speed of YOLO(V4 and V8) based
proposed method, Faster RCNN, and YOLOV3. The obtained
results are shown in Table II. The dataset from popular site URPC
(UNDERSEA ROBOT PICKING CONTEST) is converted to
the VOC2007 format for comparison.

Furthermore, a comparison is also made with Xu and Matzner
[14] that have employed three different datasets to compute mAP

TABLE II
PERFORMANCE COMPARISON OF OUR METHOD WITH OTHER DNNS

TABLE III
COMPARISON OF MAP VALUES USING DIFFERENT DATASETS

values for their algorithm. Table III indicates the mAP values
yielded by Xu and Matzner and our model trained on degraded
undersea images.

It can be seen from the results that our method performs
better and is more efficient. Besides, there is not considerable
difference seen in ROI detection time and precision for YOLO
V8 and V4. Since the proposed algorithm is a two-stage network,
the performance evaluation of the second stage is carried out in
the following Section IV-B.

The second stage consists of an underwater image restoration
algorithm that provides more accuracy in estimating the prior
data. Hence, the algorithm greatly improves the quality of im-
ages and produces subaqueous pictures with visually pleasing
appearance.

B. Performance Evaluation of Restoration Method

The ocular artifacts result in perversions having non-linear
characteristics and may badly affect visual operations and sub-
aqueous operations for science related and ocean survey works
e.g., tracking, monitoring subaqueous world, classifying picture
objects etc.

1) Comparing Proposed Method Airlight Computation With
SOTA Techniques: Several approaches used to estimate the TM
rely also on calculated BL/Airlight. Therefore, various sub-
aqueous picture restoration algorithms require to get compared
in terms of BL estimation. Addressing this issue, this section
is included for comparing the various algorithms employed
for BL computation. For comparing BL estimated by different
prior-driven restoration methods, we have selected an undersea
image, as shown in Fig. 3.

Ground truth BL of the undersea test picture as shown in
Fig. 3(b), has been acquired via around ten-fifteen person’s
feedbacks based upon concept to select distant subaqueous target
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Fig. 3. (a) Misty subaqueous image, (b) ground truth BL, (c) UDCP [15],
(d) DCP [16], (e) DCP [17], (f) DCP [18], (g) DCP+MIP [19], (h) MIP [20],
(i) IBLA [21], and (j) proposed method.

from capturing device and radiation for backdrop illumination.
Fig. 3(c) to (i) show results of various popular picture dehazing
algorithms. UDCP execution in Fig. 3(c) is like DCP. Output
of DCP [16] is given in Fig. 3(d), indicating airlight calculation
using the concept of Dark channel prior. Calculated airlights of
DCP [17], DCP [18], DCP +Maximum Intensity Prior (MIP)
[19], MIP [20], Image Blurriness and Light Absorption (IBLA)
[21] are shown in Fig. 3(e) to (i). Survey [22] reveal methods to
calculate airlight through DCP scheme do not recklessly choose
pel with the highest brightness as airlight, but ignores visual
imaging characteristics of the undersea conditions depicting
substantial variations in R and BG colors, hindering DCP from
estimating airlight. Also, Fig. 3(j) indicates result of our tech-
nique.

2) Comparing Medium TM Computation With Well-Known
SOTA Techniques: In various methods used to calculate medium
TM, it has been observed, nearer an undersea image is to
aperture, greater is medium TM value, and seems whitish. In
contrast, farther the undersea pictures will be, the dimmer will
be their medium TMs. Fig. 4(a) indicates the hazy undersea
picture employed to estimate TM. For the high visual quality
representation of TM, a guided filter [13] is employed for TM
refinement. Fig. 4(b) shows the TM result of the UDCP. Fig. 4(c)
and (d) depict DCP’s estimated TM, which is not precise. The
difficulty comes into being because of less accurate calculation
of airlight. DCP chooses maximum valued pel as airlight, that
may be an inherently bright undersea object or can be illumi-
nated point. Taking this fact into consideration, airlight may
lead to erroneous scene depth-map and can produce erroneous
medium TMs of scenes. Fig. 4(e) and (f) represent medium TMs
computed using renowned prior-based methods like MIP, IBLA,
and Fig. 4(g) shows results of our technique. The figure reveals
the proposed technique performs better as it generates clearer
transmission maps.

C. Overall Performance Evaluation

The proposed framework is a combination of a deep learning-
based object detection algorithm and a prior-based image
restoration algorithm. Our framework involves two networks
to accomplish the task of instantaneous and effective dehazing

Fig. 4. (a) Misty subaqueous image [13] (b) TM estimated using UDCP [15],
(c) TM estimated using DCP [16], (d) TM estimated using DCP [23], (e) TM
estimated using MIP [20], (f) TM estimated using IBLA [21], and (g) TM
estimated using proposed method.

considering the problem of resource constraints. Thus, in this
section, we have presented the experimental outputs of overall
network. For evaluating the undersea image quality, both quality
plus quantity-based methods have been employed for comparing
DCP [24], UDCP [15], and proposed method. To measure the
quality level of an undersea image, Image quality assessment
(IQA) has been employed, and it is categorized into Objective
Evaluation (OE) and Subjective Evaluation (SE).

1) Objective Evaluation (OE): Due to the unavailability of
ground-truth images, we have chosen quality metrics like En-
tropy, UIConM, UIQM [25], and UCIQE [26] to assess and
rate the nonreference pictures. Besides, the time analysis of the
algorithm has also been performed.

Table IV tabulates the values of UCIQE, Entropy, and UIQM
of undersea pictures with dimensions equal to 400 × 600 re-
covered by DCP [17], UDCP [27], Image Blurring and Light
Absorption (IBLA) Prior [21], UDCP (TEoUI- TM Estimation
in Undersea Single Images) [15], Maximum Intensity Prior
(MIP) [20], Underwater Light Attenuation Prior (ULAP) [22],
and the proposed method.

We have also computed the UIQM and UIConM scores of
hazy and dehazed 400 × 400 images. Fig. 5 highlights the
enhancement of UIQM and UIConM values by the proposed
method.

UIConM (Dreg.) and UIConM (Res.) represent the UIConM
values of degraded and restored undersea images, respectively.
Similarly, UIQM (Dreg.) and UIQM (Res.) represent the UIQM
values of degraded and restored undersea images, respectively.

From the bar chart, it is seen that the proposed algorithm
increases the UIConM and UIQM scores, thus improving the
appearance of a subaqueous picture. Average values of UIConM
and UIQM on seven 400 × 400 restored underwater images
are 0.860 and 5.364, respectively. Furthermore, for the time
analysis, we have compared the proposed algorithm with the
popular schemes like DCP and UDCP in terms of time in
Table V.

Also, the time taken to restore detected ROIs by UDCP, and
our technique is highlighted in Fig. 6. In addition, our scheme is
compared to latest techniques employed to recover and enhance
subaqueous picture such as J. Yuan et al., [28], 2022; Wang et al.
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TABLE IV
COMPARISON OF SOTA WITH OUR ALGORITHM

Fig. 5. UIConM and UIQM values of degraded and restored underwater
images.

TABLE V
TIME COMPARISON OF SOME ALGORITHMS WITH PROPOSED ALGORITHM

[29], 2017; Peng et al., [21], 2017; Song et al., [22], 2018; Pan
et al., [30]; 2019, and Zhuang et al., [31]; 2020. The performance
comparison is carried out based on UIQM depicted by Table VI
and subaqueous picture dimension is 512 × 512.

Also, using UCIQE scores, latest subaqueous picture dehaz-
ing techniques namely, Peng et al. 2017 [21], Pan et al. 2019
[30], and Hou et al. 2020 [32] are compared with the proposed
algorithm. From Table VII, it is highlighted average UCIQE
of every comparative method is smaller than our mechanism.
Mostly, the UCIQE of our algorithm has been higher than 1.
The high UCIQE means the dehazed undersea images of the
proposed scheme show fine balance in saturation, degree of
contrast, and degree of chroma.

Besides, a time comparison of our technique and latest sub-
aqueous picture recognition scheme and texture-based dehazing
scheme by Saifuddin Saif [33] in 2021 and J. Yuan et al. [28]
in 2022, respectively is shown in Table VIII. The algorithm
proposed by Saif [33] is based on enhanced convolutional neural
network (ECNN) [33].

2) Subjective Evaluation (SE): ROIs detected and restored
using proposed scheme have been compared to the restored ROIs
of UDCP and DCP. Fig. 7 shows the overall image quality of
restored ROIs of various prior-based techniques. It is concluded

Fig. 6. Time analysis of the proposed algorithm and UDCP.

TABLE VI
COMPARISON OF PROPOSED METHOD WITH SOTA

TABLE VII
UCIQE VALUES OF PROPOSED AND SOME RECENT ALGORITHMS

TABLE VIII
TIME COMPARISON OF PROPOSED ALGORITHM WITH CNN BASED ALGORITHM

considering underwater images indicated in Fig. 7 that our
method recovers undersea pictures showing improved visual
quality than UDCP. Results produced by the UDCP seem to
be unnatural and oversaturated.

From the first and fourth images of the fifth column, it is
clear that our scheme enhances the fine details of the image and
restores the intricate information in the image as well. Besides,
proposed method also protects the natural look of the sub-aquatic
picture, producing high-quality outputs that are not extremely
saturated.

Several popular state-of-the-art algorithms attempt to perform
underwater image restoration; however, these algorithms are
either computationally complex hence not suitable for UUV
setup or estimate less accurate prior data. DCP and UDCP do not
propose accurate prior data i.e., the transmission map and the
atmospheric light on which the quality of restored underwater
image relies. Addressing these issues, the proposed method aims
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Fig. 7. Comparison of proposed algorithm with UDCP [13] and DCP [22].

to increase the fidelity of the estimated prior information, reduce
the computational time, and resource requirements conforming
to the UUV requirement guidelines.

The overall operational time taken by our technique goes
hand in hand with the cruising speed of unmanned underwater
vehicles. Also, pertinent to mention here that YOLOV8 and
YOLOV4 models have been trained on highly degraded images
of underwater scenes, nevertheless, the algorithm shows better
accuracy with speedy detection supporting the main paradigm
of unmanned monitoring.

D. Benefits of the Proposed Method in Unmanned Underwater
Vehicle Monitoring Network

Autonomous monitoring tasks are often constrained by the
energy and computation limitations of underwater devices like
UUVs, underwater sensors etc. [34], [35]. The transmission
distance in undersea environments is more than the terrestrial
transmission distance leading to huge demand of resources
like transmit power, bandwidth, etc. [36], [37], [38]. Besides,
degraded and less visible underwater images cause an additional
surge in the issue of resource scarcity and limit the effective
monitoring and navigation across oceans via UUV setup. Thus,
the proposed algorithm aims at detecting and improving the

visual quality of substantial underwater objects at the cost of
least resource consumption. The algorithm performs instanta-
neous and automatic ROI detection and extraction, eliminating
trivial data, and thereby reducing the size of an underwater
image. This results in drastic reduction in processing time as
shown in Fig. 6 and Table VIII. The storage, bandwidth, and
power requirements are also reduced. Besides, the proposed
algorithm efficiently dehazes underwater scene points which
combats the issues involved in underwater imaging as can be
understood from Fig. 7 and Table IV. Thus, it ensures highly
accurate decision-making to avoid the undersea obstacles and
hence efficient navigation of UUVs across water bodies can be
achieved. Pertinent to mention here, our algorithm goes hand in
hand with the UUV resource constrained network and improves
its overall efficiency for adoptability in automatic undersea
monitoring missions.

V. CONCLUSION AND FUTURE WORK

UUVs have given a drastic surge to the technological uprising
of underwater communication and computation. However, these
vehicles involve lot of battery-powered low storage devices that
demand considerable amount of power, limiting its application
in undersea environment. Also, the decision-making function
of these unmanned vehicles to navigate smoothly in undersea
complex environment is hampered by the degraded vision. If
these issues are addressed, UUV can extend not only its cov-
erage but also pave way for real-time undersea monitoring.
Therefore, keeping in view these issues, this article proposed
a light-weight algorithm enabling ocean engineers to monitor
undersea life automatically and instantaneously. Our study em-
ployed an efficient DNN amalgamated with a less erroneous
picture restoration scheme to solve the complex problem of un-
derwater surveillance by performing ROI detection, extraction,
and restoration, helping to dehaze a single sub-aquatic image.
The proposed algorithm has experimented both YOLOV8 and
YOLOV4 for degraded and diverse undersea dataset of 3000
images. The performance of both versions has been highlighted
in terms of ROI detection time and accuracy. Besides, from the
results obtained using SE and OE metrics, it can be concluded
that our technique performed well in terms of time, resource
consumption, and quality of an image compared to SOTA meth-
ods. These features validate the feasibility of this proposal for
deployment in undersea environments, contributing to UUV
efficiency.

The processing time of our method is less compared to SOTA
algorithms; however, a requirement is felt to further decrease
the computational time considering the severe resource require-
ments of vehicle components. Besides this, ocean engineers
and researchers should also focus on developing benchmark
Segment Anything Model (SAM) that can adapt to variety of
downstream operations, efficient open-set recognition schemes,
and efficient diffusion models for underwater image augmenta-
tion. Furthermore, we plan to include an efficient bright and red
channel based dehazing scheme in our algorithm for robust prior
information estimation. This can help apply this technology in
other related applied domains.
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