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Abstract / Resum / Resumen

Abstract

Over the last decade, there has been a great bulk of research on the use of Reinforce-
ment Learning (RL) techniques for intelligent decision-making in autonomous driving.
The trial-and-error exploratory nature of RL has proven to be a promising solution for
learning driving policies. In this work, we propose a human-RL collaborative approach
for learning on-road driving by integrating two sources of knowledge, (i) samples of
human behaviour representing the expert knowledge of driving on challenging roads
and (ii) a representation of the human field of view that models the agent perception
to support upcoming decisions on the scene content. Both knowledge sources are inte-
grated into an RL scheme where the human vision imitation helps the agent interact
with the environment by removing irrelevant information and the human driving ex-
perience is used to reinforce negative actions. The results will show that incorporating
both inputs in an RL algorithm helps anticipate cornering scenarios and avoid going
off the lane compared to a baseline without such inputs.

Resum

En l’última dècada, s’ha investigat molt de sobre l’ús de tècniques d’aprenentatge per
reforç (RL) aplicades a la conducció autònoma. La naturalesa exploratòria del RL,
basada en prova i error, ha demostrat ser una solució prometedora per a l’aprenentatge
de polítiques de conducció. En aquest treball, proposem un enfocament col·laboratiu
Humà-Màquina aplicat a l’aprenentatge de tècniques de conducció en carretera mit-
jançant la integració de dues fonts de coneixement, (i) mostres de comportament humà
que representen el coneixement expert de la conducció en carreteres complexes i (ii)
una representació del camp de visió humà que modela la percepció de l’agent, donant-
li suport en futures decisions sobre la rellevància del contingut en l’escena. Totes dues
fonts de coneixement s’integren en un esquema de RL en el qual la imitació de la visió
humana ajuda a l’agent a interactuar amb l’entorn eliminant la informació irrellevant
i l’experiència de condició humana s’utilitza per a reforçar les accions negatives. Els
resultats reflecteixen que la incorporació de totes dues tècniques ajuden a anticipar
escenaris de corbes i a evitar sortir-se del traçat, en comparació amb un model basi
mancat d’aquest coneixement.

Resumen

En la última década, se ha investigado mucho sobre el uso de técnicas de aprendizaje
por refuerzo (RL) aplicadas a la conducción autónoma. La naturaleza exploratoria
del RL, basada en prueba y error, ha demostrado ser una solución prometedora para
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el aprendizaje de políticas de conducción. En este trabajo, proponemos un enfoque
colaborativo Humano-Máquina aplicado al aprendizaje de técnicas de conducción en
carretera mediante la integración de dos fuentes de conocimiento, (i) muestras de
comportamiento humano que representan el conocimiento experto de la conducción
en carreteras complejas y (ii) una representación del campo de visión humano que
modela la percepción del agente, apoyándole en futuras decisiones sobre la relevancia
del contenido en la escena. Ambas fuentes de conocimiento se integran en un esquema
de RL en el que la imitación de la visión humana ayuda al agente a interactuar
con el entorno eliminando la información irrelevante y la experiencia de condición
humana se utiliza para reforzar las acciones negativas. Los resultados reflejan que la
incorporación de ambas técnicas ayudan a anticipar escenarios de curvas y a evitar
salirse del trazado, en comparación con un modelo base carente de dicho conocimiento.

iv DSIC, UPV
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Chapter 1

Introduction

This work lays the foundation of a different approximation to the Autonomous Driving
(AD) paradigm. This memory revisits current the state-of-the-art in terms of driving
simulators, Reinforcement Learning (RL) algorithms and similar Autonomous Driv-
ing Systems (ADS), and proposes a new methodology to enhance the results and
convergence of ADS.

This chapter describes the motivation for this work along with the principal ob-
jectives that will be achieved during its execution and as a consequence of it. In
addition, an outline of the structure is provided at the end of this section.

1.1 Motivation

Since the the invention of the car around 1886 by Carl Benz1 until today, driving has
had a profound impact on the daily lives of individuals worldwide. The automobile has
facilitated the closing of geographical distances between distant cities, the creation
of new employment opportunities, and the advancement of personal freedom and
independence. In the recent years, with the rise and democratisation of Artificial
Intelligence (AI), all industries have been shaken by the capability of AI to serve a
variety of emerging technologies [67, 46] excelling in driving related tasks involving
perception, control and complex strategic execution [75, 51, 68, 87, 12].

The AD paradigm faces a complex field of application, where safety and robustness
against failure must be assured. For this reason ADS usually focus on the resolution of
one particular driving scenario. More precisely, ADS have been extensively applied to
the development of urban self-driving cars [28, 40] or to the modelling of high-speed
management and lane-changing policies in highways [60]. However, it can be seen
that there is a lack of research focus on conventional and country roads. Although
this type of road incorporates the characteristics of urban driving in roundabouts and
crossroads, as well as those of highways in terms of high speed, lane changing and over-
taking, it is nevertheless a distinct entity for the additional layer of complexity that

1https://en.wikipedia.org/wiki/Car

1
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Chapter 1. Introduction

the nature of this roads layout represent. The difficulty of these roads, coupled with
the potential for transferring the acquired knowledge to other scenarios, constitutes
an area of research that is both fascinating and worthy of further investigation.

Conventional roads also are a particular cause for concern in some countries. Spain
provides a useful example in this regard, with conventional roads representing 54.03%
of the total kilometers included in the national road network2. Furthermore, these
roads are associated with a significantly higher mortality rate per accident3. Indeed,
5.77% of the accidents result in fatalities, in contrast to highways, where this ratio is
3.52%.

Taking into consideration all the aforementioned, the objective of this Master’s
thesis is to develop a robust ADS capable of adapting to different road layouts, ad-
justing its speed to drive safely and comfortably around incoming turns. As will
be discussed subsequently, the system will be endowed with human behavioural and
cognitive capabilities, thereby enhancing the existing state-of-the-art solutions. Fur-
thermore, a benchmark will be established for the development of ADSs in the context
of the simulator used.

1.2 Main objectives

With this work we aim to:

• Explore, understand and evaluate current AD platforms selecting the one that
best fits our needs.

• Revisit state-of-the-art AD solutions identifying possible improvements.

• Understand and implement cutting edge RL algorithms, being able to upgrade
them by endowing human expertise

• Train and evaluate an ADS capable of driving safely around a series of known
and unknown roads.

• Establish a general benchmark in ADS development.

1.3 Document structure

This thesis is structured as follows: First, Chapter 2 will provide an introduction
to the general concepts and mathematical background behind the state-of-the-art RL
algorithms. This will be followed by a more detailed examination of the AD paradigm
in Chapter 3, which will include a review of the actual challenges and existing pro-
posals, as well as a discussion of both simulation platforms and related works. After

2https://www.transportes.gob.es/carreteras
3With respect to the 2020 official annual reports: https://www.transportes.gob.es/

recursos_mfom/comodin/recursos/accidentes_con_victimas.pdf, https://www.transportes.gob.
es/recursos_mfom/comodin/recursos/victimas_mortales_en_la_rce.pdf

2 DSIC, UPV
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that, Chapter 4 details our methodology for integrating human behavioural and cog-
nitive aspects into a general RL framework. Chapter 5 will transform the preceding
theoretical concepts into an in-depth, detailed implementation. Finally, Chapter 6
will present the experimentation procedure and the results obtained. The conclusions
of which will be discussed in Chapter 7.

DSIC, UPV 3
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Chapter 2

Theoretical Framework

In this chapter, we introduce the Reinforcement Learning paradigm, starting from
the basics of the field until reaching state-of-the-art algorithms. First, Section 2.1
will introduce the reader to the field of pattern recognition, and establish the main
differences between the different kinds of machine learning. Second, Section 2.2 will
delve deeper into the key concepts of Reinforcement Learning. It explains some
basic definitions and then formally defines each one of the components that compose
a Reinforcement Learning problem. Third, in Section 2.3 the reader will find the
first approach to solving a problem using this technique. This section will lays the
foundation for Section 2.4, which describes further modifications of the mentioned
algorithm using Neural Networks as function approximators. Finally, in Section 2.5
the reader will find current state-of-the-art algorithms for control tasks.

2.1 Introduction

The field of Pattern Recognition focuses on the recognition of regularities in data to
perform actions such as the classification of data into different categories. [5] The
objective of Pattern Recognition is to build a machine that takes a vector x as input
and produces a target number representing the class label or the final solution. This
process is known as Machine Learning, which can be formally expressed as a function
y = f(x), where x is the vectorial representation of the input data and f(x) is a
function whose shape is determined during the training phase, based on the training
data.

Machine learning models, as they are called once the training phase has ended,
learn certain characteristics inherent to the training data and try to emulate the
probability distribution of certain events to happen. The ability to correctly model
not only the dynamics of the training set, but also the dynamics of unseen data is
known as generalisation. Depending on the nature of the training data, machine
learning algorithms are categorised into three big families:

• Supervised Learning: works with pairs of samples (x, y) where typically x rep-

5
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Chapter 2. Theoretical Framework

resents the input feature vector and y represents the target that the algorithm
must predict. Depending on the nature of the target, these algorithms can be
Classification algorithms or Regression algorithms. The former aim to associate
each input vector with one of a finite number of discrete categories. An example
of this kind of algorithm can be the MNIST task [16], where machines must tell
which one of the 10 characters (0..9) appear on an image. The later tries to find
a continuous variable that corresponds to the given input vector. One example
of this kind of learning could be the prediction of the stock value of a certain
business based on the previous history.

• Unsupervised Learning: works with data consisting of only a set of input vectors
without the corresponding target value. These methods aim to discover groups
of similar examples (clusters)[32], determining the distribution of data over the
input space (density estimation)[69], or projecting the input data from a high-
dimensional source to a target dimension, usually small enough to be printed
and used to draw visual conclusions[47].

• Reinforcement Learning: finds suitable actions to perform under a given situa-
tion so that the reward obtained by the model is maximised. Instead of pairs
of labelled samples, reinforcement learning algorithms learn by trial and error
thrrough their interactions with the environment. It has traditionally been ap-
plied to games [49], although its use has also resulted in more efficient matrix
multiplication algorithms [19].

2.2 Reinforcement Learning: Fundamentals

Reinforcement learning (RL) is a computational approach to understanding and au-
tomating goal-directed learning and decision-making [74]. It differs from other ap-
proaches in that an agent learns from direct interaction with its environment. A RL
system comprises four principal sub-elements: a reward signal, a value function, a
policy, and, optionally, a model of the environment.

A policy defines how the behavior of the learning agent at any given time, de-
nominated in RL as state. The policy can be understood as a mapping function
that processes states and outputs actions to be taken at each one of those states. In
general, policies are stochastic, although they can be deterministic.

The reward signal defines the ultimate objective of an RL problem. At each time,
the environment sends a single number, the reward, to the RL agent, which indicates
what is beneficial in the short term. Since the rewards received by the agent depend
solely on its actions at a given state of the environment, rewards are the defining
features of the problem and significantly alter the agent’s policy. Should the selected
action yield a low reward, the policy may be revised to select alternative actions in
the future, to achieve greater rewards. Typically, the reward is a stochastic function
defined in terms of the visited state and the action taken.

In contrast, the value function, indicates long-term benefits. A value function
represents the total amount of reward that an agent expects to accumulate over the

6 DSIC, UPV
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2.2. Reinforcement Learning: Fundamentals

future, starting from a given state.
Consequently, value functions are predictions of future rewards that indicate the

overall desirability of future states, taking into account the likelihood of future states
and the potential rewards available in those future states. In the context of learning a
policy, the optimal course of action for an agent is to identify and pursue actions that
will result in states of the highest value. These actions represent the overall reward,
rather than close reward signals. Unfortunately, the values of states are not known
and must be estimated. In order to achieve this, an agent must update its beliefs
about state values based on a sequence of observations made over its lifetime.

Finally, a model of the environment is a mechanism that emulates the behaviour
of the environment (i.e. it predicts transitions between states based on the selected
actions). Models are employed to determine the most appropriate course of action
in anticipation of future scenarios. RL algorithms that make use of environment
models are denominated “model-based” algorithms. On the other hand, systems that
explicitly estimate the policy through trial and error without the use of a model are
denominated “model-free”.

In a formal sense, any RL problem can be defined in terms of a Markov Decision
Process (MDP). This is a model comprising a set of states (S), a set of actions (A),
a reward function (R), a transition function (T ) and a distribution over the initial
states (ρ). The mathematical representation of this model is given by Equation 2.1.
If both S and A are finite sets, we are dealing with a Finite Markov Decision Process.

MDP = ⟨S,A,R, T, ρ⟩ (2.1)

p(s′, r|s, a) = Pr{St+1 = s′, Rt+1 = r|St = s,At = a} (2.2)

Equation 2.2 comprehends the basis of all the dynamics within a MDP. For a given
state and action, the equation models the probability of each possible pair of next
state and reward. Based on this, we can define all the necessary information about
the environment, including the expected rewards (Equation 2.3) and state-transition
probabilities(Equation 2.4)

r(s, a) = E[Rt+1|St = s,At = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a) (2.3)

p(s′|s, a) = Pr{St+1 = s′|St = s,At = a} =
∑
r∈R

p(s′, r|s, a) (2.4)

At time t, an agent selects an action at according to a stochastic policy π. π is
a mapping function from state s ∈ S and action a ∈ A, to the probability of taking
action a when the agent is in s:

π : S → p(A = at|S = st) ≡ π(at|st) (2.5)

The value of a given state s under policy π is defined as the expected reward to
be earned as a consequence of following policy π from that state on. This value is

DSIC, UPV 7
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Chapter 2. Theoretical Framework

known as the state-value function and can be computed as follows:

vπ(s) = E[Gt|St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1|St = a

]
(2.6)

Similarly, the action-value function, which denotes the value associated with taking
action a in state s under policy π, is defined as qπ(a|s). This represents the expected
return starting from s, taking action a and following policy π thereafter.

qπ(s, a) = Eπ[Gt|St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s,At = a

]
(2.7)

In both state-value and action-value functions, the discount factor, denoted by the
symbol γ, is a real number within the range γ ∈ [0, 1], This factor is used to weight
rewards in accordance with their proximity to the current state.

Solving an RL task implies finding a policy that achieves the maximum reward
over the long run. Formally, a policy π is said to be better than another policy π′ if
and only if Vπ(s) ≥ Vπ′(s) ∀s ∈ S. It can be demonstrated that there exists at least
one policy that is at least as good as, or equal to, all other policies. This policy is
known as the optimal policy and it is denoted by π∗. All policies that are optimal
share the same optimal state-value function v∗(s) = maxπ vπ(s) and action value
function q∗(s, a) = maxπ qπ(s, a).

Unrolling equations 2.6 and 2.7, we can compute the Bellman Optimality Equation
for both the state-value (2.8) and action-value(2.9) function as follows:

v∗(s) =max
a

E[Rt+1 + γv∗(St+1)|St = s,At = a] (2.8)

q∗(s, a) =E[Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s,At = a] (2.9)

2.3 Q-Learning and Deep Q-Learning
The optimal policy π∗ can be obtained through different algorithms; the most basic
of all is Q-learning [80]. The Q-learning algorithm defines an iterative process for
learning the optimal action-value (Q-value) function, independent of the policy being
followed. This algorithm starts with the creation of a table, the Q-table, which must
comprise as many rows as there are states in the environment and as many columns
as there are actions that the agent is capable of performing. The objective is thus
to approximate the real q(s, a) ∀s ∈ S, a ∈ A by interacting with the environment in
accordance with an arbitrary policy π. The approximation is calculated by following
Equation 2.10. In this equation, the current value is increased if the current estimation
of the action-value function for the given action and state is lower than the experienced
value, or decreased if the experienced value is otherwise. The parameter α corresponds
to the step-size, which is commonly referred to as the learning rate.

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a′
Q(st+1, a

′)−Q(st, at)
]

(2.10)

8 DSIC, UPV
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2.3. Q-Learning and Deep Q-Learning

It should be noted that in Equation 2.10, Q is no longer the action-value function,
but rather the tabular estimator of the optimal action-value function q∗. In [80], it
is demonstrated that the estimator Q converges with probability 1 to the optimal
action-value function q∗.

For the algorithm to converge, this mechanism must ensure that all states are
visited and that all actions are tried at least once, thus it must handle what is com-
monly known as the exploration-exploitation dilemma. One may wish for the agent
to select only those actions that result in the greatest possible reward. However, the
agent is unable to ascertain which action is optimal unless it has a reliable approxi-
mation of q∗ (Equation 2.9), which comes by trying several different trajectories. One
common approach to address this issue is the ϵ-greedy exploration mechanism [14].
In it, the agent select the action that maximises the Q value for the current state
(a ← argmaxa′ Q(s, a′)) with probability p = 1 − ϵ, and a random action with prob-
ability p = ϵ. Higher values of ϵ result in more exploration and longer convergence,
whilst lower values result in faster convergence in exchange for the risk of ending in
a local minimum.

Despite the optimal policy for an RL problem being obtained, Q-learning is
severely limited in terms of computing resources. The size of the problem is pro-
portional to the number of states and actions in the environment, which is given by
the expression O(|S| × |A|). In large problems, this implies that the state and ac-
tion spaces become increasingly challenging to be fully explored. This is commonly
understood as the curse of dimensionality.

To overcome this issue, authors in [50] propose a novel agent architecture that
combines RL with the function approximation power of Neural Networks(NN). The
primary objective of incorporating NN is to construct an internal representation of
states that accurately captures their key features. In this manner, states that are
similar will exhibit similar characteristics, and as a result, an agent should behave
similarly in any of them.

Consequently, an action-value function is defined as Q(s, a; θi), where θi represents
the parameters of the Q-Network at iteration i. To avoid the divergence in the RL
algorithm produced by the non-linear function approximator[77], authors propose
the inclusion of a Replay Buffer. This can be understood as a dataset composed of
the agent’s experience et = (st, at, rt, st+1) retrieved along several time steps Dt =
{e1, ..., et}. During the learning phase, samples of experiences will be drawn uniformly
at random from the dataset D in order to minimise the loss function represented by
Equation 2.11. This is the mean squared error (MSE) between the Bellman Optimality
Equation (Eq. 2.9) and the actual reward obtained for performing action a at state
s.

Li(θi) = E(st,at,rt,st+1)∼U(D)

[(
r + γmax

a′
Q(s′, a′; θ̂i)−Q(s, a; θi)

)2
]

(2.11)

It is important to highlight the distinction between θ̂ and θ. The former corre-
sponds to the parameters of the target Q-network, which are only updated every C
steps and are kept fixed between individual updates. The latter corresponds to the

DSIC, UPV 9
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Chapter 2. Theoretical Framework

parameters of the Q-network at iteration i1. This network is the one used to select
actions in accordance with the aforementioned ϵ-greedy methodology.

Despite proving to be successful in several applications [27, 49], Deep Q-Learning
is only applicable in problems with discrete action spaces. This limitation is evident
in equation 2.11, where the computation of the approximate Q value for the next state
s’ requires the evaluation of the Q values for all the applicable actions. In the case of
continuous action spaces, the number of actions is infinite. One potential solution can
be to discretise the action space. However, this approach has significant limitations,
most notably the aforementioned curse of dimensionality. As the number of actions
exponentially grows with the number of degrees of freedom available at the problem,
this approach becomes increasingly unfeasible.

2.4 Deep Deterministic Policy Gradient
To address the limitations of DQN with continuous action spaces, in [41] the au-
thors propose the Deep Deterministic Policy Gradient (DDPG) method, an off-policy,
model-free Actor-critic[35] algorithm that is capable of learning policies directly in
high-dimensional and continuous action spaces. The term Actor-Critic refers to the
two different functions utilised in this algorithm. The actor function, denoted by
µ(s; θµ), specifies the current policy by deterministically mapping the states to a
specific action. The critic function, Q(s, a), is learned using the Bellman optimality
equation as in the two previous sections.

As DQN, DDPG presents a replay buffer D to address the divergence issues pro-
duced by the direct correlation between states when utilising non-linear approxima-
tions. The buffer behaves in the same manner as previously described. It has a
fixed size and, once full, is cleared by randomly sampling transitions of the form
dt = (st, at, rt, st+1) ∼ D, which will be used in the learning phase.

However, a major challenge arises during the exploration phase. Under continu-
ous action space dynamics, the ϵ-greedy procedure is no longer applicable, as there
does not exist a finite number of actions from which to sample. Instead, a contin-
uous action space requires a different exploration mechanism. The authors propose
the implementation of a constructed exploration policy µ′ which incorporates noise
sampled from a normal distribution.

The shape of the DDPG algorithm (Algorithm 1) with replay buffer is analogous to
the DQN in terms of making use of different weights for targets (Q′, µ′) and sample
(Q,µ) networks. DDPG works as follows: Given the previously stated networks,
for each one of the training episodes, the algorithm samples the first state via the
distribution over initial states. Then, until the episode is over, it selects the best
action for st according to θµ and adds to it some random noise to boost exploration.
After that, the action is committed to the environment. As a result, the next state
and the associated reward are obtained. The algorithm stores the transition in the

1The use of two different Q-Networks (policies), one for sampling actions and another for com-
puting the expected future reward, makes Deep Q-Learning(DQN) an “Off-policy” algorithm. In
contrast, algorithms that share the same policy for sampling and computing the expected reward
are described as “On-policy” algorithms

10 DSIC, UPV
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2.5. Proximal Policy Optimisation

Algorithm 1 Deep Deterministic Policy Gradient (adapted from [41])

Require: Critic network with random weights Q(s, a; θQ), Actor network with
weights µ(s; θµ)

1: Initialize target networks Q′ and µ′ with θQ
′ ← θQ and θµ

′ ← θµ

2: D ← ∅
3: for episode=1, M do
4: Initialize random process N for action exploration
5: st ← ρ(S)
6: for t=1,T do
7: at ← µ(st; θ

µ) +Nt

8: st+1, rt ← perform_action(at, st)
9: D ← D ∪ (ϕt, at, rt, ϕt+1)

10: N ← (ϕj , aj , rj , ϕj+1)← random_samples(D)

11: yj ← rj + γQ′(sj+1, µ
′(sj+1; θ

µ′
); θQ

′
)

12: Update the critic by minimizing the loss L = 1
N

∑
j

(
yj −Q(sj , aj ; θ

Q)
)2

13: Update the actor policy by using the sampled policy gradient:
14:

∇θµJ ≈
1

N

∑
j

∇aQ(s, a; θQ)|s=sj ,a=µ(sj)∇θµµ(s; θ
Q)

15: Update target networks:

θQ
′
= τθQ + (1− τ)θQ

′

θµ
′
= τθµ + (1− τ)θµ

′

16: end for
17: end for

replay buffer (D), and proceeds to compute the expected action-value for the current
state using the target networks (line 11). The critic weights are updated by MSE over
the predicted action-value. The actor weights, on the other hand are updated by the
sampled policy gradient, which is the gradient of the action-value function times the
gradient of the state-action probability distribution. In other words, how good or bad
an action has proved to be, times the probability of performing that action. Finally,
the weights of the target networks(Q′, µ′) are updated in a way that they are forced
to slowly track the learned weights (θQ, θµ) by applying a τ ≪ 1. This improves the
stability of learning.

2.5 Proximal Policy Optimisation

Policy gradient methods represented a significant advance in the development of RL
algorithms. Since DDPG, a serious investigation has been conducted, resulting in the
emergence of numerous algorithms, including Soft Actor-Critic (SAC)[25], Advantage

DSIC, UPV 11
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Chapter 2. Theoretical Framework

Actor-Critic (A3C)[48] and Trust Region Policy Optimisation (TRPO) [65], among
others. The current state-of-the-art in this field is the Proximal Policy Optimisation
algorithm [66] (PPO).

PPO provides a more stable, generic and data-efficient algorithm for the resolution
of diverse RL tasks, such as Atari games [34], robotic locomotion [21] and autonomous
control [22]. The most significant contribution of PPO is the introduction of a clip
function that constrains the update of the surrogate objective. The surrogate objective
is a concept that PPO inherits from the TRPO. It is a criterion used to update the
policy in terms of the Advantage function and the probability ratio of the selected
action.

The original surrogate objective is displayed in Equation 2.12. The ratio function
(rtθ), for a given time t, establishes how more or less probable is at given the current
weights θ with respect to the old ones θold. The advantage function (At) denotes
the divergence between the action-value and the state-value for a given action and
state A(s, a) = Q(a|s)−V (s). Using basic definitions from Section 2.2 and expanding
them, the advantage function can be expressed as: A(s, a) = r + γV (S′)− V (S).

LCPI(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
= Êt

[
rt(θ)Ât

]
(2.12)

It is clearly visible that LCPI can prove to be highly unstable, for example in the
earlier stages of the training process, where probabilities of actions could change dras-
tically. To overcome this issue, PPO introduces a “clipped” version of this objective.
The clip function, is a mechanism that sets an upper and lower bound for a given
value.

LCLIP (θ) = Êt

[
min(LCPI(θ), clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(2.13)

PPO sets as its surrogate objective Equation 2.13 where LCLIP ≈ LCPI when the
ratio is close to 1. The clip function ensures that the ratio of the actions is always
between [1− ϵ, 1 + ϵ], typically with a value of ϵ = 0.2. The complete descriptions of
the different steps comprising the PPO algorithm can be found at Algorithm 2.

From an empirical point of view, PPO exhibits better sample complexity proper-
ties, proving that it is an optimal choice for the autonomous driving problem. As will
be discussed in the following chapter, the huge state and action dimensionality of this
problem urges the need of learning as much as possible from a single interaction with
the environment.

12 DSIC, UPV
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2.5. Proximal Policy Optimisation

Algorithm 2 Proximal Policy Optimisation - Clip (adapted from [66])

Require: Initial policy parameters θ0, initial value function parameters ϕ0

1: for episode=1, M do
2: Collect trajectories {D}k = τi by running policy π(θk)
3: Compute rewards-to-go R̂t

4: Compute the advantage estimates Ât based on the current value function Vϕk

5: Update the actor policy by maximising the PPO-Clip objective:

θk + 1 = argmax
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min

(
πθ(at|st)
πθk(at|st)

Aπθk , clip(rt(st), ϵ, Aπθk )

)
via stochastic gradient ascent.

6: Fit value function by MSE:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vϕ(st)− R̂t

)2

via stochastic gradient descent
7: end for

DSIC, UPV 13
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Chapter 3

Autonomous Driving

This chapter provides a comprehensive overview of the Autonomous Driving (AD)
domain. It begins by defining the concept of vehicle autonomy and by stating the
official levels of autonomy that can be found on street cars. Secondly, it outlines the
various processes that comprise the autonomous vehicle pipeline, namely perception,
planning, and control. Then, it acknowledges different approaches to the autonomous
driving paradigm, starting with the classical mathematical perception and control
models, continuing with the initial incorporation of neural networks, and finally de-
scribing end-to-end models that fusion all the components into a single entity.

3.1 Introduction to autonomous driving

The field of AD is a research area with the primary objective of developing and
implementing fully autonomous self-driving vehicles that are capable of operating with
minimal or no human intervention. In order to classify these vehicles according to
their level of autonomy, the Society of Automotive Engineers (SAE) has established
six distinct categories, which define the respective responsibilities of humans and
machines and provide a standard for the automotive market. Figure 3.1 illustrates
the different levels of autonomy, along with the extent of human responsibility in a
selection of driving scenarios.

SAE level 0 represents the initial stage of the development of such systems, with
only a limited number of sensors that are capable of computation. For example, these
sensors are used to determine the safety distance between the vehicle and the car in
front or to determine whether the vehicle is leaving the lane. SAE level 1 represents
a further development, with the introduction of automated functions such as lane
centring or cruise control. These functions require constant human supervision, as
they only take partial control of the car. SAE levels 2 and 3 represent a threshold
between autonomy and assistance. Both levels share the same capabilities, but at level
2, the human must be supervising the vehicle constantly, while at level 3, the vehicle
is designed to drive autonomously under certain circumstances. If the conditions for
autonomous driving are not met, the driver must resume control of the car. Finally,

15
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Chapter 3. Autonomous Driving

Figure 3.1: Levels of driving automation [55]

levels 4 and 5 represent the maximum level of autonomy. The number of vehicles
equipped with this technology is limited, with only a few companies offering level 4
vehicles as taxicabs or merchant trucks. To date, no manufacturer has yet released a
level 5 vehicle for general use on the road.

At this stage, it seems appropriate to pose the following question: if a car is indeed
capable of adjusting its speed and location with respect to the lane dynamically, why is
it so challenging to fully automate the driving task? The reason behind this situation
is the intrinsic complexity of driving. Contrary to popular belief, the task is not as
straightforward as it may appear. As illustrated in Figure 3.2, autonomous driving
vehicles comprise a series of interconnected tasks and processes that must collectively
function and coordinate in order to achieve SAE level 5.

Firstly, autonomous vehicles(AV) require a substantial amount of sensory data
that accurately describes their surroundings and their current speed, as well as their
position within the lane. Typically, AV are equipped with Global Positioning Sys-
tems (GPS) devices that provide precise information about the vehicle’s location to
a precision of a few decimetres. In order to obtain information about the vehicle’s
surroundings, AV incorporate two additional sensors. First, the RADAR provides

16 DSIC, UPV
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3.1. Introduction to autonomous driving

information regarding the position and velocity of surrounding objects [30]. Secondly,
the LiDAR[13] describes the shape and dimensions of the surrounding objects.

Figure 3.2: Autonomous driving pipeline [4]

All the information retrieved by the sensors must be perceived and processed in
order to be used by the subsequent components. The perception module is composed
of algorithms which analyse the incoming information, identifying objects and areas
of free space. Furthermore, it determines the vehicle’s location in relation to its
surroundings. This process is crucial, as an error in perception could potentially
result in a chain effect, leading to a potential accident. For example if a bridge over
the highway is erroneously identified as a wall, the car could decide to apply the
brakes in order to avoid the perceived “obstacle”.

With regard to the sensory aspects, there is an underlying issue with the nature
of the autonomous driving paradigm: the speed. The information retrieved from the
sensors must be equally valid when the vehicle is travelling at low speeds in urban
scenarios and at high speeds on highways or motorways. Consequently, the latency
and precision of these components must be related to the desired maximum speed of
the vehicle and the sensing range [18].

The next step in the AV pipeline is comprised in the planning box. This component
of the pipeline provides the optimal path or trajectory to be followed. The planning
step is usually divides into three distinct phases: global planning, local planning, and
behavioural planning. Global planning refers to the trajectory that the vehicle must
follow so the car arrives to a destination. An illustrative example of this plan could be
the route proposed by a navigation system, such as the Google Maps application. In
contrast, local planning offers greater granularity, as it operates under the umbrella
of an optimal global trajectory. Its goal is to avoid obstacles and perform overtakes
while being as close as possible to the optimal driving line. Finally, behavioural plan-
ning provides information about a higher-level mission, such as energy management,
adaptation to climatic conditions, interaction with other vehicles, and so on.

The final software component of the autonomous car pipeline is the control block.
which reduces the lateral and heading error in order to be close to the reference
line (trajectory) and to reduce the velocity error adapting itself to the nature of the
road and the current scenario. Control actions typically include steering, braking
and accelerating, although in real-world scenarios there are additional tasks such as
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Chapter 3. Autonomous Driving

activating the turning light. Historically, control actions were modelled using complex
mathematical and physical concepts that adapted the car velocity and steering taking
into consideration the shape of the road [37, 36, 38]. Over time, these techniques were
substituted by iterative learning control methodologies. Which became useful with
the development of neural networks, since they rely on principles of learning from
experience (i.e. repeating the same scenario over and over) in order to learn how to
correctly control the car under different circumstances [8, 61, 63, 62].

Figure 3.3: Different autonomous driving pipelines [4]

As Figure 3.3 illustrates, there has been a significant research in the autonomous
driving field with the goal of avoiding the propagation of errors from one block to
its successors. The underlying concept is to combine the components of the pipeline
and train a neural network that excels in multiple or all of the blocks of the pipeline,
capable of detecting correlations between detection, planning and control activities.
A first approach was conducted using a single neural network to detect and plan
the optimal trajectory, which will later be used as a reference for a separate control
module (referred to as partial End-to-End systems)[82, 81, 83].

Finally, as RL algorithms were improved, researchers started to abandon the idea
of a modular autonomous car and started to train a RL agent capable of driving in an
End-to-End manner. In these approaches, the agent learns the driving task without
the need of expert knowledge representation, receiving only sensory information [11,
23, 71]. Although this methodology produces, in quick time, a reliable and fast
vehicle manoeuvre on different road conditions, it usually fails to generalise to different
layouts [15].

The objective of this thesis is to address the issue of generalisation by incorporating
human behaviour and cognition into the End-to-End autonomous driving pipeline
configuration.

3.2 Simulators
As mentioned in the previous section, the Autonomous Driving Systems (ADS) paradigm
is too broad to address all the possible casuistics simultaneously. Instead, research
efforts are often focused on specific driving scenarios, as for example urban driving,
higher-level behaviour management, and even car racing. Given the high cost of real-
world testing, mainly due to the cost of repairs in the event of a crash, researchers
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3.2. Simulators

(a) left physical framework, centre digital twin,
right on-board camera

(b) left realistic view, centre enhanced depth
sensor, right semantic segmentation

Figure 3.4: Comparison of the Duckietown (a) and CARLA (b) simulators

use realistic simulators of the above mentioned environments in order to develop and
train their algorithms while minimising the cost of error.

Urban simulators are the most common and have attracted the most attention
from researchers in these days [10, 43, 45, 86, 33]. The two most popular simulators
are DuckieTown and CARLA. DuckieTown [57] is an open source platform devel-
oped for education and research in the field of ADS. The platform is lightweight
and flexible, providing a wide range of configurable urban scenarios with minimal
computational cost. The system is composed of autonomous vehicles, denominated
Duckiebots, that drive through different cities (Duckietowns). Despite their relatively
simple design, the Duckiebots capable of localising themselves within a global map,
avoiding obstacles, pedestrians (Duckies) and other Duckiebots, as well as following
traffic signals. In contrast, CARLA [17] represents a more realistic and computation-
ally expensive urban simulator. The software has been developed using the Unreal
Engine 4[20] physics and game-design engine, which provides realistic assets including
streets, cars, pedestrians, illumination, climatic conditions, and so on. The platform
supports a flexible specification of sensor suites with different signals available as for
example GPS, speed, acceleration and detailed data collision. CARLA is also capable
of detecting driving infractions like driving on the opposite lane or on the sidewalk.

Focusing on higher-level simulators, highway-env [39] is a simulator based on the
OpenAI Gym [7] framework defined to model different driving scenarios such as car
overtaking and lane merging on a highway; roundabout collision avoidance, lance
changing and path following; a goal oriented car parking scenario; and intersection
negotiation with dense traffic. This simulator presents all these environments in a
two-dimensional view of the world with a top-down perspective. In this instance, the
car controlled by the algorithm is highlighted in green, and the cars that correspond
to the environment are coloured in blue. Highway-env has been used to ease the
learn of decision-making and motion planning [76], as well as agent coordination
[58]. The official GitHub page 1 contains a variety of illustrations demonstrating the

1https://github.com/Farama-Foundation/HighwayEnv
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Chapter 3. Autonomous Driving

aforementioned examples.
Finally, there is the family of autonomous racing simulators. These kinds of plat-

forms allow the researchers to push the driving capabilities of autonomous agents to
the limit, by including high-speed sensory detection and complex physics dynamics.
One example of this kind of system is the Learn-to-Race(L2R) simulator [26] which
includes a framework that accurately models vehicle dynamics and racing conditions
whilst providing a close-to-real visual representation. L2R provides multi-modal in-
formation, with several on-board cameras capturing data from different angles and a
comprehensive array of inertial measurement sensors. Another example is F1Tenth
[54]. As with DuckieTown, F1Tenth provides both a hardware and a software plat-
form for the development and testing of ADSs. The term F1Tenth is derived from
the 1/10th scale used to develop the vehicles. F1Tenth enables a safe and rapid ex-
perimentation of algorithms in real-world laboratory set-ups, and in ROS-based [73]
virtual environments. F1Tenth is a widely used simulator that holds competitions all
around the world where researchers can compare different perception, planning and
control algorithms in real-world races2. It also serves as a baseline infrastructure to
build more complex autonomous racing vehicles such as the Autonomous Indycar se-
ries3. The last racing simulator to be acknowledged is TORCS [85], the Open Racing
Car Simulator. TORCS is a lightweight yet realistic simulator that has long been a
benchmark in the field of ADS. As it has been selected as the simulator to be used in
this work, it will be explained in detail in the following section.

3.3 TORCS
TORCS is an open-source racing car simulator that provides a three-dimensional vi-
sualisation, accompanied by a detailed physics engine and accurate car dynamics,
including aerodynamics, traction, fuel consumption, and several other factors. The
version of TORCS that is used in this work, corresponds to a proposed modification
[44] which is structured as a client-server application, where bots run as an external
process which is connected to the simulator via UPD4 connections. This detached
structure allows researchers to create bots in many different languages. The only lim-
itation when it comes to communicating with TORCS is the synchronisation. Every
20ms the simulator sends to the bots the information gathered by the sensors. The
simulator then waits 10ms for a response with the next action to be taken. In case
that the bot does not reply within the stated time span, the last communicated action
is executed. TORCS’ communication architecture is displayed at figure 3.5.

TORCS offers a variety of driving scenarios, represented in different categories of
race tracks. Firstly, it offers high-speed oval tracks in the style of the NASCAR5 or
IndyCar6 competitions which can be used to emulate the behaviour of the car when
driving at high speeds on wide roads with open and long turns. Secondly, a series of

2https://f1tenth.org/race.html
3https://www.indyautonomouschallenge.com/
4https://en.wikipedia.org/wiki/User_Datagram_Protocol
5https://www.nascar.com/
6https://www.indycar.com/
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3.3. TORCS

road tracks belonging to different environments are available. These include urban
streets with multiple acceleration and braking zones, with the usual 90º turns; country
roads which resemble the layout of national roads that connect towns or small cities,
typically with a mid-range maximum authorised velocity and several chained left and
right turns; and mountain roads with their characteristic low-speed turns and changes
of slope. Finally, TORCS also contains different off-road tracks where the asphalt is
covered in mud, dirt or snow. Such layouts facilitate the creation of scenarios that
are specific to driving in different climatic conditions. Figure 3.6 shows the layout of
each one of the tracks available in TORCS.

Figure 3.5: TORCS client-server architecture

Figure 3.6: Layout of all tracks in TORCS [64]

With regard to the sensory aspect, TORCS provides each registered bot with the
information read from each of the sensors detailed in Table 3.1, which details the
value range and unit of measure for each sensor.

For further clarification regarding the recovered information, refer to the following
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Chapter 3. Autonomous Driving

Name Range Unit

angle [−π,+π] (rad)
curLapTime [0,+∞) (s)

damage [0,+∞) (pts)
distFromStart [0,+∞) (m)

distRaced [0,+∞) (m)
focus [0, 200] (m)
fuel [0,+∞) (l)
gear {−1, 0, 1, .., 7} -

lastLapTime [0,+∞) (s)
opponents [0, 200] (m)
racePos {1, 2, ...N} -

rpm [0,+∞) (rpm)
speedX (−∞,+∞) (km/h)
speedY (−∞,+∞) (km/h)
speedZ (−∞,+∞) (km/h)
track [0, 200] (m)

trackPos (−∞,+∞) -
wheelSpinVel [0,+∞) (rad/s)

z (−∞,+∞) (m)

Table 3.1: TORCS sensor names and ranges with units of measure.

definitions:

• angle: Represents the direction the cat is facing with respect to the track axis.

• curLapTime: Is defined as the time elapsed since the last pass through the goal
line.

• damage: Is a value that reflects the current flaws of the car produced by colli-
sions with walls or other cars.

• distFromStart : Represents the approximate distance driven by the car measured
from the finish line.

• distRaced : Represents the total distance covered by the vehicle since the begin-
ning of the drive.

• focus: Is a vector or five range finder sensors, that act as a LiDAR, returning the
distance between the track edges and the car within a range of 200 metres. The
orientation of the range finder sensors is fully configurable. It should be noted
that when the vehicle is outside the track, the obtained values are not reliable.
Due to computational limitations, the values are only updated at a rate of once
per second. Consequently, repeated calls within this timeframe may result in
the delivery of potentially erroneous information.
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3.3. TORCS

• fuel : Is the current load of the gas tank.

• gear : Is the current gear that the car is driving on.

• lastLapTime: Corresponds to the time required by the vehicle to complete the
previous lap.

• opponents: Is a set of 36 sensors that cover the entire surroundings of the car
within a distance of 200m. Each of the sensors has a field of view of 10 degrees,
and it is able to report the distance of the closest opponent within that field of
view. In the event that no opponent is identified, the value 200 is returned.

• racePos: Represents the current position of the bot in the overall race order.

• rpm: reflects the current engine’s revolutions.

• speedX, speedY and speedZ : Are the decomposition of the car’s speed along each
one of the three axes (longitudinal, transverse and vertical).

• track : Is composed by the same kind of range finder sensors than the focus.
In this case, there are 19 sensors the definition of which is limited to the front
area of the vehicle, specifically between -90º and +90º with respect to the car’s
visual centerline.

• trackPos: Represents the relative distance of the car with respect to the track
centre-point. The value returned is 0 when the car is near the centre of the
track. Values close to -1 indicate that the car is at the right side, while values
close to 1 indicate otherwise. For values outside this range, it can be inferred
that the car has left the drivable area.

• wheelSpinVel : Represents the current rotatory speed of the vehicle’s wheels.
The sensor response is a vector with four items.

• z : Corresponds to the distance of the car’s centre of masses from the surface of
the track along the vertical axis (z).

As a response to the input provided, bots are capable of performing up to seven
different actions (Table 3.2), apart or simultaneously. The actions accel, brake and
clutch correspond to virtual pedals where a value of 0 means no action and a value of
1 represents full pressing of the pedals. As these are continuous actions, they take into
consideration all possible real values within the range [0, 1]. The gear action indicates
the next gear to be set, while the steering action sets the turning wheel to the given
value. Here, a positive value represents turning left, while a negative value means
turning right. Finally, the configuration actions focus and meta are responsible for
setting the angle of the five focus sensors and restarting the race, respectively.

TORCS has long been regarded as a leading platform for the development of
control and planning algorithms for autonomous racing cars. Its popularity can be
attributed to its lightweight characteristics and the variety of driving tracks and cars
available. The following section presents a selection of the most significant contri-
butions to control using Reinforcement Learning (RL) for autonomous driving in
TORCS, offering a concise overview of the current state of the art.
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Chapter 3. Autonomous Driving

Name Range

accel [0, 1]
brake [0, 1]
clutch [0, 1]
gear {−1, 0, 1, .., 7}

steering [−1, 1]
focus [-90,90]
meta {0, 1}

Table 3.2: Actions available in TORCS with their value range

3.4 Autonomous Driving in TORCS

TORCS has been employed as a testing ground for a multitude of control solutions
for ADS. Its longevity supposes the existence of two distinct control paradigms: a
traditional control approach based on mathematical models and a modern approach
based on function approximations using neural networks. This section covers the most
important representatives of each approach, outlining the methodologies employed,
the results obtained and the margins for improvement.

3.4.1 Model-based systems

Prior to the computational feasibility of end-to-end neural networks, there was a
significant effort in the autonomous driving research community to develop robust and
generalised car driving controllers using mostly mathematical representation of turn
curvature, kinematics, and physical models. In [52], authors propose a methodology
for the internal representation of the track model using the position and distance
covered by the four wheels. At each time t, the model computes the curvature of the
road by dividing the distance between wheels (1.94 metres) by the proportion of the
distance covered with the left wheels Ll with respect to the right wheels Lr (Equation
3.1). The wheels covering similar distances implies that the vehicle is driving in a
straight line, so the value of the radius is effectively infinite.

rt =
1.94

1− Ll

Lr

(3.1)

Despite the models’ proximity to the actual representation of the track maps, the
generated models had two major drawbacks, as illustrated in Figure 3.7. Firstly, there
is the underlying assumption that exists a basic controller, sufficiently sophisticated
to complete a lap on the track, and thus, generate the map. As evidenced by the
second example (corresponding to the Aalborg track), this is not always achievable.
Secondly, the curvature of the map may be approximate, but the starting and ending
points may differ, as illustrated by the third case (E-road).
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3.4. Autonomous Driving in TORCS

Figure 3.7: Mathematical map generation for tracks Ruudskogen (left), Aalborg (center)
and E-road(right)

The authors compared the results obtained from the trajectory and control al-
gorithms trained using the aforementioned mechanism with real data obtained from
humans. As table 3.3 illustrates, the resulting algorithm not only demonstrated in-
ferior performance compared to humans, but also resulted in greater vehicle damage
over the course of the test.

Avg. Lap (s) Damages
Track Human Bot Human Bot

Ruudskogen 74.23 100.89 17 1183
Aalborg 84.4 120.1 17 10090
E-road 73.71 123.09 0 6344

Table 3.3: Human-bot comparison for the controller developed in [52]

Despite these results, the researchers identified great potential in the concept of
developing an internal representation of the current track. Consequently, several
articles were published in which the authors attempted to overcome the limitations
previously exposed by (i) dynamically computing the curvature of the turns in front
as the agent drives, as described in [6, 59], and by (ii) using directly the information
coming from the sensors and applying Fuzzy Logic to discretise the scenarios, as in
[56, 9]. A direct comparison between these models and human performance can be
observed int Figure 3.8. For the first time, a performance surpassing that of a human
has been achieved on a track (C-Speedway). The results of the track tests demonstrate
that the curvature prediction algorithms have the potential to perform at a level close
to a human operator.

3.4.2 Neural-Based systems

Given the complexity of mathematically modelling the dynamics of the car and the
margin for improvement observed in the previous section for some of the models,
there has been a trend of gradually abandoning the mathematical formulation and
adopting end-to-end approaches that directly map observations into actions, using a
neural network within a RL framework.

In [24] the authors present a comparison of the performance of two different Deep
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Chapter 3. Autonomous Driving

Figure 3.8: Comparison between models: Onieva & Peralta ([56]), Cobostar([9]) and
authors’ controllers ([59])

Reinforcement Learning (DRL) algorithms . The Soft Actor-Critic (SAC) algorithm is
subjected to a comparative analysis against a variant of the Deep Q-learning algorithm
explained in Section 2.3. This variant has been adapted to handle continuous action
spaces by applying a categorisation process in the output [3].

Both RL agents are trained using the same input information. Of all the sensory
available in TORCS, the authors decide to use only the angle between the car and
the road, the track “LiDAR”, the position of the car relative to the width of the road,
the speed decomposed in each one of the axes, the rotational speed of the four wheels
and finally the RPM of the engine.

The reward function has been defined in terms of a multi-component function
(Equation 3.2). In this sense, the agent is positively rewarded for achieving high
speeds while following the track direction, and it is penalised for driving towards the
edges of the road or for applying excessive lateral force.

R = Vx cos θ − |Vx sin θ| − |2Vx sin θ trackPos| − Vy cos θ (3.2)

The symbols Vx and Vy represent the longitudinal and lateral velocity, respectively.
The angle between the car and the track axis is denoted by θ. Finally, the normalised
distance between the centre of the track and the car is referred to as trackPos.

The training phase has been conducted utilising all the available tracks, with the
objective of achieving track generalisation. The tracks are cyclical in nature, with
the sequence of tracks changing after five training episodes. Once the final track has
been completed, the training process is resumed with the initial track.
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3.4. Autonomous Driving in TORCS

As an exploration mechanism, the article proposes the maximisation of the en-
tropy for the SAC, and the application of some noise to the output of the DQN.
However, there is one specific action that the authors acknowledge to need for a dedi-
cated exploration procedure. For this case, a stochastic braking mechanism has been
employed, using a gaussian distribution to determine when the actual actions should
be overridden and use the brake instead. With this, the aim is for the agent to learn
the braking zones to reduce speed before entering the turns.

Figure 3.9: Reward comparison between SAC and DQN

Although the authors do not specify the track or combination of tracks where the
evaluation has been performed, it is evident that there is a clear trend indicating that
the SAC algorithm outperforms the DQN. However, the only results presented are
dependent on the reward function. This makes them incomparable with other systems
that solve the same problem, but with a different reward function. Nevertheless, the
article includes a video7 demonstrating a qualitative comparison of the performance
of both algorithms. It can be observed that the car is continuously making right and
left turns, not being able to drive in a straight line. Notwithstanding, the vehicle
appears to be stable when turning, which provides insight into the reason for this
slaloming in straight lines. This may be to detect turns in advance and always be
prepared to take them.

Following the same idea, in these two other works [78, 29], the authors employ the
DDPG algorithm (Section 2.4) to train a different ADS. Both works make use of the
same four sensors: angle, track LiDAR, trackPos, and the Speed decomposed into the
three axes. In [78], the authors vie for implementing a more complex weighted reward
function (Equation 3.3), whereas in [29] authors decide to use a simpler representation
of the same function composed of only three components (Equation 3.4)

7https://youtu.be/f82EBvPKyDI
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Chapter 3. Autonomous Driving

R =Vx cos(θ)− αVx sin(θ)− γ|trackPos| − βVx|trackPos| (3.3)
R =Vx cos(θ)− |Vx sin(θ)| − |VxtrackPos| (3.4)

Each one of the systems has been trained in different tracks. In [78] the authors
make use of only the Aalborg track. The agent is first trained alone, to learn the
dynamics and the layout of the track, and then it is tested in a competition on the
same track with other 9 TORCS default bots. In [29], on the other hand, the authors
select the CG-SpeedWay track for training the agent and use Track-E and Highway-
Track to validate the resulting behaviour.

As with the previously commented work, there is no standard evaluation process
for these other two. The results depend on the evaluation tracks and the reward
function, which are different. For this reason, the performance of the models cannot
be compared. However, as the authors of [78] provide a video of the evaluation
phase8, it is possible to draw certain conclusions. The record shows less critical
zigzag manoeuvres at straight lines, which reinforces the previous assumption that
this behaviour is caused by a forceful anticipation of turns. As this agent has only
been trained in one track, the anticipation becomes less important. It is also visible,
at the right-bottom axis, that the agent is not braking at all. It manages the speed
by acting only with the accelerator pedal, which is clearly a sub-optimal behaviour.

In our work, we address the problems identified in the aforementioned works.
Firstly, we define a new RL schema for the Actor-Critic algorithm that incorporates
human behaviour and cognition helping the agent to reduce the action search space
by enhancing the information of the critic. Secondly, we develop a generalised driving
model able to adapt, not only to unseen tracks but also to cars that have not been
driven before. Finally, we provide a standard and reward independent measure that
represents the performance of our model. Establishing a comparable benchmark for
the development of ADS in TORCS.

8https://www.dropbox.com/s/balm1vlajjf50p6/drive4.mov?e=1&dl=0
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Chapter 4

Human-Centred Autonomous
Driving

This chapter details the main goal of this thesis, that is including human expertise in
terms of behaviour and cognition within the actor-critic (AC) schema. It begins by
introducing the concept of Inverse Reinforcement Learning, explaining the method-
ology and some issued derived from its use. After that, our proposal to enhance
the AC schema is detailed, justifying the lack of huge biases in the agent behaviour
and its better performances compared with other expert-based supervision systems.
Then, the need to emulate human perception is introduced, explaining the human
perception process along with key concepts as the persistence of view.

4.1 Integrating Human Behaviour

As it has been demonstrated in the previous chapter, Actor-Critic (AC) algorithms
[35] have become state-of-the-art when approaching an Autonomous Driving System
(ADS) problem modelled under the Reinforcement Learning (RL) paradigm. Their
exceptional performance is attributed to the close relationship and constant feedback
between the two components. Firstly, the actor retrieves a collection of sequences
of states, actions and rewards (usually referred as trajectories) by making use of its
learned policy, which determines the optimal action based on the critic’s evaluation
of the reward to be obtained in future states. Secondly, the critic processes the
obtained trajectories and refines its evaluation of the future rewards, based on the
actor retrieved experience, to offer more accurate predictions in the next iteration.

It is evident that, under this paradigm, both component strongly rely on each
other. While the actor needs accurate predictions from the critic in order to perform
informed decisions regarding the most appropriate course of action. The critic requires
a diverse and informative trajectories to better predict the future and thus, force the
actor to improve. If one of the two components fails in their task, the other is strongly
affected. In the event that the actor fails to adequately explore the state space, the
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Chapter 4. Human-Centred Autonomous Driving

critic is unable to provide accurate information regarding other regions of the state
space with a higher value. Otherwise, if the critic is unable to accurately predict the
expected reward in future states, the actor may end up in an undesired state, which
could ultimately lead to a deterioration in the policy.

As observed in Section 3.4.2, the exploratory nature of AC algorithms is not
enough by itself. In the case of ADS, where the state space is vast, some actions may
not be explored due to the formulation of the problem, unless a specific exploration
mechanism is developed. In [78], for instance, the authors do not provide a specific
exploratory factor, which results in the agent never learning to brake. This is because
the definition of the problem inherently rewards movement (in the form of higher
speeds) and braking is in direct opposition to this. This results in the agent reaching
a conservatory speed that allows it to navigate corners by only lifting the acceleration
pedal. Instead of reaching high speeds, braking to take turns, and then reaching high
speeds again, which would be an optimal behaviour. In [24] braking is learned by
adding a special ad-hoc mechanism. By cleverly forcing the agent to brake 10% of the
time, the authors ensure that the agent learns to brake efficiently before entering the
corners. Nevertheless, despite managing the speed correctly, this agent fails to drive
smoothly in straight lines, as it is constantly making left and right turns.

To be still with the steering wheel while speeding up in a straight line is a phe-
nomenon that humans are aware of, but which machines must learn to emulate. This
behaviour is particularly challenging to address, as agents learn through trial and
error based on a reward function that must remain as simple as possible in order to
preserve the agent’s freedom for exploration. Consequently, penalising steering will
inevitably affect the agent’s ability to take turns. This behaviour, instead of being an
exploration issue, it is an issue of knowledge transfer. There is a dearth of implicit
and explicit information that could assist the agent in learning this and many other
human behaviours.

To address this issue and at the same time increase the convergence of RL agents,
there has been a great deal of interest in including human behaviour and experience
within the RL paradigm. This is referred to as Inverse Reinforcement Learning (IRL)
[1] and defines a Markov Decision Process (MDP) that does not define an explicit
reward function. In contrast to the conventional approach of learning the reward
function from examples provided by the agent as a consequence of its interaction
with the environment, IRL learns directly the reward function by processing samples
that are generated by experts on the task at hand. This represents a shift in paradigm
from the traditional approach of “learning from interaction” to “learning from demon-
strations”. Consequently, IRL generates a policy that emulates the expert’s behaviour
by identifying the relationship between the states visited and the actions taken.

In the context of ADS, the approach has been used to initialise the behaviour policy
(actor) with an offline dataset composed by samples produced by human interaction
with the simulator [70]. In this manner, the agent is able to learn a robust policy
without having to begin from scratch. Initially, the agent learns a policy via IRL,
and then, through the incorporation of a limited exploration mechanism into the AC
schema, it is able to further refine its policy. Due to the properties of the MDP, it
can be ensured that the policy resulting from this additional training phase will be
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equally good or better than the initial policy.
Despite the benefits that using an initialised policy provides in terms of conver-

gence, it also entails a massive impact on the agent behaviour. As the exploration
factor applied to the posterior RL training is reduced drastically, the behaviour of
the agent is highly biased by the samples provided in its initialisation. If this samples
contain undesirable practices that should be avoided, there is a possibility that the
agent may be unable to address this in its policy.

In response to this problematic issue, a more recent study [84] uses a different
methodology, which established a constant supervision of the agent’s actions by a
human expert. The system is designed in such a way that human supervisors are
allowed to override the actor’s actions with alternative ones of their choice in order to
avoid undesired scenarios. By doing this, the agent learns from its interaction with
the world in a natural manner, without being heavily influenced by human behaviour
and, at the same time, assuring that certain behaviours are avoided. However, this
process is very costly. First, in terms of financial resources, as it needs the presence
of an expert throughout the whole training process. And second, in terms of time, as
the expert must be able to process what is happening in the simulator in order to act
and avoid certain situations. Therefore, the time of simulation must be equal to the
real time.

This thesis presents a novel approach to the actor-critic method that aims to
combine the benefits of IRL and human supervision. As the critic forms its predictions
based on the samples produced by the actor, the critic relies on the actor’s exploration
capabilities to provide precise estimations about the future rewards. Therefore, the
more heterogeneous the trajectories are, the more accurate the predictions will be.

As previously discussed, a common approach to promote trajectory diversity is
boosting the exploration capabilities of the actor, which has been shown to yield
good results for most problems. However, in tasks where the consequences of previ-
ous actions have a significant impact on future states, ad hoc procedures may generate
poorly informed random samples, derived from early or inaccurate actions. The driv-
ing task represents a good example of this kind of task. Braking one meter earlier or
later can result in many different outcomes and there are cases in which any other
action taken after that cannot change the outcome of the situation. In such instances,
the random exploration mechanism, such as Gaussian noise, may have a significant
impact on the critic’s estimations, resulting in a deviation in the appraisal of the
trajectories and hindering the convergence of the actor to an optimal policy.

This thesis proposes a modification of the AC architecture that feeds the critic
with samples enriched with human expertise, in order to overcome the issue of lim-
ited exploration capabilities and reduced training phase times. The incorporation of
human trajectories into the AC schema introduces implicit behaviours and knowledge
that can be challenging to translate into a reward function or a complex controller.
Consequently, the critic not only has available recent states visited by the actor, but
also better or worse states visited by humans, along with the subsequent actions
performed to take advantage of the situation or to solve it.

Figure 4.1 depicts the proposed learning schema. The principal contribution is
illustrated at the bottom of the image, where there is depicted the process of retriev-

DSIC, UPV 31



i
i

“output” — 2024/7/10 — 7:56 — page 32 — #42 i
i

i
i

i
i
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Figure 4.1: AC learning schema integrating Human Behaviour

ing the human knowledge in the form of trajectories resulting from different driving
attempts performed by humans. The trajectories, denoted by S = {st, at, rt, st+1},
are stored in the Human Experience Buffer (HEB hereafter).

The nature of the HEB is not distinct from that of the actor experience replay
buffer. Consequently, the HEB may be either a static dataset of human trajectories
generated in the past or a dynamic dataset that is constantly being filled with more
human interactions. It is important to emphasise that the contents of the HEB must
be diverse. In order to provide a more comprehensive understanding to the critic,
it is essential that the HEB contains a balanced representation of both positive and
negative trajectories. In other instances, the inclusion of this information may result
in a positive or negative bias in the critic’s decision, which in turn will affect the
actor’s policy.

For the precise case of this thesis, a custom interface has been developed to record
the data produced by humans, as TORCS does not support this natively. Making use
of this interface, three different human drivers have interacted with TORCS producing
a total amount of more than 16,000 samples. The HEB thus is, for this case, a static
replay buffer.

In addition to the previously described HEB, during the training phase the actor
will interact with the environment, populating the Experience Replay Buffer (ERB
from now on) with the trajectories resultant from its exploration. Once a sufficient
number of training episodes have been completed and the ERB is full, the actor waits
for the critic to produce its estimations on the generated trajectories. It is at this
point when the critic will integrate the uninformed data in the ERB with a limited
number of consecutive samples extracted from the informed human experience stored
in the HEB. This mixing step is depicted in Figure 4.1 as the experience mixer. In
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the event that the HEB is a static buffer, as it is the case, it is essential to select the
number of human samples to be extracted from it with great care. Neural networks
are susceptible to overfitting when trained on samples that are frequently revisited.
Consequently, a huge number of human samples constantly repeated in evaluation
phase could produce a poor generalisation to unseen states. Furthermore, the retrieval
of an excessive number of samples from HEB may result in a disproportionate credit
being assigned to human samples relative to the exploration of the actor, thereby
creating a discrepancy between the actions of the agent and the predictions of the
critic. To avoid this issue, it is recommended to use sizes of H smaller than a tenth
of the size of the ERB.

The proposed human-in-the-loop scheme presents a more efficient and cost-effective
approach than the alternative of a human supervisor monitoring the agent’s actions
in real-time without losing the correction factor. Furthermore, this architectural ap-
proach is less invasive than initialising the actor with offline human trajectories, as it
does not impede the exploratory nature of the actor. Which, instead, learns with the
guidance of its own learned policy avoiding possible biases produced by the human
initialisation.

4.2 Integrating Human Cognition

As it has been previously explained in Section 2.2, state representation is a crucial
process in RL. States are comprehended by substantial information that the agent
will use to tell apart between scenarios. In order to avoid situations of ambiguity
where two different environment states share the same representation, the information
included in the state representation must be carefully selected. Moreover, an incorrect
representation can also affect the agent’s performance in a negative way. In the field
of ADS, car-dependant information such as the car weight, the engine’s rpm or the
angular velocity of the wheels can affect to the generalisation of the agent’s driving
capabilities to other cars. This casuistry makes state definition a complex task, in
which the included information must be minimum to avoid biases or adjustments to
certain properties whilst being detailed enough to avoid situations of ambiguity.

However, in the same manner that state definition can affect in a negative way the
performance of the agent, it can also improve the agent’s performance if enhanced with
implicit information. This thesis proposes the adaptation of the agent’s perception
to make it more akin to humans’. Following this principle, agents are endowed with
the ability to integrate retinal input of a visual scene with prior knowledge to make
inferences similar to human decision-making.

Most of the sensory information provided by TORCS corresponds to static mea-
surements. However, there is one particular sensor that can be configured to suit our
needs. Recalling from the explanation in section 3.3, the track sensor is a collection of
19 range finder vectors that return the distance between the car and the edges of the
road within a range of 200 metres in the direction of the given vectors. By default,
the direction of the vectors is evenly distributed between -90º and 90º in intervals of
10º. For more clarification, we refer the reader to Figure 4.3.
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This is evenly-spaced configuration is the one utilised in the works detailed in
the previous section. Under this setting, the agent gives equal importance to what
is ahead and what is beside. Paying attention to regions of the space that are not
physically reachable due to the car turning radius [31].

By taking a loot at figure 4.2, our motivation to include human’s visual cognition
into the agent state representation becomes clear. The human field of view depicted
in the figure shows that humans place most of their attention to what is within 20º
of the visual centerline. Is in this focus recognition area where we can recognise and
differentiate shapes, colours, words, and so on, with high precision. Beyond 30º,
humans are not able to tell apart shapes, only colours, loosing the ability to identify
objects. Applying the notions derived from this diagram to the driving context, this
means that humans constantly look ahead on the road to be able to respond smoothly
to the upcoming situations. We do not focus on what is aside of the car unless in
certain punctual cases.

Figure 4.2: Human sight range, extracted from [79]

Hence, we replaced the default angles of the 19 range finder sensors with values
that emulate human vision by (i) giving the most importance to what is around
the visual centerline and placing five sensors around it (-1.5, -0.5, 0, 0.5, and 1.5);
(ii) applying complementary attention to what is inside the focus recognition area
placing the majority of the sensors (-11, -7, -4, -2.8, 2.8, 4, 7 and 11); and (iii)
recovering a few concepts from the colour and word recognition areas with the six
remaining sensors (-45, -32, -23, 23, 32 and 45). Figure 4.3 shows a comparison
between the original placement of sensors (Figure 4.3(a)) and the human-centred
configuration (Figure 4.3(b)). With this new representation of the field of view, we
aim to dismiss information that is no longer relevant due to the car kinematics without
losing representation capabilities.

Even with the newly proposed sensor configuration, there is still margin for im-
provement regarding the state representation. In some problems, temporal dependen-
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(a) (b)

Figure 4.3: Track sensory visualisation: (a) Default. (b) Human-like

cies play a crucial role in understanding the environment. The Pong game represents
a clear example of this situation. In [2], authors train a RL agent that is able to play
by processing only snapshots captured from the game. As authors acknowledge, a
single snapshot (frame) may not be enough to understand the current scenario. Fig-
ure 4.4(a) shows the input that the agent will receive. In it there is no information
about neither the actual movement of the agent, nor the opponent or the ball. This
supposes ambiguity between states, as the ball may be moving in any direction, and
consequently the position of the agent may be correct or incorrect. To address this
issue, authors propose the inclusion of the last N frames into the state representa-
tion (frame-stacking) to provide the agent with this temporal dependencies and thus,
embedding information about trajectories (Figure 4.4(b)), which could not be sensed
otherwise.

(a) (b)

(c) (d)

Figure 4.4: Visualisation of the frame-stacking effect
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Chapter 4. Human-Centred Autonomous Driving

Applied to the ADS problem, some similarities can be drawn. With a single
observation, the agent receives its distance with respect to the centreline, but it has
no information about whether it is deviating or approaching to the centre. A similar
case can be observed with the speed. The agent knows its current speed, but without
knowledge about the previous speed it cannot know if it is in a speeding-up process
or braking. Moreover, by stacking the information of the track sensor, the agent
can built an internal representation of the curvature of the road while driving. This
internal map may help the agent model turns in advance, and thus adapting the speed
accordingly.

Form an anthropological point of view, the process of stacking frames is natural.
Humans can perceive movement thanks to a phenomenon called persistence of view.
This optical illusion occurs when the perception of an object persists for some time
after the rays of light proceeding from it have ceased to enter the eye, causing the
next perception to mix with the previous one. Persistence of view helps the brain in
computing trajectories and sense speed [42].

By endowing the agent with human cognition capabilities, in terms of mimicking
the human sight properties and persistence of view, we expect the agent to create
an internal representation of the road modelling the curvature of the turns whilst
approaching them. In terms of translation into TORCS, stacking n observations will
give the agent information about the trajectory over the last 10n milliseconds, as it
is the refresh rate for the sensors.
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Chapter 5

HuBeC-Driving

This chapter details the formal representation of all the components comprising the
Markov Decision Process (MDP) used to formalise this problem within the Reinforce-
ment Learning (RL) framework. Moreover, the HuBeC-Driving (Human Behaviour
and Cognition) implementation details are explained, applying the theoretical con-
cepts previously introduced in Sections 4.1 and 4.2. Which modify the Actor-Critic
(AC) schema by adding human samples and make use of the human perception mech-
anism as a reference for modelling the state representation respectively.

5.1 Problem Definition

In this section, we detail each one of the components comprising the MDP. Which,
recalling from Section 2.2, is defined as a tuple MDP = ⟨S,A,R, T, ρ⟩, where S
represents the set of states, A the set of available actions, R the reward function
defined in terms of states and actions (R : S × A → R), T the transition function
between states (T : S ×A→ S′) and ρ the distribution over initial states.

The upcoming paragraphs detail the mathematical definition of each one of the
aforementioned components (i.e. States, Actions and Reward function) along with an
exhaustive explanation of the motives behind the utilised formalisation.

5.1.1 States

State definition is a key part of the MDP formalisation. It represents the information
to be processed by the agent in order to decide an action to take. State representation
must minimise ambiguities without loosing generalisation capabilities.

In this thesis we aim to develop an agent able to generalise its driving to different
environments, comprising both unseen tracks and cars that were not driven before,
all with a human-centred point of view.

From the large catalogue of sensory information available in TORCS (Table 3.1),
some of the sensors are not available to the human from the driving position (e.g.
the tire’s angular velocity). Moreover, using too car-dependent inputs takes us away
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Chapter 5. HuBeC-Driving

from a generalist model for on-road driving. For these reasons, we only selected a set
of sensors that are accessible to the human while driving and that are shared by any
car for the state representation. Table 5.1 shows the selected sensors and their unit
range.

Name Range (unit)

angle (α) [−π, π](rad)
speedX (vx) (−∞,+∞)(km/h)
speedY (vy) (−∞,+∞)(km/h)
speedZ (vz) (−∞,+∞)(km/h)
track (t) [0, 200]19(m)
trackPos (tp) (−∞,+∞)

Table 5.1: TORCS sensors and unit values

The angle sensor is the direction in which the car faces at a certain location of
the track; speedX, speedY and speedZ are the velocity at each degree of freedom
(i.e., the velocity in the longitudinal axis, in the lateral axis and in the vertical axis,
respectively); The trackPos returns the normalised distance between the car from
the centre of the road. A value close to 1 means the car is on the left side of the road
whilst close to -1 means otherwise. |tp| > 1 means the car is off the track. Finally, the
Track sensor, as detailed in Section 4.2, is composed by 19 range finder vectors that
return the distance of the car from the edges of the road. To avoid issues produced
by the different magnitude scales, all values have been normalised and defined in the
range [0, 1].

The sensors of Table 5.1 collect data from a single observation of the environment
to be used as input for a classical AC algorithm. However, as stated at Section 4.2,
in the Human Cognition model, we propose the stacking of the last n observations
(n > 1) into a single one and its use as input to the RL agent. So that it can compute
the observations correlation along with its internal state representation.

For this reason, states are defined in terms of frames. The formal representation
of a state is shown in Equation 5.1, where f represents a single frame made up of the
components listed in Table 5.1. The superscript d represents the number of frames
that will persist on the agent’s sight. It must be a natural number, and d = 1
corresponds to a case where no frame is stacked (i.e. a classical state representation).

f = ⟨α, vx, vy, vz, t, tp⟩
Sd = fd

(5.1)

As it will be discussed later in Chapter 6.3, we present results with S1 for the
baseline and Human behaviour models, and with S5 for the Human Cognition and
the HuBeC-Driving models. We have also experimented with d = 3 and d = 7, but
none of them has reached the minimum required results to be considered a viable
option.
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5.1. Problem Definition

5.1.2 Actions
Among the seven available actions in TORCS (Table 3.2), two of them (named focus
and meta) are used to configure a sensor and restart the race, respectively. Thus,
they do not have a real impact on driving and can be safely ignored.

Out of the five remaining actions, we have discarded the clutch and gear actions.
Recalling from Section 3.3, they correspond to the virtual clutch pedal and the next
gear to introduce respectively. Both actions are highly correlated, as a new gear
cannot be introduced without fully pressing the clutch pedal. This correlation is
really difficult to be learned by a RL agent, since the majority of the time both
actions are inactive.

Moreover, they are also extremely car-dependant as the gear-changing process
is subjected to the current speed and RPMs of the vehicle’s engine. Engines with
different sizes, fuel types, number of valves, and so on, have a different regime of RPM,
thus have a different gear progression. This way, in order to avoid high correlation
between actions and generalise the driving behaviour to multiple cars, these two
actions have been replaced by an automatic process. Which leaves us with three
actions: accelerate, brake and turn the steering wheel.

In daily non-racing driving, it is unlikely to press both the accelerator and the
brake pedals at the same time. For this reason, we combined both actions into a
single one, called ab, which ranges from -1 to 1, where negative values represent
slowing down and positive ones, speeding up. With this fusion, the continuous action
space is reduced in favour of a faster convergence. Equation 5.2 shows the final actions
and their range, where ab stands for the combined action slow down and speed up,
and st stands for steering.

A = {ab ∈ [−1, 1], st ∈ [−1, 1]} (5.2)

5.1.3 Reward Function
Rewards play a key role in the learning process. As in the case of states, the reward
function must be carefully defined. It transmits to the agent the ultimate goal to
pursue, differentiating good from undesired behaviours. The reward function must
then, guide the agent through the action space, identifying actions that lead to states
with positive amounts of reward. However, the reward function must be general
enough so the capability of the agent to explore the search space is not diminished. In
the case of ADS, reward functions are usually complex, involving various components
that model the desired behaviour of the Vehicle.

One common issue that can be observed in ADS, is the existence of a local mini-
mum in the reward space at which agents reach a speed that is high enough to earn
significant rewards, but low enough to allow the car to be controlled solely by lifting
the throttle pedal (i.e. without braking). As rewards are usually measured in terms
of speed, and braking reduces it drastically, agents following a greedy policy tend to
refrain from braking.

Another known issue arises when the agent is driving in a straight line. In this
scenario, the agent tends to steer a few toward left and right making the car wiggle.
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Chapter 5. HuBeC-Driving

This phenomenon is called slaloming and it is recurrent in ADS [23]. One possible
explanation for this phenomenon can be found in the Track sensor, which can be
understood as the vehicle’s way of perceiving the shape of the road. In long straights,
these sensors may reach the maximum covered distance (200m) without finding an
edge. This added to the huge penalty received by the agent for driving off-track, may
be producing the slaloming, as the agent tries to anticipate corners.

With the design of our reward function, we aim to address these two issues. Firstly,
we mitigate the avoidance of braking by adding a component that equally rewards
both speeding up and braking. Secondly, we add a penalty component to mitigate
the slaloming problem by minimising the difference between angle values. In addition
to the previous two, we also added an extra reward-shaping component to minimise
the lateral velocity applied to the car when it turns. Which should lead the agent to
enter turns more steadily, reducing its speed in favour of safety.

R1 =2|v̂ix − v̂i−d
x |+ v̂ix(cosα

i − sin |αi|)− v̂iy cosα
i − |αi − αi−d| (5.3)

Equation 5.3 shows the mathematical formula of the reward function, where v̂ix
denotes the normalised value of the speed along the x axis at time i whereas v̂i−d

x

represents the same but d frames before. The components of the formula are, respec-
tively: the increment or decrement of speed between frames in absolute value; the
movement along the road in the track reference system; the lateral velocity penalty;
and the variation of the angle in absolute value.

5.2 Implementation

This section covers the details of implementation of the HuBeC-Driving proposal.
Firstly, the topology of the neural networks are covered, describing a key temporal
limitation. Next, an additional exploration mechanism will be commented. Finally,
the driving tracks used during the training phase will be described.

5.2.1 TORCS Modifications

The source code for TORCS is available at SourceForge 1. This corresponds to the
release 1.3.7, which is the last version available. Some modifications have been made
to the source code to facilitate the training process. Firstly, the initial three-second
countdown before starting the race has been removed. Secondly, a restart mechanism
for external bots has been implemented, as it was previously only available to TORCS
bots and human players. Then, the human controller has been adapted to record
human driving trajectories. Finally, the TORCS configuration has been changed to
enable its use from the command line (which allows reaching a simulation time x128
times faster than real time) and to use custom configuration files to select different

1https://sourceforge.net/projects/torcs/
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tracks during training. The project containing this modifications is available at the
author’s GitHub Page 2

5.2.2 Network Topology

As explained before, HuBeC-Driving builds on actor-critic algorithms. From this fam-
ily, Proximal Policy Optimisation (PPO) [66] is state of the art for its robustness and
generalisation capability due to a careful update of the policy weights. It avoids huge
oscillations in the policy specially at early stages of the learning process. Also, unlike
DQN [50], PPO can be used in problems with continuous action space. For those
reasons, PPO is the selected learning algorithm to solve this problem.

In working with TORCS, synchronisation between the environment and the agent
is a crucial factor. As detailed in Section 3.3, the agent has a 10 ms deadline to
respond after receiving an observation. Given the difficulty of recovering from a
timeout situation (as actions taken in the past can strongly affect present states), the
decision-making process in both training and inference times must take less than this
limit as specified in the TORCS manual. To comply with this limitation, we chose a
fully connected feed-forward architecture for both Q∗(s, a) (actor) and V ∗(S) (critic)
networks. Both networks share the same specifications, with three hidden layers each
having 512, 256 and 128 neurons, respectively. Between each one of the hidden layers,
there has been applied a Dropout [72] regularisation (with probability p = 0.1) and a
ReLU [53] activation function.

With the aforementioned network topology, the elapsed time between action de-
cisions is around 0.8ms when using TORCS in textual mode and 4.5ms when using
TORCS in render mode. This is 12.5 and 2.22 times less respectively than the 10ms
limit specified.

(a) Actor (b) Critic

Figure 5.1: Visualisation of the actor and critic network topologies

It should be noted that the output layer changes depending on the network. The
actor network outputs the actions to take, and it is composed of two neurons with
a hyperbolic tangent activation function to ensure the range limitations defined in

2https://github.com/migarbo1/TORCS
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Chapter 5. HuBeC-Driving

Equation 5.2 (Figure 5.1a). More specifically, the output of this network is the mean
of a multivariate normal distribution that determines the action to sample, which is
a common practice in policy learning with continuous action spaces. The covariance
matrix of the distribution is a diagonal matrix which is fixed and will be used for
exploration purposes.

Regarding the value function (i.e. The critic), as its purpose is to approximate
the raw accumulated reward that can be obtained from a certain state onwards, the
neural network of the critic will only have a single output neuron with no activation
function, as the reward does not have an upper nor lower bound limits.

5.2.3 Exploration Factor

In small problems with a limited number of states and actions, most RL algorithms
can find the optimal policy with the algorithm’s own exploration factor. However,
the huge size of the solution space in the AD problem demands the need to add an
exploration mechanism supplementary to the one of the PPO algorithm, ensured by
the limited update of the policy.

The ϵ-greedy algorithm, as explained in Section 2.3, assists to learning methods,
such as Q-learning or DQN, in exploring the action space of the problem. Its mech-
anism is simple yet effective. With probability p = 1 − ϵ the agent select the action
resulting from the inference process. And with probability p = ϵ the agent selects the
next action to take at random between all the possible ones. However, the ϵ-greedy
algorithm is only applicable to problems with discrete action spaces. This is because,
in the case of a continuous action space, the number of actions to pick at random is
infinite.

In this proposal, actions are obtained using a multivariate normal distribution
with mean in the actor network’s output and a fixed covariance matrix. With this
setting is crucial to fill the covariance matrix with the right value. High values of the
action range (Equation 5.2) can result in actions that differ from the agent’s intention
(e.g. braking instead of speeding up); but small values can over-specify the agent’s
range of acting, hindering exploration.

(a) Σ = 0.35 (b) Σ = 0.25 (c) Σ = 0.15 (d) Σ = 0.05

Figure 5.2: Visualisation of the effect of Σ in action selection for a mean of 0.5

We can handle this trade-off between exploration and exploitation by using a
covariance annealing process. This implies setting a high covariance value (Σ) at the
start of the training and gradually decreasing it as the process comes to an end. For
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ADS, we adopted a linear decrease proportional to the percentage of the steps that
have been completed. This way, a high level of exploration is achieved at the early
stages of the learning process whilst reducing the variability of actions towards the
end.

Figure 5.2 presents a visual example of the procedure for an action with mean
ab = 0.5 (i.e. press the acceleration pedal half way). At the beginning of the training
phase (Figure 5.2a), the probability distribution is almost flat, so it is fairly possible
that the agent accelerates way more or less than desired. However, as the training
phase comes to an end (Figures 5.2c and 5.2d) the probability of performing an action
substantially different from the mean (i.e. the output of the actor network) is almost
zero.

For the particular case of this thesis, the initial value is set to Σ = 0.35 and it
is decreased linearly until it reaches a floor value of Σ = 0.05, which is also used at
inference time.

5.2.4 Training Tracks
Just as datasets can induce bias in models, in ADS the roads used during the training
phase affect how the model will behave later on other roads. The goal of this thesis
is to train an agent able to learn a policy that is able to generalise to unseen tracks.

A similar goal is pursued in [23], where the authors attempt to achieve it by making
use of all available tracks during the training phase. More precisely, to prevent the
agent from over-adjusting its driving to a specific layout, the training track is changed
in a cyclic manner after five training epochs (i.e. starting from the first track, the
agent performs five epochs and changes the environment to the next one. When
this procedure has been completed on the last track, it starts again from the one
used at first). Nevertheless, this approach cannot be considered a genuine pursuit of
generalisation, given that all the tracks driven during the testing phase are initially
employed during training. Consequently, the agent never faces novel and unseen
states.

Rather than training with all tracks at once, in this thesis we aim to achieve
generalist driving by carefully selecting a subset of tracks specifically oriented to the
training phase. To this end, it is important to ensure that the selected tracks are
fairly representative, featuring different aspects and difficulties of driving so that the
agent can generalise its knowledge to unseen situations.

Every road, not only in TORCS but in general, can be described using a finite set
of characteristics, such as high speed turns, sharp corners, the presence or absence
of long straight lanes, wide or narrow edges; etc. In this thesis, we worked in the
selection of a subset of four roads that encapsulate all the casuistry that drivers can
face in regular on-road driving. Figure 5.3 displays the chosen tracks.

To justify the selection of the roads depicted in Figure 5.3, below there is a de-
scription of their main characteristics:

• Wheel-2 is the TORCS representation of an official F1 circuit called Suzuka.
It is composed of 4 high-speed turns in a row followed by a hairpin turn and a
long straight. Wheel-2 is a very complete track in terms of complexity.
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Chapter 5. HuBeC-Driving

(a) Wheel-2 (b) Brondehach (c) Corkscrew (d) G-track-1

Figure 5.3: Subset of selected tracks for training . The red arrow indicates the position of
the finish line and the direction of the track.

• Brondehach has the typical ninety-degree turns found on city streets, as well
as long corners (similar to roundabouts), short straights and a hairpin bend.

• Corkscrew is a country road with blind turns and constant acceleration and
braking zones. It resembles to the roads connecting distant towns.

• G-track-1 is an oval track that can be regarded as a highway, with open wide
turns and plenty of driving space.

The first three circuits were reserved for training and G-track-1 was used as a
validation environment for choosing the model with the best performance. The train-
ing procedure is carried out as follows: the agent is trained for a certain number of
timesteps (18 million) given a set of configurable parameters. During this phase, at
the beginning of each epoch, the track is chosen randomly. After three epochs, the
agent is evaluated. When the obtained performance is better than the previous one,
the policy is saved. By following this procedure, we aim to prevent the agent from
adapting its driving to a single driving track.

Finally, it is important to state that all training and test processes have been done
using the TORCS replica of a F1 car. Although it may seem odd to focus on every
day driving with a formula one, actual automobile industry receives the majority of
its improvements (in terms of engines, brake systems, automatic transmissions, etc.)
from the different Motorsport competitions.

Additionally, from the driving perspective, F1 cars have the most complex dynam-
ics. They have a thousand horsepower engine inside a car that weights less than a
tone, brakes are also really sensitive, and the relationship between both of them and
the steering wheel must be coordinate in order to avoid spinning along the track. By
forcing the agent to learn how to drive an F1 car, we make it face the most difficult
scenario of driving, so any other car will represent an easier instance of the same
problem.

5.2.5 Gathering Human Data
When working with human samples, it must be ensured that the data is recorded in
an environment where humans fells comfortable. Also, in order to keep the process as
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close to reality as possible, the mapping between the actions and the controllers of the
simulator must be direct. In the context of AD, this means that we have to provide
users with both software and hardware that make them feel like they are driving a
real car.

As stated before, the dynamics of a Formula 1 car are really complex, for this
reason we have build a series of driving assistance features that will help the volunteers
to control the car. In this sense, the user is provided with an additional traction
control algorithm to ensure that the wheels do not loose traction. Also to avoid the
driver from spinning at corner exits due to the amount of horsepower. Finally, an
Anti Block System (ABS) has been developed for the brakes, in order to ease the
braking events. With these modifications, the software is ready.

The utilised hardware platform is a set of Logitech G920 Steering wheel and pedals
with a force feedback mechanism 3. It applied some vibrations and resistance to the
steering wheel when driving at high speeds or when colliding with an obstacle. Both
peripherals plus the chair emulating a racing car seat, create an immersive set-up.

Figure 5.4: Physical environment to utilised to record the human data

3https://www.logitechg.com/es-es/products/driving/driving-force-racing-wheel.html
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To gather the data, the TORCS internal human controller has been modified to
add additional sensors and loggers. With them, the emulator stores the states that
the humans visit with the same observation formalisation that has been detailed in
Section 5.1.1. Along with states, the system records the action performed by the
users. As they can both press the acceleration and brake pedals at the same time, a
mechanism has been developed to determine the actual action that is transmitted to
the car. This supposes that only 2 actions are stored, st and ab, just as defined in
Equation 5.2.

For the gathering process, a call for volunteers was conducted within relatives
and friends of the author. As a result, 5 different people, both men and women
between 22 and 26 years, have recorded three laps on each of the training tracks (i.e.
Brondehach, corkscrew and Wheel-2 ) and three additional laps on the Aalborg track,
because, as will be explained later on this thesis, shows a complex layout in which
RL agents struggle to perform. As a result, more than 600000 state-action pairs have
been obtained from the process.
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Evaluation and results

This chapter outlines the specific evaluation details. Specifically, the nomenclature
utilised to describe the distinct developed models and the parameters utilised during
training to ensure replicability standards are met. Furthermore, a detailed comparison
between the developed models is provided. Explaining the benefits of each one of the
approaches.

6.1 Evaluation
As previously stated in Section 3.4, topic diversity in research projects using TORCS
reflects the lack of a unified evaluation criteria to compare the proposed models in
terms of general performance. The absence of a benchmark makes it challenging to
quantify the potential gains that could be achieved through the implementation of
the proposed solutions or architectures. This casuistry forces researchers to develop
their own baseline model in order to establish a ground truth. The purpose of which
is to determine whether the proposed modifications represent genuine improvements.

In line with the aforementioned considerations, in this thesis we have trained a
baseline model using a standard PPO implementation. This approach allows us to
quantify the impact of each modification on performance. Then, we have gradually
added the human-centred enhancements detailed in previous sections, resulting in
three more models The objective of this thesis is to analyse the performance of each
model across all roads, with the aim of achieving consistency and safety on each track.
The specific details of each of the models are provided below.

• Baseline: This corresponds to a standard implementation of the PPO algo-
rithm, with S1 (i.e. no frame-stacking) and standard sensor placement (i.e.
evenly spaced between -90º and 90º, as in Figure 4.3a).

• Human Cognition (HuC): This corresponds to a standard implementation of
the PPO algorithm, but adapting the sensors to human perception. This model
utilises frame-stacking with 5 frames (i.e. S5) and a human-like vision (Figure
4.3b).
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• Human Behaviour (HuBe): This corresponds to an implementation of the
enhanced PPO schema detailed in Section 4.1 providing online human feedback
during training (as depicted in Figure 4.1). This model uses a standard sensor
placement (i.e. evenly spaced between -90º and 90º, as in Figure 4.3a) and S1

(i.e. no frame-stacking).

• Human Behaviour and Cognition (HuBeC): This model combines both
proposals. First, it is implemented using the enhanced PPO schema detailed in
Section 4.1. Second, it uses frame-staking with 5 frames, as well as a human-like
placement of sensors (Figure 4.3b).

This thesis employs three distinct metrics to assess the efficacy of the developed
models. In order to provide results and conclusions that are both relevant to this
work and to any ADS developed in TORCS, the selected metrics are independent of
the reward function and measure the results produced in an objective manner.

Firstly, we report the average distance driven by the agent across all tracks, along
with the average speed. The combination of these two metrics provides provide a
comprehensive overview of the agent’s performance understood in terms of consistency
across different roads.

This is achieved by measuring the speed at which the agent drives at any point
on the track during a single lap (i.e. the telemetry). Telemetry is employed in
motorsport competitions to ascertain the lap times of the drivers, with a view to
identifying potential gains or losses in time.

The three metrics (i.e. average distance, average speed and telemetry) represent
general lectures from sensors that are independent of the reward function utilised,
the architecture, the state representation or the precise implementation of the agent.
Consequently, the findings presented in this thesis can be utilised as a reference point
in the development of ADS in TORCS.

6.2 Replicability

During the development process, in an effort of transparency, we have ensured that
all the proposed models and their results can be easily replicated. Every RL training
was conducted on a machine with a Nvidia GeForce RTX 3090 GPU, a 12th Gen
Intel(R) Core(TM) i9-12900KF CPU and Ubuntu 22.04 LTS operating system. The
models were trained for 18 million steps with the listed hyperparameters: γ = 0.99;
five updates per iteration, clip = 0.2, entropy_coef = 0.05 and λ = 0.98.

In the validation phase, performance is evaluated through the analysis of episodes.
An episode is considered complete when the agent drives off the road, stops the car,
drives in reverse, collides with a wall, or reaches the maximum number of steps (set
to 50,000). The mean distance and speed are calculated across 10 distinct episodes in
each of the 19 tracks. The telemetry is obtained by selecting the fastest lap completed
by the vehicle during the episode.
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The complete set of proposed model weights, the TORCS Python interface, and
the training and evaluation algorithms can be accessed on the author’s GitHub page1.

6.3 Results

This section presents the outcomes of the various developed models. This section
presents a detailed comparison of the performance of the models in terms of the
average distance driven across all tracks and the average speed at which the agent
has been driven. Furthermore, this section presents a comprehensive analysis of the
driving behaviour exhibited by the optimal model, which has been contrasted with
the average human action.

6.3.1 Overall model comparison

With the aforementioned configuration, the four specified methods have been trained
for 18 million steps. Subsequently, an evaluation phase has been conducted, during
which the driving consistency of all agents has been tested across 10 episodes (i.e.
50000 steps maximum) in all tracks. Additionally, the average speed for each track
has been recorded during the evaluation phase, providing a more comprehensive in-
terpretation of the results. Figure 6.1 illustrates the average speed per track, while
6.1 presents a comparison of the models in terms of the average distance covered in
each track.

In order to provide a more insightful comparison between models, a categorisation
process has been developed which classifies the 19 tracks into three different categories.
The C1 category of tracks comprises narrow, curvy roads with slow speed turns.
These require the agent to exercise precise control of the car in order to complete
a lap. C2 tracks present wider roads with open turns and long straights. The most
crucial factor on these tracks is speed. Finally, C3 tracks present a combination of the
two previously described features. The roads within this category exhibit both long
straights with open turns and narrow and closed corners. The successful management
of braking and speeding-up events is crucial to perform optimally in these tracks.

As it can be observed in Table 6.1, the baseline PPO algorithm produces some
discrete results. The algorithm is able to complete a lap, on average, in 13 of the
19 tracks. Nevertheless, in only eight instances is it able to complete more than
one lap. The model tends to reach high speeds (as evidenced by the blue line in
Figure 6.1) in order to obtain higher rewards. However, the model lacks effective
control of the vehicle, resulting in frequent collisions and, consequently, a reduction
in the consistency of the average distance. This is clearly evident when comparing the
performance of the agent in both C1 and C2 tracks. In the first category (i.e. the one
requiring the most car control to complete a lap), the agent completed only one lap
in the majority of cases. The only exception was the e-road track. However, in C2
tracks (i.e. where higher speeds are of greater importance than car control), the agent
consistently completes laps. This pattern is also reflected in the C3 category, where

1https://github.com/migarbo1/autonomous-racing-in-torcs
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the agent’s performance varies depending on the track. In some instances (such as
brondehach or Corkscrew), the agent is unable to complete a single lap. Conversely,
in other scenarios (e.g. g-track-3, wheel-1 ) the agent demonstrates proficiency in
navigating the track.

Cat. Name Length Baseline HuC HuBe HuBeC

C1 aalborg 2.58 0.22 0.22 *0.44 *0.40
alpine-1 6.35 12.32 23.25 21.97 20.44
alpine-2 3.77 2.54 8.13 6.89 15.80
eroad 5.38 20.77 28.73 28.99 29.93
e-track-2 4.20 2.21 2.69 2.28 2.91
e-track-6 3.26 7.56 19.50 20.27 30.74
ole-road-1 6.28 7.10 6.94 27.79 18.94
street-1 3.82 2.86 2.95 2.87 2.87

C2 e-track-4 4.44 21.84 34.57 35.05 36.06
forza 5.78 17.29 16.85 25.92 32.40
g-track-1 2.05 20.75 29.31 31.36 30.740
g-track-2 3.18 22.42 31.73 34.17 33.98
ruudskogen 3.27 14.40 22.34 26.00 27.70

C3 brondehach 3.91 4.05 18.84 *7.63 *29.76
corkscrew 3.60 2.73 2.99 *4.77 *14.15
e-track-3 7.04 5.91 5.69 23.43 25.73
g-track-3 2.84 23.00 21.22 27.51 28.85
wheel-1 4.32 20.89 30.12 32.25 26.60
wheel-2 6.20 12.17 11.82 *9.82 *32.36

Total Average 11.63 16.73 19.44 23.18

Table 6.1: The mean distance covered across all tracks in metres is presented here. It
should be noted that the names in bold indicate that the layout has been used for training
purposes, while the results accompanied by an asterisk (*) indicate the appearance of the

layouts on the recorded human data.

The second column of Table 6.1 presents the results obtained by the model using
the modifications detailed in Section 4.2 referring to include a human-like perception
of the environment (HuC model). The incorporation of temporal dependencies into
the perception system, as provided by the frame-stacking methodology, resulted in
enhanced car handling across C1 tracks. This model achieves a performance that is
almost double that of the baseline in three of the eight tracks within this category (e.g
alpine-1, alpine-2, e-track-6 ). Despite showing a considerably lower speed (approxi-
mately around 30km/h less than the baseline, as seen in the orange line in Figure 6.1).
This consistency is also reflected in the performance of the model in the other two
categories. In four of the five C2 tracks, the HuC model covers 33% more distance
than the baseline despite the considerable gap in terms of average speed. It is evident
that the HuC model displays a safe driving style, which allows it to generalise more
effectively to diverse track types.
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Figure 6.1: Average speed per track across 10 evaluation episodes.

In the third column, the reader will find a detailed account of the advantages
gained from the incorporation of the novel PPO architecture (HuBe). As outlined in
Section 4.1, this model incorporates a novel dedicated replay buffer for human trajec-
tories. This can be understood as the incorporation of implicit human knowledge into
the agent. From the performance obtained by the HuBe agent, two major conclusions
can be drawn. Firstly, the incorporation of human samples recorded in the Aalborg
track has proven beneficial to the agent in navigating narrow and winding layouts. As
a consequence of this modification, the HuBe model is able to achieve a performance
comparable to that of the HuC model in C1 layouts. Moreover, it can be demon-
strated that the incorporation of a human-enhanced replay buffer has not resulted in
a significant bias in the agent’s behaviour. This is clearly evident when comparing the
performance of the baseline and HuBe models in the tracks where human experience
has been recorded (e.g. aalborg, brondehach, corkscrew and wheel-2 ). In all cases,
the performance of the two models has been found to be similar. The HuBe model
achieves slightly higher speeds than the HuC model, which, when combined with the
consistency acquired, results in superior performance than the HuC model over the
C2 tracks.

Finally, column four presents the results obtained by combining the two human-
centred approaches (HuBeC). This model demonstrates superior performance com-
pared to the other models in 12 out of the 19 models, exhibiting clear superiority
across all three categories of tracks. In C1, the processing of human samples with
the proposed central focus and temporal dependency yields the best performance in
four of the six tracks where all agents perform at least one lap. In C2, the reduction
in speed experienced by HuBeC, in comparison to HuBe, as a result of the incorpo-
ration of human cognition, has a slight impact on the performance observed in tracks
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within this category. Nevertheless, the consistency of HuBeC enables it to achieve
the best performance on three of the five tracks and a performance approaching the
best on two of them. Finally, the dominance in terms of car control and consistency
is also reflected to the category C3. It is on this tracks where the combination of
the two human-centred proposals is the most effective. In the three tracks used for
both during training phase and human data collection (i.e. brondehach, corkscrew and
wheel-2 ), the agent has demonstrated an enhanced ability to interpret input, resulting
in a performance increase of over 200% on average on these tracks. Consequently, the
proposed modifications to the PPO algorithm, as outlined in this thesis, have resulted
in a 93.30% improvement in its performance when applied to the autonomous driving
problem in TORCS. This has enabled the development of a generalist policy that is
capable of driving safely and successfully in previously unseen tracks.

6.3.2 Telemetry

In addition to measuring performance in terms of distance covered, this thesis also
compares performance in terms of driving behaviour. For this purpose, the speed of
the agents was measured at each point of the lap (a telemetry study) on the wheel-2
track (see Figure 5.2a). This track was selected for the analysis because it has three
distinct sectors that can be easily distinguished. As seen in Figure 5.2a, the track
consists of a series of seven consecutive turns, followed by a hairpin and then a long
straight.

Figure 6.2 shows two distinct telemetry lines, reflecting the outcome of human
driving (red line) and HuBeC driving (Green line). To generate the human data,
we have selected the best lap on wheel-2 of each one of our volunteers and we have
computed the average speed at each position of the track. To generate the HuBeC
data, an inference execution of the model was run over the given track for a total of
50,000 time steps. From the various laps completed, the fastest lap is selected. From
this, we extract the speed and distance at each point on the track.

In Figure 6.2, the Y axis represents the speed in km/h. The X axis represents
the distance, in metres, from the finish line and ranges from 0 (start) to 6,199m (just
before reaching the finish line). The vertical dotted lines indicate the location of a
turn. The finish line is located at the bottom left straight as shown in Figure 5.3, and
the direction of the track is clock-wise.

As can be observed, the average human approaches the first turn at a significantly
higher speed than the HuBeC model. Additionally, humans tend to apply more force
when braking, resulting in a slower speed at the entrance of the corners. In contrast,
the HuBeC model enters the first turn at a higher speed and brakes just before turn
two. Both humans and HuBeC approach the next chain of five turns (from 800m to
1500m) in a similar manner, maintaining a similar speed and applying a degree of
braking at turn six (approximately 1300m from the start). Upon exiting the chained
turns, humans tend to accelerate more than the agent, which maintains a conservative
speed. At turns eight and nine (located 2100m and 2300m from the start), it can be
observed that there is minimal difference between the human and agent behaviours,
as both lines exhibit a similar shape. However, once again, at the exit of the turn
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Figure 6.2: Telemetry comparison between the average human best lap and a lap
completed by HuBeC over the wheel-2 layout (Figure 5.3a).

nine, humans tend to accelerate more than the agent. This implies that humans
must brake earlier (approximately 150 metres) than HuBeC when approaching turn
11 (2850 metres from the start), the slowest section of the track. In the next straight,
the previously observed behaviour is again evident. As they approach the entrance
to turns 13 and 14, humans reach higher speeds, which forces them to brake earlier
and more extensively. This phenomenon is observed once more in the final straight
and the final two corners of the circuit (5700m and 5800m from the start).

In general terms, it can be stated that in the search for a generalist and safe
driving, the HuBeC agent tends to achieve a speed that is high enough to obtain
significant rewards, while ensuring safety on the majority of tracks. Consequently,
the HuBeC model exhibits deficiencies in its behaviour at corner exits. Nevertheless,
in the context of braking events, the model demonstrates a degree of consistency with
human standards.
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Chapter 7

Conclusions and future
work

This section details further researches that have been conducted after the completion
the aforementioned work. Here will be detailed an additional experimentation that
could not be included in previous sections due to a lack of time. In addition, some
ideas of future lines of research are presented.

7.1 Conclusions

This thesis presents the development of a robust autonomous driving system (ADS)
capable of adapting its driving style to different road layouts, ensuring safe and com-
fortable operation in previously unseen scenarios. In the course of this process, a
review of several ADS platforms was conducted with the objective of identifying the
optimal solution that balances realism with computational cost efficiency.

With regard to the development of ADS in TORCS, it has been acknowledged
that there is a lack of a common criterion for the evaluation of research proposals.
Consequently, reward-independent metrics have been employed in order to facilitate
the utilisation of the results as a benchmark in the context of ADS development in
TORCS. Moreover, we have gained insight into and implemented a state-of-the-art RL
algorithm, such as PPO, which has subsequently been enhanced by the introduction of
a dedicated human replay buffer. This has enabled the algorithm to obtain informed
samples and assist it in identifying the optimal policy.

Finally, we have substantiated our proposals with an exhaustive evaluation phase,
during which we have compared both the overall performance of the model and the
precise behaviour of the agents. The results of this research provide a foundation for
further investigation into the potential for incorporating implicit human knowledge
into ADS without introducing significant biases in the resulting policy.
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7.2 Future Work
The contents of this thesis represent the initial stages of the pursuit of a PhD thesis. In
this sense, this work provides a foundation for future developments and improvements
upon the already favourable results.

7.2.1 Ongoing research
Recently, our research has concentrated on a more detailed examination of the manner
in which information is represented within the aforementioned simulator, as well as
the degree of liberty that the agent should be afforded when undertaking actions.
This has involved a detailed analysis of the trade-off between the expressiveness that
a more complex action space provides, and the increased complexity and time required
for the algorithm to converge.

In this context, we have evaluated the consequences of implementing all three
selected actions simultaneously (i.e. acceleration, deceleration and steering), thereby
affording the agent greater autonomy and control over the vehicle. Equation 7.1
illustrates the contrast between the action space delineated in this thesis (up) and the
proposed novel action space (bottom).

A ={ab ∈ [−1, 1], st ∈ [−1, 1]}
A′ ={a ∈ [0, 1], b ∈ [0, 1], st ∈ [−1, 1]}

(7.1)

In addition, we have studied novel approaches to the reward function. In more
precise terms, we have conducted a review of the utilisation of a novel paradigm. In
contrast to the speed-based reward function (as employed in this thesis), an alternative
approach is proposed: a distance-based reward function. Equation 7.2 utilises the
distance covered between the previous state (dri−d) and the current one (dri) to
establish the basis of the reward. The distance traversed between steps is weighted
by the trajectory followed and the distance from the centreline. As lectures between
states are conducted at regular intervals (every 20 ms), the velocity of the car is
implicitly represented, as higher speeds will result in greater distances being covered
between states. However, by avoiding the explicit declaration of the speed within the
reward function, we aim to help the agent understand that faster only means better
under certain circumstances.

R2 =(dri − dri−d) cosαi(1− |tp|) (7.2)

In a close future, we aim to asses the results obtained from these proposals and
evaluate how their combination with the improvements presented in this thesis can
increase the performance of the obtained models.

7.2.2 Future research
In the mid-range period, it would be of interest to adapt the proposals set out in
this thesis to other environments, such as F1_tenth, as it is based on ROS. This will
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facilitate the translation of the proposals to the field of robotics. Nevertheless, the
adaptation to ROS is not straightforward, as it necessitates a novel paradigm (i.e. all
the sensors and actuators are asynchronous).

Furthermore, it would be beneficial to investigate additional techniques, such as
pre-training the critic network to enable precise prediction of the value function,
V ∗(S), from the outset of the training process. In this setting, the algorithms could
enhance their convergence ratio, thereby reducing the number of steps required to
obtain an optimal policy.

Finally, the field of model learning could be explored. In this context, during
the training phase, the agent not only learns the optimal policy (Q*) and the value
function (V*) but also the dynamics of the environment (S × A → S′, R). In this
sense, the agent is then able to utilise its internal model of the environment to perform
simulated decisions that do not have an impact on the environment.
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APPENDIX

SUSTAINABLE DEVELOPMENT GOALS

Degree to which the work relates to the Sustainable Development Goals (SDGs).

Sustainable development goals High Medium Low Not

applicable

SDG 1. No poverty. X

SDG 2. Zero hunger. X

SDG 3. Good health and well-being. X

SDG 4. Quality education. X

SDG 5. Gender equality. X

SDG 6. Clean water and sanitation. X

SDG 7. Affordable and clean energy. X

SDG 8. Decent work and economic growth. X

SDG 9. Industry, Innovation and Infrastructure. X

SDG 10. Reduced Inequality. X

SDG 11. Sustainable cities and communities. X

SDG 12. Responsible consumption and production. X

SDG 13. Climate action. X

SDG 14. Life below water. X

SDG 15. Life on land. X

SDG 16. Peace and justice strong institutions. X

SDG 17. Partnerships to achieve the goal. X
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Reflexion on the relation of the TFG/TFM with the SDGs and with the most related SDG(s).

This work fits with the United Nations’ Sustainable Development Goals (SDGs). In particular,
with SDG 9, on “Industry, Innovation and Infrastructure”, which aims to “Build resilient in-
frastructure, promote inclusive and sustainable industrialisation and foster innovation ”. And
with SDG 11, on “Sustainable cities and communities”, which aims to “Make cities and human
settlements inclusive, safe, resilient and sustainable”.
Within SDG 9 and 11, and other SDG less related (such as SDG 3 and 8) the most related
targets to this work are:

• 3.6 By 2030, halve the number of global deaths and injuries from road traffic accidents.

• 8.2 Achieve higher levels of economic productivity through diversification, technological up-
grading and innovation, including through a focus on high-value added and labour-intensive
sectors

• 9.4 By 2030, upgrade infrastructure and retrofit industries to make them sustainable, with
increased resource-use efficiency and greater adoption of clean and environmentally sound
technologies and industrial processes, with all countries taking action in accordance with
their respective capabilities.

• 11.2 By 2030, provide access to safe, affordable, accessible and sustainable transport sys-
tems for all, improving road safety, notably by expanding public transport, with special
attention to the needs of those in vulnerable situations, women, children, persons with
disabilities and older persons.

This work lays the foundations to deepen the research in safe and robust autonomous driving
in unseen roads. Reducing the risk of accidents (target 3.2). From an industrial point of view,
autonomous transport of goods, either between cities in autonomous trucks or between countries
in autonomous boats, will both help small businesses in the process of reaching farther clients
(8.2) and help the industry increase the sustainability of the merchant lines (9.4). Finally,
vehicle autonomy can be applied to the local transport system, either in buses and trains (both
regular and underground) which could increase the amount of service available to users and
reduce delays and cancellations (11.2).
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Camı́ de Vera, s/n, 46022, València
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