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Abstract: Determination of actual crop evapotranspiration (ETc) is a crucial challenge for sustainable irrigation 
water management. In this sense, robust and accurate estimation models of crop water consumption along 
with spatial tools and processing platforms in the cloud are necessary to determine the timing and amount of 
irrigation needed as a first step toward proposing solutions and water use efficiency. The objective of this study 
was to determine maize crop evapotranspiration using the algorithms of the Mapping Evapotranspiration at High 
Resolution with Internalized Calibration (METRIC) model in the Google Earth Engine (GEE) platform. The crop 
was monitored with 14 Landsat images during its growth period. ETc values with METRIC were compared with 
ETc obtained with the FAO-56 methodology, and the cumulative ETc was compared with ETc derived from a soil 
moisture sensor. The evaluation between the METRIC model and FAO-56 displayed a determination coefficient 
(R2) of 0.87, mean squared error (MSE) of 0.8 mm/day, and bias percentage (PBIAS) of -14.5. According to the 
cumulative ETc, the difference was 16 mm for METRIC and 63 mm for FAO-56, compared with moisture sensor 
values. METRIC overestimated by 3.0% (PBIAS=-3.0), and FAO-56 underestimated by 11.9% (PBIAS=11.9). The 
results and the programmed algorithms in this work can be the basis for future calibrations and validations of the 
evapotranspiration of different crops.

Key words: evapotranspiration; Google Earth Engine, FAO-56, energy balance, soil moisture.

Aplicación del modelo METRIC para estimar la evapotranspiración del cultivo de maíz a escala 
de campo en Google Earth Engine
Resumen: La determinación de la evapotranspiración de cultivos es el principal desafío para el manejo sustentable 
del agua para riego. En este sentido, se requieren modelos robustos y precisos para determinar el consumo 
de agua que junto con herramientas de análisis espacial y plataformas de procesamiento en la nube permiten 
establecer el momento y cantidad de riego requerido, como un primer paso para proponer soluciones para el 
ahorro y uso eficiente de agua demandada por los cultivos para satisfacer sus requerimientos hídricos. El objetivo 
de este estudio fue determinar la evapotranspiración del cultivo de maíz (ETc) utilizando el algoritmo de Mapeo 
de evapotranspiración con calibración internalizada en alta resolución (METRIC) y la plataforma de Google Earth 
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1. Introducción

Optimizing water use in irrigated agriculture plays 
an important role in the face of the economic and 
environmental challenges of guaranteeing the 
profitability of agriculture and the sustainability 
of water resources. This requires the estimation 
of water use and efficiency indicators (e.g. 
crop evapotranspiration) to identify system 
inefficiencies as a first step towards proposing 
solutions.

The most common method to estimate crop water 
requirements and crop evapotranspiration is the 
FAO 56 described in Allen et al., (1998). Despite 
the significant progress that has been achieved 
with the FAO 56 method, the main limitations 
include the possibility of spatial estimates of 
evapotranspiration (ET), and therefore, the lack of 
understanding of the fine-scale spatial variation in 
inputs and outputs.

Other methods to estimate and measure ET 
include lysimeters, Eddy covariance, Bowen ratio, 
humidity balance, sap flow, scintillometry and 
remote sensing (Allen et al., 2011). In this sense, 
the use of remote-sensing (RS) based models 
are a feasible alternative to determine the crop 
water requirements, since they help monitoring 
large irrigation surfaces (Suwanlertcharoen et al., 
2023).

RS models may be separated into two main groups: 
models based on vegetation indices (VI) and the 
models based on the temperature of the surface 
(Ts). The VI models are based on the vegetation 
greenness indices, such as the Normalized 
Difference Vegetation Index (NDVI; Rouse et al., 
1973) and weather data, mainly net radiation (Rn), 
vapor pressure deficit (VPD) and air temperature 
(Ta) (Laipelt et al., 2021). While the procedures to 

estimate ET via Ts, such as remote sensing-based 
energy balance (RSEB) models, which estimate 
actual evapotranspiration (ETa) values for each 
pixel via a surface energy balance by taking into 
account of total available energy at the surface and 
the amount heat fluxes (conducted into soil and 
convected into the air above the surface) (Kilic 
et al. 2016).

All models of energy balance have assumptions, 
advantages and disadvantages; for example, 
SEBAL (Surface Energy Balance Algorithm for 
Land) model (Bastiaanssen et al. 1998) considers 
a lineal relation between land surface temperature 
and temperature difference for distinct height and 
stablishes ET=0 for dry pixel, however it requires 
fewer ground data and atmospheric correction 
is not much needed, but it only can be used on 
plain terrain and the anchor pixel depends on users 
selection.

On another hand, METRIC model relates land 
surface temperature and temperature difference 
for distinct height, considering constant the 
reference ET Fraction throughout the day and 
stablishing ET=0 for hot pixel, however it requires 
fewer ground data and can be used for terrain with 
more rugged topography but presents uncertainty 
to the choice of the anchor pixel (Aryalekshmi 
et al., 2021).

A key advantage between SEBAL and METRIC 
models is the estimation of the temperature 
gradient (dT) between a height z1 and z2, which 
overcomes the difficulty of accurately estimating 
surface temperature from satellites (Allen et  al., 
2011).

The dT is estimated, in both models, by selecting 
two extreme conditions known as cold pixels 

Engine (GEE). El cultivo fue monitoreado con 14 imágenes Landsat (Landsat 8 y 9). Los valores de ETc obtenidos 
con METRIC fueron comparadas con los obtenidos con el modelo de FAO-56 y la lámina de agua acumulada en 
el suelo medida con un sensor de humedad. La evaluación entre los modelos de METRIC y FAO-56 mostraron un 
coeficiente (R2) DE 0,87, un error cuadrado promedio (MSE) de 0.8 mm/día y un porcentaje de sesgo (PBIAS) de 
-14,5. De acuerdo con el consumo total de agua registrada por el sensor de humedad, la diferencia entre METRIC 
y FAO-56 fue de 16 mm y 63 mm respectivamente. Se observó que METRIC sobreestima un 3,2% (PBIAS=-3,0) y 
FAO-56 subestima un 11,9% (PBIAS=11,9). Los resultados y el algoritmo programado en este trabajo pueden ser la 
base para futuras calibraciones y validaciones de ETc para distintos cultivos.
Palabras clave: evapotranspiración, Google Earth Engine, FAO-56, balance de energía, humedad del suelo. 
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and hot pixels, however, the models differ in the 
selection of the cold pixel; while in SEBAL a pixel 
belonging to a water body is selected assuming 
that H is zero, METRIC recommends a cold 
pixel belonging to an agricultural field with full 
cover and no water limitation in the soil assuming 
that ET rates are 5% higher than the reference 
evapotranspiration of alfalfa (Allen et al., 2007).

METRIC model estimates the crop water 
requirements using the residual energy balance 
equation on surface (Allen et  al., 2007). This 
model has displayed an adequate performance for 
water consumption estimation in different crops 
worldwide and it has been validated with results 
obtained with distinct measurement instruments 
such as lysimeters, eddy covariance towers and 
atmometers (Pôças et  al., 2014; French et  al., 
2015; Reyes-González et  al., 2017; Khan et  al., 
2019; Lima et al., 2020).

Processing ET models using remote sensing 
requires cloud platforms with high-performance 
computing that provide collections of satellite 
images and land climate databases, which can 
be used to monitor agricultural fields at different 
temporal and spatial scales (Laipelt et al., 2021).

In this way, there are ET free access platforms, 
for example, SEBAL open source python script or 
Py-SEBAL (https://github.com/wateraccounting/
SEBAL), FAO Water Productivity Open-access 
portal (WaPOR; https://wapor.apps.fao.org/home/
WAPOR_2/1), Earth Engine Evapotranspiration 
Flux (EEFLUX; Allen et al., 2015) and METRIC-
Gis toolbox (Ramírez-Cuesta et al., 2020).

Other products available for getting 
evapotranspiration are MOD16 and LSA-SAF 
MSG ET, both available with 1 km and 5 km of 
spatial resolution, respectively, for global scales 
(Jahangir and Arast, 2020)

There is a version of METRIC that runs on Google 
Earth Engine (GEE) platform (http://eeflux-
level1.appspot.com/). However, users cannot alter 
or amend the available code and only to select 
the site of interest is allowed (Mhawej and Faour, 
2020).

Due to its automated nature and its dependence 
on cloud data, the ET estimation model platforms 
have the potential to evaluate water use and 
improve irrigation water management in large 

extensions with extremely low cost (Kadam et al., 
2021).

In Northwest of Mexico predominates dry climate 
and the irrigation water volume available in this 
zone is limited by rainwater captured by the 
dams and it determines total the irrigations and 
the list of crops authorized per agricultural cycle 
(Ramírez-Sánchez et al., 2021). In this sense, the 
implementation of remote sensing to estimate crop 
evapotranspiration can help water management 
in Mexico, however, this depends on solid 
measurements.

Due the high performance of METRIC model and 
the importance of maize crop in the study area, 
the aims of this research were (1) to calculate ETc 
using the METRIC model in Google Earth Engine 
(GEE) with Landsat images for a maize plot; (2) to 
compare daily ETc values obtained with METRIC 
and FAO-56 methodology; and (3) to compare the 
accumulated ETc in the crop growth period among 
the METRIC model, FAO-56 methodology, and 
the measurements recorded in a soil moisture 
sensor installed in the field.

2. Materials and Methods

2.1. Study area

The study was carried out in an experimental 
field (0.1 ha) of the Produce Sinaloa Foundation 
(107° 30’ 15.847’’W, 24° 47´19.295´´N, 60 m 
above sea level), located in one of the most 
important Mexican large-scale irrigated areas in 
the northwest region of Mexico (Figure 1).

The weather of the region is semiarid, with annual 
average rainfall of 690 mm. The rainy season 
starts in July and finishes in September (with 
around 79% of the annual rainfall), and the driest 
season is from February to May (with only 1.3% 
of the annual rainfall). The monthly average Ta 
varies from 19.2 °C in January to 30 °C in July 
(Avendaño-López et al., 2015).

Maize grain is the most commonly irrigated 
crop in the study area with a surface about of 
120 000 ha and a crop yield of 13 t/ha (Conagua, 
2023). A maize experimental field was set up 
with a density of 100 000 plants/ha. The sowing 
date was on November 15th, 2021, and harvest 
date was on May 12th, 2022 (178-day crop 
cycle). The soil of the experimental area had a 

https://github.com/wateraccounting/SEBAL
https://github.com/wateraccounting/SEBAL
https://wapor.apps.fao.org/home/WAPOR_2/1
https://wapor.apps.fao.org/home/WAPOR_2/1
http://eeflux-level1.appspot.com/
http://eeflux-level1.appspot.com/
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silt-loam texture (19.08% Sand, 60% Silt, and 
20.92% Clay) and a bulk density of 1.27 g/cm3. 
Field capacity (FC) and permanent wilting point 
(PWP) were determined in the laboratory (Table 1, 
QuimiaLab, Los Mochis, Sinaloa, Mexico). The 
soil volumetric moisture content was 34.29% and 
20.32% at FC and PWP, respectively.

Table 1. Physical-chemical characteristics of the soil for 
the area of study.

variable Result Unit Interpretation
pH 1:2 7.46 U pH Moderately 

alkaline
C.E. 1.14 ds/m Low/Normal
Point of 
saturation

50 % Optimum

FC 34.29 % High
PWP 20.32 % High
Bulk density 1.27 g/cm3

Irrigation management was carried out based 
on irrigation scheduling using CropWat 
8.0 software and applied by a surface irrigation 

system. Calculations are based on guidelines 
for calculating crop water requirements (Allen 
et  al., 1998), which consider crop parameters, 
soil characteristics, and climate data to carry 
out a daily soil water balance (Licht and 
Archintoulis, 2017). Five irrigation events were 
applied. Table 2 summarizes the events of water 
contribution, the depths consumed, and the 
depth accumulated during the entire cycle.

2.2. Weather data and soil water 
measurements

The METRIC model requires weather data to 
estimate the different surface energy balance 
components, as well as to determine reference 
evapotranspiration (ETr). The weather data 
included Ta (°C), relative humidity (%), 
rainfall (mm), wind speed (m/s), and solar 
radiation (W/m2), and were obtained from 
an automatic weather station at 10-min time 
intervals (WatchDog Series 2000, Spectrum 
Technologies, Inc., Aurora, Illinois, USA).

Figure 2 shows the weather variables of 
maximum, minimum, and average Ta for the 
crop growing period. A reduction of this variable 
is notorious from December 2021 to March 
2022, with an extreme minimum Ta of 2.8 °C on 
March 11th, 2022. Rainfall for December 31st, 
2023, was approximately 10 mm.

Soil water measurements were made with 
the CropX (CropX Ltd., Tel Aviv, Israel) 
sensor. CropX is an electromagnetic sensor 
that measures soil volumetric water content 
(θv) (m3/m3) based on the amplitude domain 
reflectometry (ADR) at 20 and 46 cm depths in 
the soil. The sensor has a helical central axis 
design to reduce soil disturbance (Datta et al., 
2018). This sensor relies on an electromagnetic 
signal related to the dielectric permittivity to 
calculate the soil water content (Zawilski, et al., 
2023).

The θv readings were registered in situ on a daily 
way, which determined crop water consumption 
through a water balance, and subsequently, 
the measurements were integrated to know the 
evapotranspiration throughout the crop growing 
season.

Figure 1. Study area. Field: Foundation Produce Sinaloa, 
México.
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2.3. Estimation of ETc using the 
FAO-56 methodology

The ground-measured ET could have large 
significant errors by itself (up to 29% error 
for measurements made by eddy covariance). 
Therefore, validation of satellite-based ET 
estimation with ground-measured ET shows 

uncertainties (Tasumi, 2019). For this study there 
is no ground measured ET, therefore the accuracy 
of the model was evaluated via comparisons 
with ET determined using FAO-56 methodology 
(Equation 1), which was proposed in other works 
(Stancalie et  al., 2010; Tasumi, 2019, Pereira 
et al., 2015).

Table 2. Water management in soil during the period of analysis.

Date Event
DAS
(days)

Interval
(days)

Consumption
(mm)

Accumulated consumption
(mm)

Irrigation
(mm)

Nov 15, 21 Sowing Irrigation 0 0 0 0 182
Dec 31, 21 Rainfall 46 46 90 90 0
Jan 20, 22 Irrigation 1 66 20 94 185 180
Feb 12, 22 Irrigation 2 89 23 36 222 213
Feb 26, 22 Irrigation 3 103 14 110 332 195
Mar 28, 22 Irrigation 4 133 30 102 434 195
May 1, 22 Senescence 168 35 81 516 0
May 12, 22 Harvest 180 12 12 529 0

* DAS = Days After Sowing.

Figure 2. Daily values of air temperature (Ta) and precipitation events (A) and reference evapotranspiration (B) during the 
crop growing season. The acquisition images dates are shown with vertical dashed lines.
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The FAO-56 methodology for estimating ETc 
is considered a two-step method in which ETr 
is determined, and later, based on the crop 
phenological stage, it is assigned a crop coefficient 
(Kc). Using Equation 1, the ETc was determined 
throughout the entire crop cycle.

	 ETc = Kc ∙ ETr� (1)

In this study, ETr (mm) was determined by the 
ASCE Penman-Monteith Standardized method 
(ASCE-EWRI, 2005), and Kc (dimensionless) 
values for maize (Table 3) were taken from tables 
reported in manual 70 of the American Society 
of Civil Engineers (ASCE) for each of the crop 
development stages (Jensen and Allen, 2016).

2.4. METRIC model and remote 
sensing data

METRIC model is based on satellite image 
processing to calculate actual evapotranspiration 
(ETa) as a residual of the surface energy balance, 
and it is does not require knowledge of the 
phenological stage or the type of crop, which has 
an advantage over traditional methods of crop 
coefficient curves and vegetation indices (Allen 
et al., 2011). ETa is estimated with Equation 2:

	 LE = Rn - G - H� (2)

Where LE is latent heat flux (latent energy 
consumed by ET, W/m2); the Rn, considered as 
the net radiation (W/m2), is the energy available 
on the surface (balance of all incoming and 
outgoing short-wave and long-wave radiation at 
the surface); G is the soil heat flux (W/m2), and it 
is considered as the energy needed to heat the soil; 
and finally, H is the sensible heat flux (W/m2), 
and it is the energy used to heat the air. A detailed 
description of the theoretical bases and principles 
is presented by Allen et al. (2007).

This study implemented the algorithms of the 
METRIC model with Landsat-8 and Landsat-9 

images in Google Earth Engine (GEE) platform 
with JavaScript. GEE is a cloud-based geospatial 
analysis platform consisting of a catalogue of 
several petabytes of satellite images. It can be 
accessed and controlled via an App Programming 
Interface (API), accessible via the Internet and an 
associated web-based Interactive Development 
Environment (IDE) that helps quickly create 
prototypes and the visualization of results 
(Gorelick et al., 2017).

Fourteen clear-sky Landsat images (Path=32/
Row=43) covered the maize crop growing 
season. Landsat satellites obtain images of the 
entire Earth’s surface at a 30-m spatial resolution 
and 16-day temporal resolution, including 
multispectral and thermal data. The images 
Landsat-8 (6 images; source: https://developers.
google.com/earth-engine/datasets/catalog/
LANDSAT_LC08_C02_T1) and Landsat-9 
(8 images; source: https://developers.google.com/ 
earth-engine/datasets/catalog/LANDSAT_LC09_
C02_T1) were selected from Earth Engine Data 
Catalogue, which fulfilled the condition of the 
presence of cloudiness under 10%, achieving 
high-quality images.

RSEB models (like METRIC) estimate Rn, G y H 
using surface reflectance and surface temperature 
from satellite platforms such as MODIS, Landsat 
and ASTER (De la Fuente-Sáiz et al., 2017). Allen 
et  al. (1998) mentioned four stages growth for 
the maize crop cycle, under standard conditions 
and García et  al. (2013) reported the minimum 
image requirement to develop the crop coefficient 
(Kc) for maize. They mentioned that at least one 
image is required for the crop plantation date, 
in which one Kc is represented for bare soil, 
and hence describe the behaviour of the crop in 
the initial stage. In the development stage, they 
recommend at least four images, considering this 
stage critical for the crop, due to the quick change 
of the biomass. The middle stage considered the 
period with the highest ETc and stable values at 

Table 3. Crop coefficient for the maize crop, taken from manual 70 of the ASCE, using alfalfa as a reference crop.

Stage Duration (days) Crop coefficient (Kc)
Initial 30 0.2
Development 50 Positive linear relationship between values 0.2 and 1.0
Mean 60 1.0
Final 40 Negative linear relationship between values from 1.0 to 0.18

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1
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the same time. As long as irrigation management 
is adequate, it only requires one image. Finally, 
the final stage, using at least two images as 
recommended by García et al. (2013), begins with 
a high Kc value and ends with very low values, 
assuming a proportional reduction.

This study accomplished the minimum 
requirements mentioned by García et al. (2013). 
The Landsat 8 satellite presented only one image 
in the initial stage, none in the development stage, 
and more in the range comprised by middle and 
final crop stages. On the other hand, Landsat 9 
produced no available images in the initial stage, 
two in the development stage, and the rest in the 
middle and final stages.

Kilic et  al. (2020) mentioned that the 
implementations of remote sensing-based energy 
balance models (EEFlux and eeMETRIC) 
onto GEE have enabled robust automation and 
producing of accurate and consistent ET maps.

2.5. Statistical analysis

To evaluate the METRIC model implemented in 
GEE, it was compared with FAO-56 approach. 
Five statistical indices were used: root mean square 
error (RMSE), mean bias error (MBE), Percent 
bias (PBIAS), mean absolute error (MAE), and 
mean squared error (MSE).

a)	RMSE is calculated as:

	 � (3)

b)	MBE is calculated as:

	 � (4)

c)	PBIAS is calculated as:

	 � (5)

d)	MAE is calculated as:

	 � (6)

e)	MSE is calculated as:

	 � (7)

Where n is the sample size, Oi is the control value, 
and Pi is the estimated value.

The accuracy assessment via comparison between 
FAO-56 with METRIC model was carried 
out with the same statistical metric mentioned 
above. In addition, the accumulated ET values 
obtained with METRIC-GEE and FAO-56 ET 
were evaluated by comparing the accumulated 
water depth recorded by Cropx sensor during the 
growing season to find the existing differences in 
total water consumption.

3. Results and discussion

3.1. Climatic conditions and ETr

During the study period (from November 2021 to 
May 2022) dry and hot atmospheric conditions 
were observed. Maximum values for Ta and ETr 
were 37.8 °C and 8.8 mm/day, and means of 
20.6 °C and 3.7 mm/day, respectively (Figure 2). 
Cumulative ETr in the study period was 663 mm, 
and the total precipitation was 20 mm with a 
maximum value observed on December 31, 
2021 (10 mm).

3.2. Calculation of ET with the METRIC 
model in GEE

The images were processed in the GEE platform 
to determine the energy balance components (Rn, 
G, H and LE), as well as the reference ET Fraction 
(ETrF) and the daily ETc. Table 4 shows the 
results of the algorithm processing for each day 
of the scenes.

Rn showed a value range from 400 to 650 W/m2, 
with maximum values in the final stage of the 
crop-growing season (April and May 2022). The 
maximum amount of energy consumption by 
G occurred at the beginning and end of the crop 
cycle. The maximum values of H occurred when 
the amount of available energy on the surface 
increases (>Rn) and the demand for energy used 
by LE decreases. LE used less energy in early and 
final crop stages, and the maximum value was 
510 W/m2. ETrF showed a maximum value close 
to 1, which coincides with the values recommen-
ded in ASCE manual 70 (Jensen and Allen, 2016). 
The METRIC model estimated maximum values 
of ETa about 6 mm/day.
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Several studies have evaluated the performance 
and accuracy of the components of the energy 
balance of the METRIC model via comparison 
between measured and estimated values for LE, 
Rn, H and G at the satellite overpass date (De 
la Fuente-Sáiz et  al., 2017; Gaso et  al., 2017; 
Ortega-Farias et al., 2016; Ortega-Salazar et al., 
2021; Volk et al., 2024; Liu et al., 2024).

Ortega-Farias et  al. (2016) indicated that the 
METRIC model underestimated values of Rn 
by about 5.0 % (RMSE=38 W/m2), while Gaso 
et  al. (2017) reported a relative RMSE of 12% 
(RMSE=63 W/m2). Ortega-Salazar et  al. (2021) 
and Liu et al. (2024) showed that the estimated G 
with METRIC were overestimated with a RMSE of 
40 and 39 W/m2, respectively. Results showed by 
De la Fuente-Sáiz et al. (2017) found that METRIC 
underestimated H by about 29% (RMSE=80 W/
m2). However, when using the calibrated functions 
for aerodynamic roughness length (Zom), METRIC 
overestimated H by about 5% (RMSE=33 W/m2). 
In addition, H was the component of energy balance 
that showed the major scattering for 1:1 line with 
a RMSE=92 W/m2 and relative RMSE=70% 
for soybean and maize in irrigated and rainfed in 
Ameriflux sites in Nebraska, USA (Gaso et  al. 
2017).

The Eddy Covariance (EC) technique is the best 
method for continuous measurement of energy 
and heat flux (Baldocchi et al., 2001; Baldocchi, 
2014); however, several researchers have indicated 
that turbulent fluxes using the EC technique were 

less than available energy, which causes a poor 
closure of energy balance. This EC imbalance 
can be associated to errors in the measurements 
of actual ET and therefore to the problems of 
overestimation of ET by METRIC (Ortega-Farias 
et  al., 2016; Gaso et  al., 2017; Ortega-Salazar 
et al. 2021, Tasumi, 2019).

ETrF was obtained for the satellite acquisition 
dates, being necessary to use a fitting model 
to estimate the remaining days. The model of 
a 2nd-degree polynomial fitting reached a high 
determination coefficient (R2) of 0.89 for Landsat 
8 and Landsat 9 images (Figure 3).

Figure 3. Model for the fitting of the combined ETrF data 
from satellites Landsat 8 and 9.

This study mixed the ETrF values from Landsat 
8 and Landsat 9 to overcome the low temporal 

Table 4. Results of the processing of the METRIC energy balance model.

ID Date DAS Rn (W/m2) G (W/m2) H (W/m2) LE (W/m2) ETrF (Kc) ETc (mm/day) Satellite
1 Nov 12, 21 -3 419 101 91 226 0.52 2.3 L8
2 Dec 22, 21, 38 398 57 22 318 0.97 3.6 L9
3 Jan 07, 22 54 403 37 19 346 1.03 3.8 L9
4 Jan 31, 22 78 442 32 88 320 0.91 4.1 L8
5 Feb 08, 22 86 462 36 111 314 0.96 4.8 L9
6 Feb 16, 22 94 479 38 -69 510 1.04 5.3 L8
7 Feb 24, 22 102 513 44 -5 474 0.99 5.2 L9
8 Mar 04, 22 110 537 47 52 437 0.91 5.4 L8
9 Mar 28, 22 134 602 72 133 396 0.76 4.4 L9
10 Apr 05, 22 142 604 75 255 272 0.83 4.4 L8
11 Apr 13, 22 150 626 90 173 362 0.78 5.8 L9
12 Apr 21, 22 158 638 99 276 261 0.67 3.7 L8
13 Apr 29, 22 166 655 136 239 278 0.64 5.1 L9
14 May 15, 22 182 642 130 432 79 0.20 1.4 L9
* DAS = Days After Sowing.
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resolution (16 days) and the even distribution of 
the images acquired by these satellites.

The processing of images in GEE generated 
different intermediate maps such as Top Of 
Atmosphere (TOA) reflectance, radiance, albedo, 
vegetation indices (NDVI, SAVI and LAI), Ts, G, 
H, LE flux, and others.

Figure 4 shows an example of the deliverables via 
GEE platform with ETa values for each pixel on 
two different monitoring dates.

The resulting maps helped to understand the spatial 
variability of the crop and its characteristics, as 
well as its behaviour in time. The understanding in 
time and space will help the farmers, technicians, 
researchers and others involved to make optimal 
decisions in the management of agricultural 
irrigation. In addition, Figure 4 shows a low spatial 
resolution of the Landsat satellite to analyze the 
heterogeneity of the study area, which shows the 
fact that no “pure” pixels fall into the study area, 
so they contained information for the surrounding 
areas.

The different elements present in crop fields 
(plants, trees, soil bare, roads, among others) 
contribute with the signal captured by sensors 
and therefore with the mass and energy exchange. 
The pixels which receive signal from distinct 
elements are called “mixed” and affect results of 
models because increase uncertainty drastically 
during evapotranspiration calculus. However, it 
is possible to improve results using products with 
more spatial resolution, and then, for estimating 
evapotranspiration; the models should account for 
the presence of a variety of vegetation roughness 
(Burchard-Levine et al. 2021).

3.3. Comparison of the METRIC model 
and the FAO-56 method

The two ETc estimation methods had a similar 
temporal trend. Low ETc rates were observed 
in the initial and final crop growth stages due to 
null or scarce vegetation and leaf senescence, 
respectively. Likewise, high ETc rates were 
observed in the middle stage due to maximum or 
near maximum plant development (Figure 5). The 
same pattern was reported in earlier investigations 
(Pôças et al., 2014; Reyes-González et al., 2017; 
Tasumi, 2019; Reyes-González et  al., 2019). 

Likewise, FAO-56 was observed to display higher 
values for ETc, near to 6 mm/day.

An overestimation of the METRIC model was 
found regarding FAO-56 in the initial stages of 
the crop, unlike reported by Reyes-González et al. 
(2017). These authors reported that in this stage 
there is an underestimation of the model when 
comparing it with data derived from an atmometer 
and they attributed it to a high value of Kc (0.51).

 

 

Figure 4. Comparison of the calculation of the ETc for two 
different dates in the crop growth season. a) ETc on Julian 
day 47 (February 16th, 2022, 94 DAS), date of monitoring 
that represents the middle stage of the crop. b) ETc on Ju-
lian day 111 (April 21st, 2022, 158 DAS), date of monito-
ring that represents the final stage of the crop.
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The overestimated values could be due to a 
heterogeneous surface that influences the surface 
optical properties (albedo and emissivity), the 
fraction of absorbed photosynthetically active 
radiation, the transpiration rate, and surface energy 
budgets (Guillevic et  al., 2012). Sharma et  al. 
(2016) evaluated the impact of scale/resolution 
on evapotranspiration from Landsat and MODIS 
images and it was observed that Landsat has more 
preferable spatial resolution (30 m) to map and 
analyze ETc compared to MODIS (500 m), with 
regression models explaining 91% and 59% of the 
variability on BREBS-measured ETc, respectively. 
Pixel-by-pixel comparisons showed an absolute 
difference close to 1 mm/day. This difference is 
mainly due to the underlying assumption of spatial 
heterogeneity, the difference in spatial, spectral, 
and radiometric resolution between the Landsat 
and MODIS sensors.

Figure 6 shows that both methods present a high 
linear relation with a coefficient of determination 
(R2) of 0.87.

Therefore, METRIC can be considered a good 
predictor of ETc as an alternative to FAO-56, 
highlighting the advantages of using geospatial 
tools. The statistical metrics evaluated to determine 
the accuracy of METRIC model showed a MAE 
of 0.7 mm/day, MSE of 0.8 mm/day, RMSE of 
0.9 mm/day and MBE of -0.4 mm/day.

The PBIAS was -14.5, indicating that METRIC 
overestimated ETc by 14.5% when compared 
with the values of the FAO-56 methodology. 

Model simulation can be considered satisfactory 
if PBIAS ≤ 15 % (Berreta et al., 2014; Feng et al., 
2018). Tasumi (2019) evaluated the METRIC 
model with estimations independent of ETc, 
using the FAO-56 approach in the Western side 
of the Urmia Lake basin, in Iran. The MBE for 
apple, grape, and bare soil were 0.20, 0.16, and 
0.36 mm/day, respectively. The positive value of 
this parameter indicates an overestimation. The 
MAE were 0.57, 0.52, and 0.59 mm/day and 
RMSE of 0.73, 0.84, and 0.68 mm/day for the 
same, respectively.

Reyes-González et  al. (2017, 2019) carried out 
evaluation studies for the METRIC model to 
estimate the ETc for maize in South Dakota, 
USA. They compared their results with the 
data from onsite atmometers, and found, for 
2017, that R2=0.87 and RMSE=0.65 mm/day, 
whereas in 2019, R2=0.89 and 0.71 mm/day. 
Overestimations of ETc were found in both 
experiments.

Finally, Xue et al. (2020) evaluated the model for 
the maize crop in the Central Valley, California, 
USA, showing an RMSE of 1.2 mm/day with an 
overestimated relative value of 26% and R2 of 
0.78. The authors concluded that the energy 
balance models based on remote sensors could 
be used as support tools for decision-making 
in precision agriculture to simulate daily ETc 
and provide information to optimize irrigation 
management. In general terms, the results 
presented in this study coincide with reports by 
different researchers.

Figure 5. Temporal evolution of the estimated ETc from 
METRIC and FAO-56 during the entire growing season.

Figure 6. Comparison between FAO-56 and METRIC es-
timated ETc.



ASOCIACIÓN ESPAÑOLA DE TELEDETECCIÓN

Application of the METRIC model to estimate maize crop evapotranspiration 
at field scale with Google Earth Engine

11

3.4. Seasonal evapotranspiration
The seasonal scale in this study referred to 
accumulated ETc in maize for the whole crop 
season. Figure 7 shows comparison among 
FAO-56, METRIC and CropX sensor.

Figure 7. Seasonal ETc (accumulated water depth) estima-
ted using METRIC and FAO-56 models and recorded with 
the CropX sensor.

When compared to the accumulated ETc measured 
by the in situ sensor, METRIC showed a difference 
of 16 mm, whereas the FAO-56 methodology 
showed a difference of 63 mm. The PBIAS of 
METRIC regarding CropX was -3.0 %, whereas 
FAO-56 obtained a PBIAS of 11.9%, where 
negative and positive values mean overestimation 
and underestimation of the seasonal ETc, 
respectively.

Results obtained in this study are similar to those 
reported by Liu et al. (2024), where total ETc was 
522 mm with METRIC and 533 mm with the soil 
water balance method. Ojeda-Bustamante et  al. 
(2006) determined the maize water consumption 
in the north of Sinaloa, Mexico, and reported an 
accumulated consumption of 445 mm. This is 
lower than obtained in this study, probably due 
plantation density of 95 000 plants/ha, which 
is lower than current commercial exploitations 
densities and different weather conditions for each 
area of study.

Potential yield is key to predicting the expected 
crop water use. Lich and Archontoulis (2017) 
mentioned that higher yields require more water 
transpiration and, therefore, higher ETc. In 
general, they claim that to obtain about 10 t/ha of 

maize, 400 mm of water is required; for 13.5 t/ha, 
about 510 mm; and for 17 t/ha, about 560 mm.

4. Conclusions

Developing scripts for calculating ETa using 
a platform as GEE saves processing time and 
informatics resources due to cloud computer power 
of google earth engine. Comparing the METRIC 
model with FAO-56 methodology indicated that 
METRIC overestimated ETa in early crop stage 
due to mixed pixels and soil bare probably, so 
improving spatial resolution is recommended 
to reduce the error. In the same way, METRIC 
underestimated in middle stage probably by the 
anchor pixels selected manually.

Comparing the total ETa obtained among sensors 
and models showed that soil moisture sensors 
and METRIC overestimated ETa compared to 
FAO-56, because the Kc should be adjusted for 
local conditions probably, so local calibration is 
recommended for improving comparation.

The model shows a great potential and ability to 
obtain ET for maize at field scale using satellites 
and the processing of images on the cloud. 
Therefore, METRIC could be used in decision-
making tools, adding to the development of the 
precision agriculture field and improving the 
management of agricultural irrigation.
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