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Population annealing, one of the currently state-of-the-art algorithms for solving spin-glass systems, some-
times finds hard disorder instances for which its equilibration quality at each temperature step is severely
damaged. In such cases, therefore, one cannot be sure about having reached the true ground state without
vastly increasing the computational resources. In this work, we seek to overcome this problem by proposing
a quantum-inspired modification of population annealing. Here we focus on the three-dimensional random
plaquette gauge model, whose ground-state energy problem seems to be much harder to solve than that of
the standard spin-glass Edwards-Anderson model. In analogy to the toric code, by allowing single bond flips
we let the system explore nonphysical states, effectively expanding the configurational space by introducing
topological defects that are then annealed through an additional field parameter. The dynamics of these defects
allow for the effective realization of nonlocal cluster moves, potentially easing the equilibration process. We
study the performance of this method in three-dimensional random plaquette gauge model lattices of various
sizes, and we compare it against population annealing. With that we conclude that the newly introduced nonlocal
moves are able to improve the equilibration of the lattices, in some cases being superior to a normal population
annealing algorithm with a computational resource investment that is 16 times higher.

DOI: 10.1103/PhysRevB.109.144202

I. INTRODUCTION

Spin-glass models and, more generally, spin systems with
quenched disordered interactions, consist of a set of particles
or nodes, each taking a value from a range of possibilities (bi-
nary in the case of the Ising models [1]) with randomly valued
interactions between them, where the topology of the connec-
tions can be arbitrarily complex. Due to spin frustration and
randomness, such models exhibit tremendously rich behaviors
and have long been one of the main focuses of statistical
physics. Analytically challenging even at the mean-field level
[2] and numerically hard for nonplanar topologies [3], their
study continues to rely mostly on numerical simulations.

In the past few decades, spin-glass models have proven
useful beyond their applications in physics, for example as
models related to the behavior of neural networks [4,5] and to
the real-world optimization problems, especially for those that
accept a quadratic unconstrained binary optimization (QUBO)
mapping [6,7]. In the QUBO picture, an optimization problem
is mapped to a set of binary variables such that its ground-state
configuration encodes the optimal solution to the original
problem. QUBO mapping applications range from fields as
diverse as protein folding [8,9], to logistics [10–12] and many
others, and therefore devising ways to efficiently find the
ground states of spin-glass models constitutes a goal of utmost
importance for both scientific and industrial problems.

Many physics-inspired algorithms have been devised for
that end. One way is to use standard Markov chain Monte
Carlo (MCMC) methods to mimic thermal fluctuations and
utilize various temperatures to explore the rugged energy
landscapes of spin-glass systems. Inspired by the process of
slow thermal cooling and heating in the metallurgic industry,
simulated annealing (SA) [13] was one of the first algorithms
of that type to prove its value in real-life applications. As
an evolution of SA, and taking advantage of massively par-
allel computing platforms such as graphics processing units
(GPUs) available nowadays, the recently proposed popula-
tion annealing (PA) [14,15] is an extended ensemble Monte
Carlo algorithm that combines SA’s thermal annealing with a
population of independent replicas of the system under study.
Thermal annealing is then significantly sped up by the repli-
cas’ population resampling procedure done according to the
Gibbs distribution. For thermally equilibrated and sufficiently
large replica population, resampling allows us to change the
population temperature in a single step while the population
remains approximately equilibrated. This has been found to
improve, in many cases, the performance of the algorithm
over SA [16]. Although PA is a sequential Monte Carlo
method [17], it still relies on a basic METROPOLIS algorithm
[18] to independently equilibrate each of the replicas after
every resampling step in order to ensure that the correlations
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between replicas introduced by resampling are eliminated.
The METROPOLIS algorithm is known to slowly equilibrate,
e.g., in the critical region or in the case of rugged landscapes
[19], in which it gets trapped by local minima. The latter is
problematic in spin systems with quenched disorder at low
temperatures, for example when studying three-dimensional
Edwards-Anderson (EA) spin-glass systems [20]. This fact
can sometimes cause PA to encounter hard disorder instances
for which population cannot be properly equilibrated [17].
One way to overcome the METROPOLIS algorithm deficiencies
is to use cluster moves. In the case of uniform, ferromagnetic
Ising models, the celebrated Swendsen-Wang [21] and Wolff
algorithms [22] work very efficiently. The case of spin-glass
models is more problematic as clusters may grow fast, po-
tentially spanning the whole lattice. The Houdayer cluster
algorithm [23] of isoenergetic moves was designed specifi-
cally for those models. It offers substantial speedup in two
dimensions, and it has recently been efficiently adapted in
three dimensions (and other connection topologies), albeit
only in specific temperature and frustration windows [24].
Therefore, the search for efficient cluster moves in Monte
Carlo algorithms for spin-glass models, especially moves
compatible with massively parallel computations, remains an
important challenge.

On the other hand, while the new advances on quantum an-
nealing (QA) machines [25,26] pose them as firm contenders
to efficiently solve these kinds of QUBO problems, they are
still far away from surpassing classical computation. As a
counterpart, new quantum-inspired algorithms for classical
computers have recently been developed, taking advantage of
the current dominant position of such platforms. Simulated
quantum annealing (SQA) [27] constitutes the paradigmatic
example within this field, in which a classical simulation of
the adiabatic transition of a wave function from the initial
state to the ground state of the spin-glass model is performed.
In this case, the simulation of a coherent exploration of the
Hilbert space upon changing the Hamiltonian replaces the
simulation of thermal annealing.

In this work, we propose a quantum-inspired method to
improve the exploration of the optimization and quenched
disorder spin problems in PA by the evolution (annealing) of
certain local constrains. Taking inspiration from the quantum
toric code [28], the creation, movement, and annihilation of
topological defects within the lattice allow for the conduc-
tion of nonlocal moves. In two dimensions, such moves can
be performed on the standard spin-glass random-bond Ising
model with an expanded configurational space (i.e., allowing
for topological defects), and they are equivalent to cluster
updates. In three dimensions we propose a numerically hard
model, equivalent to the random three-dimensional (3D) ran-
dom plaquette gauge model (RPGM) [29], whose expanded
configurational space allows for respective topological defects
and nonlocal moves, even though the analogy with the spin
clusters is not that straightforward. The evolution of such de-
fect states starts with relaxed constrains (free defect creation)
and is controlled externally by the increase of a field param-
eter added into the original Hamiltonian that progressively
penalizes their proliferation. The preparation of the starting
thermally equilibrated replica population is straightforward in
any temperature as defect constrains are relaxed. Therefore,

annealing can now be conducted starting from any tempera-
ture, and it can be performed in a two-dimensional parameter
space (temperature and defect control parameter). In this re-
gard, we define an adaptive step procedure that is able to
optimize the annealing of the system in this parameter space,
gaining flexibility over PA, which is seen to increase the ther-
malization of the systems without compromising other related
and desired properties. Importantly, the proposed method is
itself a variation of PA, and is therefore massively paral-
lelizable as well, leading to parallelizable effective nonlocal
moves.

One should note that an efficient general solution to the
numerically hard (NP-complete in the worst-case scenario)
spin-glass and optimization problems, with increasing lattice
sizes, is most probably impossible on classical computers.
Yet even for systems and lattice sizes amenable for current
computational resources, the hard disorder cases are the lim-
iting factor. Different annealing methods (temperature in PA,
adiabatic wave-function changes in SQA, topological defect
constrains in the present variation of PA) have the potential to
address different hard disorder cases. Indeed, that is what we
observe: disorder cases that are difficult for standard PA are
usually not that hard in our defect driven PA.

The paper is organized as follows. In Sec. II we first give
a description of PA and discuss a metric for the confidence
of the solution found corresponding to the global minimum,
which will eventually allow us to compare the newly proposed
method. We then introduce the random 3D Ising gauge theory
model in plaquette representation that we named the random
field wall (RFW) model, and we describe its topological de-
fects dynamics, to finally propose the defect driven population
annealing (DPA) modification. In Sec. III we first discuss the
hardness of the RFW model, we compare it against the EA
one, we apply DPA to RFW lattices of linear sizes L = 4, 6, 8,
and we compare the results against one of the state-of-the-art
algorithms, PA, which, in the task of finding ground states of
spin glasses, is equivalently efficient to other methods such
as parallel tempering (PT) [16]. Further, in this same work PA
was found to reach the same ground states as other completely
different types of algorithms, such as the hybrid genetic algo-
rithm [30]. Finally, we conclude this work with a discussion
in Sec. IV.

II. METHODOLOGY

A. Population annealing

Population annealing is a generalized ensemble extension
of SA in which a family of a total of R0 replicas of the
same system are independently simulated in parallel. PA starts
considering all R0 replicas at infinite temperature, at which
equilibration is easy but encountering the global ground state
is difficult, and anneals the population towards a low temper-
ature at which equilibration is difficult but the probability of
finding the ground state is higher. We denote the annealing
schedule as Sβ = [β0, . . . , βNT ], with β the inverse temper-
ature and βi < βi+1 ∀i, where i labels each resampling and
equilibrating step. Equilibration of the replicas is performed
through a Markov chain Monte Carlo (MCMC) method for
a number of sweeps Nsweeps, and then the population is
resampled according to the Gibbs distribution, which is
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known to enhance the efficiency of the algorithm compared to
SA. This resampling step includes elimination and prolifera-
tion of replicas that somewhat resembles the selection part of a
genetic algorithm, in which replicas with a lower energy (that
is, better fitness) are set to have several offspring, while those
having a higher one tend to be eliminated. When resampling
from an inverse temperature β to β ′, the normalized weight
for replica j is defined as

τ j (β, β ′) = R0
e−(β ′−β )Ej∑
r e−(β ′−β )Er

, (1)

where R0 is the initial number of replicas of the system, and
the index r runs over all replicas, and we choose its number of
descendants n j as

n j =
{⌈

τ j
⌉

with probability Pceil = τ j − ⌊
τ j

⌋
,⌊

τ j
⌋

with probability Pfloor = 1 − Pceil.
(2)

This choice of probability minimizes the variance of nj and
lets the population’s size vary around a mean value R0 with
a fluctuation of

√
R0. This choice reduces the correlation

between replicas in the descendant population [17].
An additional and important advantage of PA is that it

yields an estimate of the free energy of the simulated system
at no additional cost. For the annealing schedule Sβ described
above, the estimated free energy at inverse temperature βk ,
F̃ (βk ), is [31]

−βkF̃ (βk ) = Ns ln 2 +
k−1∑
i=0

ln Q(βi, βi+1), (3)

where Ns is the total number of spins in the system, and
Q(β, β ′) is the normalization factor used by PA in the com-
putation of the resampling weights, Eq. (1):

Q(β, β ′) = 1

R

∑
r

e−(β ′−β )Er . (4)

B. Confidence on the solution found

Due to their heuristic nature, algorithms such as SA or
PA may not reach the global, true ground state of a certain
model at hand. In such cases, one has to conform with a
measure of the likelihood of the solution found being a global
minimum, or as close as possible to it. Specifically for PA,
we can assess this likelihood by means of measuring two
different parameters on the final population of the algorithm’s
run. The first one, g0, is the fraction of replicas that, in the final
population, are in the same minimum energy state detected
during the entire simulation, g0 = N0/R, with N0 counting
the number of times that this state appears in the final stage.
Given that PA can accurately estimate the free energy of
the simulated system, g0 can be estimated as well from its
definition

g0 = 2e−βE0

Z (β )
= 2eβ(E0−F ), (5)

with E0 the ground-state energy of the system. The value
obtained by measuring g0 from N0 in the simulation should
coincide with Eq. (5) in the limit of infinite replicas [16]. The

second considered parameter is the effective number of sur-
viving families Neff , which measures the number of replicas
that have found the lowest energy state independently. The
effective number of surviving families can be measured as

Neff = exp[S f ], (6)

with

S f = −
∑

ν j log ν j (7)

the family entropy, and ν j the fraction of replicas present
at the end of the simulation that descend from replica
j in the initial population. Effectively, family entropy is
a measure of the equilibration or thermalization of the
sample [17].

In the case of PA, the only way to be sure of having found
the ground state would be to use an infinitely large population
or an infinitely slow annealing process. So if the size of the
final population R is large enough and the same lowest-energy
state appears frequently in thermal equilibrium, we are able
to confidently state that the found configuration is the global
minimum. Therefore, the higher both parameters g0 and Neff

are after a simulation, the higher is the confidence we might
have in the solution found being the global ground state of the
system. The problem in PA is then to make sure that those two
parameters are high enough, and particularly the latter, since
it has been seen that it sometimes encounters hard instances
for which thermalization is harder, and that therefore exhibit a
very low final family entropy [17,32]. In the following, we
explore problems of different hardnesses, with a focus on
those that PA finds the hardest to solve.

C. Bond and wall representations of the models
and toric code topological defects

For simplicity, consider first a standard 2D spin lat-
tice with only nearest-neighbor interactions, defined by the
Hamiltonian

H =
∑
〈i, j〉

Ji js
z
i s

z
j, (8)

with periodic boundary conditions. We can shift to its bond
representation by applying the change of variable σ z

b = sz
i s

z
j :

H =
∑

b

Jbσ
z
b . (9)

It is important to stress that, even if the Hamiltonian looks
deceptively easy, it does not correspond to free particles, as it
must be understood along with the constraints associated with
the set of feasible configurations (see below). In the bond pic-
ture of a spin lattice, the new binary variables σb represent the
state of the bond between two spins, which depends on their
relative alignment instead of that of the spins themselves. The
bond is either said to be up (the spins connected by it have the
same value, thus σ z

b = 1) or down (the spins are not aligned,
and σ z

b = −1). Note that therefore a bond configuration can be
translated into a spin one with up to a decision of the value of
an initial spin, which corresponds to the up-down degeneracy
of the spin picture.

However, in contrast to the spin representation, not all
{σ z

b } configurations represent a physical state. For a bond
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FIG. 1. Physical states in the bond representation are character-
ized by B� = 1. When a plaquette yields B� = −1, spins located
on its vertices cannot be unequivocally determined, and therefore the
configuration does not represent a physical state of the Ising model.
We thus say it contains a defect.

configuration to represent a physical state of the Ising model,
the products of the bonds in any close path must be 1 (see
Fig. 1). To account for this, we introduce plaquette and line
operators:

B� =
∏
b∈�

σ z
b , (10)

B| =
∏
b∈|

σ z
b , (11)

where b ∈ � and b ∈ | are the indices of the bonds pertaining
to a given plaquette (illustrated by a square, �, due to their
spatial disposition) and line (illustrated by a line, |, due to their
spatial disposition), respectively. Note that B� is equivalent to
TC’s B operator, while the spin flip is equivalent to TC’s star
operator, As,

sx
i =

∏
b∈+

σ x
b , (12)

where b ∈ + are the indices of the bonds surrounding spin si

(again, illustrated by a cross, +, due to their spatial disposition
around the spin). The condition for being able to recover a
proper spin configuration translates into assuring that (i) all
plaquettes yield 1, and (ii) all straight lines across the lattice
(both horizontal and vertical) yield 1.

If this condition is not fulfilled for a given plaquette
or line, we say that it contains a (topological) defect (see
Fig. 1). In what follows, we refer to such configurations as
nonphysical.

Let us now shift to an appropriate 3D extension of such
a 2D Ising model with topological defects in bond represen-
tation. The Kramers-Wannier dual [33] to the 3D uniform
Ising model is the 3D Ising gauge theory model [34] where
spins are located on lattice edges and are subjected to pla-
quette interactions on each cube face. The latter model can
be represented as a “wall model” where the walls are the
new binary variables taking values of cube face plaquettes,
the plaquette interaction J is now a field acting on walls,
and walls are not independent variables but are subjected to
the constraint that in each cube the product of all six planes
must equal 1. The given configuration of walls determines
energy and represents all 2N gauge-equivalent states (where N
is the number of vertices), thus in this representation entropy

FIG. 2. The 3D random field wall (RFW) model is a generaliza-
tion of the random 2D bond model. By extruding a plaquette and all
its elements onto an extra dimension, we obtain a cube surrounded
by edge spins that are 4-to-4 connected by a wall. The site enclosed
inside the cube can hold a defect.

is greatly reduced. To visualize the 3D wall model, consider
an extrusion onto the new dimension of the elements of the 2D
bond model described so far. This means that we add an extra
dimension to all of them, and therefore degrees of freedom
change as follows:

(i) Spins (points) become edge spins (lines).
(ii) Bonds (lines) become walls (planes).
And with respect to operators (constraints):
(i) Plaquettes (which may contain a defect) become cubes

(which may contain a defect).
(ii) Lines (which may contain a defect) become planes

(which may contain a defect).
As we previously had a total of four spins connected by

bonds (each bond connecting two single spins) and forming a
plaquette surrounded by four bonds that could have a defect
in it, we now have 12 edge spins connected by walls (each
wall connecting four edges) and all of them forming a cube
surrounded by six walls that can contain a defect as well (see
Fig. 2). In this case, the change of variable between edge spin
and wall models is

ηz
w = ez

i e
z
je

z
se

z
t , (13)

where e{i, j,s,t} are the edge spins surrounding the wall ηw.
Plaquette and line operators translate to cube and plane

operators as

Bc =
∏
w∈c

ηz
w, (14)

Bp =
∏
w∈p

ηz
w, (15)

respectively, and again the physicality of the lattice is imposed
by Bc = 1 ∀c and Bp = 1 ∀p. In Eqs. (14) and (15), w ∈ c and
w ∈ p are the indices of the walls defining the cube c and the
plane p, respectively.

The Hamiltonian of the 3D Ising gauge model in the wall
representation reads

H =
∑
w

Jwηz
w. (16)

However, analogously to Eq. (9), this is not a free-particle
model. It has to be understood along with the constraints
associated with the set of feasible configurations given by
Bc = 1∀c and Bp = 1∀p. Of course, instead of imposing these
constrains on the phase space, they can be included in the
Hamiltonian through Lagrange multipliers. In the following
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sections, we will employ a similar approach to introduce
topological defects into the model.

If we now consider quenched disorder signs of plaquette
interactions in the 3D Ising gauge model, we get the 3D
random plaquette gauge model, which appeared recently in a
study of stability of topological quantum memory [29] based
on the TC. Following Monte Carlo simulations revealed that
a small concentration of negative sign plaquettes drives such
a system from the “Higgs phase” to the disordered “confining
phase” [35,36]. Furthermore, the phase structure of the 3D
RPGM model was studied using Wu-Wang duality [37]. Here
we study the 3D random plaquette gauge model with Gaussian
disorder for plaquette interactions in the “wall” representa-
tion, which we will refer to as the 3D random field wall (RFW)
model. This model is not dual to the 3D Edwards-Anderson
spin-glass model (also called the random-bond Ising model),
which consists of up/down spins arranged in a cubic lattice
with only nearest-neighbor couplings, whose values are drawn
from a normal distribution. In fact, the 3D RFW relation to
the spin-glass physics is unclear. Replica symmetric mean-
field solutions for random gauge theories [38] predict the
occurrence of the “gauge-glass” phase, although it is probably
realized in higher dimensions. Still, we found the problem of
finding the ground state of the 3D RFW model to be numeri-
cally hard (harder than the 3D Anderson-Edwards spin-glass
model for a typical disorder case) and therefore suitable for
testing PA and our algorithm. Finally, we note that the orig-
inal 2D spin lattice can be seen as a special case of a 3D
RFW lattice with a single layer of cubes, and in which we
restrict the spin and wall flips to those perpendicular to the
lattice plane.

D. Defects dynamics

Besides the usual spin-flip movement, Eq. (12) [and
Eq. (17) for the 3D case, see below], we can now introduce
TC topological defects into the lattice by allowing single-bond
(-wall) flips with the operator σ x

b (ηx
w), thus extending the

configurational space beyond the one representing physically
feasible solutions. Note that this operator not only can create
a pair of defects but can also make them move independently
of each other around the lattice and eventually annihilate them
if they happen to collide. This defect propagation introduces
cluster-based, nonlocal dynamics into the MCMC simulation:
if the pair of defects created follow a longer closed path until
they collide, all the spins enclosed in it are effectively updated
as a cluster, since all surrounding bonds have been updated
(see an example in Fig. 3).

From this perspective, the spin-flip operator can be seen as
creating a pair of defects and moving them around a given spin
(vertex); see Fig. 4. Analogously to the 2D case, for the RFW
the edge spin flip consists of updating all walls surrounding a
given edge spin,

ex
μ =

∏
w∈+

ηx
w, (17)

where w ∈ + are indices of the walls located around the edge
spin μ. Analogously to the 2D case, here the notation + is

FIG. 3. Allowing single-bond flips enables cluster, nonlocal up-
dates in the lattice. By applying single bond-flips, a pair of defects
can be created and moved around the lattice. When they collide and
annihilate, the closed path they have followed (blue dashed line)
effectively realizes a nonlocal cluster update of the spins it encloses
(red dots). The inner bonds are left unchanged in such an update.

intended to illustrate the spatial disposition of the four bonds
surrounding the spin on the vertex μ.

E. Defect-driven population annealing

We are now ready to introduce our algorithm, which com-
bines PA’s features with the nonlocal cluster updates discussed
before. We refer to this modification as defect driven popula-
tion annealing (DPA). To this aim, we introduce an additional
field parameter κ , with which we control the appearance of
defects in the lattice by assigning an energy penalty to each
of these generated defects. First of all, note that at any time
we can count the number of cube and plane defects within a
lattice, N (D)

c and N (D)
p , with the help of operators Eqs. (14) and

(15), as

N (D)
c = Nc −

∑
c

Bc, (18)

N (D)
p = Np −

∑
p

Bp, (19)

where the summations run over all cubes and all planes in
the lattice, and Nc and Np are the total number of cubes and
planes, respectively. Accounting for this penalty in Eq. (16),

FIG. 4. Graphical representation of an edge spin flip. Green and
orange label ±1 values for the walls and the edge spin, while yellow
means that there are defects in the adjacent cubes and therefore the
edge cannot be unequivocally determined. We stress that, even if only
one edge spin is shown for clarity, each of the walls is surrounded by
(is coupling) four edge spins, and thus the shown defects must be
seen as pertaining to a whole cube (for instance, they could move to
the cube on its top instead).
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FIG. 5. Entropy-preserving annealing. Comparison between the
decay in family entropy obtained in PA simulations of L = 4 RFW
lattices with a β-linear annealing schedule (green lines) and the ob-
jective, implemented decay (black dashed line). Each blue line is the
decay obtained for a different disorder. Although final family entropy
may seem very similar in this scale, its fluctuations in PA simulations
describe differences between hard and easy disorder cases.

the final Hamiltonian of the RFW model in the unconstrained
phase space (i.e., including nonphysical states) reads

H =
∑
w

Jwηz
w + κ

⎡
⎣

(
Nc −

∑
c

Bc

)
+

⎛
⎝Np −

∑
p

Bp

⎞
⎠

⎤
⎦.

(20)

Note that the κ term incorporates constraints into the Hamil-
tonian similarly to the Lagrange multiplier method. However,
we use it differently. By initializing the simulation at κ = 0
we ensure that the system can be readily thermalized at any
chosen temperature and acquires a lot of defects. Then, by
changing this parameter to high enough values, we make
sure that the constraints are fulfilled at the final population.
Therefore, at the final stages of the annealing process those
configurations containing defects are penalized and rare. The
configurations without defects correspond to the physical con-
figurations of the model we want to solve. As in PA, we run the
simulation on a population of R0 independent replicas, and at
each step in the annealing schedule we let them evolve with an
MCMC procedure to ensure thermal equilibration, after which
a resampling step is also carried out. Since at every resam-
pling step both β and κ are updated, the normalized weights
now are

τ j (β, β ′, κ, κ ′) = R0
e−[β ′Ej (κ ′ )−βEj (κ )]∑
r e−[β ′Er (κ ′ )−βEr (κ )]

, (21)

with E (κ ) = ∑
w Jwηw + κ[N (D)

c + N (D)
p ].

1. Family entropy-preserving annealing

As has been discussed, a bad thermalization of the sys-
tem is characterized by a low final value of family entropy,
which is reduced every time a resampling step is carried on
the population. In standard population annealing, in which a
linear schedule in β is classically used in the literature [16],
the family entropy tends to follow a geometric decay, Fig. 5.

However, the difference between hard and easy disorder cases
manifests itself in subtle changes in the decay line and, im-
portantly, its end value. Since our defect driven population
annealing algorithm utilizes annealing in a two-parameter
space, namely the temperature and the κ , we use a different
schedule. To maximize the family entropy value during the
whole simulation, we propose to adapt the annealing process
such that, at each resampling step, a constant portion of the
number of surviving families is lost. This way the family
entropy follows an exponential decay towards an objective
value, which we can tune externally. To this end we implement
an adaptive step procedure for both annealing schedules, Sκ

and Sβ . Before each resampling step (β, κ ) → (β ′, κ ′), we
compute the optimal values of κ ′ and β ′ needed in order for
the desired portion of families to be lost, such that the obtained
family entropy follows the specified decay

Neff (tn)

R0
=

(
Ndesired

eff

R0

) tn
NT

, (22)

where tn is the simulation step, Neff (tn) is the number of
surviving families at that time, and Ndesired

eff is the objective
number of surviving families at the end of the simulation.

2. Remaining defects

It may happen that only annealing through κ is not enough
to ensure that we get rid of the defects at the end of the simu-
lation and that some of them get stuck in potential traps, thus
ending up with physically unfeasible lattices. In such cases,
two additional procedures can be applied. On the one hand,
an N-fold way algorithm [39] among the already existing
defects only (thus they can be moved and annihilated, but no
new defects can be created) is used to increase their mobility
and speed up their dynamics. On the other hand, an attraction
potential between defects can be used to reduce the probability
of them getting stuck inside potential traps while forcing them
to collide. This is done by the introduction into Hamiltonian
Eq. (20) of the additional term

HG = G
Ndef∑
i=1

i−1∑
j=0

1

Dα
i j

, (23)

where G is a negative constant that can be tuned, Ndef is the
number of defects present in the lattice, Di j is the euclidean
distance between defects at sites i and j, and α can be used to
make the interaction potential shorter- or longer-ranged.

3. Outline of the algorithm

To conclude, in this section we present a pseudocode of the
defect driven population annealing algorithm.

As in regular PA, the algorithm starts by randomly initial-
izing the configurations of each replica in the population. The
annealing schedules, Sβ and Sκ , last a total of Nβ steps, and
then for each annealing step the algorithm estimates the next
point in the schedules, (β ′, κ ′), such that the family entropy
obtained from the resampling follows the proposed exponen-
tial decay. After resampling, each replica r is thermalized
with a total number of sweeps Nsweeps at (β ′, κ ′). To this end,
a number of Nspins spin updates and wall updates are pro-
posed and accepted with a METROPOLIS algorithm. In case the
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ALGORITHM 1. Defect driven population annealing.

1: for each replica r do
2: r ← initialize
3: for iβ in Nβ do
4: N(desired)

eff ← ProposedDecay[iβ ]
5: Estimate (β ′, κ ′) such that Neff [iβ ] ≈ N(desired)

eff

6: Resample(β, β ′, κ, κ ′)
7: for each replica r do
8: for sweep in Nsweeps do
9: for n in Nspins do
10: s ← U(0, Nspins )
11: Metropolis(r, s, β ′, κ ′)
12: if iβ < i(critic)

β then
13: w ← U(0, Nwalls )
14: Metropolis(r, w, β ′, κ ′)
15: else
16: if Ndefects(r) �= 0 then
17: NFoldWay (r, β ′, κ ′)
18: else
19: w ← U(0, Nwalls )
20: Metropolis(r, w, β ′, κ ′)
21: β ← β ′

22: κ ← κ ′

simulation is reaching its end (iβ � i(critic)
β ), and a given lattice

still has sites containing topological defects, the dynamics are
accelerated with an NFoldWay algorithm instead of using a
regular METROPOLIS one, such that no more defects can be
created but only moved around the lattice [with the additional
gravitational term, Eq. (23)] so that their probability of clos-
ing a path and annihilating increases. After all replicas are
thermalized, the next annealing steps start until the schedules
reach their maximum length Nβ .

III. RESULTS

A. Hardness of the RFW model

One of the standard and most widely used spin-glass mod-
els is the so-called Edwards-Anderson model [20], for which
reliable results on its three-dimensional version have been
reported for sizes of up to L = 10 [16], or equivalently, a total
of Ns = 1000 spins. Bigger lattice sizes have also been ex-
plored in the literature, but with a lower degree of confidence
on the quality of the thermalization achieved [17]. On the
other hand, reducing the frustration of the problem solved by
considering easier disorder distributions can indeed allow for
the exploration of larger lattices. For example, by considering
3D lattices with nearest neighbors and couplings distributed
uniformly as J = ±1, which in effect greatly reduces the spin
frustration and has the potential of exponentially increasing
the degeneracy of the ground state, results for sizes of up
to L = 40 have been obtained [40]. As discussed earlier,
the RFW model does not correspond to the standard 3D-EA
model but allows for the effective dynamics of topological
defects. It is well known that multispin interacting models
(with multi referring to more than two) can in general be very
difficult to sample and optimize. The RFW model, Eq. (16), is
equivalent to the 3D random Ising gauge model with four-spin

FIG. 6. RFW models are computationally harder than their EA
counterparts. Histograms of the values of g0 obtained with the two
discussed independent measures, for various disorder instances of
EA (left panels) and WRF (right panels), of sizes L = 4 (top panels)
and L = 6 (bottom panels).

plaquette interactions, so indeed it can be expected to be dif-
ficult. On the other hand, the form of the interactions depends
on the representation. The 2D Edwards-Anderson model,
Eq. (9), which lacks hard instances, looks like a free-particle
model with four-particle constraints in the bond represen-
tation. Similarly the RFW model in the wall representation
looks like a free-particle model with six-particle constraints.
Furthermore, the 2D EA model in the bond representation can
be seen as a special case of a 3D RFW lattice with a single
layer of cubes, and in which we restrict the spin and wall flips
to those perpendicular to the lattice plane. Because of that, the
multispin nature of the constraints in the wall representation
of the RFW model is not an obvious argument that the RFW
model is more difficult to simulate than the already hard 3D
EA model. Also, there are not many literature results about it.
Therefore, in this section we explore the hardness of the RFW
model, given by Eq. (16), by comparing it against the standard
3D EA one. The RFW model is, as we show below, much
more difficult to solve for typical disorder cases, as many more
computational resources must be used in order to properly
thermalize it. This difference in computational hardness can
be seen straightforwardly when standard PA is used in the two
models. Since PA yields independent measures for both g0 and
F , if the system is truly equilibrated their values should be
properly related through Eq. (5). We solve several instances
of EA and RFW lattices of sizes L = 4 and 6, and we measure
g0(N0) from the final population and g0(E0, F ) from the es-
timated free energy, using the same amount of computational
resources for both models at each size. We observe how, while
the measures of g0 for the EA lattices are mostly similar in
both studied sizes, RFW lattices yield much poorer results,
Fig. 6. Further, the difference between g0(N0) and g0(E0, F )
appears to increase for larger RFW lattices but not for EA
ones, hinting that the increase in hardness with size is more
dramatic in the former model. In what follows, if the contrary
is not specified, the presented results for g0 are obtained by
measuring g0(N0).
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FIG. 7. The hardness of RFW models against EA clearly
emerges when varying the frustration level of the solved lattices. Top
panels: histograms of g0 and Neff

R0
obtained for L = 4 RFW lattices of

various ratios of negative bonds, rnb, along with the ones obtained for
Edwards-Anderson lattices. Center panels: mean values and standard
deviations of such histograms, as a function of rnb. Bottom panels:
mean values with standard deviations of the same histograms but for
L = 6 lattices. All simulations are obtained with PA with the same
set of parameters. Legends in the left and right panels are the same
but are not shown to improve visibility of the plots.

Another way we can take a look at the comparably much
greater difficulty of the RFW model is by reducing the spin
frustration created by the disorder by tuning the ratio of
negative-valued bonds it contains. To do so, we generate
normal Gaussian distributions, take their absolute value, and
change the sign of a randomly selected portion of them. The
lower the ratio of negative bonds that the disorder instance
has, the lesser the amount of frustrated spins it can potentially
have, and thus the easier it will be to find its minimum en-
ergy configuration, eventually reaching the trivial limit of a
ferromagnetic disorder. We consider three different ratios of
negative bonds, rnb = {0.25, 0.10, 0.02}, and we solve a total
of 1000 disorder instances of RFW lattices of size L = 4 for
each of them with PA. In the top panels of Fig. 7 we show the
histograms of the measured parameters discussed in previous
sections, g0 and Neff

R0
for such cases, along with those obtained

for unbiased Gaussian disorders (equivalent to rnb = 0.5) and
those obtained for L = 4 lattices under the Edwards-Anderson
model. Again, we use the same parameters for all of them. In
the center panels of Fig. 7, we plot the dependence of the mean
values of such histograms with rnb, with error bars showing its
standard deviations. We observe how the histograms tend to
shift to higher values for smaller rnb and therefore for easier
disorders.

We highlight two main consequences from the results
shown in Fig. 7. On the one hand, we confirm that, as dis-
cussed earlier, higher values of g0 and the family entropy
are correlated with higher confidence in the solution found
being the global ground state and, therefore, it can be used
as a metric to this end. On the other hand, it shows how
strikingly harder the RFW model is compared to typical
Edwards-Anderson instances with uncorrelated disorders, ob-
taining comparable values of g0 only when restricting the
frustration of disorders to a ratio of negative bonds of about
2%, while still getting much worse values for the family
entropy. Looking at the same curves for L = 6, we observe
pretty similar results; see the bottom panels of Fig. 7. Al-
though the g0 obtained for the EA model is approximately
equal to the one obtained for RFW with about 2% negative
bonds, the family entropy is still far from it even for such
low-frustration cases. It is also worth noting that, for L = 6,
this difference is even greater than for L = 4.

Further, we implement L = 8 RFW lattices with Gaus-
sian disorder (rnb = 0.5), and we attempt to solve them
with standard PA using a large amount of computational
resources. For equally large EA lattices, the parameter set
(R0, NT , Nsweeps) = (5 × 105, 200, 10) is reported to be more-
than-adequate resources in [16], where R0 is the initial
population size, NT is the number of temperatures in the an-
nealing schedule, and Nsweeps is the number of sweeps carried
on per temperature (each sweep consists of attempting Nspins

MC updates on the lattice). For comparison, in our simu-
lations we used (R0, NT , Nsweeps) = (2.6 × 105, 500, 20) and
repeatedly solved 20 different disorder realizations in order
to see how many times the algorithm converged to the same
minimum energy state. Among all of them, the convergence
ratios between independent runs varied from a minimum of
0% (in 11 out of the 20 studied disorders) to a maximum of
12% (in only three of them).

In light of these conclusions about the hardness of the
present model, in what follows we restrict ourselves to a
thorough study of RFW lattices of L = 4 and 6 with purely
Gaussian disorders (that is, rnb = 0.5). Finally, we present
some preliminary results for L = 8 lattices as well. As the
exposed results suggest, the strict equilibration of RFW lat-
tices constitutes a problem out of our current computational
capabilities for most of the cases. We therefore stress that we
do not focus on achieving a proper equilibration of the lattices
per se, but rather on its use as a measure of the confidence of
the solution found being the global ground state of the system.

B. Comparison between PA and DPA

To gain insight into how the different algorithms perform,
we solve, for each lattice size, several disorders with couplings
randomly drawn from a Gaussian distribution. When we talk
about PA, we explicitly work with Eq. (16), which has the
constraints built in within the phase space. On the other hand,
when we talk about DPA, we work with Eq. (20), which allows
for the relaxation of the constraints and thus the introduction
of topological defects through the κ term. For each algorithm
we will compare the obtained g0 and Neff . However, we do
not use the comparison between g0(N0) and g0(E0, F ) as a
metric for the equilibration of the system simulated with the
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two algorithms. This is because DPA effectively explores a
larger phase space at the initial stages of the simulation, and
the amount of replicas needed to accurately estimate free
energy is larger. This is further exacerbated as equilibration
is generally poor for the RFW model, as seen in Fig. 6.
This implies that for a given population size, DPA can yield
worse F estimations than PA. Instead, we directly compare
the obtained g0 and Neff as a metric for confidence in the
ground-state solution. For a fair comparison, we should spend
the same amount of computational work W on both PA and
DPA simulations. For that, we define the computational work
W as the total number of MCMC updates attempted during a
simulation, namely

W = NsweepsNT R0, (24)

with NT the total number of steps in the annealing schedule,
Nsweeps the number of sweeps per temperature, and R0 the
initial number of replicas. Note that, as discussed above and
according to Eq. (2), the population size at step i, Ri, fluctuates
during the simulation and therefore a more accurate formula
would be W = Ntherm

∑NT
i=0 Ri. However, since we use a re-

sampling protocol that minimizes fluctuations in population
size, we can accurately approximate R0 ≈ N−1

T

∑
Ri and use

the former. It should also be noted that the contribution of the
resampling steps to the total computational work can be ne-
glected. To study a fair comparison between both algorithms,
we always use the same initial number of replicas and the
same number of temperatures in the annealing schedules. In
PA we implement the widely used linear in inverse tempera-
ture schedule, Sβ = [0, 5]. Recently, more optimal annealing
schemes such as that using a culling fraction have been pro-
posed [41], but we restrict the present study to the classical
one for simplicity of implementation, as the main feature of
DPA resides in the introduction of the nonlocal moves rather
than the annealing scheme itself. To further compare both
algorithms, we also implement the entropy-preserving steps in
PA in the final section. For the DPA simulations, after an ex-
ploration of the parameter space we found (β0, κ0) = (2, 0) to
be, generally, a good starting point for the entropy-preserving
adaptive steps in the L = 4 and 6 cases. For L = 8 we used
(β0, κ0) = (2, 0) as well, even though due to long simulation
times the exploration of the parameter space was not that
extensive and thus this initial point is more prompt to be
optimized. Our method is therefore able to thermalize the
system at finite temperatures as long as κ0 = 0, which shows
it has a better plasticity over PA.

Nevertheless, since in DPA we perform one spin flip and
one wall flip per iteration, we distinguish between two dif-
ferent measures of computational work. In the first scenario,
assuming that random number generation is the main bot-
tleneck in MC algorithms, a strictly fair comparison would
impose that N (PA)

sweeps = 2N (DPA)
sweeps, even if this evidently yields

a much poorer thermalization for the former. On the other
hand, if a fast enough random number generator is assumed,
one can directly count the computational work as the total
number of MCMC updates attempted along the simulation.
As we have discussed previously, each spin flip consists of
four wall flips, and conversely, each wall flip can be counted
as one-fourth of a spin flip. This means that, in this case, to use

FIG. 8. DPA outperforms PA for L = 4 lattices when MCMC
process simulations are the computational bottleneck. Histograms
of g0 and Neff/R obtained by solving, by both PA and DPA, a total
of Ndis = 500 different disorders of L = 4 RFW lattices, with bonds
randomly distributed according to a normal distribution. Simulations
using the same amount of random numbers (left panels) and of
MCMC updates (right panels). Crosses in the bottom panels mark
these instances PA finds the hardest (red), and how these same
instances score in DPA (orange).

the same W one has to impose N (PA)
sweeps = 5

4 N (DPA)
sweeps (recall that

each thermalization step in DPA consists of one spin flip and
one wall flip, which equate to five walls being updated). We
address and compare both scenarios using N (PA)

sweeps = 10 and
N (DPA)

sweeps = 5 for the first and N (PA)
sweeps = 10 and N (DPA)

sweeps = 8 for
the second.

1. L = 4

We first apply our method to the study of L = 4 RFW
lattices and take a look at the histograms of the parameters
g0 and Neff obtained for 500 different disorders, comparing
the solutions obtained for the same disorders with a regular
PA algorithm. We plot our results in Fig. 8, the left panels
corresponding to the first scenario discussed (W limited by
the amount of random numbers) and the right panels corre-
sponding to the second (W limited by the number of MC
updates). The top graphs show the histograms for g0, the
middle graphs the histograms for Neff

R0
, and the bottom graphs

the scatter plot relating both parameters for each of the solved
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disorders. In these bottom panels, we also mark the disorders
that regular PA finds to be the hardest to solve, identified
as those obtaining the lowest values of family entropy (red
crosses) and how these same disorders score when solved by
DPA (black crosses). In this case, we consider a disorder to be
hard whenever PA is not able to reach a final effective number
of surviving families Neff

R0
= 0.015 or, equivalently, about 2%

of all instances of disorder.
In the first scenario (Fig. 8, left panels), we observe a

certain tradeoff between parameters (Fig. 8, top left and center
left panels), resulting in an equivalent performance of the two
methods. The fact that the adaptive steps procedure over the
two control parameter space (β, κ) is able to properly drive
the evolution of the system and set an objective cutoff family
entropy is nevertheless noticeable (Fig. 8, center left panel).
Also, the fact that the family entropy is no worse than for PA
is relevant, taking into account that, in this scenario, the total
amount of spin updates is lower and thus one might expect
a worse thermalization. With the cutoff imposed on family
entropy, scores on this parameter are increased even for hard
cases, but they seem to lay, generally, in the lower range for
DPA as well (Fig. 8, bottom left panel).

On the other hand, in the second scenario (Fig. 8, right pan-
els) we see a substantial improvement with the DPA method,
as the histograms for both measured parameters seem to be
shifted towards bigger values and thus imply better metrics
than those obtained with standard PA (Fig. 8, top right and
center right panels). As can be seen in the bottom right panel,
even some of the hard cases’ metrics are improved, as they
manage to escape from the lower range of family entropy
without diminishing its g0 score.

In Fig. 9 we take a closer look at the results obtained by the
two methods by comparing the measured parameters obtained
by both for each of the solved disorder realizations. A brighter
color indicates a higher density of points, and the red straight
line is plotted to indicate the region in which both methods
yield the same results for a given parameter. We also marked
those disorder instances classically labeled as hard for PA with
red crosses. Again, the left and right panels correspond to the
first and second scenarios, respectively.

Most importantly, as can be seen in the top panels of Fig. 9,
both algorithms find the same ground-state energy for all
disorders. The distribution of g0 and Neff is shown in the center
and bottom panels, respectively. In them we can see that for
the same amount of RN consumed (first scenario, left panels),
the obtained g0 is slightly higher for PA but certainly compa-
rable to DPA for the vast majority of disorders (Fig. 9, middle
left panel), even for most of the hardest instances. On the other
hand, the family entropy is better with our method (Fig. 9,
bottom left panel), which implies that a better thermalization
of the replicas is achieved (again, recall that the number of
total spin updates is lower, and thus this could have been
expected to be lower as well). In the second scenario, DPA
obtains clearly better results than PA for both parameters, g0

(Fig. 9, middle right panel) and Neff (Fig. 9, bottom right
panel).

Lastly, we focus on cases of disorder realizations that are
hard for the PA algorithm, that is, those cases resulting in low
family entropy. From Eq. (1) it follows that a possible way to
overcome the difficulty of equilibration and improve the final

FIG. 9. DPA provides on average higher family entropies than
PA when solving L = 4 lattices. Comparison of results obtained by
PA and DPA for L = 4 RFW lattices for the three measured pa-
rameters. From top to bottom: ground-state energy, g0, and effective
number of surviving families. Simulations using the same amount of
random numbers (left) and of MCMC updates (right). Black crosses
mark these instances that PA finds the hardest.

family entropy obtained by PA is to reduce the differences
	β = β ′ − β by increasing the number of temperature steps.
Following this idea, to further contrast both methods, we
now take a collection of disorders that PA finds difficult to
equilibrate and for which a very similar g0 is obtained for PA
and DPA, so that they lay close to the gPA

0 = gDPA
0 red line

in the center panels of Fig. 9, and we repeatedly solve them
several times with an increasing number of temperature steps
in the PA annealing schedule (i.e., more adiabatically). For the
cases at hand, we find that for PA to obtain a family entropy
similar to that obtained by DPA, we would have to invest
approximately between 4 and 16 times as much computational
power depending on the disorder instance, Fig. 10. Further-
more, one should also note here that, contrary to the addition
of more replicas, that extra computational effort would not be
parallelizable in PA, since the annealing schedule must always
be followed sequentially.

2. L = 6

We now apply the same study to L = 6 RFW lattices.
As for the L = 4 case, we solve several different Gaussian
disorders with both PA and DPA considering the two scenar-
ios discussed above, and we plot the obtained histograms in
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FIG. 10. Hard cases on PA require more adiabatic annealing
processes to reach an equivalent family entropy to DPA. Study of
the amount of computational power that would have to be invested to
solve L = 4 RFW lattices with PA, in order to obtain a similar final
family entropy as with DPA, for hard instances for which gPA

0 ≈ gDPA
0 .

Error bars are standard deviations over Nrep = 100 repetitions of
the same process at each value of NT . Square markers are obtained
with DPA and triangle ones with PA using an increasing number of
temperature steps. Each color indicates a different disorder.

Fig. 11. For the first scenario (Fig. 11, left panels), we again
see a certain tradeoff between g0 and Neff . Nevertheless, the
gain in family entropy is now more noticeable than for smaller
lattices, as now PA does encounter some hard instances for
which it obtains a single surviving family, preventing ade-
quate thermalization. On the contrary, the adaptive steps in
DPA are capable of driving the population toward nonzero
values, thus ensuring proper thermalization (Fig. 11, center
left panel). When considering the computational work limited
by the number of MC updates, the g0 obtained with DPA is
comparable to that obtained with PA, while the gain in family
entropy remains the same. Again, those hard instances of PA
are properly thermalized under DPA. On top of that, compar-
ing the results obtained for each individual disorder between
the two scenarios (Fig. 11, bottom panels), we see that, while
for PA the hard instances are more or less evenly distributed
along the range of g0 values, they are shifted towards bigger
values, especially for the second scenario.

Looking at the top panels of Fig. 12, we again confirm
that both methods find the same ground-state energy for all
disorder realizations. Speaking of g0, the hardest instances
are more or less uniformly distributed around their mean in
both scenarios (Fig. 12, middle panels), while they are shifted
towards PA when restricted by the generation of random

FIG. 11. DPA enables thermalization of L = 6 lattices, even
when these are hard for the PA algorithm. Histograms of g0 and
Neff/R obtained by solving, by both PA and DPA, a total of Ndis =
1000 different disorders of L = 6 RFW lattices, with bonds randomly
distributed according to a normal distribution. Simulations using
the same amount of random numbers (left) and of MCMC updates
(right). Crosses in the bottom panels mark these instances that PA
finds the hardest (red), and how these same instances score in DPA
(orange).

numbers, but centered between the two methods when re-
stricted by the amount of MC updates.

We finally study in Fig. 13, as in the case L = 4, a collec-
tion of instances that PA finds hard, and we obtain a similar
value of g0 with both methods. Again, we use an increasingly
adiabatic process in PA to see how much more computational
power would be necessary to get results comparable to those
obtained with PA. In this case, DPA achieves an equivalent
performance to PA with about between 2 and 5 more compu-
tational investment (in terms of W , Eq. (24)), depending on the
instance. We note a more linear behavior of the family entropy
with NT than in Fig. 13, probably because the considered
values of NT are not big enough. This indicates that L = 6
is at the limit of our numerical capabilities.

3. L = 8

To study hard EA disorders on big lattice sizes for which
a proper thermalization is not guaranteed, one classically re-
lies on running many times the same instance independently.

144202-11



DAVID CIRAUQUI et al. PHYSICAL REVIEW B 109, 144202 (2024)

FIG. 12. DPA provides on average higher family entropies than
PA when solving L = 6 lattices. Comparison of results obtained by
PA and DPA for L = 6 RFW lattices for the three measured pa-
rameters. From top to bottom: ground-state energy, g0, and effective
number of surviving families. Simulations using the same amount of
numbers (left) and of MCMC updates (right). Black crosses mark
these instances that PA finds the hardest.

We apply this methodology to L = 8 RFW lattices with Gaus-
sian disorder to test how both algorithms perform. Concretely,
we study 20 different disorder instances and run each of them
50 times with each algorithm, considering the computational
work limited by the amount of MC updates (second discussed
scenario in the previous sections). As the systems are not ther-
malized, we only focus here on the minimum energies per spin
found during the simulations, emin, and not on the previously
discussed metrics. Contrary to what should be expected from a
thermalized system, none of the algorithms clearly converges
to the same energy among different runs for a given disorder.
In fact, when studying it with PA, for 11 out of the 20 studied
cases the same minimum energy was not found in any of the
runs. For 4 of them the minimum energy was found twice, for
2 of them four times, and only for the 3 easiest ones was it
repeatedly found six times. In Fig. 14 we show, for one of the
three easy studied instances (top panel) and for one of the 11
hard ones (bottom panel), the minimum energies found among
independent runs by each algorithm.

On the one hand, we observe that the spread of the mini-
mum energies found among several runs of the same disorder
tends to be larger with DPA than with PA, probably due to
the larger configurational space caused by the introduction
of topological defects. On the other hand, when comparing

FIG. 13. Hard cases on PA require more adiabatic annealing
processes to reach an equivalent family entropy to DPA. Study of
the amount of computational power that would have to be invested to
solve L = 6 RFW lattices with PA, in order to obtain a similar final
family entropy as with DPA, for hard instances for which gPA

0 ≈ gDPA
0 .

Error bars are standard deviations over Nrep = 100 repetitions of
the same process at each value of NT . Square markers are obtained
with DPA and triangle ones with PA using an increasing number of
temperature steps. Each color indicates a different disorder.

FIG. 14. Both algorithms have a low convergence ratio to the
same minimum energy state among independent runs. Upper panel:
example of an easy case for which both algorithms find the same
solution after running it several times (both PA and DPA show a
convergence ratio of 12%). Bottom panel: example of a hard case
for which both algorithms completely fail to converge towards any
minimum energy state, and for which DPA finds the best solution
between the two.
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FIG. 15. DPA finds lower-energy states. When studying nonther-
malized RFW L = 8 lattices, DPA is generally able to find lower
energies than PA using the same computational resources (in the
same amount of MCMC updates scenario). Results obtained after
solving 20 different disorder instances, 50 times each with each
algorithm.

the minimum energy found with both algorithms, we observe
that DPA generally performs better, yielding lower energies
(see Fig. 15, the “tie” cases contain easy disorders). The fact
that DPA generally finds states with lower energies when
solving hard instances for which thermalization is poor (or,
equivalently, for which no convergence to the same solution
is achieved) indicates that the proposed nonlocal moves are
indeed useful to explore energy landscape in hard disorder
instances, effectively allowing the system to escape local
minima.

C. Family entropy-preserving steps in PA

To further test the effectiveness of the newly introduced
nonlocal moves, we implement the family entropy-preserving
adaptive steps in PA. We use the same parameters used in the
simulations of previous sections and find the results shown in
Fig. 16 for L = 4 (left panels) and L = 6 (right panels). While
the adaptive steps are again able to generally impose a cutoff
value on the final family entropy, the obtained g0 is quite
worse than in regular PA. For L = 6 lattices the cutoff is actu-
ally not achieved for some disorders, some of which are even
seen as easy (obtaining a high value of Neff) by PA. This fact
suggests that different annealing schedules may make PA find
hard or easy different instances. More noticeably, the adaptive
steps make PA fail to find the same ground state than when
using the standard annealing schedule in some L = 6 cases.
We therefore conclude that the entropy-preserving annealing
steps are not effective by themselves when restricted to a one-
dimensional annealing space, and thus the nonlocal moves
must be the reason why DPA is able to improve thermalization
of hard instances, as seen in previous sections.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we introduced a method, inspired by the
toric code, for exploring the rugged energy landscape of 2D
random-bond Ising and 3D random plaquette gauge models
based on creation, movement, and annihilation of topological

FIG. 16. The entropy-preserving steps are not optimal in stan-
dard PA. For L = 4 (left panels) and L = 6 (right panels) RFW
lattices, the adaptive steps procedure is not effective when the pa-
rameter space is reduced to only temperature. Black crosses mark
the disorders that normal PA finds the hardest to solve.

defects. The advantages of this approach are as follows: (i)
from the point of view of the original phase space of the
models, the effect of the dynamics of the topological defects
is equivalent to nonlocal moves, which allow the system to
overcome energy barriers that other exploration strategies
based on thermal fluctuation or tunneling do not, and (ii)
topological defect moves are compatible with massively par-
allel implementations. The disadvantage of this approach is a
substantial enlargement of the phase space in the early stages
of simulation.

We implemented this method in a state-of-the-art pop-
ulation annealing algorithm by adding moves related to
topological defects and an extra field parameter in the Hamil-
tonian, κ , which energetically penalizes them. The presented
defect driven population annealing (DPA) algorithm utilizes
annealing in a two-parameter space: the temperature and the
κ , where starting temperature may now be arbitrary. This
offers additional application flexibility, but leaves the anneal-
ing path undetermined. To this end, we devised a family
entropy-preserving adaptive step procedure that effectively
navigates the (β, κ )-space in order to drive the replica pop-
ulation towards an objective value of final family entropy.
The merging of more advanced annealing schemes such as
culling fraction with the exploration of the two-dimensional
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annealing parameter space leaves room for improvement,
which we leave as a possible extension of this work.

We have tested the algorithm on the 3D random plaque-
tte gauge model, as the 2D random bond Ising model lacks
numerically hard disorder cases. We leave the problem of
algorithm performance in the 2D random bond Ising model
for future study. The ground-state problem of the 3D RPGM
with Gaussian disorder was solved in a representation we
named the random field wall model, using standard PA as a
benchmark. We found that the RFW model is substantially
more numerically demanding than the 3D Edwards-Anderson
model, which limited our thorough simulations to lattice sizes
L = 4 and 6. Bigger lattices have been explored, but we leave
its thorough study for a future extension of the present work.
The results for DPA on those lattices have shown that it is
capable of improving thermalization in comparison with PA,
effectively avoiding running out of family entropy even for the
hardest disorder instances.

When focusing on the instances that PA finds the hard-
est, we have been able to observe that DPA can be superior
to regular PA with a computational investment 2–16 times
higher, approximately, depending on the case. Yet sometimes
DPA trades improvement of family entropy for a decrease
in g0 metric. Finally, when studying hard cases for which
thermalization is not properly achieved, the proposed nonlocal
moves still show an advantage in overcoming energy barriers
and thus yield lower energies. It is also worth noting that
the results are greatly improved when a fast enough random
number generator is used, such that the Monte Carlo updates
themselves constitute the real bottleneck for the simulations
and thus the fair measure of the computational work invested.
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