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A B S T R A C T

In this paper, we construct a parametric family of iterative methods to compute the inverse
of a nonsingular matrix. This class is free of inverse operators. We prove the third-order
of convergence under some conditions involving the parameter of the family. Moreover, a
dynamical analysis is made for the first time to a matrix iterative method, finding intervals
of stability, that include but are wider than those found in the convergence analysis. Numerical
tests on large random matrices confirm the results found.

1. Introduction

Approximating matrix inverses is a problem with multiple applications in areas such as physics, statistics, engineering, linear
programming, among others. See, for example [1,2] for reference texts in this area of research.

Let A be a nonsingular complex matrix of size 𝑛 × 𝑛. We want to design iterative methods to compute the inverse 𝐴−1 of 𝐴,
i.e., iterative schemes to solve the nonlinear matrix equation 𝐹 (𝑋) = 𝑋−1 − 𝐴 = 0, where 𝐹 ∶ C𝑛×𝑛 → C𝑛×𝑛 is a nonlinear matrix
function. For this purpose, we extend to the matrix context some iterative algorithms without memory, implemented with good
results in the solution of the scalar equation 𝑓 (𝑥) = 0.

The Newton–Schulz method [2] is the most used iterative scheme to approximate 𝐴−1; its iterative expression is:

𝑋𝑘+1 = 𝑋𝑘(2𝐼 − 𝐴𝑋𝑘), 𝑘 = 0, 1, 2,… , (1)

where 𝐼 is the identity matrix of order 𝑛. In [2] it is proven that the scheme given in Eq. (1) converges quadratically. Another
iterative algorithm without memory for computing 𝐴−1, omitting the use of inverse operators, is Chebyshev’s method, presented
in [3], with convergence order 3 and whose iterative expression is:

𝑋𝑘+1 = 3𝑋𝑘 − 3𝑋𝑘𝐴𝑋𝑘 +𝑋𝑘𝐴𝑋𝑘𝐴𝑋𝑘, 𝑘 = 0, 1, 2,… , (2)

In the literature, several iterative schemes have been extended to estimate the inverse of a matrix, see for example [4–6]. Few
of them define a class of iterative schemes and, as far as we know, there exist no stability analysis in this context that allows to
select the best members of those families, in terms of wideness of the set of converging initial guesses.

In this study, we construct a parametric family of iterative methods without memory to compute the inverse of a nonsingular
matrix, avoiding inverse operators in its iterative formula. We prove the convergence order of the family and apply real discrete
dynamics techniques to the analyze the qualitative behavior of the proposed iterative schemes.
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Next, we recall some basic concepts about iterative methods and their dynamics, see for example [7]. Let 𝑅: R → R be a rational
operator associated to a method on a function 𝑓 (𝑥). 𝑥0 ∈ R is called fixed point if 𝑅(𝑥0) = 𝑥0. If 𝑥0 is a fixed point of 𝑅 but 𝑓 (𝑥0) ≠ 0,
then it is called a strange fixed point. Thus, a fixed point 𝑥0 can be an: attractor if |𝑅′(𝑥0)| < 1, superattractor if |𝑅′(𝑥0)| = 0, repulsor
if |𝑅′(𝑥0)| > 1, and parabolic or neutral if |𝑅′(𝑥0)| = 1. A critical point of an operator 𝑅 is a point 𝑥0 where the derivative of 𝑅
cancels out, that is: 𝑅′(𝑥0) = 0. Critical points different to the zeros of 𝑓 (𝑥) are called free critical points.

In Section 2, we design the parametric class of matrix iterative schemes and prove its third-order of convergence. Section 3 is
devoted to the dynamical analysis of the class and the finding of the intervals where stable and unstable members of the family of
iterative methods can be found. In Section 4, some numerical tests are made that confirm the theoretical results and, finally, some
conclusions are stated in Section 5.

2. Homeier-type methods with weight functions

For a scalar equation 𝑓 (𝑥) = 0, Homeier’s method (see [8]) is a scheme without memory, which converges cubically. For the
matrix equation 𝐹 (𝑋) = 𝑋−1 − 𝐴, Homeier’s method can be expressed as

𝑋𝑘+1 = −1
2
𝑋𝑘

(

−7𝐼 + 𝐴𝑋𝑘
(

9𝐼 + 𝐴𝑋𝑘
(

−5𝐼 + 𝐴𝑋𝑘
)))

, 𝑘 ≥ 0. (3)

t was extended to the computation of inverses of matrices by Li et al. in [9]; recently, Kansal et al. in [5] showed its convergence
rder three.

Let us now consider the following family of third-order scalar iterative schemes:

𝑦𝑘 = 𝑥𝑘 −
𝑓 (𝑥𝑘)
𝑓 ′(𝑥𝑘)

, 𝑘 = 0, 1, 2,… , (4)

𝑥𝑘+1 = 𝑥𝑘 − 𝐺
(

𝑢𝑘
) 𝑓 (𝑥𝑘)
𝑓 ′(𝑦𝑘)

,

where 𝑢𝑘 = 𝑓 ′(𝑦𝑘)
𝑓 ′(𝑥𝑘)

, 𝐺(1) = 1, 𝐺′(1) = 1
2 . These conditions on weight function 𝐺 ensure the convergence of the schemes of

(4) with third-order. Among the infinite weight functions that meet these conditions, we consider the particular cases: 𝐺(𝑢𝑘) =

1 + 1
2
(𝑢𝑘 − 1) + 𝛾(𝑢𝑘 − 1)2 and 𝐺(𝑢𝑘) =

𝛾 + 𝑢𝑘 + (3𝛾 + 1)𝑢2𝑘
2𝑢𝑘(1 + 2𝛾)

. The first polynomial expression does not lead to an iterative formula free
of inverse operators, while the second one does. The next result proves the convergence of the resulting class of iterative methods,
and generalizes that obtained in [5] for Homeier’s method.

Theorem 2.1. Let 𝐴 ∈ C𝑛×𝑛 be a nonsingular matrix. Let 𝑋0 be an initial approximation such that ‖𝐼 −𝐴𝑋0‖ < 1. Then, sequence {𝑋𝑘},
obtained by

𝑋𝑘+1 =
1
2
𝑋𝑘(7𝐼 − 𝐵𝑘(9𝐼 + 𝐵𝑘(−5𝐼 + 𝐵𝑘)))

1 + 2𝛾
+

𝛾
2
23𝐼 − 𝐵𝑘(51𝐼 + 𝐵𝑘(−56𝐼 + 𝐵𝑘(32𝐼 + 𝐵𝑘(−9𝐼 + 𝐵𝑘))))

1 + 2𝛾
, (5)

being 𝐵𝑘 = 𝐴𝑋𝑘 and 𝐼 the identity matrix, converges to 𝐴−1 with convergence order 𝑝 = 3, if 𝛾 ∈
[

0, 12
]

. In that case, the error equation,
denoting 𝑒𝑘 = 𝑋𝑘 − 𝐴−1, is ‖𝑒𝑘+1‖ ≤ ‖𝐴2

‖ ‖𝑒𝑘‖3.

Proof. Let us define 𝐸𝑘 ∶= 𝐼 − 𝐴𝑋𝑘, 𝑘 = 0, 1, 2, 3,… . Then it can be proven that

𝐸𝑘+1 =
1

2 + 4𝛾
[

(1 − 2𝛾)𝐸3
𝑘 + (1 + 2𝛾)𝐸4

𝑘 + 3𝛾𝐸5
𝑘 + 𝛾𝐸6

𝑘
]

.

By induction process, we prove that ‖𝐸𝑘 ‖ < 1, ∀ 𝑘 ∈ N. Therefore, ‖𝐸𝑘+1‖ ≤ 𝑤𝑘
‖𝐸0‖

3𝑘+1 , where 𝑤 = |1−2𝛾|+|1+2𝛾|+|3𝛾|+|𝛾|
|2+4𝛾| . Let us

remark that, by definition, 𝑤 ≥ 1 but to guarantee convergence, it must be imposed that 𝑤 ≤ 1; then, 𝑤 = 1 and it follows that 𝛾 ∈ R
nd 0 ≤ 𝛾 ≤ 1

2
. So, when 𝑘 → +∞, ‖𝐸𝑘+1‖ tends to zero and sequence {𝑋𝑘} converges to 𝐴−1. On the other hand, let 𝑒𝑘 = 𝑋𝑘 −𝐴−1

enote the error in the iterate 𝑘. Then,

‖𝐼 − 𝐴𝑋𝑘+1‖ ≤ ‖𝐼 − 𝐴𝑋𝑘‖
3 ⇔ ‖𝐴(𝐴−1 −𝑋𝑘+1)‖ ≤ ‖𝐴(𝐴−1 −𝑋𝑘)‖3.

o,
‖

‖

‖

𝐴−1 [𝐴
(

𝐴−1 −𝑋𝑘+1
)]

‖

‖

‖

≤ ‖𝐴−1
‖

‖

‖

‖

𝐴
(

𝐴−1 −𝑋𝑘+1
)

‖

‖

‖

≤ ‖𝐴2
‖ ‖𝐴−1 −𝑋𝑘‖

3,

e can state that ‖𝑒𝑘+1‖ ≤ ‖𝐴2
‖‖𝑒𝑘‖3 and therefore {𝑋𝑘} converges to 𝐴−1 with order of convergence 3. □

In the next section, we study the qualitative performance of the members of this class of iterative methods and state the
dependence between convergence and stability conditions.

3. Stability analysis

As far as we know, no kind of qualitative study on iterative schemes to approximate matrix inverses has been made in the
2

literature. To afford the task of a qualitative analysis for estimating the inverse a nonsingular matrix, we make a different approach
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Fig. 2. Stability regions of strange fixed points 𝑒𝑥𝑖(𝛾), 𝑖 = 1, 2, 3, 4.

from the usual quadratic polynomial. Let 𝑅𝛾 ∶ R → R be the rational operator, obtained by applying (5) on 𝑓 (𝑥) = 1
𝑥

− 1,

𝑅𝛾 (𝑥) =
𝑥(−7 + 9𝑥 − 5𝑥2 + 𝑥3 + 𝛾(−23 + 51𝑥 − 56𝑥2 + 32𝑥3 − 9𝑥4 + 𝑥5))

2(1 + 2𝛾)
.

Let us remark that 𝑅𝛾 (𝑥) is not defined for 𝛾 = − 1
2 . The amount of fixed points, their asymptotic behavior and the existence

of critical points and their respective basins of attraction are the main points of the analysis made, with their respective sketch of
proofs.

Theorem 3.1. Let us consider 𝑅𝛾 ∶ 𝐷 ⊂ R → R, 𝛾 ∈ R ⧵ {− 1
2 }, the rational function associated with the family of iterative methods (5)

on 𝑓 (𝑥) = 1∕𝑥 − 1, whose only zero is 𝑥 = 1. Then, 𝑥 = 0 is the only strange fixed point of 𝑅𝛾 (𝑥) if 𝛾 ∈
]

−∞,− 1
2

[

∪ [0,+∞[. Moreover,

(a) If 𝛾 ∈
]

− 1
2 ,−

1
3

]

, then the strange fixed points of 𝑅𝛾 (𝑥) are 𝑥 = 0 and the four (real) zeros of the polynomial 𝑝(𝑥) = 𝛾𝑥4 −8𝛾𝑥3 + (1+

24𝛾)𝑥2 + (−4 − 32𝛾)𝑥 + 5 + 19𝛾, denoted by 𝑒𝑥𝑗 (𝛾), 𝑗 = 1, 2, 3, 4. If 𝛾 = − 1
3 , 𝑒𝑥1(𝛾) = 𝑒𝑥2(𝛾) = 2 and 𝑒𝑥3,4(𝛾) = 2 ±

√

3.
(b) If 𝛾 ∈

]

− 1
3 , 0

[

, then the strange fixed points of 𝑅𝛾 (𝑥) are 𝑥 = 0 (double) and two other (real) zeros of the polynomial 𝑝(𝑥). In
particular, if 𝛾 = − 5

19 , then the strange fixed points are 𝑥 = 0 (triple) and 𝑥 = 4.

Proof. The result is straightforward from solving the equation 𝑅𝛾 (𝑥) = 𝑥, as (𝑥−1)𝑥
(

𝛾
(

𝑥4−8𝑥3+24𝑥2−32𝑥+19
)

+𝑥2−4𝑥+5
)

4𝛾+2 = 0, must be satisfied
and the intervals where there exist real roots of 𝑝(𝑥) = 𝛾𝑥4 −8𝛾𝑥3 + (1+24𝛾)𝑥2 + (−4−32𝛾)𝑥+5+19𝛾 define the strange fixed points,
in addition to 𝑥 = 0. □

Theorem 3.2. If 𝛾 ≠ − 1
2 , the strange fixed point 𝑥 = 0 of the operator 𝑅𝛾 (𝑥) is an attractor for 𝛾 ∈

]

− 1
3 ,−

5
19

[

, superattractor for 𝛾 = − 7
23 ,

parabolic when 𝛾 = − 1
3 or 𝛾 = − 5

19 and repulsor at all other real values of 𝛾.

Proof. The stability area of 𝑥 = 0 can be seen in Fig. 1. The graph shows that in the real interval
]

− 1
3 ,−

5
19

[

the fixed point is an
attractor (|𝑅′

𝛾 (0)| < 1), it is parabolic at 𝛾 = − 1
3 or 𝛾 = − 5

19 , and outside this interval it is a repulsor.

The stability of the rest of strange fixed points can be deduced in a similar way. In Fig. 2, the repulsive character of 𝑒𝑥2(𝛾) and
𝑒𝑥4(𝛾) is clear, as well as the small intervals where 𝑒𝑥1(𝛾) and 𝑒𝑥3(𝛾) are attracting. As each basin of attraction is directly related
with a critical point (see [7]), their existence is a key fact to detect all the unstable performances to be avoided.

Theorem 3.3. If 𝛾 ≠ − 1
2 , 𝑥 = 1 is a critical point of the operator 𝑅𝛾 (𝑥). For 𝛾 = 1

2 , there are no free critical points. Moreover,

(a) If 𝛾 ∈ ]−∞, 𝑐∗[ ∪
]

0, 12
[

∪
]

1
2 ,+∞

[

, there is only one free critical point, 𝑐𝑟1(𝛾), the only real zero of the polynomial 𝑞(𝑥) =
6𝛾𝑥3 − 33𝛾𝑥2 + (4 + 56𝛾)𝑥 − 7 − 23𝛾 and 𝑐∗ ≈ −0.683408 (only real zero of the polynomial 𝑟(𝑥) = 2470𝑥3 + 795𝑥2 − 423𝑥 + 128).
3
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Fig. 3. Parameter lines for real free critical points.

Fig. 4. Feigenbaum diagrams of free critical points.

Fig. 5. Strange attractors of 𝑅𝛾 (𝑥).

(b) If 𝛾 ∈
]

𝑐∗,− 1
2

[

∪
]

− 1
2 , 0

[

, there are three free critical points, 𝑐𝑟𝑖(𝛾), 𝑖 = 1, 2, 3, zeros of 𝑞(𝑥). In particular, if 𝛾 = 𝑐∗, one of the three
zeros of 𝑞(𝑥) is double: 𝑐𝑟1(𝑐∗) ≈ 0.316537, 𝑐𝑟2(𝑐∗) = 𝑐𝑟3(𝑐∗) ≈ 2.59173.

Proof. As critical points satisfy 𝑅′
𝛾 (𝑥) = 0, we solve equation (−1 + 𝑥)2(−7 + 4𝑥 + 𝑐(−23 + 𝑥(56 − 33𝑥 + 6𝑥2)))

2 + 4𝑐
= 0, and find the

critical point 𝑥 = 1 as its double root and the zeros of 𝑞(𝑥), at the intervals where they are real. Let us remark that 𝑐∗ corresponds
to the value of 𝛾 that forces polynomial 𝑞(𝑥) to have two real roots, on of them double. □

Parameter lines (see [10]) are graphs made from the free critical points of the rational function associated with the family of
iterative methods (5). They allow visualizing methods with similar dynamical behavior and selecting the best ones in terms of
stability. Fig. 3(a) shows the parameter line corresponding to the free critical point 𝑐𝑟1(𝛾). The intervals defined by the red colored
regions correspond to the elements of the family whose behavior is stable as 𝑐𝑟1(𝛾) lay in the basin of the root 𝑥 = 1; in black color
an area of unstable behavior is shown, that corresponds to 𝑐𝑟1(𝛾) converging to an attracting element (fixed or periodic points), and
in blue color the intervals where divergence appear. In stable (red) regions, the only free critical point is 𝑐𝑟1(𝛾) and converges to
the root. That is, in these regions 𝑐𝑟2(𝛾) and 𝑐𝑟3(𝛾) are not free critical points. Parameter lines for 𝑐𝑟2(𝛾) and 𝑐𝑟3(𝛾) are shown in
Fig. 3(b) and (c). So, almost the entire real line is of stable behavior.

In order to analyze the behavior of 𝑅𝛾 (𝑥) when we select an element in the black area of the parameter line, we use bifurcation
diagrams, able to detect strange attractors. In Fig. 4, we see the bifurcation diagrams corresponding to 𝑐𝑟1(𝛾) and 𝑐𝑟2(𝛾) for parameter
values located in the black zone, with −5 < 𝛾 < 5 ó −0.68 < 𝛾 < −0.01. In these intervals there are attracting strange fixed points
(𝑥 = 0, 𝑒𝑥1(𝛾) or 𝑒𝑥3(𝛾)), and when they change their character and become repulsive, they bifurcate into double period orbits that
finally give rise to chaotic behavior, see Fig. 5. In them, the iteration is trapped in a region of phase space.

To detail the study on the stability of the members of the uniparametric family given in Eq. (5), we use dynamical lines, which
help us to visualize more accurately the information obtained in the parameter lines. Fig. 6 shows the dynamical lines for some
specific values of 𝛾 in the stability zone. The orange color corresponds to the 𝑥 = 1 basin of attraction, the blue color to the
divergence basin. It is observed that convergent behavior can be found with good properties of stability outside the interval where
Theorem 2.1 assures it. On the other hand, Fig. 7 shows the dynamical lines for values of 𝛾 in the instability zone, in which three
basins of attraction are observed: the basin of 𝑥 = 1 in orange, the divergence basin in blue and the basin of an attracting strange
fixed point in green. Black areas of no convergence to 𝑥 = 1 are also observed and, therefore, intervals of specially bad performance
can be expected.
4
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Fig. 6. Dynamical lines for methods in the stability region.

Fig. 7. Dynamical lines for methods outside the stability region.

Table 1
Results obtained by approximating the inverse of a random matrix of order 𝑛 = 100.

Method n COC iter ‖𝑋𝑘+1 −𝑋𝑘 ‖2 ‖ 𝐼 − 𝐴𝑋𝑘+1 ‖2 𝑒 − 𝑡𝑖𝑚𝑒

Newton–Schulz 100 2.0000 26 0.002288 3.80 × 10−09 0.156803
Chebyshev 100 1.7231 17 0.0001474 2.48 × 10−12 0.135422

Block 1: Convergence conditions are met (0 ≤ 𝛾 ≤ 1∕2)

FH 𝛾 = 0.25 100 3.0489 13 0.01025 3.52 × 10−12 0.1414
FH 𝛾 = 0.40 100 3.4933 12 0.6139 2.89 × 10−07 0.1422
FH 𝛾 = 0.5 100 4.0475 12 0.1416 1.06 × 10−10 0.0832

Block 2: 𝛾 ∉ [0, 1∕2] and in the stability zone

FH 𝛾 = −4 100 2,2827 10 0.09308 1.02 × 10−08 0.1392
FH 𝛾 = −0.38 100 2.7729 26 3.48 × 10−05 8.23 × 10−14 0.2395
FH 𝛾 = 3 100 2.7951 11 0.1418 2.00 × 10−08 0.1398

Block 3: 𝛾 ∉ [0, 1∕2] and in instability zone

FH 𝛾 = −0.2 100 3.0049 24 0.01259 4.56 × 10−11 0.163646
FH 𝛾 = −0.3 100 – − – − –
FH 𝛾 = −0.6 100 3.0049 24 0.01259 4.56 × 10−11 0.189989

4. Numerical experiments

In this section, we present numerical tests of nine different methods of the family given by Eq. (5), denoted by 𝐹𝐻 , designed to
approximate the inverse of a nonsingular matrix 𝐴, by comparing them with the classical Newton–Schulz and Chebyshev methods.
The numerical tests were carried out in Matlab R2023b, using an Intel Core i7-1065G7 processor up to 3.9 GHz, 16 GB DDR4 RAM.
The stopping criterion used is ‖𝑋𝑘+1 −𝑋𝑘‖2 < 10−6 or ‖𝐹 (𝑋𝑘+1)‖2 = ‖𝐼 −𝐴𝑋𝑘+1‖2 < 10−6. Tables 1 and 2 show the results obtained
by approximating the inverse of nonsingular random matrices of size 𝑛, where 𝑛 = 100 and 𝑛 = 500, respectively. The initial estimate
used for each method is 𝑋0 = 𝐴𝑇

‖𝐴 ‖

2 , satisfying the convergence hypothesis of Theorem 2.1. Moreover, in each table, the selected
values of 𝛾 correspond to 𝛾 = 0.25, 𝛾 = 0.4 and 𝛾 = 0.5 (0 ≤ 𝛾 ≤ 1∕2), where convergence conditions are met; also 𝛾 ∉ [0, 1∕2] but in
the stability intervals of the dynamical analysis (in particular, 𝛾 = −4, 𝛾 = −0.38 and 𝛾 = 3). Finally, values of 𝛾 ∉ [0, 1∕2] lying in
instability intervals are used, 𝛾 = −0.2, 𝛾 = −0.3 and 𝛾 = −0.6.

To check the theoretical convergence order 𝑝, we use the approximate computational convergence order (COC), introduced

by Jay (see [11]) and defined as: 𝑝 ≈ 𝐶𝑂𝐶 =
ln
(

‖𝐹 (𝑋𝑘+1)‖2∕‖𝐹 (𝑋𝑘)‖2
)

ln (‖𝐹 (𝑋𝑘)‖2∕‖𝐹 (𝑋𝑘−1)‖2)
. Also, the execution time is provided by a mean of 50

consecutive runs using cputime command.
It is observed in both tables that the best results are obtained for those schemes in the stability area, lying or not in the interval

[0, 1∕2], where the convergence is analytically assured. This statement is valid when comparing execution times, the number of
iterations needed or the accuracy of the results.

5. Conclusions

In this research, we have constructed a parametric family of iterative methods to compute inverses of nonsingular matrices, with
interesting computational properties. By imposing smooth conditions, convergence is guaranteed, under certain conditions on the
parameter and the initial estimate. The study of the associated discrete dynamical system has allowed us to detect regions of stable
behavior for certain values of the parameter, extending the possibilities of convergence. The numerical tests made show better results
of some members of the new class than classical Newton and Chebyshev schemes in terms of execution time, number of iterations
and residual error. In future works, we will analyze the behavior of this class for approximating generalized inverses.
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Table 2
Results obtained by approximating the inverse of a random matrix of order 𝑛 = 500.

Method n COC iter ‖𝑋𝑘+1 −𝑋𝑘 ‖2 ‖ 𝐼 − 𝐴𝑋𝑘+1 ‖2 𝑒 − 𝑡𝑖𝑚𝑒

Newton–Schulz 500 2.0000 42 0.06178 1.12 × 10−09 3.275433
Chebyshev 500 3.0000 27 0.0124 5.87 × 10−08 2.409281

Block 1: Convergence conditions are met (0 ≤ 𝛾 ≤ 1∕2)

FH 𝛾 = 0.25 500 1.3494 21 0.004824 1.15 × 10−11 2.5544
FH 𝛾 = 0.40 500 2.0336 20 0.08249 1.16 × 10−11 2.7980
FH 𝛾 = 0.5 500 4.0855 18 28.9 3.06 × 10−8 2.1600

Block 2: 𝛾 ∉ [0, 1∕2] and in the stability zone

FH 𝛾 = −4 500 1.8401 17 0.02621 1.21 × 10−11 2.2214
FH 𝛾 = −0.38 500 1.457 26 3.15 × 10−06 1.06 × 10−11 3.4440
FH 𝛾 = 3 500 2.1790 18 0.08965 1.18 × 10−11 2.3306

Block 3: 𝛾 ∉ [0, 1∕2] and in instability zone

FH 𝛾 = −0.2 500 2.8349 40 0.2803 1.09 × 10−11 5.268755
FH 𝛾 = −0.3 500 – − – − –
FH 𝛾 = −0.6 500 2.8349 40 0.2803 1.09 × 10−11 5.286839

Data availability

No data was used for the research described in the article.
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