
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Informatics

On the exploration of Deep Reinforcement Learning in
Stock Trading through the framework FinRL

End of Degree Project

Bachelor's Degree in Informatics Engineering

AUTHOR: Marugán Rubio, Carolina Alba

Tutor: Onaindia de la Rivaherrera, Eva

Cotutor: Aso Mollar, Ángel

ACADEMIC YEAR: 2023/2024

Resum
Prendre decisions financeres informades requereix temps i coneixement. Recursos

que no tothom té. A més, les persones, les famílies i les empreses són unitats de despesa
que necessiten mantenir l’estabilitat financera per superar els temps d’emergència. Ai-
xò vol dir que part de la població pot necessitar recursos monetaris addicionals però no
té la capacitat d’obtenir-los. Aquest treball ofereix una solució a aquest problema: una
eina per assessorar les unitats de despesa sobre com operar a curt termini en el mercat
financer (trading). El paradigma proposat per fer-ho és l’aprenentatge de reforç profund.
En primer lloc, es realitza una anàlisi de diferents algorismes i modelització d’aprenen-
tatge per reforç. Això es fa per tal d’identificar si existeix una diferència significativa en
l’ús d’uns indicadors financers o d’altres, i si l’agent té un millor rendiment utilitzant
més o menys indicadors financers. A partir dels resultats de l’anàlisi, s’escull la millor
combinació d’indicadors financers per construir un sistema que incorpori les aportacions
de tres algorismes diferents, oferint una solució que sintetitza els resultats de tots ells.
Aquest projecte proposa una aplicació que simula un robot d’aprenentatge de reforç que
pren com a entrada la quantitat de diners que té l’usuari i està disponible per negociar, el
nombre d’accions que ja posseeix, els preus de les accions al mercat financer i els indica-
dors financers. Aleshores, el robot emet les operacions recomanades que donen a l’usuari
la millor rendibilitat. Aquesta aplicació es pot personalitzar segons les circumstàncies de
l’usuari. La biblioteca FinRL dóna suport al desenvolupament d’aquesta solució.

Paraules clau: Aprenentatge de reforç, FinRL, agent, entorn, finances, estoc, indicadors
tècnics, algorisme

Resumen
Tomar decisiones financieras informadas requiere tiempo y conocimiento. Recursos

que no todos poseen. Además, los individuos, las familias y las empresas son unidades
de gasto que necesitan mantener la estabilidad financiera para superar tiempos de emer-
gencia. Esto significa que parte de la población podría necesitar recursos monetarios adi-
cionales pero no tiene la capacidad de obtenerlos. Este trabajo ofrece una solución a este
problema: una herramienta para asesorar a las unidades de gasto sobre cómo operar a
corto plazo en el mercado financiero (trading). El paradigma propuesto para hacerlo es el
aprendizaje por refuerzo profundo. En primer lugar, se realiza un análisis de diferentes
algoritmos y modelados de aprendizaje por refuerzo. Esto se hace con el fin de identificar
si existe una diferencia significativa en el uso de unos indicadores financieros u otros, y si
el agente se desempeña mejor usando más o menos indicadores financieros. Con base en
los resultados del análisis, se elige la mejor combinación de indicadores financieros para
construir un sistema que incorpora las contribuciones de tres algoritmos diferentes, ofre-
ciendo una solución que sintetiza los resultados de todos ellos. Este proyecto propone
una aplicación que simula un robot de aprendizaje por refuerzo que toma como entrada
la cantidad de dinero que posee el usuario y está disponible para negociar, la cantidad de
acciones que ya posee, los precios de las acciones en el mercado financiero e indicadores
financieros. Luego, el robot genera las operaciones recomendadas que brindan al usuario
la mejor rentabilidad. Esta aplicación se puede personalizar según las circunstancias del
usuario. La biblioteca FinRL respalda el desarrollo de esta solución.

Palabras clave: Aprendizaje por refuerzo, FinRL, agente, entorno, finanzas, acciones, in-
dicadores técnicos, algoritmo

Abstract
iii

iv

Making informed financial decisions takes time and knowledge. Resources that not
everyone possesses. In addition, individuals, families, and firms are expense units that
need to maintain financial stability to overcome emergency times. This means that part of
the population might need additional monetary resources but does not have the ability to
obtain them. This work offers a solution for this problem: a tool to advise expense units
on how to trade. The proposed paradigm to do so is Deep Reinforcement Learning. First,
an analysis of different Reinforcement Learning algorithms and modeling is carried out.
This is done in order to identify whether it exists a significant difference in using some
financial indicators or others, and if the Agent performs better using more or less financial
indicators. Based on the analysis results, the best combination of financial indicators is
chosen to build a system that incorporates the contributions of three different algorithms,
offering a solution that synthesizes the outputs of all of them. This project proposes an
app that simulates a Reinforcement Learning robot that takes as input the amount of
money the user owns and is available for trading, the number of shares they already
own, the stock prices in the financial market, and financial indicators. The robot then
outputs the recommended trades that give the user the best profitability. This app is
customizable to the user circumstances. The FinRL library supports the development of
this solution.

Key words: Reinforcement Learning, FinRL, Agent, Environment, Finance, stock, tech-
nical indicators, algorithm

Contents

Contents v

List of Figures vii

List of Tables vii

1 Introduction 1

1.1 Motivation . 1
1.1.1 Personal Motivation . 1
1.1.2 Professional Motivation . 2

1.2 Main Goals . 3
1.3 Expected Impact . 3
1.4 Structure of this work . 3

2 Background 5

2.1 Reinforcement Learning . 5
2.2 Financial Background . 8
2.3 Deep Reinforcement Learning in Finance 11
2.4 Technological Context . 12

3 Proposed Solution: FinRL 13

3.1 Problem Statement . 13
3.2 FinRL . 13
3.3 Solution Design . 18

4 Analysis and User App 21

4.1 Analysis . 21
4.1.1 Training . 21
4.1.2 Testing . 24

4.2 User App . 28
5 Conclusions and Future work 31

Appendices
A Training Results Statistics 33

Bibliography 43

B Sustainable Development Goals 47

v

List of Figures

2.1 Basic schema of RL . 5

3.1 AI4Finance Foundation [6] FinRL layered architecture 14
3.2 AI4Finance Foundation [6] Fine tuning training process 15
3.3 AI4Finance Foundation [6] FinRL file architecture 15
3.4 Main used methods and classes from FinRL that interact in our solution

(environment and robot pictures generated with GPT) 17
3.5 AI4Finance Foundation [6] problem construction in FinRL 18

4.1 A2C and PPO Reward curve drop . 22
4.2 TD3 and DDPG training stats: flat reward, Actor and Critic loss training

statistics . 23
4.3 A2C and PPO entropy loss progressive decay 24
4.4 DJIA price evolution for testing dates . 24
4.5 DJIA Account Value evolution for testing dates 25
4.6 Account value evolution throughout Test period in each set and each algo-

rithm . 25
4.7 Account value evolution throughout Test period in each set and each algo-

rithm . 26
4.8 Robot App Main Page . 28
4.9 User individual parameters . 29
4.10 Robot Advisor Recommendation examples 30
4.11 Robot Advisor Warning Error Boxes . 30

A.1 A2C Training Results . 33
A.2 A2C Training Results . 34
A.3 A2C Training Results . 35
A.4 DDPG Training Results . 36
A.5 TD3 Training Results . 37
A.6 SAC Training Results . 38
A.7 PPO Training Results . 39
A.8 PPO Training Results . 40
A.9 PPO Training Results . 41

List of Tables

3.1 Abbreviation of used technical indicators for every set in the training . . . 19

4.1 Parameters for the Agent in the training . 22

vii

viii LIST OF TABLES

4.2 Environment trading parameters in the training 22

CHAPTER 1

Introduction

Stock trading is a financial resource to get profitability from monetary sources. In other
words: allocating resources where they are most effective [43]. There is a positive corre-
lation between the risk the investors assume and the return they obtain. This means that
even though stock trading has a higher return than other financial operations, it also has a
higher risk. Careful analysis of each transaction is needed. Prediction is used for decision
making on where and how much to invest, and it is normally based on information such
as stock price historical data, accounting information of the firm, macroeconomic and sta-
tistical indicators, the news, and other technical information. When all the information is
gathered, the decision is made and an action is taken.

In this work, we focus on the use of stock price historical data, financial indicators
and customizable trading parameters to aid short term investors in finding an optimal
trading strategy.

Historically, difficult tasks have been assigned to computers to reduce error margin
and increase precision. Why not assigning this task to an algorithm and decide where
and when to trade? Several years ago, humans were replaced by computers when quick
trading decisions and quantitative analysis were needed. A computer could perform
calculations faster than a human.

This work proposes Deep Reinforcement Learning (DRL) as the method to train an
intelligent agent that will learn to trade based on historical trading data. By the end of the
training, the agent should be capable of advising the user in which stocks to invest, given
the personal economic circumstances of the user and personal preferences. In order to do
this, an analysis of different modeling and different DRL algorithms will be carried out.
We propose an automated tool to manage stock portfolio and optimise financial investing
to obtain the best return. If the goal for the spending units is getting profitability from
their current money, this tool would save them time, and could also be used by those
who did not have an advanced financial or programming knowledge level.

All the code used for the development of this project can be found at Codecamaru
[13] on GitHub.

1.1 Motivation

1.1.1. Personal Motivation

Pursuing a dual degree in Informatics Engineering and Business Management and Ad-
ministration, I have been keen to dive deeper into this intersection of these two fields.

1

2 Introduction

When doing a low level implementation of the software classes that define the envi-
ronment of a Reinforcement Learning (RL) problem, every class needs to be adapted to
the specific characteristics of the scenario. With such a complex environment as the stock
market, I was really curious to understand the object model design that could make the
system work.

Moreover, I was intrigued by the possibility of developing an intelligent agent within
this framework. My goal was to explore whether an agent could learn to operate success-
fully in the stock market, thereby integrating my dual interests in technology and finance
to address real-world challenges.

1.1.2. Professional Motivation

Spending units can save their money by placing it in a bank account and obtain a low
rate return in the best case as well as convert the money into another financial asset that
allows for a higher rate return in the best case. In the past six years, bank deposit interest
rates have not reached the one percent [14]. This does not allow the spending units for
a sufficient amount of savings to meet their financial needs. Most of the companies and
12.33% of the families invest in stock trading [12]. Family spending units can benefit from
financial investing to cushion emergency times such as a decrease or loss of income or an
increase in debts [30], and most of the firms manage their financial structure in order to
obtain the maximum possible profitability [11]. Therefore, it seems reasonable to provide
them with a suitable tool that has the right strategy to do so.

Quantitative analysts, also known as Quants, develop mathematical models that pre-
dict market movements. They use statistical techniques to analyze historical data and
identify trading opportunities, and apply quantitative methods to manage and mitigate
financial risks. The algorithms they design execute trades based on predefined criteria.
These algorithms can process a vast amount of market data at high speeds to make trad-
ing decisions faster than human traders. These models are essential for making informed
trading decisions and for the valuation of financial instruments. Nonetheless, most of
the quantitative analysis techniques are not based on RL. We want to know if RL can
play a part in this process and we propose a similar study in the efficiency of different
algorithms with an RL methodology to do so.

The RL paradigm comprises controlling a system so as to maximize a numerical per-
formance measure [37]. Similarly, effective investing in stock markets, as well as in other
financial assets, aims to maximize profits. It is promising to conduct research into this ap-
plication of DRL methods in Finance. This project will focus on the utilization of DRL in
stock exchange. DRL applied to Finance has gained attention in the past couple years, but
it is not one of the most explored fields. It seems only reasonable and interesting to dive
deeper into this spectrum. Stock markets are increasingly complex and have dynamic
properties. Financial data contains noise and has a non-stationary condition, so inflexi-
ble trading strategies will not succeed. Instead, the dynamical nature of Reinforcement
Learning seems suitable to meet this demand [43].

Furthermore, every technical indicator serves a different trading objective, but there
are many similar ones. A technical indicator is a mathematical formula applied to the
pricing information of an asset. There are many formulas to measure different infor-
mation on the data. We want to understand how different combinations of technical
indicators on the RL modeling impact on the performance of the trading agent.

1.2 Main Goals 3

1.2 Main Goals

The main objectives of this work can be summarized as follows:

• To train several RL agents with different modeling of technical indicators and de-
termine if they can learn how to trade.

• To analyse the differences in training and testing among the different modeling.
• To detect if there is a specific combination of technical indicators with which the

agent has a better performance.
• To build a basic program that gives trading advice to users without programming

or financial knowledge.

1.3 Expected Impact

In this project, we recommend DRL as a solution for the creation of trading strategies.
By automating the process, a considerable amount of time could be saved in the decision
making process.

There are two potential users: an individual who is willing to trade, and a company
that needs to manage its portfolio through short term investments.

This tool would make financial advise available for many users. Democratising in-
vestments in this way and contributing to the eighth Sustainable Development Goal:
“Decent Work and Economic Growth” [29]. According to Global Goals [20]: "Economic
growth should be a positive force for the whole planet. This is why we must make sure
that financial progress creates decent and fulfilling jobs while not harming the environ-
ment. [...] If we promote job creation with expanded access to banking and financial
services, we can make sure that everybody gets the benefits of entrepreneurship and in-
novation". Our tool could enhance family economies and ease their access to finance.

1.4 Structure of this work

The content of each chapter is described as follows:

• Chapter 2 provides a comprehensive overview of the essential concepts necessary
to understand the project, covering both financial aspects and reinforcement learn-
ing background. It also reviews the state of the art and technologies similar to the
tool we employ.

• Chapter 3 details our problem statement more explicitly. It presents a thorough
description of the proposed tool, FinRL, and outlines our solution design.

• Chapter 4 explains the training and testing processes we undertake, as well as the
conceptualization and development of the application we create.

• Chapter 5 presents the conclusions we draw regarding the use of Deep Reinforce-
ment Learning in finance. It also discusses the challenges we face and potential
future lines of work.

CHAPTER 2

Background

This chapter presents a Reinforcement Learning (RL) background that is important to
understand the subsequent content of this work and will also discuss the current Deep
Reinforcement Learning in Finance state of the art. Additionally, after the RL background
section, another one is dedicated to explain financial concepts such as technical indicators
in order for the reader to understand the rest of this work. The reader, though, does not
need to understand all the formulas to be able to follow the rest of the work.

2.1 Reinforcement Learning

RL aims to make an agent learn by evaluating its behaviour. The agent starts the training
at a certain instant t and keeps taking actions that lead to different scenarios. It differs
from other types of learning because it does not make the agent learn by giving instruc-
tions [36]. Rather, the agent learns by trial-and-error, balancing exploration and exploita-
tion. The former is about discovering potentially better solutions by randomly picking
the next action. The latter is about utilizing the current knowledge to choose the action
that maximises the reward at that time step.

An RL problem is defined by a sequence of random variables representing obser-
vations Ot 2 {O1, O2, ..., On}, actions At 2 {A1, A2, ..., Ak}, and rewards Rt, which are
generally defined by a function. There are two entities: agent and environment. They
both interact at every time step. At each step t the agent executes an action At that the
environment receives. For this action, the environment produces an observation Ot+1
and a reward Rt+1 that the agent will receive at the next step [33]. In other words, the
environment assigns a score (how good the performance was) to the chosen action given
the current environment state. Every agent-environment iteration is considered a step.
Along the steps, the agent will try to maximize the reward.

Figure 2.1: Basic schema of RL

5

6 Background

Markov Decision Process

The formal definition of the aforementioned RL problem is generally described as a
Markov Decision Process (MDP), which is a tuple hS, A, P, R, gi described as follows:

• S = {s1, ..., sj} is a set of states

• A = {a1, ..., ak} is a set of actions

• P is a state transition probability function that given a state S and an action A to
apply to that state S, it returns a value that belongs to the real numbers.

• R is a reward function that follows the equation: Ra
s = E[Rt+1|St = s, At = a]

• A discount factor g 2 [0, 1] that weights the value of future rewards

Gamma g is used to define the total discounted reward Gt:

Gt = Rt+1 + gRt+2 + g2Rt+3 + ... =
•

Â
k=0

gkRt+k+1

The ending goal of RL is to maximise the expected total discounted reward Gt. Depend-
ing on the value assigned to g, little or great importance will be given to future rewards;
leading to myopic or far-sighted evaluation when near zero or one, respectively.

The policy p defines the behaviour of the agent by a distribution over actions given
states [33]: p(a|s) = P[At = a|St = s]. It maps the action of a state. It can be deterministic
a = p(s) or stochastic p(a|s) = P[At = a|St = s].

The state value function v(s) is the expected return Gt of a state. When following a
policy p, the state value function vp(s) = Ep[Gt|St = s] can be defined by the Bellman
equation as follows [37]:

Vp(x) = r(x, p(x)) + g Â
y2S

P(x, p(x), y)Vp(y); where x 2 S

The optimal state value function satisfies the Bellman Optimality equation for V⇤(x):

V⇤(x) = max
a2A

(
r(x, a) + g Â

y2S
P(x, a, y)V⇤(y)

)
; where x 2 S

The action value function qp(s, a) is the expected return Gt of taking an action, from a
state, and following a policy: qp(s, a) = Ep[Gt|St = s, At = a]. The optimal action value
function is therefore defined as the maximum q⇤(s, a) over all policies.

The training of an RL agent usually starts with a high rate of exploration that will
decay along the way.

We talk about evaluating a policy when the expected total discounted reward is given
from a state and following a policy: vp(s) = P[Gt|St = s]. On the other hand, improving

the policy means updating the policy towards the optimal one p⇤, which is following a
greedy strategy with respect to vp. The process of alternating between policy evaluation
and policy improving is known as policy iteration [37][33].

2.1 Reinforcement Learning 7

RL methods

There are three types of methods: critic-only, actor-only, and actor-critic.

Critic-only methods involve learning a value function which estimates how good it
is to be in a given state. Actor-only methods directly learn the policy that maps states
to actions without explicitly modeling the value of each state-action pair. Actor-critic

methods implement policy iteration and combine critic-only and actor-only [37]. The
actor updates policy parameters in direction suggested by the critic and the critic updates
the action value function parameters [33].

Therefore, to find the optimal policy, there are two methods: value-based and policy-
based [21]. Policy-based methods do not use a value function, but rather directly train
the policy to find the optimal one. With so, starting from a state, the policy p(s) will
give an action (or a probability distribution of the actions) from that state. Value-based

methods train a value function. Given a state s, we compute qp(s, a) for every possible
action from that state. This gives state-action pairs. Since we do not train the policy, we
need to specify the behavior. If maximizing reward is preferred, the highest value pair
will be the chosen action.

Temporal Difference (TD) learning updates the value function or policy after an
episode. Monte Carlo learning waits for the end of the episode to do so [40].

Algorithms

A2C stands for Advantage Actor Critic [38]. It uses the actor-critic method, combining
value-based and policy-Based methods, and a function called the Advantage function as
Critic, instead of the action value function. This helps stabilizing the training by reducing
the variance that arises when using Monte-Carlo sampling to estimate return. This is
due to the many possible and different expected returns given a state. The Advantage
function is defined as: A(s, a) = q(s, a)� v(s). This is the relative advantage of an action
with respect to all the other possible ones from that state. Furthermore: if A(s, a) > 0, the
gradient will be adjusted so that a is favorable; if A(s, a) < 0 the gradient will be adjusted
so that a is less favorable.

It is empirically known that to converge to an optimal policy, smaller policy updates
are better [39]. In addition, having policy updates in steps that are too big can lead to
worse policies, enlarging the time to recover. Proximal Policy Optimization (PPO) im-
proves training stability by avoiding policy updates that are too large. We want to limit
the change in the policy at each training epoch. The idea is to clip the ratio of change
from the old policy to the current policy. The ratio function is:

rt(q) =
pq(at|st)

pqold(at|st)

With this, the ratio rt(q) is clipped in [1� e, 1+ e], where e is a constant. Note that the full
set of equations was not provided in order to simplify the concept behind the algorithm.

Deep Deterministic Policy Gradient (DDPG) is an algorithm which concurrently
learns a Q-function (action value function) and a policy [31]. It uses off-policy data (in-
formation about the environment that is collected from a different policy than the one
currently being learned) that can only be used for environments with continuous action
spaces. It uses an experience replay buffer. This is the set D of previous experiences
so that the agent has stable behavior [31] (we randomize samples to avoid correlation).
In Deep Q-Networks (DQN), two neural networks are used. One to approximate the Q
value of the current pairs of state and action in t, and another network with fixed param-

8 Background

eters for the Q values of the pairs in t + 1 (in order to estimate the Temporal Difference
target). The second network can be updated every certain number of steps, but it is just
copied over from the main network. We minimize the loss function:

Li(wi) = Es,a,s0 [(r + g⇥maxa0Q(s0, a0; w�i)�Q(s, a; wi))
2]

The second network previously mentioned is the term Q(s0, a0; w�i) and the term r + g⇥
maxa0Q(s0, a0; w�i) is the target. But in DDPG, the target network is updated as follows
(which is known as polyak averaging):

ftarg rftarg + (1� r)f; where r 2 [0, 1]

TD3 means Twin Delayed DDPG. It is an off-policy algorithm and can only be used
for environments with continuous action spaces, as does DDPG. It adds three main fea-
tures. It learns two Q-functions (action value functions) instead of one (hence “twin”)
[42], updates the policy less frequently than the Q-function, and adds noise to the target
action. The latter is done to make it harder for the policy to exploit errors, and it is called
target policy smoothing.

Soft Actor Critic (SAC) is an off-policy algorithm that optimizes a stochastic policy.
It incorporates the double action value function learning. SAC adds to the state value
function a term that measures the entropy (which indicates the information or learning
that the agent has). In this way, it evaluates the randomness in the policy (the balence of
exploration-exploitation). The entropy is inversely proportional to the information, and
directly proportional to the exploration, in our case. With this, the policy is trained to
maximize a trade-off between expected return and entropy [41].

2.2 Financial Background

Often, when deciding to make an investment, a cost of opportunity is measured. As
an example, the reader can imagine an individual with 100 euros. This money can be
invested with an interest rate of return i that can vary depending on the asset (whether
it is a bond, stock, a derivative...). The interest rate determines the value of an initial
amount of money at the end of a period of time. Its value depends on the length of the
period of time taken as reference. With an annual interest rate ia, after a year, the initial
amount will be worth V = 100 ⇥ (1 + ia). Therefore, the cost of opportunity that the
individual needs to measure when deciding whether to invest is the offered interest rate
in the market.

Similarly, to calculate the current value at time t of future cash flows (money that will
be received in the future), we adjust the future value based on the current offered interest
rate in the market, so that the adjustment truly reflects the actual cost of opportunity. For
a yearly future cash flow of 100 euros during four years, the current value would be:

V =
100

(1 + ia)
+

100
(1 + i2

a)
+

100
(1 + i3

a)
+

100
(1 + i4

a)

This adjustment has a discount effect on the future cash flows, similar to the total dis-
counted reward equation Gt.

The interest rate is often bounded with the concept of profitability, because once the
asset’s future value V 0 is known, profitability can be computed as follows:

Pro f itability =
V 0 �V

V
⇤ 100

2.2 Financial Background 9

Technical Indicators

A technical indicator consists of data points generated by applying a specific formula to
the pricing information of a security. This pricing information may comprise any com-
bination of the opening price (open), highest price (high), lowest price (low), or closing
price (close) over a designated time frame [35]. The following is the explanation of the
technical indicators that we use for the comparative model analysis.

A Moving Average (MA) is a time series formed by computing the averages of suc-
cessive segments from another time series [23]. A Simple Moving Average (SMA) is
given by:

SMA =
A1 + A2 + ... + An

n

where An is the price of an asset at period n and n is the number of total periods. The
Exponential Moving Average (EMA) is computed as:

EMA = Price(t)⇥ k + EMA(t� 1)⇥ (1� k)

being k = 2
(n+1) and n the number of days in EMA. A variation is the Triple Exponential

Moving Average (TEMA), given by:

TEMA = (3⇥ EMAt)� (3⇥ EMAt�1) + EMAt�2

The Volume-Weighted Average Price (VWAP) is calculated by dividing the total traded
dollars for every transaction in the day by the total shares traded:

VWAP =
Â(TP⇥ volume)

Â volume

where typical price (TP) is TP = high+low+close
3 of the session.

Bollinger Bands consist of three lines: middle, upper and lower. The middle band
is typically the simple moving average (SMA) of the closing prices over a set number of
periods. The upper band is typically calculated by adding two standard deviations to the
middle band. The lower band is calculated by subtracting two standard deviations from
the middle band.

The Relative Strength Index (RSI) is a momentum oscillator that quantifies the ve-
locity and magnitude of price changes [16]. The formula is:

RSI = 100� 100

1 + Avg.UpwardPriceChange
Avg.DownwardPriceChange

Stochastic RSI (StochRSI) gives traders an idea of whether the current RSI value is
overbought (the price of an asset is considered too low relative to its usual levels, usually
when StockRSI is 70) or oversold (the price of an asset is considered too low relative to
its usual levels, usually 30).

StochRSI =
RSI �min[RSI]

max[RSI]�min[RSI]

True Range (TR) formula is given by:

TR = max[(high� low), |closet�1 � high|, |closet�1 � low|]

10 Background

The Average True Range (ATR) simply consists of computing a moving average of the
already computed TR values over a period of time.

The Average Directional index (ADX) is used to determine the strength of a trend.

ADX =
ADXt�1 ⇥ (n� 1) + DXt

n

where DX = |(+DI)�(�DI)|
(+DI)+(�DI) , +DI = smoothed(hight�hight�1)

ATR , �DI = smoothed(lowt�lowt�1)
ATR , and n

is the number of periods to consider.

The Z-Score (Z) indicator can be computed as z = X�µ
s .

The Awesome Oscillator (AO) is used to anticipate trends:

AO = SMA(MedianPrice, 5)� SMA(MedianPrice, 34)

being 5 and 34 the number of periods in SMA, and MedianPrice = High+Low
2 .

Williams Overbought (WO) measures overbought and oversold levels WO 2 [0,�100].
It tries to find entry and exit points in the market over the fixed period.

WO =
Highest� Closet

Highest� Lowest

The Percentage Price Oscillator (PPO) helps in comparing asset performance and
volatility, and in confirming trend direction. It is usually calculated as:

PPO =
EMA12period � EMA26period

EMA26period

Supertrend indicator determines the trend direction of a market asset. It combines
the concepts of volatility and price movements to provide a comprehensive view of the
market conditions. It is composed by two bands:

upper =
high + low

2 + (k⇥ ATR)

lower =
high + low

2� (k⇥ ATR)

where k is a sensitivity parameter.

Choppiness Index (chop) measures market stability.

chop =
log10(

Ân
i=0 ATR

HighnPeriods�LownPeriods
)

log10(N)

The Commodity Channel Index (CCI) determines whether an asset is reaching the
condition of overbought or oversold. It helps traders decide on next action step: exit or
exit a trade.

CCI =
TP�MA

0.15⇥MeanDeviation

The Triple Exponential Average (trix) shows the percentage change in a three times
exponentially smoothed MA [24].

Our study turns around a specific stock market index, which is a statistical mea-
surement system that shows the evolution of stock prices over time relative to a baseline

2.3 Deep Reinforcement Learning in Finance 11

date. The index that we use for our analysis is the Dow Jones Industrial Average (DJIA),
commonly known as the Dow Jones 30 (or Dow-30). It is a price-weighted index that rep-
resents the stock performance of thirty large, publicly-owned companies based in the
United States. This means that companies with higher stock prices have more influence
on the index’s performance, unlike most major indices which are market-capitalization
weighted.

The ticker is commonly known as the abbreviation of the names of companies. They
are are unique identifiers made up of letters, numbers, or a combination of both, assigned
to publicly traded shares of a particular stock on a particular stock exchange. These
symbols are used to facilitate the clear and quick identification of companies on stock
tickers, trading platforms, and financial reporting. For example: AAPL for Apple Inc.,
GOOGL for Alphabet Inc. (Google), or MSFT for Microsoft Corporation.

2.3 Deep Reinforcement Learning in Finance

Deep Reinforcement Learning (DRL) applied to Finance has proven good results in previ-
ous studies. It has been used for stock price prediction or return prediction and portfolio
optimization.

As demonstrated by Yu and Li [48], Long Short Term Memory (LSTM) networks can
effectively forecast stock price index volatility. Similarly, Huynh et al. [22] have proposed
a novel model for predicting stock price movements using deep neural networks. By
including DQN and Policy Gradient methods to forecast stock price movements and ex-
ecute trades that maximize financial returns, Li [27] results show that DRL models can
outperform traditional quantitative and algorithmic strategies, providing a novel toolset
for financial analysts and traders. Yang et al. [47] combine three actor-critic based algo-
rithms to form an ensemble strategy aimed at maximizing investment returns. The en-
semble approach is designed to leverage the strengths of each algorithm, enhancing the
robustness and adaptability of the trading strategy to various market conditions. Jiang
et al. [25] introduce a DRL model that addresses the portfolio management problem by
trading multiple assets in a financial market. The model uses a convolutional neural
network (CNN) to capture the temporal patterns among different assets. Wu and Fujita
[43] proposes Gated Recurrent Unit (GRU) to summarize the market conditions from raw
data and technical indicators of stock markets, and critic-only Gated DQN and actor-critic
Gated Deterministic Policy Gradient (GDPG) to make trading decisions.

The inconvenience of using DRL models in finance is the practical implications of de-
ploying such RL models in real-world trading scenarios that are the need for continuous
learning due to market and data evolution, which is discussed by Jiang et al. [26].

Especially when combined with other methods from Deep Learning such as fea-
ture extraction from articles or sentiment analysis from documents, it can lead to ad-
ditional information and better accuracy with combined results. The latter combination
is useful to analyse the impact the press has in the stock prices when reporting about
new economic and company policies. Recurrent neural networks output a sequence
of vectors ht = (h1, h2, ..., hn) based on an input sequence of vectors xt, and a hidden
state (the previous one–hence it’s name ‘recurrent’) ht�1, computing the hidden state as
ht = g(Wxt + Uht�1 + b). They can be used for text recognition or sentiment classifica-
tion, but they frequently have exploding or vanishing gradients when dealing with great
amount of information, which hinders the training. To solve this, LSTM, which are a
type of recurrent network, incorporate a cell with three gates. The Forget gate will in-
dicate which information of the previous memory state is forgotten. The Input gate will
determine which new information to add to the current state. From all the information

12 Background

in the current state, the Output gate will compute which will be the output sequence.
GRU networks merge the forget and the input gates into a single one and are often faster.
Huynh et al. [22] introduced Bidirectional Gated Recurrent Unit (BGRU) networks, which
have two recurrent nets connected to the same output layer, to represent the left and the
right context of a sentence. They achieved higher accuracy with the BGRU than with
LSTM or GRU, training with Reuters and Bloomberg news to predict stock prices. Their
system performed better than the one that depended on historical prices only.

2.4 Technological Context

Gym-mtsim [10] is similar tool that generates RL simulations on stock markets. It is
specifically tailored to simulate the MetaTrader 5 trading platform [28]. It does not pro-
vide a general approach suitable for various trading platforms and data sources.

The nature of gym-mtsim extends beyond simple simulation; it is engineered to be a
multifunctional toolkit facilitating the entire trading process—from initial strategy testing
to detailed performance analysis with advanced visualization tools. The architecture of
gym-mtsim is composed of the following components: a simulation class that handles
the operational aspects of MetaTrader, and a custom Gym environment built on top of
MtSimulator. The latter is tailored for conducting reinforcement learning experiments
where trading decisions are modeled as actions within a defined state space. This tool
focuses on the ease of use and high code readability, aiming to democratize access to
sophisticated trading simulation tools.

AnyTrading [9] offers a suite of OpenAI Gym [15] environments designed for devel-
oping and testing RL algorithms aimed at trading. These trading algorithms are predom-
inantly used in the FOREX and stock markets. The primary goal of AnyTrading is to
enhance and simplify the process of creating and evaluating RL-driven trading strategies
through the provision of specific Gym environments. This objective is achieved by intro-
ducing three types of environments: TradingEnv (a generic environment), ForexEnv, and
StocksEnv (which inherit and extend TradingEnv).

Gym-anytrading primarily offers environments without extensive additional tools. It
serves as a foundational tool that can be expanded through user implementations and
extensions. It is only an environment provider; it does not include a full suite of tools
for data processing, feature engineering, trading strategy simulation, backtesting, and
deployment.

As for general purposes and applications other than finance, there are two well-
known open source libraries to simulate RL environments: Gymnasium [15] and Stable-
Baselines3 [34].

Stable Baselines is a popular library for RL that provides implementations of vari-
ous state-of-the-art RL algorithms, optimized for ease of use and efficiency. It is built
on top of machine learning frameworks like TensorFlow (Stable Baselines) and PyTorch
(Stable Baselines3). Its modular design allows users to customize and extend existing al-
gorithms. It has multiprocessing support, being able to train agents in parallel, speeding
up the training process. Users can save and load trained models.

CHAPTER 3

Proposed Solution: FinRL

3.1 Problem Statement

There exists a necessity for individuals to invest; however, making informed financial
decisions is both time-consuming and complex. Automating this process appears to be
a desired solution. As previously discussed, RL seems like a promising paradigm for
this matter. Consequently, the goal is to train RL agents to automate trading strategies,
which primarily focus on making decisions about where to trade and in what quantities.
Essentially, this involves determining whether to buy, hold, or sell stocks.

The ultimate objective is not to achieve a specific profitability or return, but rather to
enable the agent to learn trading strategies by identifying profitable opportunities and
acting accordingly. This involves managing a portfolio over time, using days as the basic
unit of time.

Much like a human trader, the agent begins with a set amount of capital (money
and/or owned stock). It must invest this capital wisely in the market by purchasing
securities (assets) and determining the optimal time to sell (liquidate) them, based on
data received from the environment. The trading objective is framed as a maximization
problem, where the effectiveness of the DRL trader is measured by the attainment of
positive rewards.

3.2 FinRL

We proceed to explain the framework we aim to evaluate as a potentially appropriate
tool for evaluating trading strategies and training agents that could automate trading.

AI4Finance [2] is a nonprofit organization that promotes AI in the financial industry.
It develops open source code libraries in which every student or professional can collab-
orate. Their three main open source projects are FinRL, FinGPT, and FinRobot. It can be
found at AI4Finance [2]. It is an educational resource.

Our focus remains in FinRL, which stands out by its accessibility and reproducibility.
FinRL [4] is a framework for financial RL. When it comes to modeling trading strategies
with DRL, it has two major advantages: portfolio scalability and market model inde-
pendence. The former means that the DRL framework can manage portfolios of various
sizes and complexities. For instance, it can manage different numbers of assets as inputs
(from small portfolios to larger ones), which makes it interesting for real-world applica-
tions, where portfolio sizes can vary greatly. Market model independence means that the
framework learns directly from the market data rather than making assumptions about

13

14 Proposed Solution: FinRL

market behavior such as normal distributions in the data. This potentially makes it more
flexible and robust to real market conditions. The library is developed in Python.

Figure 3.1: AI4Finance Foundation [6] FinRL layered architecture

The FinRL library is structured into three distinct layers: market environments, DRL
agents, and applications. The foundational layer offers APIs to the higher layers, en-
suring transparency and seamless integration. The agent layer engages with the envi-
ronment layer through a balance of exploration and exploitation strategies, as shown in
Figure 3.5. As can be seen in Figure 3.1, the layers are separated in modules that serve
for different purposes, allowing for better adaptability by programmers.

The specific market environment development tries to accurately mimic live stock
markets, accounting for transaction costs, market liquidity (whether the stock is able to
sell), and the investor’s level of risk aversion (turbulence index), which are vital in de-
termining net returns when investing in short term and with medium frequency. The
market environments are based on OpenAI [32] Gym and use time-driven simulations.

The training methods allow for a structured pipeline that comprises training, valida-
tion, and testing stages. Initially, the DRL agent is trained within a controlled environ-
ment, followed by validation in a separate environment for additional refinements. Sub-
sequently, the refined agent undergoes testing using separated historical datasets. Upon
successful testing, the result is a trained agent (or stable_baselines3 trained model) that
can be deployed for live trading–it can be used to predict new data and make real trades.

This pipeline (Figure 3.2) effectively addresses the issue of information leakage, as
trading data is strictly segregated during the agent’s adjustment phase. Furthermore,
this standardized pipeline facilitates equitable comparisons among various algorithms
and trading strategies.

The Agent layer provides algorithms developed by three DRL libraries: ElegantRL,
RLlib and Stable Baselines 3. Our project utilizes the latter. As for the applications layer,
this project focuses on the stock trading application.

To provide the reader with a deeper understanding of FinRL, the main classes among
its file architecture (Figure 3.3) will be explained.

The stock_trading.py script inside the applications folder (Figure 3.3) is designated
to be run as a standalone script, containing a single function that defines training and
trading periods and toggles specific RL algorithms on or off to run a whole simulation
of stock trading. It makes use of all the other classes that develop this application (the
ones that are below in Figure 3.3). However, this script does not allow for a flexible and

3.2 FinRL 15

Figure 3.2: AI4Finance Foundation [6] Fine tuning training process

Figure 3.3: AI4Finance Foundation [6] FinRL file architecture

customisable implementation of stock trading applications. We don’t make use of it in
our solution. We rather implement our own notebook and program structure.

The agents folder contains classes subdivided in three folders: stablebaselines3, el-
egantrl, and rllib. As noted earlier, these directories correspond to maintained DRL li-
braries. The classes within the "agents" folder import these specific libraries and manage
the instances created from them, functioning essentially as API wrappers for the libraries.

Inside the stablebaseline3 folder (the one we use in our implementation), there is
one script and two classes: models.py, tune_sb3.py and hyperparams_opt.py. The class
DRLAgent inside models.py is the main class to train the agent. It implements the get-
ter model method, which initializes and returns a stablebaseline model based on the
specified algorithm. This class also contains the training and prediction method of the
agent. The train_model method has a callback to plot additional values in TensorBoard
(a visualization toolkit from TensoFlow). The Learning Rate and other parameters can
be modified through the dictionary model_kwards, which is passed by parameter to the
get_model method. The agent is optimized through online learning. The DRL_prediction
method returns the actions taken by the agent in a d⇥ n size DataFrame (where n is the
number of stocks and d is the number of desired days to make a prediction), as well as
the daily value of the account. DRL_prediction internally calls the predict method from
Stable Baselines and feeds it with the environment testing observations as input.

16 Proposed Solution: FinRL

The files tune_sb3.py and hyperparams_opt.py are in charge of handling the fine
tuning process shown in Figure 3.2. The former sets up with the required environments
for training and testing, and the type of model to tune. It automatically manages the
process of finding the best hyperparameters using advanced sampling and pruning tech-
niques, and evaluates the best model creating a DRLAgent instance. The latter integrates
Optuna (an automatic hyperparameter optimization software framework) to explore a
hyperparameter space. In our solution, we do not implement the fine tuning process, but
rather run one training process and then perform testing.

The files that fetch and preprocess our data are inside the preprocessor folder of meta
(Figure 3.3). The preprocessors script implements dataset loading, splitting and datetime
conversion functions, as well as the FeatureEngineer class. The latter implements func-
tions for automating preprocess (adding technical indicators, volatility and turbulence
indexes), and cleaning the data (dealing with missing values).

Thanks to the internal implementation, the user can easily fetch data from Yahoo
Finance [44] and perform initial analysis and processing on the financial data. This is im-
plemented in the Yahoodownloader class, making use of the yfinance preexisting Python
library and transparent to the user. Efficient computation of technical indicators is feasi-
ble due to the integration of preexisting Python libraries in the framework. To compute
the technical indicators, the stockstats Python library is imported. It supports auto-
mated calculation with standard DataFrame formats. The use of the DataFrame structure
(from Python pandas) is fundamental to store all the relevant stock information in each
step. Since the open-high-low-close price of every index is fetched from Yahoo Finance
[44], many technical indicators can be calculated.

This serves well in accessing, cleaning, and extracting features from various data
sources with both high quality and efficiency, and from diverse formats and sources into
a cohesive framework. The class allows customisation of the following parameters when
preprocessing the data: list of used indicators, boolean variables for the use of the volatil-
ity and turbulence index, and in case the user wants to define a feature. All of this is part
of the preprocessor folder.

The env_stock_trading folder, located within the meta folder, is where the agent’s
actions are processed and transformed into a new State and Reward for each step. The
environment we use ouf solution is StockTradingEnv from env_stocktrading.py. Oc-
casionally, the agent may propose actions that are not feasible in actual scenarios. The
StockTradingEnv class ensures that these actions are processed and modified into actions
that can realistically be executed. The buy and sell stock methods are developed accord-
ingly. This means that cases like whether there is enough cash to buy, balance updating,
or checking if the stock is available to sell (market liquidity) are handled. As usual, the
environment class has the three main methods: init, reset, and step. The init method is
where all the used parameters and structures are initialized. The step method always
returns the new state and reward. The reset method is used when an episode reaches
the end, and its purpose is to bring the environment to an original or intermediate pa-
rameter configuration. The step method computes the step reward as end_total_asset
- begin_total_asset. Both values take into account the available cash and the value of
held stocks. To compute both, the cash is added to the total market value, and the latter is
calculated by multiplying quantities and prices. All of this is done through numpy.array
structures. If another parameter needs to be used when computing the reward, the user
must create another customized environment. The returned state from the step method
is a [[1 + 2n + (mn)]] size numpy matrix (as explained in the previous section). In addi-
tion, this class acts as a dictionary updater. It keeps track of the asset, action, and state
progress and stores them in DataFrame objects. The class allows for customisation and
implementation of the following parameters: initial amount of money to invest with, ini-

3.2 FinRL 17

tial number of stock shares that the agent owns, desired maximum number of trades per
day, the cost of each transaction (due to possible commissions that some trading agencies
might charge to investors), and list of used indicators.

When creating the environment instance for either training or trading, the class Stock
TradingEnv is converted into a Vectorized Environment from Stable Baselines (a tech-
nique for consolidating several independent environments into a single unified environ-
ment). This is done when calling the get_sb_env from StockTradingEnv.

In addition, FinRL provides additional mechanisms to detect when the variance of
the prices is too high, and progressively starts selling when possible. This is particularly
useful to prevent investors from situations like the Great Recession.

The library gives the possibility to train agents and experiment with the following
stock indexes: Dow Jones Industrial Average, NASDAQ-100, Standard & Poor’s 500,
Hang Seng China 50, Shanghai Stock Exchange 50, Shanghai Shenzhen CSI 300, Cotation
Assistée en Continu 40, Deutscher Aktienindex 30, Technology DAX, MidDAX 50, SmallDAX
50, Jakarta Stock Exchange Liquid 45, Sustainable and Responsible Investment KEHATI,
and Foreign Exchange. All the components of these are listed in the config_tickers.py
file, which is a configuration file that defines the ticker (abbreviation of the company
name) parameters that are called from other functions. We use this file in our solution to
get the ticker list of the Dow-30 constituents. A similar file is located in the meta folder
as finrl_meta_config.py.

The config.py is another configuration file used to define model training parameters
such as the learning rate, batch size and entropy coefficient, among others, for the RL
algorithms. To train the algorithms in our solution, we make use of this file but we modify
some parameters.

The train, test and trade scripts separately carry out the corresponding training, test-
ing and trading processes. The train script calls the train function with the parameters in
the config.py. The test script calls the DRL_prediction method from the chosen DRL li-
brary. Finally, the trade script conducts real trading using the AlpacaPaperTrading class,
which implements a paper trading (trade without real money) environment in Alpaca [8]
(API that allows developers to automate trading strategies and offers brokerage services
for trading financial assets). These are FinRL pre-built scripts. We do not use them in our
solution.

To sum up, we have designed a rough schema of the basic interactions that take place
in FinRL when we run our solution using the elements shown in Figure 3.4.

Figure 3.4: Main used methods and classes from FinRL that interact in our solution (environment
and robot pictures generated with GPT)

18 Proposed Solution: FinRL

3.3 Solution Design

FinRL bases its algorithm development on the following MDP approach:

• S 2 {balance, close price, shares, technical indicators}.

– The agent gathers all the following information at the end of the day (when
the market is closed), and is able to make a prediction for the next day.

– Balance is the amount of money left in the bank account at the current time
step t and it is computed as: Balance(t) = Balance(t� 1)+ (amount of money
received for selling shares in t) - (amount of money payed to buy shares in (t)).
This is the available money (cash) that the agent had the previous day, adding
the money the agent spent or gained on the current day by buying or selling
shares, respectively.

– The close price is the price the stock had when the market was closed in (t).
There is one closing price for each stock.

– Shares is the number of shares the agent owns at t for every stock. There is one
value for each asset.

– There can be as many technical indicators for the input as one desires. Each
stock is measured by all the technical indicators.

– Therefore, S is a vector of size [1 + 2⇥ n + (m⇥ n)], where m is the number of
indicators and n is the number of stocks.

• A 2 {�k, ...,�1, 0, 1, ..., k} where k is the number of shares to buy and �k the num-
ber of shares to sell. For n stocks, the entire action space is size (2k + 1)n. It is useful
to set a parameter of maximum allowed trades per day.

• R(s, a, s0) = v0 � v where v0 and v represent the Account Values at state s0 and s,
respectively. The step reward is therefore R = Value(t)�Value(t� 1). The account
value takes into account both the cash and the portfolio value. This means: cash in
the bank account at t and value of all the shares the agent owns at t.

According to the official documentation [5], the agent derives the strategy to maxi-
mize the long-term accumulated rewards, which is the Q-value.

Figure 3.5: AI4Finance Foundation [6] problem construction in FinRL

In Figure 3.5 there is an illustration of the MDP in FinRL. We do not use all the trading
agents shown in the picture, we train: PPO, SAC, A2C, TD3, and DDPG.

Briefly, our solution design consists of:

3.3 Solution Design 19

1. Understanding how FinRL implements software market environments, RL trader
agents, and integrates both in a RL software system

2. Modeling seven MDPs differing in the used technical indicators that partially form
the state space.

3. Training five RL algorithms with every modeling using FinRL.

4. Analysing the differences among them in training and testing.

5. Using the best configurations and corresponding trained agents to advise the final
user on where, when, and how much to trade.

6. Developing a basic program that advises the user based on its personal and cus-
tomisable circumstances.

To analyse the differences among the different RL models, we use different technical
indicators. The technical indicators are part of the states in the MDP, and are explained
in Chapter 2, Section 2.2. They are not predictions; they are calculated values based on
historical price data after applying a formula. We vary their use in quantity over the
models, using only one, four, and six technical indicators. This is to test whether the
algorithm performance increases with more or less information in the state space (input).
To differentiate each model, we name each of them as ’Set’, because all of them contain a
different sets of technical indicators. The sets with only one technical indicator have the
sign ’(-)’ on their ID. The sets with six technical indicators have the sign ’(+)’ on their ID.
In other words, we try to experiment with the size in number of the technical indicators
to be imputed to the algorithms. We divide the modeling in the sets that are described in
Table 3.1.

Table 3.1: Abbreviation of used technical indicators for every set in the training

Set Used Technical Indicators in this set

1(-) Simple Moving Average of the five last periods using the highest prices
1 Simple Moving Average of the five last periods using the highest prices, stochas-

tic Relative Strength Index, Average Directional Movement
1(+) Simple Moving Average of the five last periods using the highest prices, stochas-

tic Relative Strength Index, Average Directional Movement, Bollinger Bands, Z-
Score for the last 75 close prices, Awesome Oscillator

2 Williams Overbought, Triple Exponential Moving Average, True Range, Per-
centage Price Oscillator

3 Supertrend with the Upper Band and Lower Band, Simple Moving Average of
the five last periods using the highest prices, Triple Exponential Moving Aver-
age, Choppiness Index

4(+) Commodity Channel Index, Supertrend with the Upper Band and Lower Band,
Average True Range, Triple Exponential Average, Volume Weighted Moving
Average, Relative Strength Index

5(-) True Range

To give the reader an example, the specific MDP for Set 1 (described at Table 3.1) is
the following:

• S 2 {balance, close price, shares, Simple Moving Average of the five last periods
using the highest prices, stochastic Relative Strength Index, Average Directional
Movement}

20 Proposed Solution: FinRL

• A 2 {�k, ...,�1, 0, 1, ..., k}

• R(s, a, s0) = v0 � v

We use the Dow Jones Industrial Average (a price market index) for our experiments.
Having its constituents as possible stocks to invest in (30 USA companies).

For each model from the sets in Table 3.1, we run all five RL algorithms. In total, we
train 35 RL agents. A2C, PPO, DDPG, TD3, SAC agents for Set 1(-), for Set 1, and so on
and so forth.

To analyse the performance and the learning progress, we gather training statistics,
and the evolution of the Account Values of every algorithm (which takes into account
both the money in the back and the value of the stocks). We do this in order to analyse
differences in the results.

The proposed solution sets the day as the granularity measure; and the prediction
depends on the previous state. This means that we cannot predict where to invest with
a week in advance. For this, we need to wait until the previous day in which we wish
to make the prediction in order to gather all the needed information. For instance, if the
user desires to trade on a specific day, they can get the agent’s recommendation at the
end of the previous day, when the market has already closed. The agent will gather the
data that forms the state space the previous day, and make a prediction for the desired
day based on it. The stock closing prices that are part of that input can only be known
when the market closes the previous day.

Finally, we developed the proposed app, which offers users a financial advisory ser-
vice.

CHAPTER 4

Analysis and User App

4.1 Analysis

As previously mentioned, the market index we use is the Dow Jones Industrial Average
(DJIA). Therefore, we train the algorithms with the historical stock prices from 30 com-
panies. The training date range we use goes from January 1, 2010, to October 1, 2021. The
testing date range used for this analysis goes from October 1, 2021, to March 1, 2023.

Before the training, the Preprocessing and dataset construction consist on the fol-
lowing steps. We fetch the data from YahooFinance [44] with the fetch_data method
from the YahooDownloader class. We check that for correct downloaded amount of stocks
and shape the DataFrame object to construct open, high, low, close, volume and ticker
columns.

To build the combinations of technical indicators in each set, we randomly sam-
ple an array from a list, and we do it with different array sizes. Then, we use the
preprocess_data method from FeatureEngineer class and obtain all the values of the
technical indicators and turbulence for each stock and for each day. We use the data_range
method from Pandas to assign the same date to every stock and assure the same granu-
larity, to later remove the generated non-trading days (the market closes). We check for
infinity or NaN values. Next, we split in train and test.

We assign the state space variable as 1+ 2⇥ stock_dimension+ length(arrayindicators)⇥
stock_dimension, as explained in the previous chapter, where the stock dimension is the
number of unique tickers.

It is worth noting that after preprocessing stock prices with FeatureEngineer class,
we notice that some technical indicators are not supported by the FinRL library. We
rise an Issue [7] on GitHub to inform of this problem. Additionally, after some testing,
we also notice that depending on the used market index, when fetching the stock data
from YahooDownloader class, some companies might not even be available due to a No
timezone found exception. Because of this, some tickers, or stocks, might be delisted
and therefore, not used in the training. This is why we should always check the size of
the returned arrays.

4.1.1. Training

We are ready to set the agent and environment parameters to create the class instances.
The parameters we use in the training for the agent are described in Table 4.1. The trading
parameters we use for the environment in the training are described in Table 4.2.

21

22 Analysis and User App

Table 4.1: Parameters for the Agent in the training

Parameter A2C PPO DDPG TD3 SAC

gamma 0.0001 0.0001 0.0001 0.0001 0.0001
entropy coefficient 0.01 0.01 - - 0.1

learning rate 0.0007 0.00025 0.001 0.001 0.0001
batch size - 128 128 100 128

Table 4.2: Environment trading parameters in the training

Parameter Value

transaction cost 0.001
number of owned shares 0

maximum amount of allowed trades in a day 80
initial amount of dollars to trade with 50000

Use turbulence True

We create two different object instances of StockTradingEnv to simulate the training
and the testing environment. For every algorithm, we create DRLAgent instances to get
the corresponding model from stable_baselines3 and be able to save and later load the
models. Additionally, we set a logger to gather training statistics and be able to track the
learning process.

As for the reward curve, since it is computed as R = AV(t)� AV(t� 1), where AV
is the Account Value, it is strongly linked to the share price and, therefore, has a natural
instability. After training all the algorithms in every set, we do not appreciate a clear
increase and convergence of the curve on any set. The values seem to have more stability
between [�5, 5] for A2C and between [�6, 6] for PPO in all of the sets, though. In the case
of TD3, SAC and DDPG, the logger stores the reward at increased intervals, being harder
and less precise to analyse it.

We notice that in PPO and A2C there is a drop in the reward towards the end of the
training for most of the sets. This occurs approximately at the same time than the COVID
crisis, which is a rare event that alters the stock prices. Even at the end of the training it
could be reasonable that the agent does not know how to act in response to a rare event
like this one. There are a few examples in Figure 4.1, where the curves in A2C have a
reasonable stability until they reach timestep 40000 and have a sudden drop. Similarly,
PPO reaches more regative rewards between timesteps 35000 and 40000.

(a) A2C from Set 1(+) (b) A2C from Set 3 (c) PPO from Set 1 (d) PPO from Set 5

Figure 4.1: A2C and PPO Reward curve drop

After trying with different values for the learning rate, we always obtain a flat reward
curve for the DDPG and TD3 algorithms. They do change in value among the sets, always

4.1 Analysis 23

obtaining negative values ranging between -12 and -6, but always obtaining a negative
curve (Figure 4.2).

(a) TD3 from Set 4(+) (b) DDPG from Set 4(+)

Figure 4.2: TD3 and DDPG training stats: flat reward, Actor and Critic loss training statistics

The entropy loss in A2C and PPO always decreases progressively. This means that the
agent does not become overly greedy too quickly. We show some of the cases in Figure
4.3.

The specifications of the machine in which the code was run are the following ones:
macOS (operative system), 8-core GPU, Apple M1 (chipset model), 8-core CPU.

24 Analysis and User App

(a) A2C from Set 1(-) (b) A2C from Set 2

(c) PPO from Set 1(-) (d) PPO from Set 2

Figure 4.3: A2C and PPO entropy loss progressive decay

4.1.2. Testing

To compare the performance of each model, we first fetch the price evolution of the index
directly from YahooFinance [44]:

Figure 4.4: DJIA price evolution for testing dates

Then, we compute the portfolio value someone would get when investing the same
initial amount of money on the starting test day and not moving it (daily index profitabil-
ity multiplied by the same initial available amount of money we used for the training).

4.1 Analysis 25

We use the portfolio or account value shown in Figure 4.5 as a baseline. This means, of
course, that the comparative baseline is the same one for all of the sets.

Figure 4.5: DJIA Account Value evolution for testing dates

We do this because one of the outputs of DRL_prediction method from DRLAgent class
is a Dataframe object with the daily account value.

(a) Set 3

(b) Set 4(+)

(c) Set 5(-)

Figure 4.6: Account value evolution throughout Test period in each set and each algorithm

26 Analysis and User App

(a) Set 1(-)

(b) Set 1

(c) Set 1(+)

(d) Set 2

Figure 4.7: Account value evolution throughout Test period in each set and each algorithm

In Figures 4.7 and 4.6, we show the testing results for all the sets with the index per-
formance (named ’dji’) as a baseline. The unit for Account Value is measured in millions
of dollars. The initial value for all the curves is 1.000.000 dollars. We remind the reader
that the account value takes into account both the value of the owned stocks and the cash
the individual has in their account. Therefore, we can affirm that the agent has learned

4.1 Analysis 27

or knows how to trade obtaining good profitability when the account value of that algo-
rithm is higher or equal than the baseline (dji).

Overall, the agents appear to have successfully learned how to maintain a stable trad-
ing strategy that allows for account profitability, as demonstrated by the consistent per-
formance of multiple algorithms surpassing the baseline in each set. Particularly, Set 3
emerges as the most effective, with all RL algorithms outperforming the benchmark and
achieving the highest account values compared to other sets. This suggests that incorpo-
rating technical indicators such as Supertrend, SMA of the highest last five prices, TEMA,
and Choppiness Index in our model may offer a marginal improvement over other tested
configurations. Similarly, set 4(+) and 1(+), have only one algorithm with a worse perfor-
mance than the baseline, and the rest have a considerably better performance.

On the other hand, there is also one model in every set that underperforms the base-
line. With this, we conclude that no single model uniformly excels across all scenarios;
rather, it is the combination of technical indicators within each set that guides our selec-
tion of one set over another.

Moving forward, we utilize the trained and saved model from Set 3 for making pre-
dictions and providing recommendations to users, given that this set is the one with the
best performance. Specifically, for the implementation of our app, we used the trained
PPO, TD3, and A2C with the technical indicators: supertrend, SMA of the highest last
five prices, TEMA, and Choppiness Index. We believe that using more than one agent
provides a more accurate result.

28 Analysis and User App

4.2 User App

A visualization of the main page is presented in Figure 4.8. As depicted, Robot Advisor
operates as an RL-based recommender system. Users have the capability to input their
personal preferences manually. Shortly thereafter, the agent provides trading recommen-
dations. We remind the reader that this application is designed for short-term trading
purposes only. It does not facilitate transactions or conduct live trading; rather, it is a tool
designed to offer advisory services to users.

Figure 4.8: Robot App Main Page

Since we trained the models with data from Dow-30, the app can only give advise
within this market index. Nevertheless, further training could be implemented and give
the user the possibility of choosing among a wider range of market indexes. Even the
possibility of specifically choosing the desired stocks the user wants to get recommenda-
tions for could be given. But the same problem arises: different agents would need to be
trained. This is an inconvenience we detected during the implementation of this app, and
that was already warned in the state of the art chapter. The models are data dependant.
The same input size as in the training must be provided when testing or predicting. If
the size of utilized companies change, the model changes. This means that in order to
adapt to the user’s preferences and provide them with more personalized features, more
training would be needed.

As illustrated in Figure 4.9, the app prompts the user to enter the trading fee charged
by their brokerage, which is considered within the StockTradingEnv class of FinRL, as
well as the other asked parameters. Additionally, the user is asked to specify the initial
amount of money they are prepared to invest. The app also sets a limit on the maxi-
mum number of trades per day to ensure the agent does not exceed this threshold, ac-
commodating potential restrictions imposed by the user’s trading agency or personal
preferences for limiting trade activity.

The user may already possess shares from one or more companies featured in the
Dow-30 index. For this, we offer two possibilities. If the user does not want to explicitly
indicate how many shares they already own from each stock, they can instead provide a
total count of shares they own among companies that pertain to the index (Figure 4.9). In

4.2 User App 29

(a) Total number of stocks held in the Dow 30

(b) Specific number of stocks held in the Dow 30

Figure 4.9: User individual parameters

the opposite case, they can manually specify them in the same entry box as a list (Figure
4.9).

For the advising period, the user must enter a minimum of seven days difference
between the start and end date. This is partially due to the fact that the market is closed
on the weekends.

The app fetches the data that includes the recommendation period from YahooFi-
nance, as well as historical prices to compute the technical indicators. We remind the
reader that the robot takes the information of today (when market has closed) to make a
prediction for tomorrow. This means that the user would need to wait another day to get
the recommendation for the day after tomorrow, so that tomorrow the agent can fetch
again the data. In any case, there is no maximum limit in length for the recommendation
period. Moreover, the agent takes into account the change in the conditions as soon as
it starts giving recommendations along the desired period. Nevertheless, if any of the
initially introduced conditions from the user would change, the use needs to manually
modify them and make the prediction again. For instance, if the trading agency rises the
transaction fee, the user must insert this data again.

Finally, the agent gives its recommendations. It specifies the trading order for every
stock: sell, hold, buy. For each of them, it provides the estimation from combined TD3,
PPO and A2C. At first, it gives the mean recommendation for the number of shares to
trade. In case the user disagrees, it provides a maximum recommended amount, and
a minimum. This is, the maximum and minimum amount of shares any agent recom-
mended. In this way, the user is free to act differently but still has a warning range.

The ’Next day!’ button provides the same information for the consequent market
date. The user can get recommendations by pressing it until it reaches the end recom-
mendation date initially provided. There is a scrollable element to visualize all the stocks.

As for the user input validation, we offer warning error boxes that allow the user
to correct their mistakes without breaking the execution. The error cases covered are:
Format (error when introducing negative numbers for the owned shares, start date is

30 Analysis and User App

(a) Example 1

(b) Example 2

Figure 4.10: Robot Advisor Recommendation examples

greater than the end date) and Input error (when introducing letters as numbers in any
box). This is shown in Figure 4.11.

(a) Input Error (b) Date Format Error

Figure 4.11: Robot Advisor Warning Error Boxes

The libraries pillow [1], tkinter [19] and FinRL were used for the implementation of
the user app. The whole process of finance data fetching and preprocessing (done with
FeatureEngineer and YahooDownloader classes) needs to be done every time the user
hits the predict Button. Then, the user parameters are set to the model and the prediction
environment is created. We load he models from the folders in which we saved them.
When the predictions are done, the average, maximum and minimum recommended
shares to trade are computed. The structure used for displaying the recommendations is
a Treeview from tkinter library.

CHAPTER 5

Conclusions and Future work

During the training and app development we became aware of the inconveniences of
the practical implications when using DRL models in finance, as already mentioned in
Section 2.3 and discussed by Jiang et al. [26]. We realized that in order to offer more func-
tionalities to the user, more and different model training was needed. We built an app
that only gave advice among the companies belonging to Dow-30, but in order to offer
the user a personalized selection of firms on which to get advice, a different is needed
(with the information about those exact firms as input, as well as individual user infor-
mation). The same goes for additional features, such as offering advice to invest in other
market indexes, or continuing to offer advice on indices after index composition change.
In other words, any variation in the definition of states in the MDP needs a new training
process, which takes time and energy consumption. Moreover, the financial market is a
dynamic environment that evolves with time. Additional training with certain period-
icity could improve performance. To sum up, these characteristics of DRL modeling in
finance account for flexibility, being able to adapt to varying conditions and dynamics of
the stock market. However, the data dependency characteristic makes the models lack
in reusability, having to retrain or restructure the model to suit the new conditions and
consuming resources. This is especially inconvenient given the fact that these additional
offered features (advice on other indexes and stocks) may usually be requested by users.

Nevertheless, for short term investments, which are our study case, the DRL models
outperform the natural index performance in our experiments, which are already promis-
ing results. Any financial advisor tool has a margin of error and carries a certain risk.
Given the beneficial impact that this tool could have on personal or family economies
through asset management, we would recommend it as a valid tool.

We have trained several RL agents with different modeling of technical indicators
and shown that they can learn how to trade on normal circumstances. We did not prove
whether they can predict rare events. We have analysed differences in training param-
eters such as the reward curve or entropy loss, and differences in performance during
the testing. We did not detect significant differences in the performance of different tech-
nical indicators, but we detected marginal differences. We used the technical indicators
that produced marginally better results to build our user app that is able to give financial
advice to users without any programming or financial knowledge.

As for new acquired knowledge during the development of this work, I have learned
theoretical RL concepts that I did not know before such as the differences among some RL
algorithms like PPO, A2C, DDPG, TD3 and SAC. I have also understood the importance
of making RL algorithms parallelizable and the utility of CUDA and TensorFlow for this
purpose. The idea of someone implementing an RL environment to simulate a stock
market seemed almost impossible to me at the beginning. But I had the opportunity to

31

32 Conclusions and Future work

study the low level implementation of FinRL and understood that the use of some data
structures make this possible. Many people do not support the use of AI techniques in
finance because of its low predictability, but I believe that conducting experiments like
this one are beneficial for obtaining conclusions. Therefore, I am glad I could go through
this process.

Some encountered problems were due to FinRL poor maintenance. Since it is an open
source library, I believe the use of GitHub Issues was key to communicate with different
people who developed it or with people that already encountered the same problem. I
raised an Issue [3] to inform that some technical indicators were not supported, for which
I got an answer from Hongyang (Bruce) Yang, Founder and President of AI4Finance
Foundation, and author of the original papers of FinRL. He confirmed its poor mainte-
nance. This also involves poor documentation, as I had to understand the code by diving
deeper into the class development rather than by reading the documentation, which took
more time.

Future work could include training additional models to provide the previously men-
tioned features, such as advice across multiple market indexes and customizable firm
selection. A second line of future work could be exploring the use of DRL in long term
investment. The model could take into account other variables that are measured with
a wider granularity than the day. For instance, the dividends a company gives to the
stakeholders (which are normally taken into account when deciding where to invest long
term, and only distributed monthly at the least). The periodicity between two steps could
be yearly instead of daily. A third line for future research (either for long or short term)
could be combining the predictions that are input price-based, with predictions that are
fed with the information on the news. As mentioned in the 2.3 Section, sentiment analy-
sis on the news is carried out. This information can detect whether the expert’s opinions
about a company are optimistic or pessimistic. Therefore, aiding on the decision making
on where to invest.

As for other interesting tools that would have been interesting to dive deeper in,
AI4Finance has developed other projects. FinGPT is a Large Language Model (LLM)
that focuses on providing financial insights and democratizing information, as well as
providing researchers resources to develop their financial LLMs [45]. The model can
be found at FinGPT [17]. FinRobot is an AI powered platform designed to serve many
financial applications. It integrates diverse technologies within its four layers: Finan-
cial AI Agents, Financial LLMs Algorithms, LLMOps and DataOps, Multi-source LLM
Foundation Models [46]. It is designed to highlitght its adaptability. It can be found at
Foundation [18]. These tools started being available when we had already set the defini-
tion of this project, so it was not possible to explore them more deeply due to time and
complexity constraints.

APPENDIX A

Training Results Statistics

(a) A2C Set 1(-) (b) A2C Set 1(+)

Figure A.1: A2C Training Results

33

34 Training Results Statistics

(a) A2C Set 1 (b) A2C Set 2

Figure A.2: A2C Training Results

35

(a) A2C Set 3 (b) A2C Set 4

Figure A.3: A2C Training Results

36 Training Results Statistics

(a) DDPG Set 3 (b) DDPG Set 2 (c) DDPG Set 5

Figure A.4: DDPG Training Results

37

(a) TD3 Set 3 (b) TD3 Set 2 (c) TD3 Set 5

Figure A.5: TD3 Training Results

38 Training Results Statistics

(a) SAC Set 3 (b) SAC Set 2 (c) SAC Set 5

Figure A.6: SAC Training Results

39

(a) PPO Set 1(-) (b) PPO Set 1(+)

Figure A.7: PPO Training Results

40 Training Results Statistics

(a) PPO Set 1 (b) PPO Set 2

Figure A.8: PPO Training Results

41

(a) PPO Set 3 (b) PPO Set 4

Figure A.9: PPO Training Results

Bibliography

[1] Pillow: The friendly PIL fork. https://pypi.org/project/pillow/, 2023. Ac-
cessed: 2023-06-24.

[2] AI4Finance. Ai4finance, 2024. URL https://ai4finance.org/.

[3] AI4Finance Foundation. Issue 1245: Discussion about Specific Functionality in
FinRL. https://github.com/AI4Finance-Foundation/FinRL/issues/1245, 2023.

[4] AI4Finance Foundation. Finrl documentation. https://finrl.readthedocs.io/
en/latest/index.html, 2024.

[5] AI4Finance Foundation. Finrl environments documentation. https://finrl.
readthedocs.io/en/latest/start/three_layer/environments.html, 2024. Ac-
cessed on: June 24, 2024.

[6] AI4Finance Foundation. Finrl three-layer architecture. https://finrl.
readthedocs.io/en/latest/start/three_layer.html, 2024.

[7] AI4Finance Foundation. Issue 1245: [describe the issue title here]. https://github.
com/AI4Finance-Foundation/FinRL/issues/1245, 2024.

[8] Alpaca. Data scientists’ approach to algorithmic trading us-
ing deep reinforcement learning. https://alpaca.markets/learn/
data-scientists-approach-algorithmic-trading-using-deep-reinforcement-learning/,
2024. Accessed on: June 24, 2024.

[9] AminHP. gym-anytrading: Openai gym environments for trading. https://
github.com/AminHP/gym-anytrading, 2024. Accessed on: June 22, 2024.

[10] AminHP. gym-mtsim: Openai gym - metatrader 5 simulator. https://github.com/
AminHP/gym-mtsim, 2024.

[11] A. M. Arroyo and M. Prat. Dirección financiera. Deusto, 3rd edition, 1996.

[12] Bolsas y Mercados Españoles. Informe de propiedad de las acciones españolas
cotizadas, 2023. URL https://www.bolsasymercados.es/docs/BME/docsSubidos/
Estudios-Articulos/BME-Informe-Propiedad-Acciones-espanolas-cotizadas.
pdf. Accessed: 2023-05-18.

[13] Codecamaru. RobotAdvisor. https://github.com/codecamaru/RobotAdvisor/
tree/main, 2024.

[14] Banco de España. Tipos de interés, n.d. URL https://www.bde.es/webbe/es/
estadisticas/temas/tipos-interes.html. Retrieved May 15, 2024.

43

44 BIBLIOGRAPHY

[15] Farama Foundation. Gymnasium: A collection of openai gym environments. https:
//gymnasium.farama.org, 2024.

[16] Fidelity Investments. Rsi (relative strength index) - technical indicator
guide. https://www.fidelity.com/learning-center/trading-investing/
technical-analysis/technical-indicator-guide/RSI, 2024.

[17] FinGPT. Fingpt on hugging face, 2024. URL https://huggingface.co/FinGPT. Ac-
cessed: 2024-06-18.

[18] AI4Finance Foundation. Finrobot: An open-source ai agent platform for
financial applications using large language models. https://github.com/
AI4Finance-Foundation/FinRobot, 2024.

[19] Python Software Foundation. Tkinter — python interface to tcl/tk, 2023. URL
https://docs.python.org/es/3/library/tkinter.html. Accessed: 2023-06-24.

[20] Global Goals. Goal 8: Decent work and economic growth. https://www.
globalgoals.org/goals/8-decent-work-and-economic-growth/, 2024.

[21] Hugging Face Team. Two types of value-based methods. Hugging Face’s Deep
RL Course, 2023. URL https://huggingface.co/learn/deep-rl-course/unit2/
two-types-value-based-methods. Accessed: 2024-06-01.

[22] H.D. Huynh, L.M. Dang, and D. Duong. A new model for stock price movements
prediction using deep neural network. In Proceedings of the Eighth International Sym-
posium on Information and Communication Technology, pages 57–62. ACM, 2017.

[23] Rob J. Hyndman. Moving averages, November 2009.

[24] Investopedia. Investopedia: Sharper insight, better investing. https://www.
investopedia.com, 2024.

[25] Zhengyao Jiang, Dixing Xu, and Jinjun Liang. A deep reinforcement learning frame-
work for the financial portfolio management problem. arXiv:1706.10059 [q-fin.CP],
2017. Available at arXiv: https://arxiv.org/abs/1706.10059.

[26] Zhiyuan Jiang, Dexian Zhang, and Jun Luo. Using deep reinforcement learning for
algorithmic trading. Journal of Financial Markets, 48:107–128, 2020.

[27] Yuxi Li. Financial trading as a game: A deep reinforcement learning approach. Jour-
nal of Financial Data Science, 1(1):42–59, 2019.

[28] MetaQuotes Software Corp. Metatrader 5 trading platform. https://www.
metatrader5.com/es/trading-platform, 2024.

[29] United Nations. Economic growth. United Nations website, n.d. Available on-
line: https://www.un.org/sustainabledevelopment/economic-growth/ [Accessed
on: 10/06/2024].

[30] North Dakota State University. The North Dakota Horizons of Focus: A Compre-
hensive Statewide Plan for the Retention and Recruitment of Qualified Individuals
with Disabilities, 2009. URL https://library.ndsu.edu/ir/bitstream/handle/
10365/9322/fe258_2009.pdf?sequence=1. Retrieved [Insert Retrieval Date Here].

[31] OpenAI. Deep deterministic policy gradient (ddpg). OpenAI Spinning Up Docu-
mentation, 2023. URL https://spinningup.openai.com/en/latest/algorithms/
ddpg.html. Accessed: 2024-06-01.

BIBLIOGRAPHY 45

[32] OpenAI. Gym: A toolkit for developing and comparing reinforcement learning al-
gorithms. https://github.com/openai/gym, 2024.

[33] David Silver. Introduction to reinforcement learning, 2020. URL https://www.
davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf. Accessed: 2023-09-
05.

[34] Stable Baselines3 Team. Stable baselines3 documentation. https:
//stable-baselines3.readthedocs.io/en/master/, 2024. Accessed on: June
24, 2024.

[35] StockCharts.com. Introduction to technical indicators and oscillators.
https://school.stockcharts.com/doku.php?id=technical_indicators:
introduction_to_technical_indicators_and_oscillators, Accessed: 2024.

[36] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 2018.

[37] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning. Morgan and Claypool Publishers, San
Rafael, California, 2010.

[38] Hugging Face Team. Deep rl: A2c, 2021. URL https://huggingface.co/blog/
deep-rl-a2c. Accessed: 2024-06-01.

[39] Hugging Face Team. Intuition behind ppo. Hugging Face’s Deep RL
Course, 2023. URL https://huggingface.co/learn/deep-rl-course/unit8/
intuition-behind-ppo. Accessed: 2024-06-01.

[40] Hugging Face Team. Mc vs td: Understanding the differences. Hugging Face’s Deep
RL Course, 2023. URL https://huggingface.co/learn/deep-rl-course/unit2/
mc-vs-td. Accessed: 2024-06-01.

[41] OpenAI Team. Soft actor-critic (sac). OpenAI Spinning Up Documentation,
2023. URL https://spinningup.openai.com/en/latest/algorithms/sac.html.
Accessed: 2024-06-01.

[42] OpenAI Team. Twin delayed ddpg (td3). OpenAI Spinning Up Documentation,
2023. URL https://spinningup.openai.com/en/latest/algorithms/td3.html.
Accessed: 2024-06-01.

[43] Chen Hao Wang Jianye Troiano Luigi Loia Vincenzo Wu, Xue and Hamido Fujita.
Adaptive stock trading strategies with deep reinforcement learning methods. Infor-
mation Sciences, 538:142–158, 2020.

[44] Yahoo Finance. Yahoo finance, 2024. URL https:
//finance.yahoo.com/?guccounter=1&guce_referrer=
aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=
AQAAAIiCbhvZzsaol08M-zlec231DC3Z5DKCCxH7xCZYCCu9FkZ7euwl7JWmOE5xCvHxvhPYV61YeJ62IM4x7lbiEW_
HBuBf-p0ZcLT3RY157XIElgzHwu2w7HAwSrWW-3QHkzMdMDuabcgnRcMtzsOSNI0Q4gfRruhfVfZ9yCDomxpN.
Accessed: 2024-02-31.

[45] Hongyang (Bruce) Yang, Xiao-Yang Liu, and Christina Dan Wang. Fingpt: Open-
source financial large language models, 2023. URL https://arxiv.org/pdf/2306.
06031. Columbia University and New York University (Shanghai).

46 BIBLIOGRAPHY

[46] Hongyang (Bruce) Yang, Boyu Zhang, Neng Wang, Cheng Guo, Xiaoli Zhang,
Likun Lin, Junlin (Jason) Wang, Tianyu Zhou, Mao Guan, Runjia (Luna) Zhang,
and Christina Dan Wang. Finrobot: An open-source ai agent platform for financial
applications using large language models. https://huggingface.co/FinGPT, 2024.
URL https://huggingface.co/FinGPT. AI4Finance Foundation, Columbia Univer-
sity, NYU Shanghai, Shanghai Frontiers Science Center of Artificial Intelligence and
Deep Learning, Business Division, Shanghai AI-Finance School ECNU.

[47] Yuxi Yang, Yinchuan Liu, Ziyi Wang, and Hongyang Zhang. Deep reinforce-
ment learning for automated stock trading: An ensemble strategy. SSRN
Electronic Journal, 2020. doi: 10.2139/ssrn.3690996. Available at SSRN:
https://ssrn.com/abstract=3690996.

[48] S. Yu and Z. Li. Forecasting Stock Price Index Volatility with LSTM Deep Neural Network,
pages 265–272. Springer, 2018.

APPENDIX: Sustainable Development Goals

This work is connected to several aspects of the United Nations Sustainable Development
Goals (SDGs), particularly those related to reducing inequality, promoting sustainable economic
growth, and fostering innovation.

Degree of relationship of the work with the SDGs:

Sustainable Development Goals High Medium Low Unrelated

SDG 1. No poverty. X

SDG 2. Zero hunger. X

SDG 3. Good health and well-being. X

SDG 4. Quality education. X

SDG 5. Gender equality. X

SDG 6. Clean water and sanitation. X

SDG 7. Affordable and clean energy. X

SDG 8. Decent work and economic growth. X

SDG 9. Industry, innovation and infrastructure. X

SDG 10. Reduced inequalities. X

SDG 11. Sustainable cities and communities. X

SDG 12. Responsible consumption and production. X

SDG 13. Climate action. X

SDG 14. Life below water. X

SDG 15. Life on land. X

SDG 16. Peace, justice and strong institutions. X

SDG 17. Partnership for the goals. X

ETS Enginyeria Informàtica
Camı́ de Vera, s/n, 46022, Vaència
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es - www.inf.upv.es

Reflection on the relationship of the Degree Final Work with the SDGs:

The SDG that is related the most with this work is Goal 8: ‘Decent Work and Economic
Growth’. The primary aim of SDG 8 is to promote sustained, inclusive, and sustainable eco-
nomic growth, full and productive employment, and decent work for all. The financial advisor
agent that we developed in this project, directly contributes to this goal by democratizing ac-
cess to financial markets. By providing individuals, families, and firms with the capabilities to
make informed trading decisions without any prior knowledge, this tool increases their economic
opportunities. It facilitates greater participation in financial activities. This democratization
of financial services can lead to more equitable economic growth, where more people have the
opportunity to improve their economic status, thereby contributing to the overall health of the
global economy.

SDG 10 aims to reduce inequality within and among countries. By offering access to the
proposed tool to the whole population, we can help to contribute to the national economies,
and reducing not only national financial access inequality, but also reducing the economic in-
equalities among countries. This access is particularly crucial for people in developing countries
or marginalized communities in developed nations, where access to financial services and lit-
eracy is often limited. By improving financial inclusivity, the tool aids in reducing economic
disparities and enhancing the financial autonomy of individuals across different socio-economic
backgrounds. According to the United Nations, one way of aiding in this goal and ensure equal
opportunities is by eliminating discriminatory practices. Our tool does not discriminate any
gender or nationality, which indirectly contributes to SDG number 5.

SDG 9 focuses on building resilient infrastructure, promoting inclusive and sustainable indus-
trialization, and fostering innovation. Without a doubt, our app represents an innovation in
financial technology, even though it is not the only app to serve this purpose, DRL applied to
stock trading is definitely an untapped field. This tool enhances the financial services infrastruc-
ture by integrating cutting-edge AI into everyday financial activities. The project contributes to
the infrastructure of digital financial services, making them more robust and capable of handling
complex, data-driven decision-making processes.

According to the official website of the united nations, one of the ways of aiding in the eradication
of poverty (first SDG) is fostering innovation and critical thinking in all the ages. It is true
that in order to invest, someone initially needs money. But for short term investing, the needed
quantities are not huge, and with the right agency, getting profitability is possible. So, in this
way, we would also be contributing to this SDG.

ETS Enginyeria Informàtica
Camı́ de Vera, s/n, 46022, Vaència
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es - www.inf.upv.es

