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as its numerical radius. As a consequence, the numerical index of 2-dimensional 
Lipschitz-free spaces can take any value of the interval [ 12 , 1], and this whole range 
of numerical indices can be attained by taking 2-dimensional subspaces of any 
Lipschitz-free space of the form F(A), where A ⊂ Rn with n ≥ 2 is any set with 
non-empty interior.
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1. Introduction

The numerical index of a given Banach space is a constant relating the geometry of the norm and the 
numerical radius of bounded linear operators on the space. The concept appeared in the literature for the 
first time in 1970 in the seminal paper [5], after being introduced by G. Lumer two years before. The classical 
references on this topic are the two monographs by F. Bonsall and J. Duncan, [3] and [4]. From there, a 
good overview of the current state of the topic can be provided through the survey [10] together with the 
first chapter of the recent book [9].

This concept has been widely studied, and although the numerical index of certain classes of Banach 
spaces—like L1(μ) or C(K)—are well known due to their concrete properties, finding the numerical index 
is still a challenging task, even for 2-dimensional Banach spaces. For instance, there is a full line of recent 
papers devoted to the study of the numerical index of 2-dimensional lp spaces, see [13], [15], [16] or [17]. 
Also, there are papers studying the numerical index for some 2 or 3-dimensional Banach spaces whose unit 
ball has a particular shape—see [14] and [19].

Along this work, we intend to begin with the study of the numerical index of Lipschitz-free Banach 
spaces, starting from the 2-dimensional case. The origin of this class of Banach spaces—also known by 
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other names through the literature, like Arens–Eells spaces or Transportation Cost spaces—can be tracked 
to classical authors like Kantorovich and Rubinstein [11] while approaching optimal transport problems. 
They were rediscovered many times from different perspectives by authors like Arens, de Leeuw, Eells, 
or Johnson—see [2], [7], and [12]. Meanwhile, Kadets [8] and Pestov [18] provided early versions of what 
nowadays is known as the universal property, as Lipschitz-free Banach spaces are the free object between the 
categories of metric spaces (with the morphisms of Lipschitz maps) and Banach spaces (with the morphisms 
of linear bounded operators). Its systematic study as Banach spaces started in 1999 with the first edition of 
the monograph [20] by Weaver, whose recent second edition [21] has taken its place as the main reference 
in the topic. Concerning the area of Geometry of Banach spaces, the seminal paper [6] by Godefroy and 
Kalton in 2003 started the study of Lipschitz-free spaces from this point of view, providing some remarkable 
results, like the preservation of the bounded approximation property by Lipschitz-homeomorphisms, or the 
linearization of metric embeddings of a separable Banach space X inside a Banach space Y .

As the norm of these spaces is fundamentally described as a predual norm, even nowadays, the geometry 
of these spaces is still under study, and it is unknown in so many aspects, being a very active field of research 
in the last years. For instance, it is still an open problem to determine if, in every Lipschitz-free space, every 
extreme point is a molecule (defined below).

The following is the main result of the paper:

Theorem 1.1. Let M = ({x, y, z}, d) a metric space of three points. Assume (without loss of generality) that 
d(x, y) ≥ d(x, z) ≥ d(y, z). Then:

• if any triangular inequality on M is satisfied as an equality, then n(F(M)) = 1;
• if all triangular inequalities on M are strict, then

n(F(M)) = max
{

d(x, z)Gy(x, z)
d(x, y)Gz(x, y) + d(y, z)Gx(y, z) ,

d(x, z)
d(x, y) + d(y, z)

}
,

where Gz(x, y) is the Gromov product of x and y w.r.t. z.

In particular, for a metric space of three points, the numerical index 1 is only attained at the degenerated 
case—see Corollary 5.2—and n(F(M)) = 1

2 if and only if M is an equilateral triangle—see Corollary 5.3. 
Moreover, simpler formulae are obtained for the isosceles case—see Corollaries 5.4 and 5.5—which allowed 
us to recover [14, Theorem 1] as a particular case.

Aside from this introduction, this article contains 4 sections structured as follows. First, the remaining 
part of this section contains two subsections providing the necessary preliminaries and definitions concerning 
numerical index and Lipschitz-free Banach spaces. We encourage experts in the field to skip this part. 
Section 2 is fully devoted to developing some tools and results in metric spaces M that will be needed 
to describe the geometric behaviour of the numerical radius in F(M). In Section 3, we begin the work in 
2-dimensional Lipschitz-free spaces, getting the first results and estimations on the numerical radius of norm-
one operators, deducing that the maximum appearing in Theorem 1.1 above works as a lower bound for the 
numerical index of F(M). In Section 4, we will prove that the lower bound obtained in the previous section is 
indeed the exact formula to compute the numerical index of a 2-dimensional F(M), by constructing operators 
that reach exactly this value as their numerical radius. Some applications, particular cases, and consequences 
on infinite dimensional Lipschitz-free spaces will be given in Section 5. From here, we highlight the fact that 
the numerical index of a 2-dimensional Lipschitz-free space can take any value of the interval [ 12 , 1].

Notation and basic Banach space notions

Throughout this note, X will denote a real Banach space, while its unit ball and sphere will be denoted 
by BX and SX , respectively. Its dual space will be denoted by X∗, and given x ∈ X and a linear continuous 
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functional x∗ ∈ X∗, we will write indistinctly 〈x, x∗〉 or 〈x∗, x〉 to refer to the evaluation x∗(x). We will use 
L(X) to refer to the space of linear bounded operators from the Banach space X into itself.

Given X a real Banach space and T ∈ L(X), the numerical radius of T is defined as

ν(T ) := sup{|〈x∗, Tx〉| : x ∈ SX , x∗ ∈ SX∗ , 〈x, x∗〉 = 1}.

The numerical radius defines a seminorm in L(X) satisfying ν(T ) ≤ ‖T‖ for every T ∈ L(X). It may define 
an equivalent norm on L(F(M)), and this happens if and only if the equation

C‖T‖ ≤ ν(T ) ≤ ‖T‖

is satisfied for a constant 0 < C ≤ 1.
The numerical index of X, denoted by n(X), is the greatest constant C ≥ 0 satisfying the equation 

above. Thus, if X is a real Banach space, n(X) belongs to [0, 1]. The numerical index can equivalently be 
defined as

n(X) = inf{ν(T ) : T ∈ SL(X)}.

As our working context is finite-dimensional Banach spaces, notice that it is enough to evaluate on the 
extreme points, i.e.,

ν(T ) := sup{|〈x∗, Tx〉| : x ∈ Ext BX , x∗ ∈ Ext BX∗ , 〈x, x∗〉 = 1}. (1)

Lipschitz-free preliminaries

For the sake of completeness, here we provide a very brief summary of some of the basic properties and 
tools needed to work with Lipschitz-free spaces.

To introduce its definition, let (M, d) be a metric space. By choosing a distinguished point 0M ∈ M

(usually called just 0 when there is no possibility of confusion), we can take Lip0(M) as the linear space of 
Lipschitz functions f : M → R that vanish at 0, which is a real Banach space when endowed with the norm 
of the Lipschitz constant, ‖ · ‖Lip, defined by

‖f‖Lip := sup
x�=y∈M

|f(x) − f(y)|
d(x, y) .

The choice of the element 0 can be arbitrary since by taking 0′ 	= 0, Lip0(M) and Lip0′(M) are isomet-
rically isomorphic as real Banach spaces. In order to simplify the notation, once the 0 ∈ M is fixed, we will 
use the function ρ(·) := d(·, 0). The map δ : M → Lip0(M)∗ that sends every point x ∈ M to its evaluation 
functional δx is an isometry, and it is easy to see that δx and δy with x 	= y are linearly independent. Notice 
that span{δ(x) : x ∈ M} is a closed linear subspace of Lip0(M)∗, and it is a predual of Lip0(M), denoted 
by F(M), i.e.,

F(M) = span{δx : x ∈ M} (⊂ Lip0(M)∗).

Roughly speaking, we can think of F(M) as the Banach space constructed by taking M and providing it 
with a linear structure in which distinct points in M are now linearly independent, and the endowed norm is 
the one keeping the original metric structure of M . Thus, ‖δx‖ = ρ(x), or more generally, ‖δx−δy‖ = d(x, y).

As the linear continuous functionals on F(M) are the elements of Lip0(M), it is clear how they act. Let 
g ∈ Lip0(M) and 

∑n
aiδxi

∈ F(M), then
i
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Fig. 1. Representation of BF(M). The shaded area is where the molecule mx,y may be located, depending on M .

〈g,
n∑
i

aiδxi
〉 =

n∑
i

ai〈g, δxi
〉 =

n∑
i

aiδg(xi).

Although the space may be fully described using the deltas, the following notion provides some advan-
tages. Given x, y ∈ M two distinct points in M , its associated molecule (some authors call this elemental 
molecule) is

mx,y := δx − δy
d(x, y) ∈ F(M).

As, for every x ∈ M , δx = ρ(x) · mx,0, F(M) = span{mx,y : x, y ∈ M}. The reader will rapidly 
understand the relevance of these elements on F(M) since they are not only norm-one elements but, as 
〈g, mx,y〉 = g(x)−g(y)

d(x,y) , they constitute a 1-norming subset of F(M) for the norm ‖ · ‖Lip.
Moreover, in the finite-dimensional case, all extreme points of the unit ball of F(M) are molecules (see, 

for instance, [1]), although not every molecule should be an extreme point. Thus, even though the explicit 
computation of the norm of a finite-dimensional Lipschitz-free is far from being an easy task, one may 
represent its unit ball as the convex hull of all the molecules. By determining the extreme molecules we can 
also think of the faces of BF(M) as convex hulls of some of these molecules.

Example 1.2. Consider M = ({x, y, 0}, d). Then, mx,0 and my,0 are norm-one vectors which are linearly 
independent, while

mx,y = ρ(x)
d(x, y)mx,0 −

ρ(y)
d(x, y)my,0.

As Fig. 1 illustrates, the unit ball of the 2-dimensional Lipschitz-free may be understood as a modification 
of the usual ‖ · ‖1 norm in R2. Indeed, we can interpret this as the norm in R2 such that the unit ball is 
the absolute convex hull of the vectors {e1, e2, 

ρ(x)
d(x,y)e1 − ρ(y)

d(x,y)e2}.
As Fig. 1 illustrates, given M = ({x, y, 0}, d), the unit ball of F(M) will be represented as a specific 

hexagon, although depending on the location of the molecule mx,y, it may be a rhombus. This happens 
exactly when 3 molecules are aligned (i.e. when a molecule is in the convex hull of the other two), and in the 
sections below we indicate a way to characterize this behaviour. When this happens, F(M) is isometrically 
isomorphic to (R2, ‖ · ‖1).

2. Metric tools

Along this section, we will define some constants on the metric space M and state some of its properties 
that will be used later in order to work with the geometric structure in F(M) and to bring forth some 
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geometric arguments to estimate the numerical index in F(M). To the best of our knowledge, some notions 
are introduced as a part of this work, while other ones, as easy computations on a metric space, may appear 
in other parts of the literature, maybe with other names. We will state its definitions and provide some 
properties for the sake of completeness.

Before starting, it is worth remarking that, even though there is a need of having a distinguished point 
0 in M to construct F(M), this element will play no special role in any part of the work. This is not only 
because the isometric structure of F(M) is independent of the choice of the distinguished element, but also 
because in any formula developed in this work, in any concept associated with a pair of points x, y ∈ M

or to a molecule mx,y ∈ F(M), the computations are exactly the same either if one of the points x or y is 
the distinguished element in M or not. To stress this fact, generally, we will put M = ({x, y, z}, d), without 
explicitly identifying the distinguished element. However, to make some deductions, sometimes we will need 
to assume (without loss of generality) any order in the distances. As the points in the metric space can be 
renamed as we please, we will assume the order d(x, y) ≥ d(x, z) ≥ d(y, z), and just in this scenario, as a 
way to ease the notation, we will put z = 0. In this case, we will write M = ({x, y, 0}, d) and the order will 
be d(x, y) ≥ ρ(x) ≥ ρ(y), where ρ(·) := d(·, 0).

Let (M, d) be a metric space and x, y, z ∈ M a triplet of points. We say that z lies in the metric segment 
between x and y if d(x, y) = d(x, z) + d(z, y). If there is a triplet of points x, y, z ∈ M such that one of them 
lies in the metric segment of the other two, we may just say that the three points are (metrically) aligned. 
The following notion is well known and works as a tool to detect this behaviour in the metric space M .

Definition 2.1. Let (M, d) be a metric space. Given distinct x, y and z ∈ M , the Gromov product of x and 
y with respect to z is

Gz(x, y) := d(x, z) + d(y, z) − d(x, y).

This expression comes from the triangular inequality d(x, z) + d(y, z) ≥ d(x, y), so Gromov products are 
always non-negative. Roughly speaking, the Gromov product of x and y with respect to z measures how 
far is z from being in the metric segment between x and y, which happens if and only if Gz(x, y) = 0. This 
allows us to provide a general definition of being a non-aligned metric space.

Definition 2.2. A given metric space (M, d) will be called non-aligned if every Gromov product is strictly 
positive. A non-aligned metric space M with three elements will be called triangle through this paper.

The following lemma is straightforward but will be of use.

Lemma 2.3. Let M = ({x, y, z}, d) be a triangle. Assume that d(x, y) ≥ d(x, z) ≥ d(y, z). Then Gz(x, y) ≤
Gy(x, z) ≤ Gx(y, z).

We introduce a related notion that will be useful to simplify computations.

Definition 2.4. Let (M, d) be a metric space. Given distinct x, y and z ∈ M , the weighted Gromov product
of x and y with respect to z is defined as

γz(x, y) := d(x, y)Gz(x, y).

Lemma 2.5. Let M = ({x, y, z}, d) be a triangle. Then, γz(x, y) ≤ γy(x, z) if and only if d(x, y) ≥ d(x, z).

Proof. It is routine by expanding expressions and factorizing properly. �
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We now introduce the two quantities—and some of their properties—that will be essential for expressing 
the numerical index.

Definition 2.6. Let M = ({x, y, z}, d) be a triangle. Given a pair of points x, y ∈ M , we call its optimal 
contribution to

νop(x, y) := d(x, y)Gz(x, y)
d(x, z)Gy(x, z) + d(y, z)Gx(y, z) = γz(x, y)

γy(x, z) + γx(y, z)
.

Lemma 2.7. Let M = ({x, y, z}, d) be a triangle. Then, d(x, y) ≥ d(x, z) if and only if νop(x, y) ≤ νop(x, z).

Proof. It is routine by expanding expressions, factorizing properly, and using Lemma 2.5. �
Definition 2.8. Let (M, d) be a metric space. Then, given a triplet of points x, y, z ∈ M , we call its metric 
ratio to

Rz(x, y) := d(x, y)
d(x, z) + d(y, z) .

Lemma 2.9. Let M = ({x, y, z}, d) a metric space with 3 points. Then, Rz(x, y) ≥ Ry(x, z) if and only if 
d(x, y) ≥ d(x, z).

We establish the relationship between optimal contribution and metric ratio.

Lemma 2.10. Let M = ({x, y, 0}, d) be a triangle with d(x, y) ≥ ρ(x) ≥ ρ(y). Then, Ry(x, 0) ≥ νop(x, 0) if 

and only if ρ(x) ≥ d(x, y)2 + ρ(y)2

d(x, y) + ρ(y) .

Proof. It is routine by expanding the expressions involved and factorizing properly. �
Lemma 2.11. Let M = ({x, y, 0}, d) be a triangle with d(x, y) ≥ ρ(x) ≥ ρ(y). Then,

max{νop(x, y), R0(x, y)} = R0(x, y);

max{νop(y, 0), Rx(y, 0)} = νop(y, 0).

Moreover, R0(x, y) ≥ νop(y, 0) if and only if ρ(x) ≤ d(x, y)2 + ρ(y)2

d(x, y) + ρ(y) .

Proof. First, we will prove that for the longest side of the triangle (d(x, y)), its ratio is greater than its 
optimal contribution. Indeed, by Lemma 2.3, we know that Gz(x, y) ≤ Gy(x, z) ≤ Gx(y, z), which implies 
that

νop(mx,y) = d(x, y)Gz(x, y)
d(x, z)Gy(x, z) + d(y, z)Gx(y, z)

≤ d(x, y)Gy(x, z)
d(x, z)Gy(x, z) + d(y, z)Gy(x, z)

= d(x, y)
d(x, z) + d(y, z) = Rz(x, y).
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Analogously, for the shortest side (d(y, z)), the inequality is the opposite. Indeed,

νop(my,z) = d(y, z)Gz(y, z)
d(x, y)Gz(x, y) + d(x, z)Gy(x, z)

≥ d(y, z)Gy(x, z)
d(x, y)Gy(x, z) + d(x, z)Gy(x, z)

= d(y, z)
d(x, y) + d(x, z) = Rx(y, z).

Moreover, developing the inequality R0(x, y) ≥ νop(y, 0), one obtains the equivalent inequality

d(x, y)(γ(x, y) + γ(x, 0)) ≥ γ(y, 0)(ρ(x) + ρ(y)).

Now, we make a full expansion of the expression and rearrange the result, writing it as a polynomial of 
variable ρ(x), reaching a concave parabola with roots

ρ(x) = d(x, y) − ρ(y) and ρ(x) = d(x, y)2 + ρ(y)2

d(x, y) + ρ(y) .

Therefore, R0(x, y) ≥ νop(y, 0) if and only if

d(x, y) − ρ(y) ≤ ρ(x) ≤ d(x, y)2 + ρ(y)2

d(x, y) + ρ(y) .

The left-hand side of the expression above is always satisfied as a consequence of triangular inequality, 
so we conclude that R0(x, y) ≥ νop(y, 0) if and only if ρ(x) ≤ d(x,y)2+ρ(y)2

d(x,y)+ρ(y) , as we wanted to prove. �
3. Geometric behaviour of the Lipschitz-free space associated to a triangle

In this section, we will begin with the assessment of the numerical index in F(M), where M is a metric 
space of 3 points. The whole section is devoted to proving that n(F(M)) is greater than or equal to the 
estimation given in Theorem 1.1. We introduce first some notions of an auxiliary character.

Definition 3.1. Let X be a Banach space, x ∈ Ext BX , and T ∈ L(X). We refer as the contribution of x to 
the numerical radius of T to

ν(T, x) := sup{|〈x∗, Tx〉| : x∗ ∈ Ext BX∗ , 〈x, x∗〉 = 1}.

Given X a Banach space and x∗ ∈ SX∗ a norm-attaining element, we say that the set

F(x∗) := {x ∈ SX : 〈x, x∗〉 = 1}

is the face generated by x∗ in X.
Now, considering M a metric space of three points, generally, it is expected a hexagonal shape on the 

unit ball—recall Fig. 1. Then, it is useful to identify the linear forms defining its maximal faces, as they are 
the only ones that we need to evaluate the numerical radius of an operator.

Given M = ({x, y, z}, d) a metric space of three points, for every t ∈ M , and r, s ∈ M\{t}, r 	= s, consider 
ρt ∈ F(M)∗ the norm-one linear form characterized by

〈ρt,mr,t〉 = 1 = 〈ρt,ms,t〉.



8 Ch. Cobollo et al. / J. Math. Anal. Appl. 538 (2024) 128333
Fig. 2. Maximal faces in BF(M).

By the very definition of mr,s, it follows that 〈ρt, mr,s〉 = d(r,t)−d(s,t)
d(r,s) .

Therefore, we have that the six maximal faces of BF(M) are F(±ρx), F(±ρy) and F(±ρz). We will use ρt
to denote these linear continuous functionals acting on F(M), while ρ will be used, as introduced before, 
as the “distance to zero” Lipschitz map acting on M .

However, depending on the underlying metric structure of M , this hexagon can also be a rhombus. This 
happens—as Fig. 1 illustrates—if and only if one molecule is in the convex hull of the other two, which is 
determined by the underlying metric structure of M , as a molecule mx,y lies in conv{mx,z, mz,y} if and only 
if d(x, y) = d(x, z) +d(z, y)—i.e., z lies in the metric segment between x and y or, equivalently, Gz(x, y) = 0. 
To summarize, BF(M) will be a rhombus—being F(M) isometrically isomorphic to (R2, ‖ · ‖1)—if and only 
if M is not a triangle. It is well known that in this case n(F(M)) = 1, covering the first part of Theorem 1.1. 
Therefore, from this moment on we will avoid this trivial case by considering M to be a triangle.

3.1. The first lower bound: the optimal contribution

We introduced the optimal contribution—see Definition 2.6—as this quotient appears naturally as a lower 
bound for the numerical radius of a norm-one operator that sends a molecule mx,y to the sphere, as this is 
the lowest value of ν(T, mx,y) that such an operator can have. This phenomenon is reflected in the following 
result.

Lemma 3.2. Let M = ({x, y, z}, d) be a triangle, and T ∈ SF(M) be such that ‖Tmx,y‖ = 1. Then,

ν(T,mx,y) ≥ νop(x, y).

Moreover, if

Tmx,y = λzmx,z + (1 − λz)my,z,

where

λz := γy(x, z)
γy(x, z) + γx(y, z)

,

then ν(T, mx,y) = νop(x, y).

Proof. If Tmx,y ∈ F(±ρx) or Tmx,y ∈ F(±ρy), then ν(T, mx,y) = 1. Thus, we consider now, without loss 
of generality, that Tmx,y ∈ F(ρz) (otherwise, we take the operator −T ). Then, the operator must be of the 
form
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Tλmx,y = λmx,z + (1 − λ)my,z, with λ ∈ [0, 1].

Therefore, the evaluations for the contribution of mx,y are

〈ρx, Tλmx,y〉 = −λ + (1 − λ)d(x, y) − d(x, z)
d(y, z) ,

〈ρy, Tλmx,y〉 = λ
d(x, y) − d(y, z)

d(x, z) − (1 − λ).

A simple argument shows that considering |〈ρx, Tλmx,y〉| and |〈ρy, Tλmx,y〉|, for any fixed values of the 
distances, one of them is increasing with the value of λ, while the other one is decreasing. Thus, the 
contribution of mx,y, ν(Tλ, mx,y) = max{|〈ρx, Tλmx,y〉|, |〈ρy, Tλmx,y〉|}, is minimized for the value of λ
satisfying |〈ρx, Tλmx,y〉| = |〈ρy, Tλmx,y〉|.

Then, the best value of λ is the one that solves the equation

〈ρx, Tλmx,y〉 = 〈ρy, Tλmx,y〉,

since, otherwise, if 〈ρx, Tλmx,y〉 = −〈ρy, Tλmx,y〉, then λ ∈ [0, 1] if and only if −d(y, z)Gz(x, y) ≥ 0, which 
is impossible. It is straightforward then that this optimal value of λ is

λz := d(x, z)Gy(x, z)
d(x, z)Gy(x, z) + d(y, z)Gx(y, z) = γy(x, z)

γy(x, z) + γx(y, z)
.

Recall that both the numerator and denominator are strictly positive as a consequence of M being a 
triangle and that—as can be checked—λz belongs to [0, 1]. By conveniently write

1 − λz = γx(y, z)
γy(x, z) + γx(y, z) ,

and expand, we obtain that

ν(Tλz
,mx,y) = d(x, y)Gz(x, y)

d(x, z)Gy(x, z) + d(y, z)Gx(y, z)

= γz(x, y)
γy(x, z) + γx(y, z) = νop(x, y).

Thus, as any operator T with Tmx,y ∈ F(ρz) is of the form Tλ, we would have ν(Tλ, mx,y) ≥
ν(Tλz

, mx,y) = νop(x, y). �
It is worth noticing that if we pick a molecule mx,y, we can construct a triangle M such that νop(x, y)

may be as close to zero as we please. Still, it is not possible to achieve an operator with numerical index 
arbitrarily small. Roughly speaking, decreasing the value of an optimal contribution will lead to an increase 
in the contributions of the other molecules. In this case, the optimal contribution will fail to accurately 
estimate the numerical radius. There is another value working as a lower bound for the numerical radius 
of an operator, which takes its place as the best estimation of the numerical index when the optimal 
contribution fails.

Before continuing with the argument, it seems remarkable to us that the optimal contribution is enough 
to reach a relevant insight.

Proposition 3.3. Let M = ({x, y, z}, d) be a metric space. Then, the numerical radius of F(M) is greater 
than or equal to 1 . Moreover, equality implies M to be equilateral.
2
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Proof. First, by reductio ad absurdum, assume that there exists a norm one operator T ∈ L(F(M)) with 
ν(T ) < 1

2 . The metric space M must be non-aligned since, if the points of M are aligned, then n(F(M)) = 1, 
which leads to a contradiction. Once again, ‖T‖ = 1, implies that T (BF(M)) ⊂ BF(M) and that Tm ∈ SF(M)
for some m ∈ {mx,z, my,z, mx,y}. Assume without loss of generality that Tmx,y ∈ SF(M). As ν(T ) < 1, either 
Tmx,y ∈ F(ρz) or Tmx,y ∈ F(−ρz). Now, ν(T ) < 1

2 implies that |〈ρz, Tmx,z〉| < 1
2 and |〈ρz, Tmy,z〉| < 1

2 . 
By the linearity of T , and by using that

Tmx,y = d(x, z)
d(x, y)Tmx,z −

d(y, z)
d(x, y)Tmy,z,

we can estimate

|〈ρz, Tmx,y〉| =
∣∣∣∣d(x, z)d(x, y) 〈ρz, Tmx,z〉 −

d(y, z)
d(x, y) 〈ρz, Tmy,z〉

∣∣∣∣
≤ d(x, z)

d(x, y) |〈ρz, Tmx,z〉| +
d(y, z)
d(x, y) |〈ρz, Tmy,z〉|

<
1
2

(
d(x, z)
d(x, y) + d(y, z)

d(x, y)

)
= d(x, z) + d(y, z)

2d(x, y) .

As Tmx,y ∈ F(ρz) or Tmx,y ∈ F(−ρz), we deduce that

1 = ‖Tmx,y‖ = |〈ρz, Tmx,y〉| <
d(x, z) + d(y, z)

2d(x, y) ,

which implies that

d(x, z) + d(y, z) > 2d(x, y). (2)

However, ν(T ) < 1
2 also implies that the contribution of mx,y must be strictly lower than 1

2 , but, at the 
same time, greater than the optimal contribution, i.e.,

1
2 > ν(T,mx,y) ≥ νop(x, y)

This would imply that

d(x, z)Gy(x, z) + d(y, z)Gx(y, z) > 2d(x, y)Gz(x, y),

which, by expanding and factorizing properly, is equivalent to

−(d(x, z) − d(y, z))2 > d(x, y)(d(x, z) + d(y, z) − 2d(x, y)).

By (2), the right-hand side is strictly positive, which leads to a contradiction. Then, no triangle M
has access to an operator T with ν(T ) < 1

2 . Moreover, if the whole argument above is repeated with 
ν(T ) ≤ 1

2—we let the details to the reader—then, it is deduced that d(x, z) = d(y, z) = d(x, y), i.e., M is 
equilateral. �
Remark 3.4. We will see in Section 5 that equality in Proposition 3.3 is equivalent to M being equilateral. 
�
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3.2. The second lower bound: the metric ratio

Proposition 3.5. Let M = ({x, y, z}, d) be a triangle and T ∈ SL(F(M)) such that ‖Tmx,y‖ = 1. Then, 
ν(T ) ≥ Rz(x, y).

Proof. By reductio ad absurdum, assume that ν(T ) < Rz(x, y). Then, by the triangular inequality, Tmx,y ∈
F(ρz) or Tmx,y ∈ F(−ρz) since Rz(x, y) ≤ 1. Without loss of generality, we assume Tmx,y ∈ F(ρz)—that 
is, 〈ρz, Tmx,y〉 = 1. By the linearity of T , it holds that

Tmx,y = d(x, z)
d(x, y)Tmx,z −

d(y, z)
d(x, y)Tmy,z, (3)

and evaluating against ρz, we deduce that

1 = 〈ρz, Tmx,y〉 = d(x, z)
d(x, y) 〈ρz, Tmx,z〉 −

d(y, z)
d(x, y) 〈ρz, Tmy,z〉. (4)

Now, there are two options, either 〈ρz, Tmx,z〉 ≤ 0 or 〈ρz, Tmx,z〉 > 0. We will see that both lead to a 
contradiction. Indeed, if 〈ρz, Tmx,z〉 ≤ 0, by equation (4), we deduce

|〈ρz, Tmy,z〉| = d(x, y)
d(y, z)

∣∣∣d(x, z)
d(x, y) 〈ρz, Tmx,z〉 − 1

∣∣∣
≥ d(x, y)

d(y, z) ≥ d(x, y)
d(x, z) + d(y, z) = Rz(x, y),

which implies that ν(T ) ≥ ν(T, my,z) ≥ |〈ρz, Tmy,z〉| ≥ Rz(x, y), and yields a contradiction. On the other 
hand, if 〈ρz, Tmx,z〉 is positive we would have that

0 < 〈ρz, Tmx,z〉 ≤ ν(T ) < Rz(x, y),

which implies that

0 <
d(x, z)
d(x, y) 〈ρz, Tmx,z〉 <

d(x, z)
d(x, y)Rz(x, y) = d(x, z)

d(x, z) + d(y, z) < 1.

Therefore, by equation (4), it implies that 〈ρz, Tmy,z〉 < 0. But then,

〈ρz, Tmy,z〉 = d(x, y)
d(y, z)

(d(x, z)
d(x, y) 〈ρz, Tmx,z〉 − 1

)

<
d(x, y)
d(y, z)

(d(x, z)
d(x, y)Rz(x, y) − 1

)

= d(x, z)
d(y, z)Rz(x, y) −

d(x, y)
d(y, z) = −Rz(x, y),

which leads again to the contradiction

ν(T ) ≥ |〈ρz, Tmy,z〉| = −〈ρz, Tmy,z〉 > Rz(x, y). �
We have just proved that if a norm-one operator sends a specific extreme point to the sphere, two values 

work as lower bounds for the numerical radius, so we may take the greatest of them to control the numerical 
radius. We state this for further reference.
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Corollary 3.6. Let M = ({x, y, z}, d) be a triangle and T ∈ SL(F(M)) satisfying ‖Tmx,y‖ = 1. Then,

ν(T ) ≥ max{νop(x, y), Rz(x, y)}.

As a norm-one operator in a finite-dimensional F(M) must send one of the extreme molecules to the 
sphere, the following provides a first lower bound for the numerical index.

Proposition 3.7. Let M = ({x, y, z}, d) a triangle. Then

n(F(M)) ≥ min
{

max{νop(mx,y), Rz(x, y)},

max{νop(mx,z), Ry(x, z)},

max{νop(my,z), Rx(y, z)}
}

Proof. Fix any T ∈ SL(F(M)). Then, T (BF(M)) ⊂ BF(M) and, by the convexity of the unit ball and 
linearity of T , we deduce that Tm ∈ SF(M) for some m ∈ {mx,z, my,z, mx,y}. Depending on which molecule 
is T sending to the sphere, we may take its corresponding lower bound of the numerical radius given by 
Corollary 3.6. As the numerical index minimizes the numerical radius, we will consider the best-case scenario: 
taking the minimum of all three lower bounds. �
Remark. At this point, the previous Proposition already hints that depending on the computation of that 
minimum, we know which molecule an operator T must send to the sphere to attain the numerical radius. 
So we could expect this case to provide the operator with the smallest numerical radius. However, the last 
result can be dramatically improved. Once the ordering in the distances on the metric space M is known, 
all the relations between the metric ratios and the optimal contributions are clear, so there is no need to 
compute the whole minimum. Thus, we are in conditions to provide a simpler estimation of the numerical 
index of F(M) by refining—by means of the results of Section 2—Proposition 3.7.

Proposition 3.8. Let M = ({x, y, 0}, d) be a triangle. Assume that it satisfies d(x, y) ≥ ρ(x) ≥ ρ(y). Then,

n(F(M)) ≥ max{νop(x, 0), Ry(x, 0)}.

Proof. Through the assumption of the ordering of the distances and Lemma 2.11, the maximums at left 
and right of the inequality obtained in Proposition 3.7 are determined, so we can deduce that

n(F(M)) ≥ min
{
R0(x, y),max{νop(x, 0), Ry(x, 0)}, νop(y, 0)

}
.

At this point, we find a dichotomy in which always prevails the maximum in the middle. Indeed, there 
are two cases.

In one hand, if ρ(x) ≥ d(x, y)2 + ρ(y)2

d(x, y) + ρ(y) , by Lemma 2.11, R0(x, y) ≤ νop(y, 0) and, by Lemma 2.10, 

max{νop(x, 0), Ry(x, 0)} = Ry(x, 0). Then, by the order in the ratios—see Lemma 2.9—we conclude that 
Ry(x, 0) is lower.

On the other hand, if ρ(x) ≤ d(x, y)2 + ρ(y)2

d(x, y) + ρ(y) , Lemma 2.11 states that R0(x, y) ≥ νop(y, 0) and, by 

Lemma 2.10, max{νop(x, 0), Ry(x, 0)} = νop(x, 0). Then, by the order in the optimal contributions—see 
Lemma 2.7—we know that the minimum value is νop(x, 0).

Combining both cases, we have

n(F(M)) ≥ max{νop(x, 0), Ry(x, 0)}.
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The proof is over. �
4. Attaining the numerical index: construction of the operators

In the previous section, we found a lower bound for the numerical index of F(M) when M is a triangle. 
This section is devoted to showing that this bound is sharp. We must construct norm-one operators in 
F(M) attaining this value as its numerical radius. Thus, given a triangle M = ({x, y, 0}, d) with d(x, y) ≥
ρ(x) ≥ ρ(y), we want to see that n(F(M)) = max{νop(x, 0), Ry(x, 0)}. We will refer to such a triangle M
as canonical.

The maximum between these two values depends on a very geometrical condition on the triangle 
M—which is again translated to the geometry of BF(M)—and depending on which one is the greatest 
of both quantities, we will have two different scenarios, each one requiring a different construction of an 
operator with the lowest numerical radius.

Therefore, we split the argument in two cases, Subsection 4.1 holds the construction of the op-
erator when Ry(x, 0) = max{νop(x, 0), Ry(x, 0)}, while Subsection 4.2 contains the case νop(x, 0) =
max{νop(x, 0), Ry(x, 0)}. Notice that the explicit constructions are in Propositions 4.3 and 4.4, while the 
other results are just auxiliary lemmas.

4.1. Operator for the metric ratio

Lemma 4.1. Let M = ({x, y, 0}, d) be a canonical triangle and Ry(x, 0) = max{νop(x, 0), Ry(x, 0)}. Then, 
the vector

u := αxmy,x + (1 − αx)my,0 ∈ SF(M),

where

αx := 1 − ρ(y)Gy(x, 0)
(d(x, y) + ρ(y))G0(x, y)

,

satisfies |〈ρ0, u〉| ≤ Ry(x, 0).

Proof. First, notice that u ∈ SF(M), as it belongs to the unit ball for being a convex combination of 
molecules, and 〈−ρy, u〉 = 1 (so it is indeed an element in F(−ρy); see also Fig. 2).

We will split the rest of the proof into two parts. First,

1 − αx
Gx(y, 0)
d(x, y) ≤ Ry(x, 0) ⇐⇒ Gy(x, 0)

Gx(y, 0)
d(x, y)

d(x, y) + ρ(y) ≤ αx

After the expansion of this expression, we reach the equivalent one

d(x, y)G0(x, y)
(
Gy(x, 0) −Gx(y, 0)

)
+ ρ(y)Gx(y, 0)

(
Gy(x, 0) −G0(x, y)

)
≤ 0,

and further simplifications lead to the inequality

ρ(x)
(
d(x, y)2 + ρ(y)2

)
≤ ρ(x)2

(
d(x, y) + ρ(y)

)
,

which is again equivalent to
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d(x, y)2 + ρ(y)2

d(x, y) + ρ(y) ≤ ρ(x).

Thus, the condition 〈ρ0, u〉 ≤ Ry(x, 0) is equivalent to this last inequation, and by Lemma 2.10, we know 
that this is once again equivalent to the hypothesis of Ry(x, 0) = max{νop(x, 0), Ry(x, 0)}.

Now, we will check the other inequality. Indeed,

1 − αx
Gx(y, 0)
d(x, y) ≥ −Ry(x, 0) ⇐⇒ 1 + Ry(x, 0) ≥ αx

Gx(y, 0)
d(x, y) .

Through a full expansion, analogous to the previous one, we reach the expression

2ρ(x)ρ(y)d(x, y) ≥ 2ρ(x)2ρ(y) − 2ρ(x)ρ(y)2,

which is equivalent to d(x, y) ≥ ρ(x) −ρ(y). But this is simply the triangular inequality and, therefore, true.
Finally, combining both inequalities, we reach |〈ρ0, u〉| ≤ Ry(x, 0). �
Here we just state the computations of the optimal case provided in Lemma 3.2, but for the molecule 

my,0.

Lemma 4.2. Let M = ({x, y, 0}, d) be a canonical triangle. Let λy be the optimal λ for my,0 (the analogous 
provided by Lemma 3.2), and take v := λymy,x − (1 − λy)mx,0. Then,

〈ρ0, v〉 = −1 + λy
Gy(x, 0)
d(x, y) = −νop(y, 0);

〈ρy, v〉 = −
(
1 − (1 − λy)

G0(x, y)
ρ(x)

)
= −νop(y, 0);

〈ρx, v〉 = 1.

Proposition 4.3. Let M = ({x, y, 0}, d) be a canonical triangle and

Ry(x, 0) = max{νop(x, 0), Ry(x, 0)}.

Then, there exists T ∈ SL(F(M)) such that ν(T ) = Ry(x, 0).

Proof. To construct a linear operator, it is enough to define the image of mx,0 and my,0. First, consider T
a linear operator such that

Tmx,0 = αxmy,x + (1 − αx)my,0 ∈ SF(M)

where

αx := 1 − ρ(y)Gy(x, 0)
(d(x, y) + ρ(y))G0(x, y)

.

Then, we can check that

〈ρ0, Tmx,0〉 = 1 − αx
Gx(y, 0)
d(x, y) ;

〈ρx, Tmx,0〉 = 1 − (1 − αx)G0(x, y)
ρ(y) = Ry(x, 0);

〈ρ , Tm 〉 = −1.
y x,0
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By Lemma 4.1, we know that |〈ρ0, Tmx,0〉| ≤ Ry(x, 0), so ν(T, mx,0) = |〈ρx, Tmx,0〉| = Ry(x, 0).
Now, consider T an operator such that

Tmy,0 = Ry(x, 0)
νop(y, 0)(λymy,x − (1 − λy)mx,0),

where λy is the one in Lemma 4.2. As a consequence of this result, it is easy to see that such an operator 
satisfies

〈ρ0, Tmy,0〉 = −Ry(x, 0);

〈ρy, Tmy,0〉 = −Ry(x, 0);

〈ρx, Tmy,0〉 = Ry(x, 0)
νop(y, 0) .

Recall that by the relation of the distances in M , Ry(x, 0) ≤ νop(y, 0), so this last quotient in absolute 
value is less than or equal to 1, so the image of Tmy,0 lies inside the unit ball.

Thus, such operator T satisfies that ν(T, my,0) = Ry(x, 0).
Now, consider the unique operator T defined by the previous images of mx,0 and my,0. Then, the image 

of mx,y is completely determined by linearity, as

Tmx,y = ρ(x)
d(x, y)Tmx,0 −

ρ(y)
d(x, y)Tmy,0.

After fully developing the evaluation against ρx, we obtain

〈ρx, Tmx,y〉 = ρ(x)
d(x, y) 〈ρx, Tmx,0〉 −

ρ(y)
d(x, y) 〈ρx, Tmy,0〉

= Ry(x, 0)
(
1 − 2ρ(x)

d(x, y)
Gy(x, 0)
Gx(y, 0)

)
,

which, as 0 ≤ 2ρ(x)
d(x,y)

Gy(x,0)
Gx(y,0) ≤ 1, implies that |〈ρx, Tmx,y〉| ≤ Ry(x, 0).

Analogously, evaluating against ρy, we deduce that

〈ρy, Tmx,y〉 = ρ(x)
d(x, y) 〈ρy, Tmx,0〉 −

ρ(y)
d(x, y) 〈ρy, Tmy,0〉

= − ρ(x)
d(x, y) + ρ(y)

d(x, y)Ry(x, 0) = −Ry(x, 0).

Therefore, ν(T ) = ν(T, mx,y) = Ry(x, 0). The last thing to do is to check that T is a norm-one operator 
by showing that Tmx,y lies inside the ball. Since the computations for the other functionals are already 
done, we only need to study its evaluation against ρ0. Thus,

|〈ρ0, Tmx,y〉| =
∣∣∣ ρ(x)
d(x, y) 〈ρ0, Tmx,0〉 −

ρ(y)
d(x, y) 〈ρ0, Tmy,0〉

∣∣∣
=

∣∣∣ ρ(x)
d(x, y)

(
1 − αx

Gx(y, 0)
d(x, y)

)
+ ρ(y)

d(x, y)Ry(x, 0)
∣∣∣

≤ Ry(x, 0)ρ(x) + ρ(y)
d(x, y) = ρ(x)

d(x, y)
ρ(x) + ρ(y)
d(x, y) + ρ(y) ≤ 1,

which finishes the proof. �
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4.2. Operator for the optimal contribution

The following proposition contains the explicit construction of the operator T satisfying that ν(T ) =
νop(x, 0) when νop(x, 0) ≥ Ry(x, 0).

Proposition 4.4. Let M = ({x, y, 0}, d) be a canonical triangle and

νop(x, 0) = max{νop(x, 0), Ry(x, 0)}.

Then, there exist T ∈ SL(F(M)) such that ν(T ) = νop(x, 0).

Proof. Once again, we will construct the operator by giving the image of mx,0 and my,0.
First, let

Tmx,0 = λxmy,x + (1 − λx)my,0

where λx is the optimal λ for mx,0 (see Lemma 3.2 or 4.2). The analogous version of Lemma 4.2 for the 
molecule mx,0 would provide that

〈ρ0, Tmx,0〉 = νop(x, 0);

〈ρx, Tmx,0〉 = νop(x, 0);

〈ρy, Tmx,0〉 = −1.

So, ν(T, mx,0) = νop(x, 0), and ‖Tmx,0‖ = 1.
Now, take

Tmy,0 := νop(x, 0)
νop(y, 0) (λymy,x − (1 − λy)mx,0).

This image is a scaling of the vector given in Lemma 4.2, so we deduce that

〈ρ0, Tmy,0〉 = −νop(x, 0);

〈ρy, Tmy,0〉 = −νop(x, 0);

〈ρx, Tmy,0〉 = νop(x, 0)
νop(y, 0) .

Recall that the order relation for the optimal contributions is the reverse of the order relation for the 
distances—see Lemma 2.7—so, νop(x, 0) ≤ νop(y, 0). Thus, ν(T,my,0) = νop(x, 0), and ‖Tmy,0‖ ≤ 1.

Finally, the image of mx,y is completely determined by the linearity of T as

Tmx,y = ρ(x)
d(x, y)Tmx,0 −

ρ(y)
d(x, y)Tmy,0.

Then, we compute all the evaluations. First,

−〈ρx, Tmx,y〉 = −
( ρ(x)
d(x, y) 〈ρx, Tmx,0〉 −

ρ(y)
d(x, y) 〈ρx, Tmy,0〉

)

= − ρ(x)
d(x, y)νop(x, 0) + ρ(y)

d(x, y)
νop(x, 0)
νop(y, 0)

= νop(x, 0)( ρ(y) − ρ(x)
)
≤ νop(x, 0)
d(x, y) νop(y, 0)
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Last inequality is deduced from the fact that νop(y, 0) ≥ Rx(y, 0)—see Lemma 2.11—and this expression 
is equivalent to

ρ(y)
νop(y, 0) − ρ(x) ≤ d(x, y).

Analogously,

〈ρx, Tmx,y〉 ≤
ρ(x)
d(x, y)νop(x, 0) ≤ νop(x, 0).

So, |〈gx, Tmx,y〉| ≤ νop(x, 0).
We proceed in a similar way with the functional ρy:

−〈ρy, Tmx,y〉 = −
( ρ(x)
d(x, y) 〈ρy, Tmx,0〉 −

ρ(y)
d(x, y) 〈ρy, Tmy,0〉

)

= ρ(x)
d(x, y) − ρ(y)

d(x, y)νop(x, 0),

which is less than or equal to νop(x, 0) if and only if

ρ(x)
d(x, y) ≤ (1 + ρ(y)

d(x, y) )νop(x, 0),

which is, once again, equivalent to the hypothesis Ry(x, 0) ≤ νop(x, 0).
For the other inequality, we just check that

−〈ρy, Tmx,y〉 = ρ(x)
d(x, y) − ρ(y)

d(x, y)νop(x, 0)

is greater than or equal to −νop(x, 0) if and only if

ρ(x)
d(x, y) ≥

( ρ(y)
d(x, y) − 1

)
νop(x, 0),

which is trivially satisfied since the left-hand side is positive while the right-hand side is non-positive. In 
conclusion, |〈ρy, Tmx,y〉| ≤ νop(x, 0), which implies that ν(T,mx,y) ≤ νop(x, 0).

Finally, we compute the evaluation against the last functional ρ0 in order to check that Tmx,y is inside 
the unit ball.

〈ρ0, Tmx,y〉 = ρ(x)
d(x, y) 〈ρ0, Tmx,0〉 −

ρ(y)
d(x, y) 〈ρ0, Tmy,0〉

= ρ(x)
d(x, y)νop(x, 0) + ρ(y)

d(x, y)νop(x, 0) = νop(x, 0)
R0(x, y)

.

Recall that under our assumptions R0(x, y) ≥ νop(x, 0)—see Lemma 2.11, this last quotient is less than 
or equal to 1.

This completes the construction of the operator T with ‖T‖ = 1 and ν(T ) = νop(x, 0). �



18 Ch. Cobollo et al. / J. Math. Anal. Appl. 538 (2024) 128333
5. Some applications

Now we are ready to state Theorem 1.1 that can be rewritten using the notation developed in previous 
sections.

Theorem 5.1. Let M = ({x, y, 0}, d) be a metric space of three points with d(x, y) ≥ ρ(x) ≥ ρ(y). Then:

• if M is aligned, then n(F(M)) = 1;
• otherwise, if M is a triangle, then

n(F(M)) = max {νop(x, 0), Ry(x, 0)} .

Corollary 5.2. Let M be a metric space of three points. Then, n(F(M)) = 1 if and only if the three points 
of M are aligned.

Using this theorem it is easy to get some insights on the relation between the different types of triangles 
and the numerical index. The first thing to notice is that if M is equilateral, then both values in the 
maximum are equal to 1

2 , and combining this with Proposition 3.3, we reach that the equilateral case is, 
between all the triangles, the only one providing the minimal numerical index.

Corollary 5.3. Let M be a metric space of three points. Then, n(F(M)) = 1
2 if and only if M is an equilateral 

triangle.

Assuming that M is an isosceles triangle—i.e., two sides are equal—the formula is even simpler. Indeed, 
if M = ({x, y, 0}, d) with ρ(x) = ρ(y), then νop(x, 0) = ρ(x)

3ρ(x)−d(x,y) , Ry(x, 0) = ρ(x)
ρ(x)+d(x,y) . Moreover, 

νop(x, 0) ≤ Ry(x, 0) if and only if d(x, y) ≤ ρ(x), which allows as to give the following corollaries.

Corollary 5.4. Let M = ({x, y, 0}, d) be an isosceles triangle such that ρ(x) = ρ(y) ≥ d(x, y). Then

n(F(M)) = ρ(x)
ρ(x) + d(x, y) .

In particular, n(F(M)) ∈ [ 12 , 1), and it can take any value of the interval.

Corollary 5.5. Let M = ({x, y, 0}, d) be an isosceles triangle such that ρ(x) = ρ(y) ≤ d(x, y). Then

n(F(M)) = ρ(x)
3ρ(x) − d(x, y) .

In particular, n(F(M)) ∈ [ 12 , 1), and it can take any value of the interval.

M. Martín kindly pointed us to the relation between the numerical index of a 2-dimensional Lipschitz-free 
space and [14, Theorem 1]. Using Corollaries 5.4 and 5.5, we can recover the numerical index of the family 
of hexagonal norms in [14, Theorem 1] and the other way around. It is easy to prove that a hexagonal norm 
in R2 is covered by [14, Theorem 1] if and only if the space is isometrically isomorphic to F(M) for a certain 
isosceles triangle M .

Remark 5.6. Notice that the formula obtained in Theorem 5.1 allows to compute the numerical index for 
every 2-dimensional hexagonal norm, as such a Banach space is isometrically isomorphic to F(M) for some 
triangle M . �
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We can even deduce some consequences for infinite-dimensional Lipschitz-free spaces. Considering A a 
metric space and a subset M ⊂ A, then F(M) is canonically embedded as a linear subspace of F(A). A 
straightforward consequence of this fact is the following result.

Theorem 5.7. Let A ⊂ (R2, ‖ · ‖2) be any subset with non-empty interior. Then, F(A) is a separable infinite-
dimensional Lipschitz-free space such that, for every α ∈ [ 12 , 1], it contains a 2-dimensional subspace Yα

with n(Yα) = α.

Remark 5.8. This may even allow some other applications. For instance, as a consequence of the Theorem 
above and Corollary 5.5, we are able to provide the—to our understanding, curious—result below. Its proof 
will appear elsewhere.

Let A ⊂ (Rm, ‖ · ‖2) (with m ≥ 2) be any subset with non-empty interior. Then, there exist an operator 
T ∈ L(F(A)) and an uncountable infinite family of 2-dimensional subspaces {Yi : i ∈ I} of F(A) such that, 
for every i ∈ I, the set {n(T k(Yi)) : k ∈ N} is dense in [ 12 , 1]. �

Acknowledgments

The authors are grateful to M. Martín for his kind suggestions and commentaries, which improved 
the final version of the present document. The authors also thank the anonymous referee for his/her 
helpful comments that improved the quality of the manuscript. The authors were partially supported 
by the Universitat Politècnica de València (Spain) and by grant PID2021-122126NB-C33 funded by 
MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. The first author was 
also supported by Generalitat Valenciana (through Project PROMETEU/2021/070 and the predoctoral 
fellowship CIACIF/2021/378) and by MCIN/AEI/10.13039/501100011033/FEDER, UE (Projects PID2019-
105011GB-I00 and PID2022-139449NB-I00). The second author was also supported by Fundación Séneca, 
Región de Murcia (Grant 19368/PI/14). The third author was also supported by AEI/FEDER (Project 
MTM2017-83262-C2-1-P of Ministerio de Economía y Competitividad).

References

[1] R.J. Aliaga, A.J. Guirao, On the preserved extremal structure of Lipschitz-free spaces, Stud. Math. 245 (2019) 1–14.
[2] R.F. Arens, J. Eells, On embedding uniform and topological spaces, Pac. J. Math. 6 (1956) 397–403.
[3] F.F. Bonsall, J. Duncan, Numerical Ranges II, Lecture Notes in Mathematics, vol. 10, London Math. Soc., Cambridge, 

1973.
[4] F.F. Bonsall, J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Lecture 

Notes in Mathematics, vol. 2, London Math. Soc., Cambridge, 1971.
[5] J. Duncan, C.M. McGregor, J.D. Pryce, A.J. White, The numerical index of a normed space, J. Lond. Math. Soc. 2 (1970).
[6] G. Godefroy, N.J. Kalton, Lipschitz-free Banach spaces, Stud. Math. 159 (2003) 121–141.
[7] J.A. Johnson, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Trans. Am. Math. Soc. 148 

(1970).
[8] V. Kadets, Lipschitz mappings of metric spaces, Izv. Vysš. Učebn. Zaved., Mat. 83 (1985).
[9] V. Kadets, M. Martín, J. Merí, A. Pérez, Spear Operators Between Banach Spaces, Lecture Notes in Mathematics, 

vol. 2205, Springer, Cham, 2018, xv+161 pp.
[10] V. Kadets, M. Martín, R. Payá, Recent progress and open questions on the numerical index of Banach spaces, Rev. R. 

Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 100 (2006).
[11] I.V. Kantorovich, G.S. Rubinstein, On a functional space and certain extremum problems, in Russian Dokl. Akad. Nauk 

SSSR 115 (1957) 1058–1061.
[12] K. de Leeuw, Banach spaces of Lipschitz functions, Stud. Math. 21 (1961).
[13] M. Martín, J. Merí, A note on the numerical index of the Lp space of dimension two, Linear Multilinear Algebra 57 (2) 

(2009) 201–204.
[14] M. Martín, J. Merí, Numerical index of some polyhedral norms on the plane, Linear Multilinear Algebra 55 (2) (2007) 

175–190.
[15] J. Merí, A. Quero, On the numerical index of absolute symmetric norms on the plane, Linear Multilinear Algebra 69 (5) 

(2021) 971–979.
[16] J. Merí, A. Quero, On the numerical index of the real two-dimensional Lp space, Linear Multilinear Algebra (2023) 1–16.
[17] Monika, Bentuo Zheng, The numerical index of �2p, Linear Multilinear Algebra 71 (5) (2023) 768–773.

http://refhub.elsevier.com/S0022-247X(24)00255-5/bibE50621B52DEC4E70E51D95FF50EFF8C6s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bibC7F7875CCC61874C3F76F4FF2DC1CA0Fs1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib0BC12019C1110E94949C92B02951C2E7s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib0BC12019C1110E94949C92B02951C2E7s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib4EF5BC678C0D4F26BBB03903BD33E7E9s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib4EF5BC678C0D4F26BBB03903BD33E7E9s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bibB4570B1D864778DCAFF0F3617DEFE0A0s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib1D0F94D939C677F530477687C9DA9AA0s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib3228635B89112E2C641F5E5CC44E19FEs1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib3228635B89112E2C641F5E5CC44E19FEs1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bibF503428DFA421481F5BB6000A6E04B63s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bibB0C39B24EFFD9717D194F01667A7578Bs1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bibB0C39B24EFFD9717D194F01667A7578Bs1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib9F65229698484EC887CC5598CEE044E3s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib9F65229698484EC887CC5598CEE044E3s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bibC68E8D8FACCF51DFC59DEC40492B50A1s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bibC68E8D8FACCF51DFC59DEC40492B50A1s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bibEFE3F3EACBFFA7322FF33012356A56DDs1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib067BF6795D6A167E1E90EC6B46ADBCDFs1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib067BF6795D6A167E1E90EC6B46ADBCDFs1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib12105CF9820366F0273586B0EBA6635As1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib12105CF9820366F0273586B0EBA6635As1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib26AA36B2B50DCF459394C0DAAA47BF0Es1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib26AA36B2B50DCF459394C0DAAA47BF0Es1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib62070F619F0D6CFB26A8120E3F56D869s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bibAC9EE32CB99C81C524CE3E53A7F57E67s1


20 Ch. Cobollo et al. / J. Math. Anal. Appl. 538 (2024) 128333
[18] V.G. Pestov, Free Banach spaces and representations of topological groups, Funct. Anal. Appl. 20 (1986).
[19] D. Sain, K. Paul, P. Bhunia, S. Bag, On the numerical index of polyhedral Banach spaces, Linear Multilinear Algebra 577 

(2019).
[20] N. Weaver, Lipschitz Algebras, 1st ed., World Scientific Publishing Co., River Edge, NJ, 1999.
[21] N. Weaver, Lipschitz Algebras, 2nd ed., World Scientific Publishing Co., River Edge, NJ, 2018.

http://refhub.elsevier.com/S0022-247X(24)00255-5/bib156EE6D300C8FB91BB95AAD7C758F1C8s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bibBE9C7B3799810886DBDC4DA7DA57EC02s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bibBE9C7B3799810886DBDC4DA7DA57EC02s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib1436862CA941AF8623B846DCB808C172s1
http://refhub.elsevier.com/S0022-247X(24)00255-5/bib9ED0A84636CE6BDF2C5C62306DDAAD65s1

	The numerical index of 2-dimensional Lipschitz-free spaces
	1 Introduction
	2 Metric tools
	3 Geometric behaviour of the Lipschitz-free space associated to a triangle
	3.1 The first lower bound: the optimal contribution
	3.2 The second lower bound: the metric ratio

	4 Attaining the numerical index: construction of the operators
	4.1 Operator for the metric ratio
	4.2 Operator for the optimal contribution

	5 Some applications
	Acknowledgments
	References


