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In the present work we study the concepts of shadowing 
and chain recurrence in the setting of linear dynamics. We 
prove that shadowing and finite shadowing always coincide 
for operators on Banach spaces, but we exhibit operators on 
the Fréchet space H(C) of entire functions that have the finite 
shadowing property but do not have the shadowing property. 
We establish a characterization of mixing for continuous 
maps with the finite shadowing property in the setting of 
uniform spaces, which implies that chain recurrence and 
mixing coincide for operators with the finite shadowing 
property on any topological vector space. We establish a 
characterization of dense distributional chaos for operators 
with the finite shadowing property on Fréchet spaces. As a 
consequence, we prove that if a Devaney chaotic (resp. a chain 
recurrent) operator on a Fréchet space (resp. on a Banach 
space) has the finite shadowing property, then it is densely 
distributionally chaotic. We obtain complete characterizations 
of chain recurrence for weighted shifts on Fréchet sequence 
spaces. We prove that generalized hyperbolicity implies 
periodic shadowing for operators on Banach spaces. Moreover, 
the concepts of shadowing and periodic shadowing coincide 
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for unilateral weighted backward shifts, but these notions do 
not coincide in general, even for bilateral weighted shifts.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC license (http://
creativecommons .org /licenses /by -nc /4 .0/).

1. Introduction

Consider a metric space X with metric d and a map f : X → X. Given δ > 0, 
recall that a δ-pseudotrajectory of f is a finite or infinite sequence (xj)i<j<k in X, where 
−∞ ≤ i < k ≤ ∞ and k − i ≥ 3, such that

d(f(xj), xj+1) ≤ δ for all i < j < k − 1.

A finite δ-pseudotrajectory of the form (xj)kj=0 is also called a δ-chain for f from x0 to 
xk and the number k is its length. Recall that f has the positive shadowing property if 
for every ε > 0, there exists δ > 0 such that every δ-pseudotrajectory (xj)j∈N0 of f is 
ε-shadowed by a real trajectory of f , that is, there exists x ∈ X such that

d(xj , f
j(x)) < ε for all j ∈ N0.

If f is bijective, then the shadowing property is defined by replacing the set N0 by the set 
Z in the above definition. Recall also that f is chain recurrent (resp. chain transitive) if 
for every x ∈ X (resp. x, y ∈ X) and every δ > 0, there is a δ-chain for f from x to itself 
(resp. from x to y). Moreover, f is chain mixing if for every x, y ∈ X and every δ > 0, 
there exists k0 ∈ N such that for every k ≥ k0, there is a δ-chain for f from x to y with 
length k.

The notions of pseudotrajectory, shadowing and chain recurrence originated in the 
seminal works of Conley [20], Sinăı [43] and Bowen [15] in the early 1970’s. These concepts 
play a fundamental role in the qualitative theory of dynamical systems and differential 
equations. We refer the reader to the books [4,22,29,39,40,42] for nice expositions on 
these important concepts and their applications.

In the last few years some interesting results on shadowing and chain recurrence were 
obtained in the setting of linear dynamics [1,3,9,11,16]. For instance, it has long been 
known that every invertible hyperbolic operator on a Banach space has the shadowing 
property [36,37] (an operator on a Banach space is said to be hyperbolic if its spectrum 
does not intersect the unit disc) and that the converse holds in the finite-dimensional 
setting [36,37] and for invertible normal operators on Hilbert spaces [33]. However, it 
remained open for a while whether this converse is always true or not. This problem 
was finally settled in [9], where the first examples of non-hyperbolic operators with 
the shadowing property were exhibited. In the present work we will continue this line 
of investigation by analyzing some problems on shadowing and chain recurrence for 
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operators. Although our main goal is to investigate the dynamics of linear operators 
on Fréchet spaces and, in particular, on Banach spaces, some of our results will be 
established in much greater generality. Below we present the topics covered in the paper 
and its organization.

In Section 2 we will consider the finite shadowing property. This variation of the no-
tion of shadowing is defined as the positive shadowing property but considering only 
finite pseudotrajectories (of arbitrary length) instead of infinite ones. From the com-
putational point of view, it seems to be even more relevant than shadowing, since 
computer-generated trajectories are actually finite pseudotrajectories. It is well known 
that shadowing and finite shadowing coincide in the setting of compact metric spaces [40, 
Lemma 1.1.1], but this equivalence already fails on a certain locally compact subspace of 
R [21, Example 2.3.4]. We will investigate the validity of the equivalence between shad-
owing and finite shadowing in the setting of linear dynamics. Our main result asserts 
that these concepts always coincide for operators on Banach spaces (Theorem 1). Never-
theless, we will exhibit operators on the Fréchet space H(C) of entire functions that have 
the finite shadowing property but do not have the shadowing property (Theorem 2).

In Section 3 we will investigate some chaotic behaviors of operators with the finite 
shadowing property. We will establish a characterization of mixing for continuous maps 
with the finite shadowing property in the setting of uniform spaces (Theorem 5), which 
will imply a very general theorem in linear dynamics (Theorem 7). We will also establish 
a characterization of dense distributional chaos for operators with the finite shadowing 
property on Fréchet spaces (Theorem 9). As applications, we will show that if a De-
vaney chaotic (resp. a chain recurrent) continuous linear operator on a Fréchet space 
(resp. on a Banach space) has the finite shadowing property, then it is densely distri-
butionally chaotic (Theorems 11 and 12). In particular, the Devaney chaotic operators 
constructed by Menet [35] do not have the finite shadowing property, since they are not 
distributionally chaotic.

In Section 4 we will consider weighted shifts on Fréchet sequence spaces. Due to the 
importance of weighted shifts in the area of operator theory and its applications, the 
dynamics of these operators has been extensively investigated by many researchers (see 
the books [5,27] and the papers [6–9,11,19,26,41], for instance). Our goal in this section is 
to establish complete characterizations of chain recurrence for weighted shifts on Fréchet 
sequence spaces (Theorems 13, 14, 15 and 16), which extend previous results from [1]
in the case of c0 and �p spaces. Moreover, we will illustrate these characterizations by 
presenting concrete examples on some classical sequence spaces.

In Section 5 we will investigate the so-called periodic shadowing property [30,38] for 
continuous linear operators on Banach spaces. Our main result asserts that generalized 
hyperbolicity implies periodic shadowing (Theorem 18 and Corollary 19). Next we will 
prove that positive shadowing and positive periodic shadowing coincide for unilateral 
weighted backward shifts on the classical Banach sequence spaces �p(N) (1 ≤ p < ∞) 
and c0(N) (Theorem 21). However, the notions of shadowing and periodic shadowing do 
not coincide in general, even for bilateral weighted shifts. In fact, we will obtain a class 
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of operators with the periodic shadowing property (Theorem 22) that includes bilateral 
weighted shifts without the shadowing property (Corollary 23).

In the Appendix at the end of the paper we will establish several basic facts related to 
the notion of chain recurrence and the shadowing property for continuous linear operators 
on topological vector spaces. Our goal is to lay the foundations in great generality, 
complementing and extending previous basic results on this subject (see [1,3,9,11,40], 
for instance). Since these results are of a more elementary character, we decided to 
postpone them to the Appendix. However, some of these results will be used in previous 
sections, but properly referenced.

We will close the paper by proposing some open problems.
Throughout K denotes either the field R of real numbers or the field C of complex 

numbers. Moreover, N denotes the set of all positive integers and N0 := N ∪{0}. When-
ever we consider a Fréchet space X, we will tacitly assume that we have already chosen 
an increasing sequence (‖ · ‖k)k∈N of seminorms that induces its topology and that it is 
endowed with the compatible complete invariant metric given by

d(x, y) :=
∞∑
k=1

1
2k min{1, ‖x− y‖k} (x, y ∈ X). (1)

We observe that the notions of shadowing and chain recurrence depend only on the 
underlying uniform structure of the space, and so they do not depend on the specific 
compatible invariant metric we choose.

2. Shadowing versus finite shadowing for operators

In this section we will investigate whether or not shadowing and finite shadowing 
coincide for operators on Fréchet spaces.

Given a metric space X, recall that a map f : X → X has the finite shadowing 
property if for every ε > 0, there exists δ > 0 such that for each δ-chain (xj)kj=0 of f , 
there exists x ∈ X with

d(xj , f
j(x)) < ε for all j ∈ {0, . . . , k}.

In this case, if f is bijective, (xj)kj=−i is a finite δ-pseudotrajectory of f (i ≥ 0, k ≥ 1) 
and we define yt := xt−i for t ∈ {0, . . . , i + k}, then (yt)i+k

t=0 is a δ-chain for f , and so 
there exists y ∈ X with d(yt, f t(y)) < ε for all t ∈ {0, . . . , i + k}. Hence, x := f i(y) ∈ X

satisfies

d(xj , f
j(x)) < ε for all j ∈ {−i, . . . , k}.

This explains why we use the terminology “finite shadowing” instead of “positive finite 
shadowing” for the above notion.
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It turns out that shadowing and finite shadowing always coincide for operators on 
Banach spaces.

Theorem 1. For any invertible continuous linear operator T on any Banach space X, the 
following assertions are equivalent:

(i) T has the shadowing property;
(ii) T has the positive shadowing property;
(iii) T has the finite shadowing property.

In the non-invertible case, (ii) and (iii) are equivalent.

Proof. (i) ⇒ (ii) ⇒ (iii): Obvious.
(iii) ⇒ (i): Given ε > 0, let δ > 0 be associated to ε/4 according to the fact that T
has the finite shadowing property. Let (xj)j∈Z be a δ-pseudotrajectory of T . The first 
step consists in replacing the δ-pseudotrajectory (xj)j∈Z by a δ-pseudotrajectory (yj)j∈Z
which is close to (xj)j∈Z, in the sense that

‖yj − xj‖ <
ε

4 for all j ∈ Z, (2)

and has the following additional property:

lim
j→±∞

‖Tyj − yj+1‖ = 0. (3)

For this purpose, choose m ∈ N with ε/m < δ and define

nk := k(k − 1)m
2 for all k ∈ N.

For each k ∈ N, there exists uk ∈ X such that

‖xj − T juk‖ <
ε

4 for all j ∈ {−nk+1, . . . , nk+1}. (4)

For each k ∈ N and each j ∈ {0, . . . , km − 1}, define

ynk+j := km− j

km
Tnk+juk + j

km
Tnk+juk+1

and

y−nk−j := km− j

km
T−nk−juk + j

km
T−nk−juk+1.

It follows from (4) that (2) holds. Moreover, for each k ∈ N and each j ∈ {0, . . . , km −1},
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‖Tynk+j − ynk+j+1‖ =
∥∥∥ 1
km

Tnk+j+1uk − 1
km

Tnk+j+1uk+1

∥∥∥
≤ 1

km

∥∥∥Tnk+j+1uk − xnk+j+1

∥∥∥ + 1
km

∥∥∥xnk+j+1 − Tnk+j+1uk+1

∥∥∥
<

ε

2km < δ

and, similarly,

‖Ty−nk−j − y−nk−j+1‖ <
ε

2km < δ.

This shows that (yj)j∈Z is also a δ-pseudotrajectory of T and that (3) holds.
The second step consists in constructing inductively an increasing sequence (mk)k∈N

of positive integers, a sequence (vk)k∈N of vectors in X and a sequence ((y(k)
j )j∈Z)k∈N

of pseudotrajectories of T satisfying the following conditions for each k ∈ N:

(a) (y(k)
j )j∈Z is a 

δ

2k−1 -pseudotrajectory of T ;

(b) lim
j→±∞

‖Ty(k)
j − y

(k)
j+1‖ = 0;

(c) ‖Ty(k)
j − y

(k)
j+1‖ <

δ

2k+1 whenever |j| ≥ mk;

(d) ‖y(k)
j − T jvk‖ <

ε

2k+1 whenever |j| ≤ mk + p;

(e) y
(k)
0 = vk−1 and ‖y(k)

j − y
(k−1)
j ‖ <

ε

2k for all j ∈ Z (provided k ≥ 2).

The number p is a fixed positive integer greater than ε/δ. We begin by defining

y
(1)
j := yj for all j ∈ Z.

By (3), we can choose an m1 ∈ N such that

‖Ty(1)
j − y

(1)
j+1‖ <

δ

22 whenever |j| ≥ m1.

By finite shadowing, there exists v1 ∈ X such that

‖y(1)
j − T jv1‖ <

ε

22 whenever |j| ≤ m1 + p.

Hence, (a), (b), (c) and (d) hold with k := 1. Suppose that mk, vk and (y(k)
j )j∈Z have 

already been chosen for k ∈ {1, . . . , t} so that all the desired properties hold. Define

y
(t+1)
j :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T jvt if |j| ≤ mt

mt+p−|j|
p T jvt + |j|−mt

p y
(t)
j if mt < |j| < mt + p

y
(t) if |j| ≥ mt + p

.

j
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Some elementary computations show that (a) and (e) hold with k := t + 1. Since

lim
j→±∞

‖Ty(t+1)
j − y

(t+1)
j+1 ‖ = lim

j→±∞
‖Ty(t)

j − y
(t)
j+1‖ = 0,

we have that (b) holds with k := t +1. Moreover, we can choose an mt+1 > mt such that 
(c) hold with k := t +1. Finally, by finite shadowing, there exists a vector vt+1 ∈ X such 
that (d) holds with k := t + 1. This completes our induction process.

Let us now complete the proof. Since

‖vk − vk+1‖ = ‖y(k+1)
0 − T 0vk+1‖ <

ε

2k+2 for all k ∈ N,

we have that (vk)k∈N is a Cauchy sequence in X. By completeness, there exists

v := lim
k→∞

vk ∈ X.

Moreover,

‖T jvk − yj‖ ≤ ‖T jvk − y
(k)
j ‖ +

k∑
t=2

‖y(t)
j − y

(t−1)
j ‖ <

ε

2k+1 +
k∑

t=2

ε

2t <
ε

2 ,

whenever k ∈ N and |j| ≤ mk + p. By fixing j ∈ Z and letting k → ∞, we obtain

‖T jv − yj‖ ≤ ε

2 for all j ∈ Z. (5)

By (2) and (5), the δ-pseudotrajectory (xj)j∈Z is ε-shadowed by the trajectory of v, 
proving that T has the shadowing property.

In the non-invertible case, the arguments are analogous. �
One important fact in the previous proof was that the ε-δ association can be selected 

to be linear if we have a Banach space, essential for applying the induction process in 
the second step of the proof to get (d) with ε

2k+1 from finite shadowing when we have a 
δ

2k−1 -pseudotrajectory. This is something that we cannot do in general with an F -norm 
for a Fréchet space. Actually, the equivalence between shadowing and finite shadowing 
may fail for operators on Fréchet spaces.

Theorem 2. Let H(C) be the Fréchet space of all entire functions endowed with the 
compact-open topology. For each λ ∈ C with |λ| 
∈ {0, 1}, the multiplication operator

Mλ : f ∈ H(C) �→ λf ∈ H(C)

has the finite shadowing property but does not have the shadowing property.
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Proof. For each k ∈ N, let

Dk := {z ∈ C : |z| < k} and ‖f‖k := sup
z∈Dk

|f(z)| for f ∈ H(C).

The sequence (‖ · ‖k)k∈N of seminorms induces the compact-open topology on H(C). 
Consider H(C) endowed with its canonical metric given by (1). For each k ∈ N, let 
A(Dk) be the “disk algebra on the disk Dk”, that is,

A(Dk) := {g : Dk → C : g is continuous on Dk and analytic on Dk}

endowed with the norm ‖ · ‖k, which is a Banach space (actually, a Banach algebra). In 
view of Proposition 33 in the Appendix, it is enough to consider the case |λ| > 1, since 
Mλ−1 = (Mλ)−1. Thus, fix λ ∈ C with |λ| > 1 and let T := Mλ.

Let us prove that T has the finite shadowing property. For this purpose, fix ε > 0 and 
choose � ∈ N such that

d(f, 0) < ε whenever f ∈ H(C) and ‖f‖� <
ε

2 ·

Let

S : g ∈ A(D�) �→ λg ∈ A(D�).

Since S is a proper dilation on the Banach space A(D�) (i.e., ‖S−1‖ < 1), S is a hy-
perbolic operator. Hence, S has the shadowing property. Let η > 0 be such that every 
η-pseudotrajectory of S is (ε/2)-shadowed by a real trajectory of S. Choose δ > 0 such 
that

‖f‖� ≤ η whenever f ∈ H(C) and d(f, 0) ≤ δ.

If (fj)kj=0 is a δ-chain for T , then (fj |D�
)kj=0 is an η-chain for S, and so there exists 

g ∈ A(D�) such that

‖fj |D�
− Sjg‖� <

ε

2 for all j ∈ {0, . . . , k}.

By the density of the polynomials in A(D�), there is a polynomial f so close to g in 
A(D�) that we have

‖fj − T jf‖� = ‖fj |D�
− Sjf‖� <

ε

2 for all j ∈ {0, . . . , k}.

Thus, d(fj , T jf) < ε for all j ∈ {0, . . . , k}, as it was to be shown.
Now, suppose that T has the shadowing property. Let δ > 0 be associated to ε := 1/2

according to this property. Choose � ∈ N such that
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d(f, 0) < δ whenever f ∈ H(C) and ‖f‖� <
δ

2 ·

Choose a function g ∈ A(D�) that cannot be extended to an entire function. We shall 
construct inductively a sequence (fj)j∈N0 of polynomials such that:

(A) ‖λjg − fj‖� <
δ

2|λ| for all j ∈ N0;

(B) ‖λfj−1 − fj‖� <
δ

2 for all j ∈ N.

We begin by choosing a polynomial f0 with ‖g − f0‖� < δ
2|λ| . Assume k ∈ N0 and 

f0, . . . , fk already chosen with the desired properties. Since

‖λk+1g − λfk‖� = |λ|‖λkg − fk‖� <
δ

2 ,

there is a polynomial pk so close to λk+1g − λfk in A(D�) that we have

‖pk‖� <
δ

2 and ‖λk+1g − λfk − pk‖� <
δ

2|λ| ·

Hence, it is enough to define fk+1 := λfk + pk. By (B), (fj)j∈N0 is a δ-pseudotrajectory 
of T . Therefore, there exists f ∈ H(C) such that

d(fj , T jf) < 1
2 for all j ∈ N0.

This implies that

‖fj − λjf‖1 < 1 for all j ∈ N0.

By (A), we obtain

‖λjg − λjf‖1 < 1 + δ

2|λ| for all j ∈ N0.

Thus, g = f on D1. By the principle of analytic continuation, g = f on D�. This 
contradicts our choice of g as an element of A(D�) that cannot be extended to an entire 
function. Our conclusion is that T does not have the shadowing property. �
Remark 3.

(a) The above proof actually shows that Mλ does not have the positive shadowing prop-
erty whenever |λ| > 1. Thus, the notions of finite shadowing and positive shadowing 
do not coincide in general for invertible operators on Fréchet spaces.
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(b) For 0 < |λ| < 1, the operator Mλ has the positive shadowing property. Indeed, this 
follows easily from the fact that if � ∈ N and if a sequence (fj)j∈N0 in H(C) satisfies

‖Mλfj − fj+1‖� ≤ δ for all j ∈ N0,

then

‖fj − (Mλ)jf0‖� ≤
δ

1 − |λ| for all j ∈ N0.

Thus, the notions of shadowing and positive shadowing do not coincide in general 
for invertible operators on Fréchet spaces. Since (Mλ)−1 = Mλ−1 does not have the 
positive shadowing property, this also shows that we cannot replace shadowing by 
positive shadowing in Proposition 33.

Remark 4. We observe that completeness is essential for the validity of Theorem 1. For 
instance, let X be the vector space of all sequences (xn)n∈N of scalars with finite support 
endowed with any �p-norm (1 ≤ p ≤ ∞) and let T ∈ GL(X) be twice the identity 
operator on X. Since twice the identity operator on c0(N) or �p(N) (1 ≤ p < ∞) has the 
shadowing property (because it is hyperbolic), it follows that T has the finite shadowing 
property. However, T does not have the positive shadowing property. In fact, given any 
δ > 0, consider the sequence (x(j))j∈N0 in X given by

x(0) := 0 and x(j) := (2j−1δ, 2j−2δ, . . . , 2δ, δ, 0, 0, . . .) for j ≥ 1.

Then (x(j))j∈N0 is a δ-pseudotrajectory of T , but it cannot be 1-shadowed by a trajectory 
of T since each element of X has finite support.

3. Chaotic behaviors in the presence of the finite shadowing property

Our goal in this section is to investigate some types of chaotic behavior for operators 
with the finite shadowing property.

We begin by recalling some notions of chaotic behavior. Let X be a topological space 
and f : X → X a map. Given sets A, B ⊂ X, the return set of f from A to B is 
defined by

Nf (A,B) := {n ∈ N0 : fn(A) ∩B 
= ∅}.

Recall that f is topologically transitive (resp. topologically ergodic, topologically mixing) 
if for any pair A, B of nonempty open subsets of X, the return set Nf(A, B) is nonempty 
(resp. syndetic, cofinite), where a set I := {n1 < n2 < · · · } ⊂ N0 is syndetic when it 
has bounded gaps, that is, supk(nk+1 − nk) < ∞. Moreover, f is topologically weakly 
mixing if f × f is topologically transitive, that is, Nf (A1, B1) ∩Nf (A2, B2) 
= ∅ for any 
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4-tuple A1, A2, B1, B2 of nonempty open subsets of X. In the sequel we will omit the 
word “topologically” from these notions. If X is a second countable Baire space without 
isolated points and f is continuous, then Birkhoff’s transitivity theorem asserts that f is 
transitive if and only if it admits a dense orbit, that is, there exists a point x ∈ X whose 
orbit Orb(x, f) := {fn(x) : n ∈ N0} is dense in X.

In the setting of linear dynamics, the existence of a dense orbit is known under the 
name of hypercyclicity. Hence, a continuous linear operator T on a topological vector 
space X is hypercyclic if it admits a dense orbit. Recall also that T is Devaney chaotic if 
it is transitive and has a dense set of periodic points. Hypercyclic and Devaney chaotic 
operators have been extensively studied during the last 30 years. We refer the reader to 
the books [5,27] for an overview of the area of linear dynamics up to 2010.

Our first theorem in this section will give us a characterization of mixing for continuous 
maps with finite shadowing in the setting of uniform spaces. In order to state and prove 
the theorem, let us first recall the notion of chain transitivity and the finite shadowing 
property in this more general setting. We refer the reader to [14, Chapter II] for the 
basics on uniform spaces.

Consider a uniform space X with uniformity U and a map f : X → X. Given V ∈ U , 
a V -chain for f is a finite sequence (xj)kj=0 in X satisfying

(f(xj), xj+1) ∈ V for all n ∈ {0, . . . , k − 1}.

In this case, we also say that (xj)kj=0 is a V -chain for f from x0 to xk. The map f has 
the finite shadowing property if for every V ∈ U , there exists U ∈ U such that for each 
U -chain (xj)kj=0 for f , there exists x ∈ X with

(xj , f
j(x)) ∈ V for all j ∈ {0, . . . , k}.

A point x ∈ X is a chain recurrent point of f if for every V ∈ U , there is a V -chain for 
f from x to itself. The set CR(f) of all chain recurrent points of f is called the chain 
recurrent set of f and f is said to be chain recurrent if CR(f) = X. Moreover, f is said 
to be chain transitive if for every x, y ∈ X and every V ∈ U , there is a V -chain for f
from x to y. We recall that for each point x ∈ X, the sets of the form

V (x) := {y ∈ X : (x, y) ∈ V },

as V runs through the uniformity U , constitute a fundamental system of neighborhoods 
of x in X. We also recall that A ⊂ X is a V -small set if A ×A ⊂ V .

Theorem 5. Consider a uniform space X with uniformity U and a continuous map f :
X → X. If f has the finite shadowing property, then f is mixing if and only if the 
following conditions hold:

(I) f is chain transitive;
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(II) For each V ∈ U , there is a V -small set A ⊂ X with Nf (A, A) cofinite.

Proof. Since the necessity of the conditions is clear, let us prove their sufficiency. Let A
and B be nonempty open sets in X. Choose points x ∈ A and y ∈ B, and let V ∈ U be 
such that

V (x) ⊂ A and V (y) ⊂ B.

Let U ∈ U be associated to V according to the definition of the finite shadowing property, 
and let W ∈ U satisfy

W ◦W := {(a, c) : (a, b) ∈ W and (b, c) ∈ W for some b ∈ X} ⊂ U.

By condition (II), there is a W -small set Z ⊂ X such that Nf (Z, Z) is cofinite. Choose 
a point z ∈ Z and let m ∈ N be such that n ∈ Nf (Z, Z) for all n ≥ m. By condition (I), 
there exist W -chains (xj)kj=0 and (yj)�j=0 for f from x to z and from z to y, respectively. 
Given n ≥ m, there exists z′ ∈ Z such that fn(z′) ∈ Z. Hence,

(uj)k+n+�
j=0 := (x0, x1, . . . , xk−1, z

′, f(z′), . . . , fn−1(z′), y0, y1, . . . , y�)

is a U -chain for f from x to y, and so there exists u ∈ X such that

(uj , f
j(u)) ∈ V for all j ∈ {0, . . . , k + n + �}.

In particular, u ∈ A and fk+n+�(u) ∈ B. This proves that

f t(A) ∩B 
= ∅ for all t ≥ t0,

where t0 := k + m + �. �
Remark 6. Condition (II) in Theorem 5 cannot be omitted in general. For instance, 
consider X := {0, 1} endowed with its discrete uniformity and let f : X → X be given 
by f(0) := 1 and f(1) := 0. Then f is chain transitive and has the shadowing property, 
but it is not mixing.

As an application of the above theorem, we obtain the following result on linear 
dynamics.

Theorem 7. Suppose that a continuous linear operator T on a topological vector space X
has the finite shadowing property. Then the following assertions are equivalent:

(i) T is chain recurrent;
(ii) T is transitive;
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(iii) T is ergodic;
(iv) T is weakly mixing;
(v) T is mixing.

Moreover, T is Devaney chaotic if and only if T has a dense set of periodic points.

Proof. Recall that a basis for the uniformity of X is given by the sets

Ṽ := {(x, y) ∈ X ×X : x− y ∈ V },

as V runs through the set of all neighborhoods of 0 in X.
In order to prove the equivalences from (i) to (v), it is enough to show that (i) 

implies (v). This follows from Theorem 5, because condition (II) is automatically true 
in the present case (note that NT (A, A) = N0 whenever 0 ∈ A) and Proposition 24 in 
the Appendix gives condition (I).

Now, suppose that T has a dense set of periodic points. Since the set CR(T ) of all 
chain recurrent points of T is closed in X (Proposition 26), we have that T is chain 
recurrent. Hence, by (i) ⇒ (ii), T is transitive, and so it is Devaney chaotic. �

The above theorem extends [3, Theorem 3.3] and [3, Corollary 3.9] from normed spaces 
and separable Banach spaces, respectively, to arbitrary topological vector spaces, but we 
observe that the arguments in [3] also work in the more general context.

Our next goal is to establish a characterization of dense distributional chaos for opera-
tors with the finite shadowing property in the setting of Fréchet spaces. For this purpose, 
let us recall the notion of distributional chaos in metric spaces and some related concepts 
in the context of linear dynamics.

Given a metric space X, recall that f : X → X is said to be distributionally chaotic if 
there exist an uncountable set Γ ⊂ X and an ε > 0 such that each pair (x, y) of distinct 
elements of Γ is an ε-distributionally chaotic pair for f , in the sense that

dens{n ∈ N : d(fn(x), fn(y)) ≥ ε} = 1

and

dens{n ∈ N : d(fn(x), fn(y)) < δ} = 1 for all δ > 0,

where dens(I) stands for the upper density of the subset I of N, that is,

dens(I) := lim sup
n→∞

card(I ∩ [1, n])
n

·

If X is a Fréchet space whose topology is induced by an increasing sequence (‖ ·‖k)k∈N
of seminorms and T : X → X is a continuous linear operator, recall that x ∈ X is 



14 N.C. Bernardes, A. Peris / Advances in Mathematics 441 (2024) 109539
called a distributionally irregular vector for T if there exist m ∈ N and I, J ⊂ N with 
dens(I) = dens(J) = 1 such that

lim
n∈I

Tnx = 0 and lim
n∈J

‖Tnx‖m = ∞.

It was proved in [7] that:

T is distributionally chaotic ⇔ T admits a distributionally irregular vector.

We shall follow the terminology of [25] and say that T is densely distributionally chaotic
if it admits a dense set of distributionally irregular vectors. It follows from results in 
[7] that this is equivalent to the existence of a residual set of distributionally irregular 
vectors.

Before stating our theorem, let us introduce the following notations: For each contin-
uous linear operator T on a Fréchet space X, we define the sets

I0(T ) := {x ∈ X : for each δ > 0, there is a δ-chain for T from x to 0},
O0(T ) := {x ∈ X : for each δ > 0, there is a δ-chain for T from 0 to x}.

Lemma 8. The sets I0(T ) and O0(T ) are T -invariant closed subspaces of X.

As a consequence, if both I0(T ) and O0(T ) are dense in X, then T is chain recurrent. 
The converse is also true, because the notions of chain recurrence and chain transitivity 
coincide for linear operators (Proposition 24). We leave the proof of the above lemma to 
the reader.

Theorem 9. Suppose that a continuous linear operator T on a Fréchet space X has the 
finite shadowing property. Then T is densely distributionally chaotic if and only if the 
following conditions hold:

(I) I0(T ) is dense in X;
(II) There exists γ > 0 such that for every δ > 0, there is a δ-chain for T from 0 to a 

vector x ∈ X satisfying

dens{j ∈ N0 : d(T jx, 0) ≥ γ} = 1.

If X is a Banach space, then we can replace condition (II) by the following weaker 
condition:

(II’) There exists γ > 0 such that for every δ > 0, there is a δ-chain for T from 0 to a 
vector x ∈ X satisfying

dens{j ∈ N0 : d(T jx, 0) ≥ γ} ≥ γ.



N.C. Bernardes, A. Peris / Advances in Mathematics 441 (2024) 109539 15
Proof. Suppose that T is densely distributionally chaotic. Since T admits a dense set 
of vectors whose trajectories have subsequences converging to 0, condition (I) holds. 
Moreover, if y is a distributionally irregular vector for T , then there exists γ > 0 such 
that

dens{j ∈ N0 : d(T jy, 0) ≥ γ} = 1.

Given δ > 0, there exists n ∈ N such that d(Tny, 0) < δ, and so (0, Tny) is a δ-chain 
for T from 0 to the vector x := Tny which satisfies dens{j ∈ N0 : d(T jx, 0) ≥ γ} = 1, 
proving that condition (II) also holds.

Conversely, suppose that conditions (I) and (II) hold. For each k ∈ N, let

Ak := {x ∈ X : ∃n ∈ N with card{1 ≤ j ≤ n : d(T jx, 0) < k−1} ≥ n(1 − k−1)}.

It is clear that each Ak is open in X. Fix k ∈ N, x ∈ X and ε > 0. Let η := min{ε, k−1}
and let δ > 0 be associated to η according to the fact that T has the finite shadowing 
property. By condition (I), there is a δ-chain (xj)tj=0 for T from x to 0. Choose n ∈ N

such that n − t > n(1 − k−1) and define xj := 0 for all j ∈ {t + 1, . . . , n}. Since (xj)nj=0
is a δ-chain for T , there exists y ∈ X such that

d(xj , T
jy) < η for all j ∈ {0, . . . , n}.

Hence, y ∈ Ak and d(y, x) < ε. This proves that Ak is dense in X. It follows that the 
set R1 of all x ∈ X for which there exists I ⊂ N with

dens(I) = 1 and lim
n∈I

Tnx = 0

is residual in X.
Now, let ε := γ/2 and, for each k ∈ N, let δk > 0 be associated to ε/k according 

to the finite shadowing property. By condition (II), for each k ∈ N, there is a δk-chain 
(xk,j)tkj=0 for T from 0 to a vector xk ∈ X satisfying

dens(Ik) = 1, where Ik := {j ∈ N0 : d(T jxk, 0) ≥ γ}.

For each k ∈ N, consider a natural number Nk > tk and define

xk,j := T j−tkxk for all j ∈ {tk + 1, . . . , Nk}.

Since (xk,j)Nk
j=0 is a δk-chain for T , there exists yk ∈ X such that

d(xk,j , T
jyk) < ε/k for all j ∈ {0, . . . , Nk}.

If j ∈ {tk + 1, . . . , Nk} and j − tk ∈ Ik, then
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d(T jyk, 0) ≥ d(xk,j , 0) − d(xk,j , T
jyk) > γ − ε/k ≥ ε.

Since dens(Ik) = 1, we can choose Nk as large as we want so that

card{1 ≤ j ≤ Nk : d(T jyk, 0) > ε} > Nk(1 − k−1). (6)

Hence, we can choose N1 < N2 < N3 < · · · so that (6) holds for all k ∈ N. Thus,

lim
k→∞

yk = 0 and lim
k→∞

1
Nk

card{1 ≤ j ≤ Nk : d(T jyk, 0) > ε} = 1.

By [7, Proposition 8], the set R2 of all x ∈ X for which there are m ∈ N and J ⊂ N

with

dens(J) = 1 and lim
n∈J

‖Tnx‖m = ∞

is residual in X. Therefore, the set R1 ∩ R2 is also residual in X. Since each element 
of this set is a distributionally irregular vector for T , we conclude that T is densely 
distributionally chaotic.

Let us now assume that X is a Banach space and that conditions (I) and (II’) hold. 
Let R1 and R2 be as above. Since condition (I) was not changed, R1 is residual in X. 
By following the arguments used in the previous paragraph with dens(Ik) ≥ γ instead 
of dens(Ik) = 1, we see that we can choose Nk as large as we want so that

card{1 ≤ j ≤ Nk : d(T jyk, 0) > ε} > εNk. (7)

Hence, we can choose N1 < N2 < N3 < · · · so that (7) holds for all k ∈ N. By [7, 
Proposition 8] in the case of Banach spaces, we conclude that R2 is residual in X. �
Remark 10. If T is a proper contraction (respectively, a proper dilation) on a Banach 
space X, then T has the shadowing property and condition (I) (respectively, condition 
(II)) holds, but T is not distributionally chaotic. This shows that each one of the condi-
tions in Theorem 9 is essential for its validity.

As applications of the previous theorem, we obtain the following results.

Theorem 11. If a Devaney chaotic continuous linear operator T on a Fréchet space X
has the finite shadowing property, then it is densely distributionally chaotic.

Proof. Actually, it is not difficult to check that Devaney chaos implies conditions (I) and 
(II) of the previous theorem. �
Theorem 12. If a chain recurrent continuous linear operator T on a Banach space X has 
the finite shadowing property, then it is densely distributionally chaotic.
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Proof. Since T is chain transitive (Proposition 24), condition (I) holds. By Theorem 1, 
T has the positive shadowing property. Let η > 0 be associated to ε := 1 according to 
this property. Choose a vector y ∈ X with ‖y‖ ≥ 2 and let (yj)kj=0 be an η-chain for T
from y to itself. Since

(y0, y1, . . . , yk, y1, . . . , yk, y1, . . . , yk, . . .)

is an η-pseudotrajectory of T , there exists x ∈ X such that

‖y − Tnkx‖ < 1 for all n ∈ N0.

Thus,

dens{j ∈ N0 : ‖T jx‖ ≥ 1} ≥ 1/k.

Since T is chain transitive, we conclude that condition (II’) holds with γ := 1/k. �
4. Chain recurrent weighted shifts on Fréchet sequence spaces

Our goal in this section is to characterize the notion of chain recurrence for weighted 
shifts on Fréchet sequence spaces.

Recall that a Fréchet sequence space is a Fréchet space X which is a vector subspace 
of the product space KN such that the inclusion map X → KN is continuous, that is, 
convergence in X implies coordinatewise convergence. Given a sequence w := (wn)n∈N
of nonzero scalars, it follows from the closed graph theorem that the unilateral weighted 
backward shift

Bw(x1, x2, x3, . . .) := (w2x2, w3x3, w4x4, . . .)

is a continuous linear operator on X as soon as it maps X into itself. The canonical 
vectors of KN are the vectors en, n ∈ N, where the nth coordinate of en is 1 and the 
other coordinates of en are 0. The sequence (en)n∈N is a basis of X if each en belongs 
to X and

x =
∞∑

n=1
xnen for all x := (xn)n∈N ∈ X.

We will also consider Fréchet sequence spaces consisting of bilateral sequences. A 
Fréchet sequence space over Z is a Fréchet space X which is a vector subspace of the 
product space KZ such that the inclusion map X → KZ is continuous. As before, if 
w := (wn)n∈Z is a sequence of nonzero scalars, then the bilateral weighted backward shift

Bw((xn)n∈Z) := (wn+1xn+1)n∈Z
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is a continuous linear operator on X as soon as it maps X into itself. By abuse of language, 
we also denote the canonical vectors of KZ by en, n ∈ Z. The sequence (en)n∈Z is a basis
of X if each en belongs to X and

x =
∞∑

n=−∞
xnen for all x := (xn)n∈Z ∈ X.

In the results below, we are adopting the convention that c/0 = ∞ whenever c ∈
(0, ∞).

We begin by characterizing chain recurrence for bilateral (unweighted) backward 
shifts.

Theorem 13. Suppose that X is a Fréchet sequence space over Z in which the sequence 
(en)n∈Z of canonical vectors is a basis, (‖ ·‖k)k∈N is an increasing sequence of seminorms 
that induces the topology of X, and the bilateral backward shift

B : (xn)n∈Z ∈ X �→ (xn+1)n∈Z ∈ X

is a well-defined operator. Then B is chain recurrent if and only if

∞∑
n=1

1
‖e−n‖k

=
∞∑

n=1

1
‖en‖k

= ∞ for all k ∈ N. (8)

Proof. Consider X endowed with its canonical metric given by (1).
Suppose that (8) holds. In view of Lemma 8, the chain recurrence of B follows from 

the two claims below.

Claim 1. ei ∈ O0(B) for all i ∈ N.

Indeed, fix i ∈ N and δ > 0. Choose � ∈ N such that

d(x, 0) < δ whenever x ∈ X and ‖x‖� < δ/2. (9)

By hypothesis,

∞∑
n=1

1
‖en‖k

= ∞ for all k ∈ N. (10)

Suppose that there exists nk ∈ N with ‖enk
‖k = 0, for each k ∈ N. Choose k ≥ �

such that nk > i. By (9),

0, enk
, enk−1, . . . , ei

is a δ-chain for B from 0 to ei, proving that ei ∈ O0(B).
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Now, suppose that there exists k0 ∈ N such that ‖en‖k0 
= 0 for all n ∈ N. Choose 
k ∈ N with k ≥ max{k0, �}. By (10), there exists m ∈ N such that

t :=
i+m∑

n=i+1

1
‖en‖k

>
2
δ
·

Define

x1 := ei+m

t‖ei+m‖k
and xj+1 := Bxj + ei+m−j

t‖ei+m−j‖k
for 1 ≤ j < m.

Note that xm = ei+1. Hence, it follows from (9) that

0, x1, x2, . . . , xm, ei

is a δ-chain for B from 0 to ei, proving that ei ∈ O0(B).

Claim 2. e−i ∈ I0(B) for all i ∈ N.

Indeed, let i, δ and � be as in the proof of Claim 1. By hypothesis,

∞∑
n=1

1
‖e−n‖k

= ∞ for all k ∈ N. (11)

If there exists nk ∈ N with ‖e−nk
‖k = 0, for each k ∈ N, then we choose k ≥ � with 

nk > i and apply (9) to conclude that

e−i, e−i−1, . . . , e−nk+1, 0

is a δ-chain for B from e−i to 0, proving that e−i ∈ I0(B).
If there exists k0 ∈ N such that ‖e−n‖k0 
= 0 for all n ∈ N, then we choose k ∈ N

with k ≥ max{k0, �}. By (11), there exists m ∈ N such that

t :=
−i−1∑

n=−i−m

1
‖en‖k

>
2
δ
·

Define

x0 := e−i and xj := Bxj−1 −
e−i−j

t‖e−i−j‖k
for 1 ≤ j ≤ m.

Note that xm = 0. Hence, it follows from (9) that

x0, x1, x2, . . . , xm
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is a δ-chain for B from e−i to 0, proving that e−i ∈ I0(B).

Conversely, suppose that B is chain recurrent. Let us first prove that (10) holds. For 
this purpose, fix k ∈ N. We may assume that ‖en‖k 
= 0 for all n ∈ N, for otherwise 
the desired equality would hold trivially. By the Banach-Steinhaus theorem, there exists 
δ > 0 such that

x := (xn)n∈Z ∈ X and d(x, 0) < δ =⇒ ‖xnen‖k < 1 for all n ∈ Z. (12)

Fix r > 0. By hypothesis, there is a δ-chain (zj)mj=0 for B from re1 to itself. For each 
j ∈ {1, . . . , m}, let yj := zj −Bzj−1 and write yj = (yj,n)n∈Z. By (12),

|yj,m−j+1| <
1

‖em−j+1‖k
for all j ∈ {1, . . . ,m}. (13)

Since

zm = Bmz0 + Bm−1y1 + Bm−2y2 + · · · + Bym−1 + ym, (14)

we obtain

r = y1,m + y2,m−1 + · · · + ym−1,2 + ym,1

≤ |y1,m| + |y2,m−1| + · · · + |ym−1,2| + |ym,1|

<
1

‖em‖k
+ 1

‖em−1‖k
+ · · · + 1

‖e2‖k
+ 1

‖e1‖k
,

where in the last inequality we used (13). Since r > 0 is arbitrary, we are done.
Let us now establish (11). Assume k ∈ N, ‖e−n‖k 
= 0 for all n ∈ N, δ > 0 such 

that (12) holds, and r > 0. Let (zj)mj=0 be a δ-chain for B from re0 to itself. For each 
j ∈ {1, . . . , m}, let yj := zj −Bzj−1 and write yj = (yj,n)n∈Z. By (12),

|yj,−j | <
1

‖e−j‖k
for all j ∈ {1, . . . ,m}. (15)

Since (14) holds, we obtain 0 = r + y1,−1 + y2,−2 + · · · + ym,−m. Thus, by (15),

r ≤ |y1,−1| + |y2,−2| + · · · + |ym,−m| < 1
‖e−1‖k

+ 1
‖e−2‖k

+ · · · + 1
‖e−m‖k

·

Since r > 0 is arbitrary, the proof is complete. �
The previous theorem can be generalized to bilateral weighted backward shifts as 

follows.
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Theorem 14. Suppose that X is a Fréchet sequence space over Z in which the sequence 
(en)n∈Z of canonical vectors is a basis, (‖ ·‖k)k∈N is an increasing sequence of seminorms 
that induces the topology of X, w := (wn)n∈Z is a sequence of nonzero scalars, and the 
bilateral weighted backward shift

Bw : (xn)n∈Z ∈ X �→ (wn+1xn+1)n∈Z ∈ X

is a well-defined operator. Then Bw is chain recurrent if and only if

∞∑
n=1

1
|w−n+1 · · ·w0|‖e−n‖k

=
∞∑

n=1

|w1 · · ·wn|
‖en‖k

= ∞ for all k ∈ N. (16)

The above theorem follows from the previous one by means of a suitable conjugacy. 
The method can be found in [27, Section 4.1], but we will recall it here briefly for the 
sake of completeness. Consider the weights

v0 := 1, v−n := w−n+1 · · ·w0 and vn := 1
w1 · · ·wn

for n ≥ 1,

the vector space

Xv := {(xn)n∈Z ∈ KZ : (vnxn)n∈Z ∈ X},

and the vector space isomorphism

φv : (xn)n∈Z ∈ Xv �→ (vnxn)n∈Z ∈ X.

Use φv to transfer the topology of X to Xv: U ⊂ Xv is declared to be open in Xv if and 
only if φv(U) is open in X. Then Xv is a Fréchet space whose topology is induced by 
the sequence of seminorms given by

‖(xn)n∈Z‖′k := ‖φv((xn)n∈Z)‖k for (xn)n∈Z ∈ Xv.

Moreover, (en)n∈Z is a basis of Xv and Bw ◦ φv = φv ◦ B, that is, φv establishes a 
conjugacy between Bw and B. Hence, Bw is chain recurrent if and only if so is B. Thus, 
Theorem 14 follows from Theorem 13 applied to Xv endowed with the seminorms ‖ · ‖′k.

Let us now consider the case of unilateral (unweighted) backward shifts.

Theorem 15. Suppose that X is a Fréchet sequence space in which the sequence (en)n∈N
of canonical vectors is a basis, (‖ · ‖k)k∈N is an increasing sequence of seminorms that 
induces the topology of X, and the unilateral backward shift

B : (x1, x2, x3, . . .) ∈ X �→ (x2, x3, x4, . . .) ∈ X
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is a well-defined operator. Then B is chain recurrent if and only if

∞∑
n=1

1
‖en‖k

= ∞ for all k ∈ N. (17)

Proof. If (17) holds, then the proof of Claim 1 in Theorem 13 shows that ei ∈ O0(B) for 
all i ∈ N. Since B is a unilateral backward shift, this implies that B is chain recurrent. 
The converse is proved as in the penultimate paragraph of the proof of Theorem 13. �

The above theorem can be generalized to unilateral weighted backward shifts as fol-
lows.

Theorem 16. Suppose that X is a Fréchet sequence space in which the sequence (en)n∈N
of canonical vectors is a basis, (‖ · ‖k)k∈N is an increasing sequence of seminorms that 
induces the topology of X, w := (wn)n∈N is a sequence of nonzero scalars, and the 
unilateral weighted backward shift

Bw : (x1, x2, x3, . . .) ∈ X �→ (w2x2, w3x3, w4x4, . . .) ∈ X

is a well-defined operator. Then Bw is chain recurrent if and only if

∞∑
n=1

|w1 · · ·wn|
‖en‖k

= ∞ for all k ∈ N.

As in the case of bilateral shifts, Theorem 16 can be easily deduced from Theorem 15
by means of a suitable conjugacy.

The characterization of transitivity for weighted shifts on Fréchet sequence spaces was 
obtained in [26] (see also 4.1 in [27]). Actually, under the above notation, the unilateral 
weighted shift Bw is transitive on X if and only if there exists an increasing sequence 
(nk)k in N tending to infinity such that

1
|w1 · · ·wnk

| enk
→ 0 in X.

In the case of a bilateral weighted shift, transitivity is equivalent to the existence of an 
increasing sequence (nk)k in N tending to infinity such that

1
|wj+1 · · ·wj+nk

| ej+nk
→ 0 and |wj+1−nk

· · ·wj | ej−nk
→ 0,

in X, for any j ∈ Z.
Since transitivity obviously implies chain recurrence, the main interesting examples 

of chain recurrent weighted shifts are those that are not transitive. We will provide some 
natural examples, and to do so we need to recall the concept of Köthe sequence spaces 
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(see [31,34]), which can be viewed as an intersection of a decreasing sequence of weighted 
�p-spaces, for a fixed p, or weighted c0-spaces, when the matrix below consists of non-zero 
weights:

An infinite matrix A := (aj,k)j,k∈N of non-negative weights is a Köthe matrix if, for 
each j ∈ N there exists a k ∈ N with aj,k > 0, and 0 ≤ aj,k ≤ aj,k+1 for all j, k ∈ N. 
Given 1 ≤ p < ∞, we consider the Fréchet sequence spaces

λp(A) :=
{
x ∈ KN : ‖x‖k :=

⎛
⎝ ∞∑

j=1
|xj |papj,k

⎞
⎠

1/p

< ∞, ∀ k ∈ N
}
,

and for p = 0,

λ0(A) :=
{
x ∈ KN : lim

j→∞
xjaj,k = 0, ‖x‖k := sup

j∈N
|xj |aj,k, ∀ k ∈ N

}
,

which are the associated Köthe sequence spaces.
Köthe spaces are certainly a natural class of Fréchet sequence spaces. Obviously, if 

the entries aj,k = 1 for all j, k ∈ N, then we have λp(A) = �p and λ0(A) = c0.
For instance, the derivative operator D of many function spaces X can be represented 

as a weighted backward shift if the Taylor representation around 0 of functions f ∈ X

allows an isomorphism of X with a Köthe space.
In order to have that a unilateral weighted backward shift Bw is well-defined (equiva-

lently, continuous) on a Köthe sequence space, we need to consider some conditions that 
relate the weight sequence w with the Köthe matrix A. It is well known (see, e.g., [32]) 
that Bw is continuous if and only if

∀ n ∈ N, ∃ m > n : sup
i∈N

wi+1
ai,n

ai+1,m
< ∞. (18)

Examples 17. (A) We consider three different Hilbert spaces of holomorphic functions 
on the unit disc. Namely, the Bergman space A2 of functions f ∈ H(D) such that

‖f‖2 := 1
π

∫
D

|f(z)|2dλ(z) < ∞,

the Dirichlet space D of functions f ∈ H(D) such that

‖f‖2 := |f(0)|2 + 1
π

∫
D

|f ′(z)|2dλ(z) < ∞,

where in both cases λ denotes the two-dimensional Lebesgue measure, and the Hardy 
space H2 of functions f ∈ H(D) such that
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‖f‖2 := lim
r→1−

1
2π

2π∫
0

|f(reit)|2dt < ∞.

We have that D ⊂ H2 ⊂ A2. Moreover, via the identification with a sequence space by 
f(z) =

∑
n≥0 anz

n �→ (an)n, we know that

D = �2(v) for v := (1, 1, 2, 3, . . . ), H2 = �2, and A2 = �2(v) for v := (1, 1
2 ,

1
3 , . . . ),

where

�2(v) :=
{
a = (an)n ∈ CN0 : ‖a‖2 :=

∞∑
n=0

|an|2vn < ∞
}
.

A natural operator on these spaces is the (unweighted) backward shift that corresponds to 
(Bf)(z) := (f(z) −f(0))/z, z 
= 0, (Bf)(0) := f ′(0). The behavior concerning transitivity 
of B is different on these spaces, since B is transitive on the Bergman space A2 by the 
above characterization, but it is not transitive on D or H2 since ‖B‖ = 1 in both spaces. 
On the other hand, we have that

∞∑
n=0

1
‖en‖

=
∞∑

n=0
1 = ∞ on H2, and

∞∑
n=0

1
‖en‖

= 1 +
∞∑

n=1

1
n

= ∞ on D,

that is, B is chain recurrent on these spaces.
(B) Now we will consider non-normable Köthe spaces. For A := (kj)j,k∈N , we have that 
λp(A) = λ2(A) = H(C). If A := (jk)j,k∈N , we have that λp(A) = λ2(A) =: s, the space 
of rapidly decreasing sequences, and for the matrix A := (e−j/k)j,k∈N , we have that 
λp(A) = λ2(A) = H(D), the space of the holomorphic functions on the unit disc. We 
obviously have that H(C) ⊂ s ⊂ H(D). The derivative operator D corresponds to the 
weighted shift Bw given by w := (1, 2, 3, . . . ), and D is transitive (thus, chain recurrent) 
on the three spaces. If, as in (A), we consider the unweighted shift B, then

∞∑
n=1

1
‖en‖k

< ∞ for k ≥ 2,

in H(C) or s, so B is not chain recurrent on these spaces. For the space H(D) we have

∞∑
n=1

1
‖en‖k

=
∞∑

n=1
en/k = ∞ for every k ∈ N,

and B is chain recurrent on H(D). Actually, the transitivity condition is also fulfilled. If 
we set X := λ2(A) for A := ((log(j + 1))k)j,k∈N , then s ⊂ X ⊂ H(D) and
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∞∑
n=1

1
‖en‖k

=
∞∑

n=1

1
(log(n + 1))k = ∞ for every k ∈ N,

so B is chain recurrent on X too, but the transitivity condition is not satisfied in this 
case.

5. Periodic shadowing for operators on Banach spaces

Our goal in this section is to investigate the notion of periodic shadowing for contin-
uous linear operators on Banach spaces.

Given a metric space X, recall that f : X → X has the positive periodic shad-
owing property [30,38] if for every ε > 0, there exists δ > 0 such that any periodic 
δ-pseudotrajectory (xn)n∈N0 of f is ε-shadowed by a periodic trajectory of f (a sequence 
(yn)n∈N0 is periodic if there exists p ∈ N such that yn+p = yn for all n ∈ N0; such a p
is called a period for sequence (yn)n∈N0). If f is bijective, then the periodic shadowing 
property is defined by replacing the set N0 by the set Z in the above definition.

Let us say that a continuous linear operator T on a Banach space X is generalized 
hyperbolic if there is a direct sum decomposition

X = M ⊕N,

where M and N are closed subspaces of X with the following properties (r(T ) denotes 
the spectral radius of T ):

(a) T (M) ⊂ M and r(T |M ) < 1;
(b) T |N : N → T (N) is bijective, T (N) is closed, T (N) ⊃ N and r((T |N )−1|N ) < 1.

If T is invertible, then condition (b) can be rewritten as follows:

(b’) T−1(N) ⊂ N and r(T−1|N ) < 1.

In the case of invertible operators, this class appeared in [9], where it was proved 
that these operators have the shadowing property, enabling the construction of the first 
examples of operators that have the shadowing property but are not hyperbolic. The 
terminology “generalized hyperbolic” was introduced in [16], where many additional 
dynamical properties of these operators were investigated. The fact that every invertible 
generalized hyperbolic operator is structurally stable was established in [12]. For not 
necessarily invertible operators, this class appeared in [10].

It is known that generalized hyperbolic operators exhibit several types of shadow-
ing properties (see [1,9,10,28]). We shall now prove that they also have the periodic 
shadowing property.
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Theorem 18. Every generalized hyperbolic operator T on a Banach space X has the pos-
itive periodic shadowing property.

Proof. Let S denote the operator (T |N )−1|N on N . For each x ∈ X, write x = x(1) +x(2)

with x(1) ∈ M and x(2) ∈ N . Let α > 0 be such that

‖x(1)‖ ≤ α ‖x‖ and ‖x(2)‖ ≤ α ‖x‖ for all x ∈ X. (19)

Since r(T |M ) < 1 and r(S) < 1, there exist 0 < t < 1 and β ≥ 1 such that

‖Tny‖ ≤ β tn‖y‖ and ‖Snz‖ ≤ β tn‖z‖ (n ∈ N0, y ∈ M, z ∈ N). (20)

Given ε > 0, put δ := (1−t)ε
3αβ · Let (xn)n∈N0 be a periodic δ-pseudotrajectory of T with 

period p, say. For each n ∈ N0, let yn := xn+1 − Txn. Note that the sequence (yn)n∈N0

is also periodic with period p. We claim that

x := x0 +
∞∑
j=1

Sjy
(2)
j−1 −

p−1∑
j=0

∞∑
k=0

T kp+jy
(1)
p−j−1

is a periodic vector whose trajectory ε-shadows (xn)n∈N0 . Indeed,

T px = T px0 +
p∑

j=1
T p−jy

(2)
j−1 +

∞∑
j=p+1

Sj−py
(2)
j−1 −

p−1∑
j=0

∞∑
k=1

T kp+jy
(1)
p−j−1

= T px0 +
p−1∑
j=0

T jy
(2)
p−j−1 +

∞∑
j=1

Sjy
(2)
j−1 −

p−1∑
j=0

∞∑
k=0

T kp+jy
(1)
p−j−1 +

p−1∑
j=0

T jy
(1)
p−j−1

= T px0 +
p−1∑
j=0

T jyp−j−1 +
∞∑
j=1

Sjy
(2)
j−1 −

p−1∑
j=0

∞∑
k=0

T kp+jy
(1)
p−j−1

= x,

because

T px0 +
p−1∑
j=0

T jyp−j−1 = T px0 +
p−1∑
j=0

T j(xp−j − Txp−j−1)

=
p∑

j=0
T jxp−j −

p∑
j=1

T jxp−j

= x0.

On the other hand,
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xn − Tnx =
n−1∑
j=0

T jy
(1)
n−j−1 −

∞∑
j=1

Sjy
(2)
n+j−1 +

p−1∑
j=0

∞∑
k=0

T kp+j+ny
(1)
p−j−1, (21)

for all n ∈ N0. In fact, the case n = 0 follows immediately from the definition of x. 
Assume that (21) holds for a certain n ≥ 0. Then,

xn+1 − Tn+1x = yn + T (xn − Tnx)

= yn +
n−1∑
j=0

T j+1y
(1)
n−j−1 −

∞∑
j=1

Sj−1y
(2)
n+j−1 +

p−1∑
j=0

∞∑
k=0

T kp+j+n+1y
(1)
p−j−1

= y(1)
n + y(2)

n +
n∑

j=1
T jy

(1)
n−j − y(2)

n −
∞∑
j=1

Sjy
(2)
n+j +

p−1∑
j=0

∞∑
k=0

T kp+j+n+1y
(1)
p−j−1

=
n∑

j=0
T jy

(1)
(n+1)−j−1 −

∞∑
j=1

Sjy
(2)
(n+1)+j−1 +

p−1∑
j=0

∞∑
k=0

T kp+j+(n+1)y
(1)
p−j−1,

proving that (21) also holds with n + 1 in place of n. Now, by (19), (20) and (21),

‖xn − Tnx‖ <
3αβδ
1 − t

= ε for all n ∈ N0,

which completes the proof. �
Corollary 19. Every invertible generalized hyperbolic operator T on a Banach space X
has the periodic shadowing property.

Let us recall the following basic fact (see [11, Lemma 19], for instance).

Lemma 20. If (wn)n∈N is a bounded sequence of scalars, then the following assertions 
are equivalent:

(i) lim
n→∞

sup
k∈N

|wkwk+1 · · ·wk+n|
1
n < 1;

(ii) sup
k∈N

∞∑
n=0

|wkwk+1 · · ·wk+n| < ∞;

(iii) sup
k∈N

k−1∑
n=0

|wkwk−1 · · ·wk−n| < ∞.

We shall now prove that positive shadowing and positive periodic shadowing coincide 
for unilateral weighted backward shifts on the classical Banach sequence spaces �p(N)
(1 ≤ p < ∞) and c0(N).
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Theorem 21. Let X := �p(N) (1 ≤ p < ∞) or X := c0(N). Let w := (wn)n∈N be a 
bounded sequence of nonzero scalars and consider the unilateral weighted backward shift

Bw : (x1, x2, x3, . . .) ∈ X �→ (w2x2, w3x3, w4x4, . . .) ∈ X.

The following assertions are equivalent:

(i) Bw has the positive shadowing property;
(ii) Bw has the positive periodic shadowing property;
(iii) Bw is generalized hyperbolic;
(iv) One of the following conditions holds:

(a) lim
n→∞

sup
k∈N

|wkwk+1 · · ·wk+n|
1
n < 1;

(b) lim
n→∞

inf
k∈N

|wkwk+1 · · ·wk+n|
1
n > 1.

The equivalences (i) ⇔ (iii) ⇔ (iv) can be found in [10]. Our goal here is to include 
(ii) among these equivalences. For this purpose, we will adapt an argument used in the 
proof of [11, Theorem 18], but taking care to construct a δ-pseudotrajectory which is 
periodic.

Proof. By Theorem 18, (iii) ⇒ (ii). Suppose that (ii) holds and let us prove that (iv) must 
be true. We assume that (a) is false and prove that (b) holds. Let δ > 0 be associated to 
ε := 1 in the definition of positive periodic shadowing. By Lemma 20, there are integers 
k ≥ 2 and m0 ≥ 1 such that

m0∑
n=0

|wkwk+1 · · ·wk+n| ≥
1 + δ

δ2 · (22)

Fix m > m0 and let θj ∈ R satisfy

eiθjwkwk+1 · · ·wk+m−j = |wkwk+1 · · ·wk+m−j | (0 ≤ j ≤ m).

Define

x0 := δeiθ0ek+m,

x1 := Bw(x0) + δeiθ1ek+m−1,

x2 := Bw(x1) + δeiθ2ek+m−2,

...

xm := Bw(xm−1) + δeiθmek,

xm+1 := Bw(xm),
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xm+2 := Bw(xm+1),

...

xm+k := Bw(xm+k−1) = 0.

Since

(xn)n∈N0 := (x0, . . . , xm+k, x0, . . . , xm+k, x0, . . . , xm+k, . . .)

is a periodic δ-pseudotrajectory of T , there exists a := (an)n∈N ∈ X such that

‖xn −Bn
w(a)‖ < 1 for all n ∈ N0. (23)

Write ak+m = δeiθ0 + γ with |γ| < 1. Since the (k − 1)th coordinate of xm+1 is equal to

(
|wkwk+1 · · ·wk+m| + |wkwk+1 · · ·wk+m−1| + · · · + |wkwk+1| + |wk|

)
δ

and the (k − 1)th coordinate of Bm+1
w (a) is wkwk+1 · · ·wk+m(δeiθ0 + γ), (23) gives

∣∣(|wkwk+1 · · ·wk+m−1| + · · · + |wkwk+1| + |wk|
)
δ − wkwk+1 · · ·wk+mγ

∣∣ < 1. (24)

By (22) and (24), |wkwk+1 · · ·wk+m| > 1/δ. Hence, by dividing both sides of (24) by 
|wkwk+1 · · ·wk+m|δ, we get

1
|wk+m| + 1

|wk+mwk+m−1|
+ · · · + 1

|wk+mwk+m−1 · · ·wk+1|
< 1 + 1

δ
· (25)

Since this holds for every m > m0, we have that infn∈N |wn| > 0. Let

vn := w−1
n (n ∈ N), t := k + m and C :=

k−1∑
n=0

|vkvk−1 · · · vk−n|.

By (25),

t−1∑
n=0

|vtvt−1 · · · vt−n| =
m−1∑
n=0

|vtvt−1 · · · vt−n| +
t−1∑
n=m

|vtvt−1 · · · vt−n|

<
(
1 + 1

δ

)
+ |vtvt−1 · · · vt−m+1|

k−1∑
n=0

|vkvk−1 · · · vk−n|

<
(
1 + 1

δ

)(
1 + C

)
.

Since this holds for all t > k + m0, Lemma 20 gives
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lim
n→∞

sup
t∈N

|vtvt+1 · · · vt+n|
1
n < 1,

which is equivalent to (b). �
On the other hand, we will see below that the notions of shadowing and periodic 

shadowing do not coincide in general for invertible operators on Banach spaces. For this 
purpose, we will need the result below, which gives us another class of operators that 
have the periodic shadowing property. We denote by SX the unit sphere of the Banach 
space X.

Theorem 22. Suppose that T be an invertible continuous linear operator on a Banach 
space X for which there is a direct sum decomposition

X = M ⊕N,

where M and N are closed subspaces of X with T (M) ⊂ M and T−1(N) ⊂ N such that 
both T |M and T−1|N are uniformly positively expansive, i.e., there are n, m ∈ N such 
that

‖Tny‖ ≥ 2 and ‖T−mz‖ ≥ 2 for all y ∈ SM and z ∈ SN . (26)

For each x ∈ X and each k ∈ Z, let x = x1,k + x2,k be the unique decomposition of x
with x1,k ∈ T k(M) and x2,k ∈ T k(N). Suppose also that there is a constant c > 0 such 
that

‖x1,k‖ ≤ c‖x‖ and ‖x2,k‖ ≤ c‖x‖ for all x ∈ X and k ∈ Z. (27)

Then T has the periodic shadowing property.

Proof. Without loss of generality, we may assume m = n in (26). By arguing as in 
the proof of Proposition 32 in the Appendix, we see that T has the periodic shadowing 
property if and only if so does Tn. Therefore, we may assume n = 1. Fix ε > 0 and let 
δ := ε

12c > 0. Let (xj)j∈Z be a periodic δ-pseudotrajectory of T . We claim that

‖x2,0
j ‖ <

ε

2 for all j ∈ Z. (28)

Indeed, suppose that this is false and choose � ∈ Z such that

‖x2,0
� ‖ ≥ ε

2 · (29)

We shall prove by induction that

‖x2,−k
�−k ‖ ≥ 2kε + ε for all k ∈ N0. (30)
3 6
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The case k = 0 is exactly (29). Assume that (30) holds for a certain k ∈ N0. Since

‖Tx2,−k−1
�−k−1 − x2,−k

�−k ‖ = ‖(Tx�−k−1)2,−k − x2,−k
�−k ‖ ≤ c ‖Tx�−k−1 − x�−k‖ ≤ c δ,

we obtain

2kε
3 + ε

6 − c δ ≤ ‖x2,−k
�−k ‖ − c δ ≤ ‖Tx2,−k−1

�−k−1 ‖ ≤ 1
2‖x

2,−k−1
�−k−1 ‖,

and so

‖x2,−k−1
�−k−1 ‖ ≥ 2k+1ε

3 + ε

3 − 2c δ = 2k+1ε

3 + ε

6 ·

Hence, (30) holds with k + 1 instead of k. By (27) and (30),

‖x�−k‖ ≥ 1
c
‖x2,−k

�−k ‖ ≥ 1
c

(2kε
3 + ε

6

)
for all k ∈ N0.

Since the sequence (xj)j∈Z is periodic, we have a contradiction. This proves that (28)
holds. A similar argument shows that

‖x1,0
j ‖ <

ε

2 for all j ∈ Z. (31)

By (28) and (31), ‖xj‖ < ε for all j ∈ Z. Hence, the periodic δ-pseudotrajectory (xj)j∈Z
is ε-shadowed by the trajectory of the zero vector, proving that T has the periodic 
shadowing property. �

Let X := �p(Z) (1 ≤ p < ∞) or X := c0(Z). Let w := (wn)n∈Z be a bounded sequence 
of scalars with infn∈Z |wn| > 0 and consider the bilateral weighted backward shift

Bw : (xn)n∈Z ∈ X �→ (wn+1xn+1)n∈Z ∈ X.

It was proved in [11, Theorem 18] that Bw has the shadowing property if and only if one 
of the following conditions holds:

(A) lim
n→∞

sup
k∈Z

|wk · · ·wk+n|
1
n < 1.

(B) lim
n→∞

inf
k∈Z

|wk · · ·wk+n|
1
n > 1.

(C) lim
n→∞

sup
k∈N

|w−k−n · · ·w−k|
1
n < 1 and lim

n→∞
inf
k∈N

|wk · · ·wk+n|
1
n > 1.

Note that (A) and (B) are exactly the cases in which Bw is hyperbolic. In case (C), Bw

is not hyperbolic but it is generalized hyperbolic. It follows immediately from the above 
result that:
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Bw has the shadowing property if and only if it is generalized hyperbolic.

In view of Corollary 19, we conclude that:

If Bw has the shadowing property, then it has the periodic shadowing property.

We shall now see that the converse of this fact is false.

Corollary 23. Let X := �p(Z) (1 ≤ p < ∞) or X := c0(Z). Let w := (wn)n∈Z be a 
bounded sequence of scalars with infn∈Z |wn| > 0 and consider the bilateral weighted 
backward shift

Bw : (xn)n∈Z ∈ X �→ (wn+1xn+1)n∈Z ∈ X.

If

lim
n→∞

inf
k∈N

|w−k−n+1 · · ·w−k| = ∞ and lim
n→∞

sup
k∈N

|wk · · ·wk+n−1| = 0, (32)

then Bw has the periodic shadowing property but does not have the shadowing property.

As a concrete example, we can take a weight sequence of the form

w := (. . . , a, a, a, a−1, a−1, a−1, . . .), where a > 1.

Proof. By the above-mentioned result from [11], Bw does not have the shadowing prop-
erty. On the other hand, let

M := {(xn)n∈Z ∈ X : xn = 0 for all n ≥ 0}

and

N := {(xn)n∈Z ∈ X : xn = 0 for all n < 0},

which are closed subspaces of X such that X = M ⊕ N , Bw(M) ⊂ M and B−1
w (N) ⊂

N . The conditions in (32) imply that both Bw|M and B−1
w |N are uniformly positively 

expansive. Since condition (27) holds with c := 1, Theorem 22 guarantees that Bw has 
the periodic shadowing property. �
6. Appendix: generalities on shadowing and chain recurrence for operators

Throughout this appendix, X denotes an arbitrary topological vector space over K, 
unless otherwise specified. We emphasize that X is not assumed to be a Hausdorff space. 
Recall that a set A ⊂ X is balanced if λA ⊂ A whenever |λ| ≤ 1. We denote by VX the 
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set of all balanced neighborhoods of 0 in X. It is well known that every neighborhood of 
0 in X contains an element of VX . We denote by L(X) the set of all continuous linear 
operators on X and by GL(X) be the set of those operators that have a continuous 
inverse.

Since X has a canonical underlying uniform structure, the notion of pseudotrajectory 
in the uniform space setting given in Section 3 can be rewritten as follows in the present 
context: Given a neighborhood V of 0 in X, a V -pseudotrajectory of a map f : X → X

is a finite or infinite sequence (xj)i<j<k in X such that

f(xj) − xj+1 ∈ V for all i < j < k − 1.

Finite V -pseudotrajectories are also called V -chains. With these notions at hand, the 
concepts of positive shadowing, shadowing, finite shadowing, chain recurrence, chain 
transitivity and chain mixing are defined in the obvious way. We observe that if X
is metrizable and we endow X with a compatible invariant metric, then these notions 
coincide with the corresponding ones in the metric space setting. Clearly, it is always 
true that

chain mixing ⇒ chain transitivity ⇒ chain recurrence.

The fact that these notions always coincide in the linear setting was observed in [1] (see 
also [3]):

Proposition 24. For any linear operator T : X → X (not necessarily continuous), the 
following assertions are equivalent:

(i) T is chain recurrent;
(ii) T is chain transitive;
(iii) T is chain mixing.

Given T : X → X and x, y ∈ X, we write xRy if for every V ∈ VX , there exist 
V -chains for T from x to y and from y to x. With this notation, the chain recurrent set 
of T can be written as CR(T ) = {x ∈ X : xRx}. Restricted to CR(T ), the relation R is 
an equivalence relation and its equivalence classes are called the chain recurrent classes
of T .

Chain recurrence is closely connected to the notion of recurrence, a property that 
is deserving special attention for linear dynamics in recent years (see, e.g., [18,44,2,13,
17,23]). A continuous linear operator T : X → X is said to be recurrent if, for every 
non-empty open set U ⊂ X, there exists k ∈ N such that T k(U) ∩U 
= ∅. By a recurrent 
vector x for T we mean that, for any neighborhood U of x, there exists k ∈ N with 
T kx ∈ U , and the set of recurrent vectors of T is denoted by Rec(T ). We easily have 
that any recurrent operator is chain recurrent. Indeed, if x ∈ X and V ∈ VX , there exists 
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W ∈ VX open with W ⊂ V ∩ T−1(V ). We set U := x + W and find k ∈ N and y ∈ U

such that T ky ∈ U . Therefore, (x, Ty, . . . , T k−1y, x) is a V -chain for T from x to itself. 
Since x and V were arbitrary, we conclude that CR(T ) = X.

Proposition 25. For any linear operator T : X → X (not necessarily continuous), the set 
CR(T ) is a subspace of X and is the unique chain recurrent class of T .

Proof. Take x, y ∈ CR(T ) and V ∈ VX . Choose U ∈ VX with U +U +U +U ⊂ V . There 
are U -chains (xj)rj=0 and (yj)sj=0 for T with x0 = xr = x and y0 = ys = y. Since the 
set F := {x1, . . . , xr, y1, . . . , ys} is bounded, there is t ∈ N such that F ⊂ λU whenever 
|λ| ≥ t. Choose an integer k ≥ t which is a multiple of both r and s. Let

(x′
j)kj=0 := (x0, x1, . . . , xr, x1, . . . , xr, . . . , x1, . . . , xr),

which is also a U -chain for T from x to itself. Similarly,

(y′j)kj=0 := (y0, y1, . . . , ys, y1, . . . , ys, . . . , y1, . . . , ys)

is also a U -chain for T from y to itself. For each 0 ≤ j ≤ k, let zj :=
(
1 − j

k

)
x′
j + j

k y′j . 
Then z0 = x, zk = y and

Tzj − zj+1 =
(
1 − j

k

)(
Tx′

j − x′
j+1

)
+ j

k

(
Ty′j − y′j+1

)
+ 1

k
x′
j+1 −

1
k
y′j+1 ∈ V,

for all 0 ≤ j < k. Thus, (zj)kj=0 is a V -chain for T from x to y. This proves that CR(T )
is a chain recurrent class.

Let x, y ∈ CR(T ) and a, b ∈ K. Given V ∈ VX , choose U ∈ VX with aU + bU ⊂ V . 
There are U -chains (xj)kj=0 and (yj)tj=0 for T from x to itself and from y to itself, 
respectively, and we may assume k = t. Hence, (axj + byj)kj=0 is a V -chain for T from 
ax + by to itself, proving that ax + by ∈ CR(T ). This shows that CR(T ) is a subspace 
of X. �

It is worth to note that, in contrast with the above situation, one cannot ensure that 
the set Rec(T ) is a subspace of X, in general. This is related to the problem of the 
recurrence of n-direct sum T ⊕ · · · ⊕ T for every n ∈ N (see [18,24]).

Proposition 26. For any T ∈ L(X), the set CR(T ) is a T -invariant closed subspace 
of X. Moreover, if T ∈ GL(X), then CR(T−1) = CR(T ) and T (CR(T )) = CR(T ); in 
particular, T−1 is chain recurrent if and only if so is T .

Proof. CR(T ) is T -invariant: Let x ∈ CR(T ) and V ∈ VX . By the continuity of T , there 
exists U ∈ VX with T (U) ⊂ V . Since x ∈ CR(T ), there is a U -chain (xj)kj=0 for T from x
to itself. Hence, (Txj)kj=0 is a V -chain for T from Tx to itself, proving that Tx ∈ CR(T ).
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CR(T ) is closed: Let x ∈ CR(T ) and V ∈ VX . Choose U ∈ VX with U + U ⊂ V and 
W ∈ VX with W ⊂ U and T (W ) ⊂ U . Take an y ∈ (x +W ) ∩CR(T ) and let (yj)kj=0 be 
a W -chain for T from y to itself. Then (x, y1, . . . , yk−1, x) is a V -chain for T from x to 
itself, proving that x ∈ CR(T ).
CR(T−1) = CR(T ): Let x ∈ CR(T ) and V ∈ VX . Choose U ∈ VX with T−1(U) ⊂ V

and let (xj)kj=0 be a U -chain for T from x to itself. Since

T−1xj+1 − xj = T−1(−(Txj − xj+1)) ∈ T−1(U) ⊂ V for all 0 ≤ j < k,

we have that (xk, xk−1, . . . , x1, x0) is a V -chain for T−1 from x to itself. Thus, x ∈
CR(T−1).
T (CR(T )) = CR(T ): By what we have seen above,

T (CR(T )) ⊂ CR(T ) and T−1(CR(T )) = T−1(CR(T−1)) ⊂ CR(T−1) = CR(T ),

which implies the desired equality. �
The simplest example of a chain recurrent operator is the identity operator. The next 

result gives classes of operators that are not chain recurrent.

Proposition 27. If either

(a) T ∈ L(X), V ∈ VX is convex, V 
= X, λ ∈ (0, 1) and T (V ) ⊂ λV , or
(b) T ∈ GL(X), V ∈ VX is convex, V 
= X, λ ∈ (1, ∞) and T (V ) ⊃ λV ,

then

CR(T ) ⊂
∞⋂

n=1

1
n
V.

In particular, T is not chain recurrent. Moreover, CR(T ) = {0} if 
⋂∞

n=1
1
nV = {0}.

Proof. Without loss of generality, we may assume that V is closed. If (a) holds, choose 
δ ∈ (0, 1) such that λ + δ < 1. Given x ∈ X\ 

⋂∞
n=1

1
nV , define

a := inf{b > 0 : x ∈ bV }.

We have that a > 0, x ∈ aV and x 
∈ bV for every b ∈ (0, a). Let U := aδV ∈ VX and let 
(xj)kj=0 be any U -chain for T starting at x0 = x. If j ∈ {0, . . . , k− 1} and xj ∈ aV , then

xj+1 = Txj − (Txj − xj+1) ∈ aλV + aδV = a(λ + δ)V ⊂ aV.

Hence, by induction, xj ∈ a(λ + δ)V for all j ∈ {1, . . . , k}. In particular, xk 
= x, proving 
that x 
∈ CR(T ). Case (b) follows from case (a) and the fact that CR(T−1) = CR(T ). �
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Corollary 28. Suppose that X is a locally convex space whose topology is defined by a 
family (qi)i∈I of semi-norms, where no qi is identically zero. If either

(a) T ∈ L(X), i ∈ I, λ ∈ (0, 1) and qi(Tx) ≤ λ qi(x) for all x ∈ X, or
(b) T ∈ GL(X), i ∈ I, λ ∈ (1, ∞) and qi(Tx) ≥ λ qi(x) for all x ∈ X,

then

CR(T ) ⊂ {x ∈ X : qi(x) = 0}.

In particular, T is not chain recurrent. Moreover, CR(T ) = {0} if qi is a norm.

Proposition 29. If T ∈ L(X), λ ∈ K and |λ| = 1, then:

(a) CR(λT ) = CR(T ).
(b) λT is chain recurrent if and only if so is T .
(c) λT has the positive shadowing property if and only if so does T .

Proof. (a): Let x ∈ CR(T ) and V ∈ VX . We may assume that V is open in X. Let 
(xj)kj=0 be a V -chain for T from x to itself. Given any integer n ≥ 1, the sequence

(x0, λx1, . . . , λ
kxk, λ

k+1x1, . . . , λ
2kxk, . . . , λ

(n−1)k+1x1, . . . , λ
nkxk) (33)

is a V -chain for λT from x to λnkx. If λ corresponds to a rational rotation on the unit 
circle, then we choose n such that λn = 1, and so (33) is a V -chain for λT from x to 
itself. In the case of an irrational rotation, we choose n such that λnk is so close to 1
that we can replace the last term in (33) by x and so obtain a V -chain for λT from x to 
itself. This proves that CR(T ) ⊂ CR(λT ). Hence, CR(λT ) ⊂ CR(λ−1λT ) = CR(T ).
(b): It follows immediately from (a).
(c): Suppose that T has the positive shadowing property. Given V ∈ VX , let U ∈ VX

be associated to V according to positive shadowing. If (xj)j∈N0 is a U -pseudotrajectory 
of λT , then (λ−jxj)j∈N0 is a U -pseudotrajectory of T , and so it is V -shadowed by the 
trajectory of a certain x ∈ X under T . It follows that (xj)j∈N0 is V -shadowed by the 
trajectory of x under λT , proving that λT has the positive shadowing property. �
Proposition 30. For any T ∈ L(X), CR(Tn) = CR(T ) for all n ∈ N.

Proof. Fix n ≥ 2, x ∈ X and V ∈ VX . If (xj)kj=0 is a V -chain for Tn from x to itself, 
then

(x0, Tx0, . . . , T
n−1x0, x1, Tx1, . . . , T

n−1x1, . . . , xk−1, Txk−1, . . . , T
n−1xk−1, xk)

is a V -chain for T from x to itself. Conversely, if U ∈ VX satisfies



N.C. Bernardes, A. Peris / Advances in Mathematics 441 (2024) 109539 37
U + T (U) + T 2(U) + · · · + Tn−1(U) ⊂ V,

(xj)kj=0 is a U -chain for T from x to itself and

(yj)knj=0 := (x0, x1, . . . , xk, x1, . . . , xk, . . . , x1, . . . , xk),

then (y0, yn, y2n, . . . , ykn) is a V -chain for Tn from x to itself. �
Corollary 31. For any T ∈ L(X), the following assertions are equivalent:

(i) T is chain recurrent;
(ii) Tn is chain recurrent for some n ∈ N.
(iii) Tn is chain recurrent for every n ∈ N.

Proposition 32. For any T ∈ L(X), the following assertions are equivalent:

(i) T has the positive shadowing property;
(ii) Tn has the positive shadowing property for some n ∈ N.
(iii) Tn has the positive shadowing property for every n ∈ N.

Proof. (i) ⇒ (iii): It is enough to note that if (xj)j∈N0 is a U -pseudotrajectory of Tn, 
then

(x0, Tx0, . . . , T
n−1x0, x1, Tx1, . . . , T

n−1x1, x2, Tx2, . . . , T
n−1x2, . . .)

is a U -pseudotrajectory of T .
(iii) ⇒ (ii): Obvious.
(ii) ⇒ (i): Given V ∈ VX , let V ′ ∈ VX be such that

V ′ + T (V ′) + T 2(V ′) + · · · + Tn−1(V ′) ⊂ V.

Let U ′ ∈ VX be associated to V ′ according to the hypothesis that Tn has the positive 
shadowing property. We may assume that U ′ ⊂ V ′. Let U ∈ VX be such that

U + T (U) + T 2(U) + · · · + Tn−1(U) ⊂ U ′.

If (xj)j∈N0 is a U -pseudotrajectory of T , then (xjn)j∈N0 is a U ′-pseudotrajectory of Tn, 
and so it is V ′-shadowed by the trajectory of a certain x ∈ X under Tn. It follows that 
(xj)j∈N0 is V -shadowed by the trajectory of x under T . �
Proposition 33. If T ∈ GL(X), then T−1 has the (finite) shadowing property if and only 
if so does T .
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Proof. Suppose that T has the shadowing property. Given V ∈ VX , let U ∈ VX be 
associated to V according to the definition of shadowing. Choose W ∈ VX with T (W ) ⊂
U . If (xj)j∈Z is a W -pseudotrajectory of T−1, then (x−j+1)j∈Z is a U -pseudotrajectory 
of T , and so it is V -shadowed by the trajectory of some x ∈ X under T . Hence, (xj)j∈Z
is V -shadowed by the trajectory of Tx under T−1, proving that T−1 has the shadowing 
property. The case of finite shadowing is analogous. �

Recall that X is said to be the topological direct sum of the subspaces M1, . . . , Mn if 
X is the algebraic direct sum of M1, . . . , Mn and the canonical algebraic isomorphism

(y1, . . . , yn) �→ y1 + · · · + yn

is a homeomorphism from the product space M1 × · · · ×Mn onto X.

Proposition 34. Let T ∈ L(X). If

X = M1 ⊕ · · · ⊕Mn

is a topological direct sum of T -invariant subspaces M1, . . . , Mn, then:

(a) CR(T ) = CR(T |M1) ⊕ · · · ⊕ CR(T |Mn
).

(b) CR(T |Mi
) = CR(T ) ∩Mi for all i ∈ {1, . . . , n}.

(c) T is chain recurrent if and only if so are T |M1 , . . . , T |Mn
.

(d) T has the positive shadowing property if and only if so do T |M1 , . . . , T |Mn
.

Proof. (a): Since CR(T |Mi
) ⊂ CR(T ) for all i ∈ {1, . . . , n}, we have that

CR(T |M1) + · · · + CR(T |Mn
) ⊂ CR(T ).

Conversely, let x ∈ CR(T ) and write x = y1 + · · · + yn, where y1 ∈ M1, . . . , yn ∈ Mn. 
We fix i ∈ {1, . . . , n} and prove that yi ∈ CR(T |Mi

). For this purpose, let Pi : X → Mi

be the canonical projection. Given U ∈ VMi
, we have that V := P−1

i (U) ∈ VX , because 
Pi is continuous. Let (xj)kj=0 be a V -chain for T from x to itself. Since

(T |Mi
)(Pixj) − Pixj+1 = Pi(Txj − xj+1) ∈ Pi(V ) ⊂ U (0 ≤ j < k),

we have that (Pixj)kj=0 is a U -chain for T |Mi
from yi to itself. Thus, yi ∈ CR(T |Mi

).
(b) and (c): They follow immediately from (a).
(d): Suppose that T has the positive shadowing property. Fix i ∈ {1, . . . , n} and U ∈
VMi

. Define V := P−1
i (U) ∈ VX and let V ′ ∈ VX be associated to V according to the 

definition of positive shadowing. Let U ′ := V ′ ∩ Mi ∈ VMi
. If a sequence (yj)j∈N0 is 

a U ′-pseudotrajectory of T |Mi
, then it is also a V ′-pseudotrajectory of T , and so it is 

V -shadowed by the trajectory of a certain x ∈ X under T . Since
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yj − (T |Mi
)j(Pix) = Pi(yj − T jx) ∈ Pi(V ) ⊂ U (j ∈ N0),

we have that (yj)j∈N0 is U -shadowed by the trajectory of Pix under T |Mi
, proving that 

T |Mi
has the positive shadowing property.

Conversely, suppose that each T |Mi
has the positive shadowing property. Given V ∈

VX , choose U1 ∈ VM1 , . . . , Un ∈ VMn
with U1 + · · · + Un ⊂ V . Let U ′

i ∈ VMi
be 

associated to Ui according to the definition of positive shadowing. Let V ′ := P−1
1 (U ′

1) ∩
. . . ∩ P−1

n (U ′
n) ∈ VX . Then every V ′-pseudotrajectory of T is V -shadowed by a real 

trajectory of T , proving that T has the positive shadowing property. �
Recall that a topological supplement of a subspace M of X is a subspace N of X such 

that X is the topological direct sum of M and N .

Corollary 35. Let T ∈ L(X). If CR(T ) admits a T -invariant topological supplement, then 
T |CR(T ) is chain recurrent.

Proof. Let M := CR(T ). By hypothesis, there is a T -invariant subspace N of X such that 
X = M ⊕N as a topological direct sum. Since M is also T -invariant, Proposition 34(b) 
gives CR(T |CR(T )) = CR(T |M ) = CR(T ) ∩ M = CR(T ), and so T |CR(T ) is chain 
recurrent. �
Proposition 36. Let T ∈ L(X) and let M be a T -invariant subspace of X. Suppose that 
M admits a T -invariant topological supplement.

(a) If T is chain recurrent, then so is T |M .
(b) If T has the positive shadowing property, then so does T |M .

Proof. It follows immediately from Proposition 34(c,d). �
Remark 37. In Proposition 36, it is not enough to assume that M has a topological 
supplement, the hypothesis of T -invariance is essential. In order to give a counterexample, 
assume that X is a separable Banach space and that T ∈ GL(X) is generalized hyperbolic 
but not hyperbolic (shifted hyperbolic in the terminology of [16]). Let X = M ⊕ N be 
the direct sum decomposition given by the definition of generalized hyperbolicity. By the 
spectral radius formula, there exist constants t ∈ (0, 1) and c ≥ 1 such that

‖Tny‖ ≤ c tn‖y‖ and ‖T−nz‖ ≤ c tn‖z‖ for all n ∈ N0, y ∈ M, z ∈ N.

Choose λ ∈ (t, 1) and a nonzero w ∈ M ∩ T (N), and define

u :=
∞∑

Tnw and v :=
∞∑

λnTnw.

n=−∞ n=−∞
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We have that u is a nontrivial fixed point of T and v is an eigenvector of T associated 
to the eigenvalue λ−1. Therefore,

F := span{u}, G := span{v} and H := span{u, v}

are T -invariant subspaces of X, which admit topological supplements since they are 
finite-dimensional. Moreover:

• T |F is chain recurrent but does not have the positive shadowing property,
• T |G has the shadowing property but is not chain recurrent,
• T |H neither is chain recurrent nor has the positive shadowing property.

Although T has the shadowing property, it may fail to be chain recurrent. However, 
by [16, Corollary 2], the restriction of T to the smallest closed T -invariant subspace Y
of X containing M ∩ T (N) satisfies the so-called frequent hypercyclicity criterion [27, 
Section 9.2], and so it exhibits several types of chaotic behaviors, including frequent 
hypercyclicity, mixing, Devaney chaos, dense distributional chaos and dense mean Li-
Yorke chaos [7,8,27]. In particular, T |Y is chain recurrent. Concrete examples of shifted 
hyperbolic operators on the Banach spaces c0(Z) and �p(Z) (1 ≤ p < ∞) were obtained 
in [11, Theorem 9].

For invertible operators on Banach spaces, the next proposition shows that the closed 
T -invariant subspace CR(T ) has the property that the restricted operator T |CR(T ) has 
the shadowing property whenever so does T .

Proposition 38. Let X be a Banach space. If T ∈ GL(X) has the shadowing property, 
then T |CR(T ) is chain recurrent and has the shadowing property.

Proof. We claim that

{x ∈ X : (T jx)j∈N is bounded} ⊂ I0(T ). (34)

Indeed, assume C := supj∈N ‖T jx‖ < ∞. Given δ > 0, there exists a decreasing sequence 
1 = t0 > t1 > · · · > tk−1 > tk = 0 of real numbers such that tj − tj+1 < δ/C for all 
j ∈ {0, . . . , k − 1}. Then, (tjT jx)kj=0 is a δ-chain for T from x to 0. Similarly,

{x ∈ X : (T−jx)j∈N is bounded} ⊂ O0(T ). (35)

By combining (34) and (35), we obtain

{x ∈ X : (T jx)j∈Z is bounded} ⊂ CR(T ). (36)

Let us prove that T |CR(T ) has the shadowing property. By Theorem 1, it is enough to 
show that T |CR(T ) has the finite shadowing property. Fix ε > 0 and let δ > 0 be given by 
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the shadowing property of T . Let (xj)kj=0 be a δ-chain for T |CR(T ). Since x0, xk ∈ CR(T ), 
there are δ-chains for T of the forms (0, x−i, . . . , x0) and (xk, . . . , x�, 0). Hence,

(xj)j∈Z := (. . . , 0, 0, x−i, . . . , x0, . . . , xk, . . . , x�, 0, 0, . . .)

is a δ-pseudotrajectory of T . Thus, there exists x ∈ X with ‖T jx −xj‖ < ε for all j ∈ Z. 
By (36), x ∈ CR(T ) and we are done.

Let us now prove that T |CR(T ) is chain recurrent. Fix x ∈ CR(T ) and δ > 0. Let 
η > 0 be associated to δ/(1 + ‖T‖) according to the shadowing property of T . Since 
x ∈ CR(T ), there exists an η-chain (xj)kj=0 for T from x to itself. As in the previous 
paragraph, we can extend this η-chain to a bounded η-pseudotrajectory (xj)j∈Z of T . 
By our choice of η, there exists y ∈ X such that

‖T jy − xj‖ <
δ

1 + ‖T‖ for all j ∈ Z.

By (36), y ∈ CR(T ). Hence, (x, Ty, T 2y, . . . , T k−1y, x) is a δ-chain for T |CR(T ) from x
to itself, proving that T |CR(T ) is chain recurrent. �

In general, properties associated with chaotic behavior are not possible for compact 
operators. Certainly, although chain recurrence is equivalent to chain transitivity in linear 
dynamics, and the second property can be thought as a chaotic behavior, the fact that, 
e.g., the identity of a finite dimensional space is an operator which is chain recurrent and 
compact spoils this impossibility for chain recurrence. The natural question is whether 
we can have anything else than the “finite dimensional” case for chain recurrent compact 
operators. We will show that, as a consequence of the previous results, there is nothing 
else. We recall that a linear operator T : X → X on a topological vector space X is 
compact if there is V ∈ VX such that T (V ) is relatively compact.

Proposition 39. Let T ∈ L(X) be a compact operator on a locally convex space X with 
continuous norm. Then CR(T ) is a finite dimensional subspace.

Proof. We first suppose that the scalar field is C and X is a Banach space. In this 
case, the spectrum of T consists, at most, of 0 and a sequence of eigenvalues of T whose 
limit is 0, and each eigenvalue has a finite dimensional associated eigenspace. The Riesz 
decomposition theorem yields that we can write X = M1 ⊕M2 with Mi closed and T -
invariant subspace, i = 1, 2, M1 finite dimensional and consisting of sums of eigenvectors, 
and M2 so that, for T2 := T |M2 , we have that the spectral radius of T2 is strictly less 
than 1. In particular, there is n ∈ N such that ‖Tn

2 ‖ < 1. By Propositions 27 and 30, we 
have that

CR(T2) = CR(Tn
2 ) = {0}.
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Thus, by applying Proposition 34, we get CR(T ) = CR(T1) ⊕CR(T2) ⊂ M1, and CR(T )
is finite dimensional.

Still in the complex case, but now allowing X to be an arbitrary locally convex space 
with continuous norm, we take V ∈ VX absolutely convex such that K := T (V ) is 
compact and the gauge p of V is a norm. In particular, T naturally induces an operator 
TV on the local Banach space XV (which is the completion of the normed space (X, p)), 
which is also compact. We easily have that CR(T ) ⊂ CR(TV ), with a natural inclusion, 
and CR(T ) is finite dimensional.

Finally, when K = R, we consider the complexification X̃ = X + iX = X ⊕ X

with the (compact) operator T̃ = T + i T = T ⊕ T . Proposition 34 yields CR(T̃ ) =
CR(T ) + i CR(T ), and CR(T ) is finite dimensional. �
Remark 40. When X is a complex Banach space, there is another typical property satis-
fied by the spectrum of T when it has certain chaotic behavior: Namely, every connected 
component of σ(T ) intersects T . This is also the case for chain recurrence. Indeed, if K is 
a connected component of σ(T ), again Riesz decomposition theorem brings the existence 
of a T -invariant closed subspace M , with a complement which is also T -invariant, such 
that σ(T |M ) = K. Then, by Proposition 36, T |M is also chain recurrent. If K does not 
intersect σ(T ), either it is contained in D, which is impossible since its spectral radius 
would be strictly less than 1, or it is contained in the complementary of D, also impos-
sible since this would mean that T |M is invertible with a spectral radius of its inverse 
strictly less than 1.

Proposition 41. Suppose that X is the product of a family (Xi)i∈I of topological vector 
spaces over K, Ti ∈ L(Xi) for each i ∈ I, and T ∈ L(X) is the product operator given by

T ((xi)i∈I) := (Tixi)i∈I .

The following properties hold:

(a) CR(T ) =
∏

i∈I CR(Ti).
(b) T is chain recurrent if and only if so is each Ti.
(c) T has the positive shadowing property if and only if so does each Ti.

Proof. For each i ∈ I, let πi : X → Xi denote the canonical projection.
(a): Let x := (xi)i∈I ∈

∏
i∈I CR(Ti) and V ∈ VX . We may assume that V =

∏
i∈I Vi, 

where Vi ∈ VXi
for each i ∈ I and Vi = Xi except for i in a finite subset J of I. For each 

i ∈ J , there is a Vi-chain (x(j)
i )ki

j=0 for Ti from xi to itself, and we may assume all the 

ki’s equal to the same k. For each j ∈ {0, . . . , k}, let x(j)
i := xi for all i ∈ I\J , and let 

x(j) := (x(j)
i )i∈I ∈ X. Then (x(j))kj=0 is a V -chain for T from x to itself. For the converse, 

simply note that if y ∈ CR(T ), i ∈ I, Ui ∈ VXi
and (y(j))�j=0 is a π−1

i (Ui)-chain for T
from y to itself, then (πi(y(j)))�j=0 is a Ui-chain for Ti from πi(y) to itself.
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(b): It follows immediately from (a).
(c): Suppose that each Ti has the positive shadowing property. Let V :=

∏
i∈I Vi, where 

Vi ∈ VXi
for each i ∈ I and Vi = Xi except for i in a finite subset J of I. For each i ∈ J , 

let Ui ∈ VXi
be associated to Vi according to the definition of positive shadowing. Let 

U :=
⋂

i∈J π−1
i (Ui) ∈ VX . Then every U -pseudotrajectory of T is V -shadowed by some 

real trajectory of T , proving that T has the positive shadowing property. Conversely, if 
T has the positive shadowing property and i ∈ I, we regard the product space X as the 
topological direct sum of the T -invariant “subspaces” Xi and 

∏
� �=i X� in a canonical way 

and apply Proposition 34(d) to conclude that Ti has the positive shadowing property. �
Remark 42. Consider the notations of the previous proposition. Let Y :=

⊕
i∈I Xi be 

the external direct sum of the family (Xi)i∈I , that is, the set of all (xi)i∈I ∈ X such 
that xi = 0 except for a finite number of indices. If we consider Y as a subspace of the 
product topological vector space X and S ∈ L(Y ) is the operator obtained by restricting 
T to Y , then the following properties hold:

(a) CR(S) =
⊕

i∈I CR(Ti).
(b) S is chain recurrent if and only if so is each Ti.
(c) S has the positive shadowing property if and only if so does each Ti.

The proof is similar to the previous one and so we leave it to the reader.

Proposition 43. Suppose that X is the locally convex direct sum of a family (Xi)i∈I of 
locally convex spaces over K, Ti ∈ L(Xi) for each i ∈ I, and T ∈ L(X) is given by

T ((xi)i∈I) := (Tixi)i∈I .

The following properties hold:

(a) CR(T ) =
⊕

i∈I CR(Ti).
(b) T is chain recurrent if and only if so is each Ti.
(c) If T has the positive shadowing property, then so does each Ti.

Proof. (a): Let x := (xi)i∈I ∈
⊕

i∈I CR(Ti) and V ∈ VX . There is a finite subset J of I
such that xi = 0 for all i ∈ I\J . We may regard X as the topological direct sum of the T -
invariant “subspaces” Y :=

⊕
i∈J Xi and Z :=

⊕
i∈I\J Xi in a canonical way. Let U ∈ VY

and W ∈ VZ be such that U + W ⊂ V . Since J is finite, Y coincides with the product 
space 

∏
i∈J Xi. Hence, by Proposition 41(a), (xi)i∈J ∈

∏
i∈J CR(Ti) = CR(T |Y ). Thus, 

there is a U -chain for T |Y from (xi)i∈J to itself. Each element of this U -chain can be 
regarded as an element of X by completing the remaining coordinates with 0’s. In this 
way we obtain a V -chain for T from x to itself, proving that x ∈ CR(T ). For the 
converse, note that each Xi can be regarded as a T -invariant subspace of X that admits 
a T -invariant topological supplement, and so we can apply Proposition 34(a).
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(b): It follows immediately from (a).
(c): It is enough to apply Proposition 36(b), since each Xi can be regarded as a T -
invariant subspace of X that admits a T -invariant topological supplement. �
Remark 44. The converse of Proposition 43(c) is false in general. For instance, consider 
the locally convex direct sum K(N), where K is endowed with its usual topology, and

T ((xn)n∈N) := (2xn)n∈N for all (xn)n∈N ∈ K(N).

We know that the operator x ∈ K �→ 2x ∈ K has the shadowing property, but we 
will show that the operator T does not have the positive shadowing property. For this 
purpose, let jn : K → K(N) denote the nth canonical injection and let Δ(0; δ) := {λ ∈
K : |λ| ≤ δ} for δ > 0. Consider the following neighborhood of 0 in K(N):

V := co
( ∞⋃

n=1
jn(Δ(0; 1))

)
,

where co(A) denotes the convex hull of the set A ⊂ K(N). Given any neighborhood U of 
0 in K(N) of the form

U := co
( ∞⋃

n=1
jn(Δ(0; δn))

)
,

with δn > 0 for all n ∈ N, define x(0) := 0 and x(j) := Tx(j−1) + δjej for j ≥ 1, where 
ej is the sequence whose jth coordinate is 1 and the others are 0. Then (x(j))j∈N0 is 
a U -pseudotrajectory of T , but it cannot be V -shadowed by a trajectory of T , because 
each x ∈ K(N) has finite support.

Remark 45. Propositions 29(c), 32, 34(d), 36(b), 41(c) and 43(c), as well as Remark 42(c), 
remain true if we replace positive shadowing by finite shadowing. Moreover, all these 
results have analogous formulations with shadowing instead of positive shadowing in the 
case of invertible operators.

We close the paper by proposing the following open problems:

Problem A. To characterize the Fréchet spaces in which shadowing and finite shadowing 
coincide for operators or at least find sufficient (resp. necessary) conditions for the validity 
of this equivalence in the case of non-normable Fréchet spaces.

Problem B. Does Theorem 12 hold for every Fréchet space? If not, for which Fréchet 
spaces does the property described in Theorem 12 hold?

Problem C. To characterize the periodic shadowing property for bilateral weighted shifts 
on Banach sequence spaces.



N.C. Bernardes, A. Peris / Advances in Mathematics 441 (2024) 109539 45
Problem D. If T ∈ L(X) is an (invertible) operator on a Banach space X, is it true that 
T |CR(T ) is always chain recurrent?

Note. We were informed that Antoni López-Martínez and Dimitris Papathanasiou have 
recently solved Problem D in the negative.
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