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Abstract
The aim of this paper is the study of the robustness of classical methods defined for finding
multiple roots with single multiplicity m when they are used for approximating different
roots of a function having different multiplicities. To do so, we first study the dynamical
behaviour of such methods when they are applied for approximating multiple roots with
differentmultiplicities of a polynomial. Secondly, basedon the obtaineddynamical results,we
analyse numerically their behaviour and convergence when we carry out the approximation
in the case of functions that combine polynomial, exponential and logarithmic functions.

Keywords Iterative methods · Multiple roots · Dynamical analysis · Rational functions

Mathematics Subject Classification 65F10 · 37F10 · 30C10

1 Introduction: multiple roots methods

Iterative methods for solving non-linear equations have been an essential tool in applied
mathematics in recent years. Among the classical iterative methods, the most well known is
Newton’s method, whose scheme for solving a nonlinear equation f (z) = 0 is given by

zn+1 = zn − f (zn)

f ′(zn)
. (1)

To ensure the convergence to the solution of this method and other classical methods such
as Chebyshev, Halley, Traub, the derivative of the function f (z) must exist and must be non
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zero at the solution (Candela and Marquina 1990; Halley 1694; Hofsommer 1958; Popovski
1980; Traub 1964).

In general, if z∗ is a simple root of f (z) = 0, the derivative of the function does not vanish
at z∗. However, when we look for multiple roots, f ′(z) vanishes at the roots and classical
methods cannot be used.

For this reason, many results published in recent years deal with the design and study of
iterative methods for finding multiple roots of nonlinear equations (see for example, Amat
and Busquier 2016; Behl et al. 2022; Neta 2008; Petkovic et al. 2013 and references therein).
Although in most iterative schemes, the multiplicity of the roots is a positive integer, there
are papers that deal with non-integer or even negative orders of multiplicity (see Candela and
Peris 2015 for example).

If the parameter m representing the multiplicity of the multiple roots we want to approx-
imate is included in the iterative schemes, it implies that the multiplicity m must be known
in advance, before approximating the multiple root. Although many papers in the literature
present iterative methods for finding multiple zeros with known multiplicities, we can find
methods that non only approximate multiple zeros of functions with unknown order of mul-
tiplicity, but also approximate the value of the multiplicities. In Petkovic and Neta (2016)
the authors generate efficient algorithms that approximate multiple zeros of a given function
f when the multiplicity is unknown and, also obtain the exact order of the multiplicity;
moreover, they provide numerical examples for different functions and they also build the
dynamical planes for the case of polynomial functions, analysing the basins of attraction of
the zeros in order to compare the proposed algorithms.

In general, it is observed that multiple root search algorithmswork best if all roots have the
same multiplicity. However, problems coming from other branches of science or engineering
lead to functions whose roots have different multiplicities and, moreover, not only these
roots are unknown but also their multiplicities. In that case, the methods could be designed
taking into account the existence of different roots with different multiplicities. But that
implies to introduce more parameters in the design of the methods, which complicates their
implementation. Then, it would be logical to think of iterative schemes that do not depend
on any multiplicity. Some methods of this type found in the literature are Schröder’s method
(and those derived from it), presented in Schröder (1870); an iterative scheme with memory
for multiple roots, studied in Cordero et al. (2021), and Kurchatov’s method for multiple
roots, published in Cordero et al. (2022).

The aim of this paper is to analyse if a root finding algorithm designed for finding roots
with a given multiplicity m can be efficient for finding roots with different multiplicities.
In this manuscript we want to check the suitability of the algorithms of Schröder, Newton,
Chebyshev and Halley methods for multiplicity m when the function under analysis have
roots with different multiplicities.

In order to investigate if any of these methods have good behaviour when we go after roots
with different multiplicities, we first carry out a dynamical study when they are applied for
approximating the multiple roots of a polynomial function of the form:

f (z) = (z − r1)
m (z − r2)

n, (2)

where z is a complex variable.
The fact of considering a family of polynomials, allows us to build parameter planes for

the different methods, by considering m complex and by fixing the values of n.

Although we are fully aware that the multiplicity of a root is a real number, in our work we
are going to consider the multiplicity m as a complex parameter in order to carry out a more
complete dynamical study by constructing the parameter planes. If we consider it as real or
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more concretely, as a natural number, it is difficult to detect and understand the dynamical
behaviour of the system when the parameter varies. In contrast, from the complex dynamical
study, we extract results that explain the behaviours on the real line, in particular, when we
focus on the natural values of the parameters that are representing multiplicities. One of the
main results we obtain from the study of the parameter planes is the verification that the
parameter planes are topologically equivalent for different values of the multiplicity n; this
is not easy to deduce from the parameter line. This property allows us to fix the value of the
parameter n and carry out a dynamical study for the parameter m without loss of generality.

The success of this decision is also supported by the results obtained in the examples
studied, some of which would be difficult to see if we only had considered the real line. For
example, the existence of a periodic orbit in Newton’s method could go unnoticed given the
small real interval that gives rise to its existence (Lemma 2.4). It would also not be easy to
interpret the appearance of a strange fixed point that is attractive for a small interval of the
parameter in the case of the Chebyshev method or the 2-period orbit that also appears in this
method (Sect. 2.2). Furthermore, we observe these undesired behaviours in the numerical
examples presented; some of them even for positive integer values of the multiplicity.

For this reason, we initially consider thatm and z are complex for the dynamical study. As
we see in the following sections, given a method, the parameter planes obtained for different
natural values of n are topologically equivalent; so, we fix the value of n in order to obtain
the parameter planes for m. The parameter planes show us the dynamical behaviour of the
operators for complex values of m. As said above, from this study we extract conclusions on
the real line. In particular, for building examples of dynamical planes we focus on natural
values of the multiplicity m.

From this study, we analyse which methods work best for finding the root r2, with multi-
plicity n, even though some of these methods only consider m in their iterative schemes and
they are not designed to find this other root.

As we prove in next section, the dynamics does not depend on the location of the roots;
so, we fix the roots on z = 0 and z = 1 and study the dynamical behaviour of Newton,
Chebyshev, Halley and Schröder methods applied on the polynomial:

p (z) = zm(z − 1)n . (3)

Moreover, in Sect. 3.4, we also carry out a numerical analysis of these methods when we
approximate multiple roots of more general functions.

For a better understanding of the dynamical study, we first recall some basic concepts of
complex dynamics (see Beardon 1991; Milnor 2006 for more information).

Given a rational map R : ̂C → ̂C, where ̂C denotes the Riemann sphere, a dynamical
discrete system is defined by the iterates of R. The orbit of a point z0 ∈ ̂C under R is defined
by the sequence

O(z0) = {z0, R (z0) , R2 (z0) , . . . , Rn(z0), . . .}.

A point z0 ∈ ̂C of the rational map R is a fixed point if R (z0) = z0. Let us notice that
for a rational map R : ̂C → ̂C, z = ∞ is a fixed point when the degree of the numerator is
bigger than the degree of the denominator. A fixed point that is not a root of the polynomial
function on study is called strange fixed point.

A point z0 is periodic of period p > 1 if Rp (z0) = z0 and Rk (z0) �= z0, for k < p; in
this case, the orbit of z0 is called a periodic orbit of period p. A point z0 is a pre-periodic
point if it is not periodic but it is eventually mapped under iteration of R to a periodic one.
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Fixed points are classified in terms of the value of the multiplier λ = R′(z0): a fixed point
z0 is called attractor if |λ| < 1 and superattractor if |λ| = 0; it is called repulsor if |λ| > 1
and indifferent if |λ| = 1.

The same classification can be used for periodic points of any given period p since they
are fixed points of the map Rp(z).

The basin of attraction A(z0) of an attracting point z0 consists of the set of points z ∈ ̂C

that accumulate on z0 under iteration of R, i.e.

A (z0) = {z ∈ ̂C : Rn (z) →z0 when n→∞}.
The dynamical planes are a representation of the basins of attraction of the different

attractors by means of a scale of colours.
The critical points of the rational map R are defined as the z ∈ ̂C where R fails to be

injective in any neighbourhood of z or, equivalently, the z ∈ ̂C such that R′(z) = 0 (see
Beardon 1991, for example). The basins of attraction of attracting and rationally indifferent
points contain, at least, a critical point (see Milnor 2006); then, the iterations of the critical
points provides the existence of different attractors for a given map.

If a critical point is not a fixed point of R, it is known as a free critical point. Two or more
critical points can satisfy relations among them that imply a symmetry in their dynamics.
Therefore, in order to detect all the stable behaviours of the map R it is enough to study the
asymptotic behaviour of all the free critical points of R, up to symmetry. This is the essential
property used to draw the parameter planes (Milnor 2006).

When the rational function depends on a parameter, the parameter plane is the represen-
tation, by means of different colours, of the asymptotic behaviour of the free critical points
for different values of the parameter.

In order to draw a parameter plane we restrict to a grid of points in a given range of
parameters and iterate the free critical points up to 75 times. If the orbit of the critical point
converges to a root (the distance to the root is smaller than 10−4), we conclude that there can
be no stable behaviour other than convergence to the roots. In that case the iteration stops and
we draw the point. Let us notice that, for the family (3), Newton’s method has only one free
critical point; so, in its parameter plane, red colour corresponds to parameter values where
the critical point is in the basins of 0 or ∞ (inside the ring) and black colour corresponds to
those parameter values for which the critical point is in the basin of z = 1 or goes to another
basin of attraction.

Chebyshev’s andHalley’s methods, applied on (3), have two free critical points.Wewould
like to emphasize that the parameter planes when there are two free critical points are built
taking into account simultaneously the iteration of both critical points (Figs. 3 and 5). In
these cases red colour in the parameter plane corresponds to parameter values where the
critical points are in the basins of 0 or ∞ (inside the ring), black colour is associated to those
parameter values for which one critical point is in the basin of z = 0 and the other goes
to other basin of attraction and we paint in green colour those parameter values for which
both free critical points are in the basin of attraction of z = 1. We also illustrate this claim
with dynamical planes corresponding to values of the parameter where the different cases
occur. As commented above,m is considered complex for building parameter planes for fixed
values of n.

In Sect. 2, we analyse the information provided by these parameter planes to obtain a better
understanding of what happens on the positive real line and more precisely, for integer values
of the parameter m, since it corresponds to a multiplicity. From this section, we observe for
the methods considered that z = 0 is a superattractive fixed point for any value of m and
z = ∞ is a repulsive fixed point for m > 0.
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The point z = 1 is an attracting fixed point for any value of m only in the case of Halley’s
method (Lemma 2.9). For Newton’s and Chebyshev’s methods z = 1 is attractive in a given
region, Lemmas 2.3 and 2.6, respectively.

On the other hand, there are three fixed points for Schröder’s method, but only those which
coincide with the roots of the polynomial are superattractors, the third fixed point is repulsive
for all m. However, although both roots z = 0 and z = 1 are superattractors, we have shown
in Lemma 2.10 that the basin of attraction of the root with lower multiplicity can become so
small that the number of initial points converging to it is not relevant.

We want to emphasize the fact that conclusions can be drawn from this dynamical study
when the multiplicitiesm and n are considered as natural numbers. Thus, at the end of each of
the sections dedicated to the dynamical study of the different methods we have collected the
most relevant information for this case. In Sect. 2.1.1 we point out when Newton’s method
does not find the root z = 1 or the values of the parameter for which a period doubling orbit
is attractive. In Sect. 2.2.1 we analyse the values of the parameter for which the Chebyshev’s
method finds both roots of the polynomial and those values for which an strange attractor
appears. In Sect. 2.3.1 we show that Haley’s method can always find both roots of the original
polynomial, as they are always attractive. Finally, in Sect. 2.4.1we find the basins of attraction
of z = 0 and z = 1 for Schröder’s method, proving that the basin of the root with lower
multiplicity is smaller.

Therefore, from this dynamical study, we conclude that Halley’s and Schöder’s methods
present a better dynamical behaviour when they are applied on polynomials of the form (2)
due to the fact that they are the only methods that find the root z = 1 for all m.

To conclude the comparison of the methods, in Sect. 3, we analyse numerically the
behaviour and convergence of all of them when we approximate multiple roots with dif-
ferent multiplicities m and n for real functions.

We begin with the numerical study of the polynomial f (x) = xm(x − 1)n with x ∈ R

and m, n ∈ N, for different values of m and n, checking numerically the results of Sect. 2.
Afterwards, in Sect. 3.4, we study real functions that combine polynomial, exponential and

logarithmic functions. This variety of functions allows us to check if the dynamical behaviour
studied for polynomial functions of the methods can be extended to other non-polynomial
functions.We observe that Halley’s method is the iterative scheme that presents a higher total
percentage of convergence in the four non-polynomial functions studied, finding not only
the root with multiplicity m but also the root with multiplicity n. We verify that the same
unwanted effects deduced in the case of polynomials also appear for this type of functions.

Let us point out that in numerical experiments, we take initial points within an interval,
chosen from previous dynamical information, and we compare if the number of initial points
converging to the solutions z = 0 and z = 1 is maintained, worsen or improved.

2 Dynamical study of themethods

In this section we carry out a dynamical study of Newton, Chebyshev, Halley and Schröder
methods when they are applied on a polynomial function having two different roots with
different multiplicities.

First, we show that the dynamics of the operators obtainedwhen thesemethods are applied
on the functions given in (2) and (3) are topologically equivalent, being that the map h(z) =
z−r1
r2−r1

affinely conjugates both operators.
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Lemma 2.1 Let Oq and Op denote the operators obtained by applying Newton, Chebyshev,
Halley or Schrödermethod to q(z) = (z−r1)m (z−r2)n and p(z) = zm (z−1)n, respectively.
Let h(z) = z−r1

r2−r1
. Then, fixed any m, n ∈ C and z ∈ ̂C, we have that

h ◦ Oq ◦ h−1(z) = Op(z).

Proof Let us consider theMöbius transformation h(z) = z−r1
r2−r1

.Note that h(r1) = 0, h(r2) =
1, h(∞) = ∞ and h−1(z) = (r2 − r1)z + r1.

For Newton’s method we have that

Oq(z) = r1r2m + r1(−m + n)z − nz2

r2m + r1n − (m + n)z
,

then

h ◦ Oq ◦ h−1(z) = nz2

−m + (m + n)z
= Op(z).

For Chebyshev’s method we have that

Oq(z) = N (r1, r2, z)

2(r2m + r1n − (m + n)z)3
,

then

h ◦ Oq ◦ h−1(z) = nz3(−m(m + 3n + (m + n)(m + 2n)z))

2(m(−1 + z) + nz)3
= Op(z)

being

N (r1, r2, z) = r1r2m(2r22m
2 + (6r1r2 − r21 )mn + 3r21n

2)

+r1(−6r22m
3 + (r21 − 9r1r2 − 6r22 )m2n

−3r1(r1 + r2)mn2 + 2r21n
3)z + (6r1r2m

3 + 3r1(r1 + 3r2)m
2n

+3r1(r1 − r2)mn2 − 6r21n
3)z2

+(−2r1m
3 + (−3r1 + r2)m

2n + 3(r1 + r2)mn2 + 6r1n
3)z3

−(m2n + 3mn2 + 2n3)z4.

For Halley’s method we have that

Oq (z) = 2r1r2m(r2m + r1n) − r1(r1(m − n)n + 2r2m(2m + n))z + 2r1(m − n)(m + n)z2 + n(m + n)z3

2r22m
2 + (r21 + 2r1r2)mn + r21n

2 − 2(2m + n)(r2m + r1n)z + (m + n)(2m + n)z2
,

then

h ◦ Oq ◦ h−1(z) = n(m + n)z3

2m2 + (−4m2 − 2mn)z + (2m2 + 3mn + n2)z2
= Op(z).

For Schröder’s method, we have that

Oq(z) = r1r2(r2m + r1n − 2r1r2(m + n)z + (r1m + r2n)z2)

r22m + r21n − 2(r2m + r1n)z + (m + n)z2
,

then

h ◦ Oq ◦ h−1(z) = nz2

m(−1 + z)2 + nz2
= Op(z).
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Taking into account this result, as the dynamics does not depend on the location of the
roots, we study the dynamical behaviour of the operators Op for Newton, Chebyshev, Halley
and Schröder methods.

Given that the dynamical planes are built by drawing the basins of attraction of the different
attractors, it is interesting to know which values of the parameters give rise to attractors that
do not coincide with the roots of the polynomial under study. This is the reason of studying
the regions in the parameter planes where the strange fixed points are attractive.

2.1 Newton’s method

Newton’s method is one of the most widely used and well-knownmethods for approximating
the simple roots of non-linear equations because it is an optimal, efficient and simple method
and has quadratic order of convergence. Moreover, it is one of the first methods that was
modified with the aim of using it for approximating the multiple roots of an equation. Its
iterative scheme is given by:

zn+1 = zn − m
f (zn)

f ′ (zn)
.

Despite the introduction of m in its iterative scheme, in Schröder (1870) it is shown that
it preserves the quadratic order of convergence of the original Newton’s method. However,
this scheme has many limitations since, its own definition for approximating unknown roots
implies knowing a priori the multiplicity of such roots. Moreover, it is defined for only one
multiplicity m, while the roots of an equation might have different multiplicities.

For this reason, in this section we study the efficacy of the method for approximating
multiple roots with different multiplicities. To do so, we study the dynamics of Newton’s
method for multiple roots when we apply the scheme on the polynomial (3). The operator
we obtain has the form:

O (z,m, n) = nz2

(m + n)z − m
. (4)

As commented above, we want to study the dynamics of this rational map in terms of
the parameter m for fixed values of n. Firstly, we have to calculate the fixed and the critical
points of the operator O (z,m, n) and obtain the parameter and dynamical planes.

Fixed points are defined as the points satisfying O (z,m, n) = z. Solving this equation,
we obtain the fixed points z = 0, z = ∞ and z = 1. The fixed points z = 0 and z = 1
coincide with the roots of the polynomial p. The point z = ∞ is called a strange fixed point,
as it does not coincide with a root of the polynomial p.

The critical points are those points where the first derivative of the rational operator
vanishes. The derivative of operator (4) is:

O ′ (z,m, n) = nz (−2m + (m + n)z)

(−m + (m + n)z)2
. (5)

From (5), we obtain the critical points z = 0 and z = 2m

m + n
. As z = 0 is a fixed point,

there is only one free critical point.
Following the iterations of this free critical point we obtain the parameter planes for fixed

real values of n and considering m as complex parameter (see Fig. 1).
Now, we obtain the stability of the fixed points analysing the value of the multipliers.
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Fig. 1 Parameter planes of Newton method for values of n = 1, 2, 3

As O ′ (0,m, n) = 0, the fixed point z = 0 is a superattractor for every value of the
parameters m and n.

The stability of the other fixed points changes depending on the values of the parameter
m and for the different values of n.

Lemma 2.2 The fixed point z = ∞ satisfies the following statements:
• The point z = ∞ is an attractor inside the circle C1 defined by

(α + n)2 + β2 = n2,

with m = α + iβ and n ∈ R. In particular, it is a superattractor for m = −n.

• The point z = ∞ is indifferent on the circle C1.

• The point z = ∞ is a repulsor outside the circle C1.

Proof For the point z = ∞, the value of the multiplier is given by
∣

∣

∣

∣

∣

∣

1

lim
z→0

(

O ′ ( 1
z ,m, n

))

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

m + n

n

∣

∣

∣

∣

.

Let us write m = α + iβ and n ∈ R in equation

∣

∣

∣

∣

m + n

n

∣

∣

∣

∣

= 1. Then,

∣

∣

∣

∣

α + iβ + n

n

∣

∣

∣

∣

= 1, (6)

that yields to α2 + 2αn + β2 = 0 which defines the circle (α + n)2 + β2 = n2, the curve
where the point z = ∞ is indifferent. Inside this circle, the value of the multiplier is less than
1, then the point z = ∞ is attractive and it is repulsive outside the circle, where the value of
the multiplier is greater than 1. 	


The circle C1 : (α + n)2 + β2 = n2, centered at −n with radius n, can be observed in
the parameter planes of Fig. 1. If we focus on the real line, then z = ∞ is attractive for
−2n < m < 0, indifferent for m = 0 and m = −2n and repulsive in other case. As we
considerm and n as positive multiplicities, the point z = ∞ is always a repulsive fixed point.

Lemma 2.3 The stability of the fixed point z = 1 satisfies the following statements:
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• The point z = 1 is an attractor inside the circle C2 defined

(α − n)2 + β2 = n2,

with m = α + iβ and n ∈ R. In particular, it is a superattractor for m = n.

• The point z = 1 is indifferent on the circle C2.

• The point z = 1 is a repulsor outside the circle C2.

Proof For the point z = 1 we have that
∣

∣O ′(1,m, n)
∣

∣ =
∣

∣

∣

∣

n − m

n

∣

∣

∣

∣

.

If we write m = α + iβ in equation

∣

∣

∣

∣

n − m

n

∣

∣

∣

∣

= 1 we obtain

∣

∣

∣

∣

n − α − iβ

n

∣

∣

∣

∣

= 1, (7)

that yields to α2 − 2αn + β2 = 0 which defines the circle C2 centered at n with radius n.

Then, on this circle, the point z = 1 is indifferent; inside this circle, z = 1 is attractive and it
is repulsive outsideC2.Moreover, O ′(1,m, n) = 0 form = n; then, z = 1 is a superattractor
for m = n. 	


The circle C2 can be observed in the parameter planes of Fig. 1, centered at n with radius
n. In particular, if we consider real values for the parameterm,we have that z = 1 is attractive
for 0 < m < 2n, indifferent for m = 0 and m = 2n and repulsive in other case.

We can also identify the bulbs located on the real line at the left and at the right of these
circles.

Lemma 2.4 There is an attractive periodic orbit of period two {p1, p2} given by:
{

m(m + 2n − √
m2 − 4n2)

2n(m + 2n)
,
m(m + 2n + √

m2 − 4n2)

2n(m + 2n)

}

(8)

inside de curve C3 defined by:
(α2 + β2)2 + 10n2(β2 − α2) + 24n4 = 0

with m = α + iβ and n ∈ R.

Proof Solving the equation O (O (z,m, n) ,m, n) = z, we obtain

mz(z − 1)(m2 − (m2 + 2mn)z + (mn + 2n2)z2 = 0.

As z = 0 and z = 1 are fixed points, we find a periodic orbit of period two {p1, p2} given
by (8).

The stability of the 2-periodic orbit is givenby thevalueof
∣

∣O ′ (p1,m, n) ∗ O ′ (p2,m, n)
∣

∣ =
∣

∣

∣

∣

5 − m2

n2

∣

∣

∣

∣

. If we consider m = α + iβ, we obtain that the periodic orbit is attractive inside

C3, corresponding to such bulbs. 	


Let us observe, that for real values of m and n, the 2-periodic orbit is attractive for
−√

6n < m < −2n and 2n < m <
√
6n.
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Fig. 2 Dynamical planes for n = 3 and different values of m

2.1.1 Analysing dynamical planes for natural values ofm and n

As observed, the parameter planes for different values of n > 0 are topologically equivalent.
So, we consider the parameter plane for n = 3 and we show some dynamical planes in Fig. 2
in order to analyse different behaviours. In these figures, the dark region corresponds to the
basin of attraction of z = 0. For 0 < m < 6, the point z = 1 is attractive and the free critical
point is in its basin of attraction, coloured in blue. For m = 6 the point z = 1 becomes
an indifferent point that bifurcates to the 2-periodic orbit and it is located in the common
boundary of the two basins of attraction. For m = 7, the point z = 1 is repulsive and it is
located in the boundary of the two attractive petals of the 2-periodic orbit

{

7

78
(13 − √

13),
7

78
(13 + √

13)

}

,

that becomes attractive; in this case the green region corresponds to the basin of attraction of
the 2-periodic orbit. For m ≥ 8, the critical point is in the basin of attraction of z = 0 and,
therefore, the dynamical plane has only one colour.

We can observe that, form = n = 3,we have the case for which themethodwas designed,
when all the roots have the same multiplicity. In this case, the operator (4) does not depend
on the multiplicities. For this reason, we obtain the dynamical plane of Newton’s method for
simple roots applied to a quadratic polynomial.

Moreover, we observe that for m ≥ 7 the fixed point z = 1 does not have a basin of
attraction and the method does not find it.

2.2 Chebyshev’s method

Chebyshev’s method is the classical method of order three most commonly used to approx-
imate the simple roots of nonlinear equations. This is due to the fact that, although it is not
an optimal method, it has good characteristics such as its dynamics.
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Chebyshev’s method for multiple roots, studied in Neta (2008) is defined by:

zn+1 = zn − m(3 − m)

2

f (zn)

f ′ (zn)
− m2

2

f (zn)2 f ′′ (zn)
f ′ (zn)3

,

where m is the multiplicity of the root.
As studied in Neta (2008), this scheme preserves the cubic convergence order of the

originalmethod. However, as we discuss in this section, the dynamics of Chebyshev’smethod
for simple roots is not preserved when we apply the method for multiple roots on polynomial
(3). This is mainly due to the presence of a unique multiplicity m in its algorithm.

Our aim is, again, to perform the exhaustive dynamical study mentioned when applying
this method to the polynomial (3), with two different multiplicities. Thus, we want to see
how effective it is to approximate the root with multiplicity n. Applying the method on this
polynomial, we obtain the following operator:

O (z,m, n) = z3
n

2

m(m + 3n) − (m + n)(m + 2n)z

(m − (m + n)z)3
. (9)

In this case, the fixed points obtained are z = 0, z = 1, z = ∞ and the points

z1 = m(2m + 3n) − m
√
2mn + 3n2

(m + n)(2m + 3n)

and

z2 = m(2m + 3n) + m
√
2mn + 3n2

(m + n)(2m + 3n)
.

The points z = ∞, z1 and z2 are strange fixed points. Note that the point z2 coincides
with z = 1 for m = 3n.

The critical points are those points where the first derivative of the rational operator is
cancelled. In this case,

O ′ (z,m, n) = z2
n

2

3m2(m + 3n) − 4m(m + n)(m + 2n)z + (m + n)2(m + 2n)z2

(m − (m + n)z)4
,(10)

and the critical points are z = 0 and the free critical points

c1 = 2m(m + 2n) − m
√

(m − n)(m + 2n)

(m + n)(m + 2n)

and

c2 = 2m(m + 2n) + m
√

(m − n)(m + 2n)

(m + n)(m + 2n)
.

Iterating simultaneously both free critical points, we obtain the parameter planes for m
complex and fixed different values of n (see Fig. 3). In these figures, red colour means that
the critical points are in the basins of attraction of z = 0 or z = ∞ (inside the ring), black
colour means that one critical point is in the basin of attraction of z = 0, while the other
critical point is in the basin of attraction of another attractor and green colour means that
both critical points are in the same basin of attraction of z = 1 or another strange attractor.

Now, we calculate the value of the multiplier
∣

∣O ′ (z,m, n)
∣

∣ for each fixed point in order
to study their stability.

As O ′ (0,m, n) = 0 the fixed point z = 0 is a superattractor for every value of the
parameters m and n.
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Fig. 3 Parameter planes for Chebyshev methods and for values of n = 1, 2, 3

The stability of the other fixed points changes depending on the values of the parameter
m and for different values of n.

Lemma 2.5 The fixed point z = ∞ satisfies the following statements:
• The point z = ∞ is an attractor inside the curve C1 defined by

4β4 + (8α2 + 16αn + 9n2)β2 + (4α4 + 16α3n + 23α2n2 + 12αn3) = 0,

with m = α + iβ and n ∈ R. In particular, it is a superattractor for m = −2n.

• The point z = ∞ is indifferent on the curve C1.

• The point z = ∞ is a repulsor outside the curve C1.

Proof For the case of z = ∞, the value of the multiplier is given by
∣

∣

∣

∣

∣

∣

1

lim
z→0

(

O ′ ( 1
z ,m, n

))

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

n(m + 2n)

2(m + n)2

∣

∣

∣

∣

.

If we write m = α + βi and equal the above multiplier to 1, we obtain the equation of
curve C1 given by

4β4 + (8α2 + 16αn + 9n2)β2 + (4α4 + 16α3n + 23α2n2 + 12αn3) = 0

where the point z = ∞ is indifferent. The point z = ∞ is attractive inside C1 and it is
repulsive outside C1. Moreover, it is superattractive for m = −2n. 	


If we focus on the real line, we have that z = ∞ is attractive for −3n

2
< m < 0 and

repulsive in other case. Then, for multiplicities m and n represented as natural numbers, the
point z = ∞ is repulsive.

Lemma 2.6 The stability of the fixed point z = 1 satisfies the following statements:
• The point z = 1 is an attractor inside the curve C2 defined by:

β4 + (2α2 − 6αn + 5n2)β2 + (α4 − 6α3n + 13α2n2 − 12αn3) = 0, (11)

with m = α + iβ and n ∈ R. In particular, it is a superattractor for m = n and m = 2n.

• The point z = 1 is indifferent on the curve C2.

• The point z = 1 is a repulsor outside the curve C2.
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Proof The stability of the fixed point z = 1 is given by:

∣

∣O ′ (1,m, n)
∣

∣ =
∣

∣

∣

∣

(m − 2n)(m − n)

2n2

∣

∣

∣

∣

.

If we write m = α + βi we obtain the equation for the curve C2 :
(β2 + α2 − 2αn + n2)(β2 + α2 − 4αn + 4n2) − 4n2 = 0

that gives Eq. (11). 	

This curve C2 delimits the values of the parameter m where z = 1 is attractive. In Fig. 3

we can locate this region intersecting the real line between the values 0 < Re(m) < 3n.

For z = 1, if we consider real values of m, it is easy to obtain that:

• If 0 < m < 3n, the point z = 1 is attractive. Moreover, for m = n or m = 2n, the point
z = 1 is a superattractor.

• If m < 0 or m > 3n, the point z = 1 is repulsive. For m = 0 or m = 3n, the point z = 1
is indifferent.

For the case of the stability of the strange fixed points z1 and z2, we have the following
results. For complex values of the parameter m, the solutions of

∣

∣O ′ (z1,m, n)
∣

∣ = 1, (12)

define the closed curve C3 in the complex plane where z1 is indifferent. Inside this curve,
z1 is an attractor and z1 is a repulsor outside that curve. If we consider real values of the

parameters, the solutions of Eq. (12) are m = −3n

2
and another solution m∗ located close at

the left of this one. For these values, the strange fixed point z1 is indifferent and it is attractive
when the parameter is located between these values. For example, for n = 1, the solution

of (12) are m = −3

2
and m = −1.6457515. The point z1 is a repulsor in other case; in

particular, the strange fixed point z1 is always repulsive for m > 0.
For the strange fixed point z2, and for complex values of the parameter m, the solutions

of
∣

∣O ′ (z2,m, n)
∣

∣ = 1, (13)

define the curves in the complex plane where z2 is indifferent. In this case, we obtain the
same region of attraction obtained for z1 delimited by the curve C3 and another region of
attraction delimited by the curve C4 located between the real values m = 3n and m = kn
where

k = 1

2
+ 26 3

√
2

3
√
3

3
√

1305 + 7
√
321

+
3
√

1305 + 7
√
321

2 3
√
2 3
√
9

≈ 4.66548.

Moreover, the point z2 is superattractive for m = kon, where

ko = 1

24

(

5 + 1801
3
√

76517 + 144
√
633

+ 3
√

76517 + 144
√
633

)

≈ 3.74529.

Remark 2.7 For real m and n, let us notice that the strange fixed point z1 is always repulsive
for m > 0. Nevertheless, the strange fixed point z2 is attractive for 3n < m < kn, where
k ≈ 4.66548, which corresponds, in the parameter plane of Fig. 3, to the bulb located at the
right of the region where z = 1 is attractive.
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Fig. 4 Chebyshev’s dynamical planes for n = 3

2.2.1 Analysing dynamical planes for natural values ofm and n

As we have seen, the parameter planes for different values of n are topologically equivalent.
So, we consider the parameter plane for n = 3 (Fig. 3c), and we build some dynamical planes
in order to analyse different behaviours.

From the previous study, we know that z = 1 is attractive for 0 < m < 9. From m = 0
to m = 5, the parameter m is located in the green zone of the parameter plane; this means
that both critical points are in the basin of attraction of z = 1 and the dynamical planes are
divided into two basins of attraction, the corresponding to z = 0 in red colour and the basins
of attraction of z = 1 in black colour; see the dynamical planes (a), (b) and (c) in Fig. 4.
This case corresponds to a good behaviour of Chebyshev’s method for finding both multiple
roots. Moreover, we can also observe the symmetry that presents the dynamical plane in the
case ofm = n = 3.Notice that, analogous to the Newton’s study, the multiplicity disappears
in the operator (9) for m = n = 3 and this operator corresponds to the Chebyshev’s method
applied on a quadratic polynomial with simple roots.

Form = 6, 7, 8 and 9, the parameterm is located in the black zone of the parameter plane
corresponding to values for which z = 1 is attractive and there is only one critical point in the
basin of attraction of z = 1. Analysing the dynamical planes, we see that the other critical
point is in the basin of z = 0 (see Fig. 4d). Although in this case, Chebyshev’s method can
find both multiple roots, the region of initial conditions leading to z = 1 is smaller than
before.

For m = 9, we have a bifurcation point, the strange fixed point z2 coincides with z = 1.
For 9 < m < 13.996, the strange point z2 becomes attractive; its value is close to 1 and
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the point z = 1 is on the boundary of its basin of attraction. We show the dynamical planes
for m = 10, 11 and 12 in Fig. 4. Furthermore, in Fig. 4f and g we can observe a different
behaviour for m = 11 with respect to the other dynamical planes. Numerically, we have
observed that, when taking values in that area, the method does not present a good behaviour.

The value m = 13.996 is a bifurcation point: z2 becomes a repulsor and an attractive
2-periodic orbit appears. As we can see in the parameter plane of Fig. 3c, for m = 15 the
parameter is located in the right bulb of the figure and, therefore, there is an attractive periodic
orbit of period two, like the one shown in Fig. 4i.

For m = 16, the parameter m is placed on the antenna and, therefore, a new behaviour
occurs (see Fig. 4j and k).

For m = 17, the parameter is outside the antenna. For this reason, for larger values of m,

only the point z = 0 is attractive, as can be seen in Fig. 4l. This implies that, for m ≥ 17,
Chebyshev’s method only finds the root z = 0.

2.3 Halley’s method

Halley’s method is a well-known method in the field of iterative methods for approximating
simple roots of nonlinear equations. It is amethod of order three that is part of the Chebyshev–
Halley family of methods.
The Halley method for multiple roots is designed in paper (Hansen and Patrick 1977) and is
defined by the scheme:

zn+1 = zn − f (zn)
(m+1) f ′(zn)

2m − f (zn) f ′′(zn)
2 f ′(zn)

,

where m is the multiplicity of the root.
Halley’s method formultiple roots, as Chebyshev’smethod, has cubic convergence, which

allows us to make a good comparison between these two methods as they are similar.
Applying this method on the polynomial (3), we obtain the operator:

O (z,m, n) = z3
n(n + m)

2m2 − 2m(n + 2m)z + (n + m)(n + 2m)z2
. (14)

In order to study the dynamics of this operator in terms of the parameterm, we first calculate
fixed and critical points.

Solving O (z,m, n) = z, the fixed points obtained are z = 0, z = 1, z = ∞ and the

point z = m

n + m
. The points z = ∞ and z = m

n+m are strange fixed points, as they do not

coincide with the roots of the polynomial p.
The critical points are those points where the first derivative of the rational operator is

zero. Then, since the derivative of the operator is

O ′ (z,m, n) = z2
n(n + m)(6m2 − 4m(n + 2m)z + (n + m)(n + 2m)z2)

(2m2 − 2m(n + 2m)z + (n + m)(n + 2m)z2)2
, (15)

the critical points are z = 0 and the free critical points

c1 = 2m(n + 2m) − m
√
2(m − n)(2m + n)

(m + n)(2m + n)

and

c2 = 2m(n + 2m) + m
√
2(m − n)(2m + n)

(m + n)(2m + n)
.
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Fig. 5 Parameter planes of Halley method for values of n = 1, 2, 3

Iterating the critical points, we obtain the parameter planes for three fixed values of n,

wherem ∈ C is the parameter that varies in each of the planes (see Fig. 5). Red colour means
that the critical points are in the basins of attraction of z = 0 or z = ∞ (inside the ring), black
colour means that one critical point is in the basin of attraction of z = 0, while the other
critical point is in the basin of attraction of another attractor and green colour means that
both critical points are in the same basin of attraction of z = 1 or another strange attractor.
The Fig. 5 shows a gradation of colors from red to light green depending on the number of
iterations the critical point takes for to be in the basin of z = 0.

We calculate the value of the multiplier
∣

∣O ′(z,m, n)
∣

∣ for each fixed point in order to study
their stability.

As in the previous methods, the fixed point z = 0 is a superattractor for every value of the
parameters m and n.

Lemma 2.8 The fixed point z = ∞ satisfies the following statements:
• The point z = ∞ is an attractor inside the circle C1 defined by

(

α + n

2

)2 + β2 =
(n

2

)2
,

with m = α + iβ and n ∈ R.

• The point z = ∞ is indifferent on the curve C1.

• The point z = ∞ is a repulsor outside the curve C1.

Proof For the case of z = ∞, the value of the multiplier is given by
∣

∣

∣

∣

∣

∣

1

lim
z→0

(

O ′ ( 1
z ,m, n

))

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

2m + n

n

∣

∣

∣

∣

.

If we consider complex values for the parameter m = α + βi, we find a closed curve
defined by α2 + αn + β2 = 0, where z = ∞ is indifferent, it is attractive inside this curve
and it is repulsive outside this curve. 	


If we focus on real values of m, we have that z = ∞ is repulsive for m > 0.
For the fixed point z = 1 we have the following result.

Lemma 2.9 The point z = 1 is an attractor for Re(m) > 0, it is indifferent for Re(m) = 0
and it is a repulsor for Re(m) < 0.
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Proof For z = 1 we have that

∣

∣O ′(1,m, n)
∣

∣ =
∣

∣

∣

∣

n − m

n + m

∣

∣

∣

∣

.

Then,
∣

∣O ′(1,m, n)
∣

∣ = 1 when |n − m| = |n + m| . If we consider complex values of the
parameter m, that is m = α + iβ, we obtain that z = 1 is attractive for α > 0, repulsive for
α < 0 and indifferent for α = 0. 	


If we focus on real values of m, we have that z = 1 is attractive for m > 0.

Finally, the strangefixedpoint z = m

n + m
is always repulsive since

∣

∣

∣

∣

O ′
(

m

n + m
,m, n

)∣

∣

∣

∣

=
3.

2.3.1 Analysing dynamical planes for natural values ofm and n

As we have seen, the parameter planes for different values of n are topologically equivalent.
As before, we consider the parameter plane for n = 3 (see Fig. 5c) and we build some
dynamical planes for positive integer values of m in order to analyse different behaviours
(see Fig. 6).

In these cases, the point z = 1 is always attractive, so at least one of the critical points
must be in its basins of attraction.We observe that, for values ofm inside the green zone, both
critical points are in the basin of attraction of z = 1, which is connected for 1 ≤ m ≤ 8 (see
Fig. 6). For values of m outside this green region, only one critical point belongs to the basin
of attraction of z = 1 and the other is in the basin of attraction of z = 0; as we can observe
in the last two pictures of Fig. 6, the basin of attraction of z = 1 becomes disconnected.

In particular, for m = n = 3, the dynamical plane coincides with Halley’s plane for
simple roots.

We observe that for values of the multiplicities corresponding to the green regions in
the parameter planes, the Halley’s method presents a good behaviour for finding both roots.
Moreover, this method can always find both roots of the original polynomial, as they are
always attractive.

2.4 Schröder’s method

Schröder’s method is a method of order two, defined in Schröder (1870) as a multiple root
version of Newton’s method and which does not include in its definition the multiplicities of
the roots to be approximated. The idea of this method to avoid that f ′(z∗) = 0 and, therefore,
to be a method for multiple roots, consists of defining the function of Newton’s scheme for
simple roots (1) as

g(zn) = f (zn)

f ′(zn)
.

By derivation, we obtain the expression

g′(zn) = ( f ′(zn))2 − f (zn) f ′′(zn)
( f ′(zn))2

.
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Fig. 6 Halley’s dynamical planes for n = 3

Substituting in Newton’s method the expressions for g(zn) and g′(zn), Schröder’s method is
obtained:

zn+1 = zn − f (zn) f ′ (zn)
( f ′ (zn))2 − f (zn) f ′′ (zn)

.

This method has a quadratic order of convergence and, unlike the three classical methods
above, it is a pure multiple root method that does not depend on the multiplicity of the roots
it approximates.

A dynamical study of this method applied on a polynomial with two multiple roots can be
found inGalilea andGutiérrez (2021).We include here our dynamical study for completeness
in the comparison of the methods and also for taking into account the basins of attraction in
the next section.

The importance of studying this method and comparing it dynamically and numerically
with the other three classical methods resides in understanding why the use of this type of
method has not been exploited more, since they seem to be more useful. That is to say, a
method that does not require predefining the multiplicity of the root to approximate is, a
priori, a more efficient method since it approximates any root, whatever its multiplicity.

On the other hand, we want to check if in practice the advantages of methods such as
Schröder’s are preserved in all situations and extend to any non-polynomial function. After
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Fig. 7 Dynamical planes of Schöder’s method for n = 3

applying this scheme to polynomial (3), we obtain the operator

O (z,m, n) = nz2

m(z − 1)2 + nz2
. (16)

As before, in order to study the dynamics of this operator in terms of the parameter m,

we first calculate the fixed and the critical points.

Solving O (z,m, n) = z, the fixed points obtained are z = 0, z = 1 and z = m

m + n
. Let

us notice that the point z = ∞ is not a fixed point of this method.
The derivative of operator (16) is

O ′ (z,m, n) = 2mn(1 − z)z

(m − 2mz + (m + n)z2)2
. (17)

From this derivative, we obtain that the solutions of O ′ (z,m, n) = 0 are z = 0 and z = 1.
Then, the critical points are z = 0 and z = 1, which are superattractive fixed points for any
value of m and n.

On the other hand, as

O ′
(

m

m + n
,m, n

)

= 2,

the point z = m
m+n is repulsive for any value of m and n.

2.4.1 Analysing dynamical planes for natural values ofm and n

As this operator does not have free critical points, the parameter plane, presents only one
colour and we do not show it. Some examples of dynamical planes for n = 3 are shown in
Fig. 7.

The dynamical conclusions we get from this method is that it seems to be an effective
method to find two multiple roots with different multiplicities. This is because both roots,
z = 0 and z = 1, are superattractive roots for any value of m and n. In Fig. 7 we can observe
the basins of attraction of z = 0 (dark green) and z = 1 (cyan), for n = 3 and different values
of m.

If we had finished our analysis of the methods at this point, we would probably declare
Schröder’s method as one of the best methods for approximating multiple roots since it
presents a good dynamical behaviour and, furthermore, it is the only one of the four methods
that does not need to know a priori any information of the roots to be approximated. But in
Fig. 7, we observe that the basin of attraction of the root with the lowest multiplicity decreases
rapidly. The following lemma gives us a general expression of the basins of attraction of both
roots.
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Lemma 2.10 The basins of attraction for the fixed points z = 0 and z = 1 are:
• For m < n

A(0) =
{

z = α + iβ ∈ ̂C :
(

α + m2

n2 − m2

)2

+ β2 <

(

mn

n2 − m2

)2
}

A(1) =
{

z = α + iβ ∈ ̂C :
(

α + m2

n2 − m2

)2

+ β2 >

(

mn

n2 − m2

)2
}

• For m = n

A(0) = {

z = α + iβ ∈ ̂C : α < 1/2
}

A(1) = {

z = α + iβ ∈ ̂C : α > 1/2
}

• For m > n

A(0) =
{

z = α + iβ ∈ ̂C :
(

α + m2

n2 − m2

)2

+ β2 >

(

mn

n2 − m2

)2
}

A(1) =
{

z = α + iβ ∈ ̂C :
(

α + m2

n2 − m2

)2

+ β2 <

(

mn

n2 − m2

)2
}

.

Proof It can be easily verified by induction that the kth iteration of the operator (16) is

Ok (z,m, n) = n2
k−1z2

k

m2k−1(z − 1)2k + n2k−1z2k
= 1

n
m

(

m(z−1)
nz

)2k + 1
.

A point z belongs to the basin of attraction of z = 0 if lim
k→+∞ Ok (z,m, n) = 0, that

implies

lim
k→+∞

[

n

m

(

m(z − 1)

nz

)2k
]

= +∞,

that yields to
∣

∣

∣

∣

m(z − 1)

nz

∣

∣

∣

∣

> 1.

Now, we write z = α + iβ and develop the previous equation.

• For m = n we have
∣

∣

∣

∣

z − 1

z

∣

∣

∣

∣

> 1 ⇒ (α − 1)2 + β2 < α2 + β2 ⇒ α <
1

2
.

• For m �= n, we have

(m2 − n2)

(

(

α − m2

m2 − n2

)2

+ β2

)

>
m2n2

m2 − n2

which leads to the results of the basin of attraction of z = 0 by considering m > n or
m < n.
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Similarly, the basin of attraction of z = 1 is obtained by making lim
k→+∞ Ok (z,m, n) = 1,

that implies

lim
k→+∞

[

n

m

(

m(z − 1)

nz

)2k
]

= 0

that yields to

∣

∣

∣

∣

m(z − 1)

nz

∣

∣

∣

∣

< 1

and the complementary regions are obtained for each case. 	


Moreover, in the next section, we check numerically the good extension of the dynamics
of this method from polynomials (2) to other type of functions.

3 Numerical experiments

In this section, we approximate the roots of different type of real functions f : R → R in
order to check the suitability of the methods for approximating multiple roots with different
multiplicities. We first begin by analysing some of the polynomials studied in the previous
sections and, after that, we consider non-polynomial functions, combination of exponential,
polynomial and logarithmic functions.

For the calculations, we use MATLAB R2022a in arithmetic of variable precision with
100 digits, iterating from an initial estimate x0 ∈ R,which is iterated up to a distance between
consecutive iterations plus the norm of the function evaluated in the last iteration less than
tol = 10−100 or until getting to the maximum number of iterations, which in this case is
50. This process is repeated with different initial estimations based on the dynamical studies
made above.

In order to compare the methods, we do not only compare the usual numerical measures,
but also take into account the robustness of the methods to find the roots whatever their multi-
plicities. Among themeasures we use to compare numericallymethods is the ACOC, known
as the approximate computational order of convergence, a computational criterion used in
Mathematical Analysis to obtain an approximation of the theoretical order of convergence
p. This measure is defined by Cordero and Torregrosa in Cordero and Torregrosa (2007) to
computationally measure the convergence speed of the methods using the last four iterations
xn−1, xn, xn+1, xn+2 obtained by each method. The expression used to calculate ACOC is
the following:

p ≈ ACOC = ln (‖xn+1 − xn‖2/‖xn − xn−1‖2)
ln (‖xn − xn−1‖2/‖xn−1 − xn−2‖2) , (18)

where ‖ · ‖2 represents the 2-norm between two vectors to calculate the distance between
them. In this particular case, since we are working with non-linear equations, the iterations
obtained are not vectors and, therefore, to calculate the ACOC, we consider the norm as the
absolute value between two real values.
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Table 1 Numerical results of Example 1

Methods x0 xn Iter ACOC ‖xn − xn−1‖ ‖ f (xn)‖
Newton M − 2 −4.5438e−27 6 1.9999 1.0284e−13 3.9991e−185

2 1.4902 50 6.8794 0.6472 1.9232

4 0.8431 50 −0.0646 0.6472 0.0012

19 1.4902 50 6.8794 0.6472 1.9232

23 0.8431 50 −0.0646 0.6472 0.0012

Chebyshev M − 2 6.6174e−24 4 2.8697 1.4589e−08 5.5569e−163

2 −1.4950e−15 6 2.6118 1.4506e−05 1.6689e−104

4 1.0000 26 0.9037 2.2204e−16 0

19 1.0000 50 NaN 0 1.3685e−48

23 −6.3553e−18 15 2.7104 2.3496e−06 4.1874e−121

Halley M − 2 −7.2378e−25 4 2.9188 8.4463e−10 1.0405e−169

2 1.0000 39 1.6027 2.2204e−16 0

4 1.0000 39 2.1507 1.1102e−16 0

19 1.0000 39 1.0000 1.1102e−16 0

23 1.0000 40 1.4209 2.2204e−16 0

Schröder M − 2 9.0740e−18 5 2.0088 4.6014e−09 5.0652e−120

2 1.6967e−17 8 2.0097 6.2920e−09 4.0475e−118

4 6.5094e−16 4 2.0168 3.8973e−08 4.9521e−107

19 2.0904e−22 6 2.0018 2.2086e−11 1.7441e−152

23 1.1294e−22 6 2.0017 1.6236e−11 2.3433e−154

3.1 Example 1

Let us consider the function

f (x) = x7(x − 1)3, x ∈ R.

In order to compare the methods, we take different initial estimates x0, taking into account
the dynamical planes of the Newton, Chebyshev andHalley, Figs. 2g, 4d and 6g, respectively.
Table 1 shows the numerical results obtained by the methods when trying to approximate
the solutions of the function F, x = 0 and x = 1, with multiplicities m = 7 and n = 3,
respectively. From left to right, the results shown in the table are: the method used, the initial
approximation chosen, the final iteration, the number of iterations needed to converge, the
approximate computational convergence order (ACOC), the distance between the last two
iterations, ‖xn − xn−1‖, and the function evaluated at the last iteration, ‖F(xn)‖.

In Table 1, we can see that some of the methods present certain number of irregularities
such as the high number of iterations and wrong values of the ACOC . This occurs because
we are approximating two roots with different multiplicities using methods that are designed
for approximating multiple roots for only one multiplicity, m = 7.

Despite these irregularities, we observe that, when the methods end up finding the root
x = 0, the numerical results are close to the theoretical results, because the ACOC of the
methods is very close to the theoretical order of convergence an the number of iterations is
not very high. As we can see in the table, for x0 = −2, the method that better approximates
x = 0 is Halley’s method.
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Table 2 Percentage and mean of Example 1

Methods % x = 0 Mean x = 0 % x = 1 Mean x = 1 Other xn % xn Mean xn

Newton’s M 10.3585 5 0.3984 15 1.4902 67.3306 15

Chebyshev’s M 70.5179 7.7458 28.2868 41.4225 Non specific

Halley’s M 10.3585 15 88.8446 3 Non specific

Schröder’s M 95.2191 5.9958 3.5856 7 Non specific

However,whenwe are approximating the root x = 1,Newton’s, Chebyshev’s andHalley’s
methods give quite deficient numerical results. This is not necessarily due to the fact that
they work badly, it is because they are searching for the root with multiplicity n, the root that
does not appear in the iterative scheme of the methods.

Despite these measures, it is a great success that methods such as Chebyshev and Halley,
methods designed to find the root with multiplicity m, are able to approximate x = 1.

It is curious to note that Schröder’s method, a method with no dependence on the multi-
plicity m, cannot converge to the root x = 1, which is a superattractor fixed point, even if
we start with initial estimates as close to it as x0 = 2.

On the other hand, from Table 1, we like to note the behaviour of Newton’s method. We
see that for certain values, it can approximate the root x = 0, but it never approximates the
root x = 1 since, as we have studied in its dynamics, afterm = 6, this fixed point is repulsor.
Moreover, as we discussed in the dynamical section of this method, for m = 7 and n = 3,
there is a 2-periodic orbit in its dynamical plane defined by the expression (8). For these
values of m and n, we obtain the following 2-periodic orbit:

{0.843092, 1.490240} .

For this reason, for Newton’s method, the initial estimates x0 = 2, 4, 19, 23 are attracted
by points which are not roots of the polynomial.

Finally, we want to check how many initial estimates x0 converge to x = 0, how many
converge to x = 1 and how many converge to other points (or do not converge) for each
method. To do this, we choose an interval containing a larger number of initial points near
x = 1 and that corresponds to the interval in which irregular dynamical behaviours happen
in the dynamical planes of the methods. Specifically, we use the methods, iterating them
from x0,i = −2 + ih, i = 0, . . . , nx with h = 0.1 and nx = 250. Thus, we take a grid
of points within the interval [−2, 23] and check how many initial estimates in percentage
end up converging to the solutions or to strange attractors and the mean number of iterations
needed to converge.

In Table 2, we can see that Chebyshev’s approximates very well the multiple root whose
multiplicity is involved in its iterative scheme; however, sometimes it is not able to find x = 1
even if we start with x0 closer to this root than to x = 0.Halley’s method presents an expected
behaviour since, working in an interval of initial estimates with more points near x = 1 than
x = 0, it is logical that there are more points converging to this root. On the other hand, the
results presented by Schröder are rather disappointing since the difference between the value
of the multiplicities makes the basin of attraction of x = 1 very small. Finally, for Newton’s
method, we see that, contrary to what we thought, there is a small number of initial points x0
that tend to x = 1. Moreover, within this interval, most points tend to the 2-periodic orbit.
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Table 3 Numerical results of Example 2

Methods x0 xn Iter ACOC ‖xn − xn−1‖ ‖ f (xn)‖
Newton M 1.07 −2.0156e−10 8 1.9524 2.7186e−05 2.2303e−107

2 −5.4374e−11 6 1.9617 1.4120e−05 1.2283e−113

8 −9.8992e−12 7 1.9710 6.0247e−06 8.9451e−122

15 −1.4743e−15 10 1.9928 7.3523e−08 7.1501e−164

Chebyshev M 1.07 1.0301 50 NaN 2.2204e−16 3.7951e−05

2 −464.4923 50 −0.0157 3.1072e+03 2.1903e+37

8 −1.5866e−10 8 2.1165 8.6241e−04 1.6034e−108

15 −1.3235e−23 21 2.8599 7.7248e−09 2.1823e−252

Halley M 1.07 1.0000 50 0.9988 1.1113e−13 6.5999e−41

2 1.3235e−22 5 3.2318 9.5749e−08 2.1823e−241

8 1.0000 50 0.9993 3.1430e−13 1.4953e−39

15 1.3235e−22 6 3.2312 9.4336e−08 2.1823e−241

Schröder M 1.07 1.0000 5 2.0015 3.2772e−11 0

2 5.2098e−17 6 2.0150 1.3821e−08 7.6739e−180

8 2.3085e−16 5 2.0187 2.9094e−08 9.9222e−173

15 2.9269e−17 5 2.0137 1.0360e−08 1.3505e−182

3.2 Example 2

In this example, we are going to approximate the roots of the polynomial

f (x) = x11(x − 1)3,

to see what happens to the initial points that are located inside the green area of the Cheby-
shev’s dynamical plane of the Fig. 4f. Moreover, as we see in Chebyshev’s dynamical study,
for 9 < m < 13.996 we have that z2 = 1.0301 is a strange attractor point and that z = 1
is repulsive; so, we also calculate the percentage of points converging to x = 0, x = 1 and
x = 1.030138 for this method and the mean of iterations needed to converge. On the other
hand, as in the previous example, we have compared the methods numerically with a similar
table to Table 1.

As we see in Table 3, Chebyshev’s method has a behaviour quite different from Example
1 for certain values of x0. If we choose an initial approximation in the green zone of Fig. 4f,
for example x0 = 2, the method finishes the 50 iterations without converging. In fact, the
last approximation is so far away from the two solutions that we could say that it does not
converge for this initial estimate even though x0 is so close to both solutions. On the other
hand, we see that if we take x0 = 1.07, an initial estimate in the black zone in Fig. 4f, we
end up converging to the strange fixed point z2 = 1.030138. This is a sign that Chebyshev’s
method for multiple roots does not work very well in this case. If we focus now on the other
methods, we observe in Table 4 that the Halley and Schröder methods for multiple roots are
the only ones able to find the root x = 1 since in their dynamics we have seen that this point
is an attractor and a superattractor, respectively.
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Table 4 Percentage and mean of Example 2

Methods % x = 0 Mean x = 0 % x = 1 Mean x = 1 Other xn % xn Mean xn

Newton’s M 99.2031 11 0.0000 NaN Non specific

Chebyshev’s M 83.6653 13.3905 0.0000 NaN 1.030138 13.1474 50

Halley’s M 79.6812 11 19.5219 11 Non specific

Schröder’s M 97.2111 3.9549 1.9920 7.2000 Non specific

Table 5 Percentage and mean of Example 3

Methods % x = 0 Mean x = 0 % x = 1 Mean x = 1 Other xn % xn Mean xn

Newton’s M 98.8047 4 0.0000 NaN Non specific

Chebyshev’s M 90.8366 5.7763 0.0000 NaN 1.0327003 4.3824 50

Halley’s M 83.2669 5 15.9362 50 Non specific

Schröder’s M 98.0079 3.0488 1.1952 6.6667 Non specific

3.3 Example 3

For the function

f (x) = x15(x − 1)3,

we are going to design a table similar to Table 4 to show that Halley’s and Schröder’s methods
are still the only methods that find the root x = 1 (Table 5). Furthermore, we highlight the
behaviour of the points inside the black area of the Chebyshev’s dynamical plane, Fig. 4m,
since it can be observed that there are certain initial points that do not converge to x = 0
because they are trapped by the 2-periodic orbit

{1.0327003, 1.085298} .

This numerical example allows us to observe that for Schröder’s method, although the
basin of attraction of x = 1 decreases as the difference betweenm and n increases, there will
always be a small percentage of points converging to this root.

3.4 Example 4

In this last example, we have studied how the dynamical and numerical deductions for
polynomials of the form f (x) = xm(x−1)n can be extended to another type of real functions.

(1) To approximate the solutions of the function

f1(x) = (ex − 1)11(x − 1)3,

we study the same initial estimates x0 as in Example 2. Then, to compare the methods
numerically, we construct a table similar to Table 3.

In Table 6, we can see that the method that retains a similar behaviour to that seen in
Example 2 isHalley’smethod.However, bothChebyshev’s andNewton’smethod formultiple
roots have many faults since, in many cases, they find the root x = 0 very few times. Finally,
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Table 6 Numerical results of the function f1(x)

Methods x0 xn Iter ACOC ‖xn − xn−1‖ ‖ f (xn)‖
Newton’s M 1.07 NaN 27 NaN NaN NaN

2 NaN 30 NaN NaN NaN

8 NaN 17 NaN NaN NaN

15 4.7603 50 1.5040 0.9422 2.6641e+24

Chebyshev’s M 1.07 NaN 4 NaN NaN NaN

2 1.0185 50 NaN 2.2204e−16 0.0034

8 NaN 8 NaN NaN NaN

15 −4.7555e+14 50 1.0000 2.6155e+14 1.0754e+44

Halley’s M 1.07 1.0000 50 0.9964 5.9064e−14 3.8519e−39

2 1.0000 50 0.9990 3.5638e−14 8.4494e−40

8 1.0000 50 0.9963 4.7518e−14 2.0028e−39

15 7.7483e−18 13 3.1336 5.1742e−09 0

Schröder’s M 1.07 1.0000 6 1.9997 1.5654e−14 0

2 −8.0558e−17 6 2.0145 2.0367e−08 3.1587e−176

8 1.0000 3 861.3286 1.1369e−13 0

15 1.000 3 1.8284e+03 3.4106e−13 0

Table 7 Percentage and mean of f1(x)

Methods % x = 0 Mean x = 0 % x = 1 Mean x = 1 Total %

Newton’s M 11.6959 3.0500 0.0000 NaN 11.6959

Chebyshev’s M 25.7309 7.2500 0.0000 NaN 25.7309

Halley’s M 67.2514 7.0522 31.5789 50 98.8303

Schröder’s M 29.2397 4.0800 69.5906 3.1849 98.8303

Schröder’s method is the one that shines numerically since, whether it approximates x = 0
or x = 1, the number of iterations is quite small and so are the errors.

On the other hand, as we have done in previous examples, we check how many initial
estimates x0 converge to x = 0 or x = 1 for each method. To do this, we use the methods,
starting by iterating them from x0,i = −2 + ih, i = 0, . . . , nx with h = 0.1 and nx = 170,
andwith amaximumnumber of 50 iterations. Thus, we take a grid of pointswithin the interval
[−2, 15] and check the numerical results of the Table 7. From this results, we conclude that
Schröder and Halley methods converge in 98.8303% to one of the solutions.

(2) For the second function

f2(x) = (ex − 1)15(ex − e)3,

we only show the table of percentage and average iterations of each method to converge
to the solutions.

This numerical example is of great importance because it completely changes our percep-
tion of Schröder’s method. In it, we see that the dynamical behaviour shown by Schröder for
polynomial functions does not necessarily extend to all type of functions.

On the other hand, in Table 8, we find another remarkable numerical behaviour since, after
the study of f1(x), we did not expect Newton’s method to obtain such a high percentage
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Table 8 Percentage and mean f2(x)

Methods % x = 0 Mean x = 0 % x = 1 Mean x = 1 Total %

Newton’s M 80.1169 14.3723 0.0000 NaN 80.1169

Chebyshev’s M 28.0701 8.8958 0.0000 NaN 28.0701

Halley’s M 80.7017 7.0870 18.1286 50 98.8303

Schröder 34.5029 10.1017 01.1695 8.5000 35.6724

Table 9 Percentage and mean f3(x)

Methods % x = 0 Mean x = 0 % x = −1 Mean x = −1 Total %

Newton’s M 97.6608 11.4670 0.5847 1.0000 98.2455

Chebyshev’s M 95.3216 7.8773 0.5847 1.0000 95.9063

Halley’s M 97.0760 6.3674 1.7543 33.6666 98.8303

Schröder 27.4853 9.3617 11.6959 13.4500 39.1812

of convergence when studying non-polynomial functions. Note that this percentage reflects
exclusively the starting points that end up converging to x = 0.

Finally, note that both Chebyshev’s and Halley’s methods show similar numerical results
to those studied for f1(x).

(3) For the third function

f3(x) = (ex − 1)6 ln(x + 2),

we only study the percentage and average number of iterations of each method to check
whether, again, Schröder’smethod shows a deficiency in the number of points converging
to solutions.
Since the domain of the function f3(x) is D f = {x ∈ R/ − 2 < x < ∞}, we take a
different mesh: x0,i = −2 + ih, i = 1, . . . , nx with h = 0.1 and nx = 169. Then, we
take a grid of initial points within the half-open interval (−2, 15] and check the numerical
results of the methods in Table 9.

As Table 9 shows, Schröder’s method has again a small percentage of x0 points converging
to one of the two solutions of the problem. On the other hand, we observe that, using Cheby-
shev’s method, 95.9063% of the initial points converge to one of the two solutions. As for
Halley’s method, we again obtain a percentage of total convergence that coincides with that
obtained for f1(x) and f2(x).Note that, in this example, there are fewer points converging to
the simple root x = −1 due to the location of this root within the interval (−2, 15]. Finally,
note that both, Newton’s and Chebyshev’s methods sometimes find the simple root x = −1
because the difference between the multiplicities is not very large.

(4) The last function we study,

f4(x) = (ln(x + 1))11(ex − e)3,

has as domain D f = {x ∈ R/ − 1 < x < ∞}. For this reason, we work with a mesh
with step size h = 0.1 over the interval (−1, 16]. In this way, we obtain the Table 10,
which shows the numerical results for each of the four methods.

In this last example, we recover the numerical behaviour that could be expected a priori
from Schröder’s method. However, in all the examples analysed, Halley’s method is the

123



230 Page 28 of 29 B. Campos et al.

Table 10 Percentage and mean f4(x)

Methods % x = 0 Mean x = 0 % x = −1 Mean x = −1 Total %

Newton’s M 89.4736 12.3333 0.0000 NaN 89.4736

Chebyshev’s M 47.9532 8.3048 0.0000 NaN 47.9532

Halley’s M 83.0409 4.4225 15.2046 50 98.2455

Schröder 84.7953 8.4000 4.6783 8.5000 89.4736

method with the highest percentage of total convergence and, furthermore, it finds the root
x = 1 the most times.

4 Conclusions

The main conclusion we get from both studies, the dynamical analysis and the numerical
experiments, of some classical multiple roots finding methods applied for finding roots with
different multiplicities is that Halley’s method for multiple roots finds the two roots of the
nonlinear function we are working with, even though they have different multiplicities.

This does not happen in the case of theNewton andChebyshevmethods, since the rootwith
the lowest multiplicity can even be repulsive, so the method does not find it. In addition, the
method can present other attractors different from the roots, so the result can be completely
wrong.

On the other hand, although both roots are superattractive in Schröder’s method, we have
proved in Lemma 2.10 that the basin of attraction of the root with the lowest multiplicity can
become so small that the number of points tending to this root is not relevant.

In Sect. 3we numerically check the results previously predicted for the polynomial f (x) =
xm(x − 1)n with x ∈ R and m, n ∈ N.

Finally, in Sect. 3.4 we study real functions that combine polynomial, exponential and
logarithmic functions to find out if the dynamical behaviour can be extended to other non-
polynomial functions. We conclude that Halley’s method is the iterative scheme that presents
a higher total percentage of convergence for the four non-polynomial functions studied,
finding all the roots of our functions.
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