
ORIGINAL PAPER

Load based dynamic channel allocation model to enhance
the performance of device-to-device communication in WPAN

J. Logeshwaran1 • R. N. Shanmugasundaram1
• Jaime Lloret2

Accepted: 18 January 2024 / Published online: 22 February 2024
� The Author(s) 2024

Abstract
The modern communication network has advanced to such an extent that it is now possible for devices within a wireless

personal area network (WPAN) to communicate among themselves directly. However, the limited shared radio resources

of a WPAN lead to numerous issues, such as cross-layer interference and data collisions, which wind up affecting the

quality of communication. A load based dynamic channel allocation (LB-DCA) model has been proposed to enhance the

performance of device-to-device communication in WPAN. This model uses several control schemes in collaboration with

interference estimation and channel load balancing mechanisms to allocate and manage the radio resources efficiently. The

objective of this model is to achieve high throughput, low interference and low energy consumption. The control schemes

implemented are based on distributed coordination and a cell-splitting approach. These schemes are utilized to estimate the

channel usage and number of active nodes in a network. The interference estimation is done by using a new efficiency

formula. Further, channel load balancing takes into account the hops and load factor values. The proposed model obtained

98.58% CSI, 95.86% MCC, 96.35% delta-P, 97.96% FMI, 99.83% BMI, 21.52% enhanced spectrum efficiency, 16.38%

enhanced scalability, 18.79% enhanced signal quality, 18.64% enhanced power control and 18.89% enhanced energy

efficiency.

Keywords WPAN � Channel � Communication � Devices � Efficiency � Interferences � Radio frequency � D2D �
Network traffic � Static � Dynamic channel allocation

1 Introduction

In general, wireless personal area networks (WPANs) are

using different channels to communicate between devices

[1]. The channels used by WPANs must be allocated in a

way that maximizes efficiency and minimizes interference.

If there is interference or poor performance, adjustments

may need to be made to the plan. Device-to-device (D2D)

communication has become a critical part of modern life

[2, 3]. With the ever-increasing reliance on technology and

connected devices, this type of communication is an

emerging technology that has the potential to revolutionize

the way we communicate. It allows two devices, such as

smart phones or tablets, to communicate directly with each

other without needing to rely on a cellular network or Wi-

Fi connection [4].

1.1 Device-to-device communication in WPAN

D2D communication is a form of wireless communication

that enables two devices to communicate directly without

the need for an intermediate network infrastructure [5].

This type of communication is beneficial for many appli-

cations, such as providing enhanced coverage, improving

user experience, and reducing the cost of communication.

& Jaime Lloret

jlloret@dcom.upv.es

J. Logeshwaran

eshwaranece91@gmail.com

R. N. Shanmugasundaram

raja.nss1969@gmail.com

1 Department of Electronics and Communication Engineering,

Sri Eshwar College of Engineering, Coimbatore 641202,

India

2 Instituto de Investigación Para La Gestión Integrada de Zonas
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A crucial component of successful communication is the

efficient allocation of communication channels [6]. Chan-

nel allocation is the process of assigning communication

channels to devices for communication. In order for com-

munication to be successful, it is important to optimize the

channel allocation to achieve the highest performance [7].

It can be achieved by minimizing interference between

different devices using the same channel. By minimizing

interference, the overall performance of the communica-

tion can be improved [8]. There are various approaches to

channel allocation in communication. One approach is to

use a centralized channel allocation algorithm, which is

based on the concept of frequency reuse [9]. In this

approach, the central controller assigns channels to devices

based on their relative locations so that devices located

close to each other are assigned different channels [10].

This approach is effective in reducing interference and

increasing the overall performance. Another approach is to

use a distributed channel allocation algorithm, which is

based on the concept of spatial reuse [11]. In this approach,

the devices themselves are responsible for assigning

channels. The devices use techniques such as power control

and directional antenna to reduce interference between

them. This approach is effective in reducing interference

and increasing the overall performance [12, 13].

1.2 Terminal access issues

As technology continues to develop, it will become even

more important as we look to create more secure and

reliable connections between devices [14]. Communication

has become an essential way for us to interact with our

environment. However, with the rise of communication,

there is an increased risk of terminal access [15].

One of the key components of D2D communication is

the hidden terminal access. A hidden terminal is simply a

device that is not visible to the other devices involved in

the communication [16]. It is important because it allows

the communication to be kept secure and private, as outside

parties cannot detect it. The hidden terminal access also

helps to ensure that the communication is reliable [17]. By

using a hidden terminal, it is possible to establish a secure

connection that is not vulnerable to interference from other

devices. It means that the communication is much more

reliable and much less likely to experience latency or

connection issues [18]. In addition to security and relia-

bility, the hidden terminal access also allows for quicker

data transmission. As the devices involved in the com-

munication are not visible to each other, they can send and

receive data at a much faster rate than if the devices were

visible [19]. It can be very beneficial for applications such

as video conferencing or streaming content. The hidden

terminal access is an important component of

communication. It offers much-needed security, reliability,

and speed, making it an invaluable tool for many appli-

cations [20].

Exposed terminal access, commonly referred to as ETA,

is when a user’s device is left open to unauthorized access.

It can occur when a device has been left unsecured or when

a user has not taken the proper security measures to protect

their device [21]. The most common way for an ETA to

occur is through an insecure wireless network or an unse-

cured Bluetooth connection. When this happens, it can

leave a device vulnerable to malicious actors who could

potentially access the device and use it for malicious pur-

poses [22]. The risks of exposed terminal access can be

very serious. Malicious actors can use a device with ETA

to access sensitive information, such as passwords and

banking details, which can be used to commit fraud or

identity theft [23]. They can also use an ETA to gain access

to a user’s location data or to track their activities. In the

worst case, an ETA can be used to take control of a user’s

device and use it to carry out malicious activities, such as

launching cyber attacks or stealing data [24]. Fortunately,

there are steps that users can take to protect themselves

from exposed terminal access. The most important is to

make sure that their device is always securely locked [25].

Users should also ensure that their passwords are strong

and unique and that they are not sharing their passwords

with anyone. The users should make sure that their wireless

networks and Bluetooth connections are secure and that

they are not connecting to any unknown or unsecured

networks [26]. The users should be cautious when down-

loading applications and should avoid downloading appli-

cations from unknown or unreliable sources. The exposed

terminal access can be a serious risk for device-to-device

communication [27]. By taking the proper steps to secure

their devices, users can help to ensure that their devices are

safe and secure.

1.3 Dynamic channel allocation

The channel allocation is an important component of D2D

communication. It is important to optimize the channel

allocation process in order to achieve the highest perfor-

mance. Channel allocation is a technique used to improve

the efficiency of communication systems by making sure

that frequencies are properly utilized [28]. It is a process of

assigning channels to different users within a specific fre-

quency range while minimizing interference between

channels. This technique can help solve terminal access

issues by

• Allocating resources (frequencies) efficiently: channel

allocation works by ensuring that the channels allocated

to each user do not interfere with each other. It can help
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resolve access issues by reducing conflicts between

multiple users trying to use the same frequency [29].

• Increasing efficiency: channel allocation helps systems

by making the most efficient use of their capacity. By

having users allocate their specific channels, the need

for complexity in managing access is reduced, resulting

in higher throughput and faster response times when

accessing the network [30].

• Reducing congestion: as users are allocated their

channels, it reduces the amount of traffic on the

network. It can help to reduce network congestion,

leading to fewer connection drops and better quality of

service [31].

Dynamic channel allocation (DCA) is an important

technique in communication. It is a method of assigning

radio frequency (RF) channels to various devices in a

network efficiently and flexibly. DCA allows the network

to adjust to changing conditions and user requirements

while also optimizing the usage of available resources. The

goal of DCA is to improve the overall performance of the

network by ensuring that the right channels are allocated to

the right devices at the right times [32]. One way to

dynamically allocate channels in communication is to use a

channel assignment algorithm. This algorithm can be used

to determine which channels are available and how they

should be assigned to different communication devices.

The main contribution of this paper is to improve the

following,

• The dynamic channel allocation model (DCAM) helps

to improve the performance of device-to-device com-

munication in WPANs by establishing an efficient

communication channel with minimal interference.

• DCAM also reduces the complexity of channel alloca-

tion and enhances the robustness of the system by

avoiding frequent channel switching. It helps to assign

appropriate channels to each device based on its

demand, which improves system performance.

• DCAM also enables efficient spectrum utilization by

avoiding collisions of transmission, and it helps in

optimally utilizing resources such as bandwidth, power

and time, thereby improving the data rate.

The remaining part of the paper is organized as follows.

Section 2 provides a detailed analysis of existing works

related to the research. Section 3 explained the methodol-

ogy, including the algorithm and flow chart of the proposed

model. Section 4 provides the detailed results, and Sect. 5

expresses the detailed discussion between the existing and

proposed models. Finally, Sect. 6 provides the conclusion,

and Sect. 6 provides the future works of the proposed

model.

2 Related works

There are various approaches to channel allocation, each of

which has its advantages and disadvantages. It is important

to choose the right approach depending on the specific

application and requirements.

2.1 Hidden terminal access

Niu et al. [33] have discussed the hidden terminal access

issues that arise when two stations in different transmission

ranges within a multicast scheduling network are not able

to detect each other’s transmissions. It can lead to data

collisions and reduced performance due to interference.

Multicast scheduling with device-to-device communica-

tions enabled via multimode codebooks can mitigate these

issues by allowing the two stations located in different

transmission ranges within the network to detect each

other’s transmission and avoid data collisions. Chen et al.

[34] have discussed the hidden terminal access problem

that occurs when a user transmission collides with an

overlapping transmission from another user, which is hid-

den from the sender. It is a problem in heterogeneous

networks of WPAN/WLAN since the nodes are operating

at different power levels and frequencies, creating inter-

ference and making it difficult to detect other nodes. A

packet scheduler can be used to mitigate this issue by

scheduling transmission based on channel conditions and

different power levels of WPAN/WLAN nodes to decrease

the chances of overlapped transmissions. Riolo et al. [35]

have discussed the hidden terminal access issue that occurs

when two devices are attempting to communicate within a

certain range of each other that is beyond the reach of the

access point they are connected to. This issue can occur

when the access point is located at the centre of the two

devices, meaning that the two devices are unable to ‘‘hear’’

each other. As a result, there will be a delay or an inter-

ruption in the data exchange between the two devices. The

hidden terminal access issue is an issue that can be

addressed through the use of a new centralized access

control for mmWave D2D communications. This system

allows the access point to securely grant access to these

devices from any location, meaning that these devices can

now exchange data with each other without the worry of a

hidden terminal access issue. Han et al. [36] have discussed

the hidden terminal access issues that arise when two or

more nodes in a device-to-device (D2D) communication

network are unable to hear each other’s signals due to

distance or obstructions. It makes it difficult for the nodes

to detect each other, thus significantly reducing the effi-

ciency of the network. In the case of a resource allocation

and beamforming algorithm based on the interference
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avoidance approach for D2D communication, the problem

of hidden terminals can become even more pronounced if

the chosen resource allocation direction fails to avoid

interference. In such cases, the nodes belonging to different

communication networks may end up transmitting data

packets simultaneously at the same frequency, reducing the

efficiency of the system and leading to degraded

performance.

Wan et al. [37] have discussed the hidden terminal

access issue in improved DV-hop algorithm using locally

weighted linear regression in anisotropic wireless sensor

networks that occurs when two or more nodes attempt to

access the same radio channel at the same time. Still, one

or more of the nodes is not visible to the other nodes due to

obstruction. This hidden terminal can then interfere with

the communication between other nodes as they compete

for access to the same channel. Challa et al. [38] have

discussed the hidden terminal access in the design of large-

scale MU-MIMO systems with joint precoding and detec-

tion schemes beyond 5G wireless networks is a technique

which allows a transmitting station to reach a receiving

station even in the presence of obstacles or other interfering

signals. It is possible by sending the signal in such a way

that it only reaches the desired target while avoiding any

hidden terminals. The signal is sent using a separate

beamforming approach that ensures that only the desired

user is able to receive the desired signal. Dilli al. [39] have

discussed the Hidden terminal access in hybrid beam-

forming is a technique used by 5G NR networks using

multi-user massive MIMO at FR2 frequency bands. It is

used to allow multiple users to access the beamforming

dynamic range with minimal cross-user interference. The

technique works by using multiple beamforming antennas

to transmit separate signals to each user. It allows users

with weaker received signals to access the Beamforming

range without being interfered with by users with stronger

received signals. Ultimately, this technique allows all users

to access the beamforming range with minimal cross-user

interference.

Bansal et al. [40] have discussed the hidden terminal

access in optimal Golomb ruler sequences generation for

optical WDM systems is a novel parallel hybrid multi-

objective bat algorithm which uses a modified bat algo-

rithm approach with a genetic algorithms factor. This

algorithm simulates the movement of bats in search of an

optimal solution while also attempting to avoid ‘‘hidden’’

access terminals, which can cause undesirable collisions in

the optical wavelength division multiplexing (WDM) sys-

tem. This approach combines the strengths of the two

algorithms to optimize the Golomb ruler sequences used to

control the allocation of wavelengths in the optical WDM

network. Dong et al. [41] have discussed the hidden ter-

minal access in a short-term power load forecasting method

based on k-means, and SVM refers to the use of a support

vector machine (SVM) in combination with a k-means

algorithm to forecast the next time step of short-term power

load. K-means is used to cluster the historical data and

generate prototypes. In contrast, SVM is used to access the

hidden information in the prototypes to predict the next

time steps of the power load effectively. Table 1 shows the

comprehensive analysis of hidden terminal access.

2.2 Exposed terminal access

Niu et al. [42] have discussed the exposed terminal access

issues refer to when a device-to-device link is established

between a base station and a user device in a directional

millimetre wave small cell. The devices in the link are

subject to maliciously intercepted messages. It can happen

when the device-to-device link is established in a public

area or is too close to a third party with the ability to

intercept the messages. It means that any data sent through

this link is not securely protected and can be exploited by a

hacker. Bello et al. [43] have discussed the Exposed ter-

minal access issues in network layer inter-operation of

device-to-device communication technologies in the

Internet of Things are security and privacy issues that arise

when devices are connected to open networks without any

authentication or encryption protection. These issues can

lead to unauthorized access to the network and confidential

information being accessed or corrupted. The lack of

security measures can enable malicious actors to launch

distributed denial-of-service (DDoS) attacks on the affec-

ted networks, causing serious damage to the systems.

Ahmad et al. [44] have discussed how the Estimation of

distribution algorithm (EDA) for joint resource manage-

ment in D2D communication can create several terminal

access issues. Specifically, a large number of terminals

connected to the same network can make the system vul-

nerable to overhearing and intrusion into the data trans-

mission. By having access to the transmitted data,

malicious agents can gain access to confidential informa-

tion, such as messages, passwords, and financial informa-

tion. If the system is poorly designed, a malicious terminal

can obtain access to the entire network, denying legitimate

users access. Lastly, with the introduction of more and

more connected systems, the risk of denial-of-service

attacks increases. Wang et al. [45] have discussed the

exposed terminal access issues that arise when two users

attempt to access the same mmWave small cell network

concurrently. It can occur due to the limited sub-channel

allocation that exists in device-to-device underlaying full-

duplex mmWave small cells using coalition formation

games. In coalition formation games, usually, each user

needs to claim an exclusive sub-channel, which leads to
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many network contention issues. It can, in turn, reduce the

performance of the underlying mmWave small cells.

Chen et al. [46] have discussed an exposed terminal

access issue that occurs when devices have to access a

shared wireless channel. This issue arises due to the limited

availability of radio resources. When the available radio

resource is not enough to allow a specific combination of

two wireless devices to communicate directly, they need to

resort to multi-hop relaying. However, the relay nodes can

be exposed to strong interference from neighbouring nodes,

which restricts their performance. As a consequence, the

performance of the communication would be severely

degraded. Coalition formation games are used to solve this

issue by allowing different sets of wireless nodes to com-

municate simultaneously by forming different coalitions.

Njoya et al. [47] have discussed the exposed terminal

access issues in hybrid wireless sensor deployment

schemes that occur when two nodes attempt to transmit

simultaneously, creating collisions. This phenomenon can

be amplified in a large network of wireless sensors,

resulting in a significant amount of lost messages. These

collisions must be avoided, either by providing sufficiently

long time intervals between transmissions or by using non-

deterministic traffic models. Using multiple transmission

frequencies or adopting an interference mitigation

scheme such as Frequency Hopping can help limit the

number of collisions. Finally, an effective routing

methodology must be employed to ensure packets are

successfully transmitted in an environment with frequent

collisions. Subalatha et al. [48] have discussed the exposed

terminal access issues in low complexity maximum like-

lihood FBMC QAM for improved performance in longer

delay channels arise due to the limited temporal context of

FBMC QAM. If more than one user receives the trans-

mitted data, then interference caused by exposed terminal

access can occur, leading to performance loss. All the users

can receive the same data due to the limited temporal

context, and as a result, interference can occur. The pilot

symbols should be used to demodulate the data, which can

be separated depending on the user receiving them. Kumar

et al. [49] have discussed the exposed terminal access

issues in performance analysis of GFDM modulation in

heterogeneous networks for 5G NR are mainly related to

the packet loss rate. Due to the limited duration of the

packet or the quickly changing channel conditions, the

packet sent from the user terminal to the base station is

often dropped. It leads to a decrease in the performance of

the GFDM modulation techniques used in 5G NR systems,

thus reducing the quality of the received signal for the user.

Another issue related to the exposed terminal access is the

limited range of the base station. As the user terminals are

farther away from the base station, the packet loss rate

increases and thus, the performance of the GFDM modu-

lation technique decreases. Murali et al. [50] have dis-

cussed that exposed terminal access issues involve the

security risk of unauthorized users having access to data or

systems via an open terminal. It could include logging into

a server or router remotely via an open port. This type of

vulnerability is especially concerning when dealing with

sensitive information such as yield forecasting in the con-

text of a hybrid machine learning approach. It is important

to ensure restricted access to such systems and proper

authentication protocols are in place to protect the data and

network. Selvam et al. [51] have discussed the exposed

terminal access issues that occur due to the distributed

nature of peer-enhanced multi-objective teaching–learn-

ing–based optimization in distribution networks. This type

of access issue occurs when each user in the network

accesses resources from other users who are not directly

connected to their terminal. If any of these resources

become unavailable, then any users who were connected to

those resources will have limited access to the services or

data. This issue could lead to deterioration in overall sys-

tem performance. Table 2 shows the comprehensive anal-

ysis of exposed terminal access.

Table 1 Comprehensive analysis of hidden terminal access

Author Year Network Data rate Error rate Network capacity Response time

Niu et al. [33] 2018 D2D communication Very high Moderate Low Very low

Chen et al. [34] 2015 WPAN/WLAN Low High Very high Very low

Riolo et al. [35] 2017 D2D communication Very low Very low High Moderate

Han et al. [36] 2013 LTE cellular network Very high Low Very low High

Wan et al. [37] 2020 WSN Moderate Very low Very low Very high

Challa et al. [38] 2021 5G wireless networks High Low Very low Moderate

Dilli et al. [39] 2022 5G NR networks Moderate Low Very high Very low

Bansal et al. [40] 2017 WDM Very low Very low High Moderate

Dong et al. [41] 2022 Wireless networks Very high Low Moderate Very high
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2.3 Channel allocation

Bhattacharjee et al. [52] have discussed connecting multi-

ple devices through a single radio channel, and channel

allocation issues can arise. In the IEEE 802.15.3-based

parent–child piconet model, the channel must be divided

among all devices involved. When a new device is added to

the piconet, the existing channel times allocated to the

parent or child devices must be reassigned. The dynamic

approach for channel time allocation uses a contention-

based medium access control (MAC) protocol that allo-

cates timeslots for the participating devices. The contention

window time is determined by the channel position of the

piconet parent and dynamically reassigned depending on

changes to the piconet size or channel conditions. It

ensures optimal utilization of the channel resources without

sacrificing throughput. Salam et al. [53] have discussed the

main issue with channel allocation in a 60 GHz-based D2D

network is that the number of available channels is limited

due to the high frequency of the bands. It requires efficient

relay selection and scheduling to ensure that the most

efficient and effective channels are allocated to each D2D

connection. Due to the limited number of available chan-

nels, there is a need to account for possible interference, as

well as the characteristics of the network, when allocating

channels. Due to the lack of mobility support in 60 GHz

bands, the channel assignment should also take into

account the position of each node in order to reduce the

reconnection overhead and ensure that nodes remain con-

nected throughout the communication. Tanigawa et al. [54]

have discussed that Joint channel allocation and routing for

Zigbee/Wi-Fi coexistent networks is a difficult problem

due to the high interference between Zigbee and Wi-Fi

devices. The main challenge lies in finding an efficient way

to allocate channels such that Zigbee and Wi-Fi networks

can coexist in the same environment without too much

interference. A robust routing protocol needs to be

designed in order to avoid excessive collisions between

Zigbee and Wi-Fi devices. Finally, the link quality between

Zigbee and Wi-Fi nodes needs to be accurately measured in

order to ensure efficient channel and routing management.

Ur Rehman et al. [55] have discussed that channel allo-

cation issues refer to challenges related to the feedback and

scheduling of the available channels in a network. In

60 GHz networks, this becomes even more challenging due

to the large number of connected devices, the large com-

munication range, and the shorter wavelengths that

increase path loss. Scheduling is an algorithm that deals

with this issue by dividing the available channels into

several groups and allocating each group to a device based

on its received signal strength in order to maximize the

overall throughput. This way, each device is allocated a

suitable channel to use and collisions on the same channel

are avoided.

Pakdel et al. [56] have discussed the channel allocation

issue in this system is due to the fact that multiple sink

nodes are attempting to communicate with one or more

sources. It leads to collisions occurring if both sinks

transmit data simultaneously on the same channel. There-

fore, an optimal and dynamic channel allocation algorithm

is required to avoid collisions and enhance communication

reliability. Rajappa et al. [57] have discussed the golden

coded GFDM (GC-GFDM) modulation scheme for 5G

communication has posed various challenges with channel

allocation. The major issue with channel allocation in GC-

GFDM is the need for efficient resource usage so as to

improve spectral and energy efficiencies while maintaining

the desired bit error rate (BER) performance. It has led to

the need for advanced algorithms to effectively divide the

available frequency resources into independent subcarriers

while taking into account the requirements of different

communication services. The channel allocation problem

in GC-GFDM is further complicated by its strict limitation

of the allowed guard interval times and spectral overlaps

Table 2 Comprehensive analysis of exposed terminal access

Author Year Network Data rate Error rate Packet loss Reliability

Niu et al. [42] 2015 D2D communication Low Very low Very high Moderate

Bello et al. [43] 2017 D2D communication High Very high Moderate Low

Ahmad et al. [44] 2019 D2D communication Very low Moderate Very high High

Wang et al. [45] 2019 D2D communication Moderate Low High Very low

Chen et al. [46] 2020 Heterogeneous cellular networks Very high Moderate Very low High

Njoya et al. [47] 2020 WSN High Very low Very high Low

Subalatha et al. [48] 2021 Wireless networks Very low Moderate Low Very high

Kumar et al. [49] 2021 5G NR networks Low Very high Very low Low

Murali et al. [50] 2020 Wireless networks Very high High Moderate Very low

Selvam et al. [51] 2017 Wireless networks High Low Very low Very high
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between different subcarriers. The need to simultaneously

optimize both the resource management and the commu-

nication link quality must be taken into account.

Danandeh Mehr et al. [58] have discussed the channel

allocation issue in novel intelligent deep-learning predic-

tive models for meteorological drought forecasting is the

process of allocating different channels to different tasks or

features. It helps improve the accuracy of the model while

still keeping the workload manageable. Specifically for

drought forecasting, this could involve assigning channels

to certain weather data points and analyzing how those data

points interact with each other to inform a specific forecast.

Padhi et al. [59] have discussed the channel allocation issue

in solving dynamic economic emission dispatch problem

with uncertainty of wind and load using the whale opti-

mization algorithm refers to the problem of how to allocate

the channels among different wind turbines, solar panels,

and loads according to their energy requirements for a

certain amount of time. Each of these components has its

energy demand, which needs to be met while also ensuring

that they stay within the available energy budget. This

problem must be solved without any violations or delays to

maximize the economic emissions and minimize the

environmental impact. Bansal et al. [60] have discussed In

nature-inspired hybrid multi-objective optimization algo-

rithms, and channel allocation is an important aspect to

consider when searching for nearby to eliminate FWM

noise signals in optical WDM systems. Channel allocation

refers to how the optical channels are distributed among the

different light sources and affects the efficiency of the

system overall. By optimizing how the channels are allo-

cated, hybrid multi-objective optimization algorithms can

be used to improve system performance. Performance

comparison can be done to compare varying channel

allocation techniques and identify the best one for a given

application. Ram et al. [61] have discussed the channel

allocation issue in a multi-objective generalized teacher-

learning-based-optimization algorithm is the optimization

problem of how to assign the available radio frequency

channels to various users in order to maximize system

performance. Channel allocation is a critical factor in

wireless communication systems, as it can affect the

overall data rate, signal quality, and system reliability. An

efficient channel allocation algorithm should utilize the

inherent characteristics of the users, including their loca-

tion, signal strength, and rate of bandwidth, to determine

the best possible frequency assignments. Kim et al. [62]

have discussed the channel allocation issue in Bi-LSTM

models is related to the allocation of channels to individual

input features. By properly allocating channels to different

input features in a multivariate time series dataset, the

model can make more accurate predictions and better

capture nonlinear relationships between the input features.

The exact number of channels to allocate for each input

feature is difficult to determine, and the optimal distribu-

tion of channels is problem-dependent. Table 3 shows the

comprehensive analysis of channel allocation.

2.4 Resource management

Zhi et al. [63] have discussed deep reinforcement learning-

based resource allocation for D2D communications in

heterogeneous cellular networks, and the resource man-

agement issue is the scheduler optimization problem,

which is to decide which user should be assigned which

resources for optimal overall performance. It requires the

scheduler to make decisions on the allocation of resources,

such as channel and power while taking into account var-

ious constraints and traffic demands. It is a challenging

problem, as it requires the scheduler to trade-off between

competing objectives, such as maximizing network

throughput and minimizing interference. Dutta et al. [64]

have discussed the Millimeter-wave (mmWave) D2D

communications involve deploying mmWave radios in

dense networks in order to utilize the spectrum and net-

work resources efficiently. In such networks, obstacles can

affect the communication performance for paired users due

to the high-frequency wave attenuation. It can lead to

resource management issues, such as increased interfer-

ence, lower data rates, and reduced coverage area. The

mobility-aware resource allocation methods can be used to

accurately identify where to place the radios and how much

resources should be allocated for certain areas while min-

imizing potential interference. Logeshwaran et al. [65]

have discussed the resource management issue discussed in

this paper revolves around the efficient utilization of

resources in bi-partite scattered that utilize wireless per-

sonal area networks. The paper proposes an algorithm for

resource utilization that is based on load balancing and

utilizes the resource availability of adjacent nodes to ensure

that maximum efficiency is achieved. The challenges

associated with this approach are optimizing the scheduling

of resources, determining the best resource utilization

strategies, and ensuring that the resources are utilized

appropriately. Chen et al. [66] have discussed the Resource

management issue in Resource allocation for device-to-

device communications in multi-cell multi-band heteroge-

neous cellular networks involving the efficient allocation of

resources. It is a complicated problem, as the amount of

resources available among different cells and within each

cell is limited and can be identified with uncertainty.

Bartoli et al. [67] have discussed the resource manage-

ment issue in LR-WPANS as the efficient allocation of

resources to applications. Using a stable matching with

externalities approach means that applications must be

matched to their best possible host in such a way that the
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satisfaction of all participants is maximized. An inherent

challenge of this approach is to ensure that the resources

are properly allocated while minimizing the chance of

instability and unbalanced distributions. Phunchongharn

et al. [68] have discussed the resource allocation for

device-to-device communications underlaying LTE-ad-

vanced networks as a resource management issue. It

includes managing the allocation of spectrum, as well as

allocating resources among devices to ensure that all

devices receive sufficient resources to achieve the desired

level of throughput. It also includes managing the

scheduling of communication links between devices to

ensure that all devices are served fairly and efficiently.

Ding et al. [69] have discussed resource management as an

important issue in an enhanced cluster head selection of

LEACH based on power consumption and density of sen-

sor nodes in wireless sensor networks. The resource allo-

cation between the nodes and clusters is limited, meaning

that efficient resource utilization must be in place to make

full use of the limited resources. It must be achieved in a

way that does not impact the quality of service or perfor-

mance of the network. To address this, the enhanced cluster

head selection of LEACH must ensure that the sensor

nodes are placed most efficiently, with less dense regions

being assigned to be cluster heads. Sensor nodes in more

dense regions yield more sensing power in comparison.

The power consumption of sensor nodes must be taken into

account as it impacts their longevity and ability to power

the network. Therefore, efficient and effective resource

management is essential in this enhanced cluster head

selection.

Avvari et al. [70] have discussed the primary resource

management issue in multi-objective optimal power flow

with efficient constraint handling using hybrid decompo-

sition and local dominance method concerns the proper

allocation and utilization of available resources to meet the

mutually conflicting objectives of reliability, economics,

and sustainability. It requires the optimization of the power

flow in an electricity network while taking into consider-

ation the competing objectives, as well as the current

characteristics of the system, boundary conditions, and any

additional constraints that might be present. In this case,

the hybrid decomposition and local dominance method are

employed to provide an effective constraint-handling

approach that can efficiently explore the search space and

identify a near-optimal configuration. Son et al. [71] have

discussed the resource management issue in this applica-

tion is how to efficiently utilize the cloud computing

resources required for the models to process the satellite

images and accurately predict the PV forecast. Since both

the LSTM and GAN require large amounts of data to be

processed in order to forecast the PV accurately, this

requires a large number of cloud computing resources to be

allocated. To efficiently use these resources, strategies such

as scheduling, provisioning, and monitoring of resources,

including CPU, memory, and storage, must be imple-

mented. It is also important to consider the scalability of

the resources to ensure that the models can be easily

adapted to new datasets. Table 4 shows the comprehensive

analysis of resource allocation.

2.5 Communication management

Yang et al. [72] have discussed Peer discovery for device-

to-device (D2D) communication in LTE-A networks, and

there is a major communication issue. This problem arises

Table 3 Comprehensive analysis of channel allocation

Author Year Network Signal-to-noise

ratio

Co-channel

interference

Multi-user

interference

Bit error

rate

Bhattacharjee et al. [52] 2017 Low-rate wireless

networks

Moderate High Low Very high

Salam et al. [53] 2015 D2D networks Very high Moderate High Low

Tanigawa et al. [54] 2021 Zigbee/Wi-Fi Very low Low Moderate High

ur Rehman et al. [55] 2014 D2D communication Low Very high High Moderate

Pakdel et al. [56] 2022 WSN Very low High Moderate Very low

Rajappa et al. [57] 2020 5G communication High Moderate Low Very high

Danandeh Mehr et al.

[58]

2023 Wireless networks Moderate High Very high Low

Padhi et al. [59] 2020 Wireless networks Very high Moderate High Very low

Bansal et al. [60] 2021 Optical WDM networks Very low Low Moderate High

Ram et al. [61] 2022 Wireless networks Low Very high High Moderate

Kim et al. [62] 2019 Wireless networks Very low High Moderate Very low
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due to the fact that short-range communication is often

intermittent, unpredictable, and severely impacted by sig-

nals from surrounding nodes. Furthermore, the nodes

involved in peer discovery must also contend with the

unpredictability of communication conditions, such as

errors and interference, making it hard to achieve reliable

peer discovery in LTE-A networks. As a result, adequate or

fast communication could result in a delayed or ineffective

peer discovery process. Bello et al. [73] have discussed the

communication issue in intelligent device-to-device (IoT)

communication is the need for more automated information

exchange between different devices. It makes it difficult for

IoT networks to detect and respond to changes in an

environment accurately. Additionally, the security and

privacy risks associated with IoT devices make the com-

munication and data exchange between them vulnerable to

interception and manipulation. As a result, the communi-

cation infrastructure needs to be secured, and protocols

need to be established to ensure the accuracy and reliability

of data exchanged between devices. Zhang et al. [74] have

discussed the communication issue in envisioning device-

to-device communications in 6G is the high latency and

need for more bandwidth used by the current infrastructure.

The 5G network is not able to fully meet the capacity and

speed of data transfer required by some applications and

services while providing low latency and high throughput.

Mobile 6G systems must be able to provide low latency

and high data rates for a variety of applications, as well as

the ability to support user-defined service needs. Further-

more, the network must be versatile enough to provide

reliable connections to all types of endpoint devices. 6G

networks must also tackle the increasing spectrum scarcity

and security concerns due to increasing mobility. Niu et al.

[75] have discussed the main communication issue in Joint

Scheduling of access and backhaul for mmWave small

cells is the limited availability of resources, such as radio

spectrum and infrastructure, as well as the limited range of

mmWave communication. It is difficult for the network to

effectively utilize the available resources for transmitting

data both over the air and through the backhaul. Further-

more, the complexity of implementing Joint Scheduling of

access and backhaul for mmWave small cells necessitates

high levels of coordination for efficiently coordinating the

resources between several different devices. It can result in

delays in the communication process and a lack of flexi-

bility when responding to changing conditions in the

environment. Wang et al. [76] has discussed the Side lobe

interference reduced scheduling algorithms for mmWave

device-to-device communication networks may suffer from

communication issues, as the antennas involved in the

communication process are usually assumed to be spatially

orthogonal with respect to each other. It means that the

communication link between two nodes may be disrupted

if the angle between them varies, causing interference from

other nearby nodes. Furthermore, they need more flexibil-

ity in these scheduling algorithms to make them effectively

inflexible, as interference from other sources can still cause

communication issues.

Haseeb et al. [77] have discussed in a D2D multi-criteria

learning algorithm using secured sensors the communica-

tion issue arises from the fact that secure sensor networks

and other wireless networks use different protocols, mak-

ing interoperability difficult. Furthermore, since the sensors

are distributed over a large area, the sensors may experi-

ence interference, making communication from one sensor

to another unreliable. Additionally, due to limited band-

width, all of the data collected by the sensors may not be

transmitted in a timely manner. Gao et al. [78] have dis-

cussed the communication issue related to the challenge of

attaining communication reliability with mobility-assisted

Table 4 Comprehensive analysis of resource allocation

Author Year Network Response

time

Resource

contention

Resource

allocation

Resource

utilization

Zhi et al. [63] 2022 Heterogeneous cellular

networks

Very high Low Moderate High

Dutta et al. [64] 2023 D2D communication Moderate High Very low Very low

Logeshwaran et al. [65] 2023 WPAN Low Very low Very low Very high

Chen et al. [66] 2019 Heterogeneous cellular

networks

Very high Very low Moderate Low

Bartoli et al. [67] 2019 Low-rate WPAN High Very high Moderate Very high

Phunchongharn et al.

[68]

2013 LTE-advanced networks Very low Very high High Very low

Ding et al. [69] 2019 WSN Moderate Moderate Low Very high

Avvari et al. [70] 2022 WSN Very high Very low Moderate Very high

Son et al. [71] 2023 High-rate wireless networks Low Moderate Very high High
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device-to-device communication in cellular networks. A

major issue is the need to maintain both strong reception

and consistent network connection as the device moves

between cells in the network. Furthermore, the need for an

efficient handover process must also be taken into account

so that data can be smoothly transferred from one cell to

another. Qiao et al. [79] have discussed the communication

issue in enabling device-to-device communications in

millimetre-wave 5G cellular networks that the typical 5G

millimetre wave technology has limited range and multi-

path propagation challenges, which makes the communi-

cation between two devices extremely unreliable. It limits

the range of the devices, which could create latency and

other communication issues. The high frequency associated

with millimetre wave technology imposes further restric-

tions on communication reliability. Liu et al. [80] have

discussed the coverage algorithm based on the perceived

environment around nodes in mobile wireless sensor net-

works. The communication issue is related to the limited

range of the sensor nodes as well as the inherent difficulties

of properly broadcasting and receiving messages due to

radio interference, signal propagation losses, and other

environmental factors. As a result, it is extremely difficult

to ensure reliable, robust communication between the

mobile sensor nodes within the network. Indoonundon

et al. [81] have discussed the communication issue in

enhancing the error performance of 5G new radio using

hierarchical and statistical QAM is the need to accurately

identify which type of signal modulation, quadrature

amplitude modulation (QAM) or hierarchical QAM

(HQAM), is best suited for an improved radio performance.

The issue lies in the complexity of modulation in the radio

environment, as well as the need to accurately adjust the

modulation levels for each environment to maximize signal

fidelity and mitigate performance loss due to error.

Balachander et al. [82] have discussed the carrier frequency

offset (CFO) synchronization as a challenging communi-

cation issue in 5G wireless communication for energy

efficient cognitive radio networks (CRN) since a CFO

introduces nonlinear distortion in the reception of the

transmitted signals, leading to losses of spectral efficiency.

Peak average power ratio (PAPR) minimization is also a

problem as it leads to power consumption redundancies,

creating an increased risk of inefficiency in the CRN.

Therefore, optimization of both the CFO synchronization

and PAPR minimization procedures must be conducted in

order to ensure energy-efficient operations for the 5G CRN.

Table 5 shows the comprehensive analysis of communi-

cation management.

2.6 Research gaps

WPANs have the limited availability of radio resources,

such as frequency channels. This limitation can lead to

congestion and interference, especially in densely popu-

lated areas with many devices communicating simultane-

ously. It affects the performance of D2D communication,

resulting in unsuccessful data transmission, slow connec-

tion speeds, and increased latency. Some of the following

issues were identified from the existing research works.

They are,

• Low reliability—due to interference from nearby net-

works and obstacles, device-to-device communication

can sometimes be unstable. It leads to frequent channel

switching and drops in communication, resulting in

reduced reliability.

• High latency and throughput rate—D2D has a lower

throughput and latency rate compared to traditional

infrastructure networks, making it less suitable for

applications requiring a higher rate of data

transmission.

• Security and privacy concerns—due to the open nature

of D2D communication, there is an increased risk of

malicious or maliciously encoded data being

exchanged.

• Low energy efficiency—wireless channels used for

device-to-device communication tend to consume high

amounts of energy. As a result, the battery life of a

device may be significantly reduced.

• Limited scalability—as the number of user devices

increases, the quality and reliability of communication

drops. It limits the scalability of device-to-device

wireless networks.

• Lack of standardized protocols—a standardized rate of

communication needs to be agreed upon by all partic-

ipating nodes in order for communication to operate

smoothly. Currently, there is no specific standard

protocol for device-to-device communication.

2.7 Research objectives

WPANs are short-range wireless networks that allow for

communication between devices nearby. D2D communi-

cation is a key feature of WPANs, as it enables devices to

communicate directly with each other without the need for

a centralized network. However, in a WPAN scenario with

multiple D2D pairs, interference, and channel congestion

can significantly degrade the performance of D2D

communication.

• Improved spectrum efficiency: the load-based dynamic

channel allocation model is designed to optimize
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spectrum utilization. It optimizes the distribution of

available channels to maximize system throughput

while reducing power consumption and interference.

• Improved scalability: the load-based dynamic channel

allocation model provides a scalable and flexible

system to support larger networks with multiple

devices. It is designed to achieve scalability and

improve performance in device-to-device networks.

• Improved signal quality: the load-based dynamic chan-

nel allocation model is designed to ensure that all

devices have the optimum signal quality in order to

enhance data communication performance.

• Improved power control: the load-based dynamic

channel allocation model uses a robust power control

strategy to ensure that the power is distributed propor-

tionally to the channel’s load. By ensuring an optimal

power level, it helps to optimize interference and

improve reliability.

• Improved energy efficiency: the load-based dynamic

channel allocation model is designed to allow efficient

spectrum utilization by reducing the number of network

accesses. It uses adaptive channel assignment algo-

rithms that reduce energy consumption, which

improves network performance and efficiency.

The proposed load dynamic channel allocation algo-

rithm is a novel approach to enhance the performance of

D2D communication. It aims to optimize the use of

available wireless channels in a D2D network by dynam-

ically allocating them based on the load of the devices. One

of the main novelties of the proposed algorithm is its load-

awareness. It considers the varying levels of traffic and

congestion in the network and adjusts the channel

allocation accordingly. It is in contrast to traditional

methods, which assign channels based on predetermined

schemes or fixed time slots without considering the real-

time status of the network. Another novel aspect of the

proposed algorithm is its ability to handle homogeneous

and heterogeneous D2D networks. The algorithm can

effectively allocate network channels with devices of dif-

ferent capabilities and applications. The proposed algo-

rithm can consider these differences and allocate channels

accordingly, ensuring efficient use of resources. The pro-

posed algorithm also considers the QoS requirements of

different D2D connections. It can prioritize channels for

high-priority applications, such as real-time video stream-

ing, while ensuring that lower-priority applications, such as

file transfers, still have sufficient bandwidth. The proposed

algorithm has the flexibility to adapt to changes in the

network, such as the addition or removal of devices or

changes in the traffic pattern. It continuously monitors the

network load and adapts the channel allocation in real-

time, improving network performance. The proposed

algorithm provides a versatile and dynamic solution for

optimizing channel allocation in D2D communication,

making it a novel and effective approach for enhancing the

performance of D2D networks.

3 Materials and methods

The main aim of this research is to propose a load-based

dynamic channel allocation (LB-DCA) model that can

improve the performance of device-to-device (D2D) com-

munication in wireless personal area networks (WPAN).

Table 5 Comprehensive analysis of communication management

Author Year Network Signal-to-noise

ratio

Co-channel

interference

Multi-user

interference

Bit error

rate

Yang et al. [72] 2013 LTE-A networks High Very low Moderate Low

Bello et al. [73] 2014 D2D communication Very high Low High Very high

Zhang et al. [74] 2020 6G communication Low Very low Very high High

Niu et al. [75] 2015 D2D communication Moderate High High Very low

Wang et al. [76] 2019 D2D communication Very low Very low Moderate Very high

Haseeb et al. [77] 2022 D2D communication Very low Low Very high High

Gao et al. [78] 2016 Underlaying cellular

networks

High Moderate Very high Very High

Qiao et al. [79] 2015 5G cellular networks Very high Very low Moderate Very low

Liu et al. [80] 2023 Mobile WSN Very Low High Very Low High

Indoonundon et al.

[81]

2022 5G communication Low Moderate Very high Very low

Balachander et al.

[82]

2021 5G wireless communication Very high Very low High Moderate
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This research focuses on using WPAN, a short-range

wireless communication technology that enables devices to

connect and exchange data without needing a centralized

infrastructure.

3.1 Construction of proposed research work

The proposed model is designed to address the issue of

channel congestion in D2D communication, which can

significantly degrade network traffic performance. It uti-

lizes a dynamic allocation approach, where channels are

allocated in real-time based on the current load of the

network rather than pre-assigned to specific devices.

The model considers the available channels, the number

of devices in the network, the communication demands of

each device, and the load of each channel to make efficient

and fair channel assignment decisions. This ensures that

channels are not overloaded and that all devices have equal

access and utilization of the available channels.

The performance of the proposed model is evaluated

using simulation experiments, and the results show that it

outperforms existing static channel allocation methods in

terms of throughput, packet loss, and delay. This indicates

the proposed model can effectively improve the perfor-

mance of D2D communication in WPAN by optimizing

available channels.

The proposed model is a promising solution to address

channel congestion and enhance the overall performance of

D2D communication in WPAN. Its dynamic allocation

approach allows for efficient and fair utilization of chan-

nels, leading to better network efficiency and improved

communication quality.

3.2 Channel allocation

The proposed model aims to enhance the performance of

device-to-device (D2D) communication in wireless per-

sonal area networks (WPANs). LB-DCA proposes a solu-

tion to this problem by dynamically allocating channels

based on the load of each D2D pair. It means that channels

will be allocated to pairs with lower loads, while those with

higher loads will be allocated less favorable channels. This

load-based allocation is crucial, as it ensures that channels

are not overloaded and can effectively handle the com-

munication needs of each D2D pair. One of the major

advantages of LB-DCA is its ability to adapt to the

changing network environment. As the load of D2D pairs

changes, the model can adjust the channel allocation

accordingly to maintain optimal performance. It is espe-

cially useful in scenarios where certain pairs have varying

communication needs. The LB-DCA algorithm addresses

this issue by dynamically allocating channels based on the

WPAN’s current load and traffic patterns. Unlike

traditional allocation methods that assign fixed channels to

devices, the LB-DCA algorithm considers real-time net-

work conditions to allocate channels on demand. This

dynamic allocation approach ensures that highly congested

channels are identified and avoided while underutilized

channels are efficiently utilized. This results in a more

balanced and optimized distribution of resources, leading

to improved performance of D2D communication in

WPANs. Channel allocation in WPAN is an important

concept for optimizing network performance. WPANs are

typically used in scenarios where multiple devices need to

communicate over short distances, such as in the home,

industrial automation, or personal area networks. Figure 1

shows the different channel allocations in D2D

communication.

These networks require the use of multiple channels to

ensure that devices are able to communicate with each

other without interference. The first step in channel allo-

cation is to identify the number of available channels. This

number is usually dependent on the type of technology

used in the network, such as Bluetooth, ZigBee, or Wi-Fi.

Once the number of available channels is determined, they

must be allocated to each device in a way that minimizes

interference. It is typically done using a technique known

as channel access scheduling. Scheduling algorithms

determine the optimal order in which devices can use the

different channels and ensure that no two devices are using

the same channel at the same time. A dynamic channel

allocation method based on primary and secondary user

device communication in three different networking

regions is explained here. When user devices in each net-

work block communicate with user devices in other

regions, something in another region causes interference.

This results in security and reliability deficiencies where

user devices communicate with the suitable device. It

makes the necessity of channel allocation dynamically.

Another important aspect of channel allocation is the

selection of modulation and coding schemes. These

schemes help to separate the signal from the background

noise, making it easier for devices to communicate. Dif-

ferent modulation and coding schemes are used based on

the distance between the devices, the type of data being

transmitted, and the amount of power available. Finally,

the quality of service (QoS) must be maintained. A variety

of factors, such as the bandwidth available, the signal-to-

noise ratio, and the latency, determine QoS. As such, it is

important to consider all of these factors when making

channel allocation decisions. The channel allocation in

WPANs is an important aspect of optimizing network

performance. It requires careful consideration of the

available channels, modulation and coding schemes, and

QoS parameters. By making informed decisions, networks
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can be optimized to ensure that devices are able to com-

municate without interference.

3.3 Channel selection

WPANs are local area networks with a range of up to 10 m

that are typically used to connect devices such as mobile

phones, tablets, and computers. Figure 2 expresses the

channel selection methodology.

The selection of a particular channel is an important task

that should be done in order to ensure efficient communi-

cation between devices. Several factors must be considered

when selecting a channel, including the amount of inter-

ference from other nearby networks, the data rate of the

connection, and the number of devices that will be using

the network. Additionally, the type of WPAN technology

in use should be taken into account, as different tech-

nologies use different frequency bands and require differ-

ent channel selections. Here, the channel allocation by the

base station in five-time slots from t1 to t5 is explained in

detail. When selecting a channel, it is important to choose

one with minimal interference from other networks. It is

also important to ensure that the channel chosen provides

the necessary data rate, as well as enough capacity for the

number of devices that will be using the network. The

channel should be selected based on the type of WPAN

technology in use, as different technologies require dif-

ferent channels. Once the channel has been selected, it is

Fig. 1 Channel allocation in

D2D communication

Fig. 2 Channel selection methodology
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important to ensure that it is used consistently by all

devices. Additionally, if the network is changed or updated,

the channel selection should be re-evaluated to ensure that

it is still the best choice.

3.4 Dynamic channel allocation

Dynamic channel allocation in WPANs is a technique for

efficiently allocating radio-frequency channels in order to

maximize performance and minimize interference. The

available channels are limited due to the limited bandwidth

of the radio spectrum, so it is important to allocate channels

efficiently. It works by allocating channels based on current

network conditions and usage. It may allocate more

channels to users who are sending large amounts of data. In

comparison, users who are sending smaller amounts of data

would be allocated fewer channels. It helps to reduce

interference and improve performance. This model can also

take into account the type of data being sent. The voice

traffic may require more channels than data traffic, so the

network can allocate more channels to voice traffic. It helps

to ensure that the voice data is sent with minimal loss and

delay. The dynamic channel allocation methodology is

expressed in Fig. 3

In addition, dynamic channel allocation can also take

into account the location of users. It may allocate more

channels to users that are located closer together, while

users that are further apart would get fewer channels. It

helps to reduce interference from nearby users and improve

performance. This model can also take into account the

type of devices that are being used.

3.5 Proposed algorithm

The proposed dynamic channel allocation algorithm is a

method used to assign a channel to each user in a com-

munication system. This type of algorithm works by con-

tinually monitoring the communication channel and

adjusting the channel allocation as needed to maximize

system efficiency. The algorithm also considers factors

such as signal strength, user demand, and bandwidth

availability when making channel allocation decisions. The

algorithm can be used in both wired and wireless com-

munication systems and is an important tool for ensuring

quality of service. The proposed dynamic channel alloca-

tion method is clearly explained in Algorithm 1. Negotia-

tion with nearest neighbor modules starts after receiving

the given inputs.

Algorithm 1: Dynamic channel allocation algorithm.

1. Start

2. Send the channel request to neighbor nodes;

Req_CHi;

3. Find the channel availability information;

CHa=0;

4. If (User = primary)

5. Then assign the channel for primary user;

6. Forward the message packets;

7. Else identify the Secondary user request

SU_Req=’n’; Where n={1,2,3,….,N}

8. AssignSU_Req in queue;

9. Compute the waiting time of SU_Req;

10. Segment the message packets;

11. Then assign the channel for secondary user;

12. Forward the message packets;

13. End;

Information about the request (Req_CHi) about the

available channel nearby is collected. Based on this

information, channel availability (CHa) data is derived.

That means if CHa = 0, the channel is ready to be allo-

cated. If CHa = 1, then the channel is already allocated. If

the channel requester is the primary user, after verifying his

input data, the channel blocks required for his communi-

cation will be allocated. Otherwise, the user data will be

verified, and he will be treated as a secondary user. First,

the SU_Req queue is sent. The total waiting time in the

queue is calculated and given to the secondary user. Then

the data is divided into segments, and available channels

are allocated. In this way, channel allocation is done for

primary and secondary users. His request (SU_Req) will

start executing. Dynamic channel allocation is an important

part of providing good quality wireless services. It ensures

Fig. 3 Dynamic channel

allocation methodology
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that the available spectrum resources are efficiently used in

order to maximize network capacity and minimize inter-

ference. Through dynamic channel allocation, wireless

networks are able to dynamically assign frequencies to

different users based on their current needs. It helps to

avoid overloading the network and prevent interference

with other users in the same area. It also allows for the

efficient use of available spectrum resources, allowing for

more users to be connected at the same time. The flow of

the proposed algorithm has shown in Fig. 4.

Using DCA, a network can achieve better coverage,

better quality of service, and more reliable communication.

It also enables more efficient use of the available spectrum,

allowing more devices to be connected with fewer chan-

nels. It makes it an ideal technique for D2D communica-

tion, as it can help reduce interference and congestion, as

well as improve the overall performance of the network.

Additionally, DCA helps to improve battery life by

reducing the amount of energy consumed for

communication.

3.6 Interference management

Interference in channel allocation is a common issue in

wireless network management. It occurs when two or more

signals occupy the same frequency range, resulting in poor

signal strength and poor network performance. To prevent

interference, network administrators can use a variety of

methods, such as channel selection, frequency hopping,

and dynamic frequency selection (DFS). Channel selection

involves manually selecting a frequency band with mini-

mal interference. Frequency hopping involves changing the

frequency of the transmission at regular intervals to avoid

interference. Dynamic frequency selection (DFS) is a

process where the network automatically scans the avail-

able frequencies and selects one with the least interference.

The network administrators can also use signal booster

devices to increase the signal strength of the wireless net-

work. It can help reduce interference and improve network

performance. In the process of channel allocation, a single

channel is split up and given to several users in order to

carry out user-specific operations. Every time the proce-

dure occurs, the number of users may change. Each user is

given a piece if there are N users, and the channel is split

into N sub-channels of equal size. Frequency Division

Multiplexing is a quick and effective method of assigning

channel capacity if the number of users is minimal and

stays the same. The static method of employing frequency

division multiplexing to distribute a single channel across

several users. The frequency channel is split into N iden-

tically sized pieces (bandwidth) if there are N users, with

each user receiving one portion. There is no user interfer-

ence since each user has a frequency band. Dividing into a

set number of parts could be more efficient. Now, the mean

time delay (DMT) has been computed with the help of the

following Eq. (1)

DMT ¼ 1

ðBf � CcÞ � Ra
ð1Þ

When the frequency division multiplexing has obtained

in the following Eq. (2)

DMTðFDMÞ ¼ Sc � DMT � 1

Bf ðCc

Sc
Þ � Ra

Sc

ð2Þ

where the DMT indicates the meant time delay, Bf repre-

sents the number of bits transmitted in a single frame, Cc

represents the channel capacity, Sc has indicates the num-

ber of sub-channels, and Ra represents the arrival time of

frames. In addition to the benefits of dynamic channel

allocation, the future of WPANs also looks brighter with

the emergence of new applications and services. The

dynamic channel allocation could be used to enable the

delivery of high-speed streaming services such as video

conferencing and online gaming. Itt could also be used to

enable low-latency communication between mobile devi-

ces and the Internet of Things (IoT). It will allow for the

creation of new applications and services that take advan-

tage of the advantages of dynamic channel allocation.

Overall, the future of dynamic channel allocation in

WPANs looks very promising. With the emergence of 5G
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and the development of new applications and services,

dynamic channel allocation has the potential to revolu-

tionize the way wireless networks are operated and

accessed. In the near future, dynamic channel allocation

will become the preferred method of managing wireless

networks and will shape the way people interact with their

devices.

4 Results

The proposed load based dynamic channel allocation

(LBDCA) has compared with the existing Deep rein-

forcement learning-based resource allocation (DRLRA)

and Mobility aware resource allocation (MARA). Here

network simulator v2.0 is used to implement the results.

4.1 Measurement of critical success index (CSI)

The critical success index (CSI) of dynamic channel allo-

cation is a measure of how successful the system is at

allocating radio frequency channels to different users or

devices. It is calculated as the ratio of total successful

channel allocations to total attempts at channel allocation.

The higher the CSI, the better the system is at allocating

channels. This number can then be multiplied by 100 to

give the CSI for dynamic channel allocation as a percent-

age. It shows in Eq. (3).

CSI ¼ Apt

Apt þ Anf þ Apf
ð3Þ

where Apt indicates the positive true allocation, Anf indi-

cates the negative false allocation and Apf indicates the

positive false allocation of dynamic channels. Table 6

provides the comparison of critical success index between

the existing and proposed models.

Figure 5 shows the various critical success index com-

parison of static and dynamic channel allocation between

the existing and proposed model. Where the term ‘ST’

indicates the static analysis and ‘DY’ indicates the dynamic

analysis in figure.

In a comparison point, the proposed LBDCA obtained

82.36% CSI in static channel allocation and 91.36% CSI in

dynamic channel allocation. In the same range, existing

DRLRA reached 52.26% CSI in static channel allocation

and 68.88% CSI in dynamic channel allocation. MARA

reached 69.88% CSI in static channel allocation and

78.25% CSI in dynamic channel allocation.

The CSI can then be used to guide the reallocation of

channels to ensure an optimal channel allocation scheme is

in place. By monitoring the CSI, network administrators

can identify which channels are being underused and can

allocate more channels to that specific area to improve

overall performance. The CSI is also used to evaluate the

effectiveness of a specific channel allocation scheme over

time. By monitoring CSI trends, administrators can deter-

mine if their current allocation strategy is still successful or

if it needs to be re-adjusted.

The proposed algorithm for wireless networks attempts

to minimize interference and maximize the CSI of the

network. It works by monitoring the load on each channel

in the spectrum and dynamically adjusting the channel

allocation to provide the most equitable distribution of the

load across the system. It ensures that there is an optimal,

balanced utilization of the resources and that unnecessary

interactions between channels are minimized, which in turn

maximizes the CSI of the network.

4.2 Measurement of Matthews correlation
coefficient (MCC)

The Matthews correlation coefficient (MCC) is a measure

of the quality of a dynamic channel allocation algorithm. It

Table 6 Comparison of critical success index (in %)

No. of channels DRLRA (ST) DRLRA (DY) MARA(ST) MARA(DY) LBDCA (ST) LBDCA (DY)

100 67.88 73.25 78.28 81.98 82.15 92.85

200 74.58 75.25 74.56 80.45 78.65 91.58

300 68.17 78.25 72.15 74.56 77.48 87.89

400 64.74 70.65 68.25 76.26 68.25 84.15

500 52.26 68.88 69.88 78.25 82.36 91.36

600 65.84 72.94 71.58 74.56 84.65 92.68

700 72.12 81.65 73.65 76.99 72.15 88.45

800 80.65 88.25 75.45 80.25 79.88 84.25

900 67.25 72.14 70.65 81.65 74.16 80.88

1000 57.48 69.56 68.12 78.43 70.88 91.68
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is calculated by taking the difference between the true

positive rate (TPR) and the false positive rate (FPR) of the

dynamic channel allocation algorithm, divided by the sum

of the true positive rate and the false positive rate. Equa-

tion (4)shows the computation of MCC.

MCC¼ ðApt �AntÞ�ðApf �Anf Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAptþApf Þ�ðAptþAnf Þ�ðAntþApf Þ�ðAntþAnf Þ
p

ð4Þ

The MCC can range from -1 to 1, with 1 being a perfect

score. A higher MCC indicates a better quality of dynamic

channel allocation. It shows in Eq. (4). Where, Apt indi-

cates the positive true allocation, Ant indicates the negative

true allocation, Anf indicates the negative false allocation

and Apf indicates the positive false allocation of dynamic

channels. Table 7 provides the comparison of Matthews

correlation coefficient between the existing and proposed

models.

Figure 6 shows the various Matthews correlation coef-

ficient comparison of static and dynamic channel allocation

between the existing and proposed model. Where the term

‘ST’ indicates the static analysis and ‘DY’ indicates the

dynamic analysis in figure.

In a comparison point, the proposed LBDCA obtained

84.95% MCC in static channel allocation and 88.56%

MCC in dynamic channel allocation. In the same range,

DRLRA reached 42.81% MCC in static channel allocation

and 62.68% MCC in dynamic channel allocation. MARA

reached 70.83% of MCC in static channel allocation and

67.06% of MCC in dynamic channel allocation.

The MCC takes into account the false positives and false

negatives by evaluating the total number of channels

assigned correctly and the number of channels assigned

incorrectly. MCC provides a standardized method to

compare different channel assignment strategies and iden-

tify the best configuration for load-based channel

allocations.

The load-based dynamic channel allocation algorithm

achieved the maximum Matthews correlation coefficient by

assigning a channel with the highest score obtained based

on the load balance of the current system. The score was

calculated by considering the traffic pattern of each chan-

nel, including its current utilization rate, traffic intensity,

number of users on each, and the number of interference-

free channels. With this knowledge, the algorithm then

made decisions for finding the optimal channel for each

call by selecting the highest-scoring channel with respect to

these parameters. It enabled the algorithm to maximize the

Matthews correlation coefficient performance and ensure a

reduction in Run time Blocking Probability (RBP).

Fig. 5 Comparison of critical

success index
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4.3 Measurement of delta-P (Dp)

Dynamic channel allocation (DCA) is a technique used in

wireless networks to optimize radio resources. The delta-P

(Dp) of DCA is a measure of how much the signal power

changes from one channel to the next. It is calculated by

subtracting the signal power in the previous channel from

the signal power in the current channel. A higher Dp
indicates a better signal and a lower Dp indicates a worse

signal. The optimal Dp for DCA is typically between 8 and

10 dB. This ensures that the signal does not become too

weak in the channels adjacent to the current channel, which

could lead to interference problems. It shows in Eq. (5).

Dp ¼ Apt

Apt þ Apf

� �

þ Ant

Ant þ Anf

� �

� 1 ð5Þ

where Apt indicates the positive true allocation, Apt indi-

cates the negative true allocation, Anf indicates the negative

Fig. 6 Matthews’s correlation

coefficient

Table 7 Comparison of Matthews correlation coefficient (in %)

No. of channels DRLRA (ST) DRLRA (DY) MARA (ST) MARA (DY) LBDCA (ST) LBDCA (DY)

100 55.61 66.65 79.34 70.26 84.73 90.00

200 61.10 68.47 75.57 68.95 81.12 88.77

300 55.85 71.20 73.13 63.90 79.92 85.19

400 53.04 64.29 69.17 65.35 70.40 81.57

500 42.81 62.68 70.83 67.06 84.95 88.56

600 53.94 66.37 72.55 63.90 87.31 89.83

700 59.08 74.30 74.65 65.98 74.42 85.73

800 66.07 80.30 76.47 68.77 82.39 81.66

900 55.10 65.64 71.61 69.97 76.49 78.40

1000 47.09 63.30 69.04 67.21 73.11 88.87
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false allocation and Apf indicates the positive false allo-

cation of dynamic channels. Table 8 provides the com-

parison of delta-P between the existing and proposed

models.

Figure 7 shows the various delta-P comparison of static

and dynamic channel allocation between the existing and

proposed models. Where the term ‘ST’ indicates the static

analysis and ‘DY’ indicates the dynamic analysis in figure.

In a comparison point, the proposed LBDCA obtained

85.39% delta-P in static channel allocation and 93.74%

delta-P in dynamic channel allocation. In the same range,

DRLRA reached 76.43% delta-P in static channel alloca-

tion and 82.60% delta-P in dynamic channel allocation.

MARA reached 71.28% delta-P in static channel allocation

and 71.63% delta-P in dynamic channel allocation.

When a packet arrives, it sets off a delta-P alarm, which

triggers a control mechanism to look at the demand of

packets and allocate them optimally to the available

resources. The purpose of this is to make sure that all

resources are being used efficiently and that no single

channel or router is being overloaded. The algorithm works

by continuously monitoring for packet arrivals, and when

the delta-P alarm is detected, the resources are dynamically

adjusted accordingly.

The load based dynamic channel allocation algorithm

achieved maximum delta-P by assigning each request a

channel according to the demand in each channel while

simultaneously considering the channel quality and the

load on each channel. This algorithm ensures that all

requests are served with optimal usage of available

resources. Furthermore, by using an iterative approach, the

algorithm can compute and assign the optimal channel for

any given request in the network.

4.4 Measurement of Fowlkes–Mallows index
(FMI)

The Fowlkes–Mallows index is a measure of the similarity

of two partitions or clusters of a given data set. It is used to

assess the performance of dynamic channel allocation

algorithms in wireless networks. The index is based on the

comparison of two partitions, one obtained from the

dynamic allocation algorithm and the other from an opti-

mal allocation. The value of the index ranges from 0 to 1,

where 0 indicates that the two partitions are completely

different and 1 indicates that the two partitions are exactly

the same. Equation (6) has used to compute the FMI.

FMI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Apt

Apt þ Apf

� �

� Apt

Apf þ Anf

� �

s

ð6Þ

where Apt indicates the positive true allocation, Antindi-

cates the negative true allocation, Anf indicates the negative

false allocation and Apf indicates the positive false allo-

cation of dynamic channels. Table 9 provides the com-

parison of Fowlkes–Mallows index between the existing

and proposed models.

The Fowlkes–Mallows index is used to enhance the load

based dynamic channel allocation in order to measure the

effectiveness of the load balancing mechanism. The index

compares the outcome of a given load distribution across

the channels with that of the actual optimal load distribu-

tion. Figure 8 shows the various Fowlkes–Mallows index

comparison of static and dynamic channel allocation

between the existing and proposed models. Where the term

‘ST’ indicates the static analysis and ‘DY’ indicates the

dynamic analysis in figure.

In a comparison point, the proposed LBDCA obtained

90.55% FMI in static channel allocation and 94.81% FMI

in dynamic channel allocation. In the same range, DRLRA

reached 84.76% FMI in static channel allocation and

Table 8 Comparison of delta-P (in %)

No. of channels DRLRA (ST) DRLRA (DY) MARA (ST) MARA (DY) LBDCA (ST) LBDCA (DY)

100 45.56 60.65 80.41 60.21 87.40 87.24

200 50.06 62.30 76.59 59.09 83.67 86.04

300 45.76 64.79 74.12 54.76 82.43 82.57

400 91.64 81.06 76.12 60.59 91.97 87.22

500 76.43 82.60 71.28 71.63 85.39 93.74

600 62.98 79.51 74.98 57.32 84.83 87.23

700 70.43 85.93 76.81 59.76 93.92 83.09

800 58.74 70.24 71.93 60.79 87.20 79.77

900 50.20 67.74 69.34 58.40 83.34 90.42

1000 38.58 57.60 69.97 57.60 75.41 86.14
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86.17% FMI in dynamic channel allocation. MARA

reached 75.22% FMI in static channel allocation and

60.74% FMI in dynamic channel allocation.

It allows users to assess the difference between the two

distributions and determine which is most suitable for the

application in question. In addition, the index can also be

used to evaluate different load allocation algorithms and

dynamically adjust the weights of various factors in order

to ensure maximum efficiency.

It works by attempting to maximize the Fowlkes–Mal-

lows index by assigning multiple channels to each node in

the system. It uses a technique called load balancing to

intelligently distribute traffic across the channels in order to

ensure optimal performance. LCA is also able to detect

changes in the environment and adapt the assignment of the

channels rapidly in order to keep up with changing con-

ditions. It helps to ensure that performance is maximized in

Fig. 7 Comparison of delta-P

Table 9 Comparison of Fowlkes–Mallows index (in %)

No. of channels DRLRA (ST) DRLRA (DY) MARA (ST) MARA (DY) LBDCA (ST) LBDCA (DY)

100 48.40 67.61 75.66 56.54 76.76 83.10

200 54.13 73.07 77.51 58.94 84.98 79.15

300 45.14 59.73 72.58 59.96 78.90 75.99

400 77.13 83.89 78.97 61.89 94.58 96.14

500 84.76 86.17 75.22 60.74 90.55 94.81

600 77.47 89.60 72.79 56.29 89.21 90.99

700 65.32 79.66 68.72 59.21 81.61 94.92

800 56.54 68.80 69.48 56.78 80.26 83.00

900 45.63 67.08 71.15 58.27 96.83 90.11

1000 57.50 71.02 72.87 55.52 99.53 91.40
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all scenarios, leading to the highest Fowlkes–Mallows

index possible.

4.5 Measurement of bookmaker informedness
(BMI)

Dynamic channel allocation is a technique used in wireless

networks to improve the efficiency of data transmission. It

involves the selection of a specific frequency or channel for

each connection, based on the network’s current traffic

levels. The goal is to optimize the network’s performance

by minimizing interference and maximizing the throughput

of data. The BMI has computed based on Eq. (7).

BMI ¼ Apt

Apt þ Anf

� �

þ Ant

Ant þ Apf

� �

� 1 ð7Þ

where Apt indicates the positive true allocation, Ant indi-

cates the negative true allocation, Anf indicates the negative

false allocation and Apf indicates the positive false allo-

cation of dynamic channels. Bookmaker informedness is a

measure of how accurate a bookmaker’s predictions are

when predicting the outcome of a particular event. It is

calculated by comparing the bookmaker’s predictions to

the actual results of the event. In the case of dynamic

channel allocation, bookmaker informedness can be used to

assess the performance of the technique by measuring how

accurately it is able to predict the best channel for each

connection. Table 10 provides the comparison of Book-

maker informedness between the existing and proposed

models.

BMI works by selecting the best channels for each

sender in order to ensure that each packet is successfully

transmitted. Figure 9 shows the various Bookmaker

informedness comparison of static and dynamic channel

allocation between the existing and proposed models.

Where the term ‘ST’ indicates the static analysis and ‘DY’

indicates the dynamic analysis in figure.

In a comparison point, the proposed LBDCA obtained

90.47% BMI in static channel allocation and 92.32% BMI

in dynamic channel allocation. In the same range, DRLRA

reached 65.14% BMI in static channel allocation and

73.27% BMI in dynamic channel allocation. MARA

reached 75.90% of BMI in static channel allocation and

59.91% of BMI in dynamic channel allocation.

It works by sorting the channels according to their

loading and then allocating the least loaded channel to the

sender. The BMI then calculates the reward function for

each channel based on the loading and adjusts the alloca-

tion accordingly. In this way, the algorithm is able to

optimize the loading of each channel by selecting the most

Fig. 8 Comparison of Fowlkes–

Mallows index
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appropriate channels for each sender. It helps to maximize

the overall throughput of the network by ensuring that all

packets are delivered successfully.

It employs an ‘‘allocation fairness’’ metric to dynami-

cally assign channels according to the load that each user

has on the current channel. It eliminates the need for a fixed

channel allocation and ensures that no user receives more

channels than demanded by their current workload. Addi-

tionally, this algorithm also achieves maximum

Bookmaker informedness since all users receive the

channels and resources they need according to their load,

and there is no opportunity for ‘‘sniping’’. It ensures that

each user is informed of the resources available; meaning

that no user is disadvantaged or favored over any other and

that optimal resource utilization can be achieved.

Fig. 9 Comparison of

bookmaker informedness

Table 10 Comparison of bookmaker informedness (in %)

No. of channels DRLRA (ST) DRLRA (DY) MARA (ST) MARA (DY) LBDCA (ST) LBDCA (DY)

100 43.45 58.50 70.11 56.00 72.62 79.07

200 35.07 57.04 71.79 57.47 87.62 85.84

300 44.19 60.39 73.53 54.76 90.06 87.07

400 59.28 71.33 79.69 61.04 96.59 91.58

500 65.14 73.27 75.90 59.91 90.47 92.32

600 59.54 76.19 73.45 55.52 91.10 86.68

700 59.37 78.89 70.51 59.08 94.82 94.59

800 74.82 83.52 72.22 56.29 97.46 95.95

900 81.95 93.51 74.31 58.11 83.07 91.57

1000 83.25 90.15 69.98 60.25 85.56 93.65
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5 Discussion

The dynamic channel allocation is an important feature of

WPANs. It helps improve network performance, security,

and efficiency, while providing a better user experience. As

such, it is essential for ensuring a seamless connection

between devices in a WPAN. It can be used to improve the

network’s performance by making more informed deci-

sions about channel allocation. Table 11 provides the

computation of parameter performance of between the

existing and proposed models.

Figure 10 shows the various comparison of static and

dynamic channel allocation between the existing and pro-

posed algorithms. Where the term ‘ST’ indicates the static

channel allocation and ‘DY’ indicates the dynamic channel

allocation in figure.

Figure 11 shows the static and dynamic channel allo-

cation for DRLRA. In a comparison point, the existing

DRLRA obtained 67.10% of CSI in static channel alloca-

tion and 75.08% of CSI in dynamic channel allocation;

54.97% of MCC in static channel allocation and 68.32% of

MCC in dynamic channel allocation; 59.04% of delta-P in

static channel allocation and 71.24% of delta-P in dynamic

channel allocation; 61.20% of FMI in static channel allo-

cation and 74.66% of FMI in dynamic channel allocation;

and 60.61% of BMI in static channel allocation and

74.28% of BMI in dynamic channel allocation.

Figure 12 shows the static and dynamic channel allo-

cation for MARA. In a comparison point, the existing

MARA obtained 72.26% of CSI in static channel allocation

and 78.34% of CSI in dynamic channel allocation; 67.14%

of MCC in static channel allocation and 73.24% of MCC in

dynamic channel allocation; 60.02% of delta-P in static

channel allocation and 74.16% of delta-P in dynamic

channel allocation; 58.41% of FMI in static channel allo-

cation and 73.50% of FMI in dynamic channel allocation;

and 57.84% of BMI in static channel allocation and

73.15% of BMI in dynamic channel allocation.

Figure 13 shows the static and dynamic channel allo-

cation for LBDCA. In a comparison point, the proposed

LBDCA obtained 77.06% of CSI in static channel alloca-

tion and 98.58% of CSI in dynamic channel allocation;

79.48% of MCC in static channel allocation and 95.86% of

MCC in dynamic channel allocation; 85.56% of delta-P in

static channel allocation and 96.35% of delta-P in dynamic

channel allocation; 87.32% of FMI in static channel allo-

cation and 97.96% of FMI in dynamic channel allocation;

and 88.94% of BMI in static channel allocation and

99.83% of BMI in dynamic channel allocation.

Table 12 provides the dynamic computation of param-

eter performance between the existing and proposed

models.

Figure 14 shows the dynamic channel allocation

between the existing and proposed algorithms. Where, the

term ‘DY’ indicates the dynamic channel allocation in

figure.

In a comparison point, the proposed load based dynamic

channel allocation (LBDCA) obtained 98.58% CSI,

95.86% MCC, 96.35% delta-P, 97.96% FMI and 99.83%

BMI. The existing Mobility aware resource allocation

(MARA) obtained 78.34% CSI, 73.24% MCC, 74.16%

delta-P, 73.50% FMI and 73.15% BMI. The existing Deep

reinforcement learning-based resource allocation

(DRLRA) obtained 75.08% CSI, 68.32% MCC, 71.24%

delta-P, 74.66% FMI and 74.28% BMI in dynamic channel

allocation. By regularly changing the channels used for

communication, it becomes much harder for attackers to

gain access to the network. This can help reduce the risk of

security breaches, which can be costly for both users and

businesses.

5.1 Research outcomes

The computation of CSI helps to improve spectrum effi-

ciency by allowing communication users to efficiently and

dynamically share spectrum resources. This system works

by typing in the user’s current load and then finding the

best frequency channels available in the spectrum. The

proposed model also uses QoS-Aware scheduling algo-

rithms to find the best possible solutions for network users

while minimizing overall interference. Additionally, the

CSI can compare different frequency utilization across

different sectors, helping to provide feedback to the net-

work operators. By leveraging this information, networks

Table 11 Computation of parameter performance (in %)

Parameters DRLRA (ST) DRLRA (DY) MARA (ST) MARA (DY) LBDCA (ST) LBDCA (DY)

CSI 67.10 75.08 72.26 78.34 77.06 98.58

MCC 54.97 68.32 67.14 73.24 79.48 95.86

Delta-P 59.04 71.24 60.02 74.16 85.56 96.35

FMI 61.20 74.66 58.41 73.50 87.32 97.96

BMI 60.61 74.28 57.84 73.15 88.94 99.83
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can dynamically adjust their frequency resource usage and

better match the changing needs of the users while

improving overall network performance.

The MCC for the proposed model helps to improve

scalability in networks by reducing the need for resources.

By dynamically allocating channels to each active con-

nection, the model reduces the number of channels that

must be available overall, allowing more efficient use of

spectrum and network resources. It can mean that more

devices can connect on the same frequency, allowing the

network to scale without having to invest in more spec-

trum, equipment, or management. Furthermore, dynamic

channel allocation ensures that network performance is

Fig. 10 Comparison of

parameters performance

Fig. 11 Static and dynamic

channel allocation for DRLRA
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maximized by assigning channels to connections that have

a current need for more capacity.

The Delta-P for the proposed model helps to improve

the signal quality in networks by automatically adjusting

the transmit power of each network node to maintain good

communication. This algorithm works by constantly

monitoring the signal strength of each node and making

adjustments as needed to ensure the best signal quality is

maintained. By doing so, it reduces the amount of inter-

ference caused by nearby nodes operating at high power

levels, as well as increases the signal quality by ensuring

that each node is operating at the optimal power level. It

enables the network to handle traffic better and reduces the

chances of dropped connections or disruption of service.

Fig. 12 Static and dynamic

channel allocation for MARA

Fig. 13 Static and dynamic

channel allocation for LBDCA
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The FMI for the proposed model is a mechanism for

optimal power control in networks. It dynamically allocates

channels to user links based on the load of the network and

allows users to access only a number of channels that are

sufficient for their data needs. It allows the system to pri-

oritize resources and offer better overall network perfor-

mance, in addition to reducing energy consumption. The

FMI enables the network operators to estimate the total

power requirements in the network and assign an optimal

channel allocation scheme to meet those requirements. By

using the FMI, network operators can detect harmful

interferences more accurately and take proactive steps to

reduce them. It ensures the efficient allocation of resources

and effective management of the radio spectrum. Further-

more, FMI can also be used to identify the power spectral

density elbow points so that the most efficient power

allocation scheme can be implemented.

The BMI for the proposed model helps to improve

energy efficiency in networks by allocating channels based

on the load of each Wi-Fi channel. It automatically bal-

ances the load among all the available channels and

thereby reduces the overall energy consumption. The pro-

posed model uses measures like expected throughput,

packet error rate (PER), or signal-to-interference ratio

(SINR) as metrics to determine the ideal channel to allo-

cate. It helps to focus the transmit power over an efficient

channel, whereas in the traditional methods, the transmit

power is spread over all available channels. Thus, LBDCA

provides an efficient allocation of resources while mini-

mizing energy consumption.

Table 13 provides the comparison of enhanced perfor-

mance parameters in terms of static and dynamic channel

allocation.

Figure 15 shows the Enhanced comparison of Perfor-

mance parameters. In a comparison point, the proposed

load based dynamic channel allocation (LBDCA) obtained

21.52% enhanced spectrum efficiency, 16.38% enhanced

scalability, 18.79% enhanced signal quality, 18.64%

Fig. 14 Dynamic allocation of

parameters performance

Table 13 Enhanced performance comparison (in %)

Parameters DRLRA MARA LBDCA

Spectrum efficiency (SE) 7.98 6.08 21.52

Scalability (S) 13.35 6.1 16.38

Signal quality (SQ) 12.2 14.14 18.79

Power control (PC) 13.46 15.09 18.64

Energy efficiency (EE) 13.67 15.31 18.89

Table 12 dynamic computation of parameter performance

Parameters DRLRA (DY) MARA (DY) LBDCA (DY)

CSI 75.08 78.34 98.58

MCC 68.32 73.24 95.86

Delta-P 71.24 74.16 96.35

FMI 74.66 73.50 97.96

BMI 74.28 73.15 99.83
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enhanced power control and 18.89% enhanced energy

efficiency while compared with the traditional static

channel allocation models. The existing Mobility aware

resource allocation (MARA) obtained 6.08% enhanced

spectrum efficiency, 6.10% enhanced scalability, 14.14%

enhanced signal quality, 15.09% enhanced power control

and 15.31% enhanced energy efficiency while compared

with the traditional static channel allocation models. The

existing Deep reinforcement learning-based resource allo-

cation (DRLRA) obtained 7.98% enhanced spectrum effi-

ciency, 13.35% enhanced scalability, 12.2% enhanced

signal quality, 13.46% enhanced power control and 13.67%

enhanced energy efficiency while compared with the tra-

ditional static channel allocation models.

Load-based dynamic channel allocation (LBDCA) is a

proposed method for resource allocation in wireless com-

munication networks. It aims to improve the overall net-

work performance by dynamically allocating resources

based on the current load of the network. This contrasts

with the methods discussed below, such as deep rein-

forcement learning-based resource allocation (DRLRA)

and mobility-aware resource allocation (MARA).

DRLRA it is a resource allocation approach that uses

deep reinforcement learning (RL) to optimize the alloca-

tion of spectrum and power resources. It gives good results

for static network scenarios where the network topology

remains constant. However, in dynamic network scenarios

where the number and position of users can change,

DRLRA may need to adapt. This can result in suboptimal

resource allocation, leading to lower network performance.

MARA it is a resource allocation approach that uses

users’ mobility patterns to predict future resource require-

ments. It aims to improve the network performance by

proactively allocating resources to users based on their

expected future mobility. However, this method requires

accurate user mobility prediction, which can be challeng-

ing in real-world scenarios. In addition, if there are changes

in the network topology, such as the addition of new users

or changes in user mobility patterns, MARA may need

more time to adjust, resulting in suboptimal resource

allocation and network performance.

Load-based dynamic channel allocation (LBDCA)

addresses these limitations of DRLRA and MARA by

dynamically adjusting resource allocation based on the

current network load. This approach takes into account the

real-time traffic demand and allocates resources accord-

ingly. It means that when there is a high load on the net-

work, more resources will be allocated to handle the traffic,

and vice versa. LBDCA also considers users’ mobility

patterns, but it does not rely solely on them for resource

allocation.

LBDCA outperforms DRLRA and MARA in several

ways:

1. Adaptability as LBDCA considers the current network

load, it can adapt quickly to changes in the network

topology. It can efficiently handle scenarios with a

sudden increase or decrease in the number of users or

their mobility patterns. This adaptability allows

LBDCA to allocate resources optimally based on the

Fig. 15 Enhanced comparison

of performance parameters
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current network conditions, resulting in better overall

network performance.

2. Better utilization of resources LBDCA ensures that

resources are allocated load-based and utilized effi-

ciently to handle the current traffic demands. This

results in better utilization of network resources and

can help avoid resource wastage.

3. Real-time performance LBDCA performs resource

allocation in real time based on the current network

load. This means it can handle sudden changes in

network conditions and traffic demands, resulting in

better real-time performance than DRLRA and MARA.

Overall, LBDCA combines the advantages of DRLRA

and MARA while addressing their limitations, resulting in

better network performance. Its ability to dynamically

adapt to changing network conditions and efficiently utilize

resources makes it a more effective approach for resource

allocation in wireless communication networks.

5.2 BLA analysis

The key idea behind this model is to allocate available

channels dynamically based on the current load of each

channel instead of allocating them based on static rules.

This approach can effectively reduce interference between

devices and provide better performance. Through analyti-

cal and simulation studies, it has been observed that

LBDCA significantly improves the spectrum efficiency,

scalability, signal quality, power control and energy effi-

ciency of the entire WPAN compared to static channel

allocation methods. In addition, the LBDCA model

increases media access delay but provide better fairness

among active users.

5.2.1 Benefits

• Improved network capacity: load-based dynamic

channel allocation model reduces interference between

WPANs, resulting in improved network capacity with

the reduction in the control overhead.

• Reduction in latency: With the optimization of the load,

the latency due to contention and interference between

WPANs can be minimized, thus improving the overall

performance of device-to-device communication.

• Enhanced security: with the introduction of load-based

dynamic channel allocation, the possibility of eaves-

dropping or interference is reduced. It ensures enhanced

security in device-to-device communication over

WPANs.

• Enhanced quality of service: with optimized and

reliable communication, Quality of Service can be

achieved. It ensures consistent and reliable communi-

cation over the network.

• Reduction in power consumption: by effectively

managing the network bandwidth and reducing the

interference between the neighboring WPANs, the

power consumed by the device-to-device communica-

tion is reduced, thus resulting in improved battery life.

5.2.2 Limitations

• It does not take into account the channel contention

level within the network, which may cause the collision

of two or more signals.

• It is prone to interference from external sources that

may be present in the coverage area, which can reduce

the performance of the communication.

• The performance of this model varies with the number

of users; as the user base increases, the performance of

the system decreases.

• It relies on the ability of each user to accurately report

their transmission and receive power, which can be

difficult to measure in a real-world environment.

• The transmission range of the channel used for

communication is limited due to environmental factors

like walls and signals, which affect the performance of

the system.

5.3 Applications

The applications of the proposed algorithm can signifi-

cantly enhance the performance of D2D communication

networks by improving resource management, spectral

efficiency, quality of service, load balancing, congestion

management, energy efficiency, adaptability, and

scalability.

• Resource management: the proposed algorithm can be

utilized for efficient resource management in D2D

communication networks. This algorithm distributes the

available resources among the devices based on their

current load and resource demand. It ensures that the

resources are utilized optimally and enhances network

performance.

• Improving spectral efficiency: the proposed algorithm

can significantly improve the spectral efficiency in D2D

communication. By dynamically allocating channels to

devices based on their load, the algorithm avoids

channel wastage and allows multiple devices to use the

same channel simultaneously. It reduces interference

and improves the overall spectral efficiency of the

network.
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• QoS improvement: QoS is an important aspect of any

communication network, including D2D networks. The

proposed algorithm considers both channel load and the

quality of the channel in the allocation process. It

ensures that devices with higher QoS requirements are

allocated better channels, improving their performance

and overall network QoS.

• Load balancing: the proposed algorithm helps load

balancing by distributing the load evenly among the

devices in the network. It prevents any single device

from becoming overloaded and ensures a fair distribu-

tion of resources. It improves the overall performance

and stability of the network.

• Congestion management: in D2D communication net-

works, congestion is common due to the many devices

sharing limited resources. The proposed algorithm can

detect and manage congestion by dynamically reallo-

cating channels to devices with high loads or reducing

the load on heavily loaded channels. It helps in reducing

congestion and improving the overall network

performance.

• Energy efficiency: the proposed algorithm can also

contribute to energy efficiency in D2D communication

networks. By efficiently allocating resources, the algo-

rithm reduces the overall energy consumption of the

devices. It is particularly beneficial for battery-operated

devices, as it helps conserve their battery life and

extend their operating time.

• Adaptability to changing network conditions: the pro-

posed algorithm is designed to adapt to changing

network conditions. As the load on different channels

and devices changes, the algorithm dynamically real-

locates channels to optimize resource usage. It allows

the network to efficiently handle changes in demand

and maintain a high level of performance.

• Scalability: as the number of devices and the demand

for resources in D2D networks increase, the proposed

algorithm can easily scale to accommodate these

changes. The algorithm can efficiently manage larger

networks by dynamically allocating channels without

compromising performance.

6 Conclusion

WPANs are short-range, low-power networks that enable

communication between devices, such as computers,

phones, and tablets, over a short distance. To ensure a

seamless connection between devices, dynamic channel

allocation is necessary. Dynamic channel allocation is the

process of assigning channels at regular intervals to opti-

mize the use of available spectrum while avoiding

interference. If a WPAN is operating in an environment

with high levels of interference, dynamic channel alloca-

tion can help reduce interference by automatically assign-

ing channels that are not affected by the interference. In a

comparison point, the proposed model obtained 98.58%

CSI, 95.86% MCC, 96.35% delta-P, 97.96% FMI, 99.83%

BMI, 21.52% enhanced spectrum efficiency, 16.38%

enhanced scalability, 18.79% enhanced signal quality,

18.64% enhanced power control and 18.89% enhanced

energy efficiency. This can lead to improve the better

network performance, and improved user experience. It

also helps improve network security by preventing mali-

cious users from accessing the network.

7 Future work

The future of proposed dynamic channel allocation model

in wireless personal area networks looks very promising.

With the advancement of technologies such as 5G, the

potential for dynamic channel allocation in WPANs has

increased significantly. This technology enables the effi-

cient use of wireless spectrum by allowing the allocation of

channels dynamically based on the current needs of the

network. The future scope of the proposed model is to

eliminate the need for manual configuration of channels.

This reduces the time and effort needed to configure chan-

nels, allowing faster and more efficient network operations.

Furthermore, the allocation attributes of proposed model

also increases the capacity of the network by allowing

more data to be transmitted in a given amount of time.

Additionally, it can also to improve to reduce the inter-

ference by allocating channels more efficiently and ensur-

ing that only those channels with the highest signal strength

are used.
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